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Add to the (Model) 
Architecture 

•  What do you do with a billion 
transistors? 
♦  For a long time, try to make an individual 

processor (what we now call a core) faster 
♦  Increasingly complicated hardware yielded 

less and less benefit (speculation, out of 
order execution, prefetch, …) 

•  An alternative is to simply put multiple 
processing elements (cores) on the 
same chip 

•  Thus the “multicore processor” or 
“multicore chip” 
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Adding Processing Elements 

•  Here’s our model 
so far, with the 
vector and 
pipelining part of 
the “core” 
♦ Most systems 

today have an L3 
cache as well) 

•  We can (try to) 
replicate 
everything… 
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Adding Processing Elements 

•  Something 
like this 
would be 
simple 

•  But in 
practice, 
some 
resources 
are shared, 
giving us… 
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Adding Processing Elements 
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Notes on Multicore 

•  Some resources are shared 
♦ Typically the larger (slower) caches, path to 

memory 
♦ May share functional units within the core 

(variously called simultaneous 
multithreading (SMT) or hyperthreading) 

♦ Rarely enough bandwidth for shared 
resources (cache, memory) to supply all 
cores at the same time. 

•  Variations trade complexity of core with 
number of cores 
♦ Manycore vs. Multicore 
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Programming Models For 
Multicore processors 

• Parallelism within a process 
♦ Compiler-managed parallelism 

• Transparent to programmer 
• Rarely successful 

• Threads 
♦ Within a process, all memory shared 
♦ Each “thread” executes “normal” code 
♦ Many subtle issues (more later) 

• Parallelism between processes 
within a node covered later 
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What are Threads? 

• Executing program (process) is 
defined by 
♦ Address space 
♦ Program Counter 

• Threads are multiple program 
counters 
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Inside a Thread’s Memory 



10 

Kinds of Threads 

• Almost a process 
♦ Kernel (Operating System) schedules 
♦ Each thread can make independent 

system calls 
• Co-routines and lightweight 

processes 
♦ User schedules (sort of…) 

• Memory references 
♦ Hardware schedules 



11 

Kernel Threads 

• System calls (e.g., read, accept) 
block calling thread but not 
process 

• Alternative to “nonblocking” or 
“asynchronous” I/O: 
♦ create_thread 

thread calls blocking read 
• Can be expensive (many cycles to 

start, switch between threads) 
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User Threads 

•  System calls (may) block all threads in 
process 

•  Allows multiple cores to cooperate on 
data operations 
♦  loop: create # threads = # cores - 1 

each thread does part of loop 
•  Cheaper than kernel threads 

♦ Still must save registers (if in same core) 
♦ Parallelism requires OS to schedule threads 

on different cores 
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Hardware Threads 

•  Hardware controls threads 
•  Allows single core to interleave memory 

references and operations 
♦  Unsatisfied memory reference changes thread 
♦  Separate registers for each thread 

•  Single cycle thread switch with appropriate 
hardware 
♦  Basis of Tera MTA computer http://www.tera.com 

Now YarcData Urika 
♦  Like kernel threads, replaces nonblocking hardware 

operations - multiple pending loads 
♦  Even lighter weight—just change program counter 

(PC) 
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Simultaneous Multithreading 
(SMT) 

•  Share the functional units in a single 
core 
♦ Remember the pipelining example – not all 

functional units (integer, floating point, 
load/store) are busy each cycle 

♦ SMT idea is to have two threads sharing a 
single set of functional units 

♦ May be able to keep more of the hardware 
busy (thus improving throughput) 

•  Each SMT thread takes more time that 
it would if it was the only thread 

•  Almost entirely managed by hardware   
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Why Use Threads? 

•  Manage multiple points of 
interaction 
♦  Low overhead steering/probing 
♦ Background checkpoint save 

•  Alternate method for 
nonblocking operations 
♦ CORBA method invocation (no 

funky nonblocking calls) 
•  Hiding memory latency 
•  Fine-grain parallelism 

♦ Compiler parallelism  

Latency H
iding 
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Common Thread 
Programming Models 

•  Library-based (invoke a routine in a 
separate thread) 
♦ pthreads (POSIX threads) 
♦ See “Threads cannot be implemented as a 

library,” H. Boehm 
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.pdf  

•  Separate enhancements to existing 
languages 
♦ OpenMP, OpenACC, OpenCL, CUDA, … 

•  Within the language itself 
♦  Java, C11, others 
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Thread Issues 

• Synchronization 
♦ Avoiding conflicting operations 

(memory references) between 
threads 

• Variable Name Space 
♦ Interaction between threads and the 

language 
• Scheduling 

♦ Will the OS do what you want? 
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Synchronization of Access 

•  Read/write model 
a = 1;                b = 1;    
barrier();            barrier(); 
b = 2;                while (a==1) ; 
a = 2;                printf( “%d\n”, b ); 

What does thread 2 print? 

