

Program Pembelajaran Daring Kolaboratif Kementrian Riset, Teknologi, dan Pendidikan Tinggi Tahun 2023

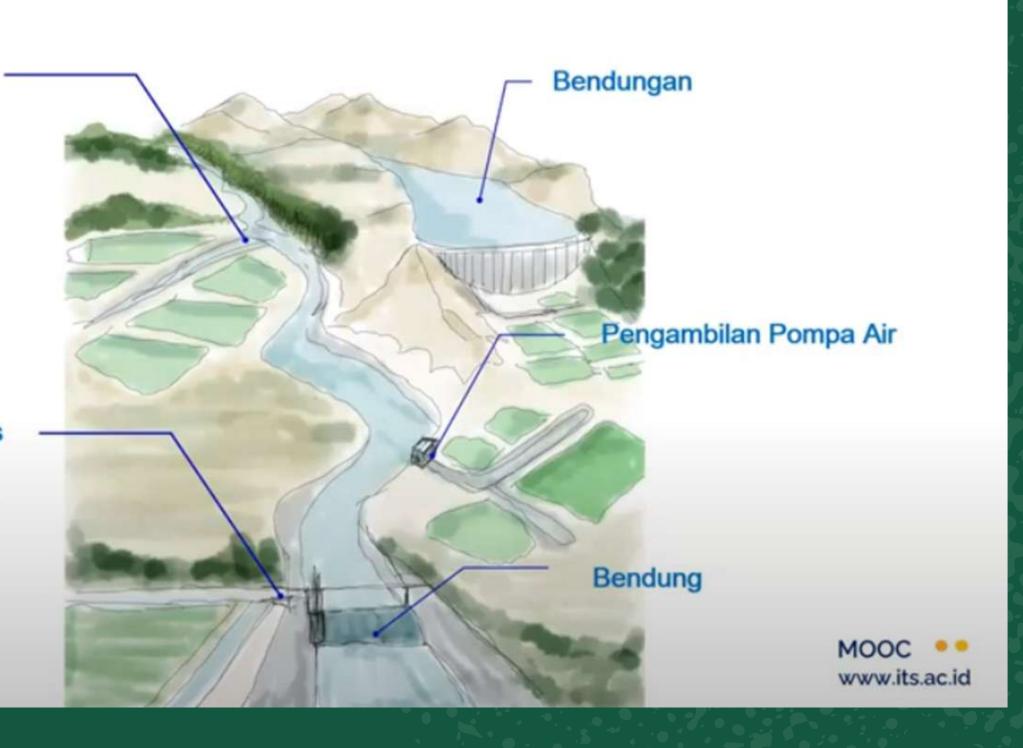
Sub Materi: Perencanaan Dimensi Saluran

Tujuan Perkuliahan: Mahasiswa mampu merencanakan dimensi saluran

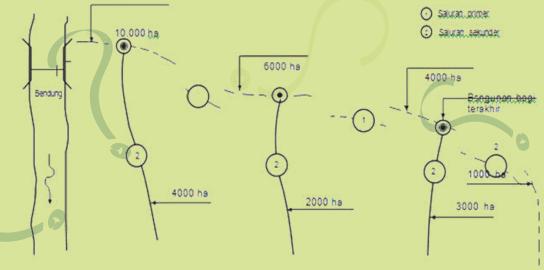
Dosen Pengampu:
1.Anggi Hermawan ST., M.Eng
2.Andrea Sumarah Asih ST., M.Eng
3.Ir. Sudarman ST., MT

Sistem Irigasi

Intake Irigasi


Intake Pengambilan Bebas

■ Bangunan pengambilan bebas terdiri dari:


> Bagian yang menyalurkan/ menangkap saja, bila tinggi muka air cukup

Intake Pengambilan Tak Bebas

Bila tinggi muka air kurang, dipakai bangunan peninggi taraf muka air yang disebut bangunan pengambilan tak bebas.

