
Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/1

Module 2: File Systems and Management
In the previous module, we emphasized that a computer system processes and stores

information. Usually, during processing computers need to frequently access primary

memory for instructions and data. However, the primary memory can be used only for

only temporary storage of information. This is so because the primary memory of a

computer system is volatile. The volatility is evinced by the fact that when we switch off

the power the information stored in the primary memory is lost. The secondary memory,

on the other hand, is non-volatile. This means that once the user has finished his current

activity on a computer and shut down his system, the information on disks (or any other

form of secondary memory) is still available for a later access. The non-volatility of the

memory enables the disks to store information indefinitely. Note that this information can

also be made available online all the time. Users think of all such information as files. As

a matter of fact, while working on a computer system a user is continually engaged in

managing or using his files in one way or another. OS provides support for such

management through a file system. File system is the software which empowers users and

applications to organize and manage their files. The organization and management of

files may involve access, updates and several other file operations. In this chapter our

focus shall be on organization and management of files.

2.1 What Are Files?

Suppose we are developing an application program. A program, which we prepare, is a

file. Later we may compile this program file and get an object code or an executable. The

executable is also a file. In other words, the output from a compiler may be an object

code file or an executable file. When we store images from a web page we get an image

file. If we store some music in digital format it is an audio file. So, in almost every

situation we are engaged in using a file. In addition, we saw in the previous module that

files are central to our view of communication with IO devices. So let us now ask again:

What is a file?

Irrespective of the content any organized information is a file.

So be it a telephone numbers list or a program or an executable code or a web image or a

data logged from an instrument we think of it always as a file. This formlessness and

disassociation from content was emphasized first in Unix. The formlessness essentially

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/2

means that files are arbitrary bit (or byte) streams. Formlessness in Unix follows from the

basic design principle: keep it simple. The main advantage to a user is flexibility in

organizing files. In addition, it also makes it easy to design a file system. A file system is

that software which allows users and applications to organize their files. The organization

of information may involve access, updates and movement of information between

devices. Later in this module we shall examine the user view of organizing files and the

system view of managing the files of users and applications. We shall first look at the

user view of files.

User's view of files: The very first need of a user is to be able to access some file he has

stored in a non-volatile memory for an on-line access. Also, the file system should be

able to locate the file sought by the user. This is achieved by associating an identification

for a file i.e. a file must have a name. The name helps the user to identify the file. The file

name also helps the file system to locate the file being sought by the user.

Let us consider the organization of my files for the Compilers course and the Operating

Systems course on the web. Clearly, all files in compilers course have a set of pages that

are related. Also, the pages of the OS system course are related. It is, therefore, natural to

think of organizing the files of individual courses together. In other words, we would like

to see that a file system supports grouping of related files. In addition, we would like that

all such groups be put together under some general category (like COURSES).

This is essentially like making one file folder for the compilers course pages and other

one for the OS course pages. Both these folders could be placed within another folder,

say COURSES. This is precisely how MAC OS defines its folders. In Unix, each such

group, with related files in it, is called a directory. So the COURSES directory may have

subdirectories OS and COMPILERS to get a hierarchical file organization. All modern

OSs support such a hierarchical file organization. In Figure 2.1 we show a hierarchy of

files. It must be noted that within a directory each file must have a distinct name. For

instance, I tend to have ReadMe file in directories to give me the information on what is

in each directory. At most there can be only one file with the name “ReadMe" in a

directory. However, every subdirectory under this directory may also have its own

ReadMe file. Unix emphasizes disassociation with content and form. So file names can

be assigned any way.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/3

Some systems, however, require specific name extensions to identify file type. MSDOS

identifies executable files with a .COM or .EXE file name extension. Software systems

like C or Pascal compilers expect file name extensions of .c or .p (or .pas) respectively. In

Section 2.1.1 and others we see some common considerations in associating a file name

extension to define a file type.

