

OVERVIEW

ALT Angka Lempeng Total

AKK Angka Kapang Khamir

BAKTERI PATO GEN | Jenis dan kriteria AFLATO KSIN Jenis dan kriteria

DEFINISI

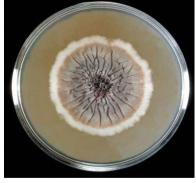
ALT

Jumlah pertumbuhan bakteri aerob mesofil pada media agar setelah sampel diinokulasikan

AKK

Jumlah pertumbuhan kapang dan khamir pada media agar setelah sampel diinokulasikan

PERBEDAAN KAPANG KHAMIR


Kapang (mold):

Fungi multiseluler, mempunyai filamen, mudah dilihat karena penampakan berserabut spt kapas. Mula-mula bewarna putih tetapi jika spora sudah terbentuk maka dapat bewarna sesuai dengan jenis kapang.

Kapang terdiri 1 thallus yang terusun dari filamen yang bercabang disebut hifa, kumpulan hifa disebut miselium

Sporothrix schenckii in Sabouraud Dextrose Agar

Khamir (*yeast*):

Fungi uniseluler, mikroskopik, beberapa ada yang membentuk miselium dengan percabangan. Regenerasi dilakukan secara pembelahan.

METODE

Plate count

Teknik enumerasi pada media padat.

Memisahkan setiap sel/kumpulan pembentuk koloni tetap pada tempatnya sehingga memungkinkar untuk dilakukan perhitungan jumlah koloni per satuan sampel atau perlakuan lain.

MPN

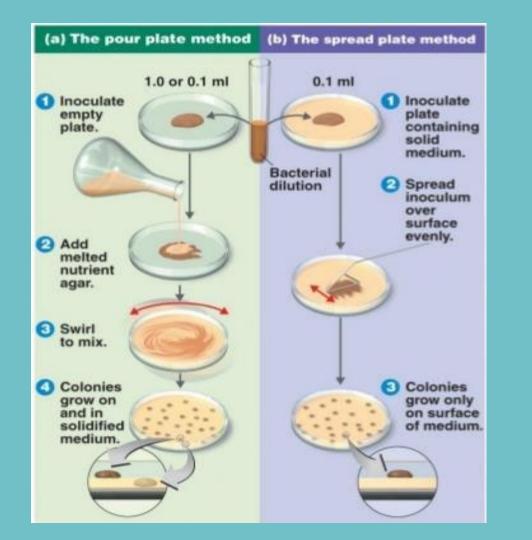
Most Probable Number

Teknik enumerasi pada media cair spesifik yang didasarkan pada data kualitatif untuk menghasilkan data kuantitatif.

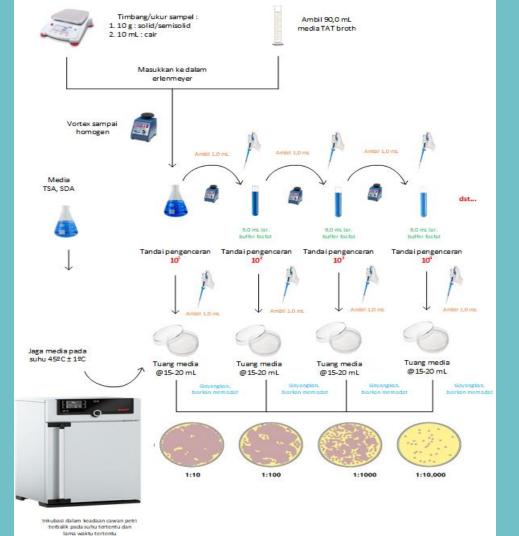
Jenis :

- 3 tabung
- 5 tabung

PLATE COUNT



Spread plate:


Menumbuhkan pada media agar yang telah memadat menggunakan *sprader* (*spreader spatula*).

Pour plate:

Teknik penanaman dengan cara mencampurkan sampel dengan media agar yang masih berbentuk cair sehingga didapatkan koloni yang tersebar merata di seluruh media.

SOP

SUHU DAN LAMA INKUBASI

USP					
Parameter	ALT	AKK			
Media	TSA	SDA			
Suhu	30-35°C	20-25°C			
Lama inkubasi	≤ 3 hari	≤ 5 hari			

PEMBACAAN HASIL PENGUJIAN

. Jika koloni bergerombol dan memiliki batas yang jelas maka dapat dihitung berbeda, tetapi jika batas yang dimiliki tidak jelas maka dihitung 1 koloni.