Saluran-Saluran Primer dan Sekunder

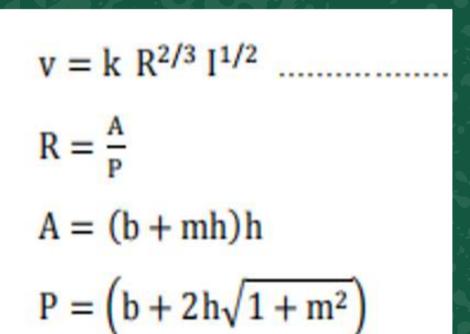
SALURAN PEMBAWA:

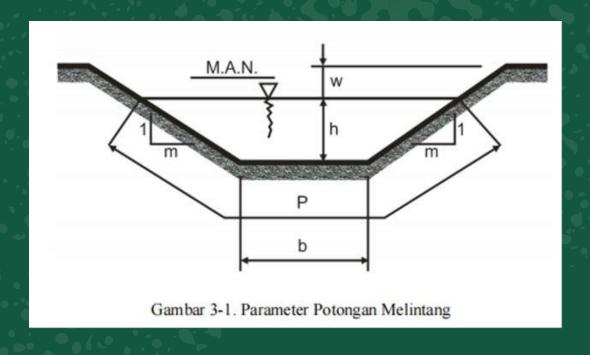
- Saluran primer
- Saluran sekunder
- Saluran tersier

Saluran Irigasi

jaringan irigasi utama

SALURAN IRIGASI: dari intake sampai badan air (saluran pembuang), berupa saluran terbuka dengan sistem gravitasi, terdiri dari saluran pembuang.




SALURAN PEMBUANG:

- Saluran pembuang tersier
- Saluran pembuang sekunder
- Saluran pembuang primer

KRITERIA HIDROLIS SALURAN

Untuk perencanaan ruas, aliran saluran dianggap sebagai aliran tetap & utk itu ditetapkan rumus Strickler

Dimana:

Q = debit saluran, m³/dt

v = kecepatan aliran, m/dt

A = potongan melintang aliran, m²

R = jari - jari hidrolis, m

P = keliling basah, m

b = lebar dasar, m

h = tinggi air, m

= kemiringan energi (kemiringan saluran)

k = koefisien kekasaran Stickler, m^{1/3}/dt

m = kemiringan talut (1 vertikal : m horizontal)

Tabel 3-1. Harga-Harga Kekasaran Koefisien Strickler(k) untuk Saluran-Saluran
Irigasi Tanah

Debit Rencana m³/dt	k m ^{1/3} /dt
Q > 10	45,0
5 < Q < 10	42,5
1 < Q < 5	40,0
Q < 1 dan saluran tersier	35,0

Koefisien Kekasaran Strickler bergantung pada:

- Kekasaran permukaan saluran
- Ketidakteraturan permukaan saluran
- Trase
- Vegetasi (tetumbuhan)
- Sedimen

$$Q = \vee \times A$$

KRITERIA HIDROLIS SALURAN TANAH

Q (m³/dt)	KEMIRINGAN TALUD (1:m)	b/h	V (m/dt)	к
0,15	1,0	1	0,25-0,30	35
0,15-0,30	1,0	1	0,30-0,35	35
0,30-0,40	1,0	1,5	0,35-0,40	35
0,40-0,50	1,0	1,5	0,40-0,45	35
0,50-0,75	1,0	2	0,45-0,50	35
0,75-1,50	1,0	2	0,50-0,55	40
1,50-3,00	1,5	2,5	0,55-0,60	40
3,00-4,50	1,5	3	0,60-0,65	40
4,50-6,00	1,5	3,5	0,65-0,70	40
6,00-7,50	1,5	4	0,70	42,5
7,50-9,00	1,5	4,5	0,70	42,5
9,00-11,00	1,5	5	0,70	42,5
11,00-15,00	1,5	6	0,70	45
15,00-25,00	2,0	8	0,70	45
25,00-40,00	2,0	10	0,75	45
40,00-60,00	2,0	12	0,80	45

Kemiringan Saluran (i atau S)

