
A Virtual Programming Lab for Moodle with automatic
assessment and anti-plagiarism features

Juan C. Rodríguez-del-Pino, Enrique Rubio-Royo, Zenón J. Hernández-Figueroa

Departament of Informática y Sistemas
University of Las Palmas de Gran Canaria
35017 Las Palmas de Gran Canaria, Spain

Abstract - This paper describes VPL, a Virtual
Programming Lab module for Moodle, developed at the
University of Las Palmas of Gran Canaria (ULPGC) and
released for free uses under GNU/GPL license. For the
students, it is a simple development environment with
auto evaluation capabilities. For the instructors, it is a
students' work management system, with features to
facilitate the preparation of assignments, manage the
submissions, check for plagiarism, and do assessments
with the aid of powerful and flexible assessment tools
based on program testing, all of that being independent
of the programming language used for the assignments
and taken into account critical security issues.

Keywords: programming learning, virtual lab, automatic
assessment, plagiarism.

1 Introduction
Achievement of computer programming skills requires

a lot of training by means of real program-development
assignments. Managing and assess the students'
submissions for those assignments could be a very
complex task. Availability of tools to organize the
assignments, receive and storage the submissions, support
automatic or semi-automatic assessment and provide
feedback could be very helpful. Furthermore, integration
of that kind of tools into a Learning Management System
is an essential feature in order to improve their
performance.

Some tools for this purpose have developed along the
time. STYLE [1] and CAP [2] focus on the automatic
evaluation of program's style and syntax. PASS [3] focus
on assessment capabilities. Some tools focus on execution
for a specific programming language, as PACER [4], for
ELI, a language similar to C, or HoGG [5] and ELP [6]
for Java. More general tools focus on course management
features, as Ceilidh [7], CourseMaster [8] and Boss [9].

This paper describes VPL, a Virtual Programming Lab
module for Moodle, developed at the University of Las
Palmas of Gran Canaria (ULPGC) and released for free
uses under GNU/GPL license. Downloading of VPL is
available at http://vpl.dis.ulpgc.es; also an on-line demo
site is available at http://demovpl.dis.ulpgc.es. Figure 1
shows the VPL homepage.

Figure 1. VPL homepage

VPL is designed to achieve the following goals:

x To be an open source tool, freely distributable and
capable to be enriched with external contributions.
For this reason it is distributed under GNU/GPL
license.

x To be independent of the programming language.
To use a particular programming language it is
only required that the appropriate compiler is
installed in the jail system (see section II for
details). Currently, there are available jail systems
with installations for Ada, C, C++, C#,
FORTRAN, Haskell, java, Octave, Pascal, Perl,
PHP, Prolog, Python, Ruby, Scheme, SQL and
VHDL. Any user can install other languages if
required.

x To provide a very simple development
environment in order to smooth the learning curve
to the beginners.

x To provide tools to support automatic and semi-
automatic assessment, including tools for
plagiarism checking.

x To be conscious of security issues. To avoid
security breaches when executing students' code,
all executions are performed in a separated and
restricted environment (the above mentioned jail
system).

Following sections describe the VPL architecture, the
types of activities that can be done using VPL, how to

configure those activities, the use of VPL to assess
submissions an check for plagiarism, and our experience
as VPL users along the test phase of the module.

2 VPL architecture
1.1 General features

VPL is composed of three elements: a Moodle´s
module, a browser-based code editor and a jail component
(Fig. 2).

The code editor is a java applet providing basic
features to edit, run, debug and evaluate programs code in
a very simple code-development environment. To use full
features a web browser with JavaScript and support for
Java 1.5 applets is required.

The Moodle's module provides the typical features of
this kind of component (backup and restore, integration
with the grading book, course reset, events control, role-
based access …) but also specific features such as:
submission management, assessment support and anti-
plagiarism features. The VPL module requires a Moodle
version 1.9.x and PHP5 or higher.

The jail component is the server in charge of compile
and executes the code submitted by the students in a
secure environment. It runs a linux chroot command to
provide a restricted version of the host file system with
some read-only limitations. To run or evaluate a
submission is required to have at least one jail server. The
jail service needs Ubuntu (recommended) or Red Hat
compatible linux distribution..

Figure 2. VPL components

The jail server attends requests for both interactive and
non-interactive executions (Fig. 3), the difference between
then is that the second type requires to the request data
include a key, a server and a communication port, which
are used to redirect the execution input/output data.