2.1.1 File Types and Operations

Many OSs, particularly those used in personal computers, tend to use a file type

information within a name. Even Unix software support systems use standard file

extension names, even though Unix as an OS does not require this. Most PC-based OSs

associate file types with specific applications that generate them. For instance, a database

generating program will leave explicit information with a file descriptor that it has been

generated by a certain database program. A file descriptor is kept within the file structure

and is often used by the file system software to help OS provide file management

services. MAC OS usually stores this information in its resource fork which is a part of

its file descriptors.

This is done to let OS display the icons of the application environment in which this file

was created. These icons are important for PC users. The icons offer the operational clues

as well. In Windows, for instance, if a file has been created using notepad or word or has

been stored from the browser, a corresponding give away icon appears. In fact, the OS

assigns it a file type. If the icon has an Adobe sign on it and we double click on it the

acrobat reader opens it right away. Of course, if we choose to open any of the files

differently, the OS provides us that as a choice (often using the right button).

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/4

For a user the extension in the name of a file helps to identify the file type. When a user

has a very large number of files, it is very helpful to know the type of a file from its name

extensions. In Table 2.1, we have many commonly used file name extensions. PDP-11

machines, on which Unix was originally designed, used an octal 0407 as a magic number

to identify its executable files. This number actually was a machine executable jump

instruction which would simply set the program counter to fetch the first executable

instruction in the file. Modern systems use many magic numbers to identify which

application created or will execute a certain file.

In addition to the file types, a file system must have many other pieces of information

that are important. For instance, a file system must know at which location a file is placed

in the disk, it should know its size, when was it created, i.e. date and time of creation.

In addition, it should know who owns the files and who else may be permitted access to

read, write or execute. We shall next dwell upon these operational issues.

File operations: As we observed earlier, a file is any organized information. So at that

level of abstraction it should be possible for us to have some logical view of files, no

matter how these may be stored. Note that the files are stored within the secondary

storage. This is a physical view of a file. A file system (as a layer of software) provides a

logical view of files to a user or to an application. Yet, at another level the file system

offers the physical view to the OS. This means that the OS gets all the information it

needs to physically locate, access, and do other file based operations whenever needed.

Purely from an operational point of view, a user should be able to create a file. We will

also assume that the creator owns the file. In that case he may wish to save or store this

file. He should be able to read the contents of the file or even write into this file. Note

that a user needs the write capability to update a file. He may wish to display or rename

or append this file. He may even wish to make another copy or even delete this file. He

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/5

may even wish to operate with two or more files. This may entail cut or copy from one

file and paste information on the other.

Other management operations are like indicating who else has an authorization of an

access to read or write or execute this file. In addition, a user should be able to move this

file between his directories. For all of these operations the OS provides the services.

These services may even be obtained from within an application like mail or a utility

such as an editor. Unix provides a visual editor vi for ASCII file editing. It also provides

another editor sed for stream editing. MAC OS and PCs provide a range of editors like

SimpleText.

With multimedia capabilities now with PCs we have editors for audio and video files too.

These often employ MIDI capabilities. MAC OS has Claris works (or Apple works) and

MSDOS-based systems have Office 2000 suite of packaged applications which provide

the needed file oriented services. See Table 2.2 for a summary of common file

operations.

For illustration of many of the basic operations and introduction of shell commands we

shall assume that we are dealing with ASCII text files. One may need information on file

sizes. More particularly, one may wish to determine the number of lines, words or

characters in a file. For such requirements, a shell may have a suite of word counting

programs. When there are many files, one often needs longer file names. Often file names

may bear a common stem to help us categorize them. For instance, I tend to use “prog” as

a prefix to identify my program text files. A programmer derives considerable support

through use of regular expressions within file names. Use of regular expressions

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/6

enhances programmer productivity in checking or accessing file names. For instance,

prog* will mean all files prefixed with stem prog, while my file? may mean all the files

with prefix my file followed by at most one character within the current directory. Now

that we have seen the file operations, we move on to services. Table 2.3 gives a brief

description of the file-oriented services that are made available in a Unix OS. There are

similar MS DOS commands. It is a very rewarding experience to try these commands and

use regular expression operators like ? and * in conjunction with these commands.