2. Hasil ditulis dalam dua digit pertama. Angka berikutnya

< 5 maka dibulatkan ke bawah

≥ 5 maka dibulatkan ke atas

624 x 10¹ maka ditulis **6,2 x 10**³

3. Pilih cawan petri yang mempunyai jumlah koloni

ALT : 25 – 250 koloni AKK : 8 - 80 koloni

4. Jika hasil perhitungan koloni pada cawan lebih kecil dari batas bawah ketentuan, maka jumlah koloni rata-rata dari kedua cawan dihitung lalu dikalikan dengan faktor pengencerannya. Hasil dinyatakan sebagai Angka Lempeng Total/Angka Kapang Khamir dalam tiap gram atau ml sampel dengan penandaan * (nilai estimasi) atau bisa juga ditulis < batas terendah dikalikan pengenceran (nilai estimasi).

Pengenceran	Cawan 1	Cawan 2	Keterangan
10 ²	18	14	Dipilih pengenceran pertama
10 ³	2	0	

Hasil ALT nya:
$$\frac{18 + 14}{2} \times 10^2 = 16 \times 10^2$$
 ditulis 1,6 x 10³°)

(*): estimated count

5. Jika hasil perhitungan koloni pada cawan lebih besar dari batas atas ketentuan, maka jumlah koloni rata-rata dari kedua cawan dihitung lalu dikalikan dengan faktor pengencerannya. Hasil dinyatakan sebagai Angka Lempeng Total/Angka Kapang Khamir dalam tiap gram atau ml sampel dengan penandaan * (nilai estimasi) atau bisa juga ditulis > batas tertinggi dikalikan nilai pengenceran (nilai estimasi).

Pengenceran	Cawan 1	Cawan 2	Keterangan
10 ²	TNTC	TNTC	
10 ³	350	400	Dipilih pengenceran kedua

Hasil ALT nya:
$$\frac{350 + 400}{2}$$
 x 10^3 = 375 x 10^3 ditulis 3,8 x $10^{5(*)}$

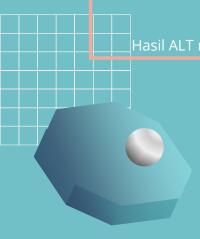
(*): estimated count

6. Jika perhitungan koloni pada cawan memenuhi ketentuan hanya pada salah satu pengenceran, maka hitung jumlah koloni rata-rata pada pengenceran yang memenuhi syarat saja. Jika perhitungan koloni pada cawan lebih dari ketentuan hanya pada salah satu pengenceran, maka hitung jumlah koloni rata-rata pada pengenceran yang memenuhi syarat saja. Hasil dinyatakan sebagai Angka Lempeng Total/Angka Kapang Khamir dalam tiap gram atau ml sampel.

Pengenceran	Cawan 1	Cawan 2	Keterangan
10 ²	53	42	Dipilih pengenceran pertama
10 ³	6	8	

Hasil ALT nya:
$$\frac{53 + 42}{2}$$
 x 10^2 = 47,5 x 10^2 ditulis 4,8 x 10^3

Pengenceran	Cawan 1	Cawan 2	Keterangan
10 ²	316	286	
10 ³	78	75	Dipilih pengenceran kedua


Hasil ALT nya:
$$\frac{78 + 75}{2} \times 10^3 = 76,5 \times 10^3$$
 ditulis 7,7 x 10⁴

7. Jika terdapat cawan–cawan dari dua tingkat pengenceran yang berurutan menunjukkan jumlah koloni sesuai ketentuan, maka dihitung jumlah koloni rata-rata dari masing–masing tingkat pengenceran kemudian dikalikan dengan faktor pengencerannya. Apabila hasil perhitungan rata-rata pada tingkat yang lebih tinggi kurang dari 2 kalinya, maka Angka Lempeng Total/Angka Kapang Khamir dihitung dari rata-rata jumlah koloni kedua tingkat pengenceran tersebut.