Figure 3. Types of execution request

To provide execution in console the Moodle servers
need to open at least two ports, a larger number is
recommended. It takes more time than usual to execute
the PHP scripts that run a submission so it is necessary
increase time limit in the PHP configuration.

1.2 Network topologies
The VPL module uses a double proxy to

communicate, by a side with the Internet clients, to attend
their requests, and by other side with the jail servers, to
perform the running tasks associated to those requests.
This permits a variety of network topologies. The simplest
topology runs both the jail server and the Moodle server in
the same computer, although they have to communicate
via an intranet. This solution loses the security advantages
provided by the isolation of the servers on different
computers. A more suitable topology joins a Moodle
server with one or more separate jail servers, which may
be in a private network.

A more powerful topology, that improves the
resources spending, is to share multiple jail servers among
multiple Moodle servers (Fig. 4). This configuration may
adapt itself to workload peaks by changing the number of
jail servers in use by a Moodle server in order to attend in
a proper way the variations on the requirements of the
execution tasks. The drawback of this configuration is that
the jail servers must be in a public domain in order to
make them available to all the Moodle's servers without
increasing the network complexity.

Sha
red

 se
rve

rs

Browser +
Java plugin

http/https +
console I/O (raw TCP)

VPL Jail 1/1

VPL Jail 1/k

XMLRPC +
raw TCP

XMLRPC +
raw TCP

Browser +
Java plugin

http/https +
console I/O (raw TCP)

VPL Jail 2/1

VPL Jail 2/q

XMLRPC +
raw TCP

XMLRPC +
raw TCP

Moodle
Server 1

Moodle
Server 2

VPL Jail S2/2
VPL Jail S2/1

VPL Jail S1/1

VPL Jail S1/1

Figure 4. A complex net topology

Using multiple jails serves not only support scalability
and improves performance, but also provides fault
tolerance. When an execution request is received by the
VPL module, it takes the list of available jail servers and
randomly selects one that is not marked as having a
previous fail into a specific range of time. Then VPL
sends the server an availability request; if the response to
this request is true, the execution request is assigned to the
server, else a new server is selected. If no server is found,
the process is repeated taken into account the servers
previously failed.

Steps of a non-interactive running request

Steps of an interactive running request

3 Types of VPL activities
VPL can be used to configure, manage and assess a

range of learning activities which can be classified by type
or scope [10]. By type, the learning activities may be:
examples, cloze or puzzle exercises, and code
development exercises. By scope they may be: out-
classroom tasks, or in-classroom exams.

1.3 Learning activities by type
Examples are activities where the students are

provided with both the description of a problem and the
program code that solves that problem. The students may
interact with the code (running or debugging) to see how
it works.

Examples may be mutable or immutable, depending
on if the student can or no modify the code. An immutable
example must be marked as "example" in the activity's
configuration window. The student who modifies the code
of a mutable example can always reset it to its original
state.

Cloze exercises and puzzle exercises are especially
appropriate for beginners. In the same way than the
previous activity, they provide the students with the
description of a problem and the program code that solves
that problem, but now the student must modify the code.

In the case of the cloze exercises, portions of the code
have been deleted and the student has to fill in the blanks
in order to do the code works in the appropriate way.

In the case of the puzzle exercises, the code has been
disordered and the student has to sort it in order to do the
code works in the appropriate way.

A code development exercise provides the students
only with the description of a problem (although some
code may be sometimes included). The student has to
develop the code to solve the problem using the
appropriate techniques. This kind of exercises is a
traditional way to achieve programming skills at any level
by means of an intensive training in solving problems, in
the believe that: 'doing programs is how we can learn to
programming'.

1.4 Learning activities by scope
Attending to the conditions under what a VPL's

activity can be done; there are two ways to use VPL: out-
classroom tasks, or in-classroom exams.

Out-classroom tasks are designed as long-term
activities to be done into a time period that may extend by
days or weeks. During the active period of the activity the
student may try so many solutions as he or she likes.

Out-classroom activities can be done anywhere,
without direct supervision of an instructor, although help
can be obtained from the instructors as long as they offer
it in some way (e-mail, forums, face-to-face...).