Later we shall discuss some of these commands and other file-related issues in greater

depth. Unix, as also the MS environment, allows users to manage the organization of

their files. A command which helps viewing current status of files is the ls command in

Unix (or the dir command in MS environment). This command is very versatile. It helps

immensely to know various facets and usage options available under the ls command.

The ls command: Unix's ls command which lists files and subdirectories in a directory is

very revealing. It has many options that offer a wealth of information. It also offers an

insight in to what is going on with the files i.e. how the file system is updating the

information about files in “inode” which is a short form for an index node in Unix. We

shall learn more about inode in Section 2.4. In fact, it is very rewarding to study ls

command in all its details. Table 2.4 summarizes some of the options and their effects.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/7

Using regular expressions: Most operating systems allow use of regular expression

operators in conjunction with the commands. This affords enormous flexibility in usage

of a command. For instance, one may input a partial pattern and complete the rest by a *

or a ? operator. This not only saves on typing but also helps you when you are searching

a file after a long time gap and you do not remember the exact file names completely.

Suppose a directory has files with names like Comp_page_1.gif, Comp_page_2.gif and

Comp_page_1.ps and Comp_page_2.ps. Suppose you wish to list files for page_2. Use a

partial name like ls C*p*2 or even *2* in ls command. We next illustrate the use of

operator ?. For instance, use of ls my file? in ls command will list all files in the current

directory with prefix my file followed by at most one character.

Besides these operators, there are command options that make a command structure very

flexible. One useful option is to always use the -i option with the rm command in Unix. A

rm -i my files* will interrogate a user for each file with prefix my file for a possible

removal. This is very useful, as by itself rm my file* will remove all the files without any

further prompts and this can be very dangerous. A powerful command option within the

rm command is to use a -r option. This results in recursive removal, which means it

removes all the files that are linked within a directory tree. It would remove files in the

current, as well as, subdirectories all the way down. One should be careful in choosing

the options, particularly for remove or delete commands, as information may be lost

irretrievably.

It often happens that we may need to use a file in more than one context. For instance, we

may need a file in two projects. If each project is in a separate directory then we have two

possible solutions. One is to keep two copies, one in each directory or to create a

symbolic link and keep one copy. If we keep two unrelated copies we have the problem

of consistency because a change in one is not reflected in the other. The symbolic link

helps to alleviate this problem. Unix provides the ln command to generate a link

anywhere regardless of directory locations with the following structure and interpretation:

ln fileName pseudonym.

Now fileName file has an alias in pseudonym too. Note that the two directories which

share a file link should be in the same disk partition. Later, in the chapter on security, we

shall observe how this simple facility may also become a security hazard.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/8

2.2 File Access Rights

After defining a fairly wide range of possible operations on files we shall now look at the

file system which supports all these services on behalf of the OS. In the preamble of this

chapter we defined a file system as that software which allows users and applications to

organize and manage their files. The organization of information may involve access,

updates, and movement of information between devices. Our first major concern is

access.

Access permissions: Typically a file may be accessed to read or write or execute.

The usage is determined usually by the context in which the file is created. For instance, a

city bus timetable file is created by a transport authority for the benefit of its customers.

So this file may be accessed by all members of public. While they can access it for a read

operation, they cannot write into it. An associated file may be available to the supervisor

who assigns duties to drivers. He can, not only read but also write in to the files that

assign drivers to bus routes. The management at the transport authority can read, write

and even execute some files that generate the bus schedules. In other words, a file system

must manage access by checking the access rights of users. In general, access is managed

by keeping access rights information for each file in a file system.

Who can access files?: Unix recognizes three categories of users of files, e.g. user

(usually the user who created it and owns it), the group, and others. The owner may be

a person or a program (usually an application or a system-based utility). The notion of

“group” comes from software engineering and denotes a team effort. The basic concept is

that users in a group may share files for a common project. Group members often need to

share files to support each other's activity. Others has the connotation of public usage as

in the example above. Unix organizes access as a three bit information for each i.e.

owner, group, and others. So the access rights are defined by 9 bits as rwx rwx rwx

respectively for owner, group and others. The rwx can be defined as an octal number too.