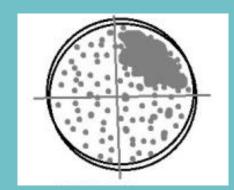
Pengenceran	Cawan 1	Cawan 2	Rata-rata
10 ²	1 <mark>9</mark> 5	185	190
10 ³	25	30	27,5

8. Jika terdapat cawan-cawan dari dua tingkat pengenceran yang berurutan menunjukkan jumlah koloni sesuai ketentuan, maka dihitung jumlah koloni rata-rata dari masing-masing tingkat pengenceran kemudian dikalikan dengan faktor pengencerannya. Apabila hasil perhitungan rata-rata pada tingkat yang lebih tinggi lebih besar dari 2 kalinya, maka Angka Lempeng Total/Angka Kapang Khamir yang dipilih dari tingkat pengenceran yang terendah.

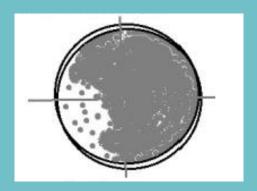
Pengenceran	Cawan 1	Cawan 2	Keterangan
10 ²	220	245	Dipilih pengenceran 1
10 ³	60	56	

Hasil ALT nya:
$$\frac{220 + 245}{2}$$
 x 10^2 = 232,5 x 10^2 ditulis 2,3 x 10^4

9. Bila salah satu dari cawan petri menunjukkan jumlah koloni kurang atau lebih dari
ketentuan, maka hitung jumlah rata-rata koloni dari semua cawan dikalikan faktor
pengenceran masing-masing, baik yang memenuhi ketentuan atau tidak. Hasil dinyatakan
sebagai Angka Lempeng Total/Angka Kapang Khamir dalam tiap gram atau ml sampel.


Pengenceran	Cawan 1	Cawan 2	Rata-rata
10 ²	245	258	251,5
10 ³	21	40	30,5

Hasil ALT nya:
$$\frac{25,15 + 30,5}{2}$$
 x $10^3 = 27,8$ x 10^3 ditulis $2,8$ x 10^4


10. Jika seluruh cawan menunjukkan jumlah koloni lebih dari 400, dipilih salah satu cawan dari tingkat pengenceran tertinggi kemudian dibagi menjadi beberapa sektor (2, 4, atau 8) dan dihitung jumlah koloni dari satu sektor. Angka Lempeng Total dinyatakan dari jumlah koloni dari 1 sektor tersebut kemudian dikalikan dengan jumlah sektor, kemudian dihitung rata-rata dari kedua cawan dan dikalikan dengan faktor pengenceran. Hasilnya ditulis dengan tanda (*) dan keterangan *: estimated count.

Pengenceran	Cawan 1 (1 sector)	Cawan 2 (1 sector)	Cawan 1 (4 sector)	Cawan 2 (4 sector)	Rata-rata
10 ²	100	150	100 x 4 = 400	150 x 4 = 600	500 x 10 ²
10 ³	175	200	175 x 4 = 700	200 x 4 = 800	750 x 10 ³

11. Jika dijumpai koloni "overspread" atau menyebar meliputi seperempat sampai setengah bagian cawan, maka dihitung koloni yang tumbuh di luar daerah spreader. Jika 75% dari seluruh cawan mempunyai koloni "overspread" atau menyebar, maka dicatat sebagai "OS". Untuk keadaan ini harus dicari penyebabnya dan diperbaiki cara kerjanya (dilakukan pengujian ulang).

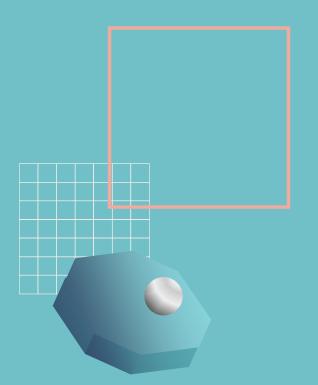
12. Jika hasil akhir penghitungan koloni mempunyai nilai $> 2.5 \times 10^8$ maka dapat ditulis **TNTC** (*Too Numerous Too Count*).