In-classroom exams are activities designed to be done
in a short-term and in a restricted environment, under
instructor's supervision. So, they can be configured to
require a password, be done in a specific local area

network, or do not permit the editor's copy and paste
features.

As for our-classroom activities, multiple attempts of
solution could be tried. In both cases, the student can get
immediate feedback for each try, if so configured.

4 Configuring VPL activities
1.5 Basic configuration form

The creation of a VPL activity begins by filling its
basic configuration form, which includes, as for majority
of Moodle's modules: activity's name, short description,
availability period (with visibility and due dates), grading
options, grouping... In addition, an VPL activity may
include data as: maximum number of files to submit,
maximum size of those files, restrictions on editing,
network, password... (Fig. 5).

Figure 5. VPL basic configuration form restrictions

When the basic configuration form is completed, the
instructor can configure five other groups of features: full
description, tests cases, options, requested files and
advanced features.

1.6 Full description and test cases
The Full description tabsheet shows a html editor

where the description of the problem to solve must be
written to be shown to the student.

The Tests cases tabsheet permits configure simple
input-output based test cases to check programs
correctness in order to elaborate an assessment reports
both to provide feedback to the students and to support
grading. The configuration of each test case must include:
case short description, input to test the program, expected
output for that input, and grade reduction when the test
case fails (Fig. 6).

Figure 6. Example of test case configuration

1.7 The Options tabsheet
The Options tabsheet (Fig 7) serves to configure some

general options for execution of submissions tests. The
first feature in the Options tabsheet serves to indicate if

the activity is based on another VPL activity, on this way
it is possible to build a hierarchy of activities which share
some features via heritage.

Figure 7. Options tabsheet

The rest of the options in the Options tabsheet are for
configuring if the students can run, debug or evaluate their
submissions, if the exercises will be evaluated just when
submitted, and if the results of the automatic evaluation
will become in the final assessment or they will be used
only as a help for a human evaluator.

1.8 Requested files
The Requested files tabsheet (Fig. 8) serves to put

obligatory names for the files that the student have to
submit to complete the activity. The max number of files
was put in the basic configuration form. The studen can
submit any number of files, until the max, with any
names, but if names for files are specified in the
Requested files tabsheet, the student must submit at least
those files.

Figure 8. Requested files tabsheet

The instructor may provide initial contents for the
specified files, by example, to configure a cloze exercise.

1.9 The advanced tabsheet
The configuration options described in the previous

sections suffice to configure an activity with an useful test
system. The Advanced tabsheet serves, among other
things, to configure a more powerful test system.

The basic tests are black-box tests based on console
input-output that check for functionality of the submitted
code. Using the advanced options we can configure more
powerful functionality tests, based on unit testing
frameworks than can be similar, for example, to the well-
known JUnit fo Java [11]. In addition to the unit tests, we
can also configure other types of test like style checking or
coverage tests, so producing an assessment report that
takes into account not only functionality, but many other
parameters linked to the code quality. To configure the
advanced tests we can include some files (Fig. 9) to be
joined with the submitted files to prepare the tests. We
must also configure some script files that will control the

execution, debugging and evaluation (running the tests) of
the submissions.

Figure 9. Execution files for advanced testing

The Advanced tabsheet includes also the configuration
of other features (Fig. 10) which usually do not need
modification, such as limits for execution (time, memory
and disk use) or designation of specified jails for the
activity.

Figure 10. Advanced options tabsheet

5 Assessment support
VPL offers both automatic and computer-aided

assessment. Selection of one of them is made by checking
the appropriate option in the Options tabsheet, as
described above.

The key for the assessment support is the
configuration of the program tests; this can be made by
simply listing a set of input-output tests cases or by
configuring a more complex tests framework.

VPL automatically executes the configured tests and
produces a report that includes a list of failed tests, with
explanatory comments, and a grade proposal. This report
could be used in three ways: to provide feedback to the
students while they are developing their solutions to the
exercise (formative assessment), to produce the final
assessment if automatic evaluation is configured, or to
help a human evaluator to assess the submission.

Figure 11. Evaluation window

When evaluating a submission the human evaluator
uses a window (Fig. 11) where appears the assessment
report produced by the test system and a list of the
comments added to other submissions previously
evaluated. The human evaluator can modify the report
deleting comments, adding new comments or reusing
comments from the list, and recalculate the grade.