If all bits are set then we have a pattern 111 111 111 (or 777 in octal) which means the

owner has read, write, and execute rights, and the group to which he belongs has also

read, write and execute rights, and others have read, write and execute rights as well. A

pattern of 111 110 100 (or 764 octal, also denoted as rwx rw- r--) means the owner has

read, write, and execute permissions; the group has read and write permissions but no

execute permission and others have only the read permission. Note that Unix group

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/9

permissions are for all or none. Windows 2000 and NTFS permit a greater degree of

refinement on a group of users. Linux allows individual users to make up groups.

2.3 File Access and Security Concerns

The owner of a file can alter the permissions using the chmod command in Unix. The

commonly used format is chmod octalPattern fileName which results in assigning the

permission interpreted from the octalPattern to the file named fileName. There are other

alternatives to chmod command like chmod changePattern fileName where

changePattern may be of the form go-rw to denote withdrawal of read write permission

from group and others. Anyone can view all the currently applicable access rights using a

ls command in Unix with -l option. This command lists all the files and subdirectories of

the current directory with associated access permissions.

Security concerns: Access permissions are the most elementary and constitute a fairly

effective form of security measure in a standalone single user system. In a system which

may be connected in a network this can get very complex. We shall for now regard the

access control as our first line of security. On a PC which is a single-user system there is

no security as such as anyone with an access to the PC has access to all the files.

Windows 2000 and XP systems do permit access restriction amongst all the users of the

system. These may have users with system administrator privileges. In Unix too, the

super-user (root) has access to all the files of all the users. So there is a need for securing

files for individual users. Some systems provide security by having a password for files.

However, an enhanced level of security is provided by encryption of important files.

Most systems provide some form of encryption facility. A user may use his own

encryption key to encrypt his file. When someone else accesses an encrypted file he sees

a garbled file which has no pattern or meaning. Unix provides a crypt command to

encrypt files.

The format of the crypt command is:

crypt EncryptionKey < inputFileName > outputFileName

The EncryptionKey provides a symmetric key, so that you can use the same key to

retrieve the old file (simply reverse the roles of inputFileName and outputFileName) In

Section 2.4 we briefly mention about audit trails which are usually maintained in syslog

files in Unix systems. In a chapter on security we shall discuss these issues in detail. So

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/10

far we have dealt with the logical view of a file. Next, we shall address the issues

involved in storage and management of files.

2.4 File Storage Management

An operating system needs to maintain several pieces of information that can assist in

management of files. For instance, it is important to record when the file was last used

and by whom. Also, which are the current processes (recall a process is a program in

execution) accessing a particular file. This helps in management of access. One of the

important files from the system point of view is the audit trail which indicates who

accessed when and did what. As mentioned earlier, these trails are maintained in syslog

files under Unix. Audit trail is very useful in recovering from a system crash. It also is

useful to detect un-authorized accesses to the system. There is an emerging area within

the security community which looks up the audit trails for clues to determine the identity

of an intruder.

In Table 2.5 we list the kind of information which may be needed to perform proper file

management. While Unix emphasizes formlessness, it recognizes four basic file types

internally. These are ordinary, directory, special, and named. Ordinary files are those that

are created by users, programs or utilities. Directory is a file type that organizes files

hierarchically, and the system views them differently from ordinary files. All IO

communications are conducted as communications to and from special files. For the

present we need not concern ourselves with named files. Unix maintains much of this

information in a data structure called inode which is a short form for an index node. All

file management operations in Unix are controlled and maintained by the information in

the inode structure.

We shall now briefly study the structure of inode.