Tabel 4-3. Harga-Harga Kemiringan Talut untuk Saluran Pasangan						
Jenis Tanah	h < 0,75 m	0,75 m < h < 1,5 m				
Lempung pasiran						
Tanah pasiran kohesi f	1,00	1,00				
Tanah pasiran, lepas	1,00	1,25				
Geluh pasiran, lempung berpori	1,00	1,50				
Tanah gambut lunak	1,25	1,50				

Debit m³/dt	Tanggul (F)	Pasangan (F1)
m /dt	m	m
< 0,5	0,40	0,20
0,5 - 1,5	0,50	0,20
1,5 - 5,0	0,60	0,25
0,5 - 10,0	0,75	0,30
10,0 - 15,0	0,85	0,40
> 15,0	1,00	0,50


Koefisien kekasaran Strickler k (m1/3/dt) utk saluran pasangan adalah:Pasang batu 60 (m1/3/dt)

- Pasang beton 70 (m1/3/dt)
 Pasang tanah 35 45 (m1/3/dt)
 Ferrocement 70 (m1/3/dt)

Persamaan untuk saluran persegi panjang, trapezoidal, dan lingkaran

	Rectangle	Trapezoid	Circle
		B Ty b	$\begin{array}{c c} & & \\ & & \\ \hline \end{array}$
Area, A	by	(b+xy)y	$\frac{1}{8}(\phi-\sin\phi)D^2$
Wetted perimeter P	b+2y	$b + 2y\sqrt{1 + x^2}$	$\frac{1}{2}\phi D$
Top width B	b	b+2xy	$(\sin \phi/2)D$
Hydraulic radius R	by/(b+2y)	$\frac{(b+xy)y}{b+2y\sqrt{1+x^2}}$	$\frac{1}{4} \left(1 - \frac{\sin \phi}{\phi} \right) D$
Hydraulic mean depth D _m	y	$\frac{(b+xy)y}{b+2xy}$	$\frac{1}{8} \left(\frac{\phi - \sin \phi}{\sin(1/2\phi)} \right) D$

Saluran Trapesium

*) Persamaan untuk menghitung luas penampang basah (A)

$$A = (B + mh) h$$

*) Persamaan untuk menghitung keliling basah (P)

$$P = B + 2h (m^2 + 1)^{0.5}$$

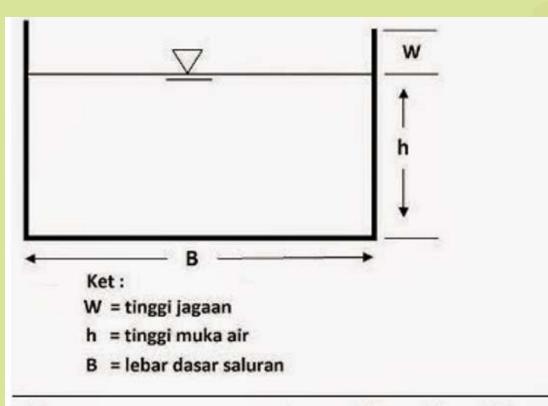
*) Persamaan untuk menghitung jari-jari hidrolis (R)

$$R = \frac{A}{P}$$

dimana:

A = luas penampang basah (m²)

B = lebar dasar saluran (m)


h = tinggi muka air (m)

m = kemiringan dinding saluran

R = jari-jari hidrolis (m)

P = keliling basah saluran

Saluran Persegi

*) Persamaan untuk menghitung debit saluran (Q)

$$Q = A \times V$$

$$A = \frac{Q}{V}$$

dimana:

Q = debit rencana (m3/det)

A = luas penampang (m²)

V = kecepatan aliran (m/det)

*) Persamaan untuk menghitung luas penampang saluran (A)

$$A = B \times h$$

dimana:

A = Luas penampang basah (m²)

B = Lebar bawah (m)

h = Kedalaman saluran (m)

i) Persamaan untuk menghitung keliling basah saluran (P)

$$P = B + 2 \times h$$

dimana:

B = Lebar bawah (m)

h = Kedalaman saluran (m)

P = Keliling basah (m)

*) Persamaan untuk menghitung jari-jari hidrolis (R)

$$R = \frac{A}{P}$$

dimana;

