Lecture 16: Threads

William Gropp
www.cs.illinois.edu/~wgropp

Add to the (Model)
Architecture

e What do you do with a billion
transistors?

¢ For a long time, try to make an individual
processor (what we now call a core) faster

¢ Increasingly complicated hardware yielded
less and less benefit (speculation, out of
order execution, prefetch, ...)
e An alternative is to simply put multiple
processing elements (cores) on the
same chip

][e Thus the "multicore processor” or
m “multicore chip” | PARALLEL@ILLINOIS

Adding Processing Elements

7

\.

\

Core

J

L1

Caihe

L2
Cache

Memory

e Here’'s our model
so far, with the
vector and
pipelining part of
the “core”

¢ Most systems
today have an L3
cache as well)
e We can (try to)
replicate
everything...

PARALLEL@ILLINOIS

Adding Processing Elements

))))
[Core [Core [Core [Core
L1 L1 L1 L1
Caihe Caihe Caihe Cac|:he
L2 L2 L2 L2
Cache | | Cache | | Cache| | Cache
Memory Memory Memory Memory

e Something

like this
would be
simple
But in
practice,
some
resources

are shared,
giving us...

PARALLEL@ILLINOIS

Adding Processing Elements

4) 4) 4) 4)
Core Core Core Core
_ I _J _ I _J _ I . _ I .
L1 L1 L1 L1
Cache\}ghe Cache\};he
L2 Cache L2 Cache

Memory

- PARALLEL@ILL

NOIls

Notes on Multicore

e Some resources are shared

¢ Typically the larger (slower) caches, path to
memory

¢ May share functional units within the core
(variously called simultaneous
multithreading (SMT) or hyperthreading)

¢ Rarely enough bandwidth for shared
resources (cache, memory) to supply all
cores at the same time.
e Variations trade complexity of core with
number of cores

][¢ Manycore vs. Multicore
: PARALLEL@ILLINOIS

Programming Models For
Multicore processors

e Parallelism within a process

¢ Compiler-managed parallelism
e Transparent to programmer
e Rarely successful

e Threads

¢ Within a process, all memory shared
¢ Each “"thread” executes "normal” code
¢ Many subtle issues (more later)

y e Parallelism between processes

within a node co7vered IaterPARALLEL LLINOIS

What are Threads?

e Executing program (process) is
defined by

¢ Address space —
¢ Program Counter =

e Threads are multiple program

counters

i

g PARALLEL@ILLINOIS

Inside a Thread’s Memory

PROCESS

Kernel
Process
Data

BSS
Program
Data

Code

STACK

Kernel
Thread
Data

STACK

Kernel
Thread
Data

STACK

Kernel
Thread
Data

INOIS

Kinds of Threads

e Almost a process
¢ Kernel (Operating System) schedules

¢ Each thread can make independent
system calls

e Co-routines and lightweight
processes

¢ User schedules (sort of...)

e Memory references
T ¢ Hardware schedules

10 PARALLEL@ILLINOIS

Kernel Threads

e System calls (e.g., read, accept)
block calling thread but not

process

e Alternative to “nonblocking” or
“asynchronous” I/0:

¢ create thread

thread ca
e Can be ex

Is blocking read

nensive (many cycles to

start, switch between threads)

11

PARALLEL@ILLINOIS

User Threads

e System calls (may) block all threads in
process

e Allows multiple cores to cooperate on
data operations

¢ loop: create # threads = # cores - 1
each thread does part of loop
e Cheaper than kernel threads
¢ Still must save registers (if in same core)

¢ Parallelism requires OS to schedule threads
on different cores

. PARALLEL@ILLINOIS

Hardware Threads

e Hardware controls threads

e Allows single core to interleave memory
references and operations
¢ Unsatisfied memory reference changes thread
¢ Separate registers for each thread

e Single cycle thread switch with appropriate
hardware

¢ Basis of Tera MTA computer http://www.tera.com
Now YarcData Urika

¢ Like kernel threads, replaces nonblocking hardware
operations - multiple pending loads

¢ Even lighter weight—just change program counter
(PC)

1867

' 13 PARALLEL@ILLINOIS

Simultaneous Multithreading
(SMT)

e Share the functional units in a single
core

¢ Remember the pipelining example - not all
functional units (integer, floating point,
load/store) are busy each cycle

¢ SMT idea is to have two threads sharing a
single set of functional units

¢ May be able to keep more of the hardware
busy (thus improving throughput)

e Fach SMT thread takes more time that
T it would if it was the only thread

@l * Almost entirely managed by hagdwage, 1 ivols

Why Use Threads?

e Manage multiple points of N
Interaction

¢ Low overhead steering/probing
¢ Background checkpoint save

e Alternate method for
nonblocking operations

¢ CORBA method invocation (no
funky nonblocking calls)

e Hiding memory latency _

e Fine-grain parallelism
¢ Compiler parallelism

buipiH Aoduaje’

I

1867

5 PARALLEL@ILLINOIS

Common Thread
Programming Models

e Library-based (invoke a routine in a
separate thread)
¢ pthreads (POSIX threads)

¢ See "Threads cannot be implemented as a
library,” H. Boehm
http://www.hpl.hp.com/techreports/2004/
HPL-2004-209.pdf

e Separate enhancements to existing
languages
¢ OpenMP, OpenACC, OpenCL, CUDA, ...
e Within the language itself

¢ Java, C11, others PARALLEL@ILLINOIS

—_
x —
()
~

Thread Issues

e Synchronization

¢ Avoiding conflicting operations
(memory references) between
threads

e \Variable Name Space
¢ Interaction between threads and the
language
e Scheduling
¢ Will the OS do what you want?