2.4.1 Inode in Unix

In Table 2.6 we describe typical inode contents. Typically, it offers all the information

about access rights, file size, its date of creation, usage and modification. All this

information is useful for the management in terms of allocation of physical space,

securing information from malicious usage and providing services for legitimate user

needs to support applications.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/11

Typically, a disk shall have inode tables which point to data blocks. In Figure 2.2 we

show how a disk may have data and inode tables organized. We also show how a typical

Unix-based system provides for a label on the disk.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/12

2.4.2 File Control Blocks

In MS environment the counterpart of inode is FCB, which is a short form for File

Control Block. The FCBs store file name, location of secondary storage, length of file in

bytes, date and time of its creation, last access, etc. One clear advantage MS has over

Unix is that it usually maintains file type by noting which application created it. It uses

extension names like doc, txt, dll, etc. to identify how the file was created. Of course,

notepad may be used to open any file (one can make sense out of it when it is a text file).

Also, as we will see later (in Sections 2.6 and 2.7), MS environment uses a simple chain

of clusters which is easy to manage files.

2.5 The Root File System

At this stage it would be worthwhile to think about the organization and management of

files in the root file system. When an OS is installed initially, it creates a root file system.

The OS not only ensures, but also specifies how the system and user files shall be

distributed for space allocation on the disk storage. Almost always the root file system

has a directory tree structure. This is just like the users file organization which we studied

earlier in Figure 2.1. In OSs with Unix flavors the root of the root file system is a

directory. The root is identified by the directory `/'. In MS environment it is identified by

`n'. The root file system has several subdirectories. OS creates disk partitions to allocate

files for specific usages. A certain disk partition may have system files and some others

may have other user files or utilities. The system files are usually programs that are

executable with .bin in Unix and .EXE extension in MS environment.

Under Unix the following convention is commonly employed.

 Subdirectory usr contain shareable binaries. These may be used both by users and

the system. Usually these are used in read-only mode.

 Under subdirectories bin (found at any level of directory hierarchy) there are

executables. For instance, the Unix commands are under /usr/bin. Clearly, these

are shareable executables.

 Subdirectory sbin contains some binaries for system use. These files are used

during boot time and on power-on.

 Subdirectories named lib anywhere usually contain libraries. A lib subdirectory

may appear at many places. For example, as we explain a little later the graphics

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/13

library which supports the graphics user interface (GUI) uses the X11 graphics

library, and there shall be a lib subdirectory under directory X11.

 Subdirectory etc contains the host related files. It usually has many subdirectories

to store device, internet and configuration related information. Subdirectory hosts

stores internet addresses of hosts machines which may access this host. Similarly,

config subdirectory maintains system configuration information and inet

subdirectory maintains internet configuration related information. Under

subdirectory dev, we have all the IO device related utilities.

 Subdirectories mnt contain the device mount information (in Linux).

 Subdirectories tmp contain temporary files created during file operation. When

you use an editor the OS maintains a file in this directory keeping track of all the

edits. Clearly this is its temporary residence.

 Subdirectories var contain files which have variable data. For instance, mail and

system log information keeps varying over time. It may also have subdirectories

for spools. Spools are temporary storages. For instance, a file given away for

printing may be spooled to be picked up by the printer. Even mails may be

spooled temporarily.

 All X related file support is under a special directory X11. One finds all X11

library files under a lib directory within this directory.

 A user with name u name would find that his files are under /home/u name. This

is also the home directory for the user u name.

 Subdirectories include contain the C header include files.

 A subdirectory marked as yp (a short form for yellow pages) has network

information. Essentially, it provides a database support for network operations.

One major advantage of the root file system is that the system knows exactly where to

look for some specific routines. For instance, when we give a command, the system looks

for a path starting from the root directory and looks for an executable file with the

command name specified (usually to find it under one of the bin directories). Users can

customize their operational environment by providing a definition for an environment

variable PATH which guides the sequence in which the OS searches for the commands.

Unix, as also the MS environment, allows users to manage the organization of their files.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/14

One of the commands which helps to view the current status of files is the ls command in

Unix or the command dir in MS environment.

