

ORGANISASI DAN ARSITEKTUR KOMPUTER

ARITMATIKA

- 1. Arif Hidayat, S.Kom., M.Kom
- 2. Muhammad Rizkillah, ST., M.Eng

Tujuan Pembelajaran

Memahami Aritmatika

DOSEN

Our company has a professional team

Arif Hidayat, ST., M.Kom **Dosen Ilmu Komputer UM Metro**

M. Rizkillah, ST., M.Eng **Dosen Sistem & Teknologi Informasi UMMAT**

- ALU merupakan bagian komputer yang berfungsi membentuk operasi-operasi aritmatika dan logik terhadap data
- Semua elemen lain sistem komputer (control unit, register, memori, I/O) berfungsi untuk membawa data ke ALU untuk selanjutnya di proses dan kemudian mengambil kembali hasilnya.

- ALU merupakan bagian komputer yang berfungsi membentuk operasi-operasi aritmatika dan logik terhadap data
- Semua elemen lain sistem komputer (control unit, register, memori, I/O) berfungsi untuk membawa data ke ALU untuk selanjutnya di proses dan kemudian mengambil kembali hasilnya.

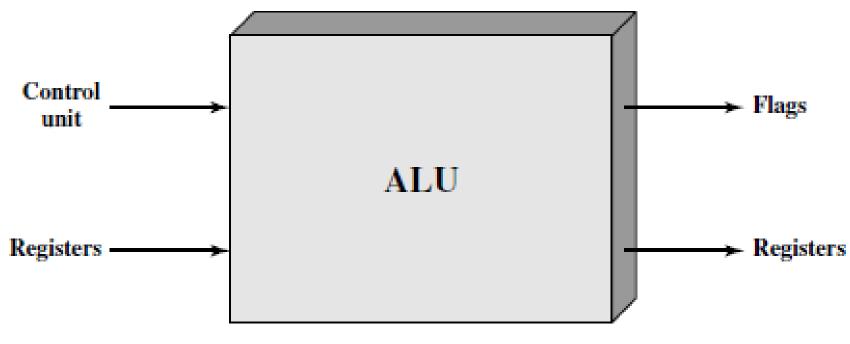


Figure 9.1 ALU Inputs and Outputs

- Gambar menunjukkan secara umum, bagaimana ALU saling berhubungan dengan seluruh prosesor.
- Data diberikan ke ALU dalam register, dan hasil operasi disimpan dalam register-register.
- Register-register ini adalah lokasi penyimpanan sementara dalam prosesor yang dihubungkan oleh jalur sinyal ke ALU.
- ALU juga dapat mengatur flag sebagai hasil dari operasi. Misalnya, flag overflow di set=1 jika hasil perhitungan yang melebihi panjang dari register.
- Nilai-nilai flag juga disimpan dalam register dalam unit kontrol processor.
- Control unit memberikan sinyal yang mengontrol pengoperasian ALU dan pergerakan data ke dalam dan keluar dari ALU.

- 0 dan 1 untuk merepresentasikan apapun.
- Bilangan-bilangan Positif disimpan dalam bentuk biner Contoh:
 - 41=00101001
- Data yang dioperasikan adalah data angka
- Data angka digolongkan menjadi :
 - Integer = Bilangan bulat
 - Float = Bilangan pecahan
- Komputer secara elektronik hanya mampu membaca 2 kondisi sinyal, yaitu :
 - Level tinggi (ada tegangan) sebagai representasi bilangan 1
 - Level rendah (tidak ada tegangan sebagai representasi bilangan 0

Representasi Nilai Tanda

- Ada beberapa cara alternatif yang digunakan untuk merepresentasikan bilangan bulat negatif maupun positif, yang melibatkan bit MSB (paling kiri) dalam word yang disebut sebagai bit tanda.
- Jika bit tanda adalah 0, jumlah tersebut secara positif, jika tanda bit adalah 1, nomor tersebut adalah negatif.

Sign Magnitude

 Bentuk yang paling sederhana representasi yang memakai bit tanda adalah representasi nilai tanda.

Misal:

```
+18 = 00010010
-18 = 10010010
(sign magnitute/nilai tanda)
```

Terdapat kekurangan pada cara diatas

Masalah:

- Perlu mempertimbangkan baik tanda dan besarnya dalam aritmatika
- Dua representasi dari nol (+0 dan -0)

Representasi Two's Complement

- Seperti sign magnitude, representasi berpasangan komplemen dua menggunakan bit MSB (Most Significant Bit) sebagai bit tanda, sehingga mudah untuk menguji apakah integer positif atau negatif.
- Ini memiliki cara yang berbeda dari penggunaan representasi signmagnitude.

