
Lecture 16: Threads

William Gropp
www.cs.illinois.edu/~wgropp

2

Add to the (Model)
Architecture

•  What do you do with a billion
transistors?
♦  For a long time, try to make an individual

processor (what we now call a core) faster
♦  Increasingly complicated hardware yielded

less and less benefit (speculation, out of
order execution, prefetch, …)

•  An alternative is to simply put multiple
processing elements (cores) on the
same chip

•  Thus the “multicore processor” or
“multicore chip”

3

Adding Processing Elements

•  Here’s our model
so far, with the
vector and
pipelining part of
the “core”
♦ Most systems

today have an L3
cache as well)

•  We can (try to)
replicate
everything…

Core

L1
Cache

L2
Cache

Memory

4

Adding Processing Elements

•  Something
like this
would be
simple

•  But in
practice,
some
resources
are shared,
giving us…

Core

L1
Cache

L2
Cache

Memory

Core

L1
Cache

L2
Cache

Memory

Core

L1
Cache

L2
Cache

Memory

Core

L1
Cache

L2
Cache

Memory

5

Adding Processing Elements

Core

L1
Cache

L2 Cache

Core

L1
Cache

Memory

Core

L1
Cache

L2 Cache

Core

L1
Cache

6

Notes on Multicore

•  Some resources are shared
♦ Typically the larger (slower) caches, path to

memory
♦ May share functional units within the core

(variously called simultaneous
multithreading (SMT) or hyperthreading)

♦ Rarely enough bandwidth for shared
resources (cache, memory) to supply all
cores at the same time.

•  Variations trade complexity of core with
number of cores
♦ Manycore vs. Multicore

7

Programming Models For
Multicore processors

• Parallelism within a process
♦ Compiler-managed parallelism

• Transparent to programmer
• Rarely successful

• Threads
♦ Within a process, all memory shared
♦ Each “thread” executes “normal” code
♦ Many subtle issues (more later)

• Parallelism between processes
within a node covered later

8

What are Threads?

• Executing program (process) is
defined by
♦ Address space
♦ Program Counter

• Threads are multiple program
counters

9

Inside a Thread’s Memory

10

Kinds of Threads

• Almost a process
♦ Kernel (Operating System) schedules
♦ Each thread can make independent

system calls
• Co-routines and lightweight

processes
♦ User schedules (sort of…)

• Memory references
♦ Hardware schedules

11

Kernel Threads

• System calls (e.g., read, accept)
block calling thread but not
process

• Alternative to “nonblocking” or
“asynchronous” I/O:
♦ create_thread

thread calls blocking read
• Can be expensive (many cycles to

start, switch between threads)

12

User Threads

•  System calls (may) block all threads in
process

•  Allows multiple cores to cooperate on
data operations
♦  loop: create # threads = # cores - 1

each thread does part of loop
•  Cheaper than kernel threads

♦ Still must save registers (if in same core)
♦ Parallelism requires OS to schedule threads

on different cores

13

Hardware Threads

•  Hardware controls threads
•  Allows single core to interleave memory

references and operations
♦  Unsatisfied memory reference changes thread
♦  Separate registers for each thread

•  Single cycle thread switch with appropriate
hardware
♦  Basis of Tera MTA computer http://www.tera.com

Now YarcData Urika
♦  Like kernel threads, replaces nonblocking hardware

operations - multiple pending loads
♦  Even lighter weight—just change program counter

(PC)

14

Simultaneous Multithreading
(SMT)

•  Share the functional units in a single
core
♦ Remember the pipelining example – not all

functional units (integer, floating point,
load/store) are busy each cycle

♦ SMT idea is to have two threads sharing a
single set of functional units

♦ May be able to keep more of the hardware
busy (thus improving throughput)

•  Each SMT thread takes more time that
it would if it was the only thread

•  Almost entirely managed by hardware

15

Why Use Threads?

•  Manage multiple points of
interaction
♦  Low overhead steering/probing
♦ Background checkpoint save

•  Alternate method for
nonblocking operations
♦ CORBA method invocation (no

funky nonblocking calls)
•  Hiding memory latency
•  Fine-grain parallelism

♦ Compiler parallelism

Latency H
iding

16

Common Thread
Programming Models

•  Library-based (invoke a routine in a
separate thread)
♦ pthreads (POSIX threads)
♦ See “Threads cannot be implemented as a

library,” H. Boehm
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.pdf

•  Separate enhancements to existing
languages
♦ OpenMP, OpenACC, OpenCL, CUDA, …

•  Within the language itself
♦  Java, C11, others

17

Thread Issues

• Synchronization
♦ Avoiding conflicting operations

(memory references) between
threads

• Variable Name Space
♦ Interaction between threads and the

language
• Scheduling

♦ Will the OS do what you want?