2.6 Block-based File Organization

Recall we observed in chapter 1 that disks are bulk data transfer devices (as opposed to

character devices like a keyboard). So data transfer takes place from disks in blocks as

large as 512 or 1024 bytes at a time. Any file which a user generates (or retrieves),

therefore, moves in blocks. Each operating system has its own block management policy.

We shall study the general principles underlying allocation policies. These policies map

each linear byte stream into disk blocks. We consider a very simple case where we need

to support a file system on one disk. Note a policy on storage management can heavily

influence the performance of a file system (which in turn affects the throughput of an

OS). File Storage allocation policy: Let us assume we know apriori the sizes of files

before their creation. So this information can always be given to OS before a file is

created. Consequently, the OS can simply make space available. In such a situation it is

possible to follow a pre-allocation policy: find a suitable starting block so that the file

can be accommodated in a contiguous sequence of disk blocks. A simple solution would

be to allocate a sequence of contiguous blocks as shown in Figure 2.3.

The numbers 1, 2, 3 and 4 denote the starting blocks for the four files. One clear

advantage of such a policy is that the retrieval of information is very fast. However, note

that pre-allocation policy requires apriori knowledge. Also, it is a static policy. Often

users' needs develop over time and files undergo changes. Therefore, we need a dynamic

policy.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/15

Chained list Allocation : There are two reasons why a dynamic block allocation policy

is needed. The first is that in most cases it is not possible to know apriori the size of a file

being created. The second is that there are some files that already exist and it is not easy

to find contiguous regions. For instance, even though there may be enough space in the

disk, yet it may not be possible to find a single large enough chunk to accommodate an

incoming file. Also, users' needs evolve and a file during its lifetime undergoes changes.

Contiguous blocks leave no room for such changes. That is because there may be already

allocated files occupying the contiguous space.

In a dynamic situation, a list of free blocks is maintained. Allocation is made as the need

arises. We may even allocate one block at a time from a free space list. The OS maintains

a chain of free blocks and allocates next free block in the chain to an incoming file. This

way the finally allocated files may be located at various positions on the disk. The

obvious overhead is the maintenance of chained links. But then we now have a

dynamically allocated disk space. An example is shown in Figure 2.4.

Chained list allocation does not require apriori size information. Also, it is a dynamic

allocation method. However, it has one major disadvantage: random access to blocks is

not possible.

Indexed allocation: In an indexed allocation we maintain an index table for each file in

its very first block. Thus it is possible to obtain the address information for each of the

blocks with only one level of indirection, i.e. from the index. This has the advantage that

there is a direct access to every block of the file. This means we truly operate in the direct

access mode at the block level.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/16

In Figure 2.5 we see that File-2 occupies four blocks. Suppose we use a block I2 to store

the starting addresses of these four blocks, then from this index we can access any of the

four parts of this file. In a chained list arrangement we would have to traverse the links.

In Figure 2.5 we have also shown D to denote the file's current directory. All files have

their own index blocks. In terms of storage the overhead of storing the indices is more

than the overhead of storing the links in the chained list arrangements. However, the

speed of access compensates for the extra overhead.

Internal and external Fragmentation: In mapping byte streams to blocks we assumed a

block size of 1024 bytes. In our example, a file (File 1) of size 1145 bytes was allocated

two blocks. The two blocks together have 2048 bytes capacity. We will fill the first block

completely but the second block will be mostly empty. This is because only 121 bytes out

of 1024 bytes are used. As the assignment of storage is by blocks in size of 1024 bytes

the remaining bytes in the second block can not be used. Such non-utilization of space

caused internally (as it is within a file's space) is termed as internal fragmentation. We

note that initially the whole disk is a free-space list of connected blocks. After a number

of file insertions and deletion or modifications the free-space list becomes smaller in size.