Representasi Two's Complement

```
+7 = 0111 +18 = 00010010
-7 = 1001 -18 = 11101101
```

Dapat di simpulkan bahwa hasil akan berbeda dengan nilai tanda

Representasi Two's Complement

Keuntungan:

- Satu representasi mengenai nilai 0
- Operasi aritmatika lebih mudah
- Menegasikan cukup mudah.
 - 3 = 00000011
 - Boolean complement gives 11111100
 - Add 1 to LSB (Least Significant Bit) 11111101

Penjumlahan

$ \begin{array}{rcl} 1001 &=& -7 \\ + \underline{0101} &=& 5 \\ 1110 &=& -2 \\ (a) (-7) + (+5) \end{array} $	$ \begin{array}{rcl} 1100 &= -4 \\ +0100 &= 4 \\ 10000 &= 0 \\ (b)(-4) + (+4) \end{array} $
0011 = 3 + 0100 = 4 0111 = 7 (c) (+3) + (+4)	1100 = -4 + 1111 = -1 11011 = -5 (d) (-4) + (-1)
0101 = 5 + $\frac{0100}{1001} = 4$ 1001 = Overflow (e) (+5) + (+4)	1001 = -7 + $\frac{1010}{1001} = -6$ 10011 = Overflow (f)(-7) + (-6)

Figure 9.3 Addition of Numbers in Twos Complement Representation

Pengurangan

- Dalam komputerisasi tidak dapat melakukan pengurangan
- $9-7 \rightarrow 9+(-7)$

$0010 = 2 \\ + 1001 = -7 \\ 1011 = -5$ (a) M = 2 = 0010	$0101 = 5 \\ + 1110 = -2 \\ 10011 = 3$ (b) M = 5 = 0101
S = 7 = 0111	S = 2 = 0010
-S = 1001	-S = 1110
$ \begin{array}{r} 1011 = -5 \\ +1110 = -2 \\ \hline 1001 = -7 \end{array} $	$\begin{array}{r} 0101 = 5 \\ +0010 = 2 \\ 0111 = 7 \end{array}$
(c) $M = -5 = 1011$	(d) $M = 5 = 0101$
S = 2 = 0010	S = -2 = 1110
-S = 1110	-S = 0010
0111 = 7	1010 = -6
+ $0111 = 7$	+ $1100 = -4$
1110 = Overflow	10110 = Overflow
(e) $M = 7 = 0111$	(f) $M = -6 = 1010$
S = -7 = 1001	S = 4 = 0100
-S = 0111	-S = 1100

Figure 9.4 Subtraction of Numbers in Twos Complement Representation (M − S)

Perkalian

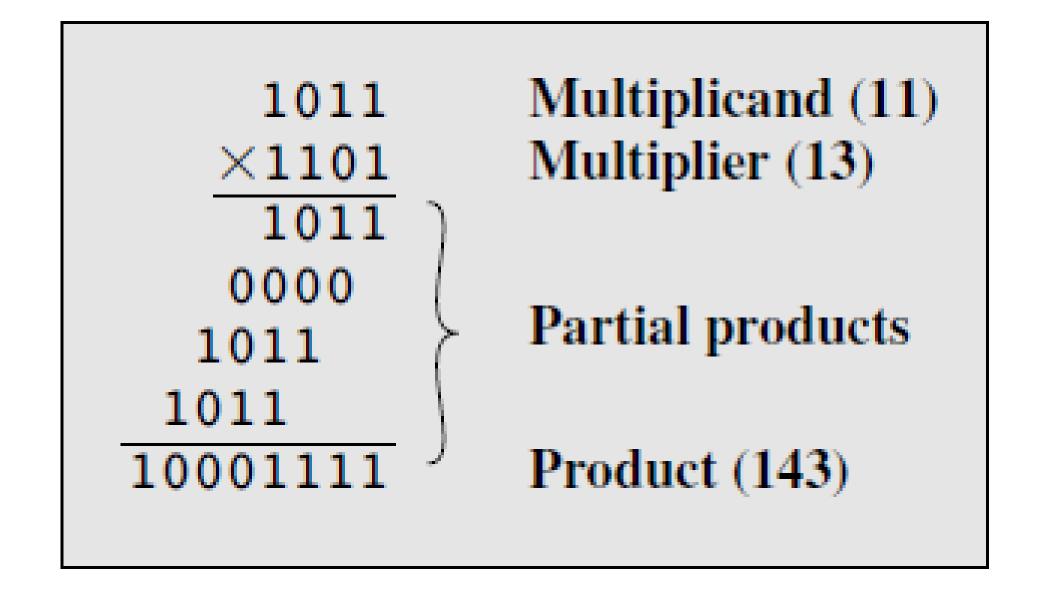


Figure 9.7 Multiplication of Unsigned Binary Integers

Pembagian

- Pembagian biner dilakukan juga dengan cara yang sama dengan bilangan desimal.
- contoh: 101/1111101\11001

TERIMA KASIH

KEMENTERIAN PENDIDIKAN, KEBUDAYAAN, RISET DAN TEKNOLOGI DIREKTORAT JENDRAL PENDIDIKAN TINGGI, RISET DAN TEKNOLOGI DIREKTORAT PEMBELAJARAN DAN KEMAHASISWAAN