!

17 PARALLEL@ILLINOIS

Synchronization of Access

e Read/write model

a = 1; b =1;

barrier () ; barrier () ;

b = 2; while (a==1) ;

a = 2; printf (“%d\n”, b);

What does thread 2 print?

e Take a few minutes and think about the
possibilities

18 PARALLEL@ILLINOIS

Synchronization of Access

e Read/write model
a=1; b = 1;

barrier () ; barrier () ;
b = 2; while (a==1) ;
a = 2; printf (“%d\n”, b);

What does thread 2 print?

e Many possibilities:
¢ 2 (what the programmer expected)

¢ 1 (thread 1 reorders stores so a=2
executed before b=2 (valid in language)

¢ Nothing: a never changes in thread 2

¢ Some other value from thread 1 (value of b

before this code starts)
19 PARALLEL@ILLINOIS

How Can We Fix This?

e Need to impose an order on the
memory updates
¢ OpenMP has FLUSH (more than required)
¢ Memory barriers (more on this later)

e Need to ensure that data updated by
another thread is reloaded

¢ Copies of memory in cache may update
eventually

¢ In this example, a may be (is likely to be) in
register, never updated

¢ volatile in C, Fortran indicate value might be
changed outside ofzg)rogram PARALLEL@ILLINOIS

Synchronization of Access

e Often need to ensure that updates
happen atomically (all or nothing)

¢ Critical sections, lock/unlock, and
similar methods

e Java has “synchronized” methods
(procedures)

e C11 provides atomic memory
operations

21 PARALLEL@ILLINOIS

Variable Names

1867

e Each thread can access all of a processes

memory (except for the thread’ s stack*)

¢ Named variables refer to the address space—thus
visible to all threads

¢ Compiler doesn’t distinguish 2 in one thread from 2
in another

¢ No modularity
¢ Like using Fortran blank COMMON for all variables

e “Thread private” extensions are becoming

common

¢ “Thread local storage” (tls) is becoming common as
an attribute

¢ NEC has a variant where all variables names refer to
different variables unless specified

e All variables are on thread stack by default (even
globals)

e More modular

2 PARALLEL@ILLINOIS

Scheduling Threads

o If threads used for latency hiding
¢ Schedule on the same core
e Provides better data locality, cache usage

o If threads used for parallel
execution

¢ Schedule on different cores using
different memory pathways

¢ Appropriate for data parallelism

¢ Appropriate for certain types of task

I parallelism
” PARALLEL@ILLINOIS

The Changing Computing
Model

e More interaction

¢ Threads allow low-overhead agents on any
computation

e OS schedules if necessary; no overhead if nothing
happens (almost...)

¢ Changes the interaction model from batch (give
commands, wait for results) to constant interaction

e Fine-grain parallelism
¢ Simpler programming model
e Lowering the Memory Wall

¢ CPU speeds increasing much faster than memory
¢ Hardware threads can hide memory latency

1867

24 PARALLEL@ILLINOIS

Node Execution Models

1867

e Where do threads run on a node?

¢ Typical user expectation: User’s
applications uses all cores and has
complete access to them
e Reality is complex. Common cases
include:
¢ OS pre-empts core 0; Or cores 0,2

¢ OS pre-empts user threads,
distributes across cores

¢ Hidden core (BG/Q)
25 PARALLEL@ILLINOIS

Blue Gene/Q Processor

e 1 spare core for
yield

e 1 core reserved
for system (OS,
services)

CLE L C

SILLE T ILLE T
o d ho ww o wnd Ao mm om e b R m e e h e

e 1 =
it 12 i

% PARALLEL@ILLINOIS

Performance Models

e Easiest: Everything independent
¢ Usually appropriate for L1 cache

¢ L2 may be shared, L3 almost
certainly shared

¢ Two limits on performance: Maximum
performance per thread and
maximum overall (aggregate).

27 PARALLEL@ILLINOIS

Performance Models:
Memory

e Assume the time to move a unit of
memory is t,,

¢ Due to latency in hardware; clock rate of
data paths

¢ Rateis 1/t = r,

e Also assume that there is a maximum
rate r. ..
¢ E.g., width of data path * clock rate

e Then the rate at which k threads can
move data is

T o min(k/t,,r...) = min(kr.,r.)
. PARALLEL@ILLINOIS

Limits on Thread
Performance

e Threads share
Memory resources

e Performance is
roughly linear with
additional threads
until the maximum el "
bandwidth is reached

e At that point each
thread receives a
decreasing fraction
of available
bandwidth

29 PARALLEL@ILLINOIS

Questions

e How d

O you expect a

multithreaded STREAM to perform
as you add threads? Sketch a
graph.

e \What's the difference between a
software thread and a hardware

thread:

e What

?
nappens if there are more

| threac

—_
x —
()
~

run faster in that case?
30

s that cores? Can programs

PARALLEL@ILLINOIS