R = Jari-jari hidrolis (m)

A = Luas penampang (m²)

P = Keliling basah (m)

*) Persamaan untuk menghitung kecepatan aliran (V)

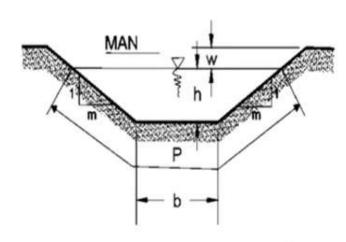
$$V = \frac{1}{n} (R)^{2/3} (S)^{1/2}$$

dimana:

V = Kecepatan aliran

R = Jari-iari hidrolis

S = Kemiringan dasar saluran


n = Kekasaran manning

Tabel 3.4. Tinggi jagaan minimum untuk saluran tanah

Q (m ³ / dt)	Tinggi Jagaan (m		
< 0,5	0,40		
0,5 - 1,5	0,50		
1,5 - 5,0	0,60		
5,0 - 10,0	0,75		
10,0 - 15,0	0,85		
> 15,0	1,00		

Tinggi Jagaan untuk Saluran Pasangan

DEBIT (m³/dt)	TINGGI JAGAA (m)		
< 0,5	0,20		
0,5-1,5	0,20		
1,5-5	0,25		
5-10	0,30		
10-15	0,40		
>15	0,50		

Tinggi jagaan

Debit rencana pembuang dari sawah dihitung sebagai berikut:

$$Q_d = 1,62 D_m A^{0,92}$$

Dimana:

- Qd = Debit pembuang rencana (l/dt)
- Dm = modulus pembuang (I/dt/ha)
- A = Luas daerah yang dibuang airnya (ha)

Debit rencana saluran pembuang

Debit Pengambilan

$$Q = \frac{c.NFR.A}{e}$$

 $c = 1 \rightarrow Untuk tanpa golongan$

 $c = 0,9 \sim ... \rightarrow dengan golongan$

$$Q = \frac{c . NFR . A}{8,64 . e} \longrightarrow \text{Konversi dari mm/hari} \rightarrow \text{lt/dt}$$

Q = debit (m3/detik)

c = Koefisien reduksi akibat rotasi

NFR = Net Field Water Requirement

A = Luas sawah (Ha)

e = efisiensi saluran

(tersier = 0.80; sekunder = 0.72; primer = 0.65)

Efisiensi Pengaliran Pada Saluran

- Kehilangan pada tingkat tersier berkisar antara 17,5 % 22,5 % → ditetapkan sebesar 20 % → efisiensi 80% (0,80)
- Kehilangan air pada tingkat sekunder berkisar antara 7,5 % sampai 12,5 % → ditetapkan sebesar 10 % → efisien saluran 90 %(0,90)
- Kehilangan air pada tingkat primer berkisar antara 7,5 % sampai 12,5 % → ditetapkan sebesar 10% → efisiensi 90% (0,90)
 - Efisiensi Total Pada Setiap Tingkatan :
 - 1. Tersier $\rightarrow 0.80$
 - 2. Sekunder $\rightarrow 0.80 \times 0.90 = 0.72$
 - 3. Primer $\rightarrow 0.80 \times 0.90 \times 0.90 = 0.65$