PERSYARATAN

Perka BPOM No. 32 tahun 2019				
Item	ALT (cfu/g)	AKK (cfu/g)		
Rajangan yang diseduh dengan air panas				
Rajangan yang direbus	$\leq 5.0 \times 10^7$	≤ 5,0 x 10 ⁵		
Serbuk yang diseduh dengan air panas				

ALT simplisia jahe Pengenceran 10²

ALT simplisia jahe Pengenceran 10⁴


AKK simplisia sambiloto Pengenceran 10³

BAKTERI PATOGEN

Bakteri yang dapat menyebabkan penyakit baik invasi secara langsung maupun melalui kontaminasi

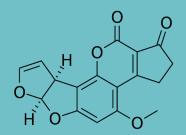
Bakteri patogen	Nilai
E. coli	< 10 cfu/g
Enterobacteriacea	< 1,0 x 10 ³ cfu/g
Clostridium	Negatif
Salmonella	Negatif
Shigella	Negatif

Perka BPOM No. 32 tahun 2019

E. Coli pada media MCA

Enterobacteriaceae pada Violet Red Bile Glucose Agar

AFLATOKSIN



Jenis jamur yang memproduksi aflatoksin :

- 1. A. Bombycis
- 2. A. Ochraceoroseus
- 3. A. pseudotamari
- 4. A.tamarii
- 5. Emericella astellata
- 6. Emericella venezuelensis
- 7. A. flavus

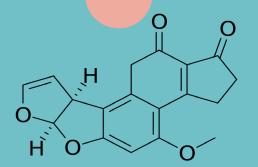
Aflatoksin B1

Racun yang sangat toksik. Memberikan fluoresensi warna biru pada sinar UV λ 365 nm

Aflatoksin B2

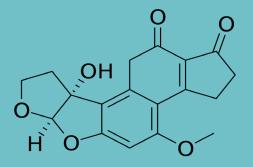
Merupakan turunan dari aflatoksin B1. Memberikan fluoresensi warna biru pada sinar UV λ 365 nm

Afla toksin G1


Diproduksi oleh A. parasiticus. Memberikan fluoresensi warna hijau pada sinar UV λ 365 nm

Aflatoksin G2

Diproduksi oleh A. parasiticus. Memberikan fluoresensi warna hijau pada sinar UV λ 365 nm


Aflatoksin M2

Metabolit aflatoksin B2. Terdapat pada olahan susu dan turunannya. Terbentuk pada hewan ruminansia, e.g : sapi

Aflatoksin M1

Metabolit aflatoksin B1. Terdapat pada olahan susu dan turunannya. Terbentuk pada hewan ruminansia, e.g : sapi

BAHAYA AFLATOKSIN

Karsinogenik

Memnyebabkan kanker terutama kanker hati Aflatoksin B1

Genotoksik

Mutasi DNS, kerusakan rantai DNA, kerusakan kromosom DNA yang dituju Aflatoksin B1 & G1

Hepatotoksik

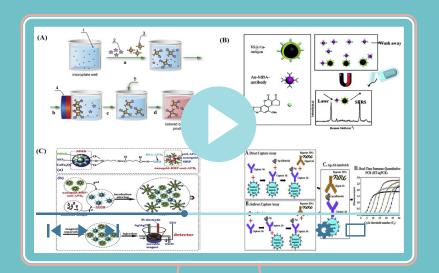
Berpotensi menjadi hepatitis akut letal dengan mual, sakit di bagian perut, dan dapat menimbulkan kematian

Nefrotoksik

dapat menginduksi dan mempengaruhi tubulusinterstisia serta ukuran glomerulus secara histologis dan ultrastruktural

Imunosupresif

menyebabkan imunosuspresi, yang dapat menambah agen infeksi seperti pada penyakit HIV (Human Immunodeficiency Virus) dan tuberklosis


Kwarshiorkor

Malnutrisi pada anak karena kekurangan energi protein, ditandai dengan tumbuhnya rambut jagung

METODE ANALISA

KLT densitometri

Neksitasi max 354 nm & 400 nm

HPLC

A eksitasi max 365 nm & 455 nm

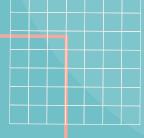
ELISA

ELISA plate reader & spektrofotometer kanal ganda. Reaksi antara enzim & subtrat/antigen-antibodi

PERSYARATAN

Kadar aflatoksin total (aflatoksin B1, B2, G1 dan G2) \leq 20 µg/kg dengan syarat aflatoksin B1 \leq 5 µg/kg

Perka BPOM No. 32 ta hun 2019



THANK YOU