This can be explained as follows. For instance, suppose we have a file which was initially

spread over 7 blocks. Now after a few edits the file needs only 4 blocks. This space of 3

blocks which got released is now not connected anywhere. It is not connected with the

free storage list either. As a result, we end up with a hole of 3 blocks which is not

connected anywhere. After many file edits and operations many such holes of various

sizes get created. Suppose we now wish to insert a moderately large sized file thinking

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/17

that adequate space should be still available. Then it may happen that the free space list

has shrunk so much that enough space is not available. This may be because there are

many unutilized holes in the disk. Such non-utilization, which is outside of file space, is

regarded as external fragmentation. A file system, therefore, must periodic all perform an

operation to rebuild free storage list by collecting all the unutilized holes and linking

them back to free storage list. This process is called compaction. When you boot a

system, often the compaction gets done automatically. This is usually a part of file system

management check. Some run-time systems, like LISP and Java, support periodic

automatic compaction. This is also referred to as run-time garbage collection.

2.7 Policies In Practice

MS DOS and OS2 (the PC-based systems) use a FAT (file allocation table) strategy. FAT

is a table that has entries for files for each directory. The file name is used to get the

starting address of the first block of a file. Each file block is chain linked to the next

block till an EOF (end of file) is stored in some block. MS uses the notion of a cluster in

place of blocks, i.e. the concept of cluster in MS is same as that of blocks in Unix. The

cluster size is different for different sizes of disks. For instance, for a 256 MB disk the

cluster may have a size of 4 KB and for a disk with size of 1 GB it may be 32 KB. The

formula used for determining the cluster size in MS environment is disk-size/64K.

FAT was created to keep track of all the file entries. To that extent it also has the

information similar to the index node in Unix. Since MS environment uses chained

allocation, FAT also maintains a list of “free" block chains. Earlier, the file names under

MS DOS were restricted to eight characters and a three letter extension often indicating

the file type like BAT or EXE, etc. Usually FAT is stored in the first few blocks of disk

space.

An updated version of FAT, called FAT32, is used in Windows 98 and later systems.

FAT32 additionally supports longer file names and file compression. File compression

may be used to save on storage space for less often used files. Yet another version of the

Windows is available under the Windows NT. This file system is called NTFS. Rather

than having one FAT in the beginning of disk, the NTFS file system spreads file tables

throughout the disks for efficient management. Like FAT32, it also supports long file

names and file compression. Windows 2000 uses NTFS. Other characteristics worthy of

note are the file access permissions supported by NTFS.

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/18

Unix always supported long file names and most Unix based systems such as Solaris and

almost all Linux versions automatically compress the files that have not been used for

long. Unix uses indexed allocation. Unix was designed to support truly large files. We

next describe how large can be large files in Unix.

Unix file sizes: Unix was designed to support large-scale program development with

team effort. Within this framework, it supports group access to very large files at

very high speeds. It also has a very flexible organization for files of various sizes. The

information about files is stored in two parts. The first part has information about the

mode of access, the symbolic links, owner and times of creation and last modification.

The second part is a 39 byte area within the inode structure. These 39 bytes are 13, 3 byte

address pointers. Of the 39 bytes, first 10 point to the first 10 blocks of a file. If the files

are longer then the other 3, 3 byte addresses are used for indirect indexing. So the 11th 3

byte address points to a block that has pointers to real data. In case the file is still larger

then the 12th 3 byte address points to an index. This index in turn points to another index

table which finally point to data. If the files are still larger then the 13th 3 byte address is

used to support a triple indirect indexing. Obviously, Unix employs the indexed

allocation. In Figure 2.6 we assume a data block size of 1024 bytes. We show the basic

scheme and also show the size of files supported as the levels of indirection increase.

Physical Layout of Information on Media: In our discussions on file storage and

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/19

management we have concentrated on logical storage of files. We, however, ignored one

very important aspect. And that concerns the physical layout of information on the disk

media. Of course, we shall revisit aspects of information map on physical medium later in

the chapter on IO device management. For now, we let us examine Figures 2.7 and 2.8 to

see how information is stored, read, and written in to a disk.

In Figure 2.7, tracks may be envisaged as rings on a disk platter. Each ring on a platter is

capable of storing 1 bit along its width. These 1 bit wide rings are broken into sectors,

which serve as blocks. In Section 2.6 we essentially referred to these as blocks.