PROSES PERENCANAAN DIMENSI SALURAN

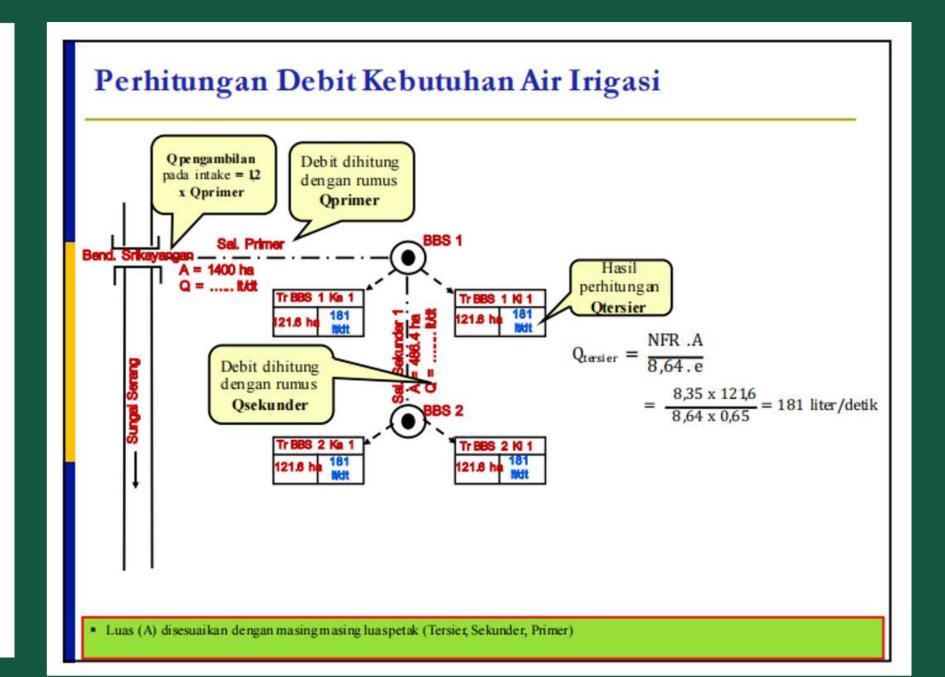
Tabel Hasil Perhitungan NFR (1 Golongan) (Kasus 1)

		Re	P	Eto		Kebutuhan Air Untuk Tana				aman		
BUL	AN	(mm/hari)	(mm/hari)	(mm/hari)	WLR (mm)	c1	€2	c rata - rata	Etc atau IR (LP)	NFR	POLA TANAM	
1		2	3	4	5	6. NEDECO	: Varietas Unggu	A	7	8	9	
Agustus	1	5.00	1.9	3.80		LP	LP	LP	13.35	8.35		
	2	7.7.7	777	111111111111111111111111111111111111111		1,2	LP	LP	13.35	8.35		
September	1	1.80	1.9	3.80	1.8	1.27	1.2	1.235	4.69	6.59	4 0	
oc promise.	2			5.00	1.8	1.33	1.27	1.3	4.94	6.84		
Oktober	1	2.30	1.9	3.80	1.8	1.3	1.33	1.315	5.00	6.90		
CRIOCE	2	2.50		5.00	1.8	1.3	1.3	1.3	4.94	6.34		
November	1	2.30	1.9	3.80		0	1.3	0.65	2.47	2.07		
November	2	2.30	1.9	5.00			0	0	0.00	-0.40		
Desember	1	5.00	1.9	3.80		LP	LP	LP	11.7	7.90		
Desember	2	3.00	1.7	3.00		1.2	LP	LP	11.7	7.90		
Januari	1	5.00	1.9	3.80	1.8	1.27	1.2	1.235	4.693	3.39	9	
Januari	2	5.00	1.9	3.00	1.8	1.33	1.27	1.3	4.94	3.64		
Februari	1	5.00	1.9	4.60	1.8	1.3	1.33	1.315	6.049	4.75	4	
rebruari	2	3.00	1.9	4.00	1.8	1.3	1.3	1.3	5.98	4.68		
	1	5.00	1.0	1.00	- 12	0	1.3	0.65	2.99	-0.11		
Maret	2	5.00	1.9	4.60			0	0	0	-3.10		
April	2	4.30	1.9	4.60								
Mei	2	4.30	1.9	4.60							POLOWIJO	
Juni	2	1.80	1.9	4.60							POLO	
Juli	2	1.80	1.9	4.60								
									Maksimum	8.35	mm/hari	

Dari hasil perhitungan NFR, kemudian diambil nilai NFR yang maksimum, yang akan digunakan untuk menghtung kebutuhan debit air irigasi pada saluran irigasi nantinya.