•  Take a few minutes and think about the 
possibilities 
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Synchronization of Access 

•  Read/write model 
a = 1;                b = 1;    
barrier();            barrier(); 
b = 2;                while (a==1) ; 
a = 2;                printf( “%d\n”, b ); 

What does thread 2 print? 
•  Many possibilities: 

♦ 2 (what the programmer expected) 
♦ 1 (thread 1 reorders stores so a=2 

executed before b=2 (valid in language) 
♦ Nothing: a never changes in thread 2 
♦ Some other value from thread 1 (value of b 

before this code starts) 
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How Can We Fix This? 

•  Need to impose an order on the 
memory updates 
♦ OpenMP has FLUSH (more than required) 
♦ Memory barriers (more on this later) 

•  Need to ensure that data updated by 
another thread is reloaded 
♦ Copies of memory in cache may update 

eventually 
♦  In this example, a may be (is likely to be) in 

register, never updated 
♦  volatile in C, Fortran indicate value might be 

changed outside of program 
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Synchronization of Access 

• Often need to ensure that updates 
happen atomically (all or nothing) 
♦ Critical sections, lock/unlock, and 

similar methods 
•  Java has “synchronized” methods 

(procedures) 
• C11 provides atomic memory 

operations 
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Variable Names 

•  Each thread can access all of a processes 
memory (except for the thread’s stack*) 
♦  Named variables refer to the address space—thus 

visible to all threads 
♦  Compiler doesn’t distinguish A in one thread from A 

in another 
♦  No modularity 
♦  Like using Fortran blank COMMON for all variables 

•  “Thread private” extensions are becoming 
common 
♦  “Thread local storage” (tls) is becoming common as 

an attribute 
♦  NEC has a variant where all variables names refer to 

different variables unless specified 
•  All variables are on thread stack by default (even 

globals) 
•  More modular 
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Scheduling Threads 

•  If threads used for latency hiding 
♦ Schedule on the same core 

• Provides better data locality, cache usage 

•  If threads used for parallel 
execution 
♦ Schedule on different cores using 

different memory pathways 
♦ Appropriate for data parallelism 
♦ Appropriate for certain types of task 

parallelism 
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The Changing Computing 
Model 

•  More interaction 
♦  Threads allow low-overhead agents on any 

computation 
•  OS schedules if necessary; no overhead if nothing 

happens (almost…) 
♦  Changes the interaction model from batch (give 

commands, wait for results) to constant interaction 
•  Fine-grain parallelism 

♦  Simpler programming model 

•  Lowering the Memory Wall 
♦  CPU speeds increasing much faster than memory 
♦  Hardware threads can hide memory latency 
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Node Execution Models 

• Where do threads run on a node? 
♦  Typical user expectation: User’s 

applications uses all cores and has 
complete access to them 

• Reality is complex.  Common cases 
include: 
♦ OS pre-empts core 0; Or cores 0,2 
♦ OS pre-empts user threads, 

distributes across cores 
♦ Hidden core (BG/Q) 
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Blue Gene/Q Processor 

•  1 spare core for 
yield 

•  1 core reserved 
for system (OS, 
services) 
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Performance Models 

• Easiest: Everything independent 
♦ Usually appropriate for L1 cache 
♦ L2 may be shared, L3 almost 

certainly shared 
♦ Two limits on performance: Maximum 

performance per thread and 
maximum overall (aggregate). 
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Performance Models: 
Memory 

•  Assume the time to move a unit of 
memory is tm 
♦ Due to latency in hardware; clock rate of 

data paths 
♦ Rate is 1/tm = rm 

•  Also assume that there is a maximum 
rate rmax 
♦ E.g., width of data path * clock rate 

•  Then the rate at which k threads can 
move data is 
♦ min(k/tm,rmax) = min(krm,rmax) 
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Limits on Thread 
Performance 

•  Threads share 
memory resources 

•  Performance is 
roughly linear with 
additional threads 
until the maximum 
bandwidth is reached 

•  At that point each 
thread receives a 
decreasing fraction 
of available 
bandwidth 

Number of threads

Rmax
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Questions 

• How do you expect a 
multithreaded STREAM to perform 
as you add threads?  Sketch a 
graph. 

• What’s the difference between a 
software thread and a hardware 
thread? 

• What happens if there are more 
threads that cores?  Can programs 
run faster in that case? 