18

Synchronization of Access

•  Read/write model
a = 1; b = 1;
barrier(); barrier();
b = 2; while (a==1) ;
a = 2; printf(“%d\n”, b);

What does thread 2 print?

•  Take a few minutes and think about the
possibilities

19

Synchronization of Access

•  Read/write model
a = 1; b = 1;
barrier(); barrier();
b = 2; while (a==1) ;
a = 2; printf(“%d\n”, b);

What does thread 2 print?
•  Many possibilities:

♦ 2 (what the programmer expected)
♦ 1 (thread 1 reorders stores so a=2

executed before b=2 (valid in language)
♦ Nothing: a never changes in thread 2
♦ Some other value from thread 1 (value of b

before this code starts)

20

How Can We Fix This?

•  Need to impose an order on the
memory updates
♦ OpenMP has FLUSH (more than required)
♦ Memory barriers (more on this later)

•  Need to ensure that data updated by
another thread is reloaded
♦ Copies of memory in cache may update

eventually
♦  In this example, a may be (is likely to be) in

register, never updated
♦  volatile in C, Fortran indicate value might be

changed outside of program

21

Synchronization of Access

• Often need to ensure that updates
happen atomically (all or nothing)
♦ Critical sections, lock/unlock, and

similar methods
•  Java has “synchronized” methods

(procedures)
• C11 provides atomic memory

operations

22

Variable Names

•  Each thread can access all of a processes
memory (except for the thread’s stack*)
♦  Named variables refer to the address space—thus

visible to all threads
♦  Compiler doesn’t distinguish A in one thread from A

in another
♦  No modularity
♦  Like using Fortran blank COMMON for all variables

•  “Thread private” extensions are becoming
common
♦  “Thread local storage” (tls) is becoming common as

an attribute
♦  NEC has a variant where all variables names refer to

different variables unless specified
•  All variables are on thread stack by default (even

globals)
•  More modular

23

Scheduling Threads

•  If threads used for latency hiding
♦ Schedule on the same core

• Provides better data locality, cache usage

•  If threads used for parallel
execution
♦ Schedule on different cores using

different memory pathways
♦ Appropriate for data parallelism
♦ Appropriate for certain types of task

parallelism

24

The Changing Computing
Model

•  More interaction
♦  Threads allow low-overhead agents on any

computation
•  OS schedules if necessary; no overhead if nothing

happens (almost…)
♦  Changes the interaction model from batch (give

commands, wait for results) to constant interaction
•  Fine-grain parallelism

♦  Simpler programming model

•  Lowering the Memory Wall
♦  CPU speeds increasing much faster than memory
♦  Hardware threads can hide memory latency

25

Node Execution Models

• Where do threads run on a node?
♦  Typical user expectation: User’s

applications uses all cores and has
complete access to them

• Reality is complex. Common cases
include:
♦ OS pre-empts core 0; Or cores 0,2
♦ OS pre-empts user threads,

distributes across cores
♦ Hidden core (BG/Q)

26

Blue Gene/Q Processor

•  1 spare core for
yield

•  1 core reserved
for system (OS,
services)

27

Performance Models

• Easiest: Everything independent
♦ Usually appropriate for L1 cache
♦ L2 may be shared, L3 almost

certainly shared
♦ Two limits on performance: Maximum

performance per thread and
maximum overall (aggregate).

28

Performance Models:
Memory

•  Assume the time to move a unit of
memory is tm
♦ Due to latency in hardware; clock rate of

data paths
♦ Rate is 1/tm = rm

•  Also assume that there is a maximum
rate rmax
♦ E.g., width of data path * clock rate

•  Then the rate at which k threads can
move data is
♦ min(k/tm,rmax) = min(krm,rmax)

29

Limits on Thread
Performance

•  Threads share
memory resources

•  Performance is
roughly linear with
additional threads
until the maximum
bandwidth is reached

•  At that point each
thread receives a
decreasing fraction
of available
bandwidth

Number of threads

Rmax

30

Questions

• How do you expect a
multithreaded STREAM to perform
as you add threads? Sketch a
graph.

• What’s the difference between a
software thread and a hardware
thread?

• What happens if there are more
threads that cores? Can programs
run faster in that case?