Perhitungan Debit Kebutuhan Air Irigasi

- Dari hasil perhitungan didapatkan nilai
- NFR max = 8,35 mm/hari
- ☐ Kebutuhan Debit Air pada Saluran Irigasi



Qprimer =
$$\frac{\text{NFR . A}}{8,64 . e} = \frac{8,35 \times 1400}{8,64 \times 0,65} = 2,735 \text{ lt/detik}$$

Qsekunder =
$$\frac{NFR \cdot A}{8,64 \cdot e} = \frac{8,35 \times ... \cdot ..}{8,64 \times 0,72} = \cdots \cdot liter/detik$$

Qtersier =
$$\frac{NFR.A}{8,64.e}$$
 = $\frac{8,35 \times}{8,64 \times 0,65}$ =liter/detik

Luas (A) disesuaikan dengan masing masing luaspetak (Tersier, Sekunder, Primer)

Untuk debit tersier sebesar 181 liter/detik, perencanaan dimensi saluran tanah berbentuk persegi adalah sebagai berikut:

Birtherian
$$Q = 181 \text{ liter/detik}$$

$$Q = \frac{181}{1000} \text{ m}^3/\text{dt}$$
Saluran tersier dari tanah \rightarrow lihat tatel De Ubos
$$b/h = 1 \quad \rightarrow b = h$$

$$V = 0,3 - 0,85 \text{ m/dt}$$

$$k = 35$$

$$\tilde{g}_1 ka \quad \text{1 difetapkan } 0,0005$$
Maka hitungan dimensi saluran sebi:
Birencanakan saluran persegi, maka $A = b \times h$

$$P = b + 2h$$

$$Q = A \times V$$

$$Q = b \cdot h \times K R^{2/3} i^{1/2}$$

$$Q = h \cdot h \times K \left(\frac{A}{P}\right)^{2/3} i^{1/2}$$

$$Q = h \cdot h \times K \left(\frac{A}{P}\right)^{2/3} i^{1/2}$$

$$Q = h^2 \times k \left(\frac{h^2}{h+2h}\right)^{2/3} i^{1/2}$$

$$Q_1 81 = h^2 \times 35 \times \left(\frac{h^2}{3h}\right)^{2/3} \times 0,0005^{1/2}$$

$$\frac{O_{1}B1}{35 \times 00005} V_{12} = h^{2} \times \left(\frac{h^{2}}{3h}\right)^{2/3}$$

$$O_{1}231 = h^{2} \times \frac{h^{4/3}}{3^{2/3}} h^{1/3}$$

$$O_{2}31 \times 3^{2/3} = \frac{h^{6/3} \times h^{4/3}}{h^{2/3}}$$

$$O_{1}4B3 = \frac{h^{10/3}}{h^{2/3}} = h^{8/3}$$

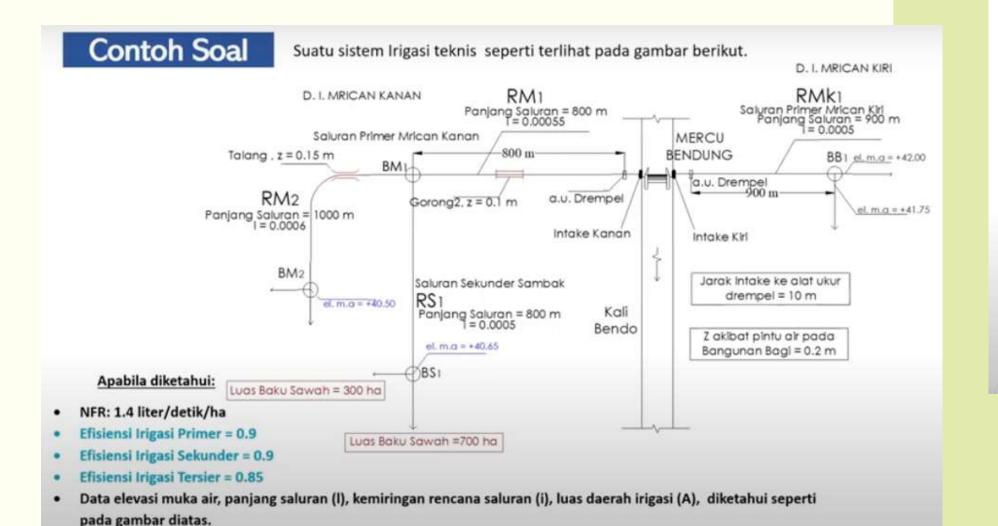
$$h = O_{1}4B3 \xrightarrow{3/8} h^{2/3} = h^{8/3}$$