This break up into sectors is necessitated because of the physical nature of control

required to let the system recognize, where within the tracks blocks begin in a disk. With

disks moving at a very high speed, it is not possible to identify individual characters as

they are laid out. Only the beginning of a block of information can be detected by

hardware control to initiate a stream of bits for either input or output. The read-write

heads on the tracks read or write a stream of data along the track in the identified sectors.

With multiple disks mounted on a spindle as shown in Figure 2.7, it helps to think of a

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/20

cylinder formed by tracks that are equidistant from the center. Just imagine a large

number of tracks, one above the other, and you begin to see a cylinder. These cylinders

can be given contiguous block sequence numbers to store information. In fact, this is

desirable because then one can access these blocks in sequence without any additional

head movement in a head per track disk. The question of our interest for now is: where is

inode (or FAT block) located and how it helps to locate the physical file which is mapped

on to sectors on tracks which form cylinders.

2.7.1 Disk Partitions

Disk-partitioning is an important notion. It allows a better management of disk space.

The basic idea is rather simple. If you think of a disk as a large space then simply draw

some boundaries to keep things in specific areas for specific purposes. In most cases the

disk partitions are created at the time the disc is formatted. So a formatted disk has

information about the partition size.

In Unix oriented systems, a physical partition of a disk houses a file system. Unix also

allows creating a logical partition of disk space which may extend over multiple disk

drives. In either case, every partition has its own file system management information.

This information is about the files in that partition which populate the file system. Unix

ensures that the partitions for the system kernel and the users files are located in different

partitions (or file systems). Unix systems identify specific partitions to store the root file

system, usually in root partition. The root partition may also co-locate other system

functions with variable storage requirements which we discussed earlier in section 2.5.

The user files may be in another file system, usually called home. Under Linux, a proc

houses all the executable processes.

Under the Windows system too, a hard disk is partitioned. One interesting conceptual

notion is to make each such partition that can be taken as a logical drive. In fact, one may

have one drive and by partitioning, a user can make the OS offer a possibility to write

into each partition as if it was writing in to a separate drive. There are many third-party

tools for personal computer to help users to create partitions on their disks. Yet another

use in the PC world is to house two operating system, one in each partition. For instance,

using two partitions it is possible to have Linux on one and Windows on another partition

in the disk. This gives enormous flexibility of operations. Typically, a 80 GB disk in

Operating Systems/ File Systems and Management Lecture Notes

PCP Bhatt/IISc,Bangalore M2/V1/June 04/21

modern machines may be utilized to house Windows XP and Linux with nearly 40 GB

disk available for each.

Yet another associated concept in this context, is the way the disk partitions are mounted

on a file system. Clearly, a disk partition, with all its contents, is essentially a set of

organized information. It has its own directory structure. Hence, it is a tree by itself. This

tree gets connected to some node in the overall tree structure of the file system and forks

out. This is precisely what mounting means. The partition is regarded to be mounted in

the file system. This basic concept is also carried to the file servers on a network. The

network file system may have remote partitions which are mounted on it. It offers

seamless file access as if all of the storage was on the local disk. In modern systems, the

file servers are located on networks somewhere without the knowledge of the user. From

a user's standpoint all that is important to note is that as a user, his files are a part of a

large tree structure which is a file system.

2.7.2 Portable storage

There are external media like tapes, disks, and floppies. These storage devices can be

physically ported. Most file systems recognize these as on-line files when these are

mounted on an IO device like a tape drive or a floppy drive. Unix treats these as special

files. PCs and MAC OS recognize these as external files and provide an icon when these

are mounted.

In this chapter we have covered considerable ground. Files are the entities that users deal

with all the time. Users create files, manage them and seek system support in their file

management activity. The discussion here has been to help build up a conceptual basis

and leaves much to be covered with respect to specific instructions. For specifics, one

should consult manuals. In this very rapidly advancing field, while the concept does not

change, the practice does and does at a phenomenal pace.