$$h = O_{1}761 \text{ m}$$

$$b = h = O_{1}761 \text{ m}$$

$$b = h = O_{1}761 \text{ m}$$

$$V = 35 \times O_{1}254 \xrightarrow{4/3} \times O_{1}0005 \xrightarrow{1/4}$$


$$Q = A \times V$$

$$Q = A \times V$$

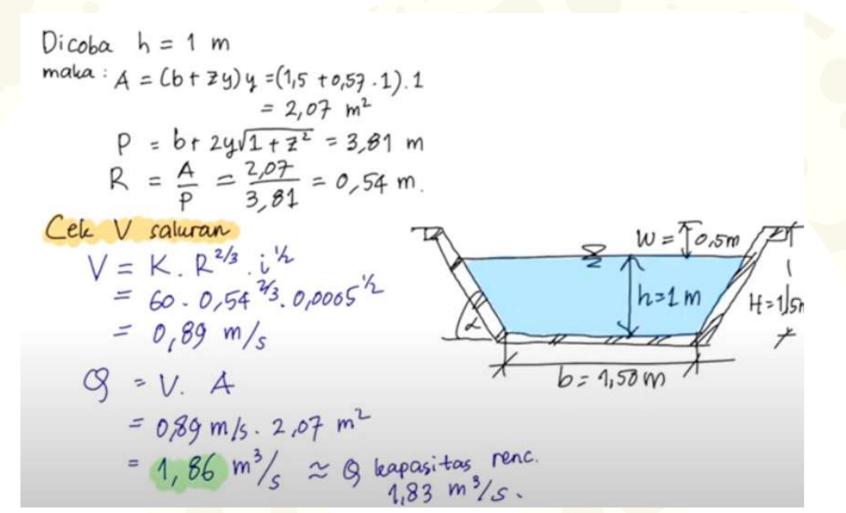
$$Q = A \times V$$

$$Q = O_{1}519 \times O_{1}31$$

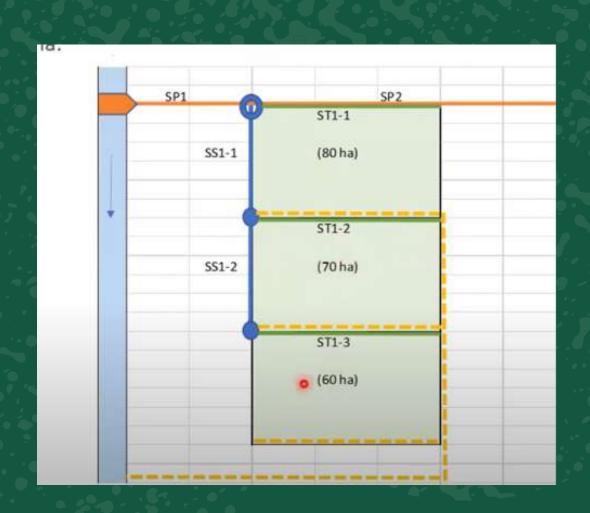
Contoh Perencanaan Dimensi Saluran

Contoh Soal Suatu sistem Irigasi teknis seperti terlihat pada gambar berikut. D. I. MRICAN KIRI D. I. MRICAN KANAN RM1 RMk1 Saluran Primer Mrican Kiri Panjang Saluran = 900 m Panjang Saluran = 800 m T = 0.00055 = 0.0005Saluran Primer Mrican Kanan MERCU -800 m BENDUNG Talang, z = 0.15 mBB1 el.m.a = +42.00 a.u. Drempel RM₂ a.u. Drempel Gorong2, z = 0.1 m el.m.a = +41.75 1 Panjang Saluran = 1000 m Intake Kanan Intake Kiri BM₂ Jarak Intake ke alat ukur Saluran Sekunder Sambak drempel = 10 m ei. m.a = +40.50 Panjang Saluran = 800 m 1 = 0.0005 Kali Bendo Z aklbat pintu air pada el. m.a = +40.65 Bangunan Bagi = 0.2 m Luas Baku Sawah = 300 ha Luas Baku Sawah =700 ha Q: Hitung tinggi air (h) di saluran sekunder RS,, dimana saluran berbentuk trapesium, material saluran

dari pasangan batu kali (K = 60), sudut kemiringan tebing $\Theta = 60^{\circ}$, dengan lebar (b) saluran = 1,5 meter.


(Gambar dimensi salurannya).

Contoh Perencanaan Dimensi Saluran


>> Perencanaan Dimensi Saluran
$$b = 1.5 \text{ m}$$
 $i = 0.0005$
-Saluran dengan perkuatan dari
pasangan batu kali = $k = 60$
- Saluran pasangan penampang
terbaik = $0 = 60^{\circ}$
CSudut keminingan
tebing)

 $\frac{Z}{X} = \frac{1}{Z}$
 $\frac{Z}{X} = \frac{1}{Z}$

= 0,577 /

Contoh Perencanaan Dimensi Saluran

$$Q_{SS1-1} = \frac{1.5 \, x \, (70 + 60)}{0.72} = 270.83 \, l/dt = 0.27 \, m^3/s$$

$$Q_{SS1-2} = \frac{1.5 \, x \, 60}{0.72} = 125 \, l/dt = 0.12 \, m^3/s$$
 Saluran Primer

 $Q_{SP1} = \frac{1.5 \, x \, (80 + 70 + 60)}{0.65} = 484.61 \, l/dt = 0.48 \, m^3/s$

Menghitung debit saluran pembuang

$$Q_d = 1.62 D_m A^{0.92}$$

Petak 1: $Q_d = 1.62 \times 4 \times 80^{0.92} = 365 l/dt = 0.36 m^3/s$

Petak 2: $Q_d = 1.62 \times 4 \times 70^{0.92} = 323 l/dt = 0.32 m^3/s$

Petak 3: $Q_d = 1.62 \times 4 \times 60^{0.92} = 280 l/dt = 0.28 m^3/s$

Kecepatan ijin untuk saluran tersier (tanah) = 0.3 - 0.35 m/s (Tabel De Vos)

Kecepatan ijin untuk saluran sekunder dan primer (pasangan batu) = 2 m/s

Contoh: saluran tersier ST1-1 (Q = $0.15 \text{ m}^3/\text{s}$) Menurut Tabel De Vos, m = 1, b/h = 1, v = 0.3 - 0.35 m/s, k = 35

Q = A.V
A = (b + mh) h =
$$2h^2$$

P = b + $2h \sqrt{m^2 + 1}$ = h + $2h \sqrt{2}$
n = $1/k$ = $1/35$ = 0.028

$$Q = A.V = A \frac{1}{n} R^{2/3} I^{1/2}$$

$$Q = 2h^2 \frac{1}{n} \left(\frac{2h^2}{h + 2h\sqrt{2}}\right)^{2/3} I^{1/2}$$

$$0.15 = 2h^2 \frac{1}{0.028} \left(\frac{2h^2}{h + 2h\sqrt{2}}\right)^{2/3} 0.0005^{1/2}$$

$$0.188 = 2h^2 \left(\frac{2h^2}{h + 2h\sqrt{2}}\right)^{2/3}$$

$$h = 0.485 m$$

Cek kecepatan aliran

A = (b + mh) h =
$$2h^2$$
 = 0.47 m²
P = b + $2h\sqrt{m^2 + 1}$ = h + $2h\sqrt{2}$ = 1.857 m
R = A/P = 0.253 m

$$V = \frac{1}{n} R^{2/3} I^{1/2}$$

$$V = \frac{1}{n} R^{2/3} I^{1/2}$$

$$V = \frac{1}{0.028} x \ 0.253^{2/3} \ x \ 0.0005^{1/2} = 0.32 \ m/s \ (OK!)$$