6 Plagiarism checking
Plagiarism is a real problem ([12], [13], [14]) that must

be faced from different perspectives: formation,
prevention, and prosecution. Both, prevention and
prosecution can benefit from technological development
as plagiarism itself does.

VPL includes a tool to check plagiarism among source
code. The main goal of this tool is to detect plagiarism
among submissions for a task in a course, but it can
include other sources, like submissions for the same task
in previous semesters, or similar tasks from other courses,
which are a probable source of plagiarism.

The process to find similarities among source files is
composed of three steps: tokenization, comparison and
clusterization (Fig. 12).

Figure 12. Steps to find similarities among source files

Tokenization is the process to get a normalized
signature from every file in order to perform an efficient
comparing to find similarities among them. It is
composed of three phases: lexical analysis, filtering and
normalization (Fig. 13). The lexical analysis extracts the
tokens that represent the elements of a program (they
depend on the programming language), then those tokens
are filtered to delete those that are irrelevant for
comparison, and finally expressions are normalized into a
canonical form, producing the program signature.

Figure 13. Tokenization phases

Signatures are normalized representation for the
source code files, extracted from them in order to optimize
the comparison process. The form of the signature
depends on the metric to be used in comparison. VPL use
three different metrics [15] which, when comparing two
signatures, produce a number in the range 0.0 to 1.0,
where 0.0 means "totally equals" and 1.0 means "totally
different". Using three metrics takes advantage of the fact
that they are affected in a different way by the
modifications of the code. Table I shows the effect of
typical code changes on the metrics (F = Filtered, A =

Affected, NA = Not Affected, SA = Slightly affected,
ASC = Affected by Size of Changes, ANC = Affected by
Number of Changes).

TABLE I. METRICS AFFECTATION

Change

Metric C

om
m

en
ts

N
am

e o
f

Id
en

tif
ie

rs

C
od

e r
eo

rd
er

Sy
st

em
at

ic

ch
an

ge

C
om

pl
ex

 c
ha

ng
e

Metric 1 F F NA SA A
Metric 2 F F NA ASC ASC
Metric 3 F F A ANC ANC

Experience using the tool has shown that some
plagiarism cases present not a one-to-one relationship, but
a group relationship where usually nobody has a detailed
knowledge of all the participants, for example, student A
may lend its work to students B and C, without mutually
knowledge of B and C; student C may lend the work to
student D, without knowledge of A and B, and so on [16].
To provide the reviewers with information about that kind
of event, the system incorporates algorithms to identify
clusters of most similar files.

The visualization system of the anti-plagiarism tool
permits to visualize lists of pairs of similar files, clusters
of similar files, or file-to-file similarities (Fig. 14).

Figure 14. File-to-file visual comparison

7 Experience of use
VPL current version was released in September 2011,

and is used for nine courses in the current academic year
(2011/2012) with a total of 1181 students. At the moment
of writing this paper (the second semester is not ended)
376 VPL activities have been configured for those
courses, producing 18664 submissions (these counts only
the final submissions, not the multiple tentative
submissions done during the submission period).

A previous release was tested during the academic
year 2009/2010 using only a course with 208 students and
42 activities, producing 1315 final submissions, and then
it was used in the academic year 2010/2011 for five
courses, with 661 students and 264 activities, producing
5140 final submissions.

During this period, VPL was publicly available and
was developed and used for about 50 academic
institutions over the world. The comments and
suggestions made by these users also have contributed to
the current version.

Some polls made to the students during the academic
year 2011/2012 reveal that VPL activities were the best
valued learning resources, with about a 80% of students
declaring that the utility of VPL activities for their
learning was very high and about a 16% declaring that it
was high.

8 Conclusions and future work
This paper describes VPL, a powerful tool to manage

and assess computer programming exercises freely
distributable under GNU/GPL license. The main
advantage of this tool is its integration in a popular
learning management system, as Moodle is. This
integration provides access to all the features of that kind
of platforms.

A major feature of VPL is its capacity to produce
complete assessment reports based on program testing.
Moreover the required program tests can be configured in
a very flexible way, ranging from simple input-output
tests to complex combinations of unit tests, coverage tests
or style tests.

Another important feature of VPL is the embedded
tool to check submissions for plagiarism. It is important
because plagiarism is a big problem in academia, as many
studies have shown.

The current version of VPL (1.4) runs under Moodle
1.9.x. By the beginning of the 2012 summer will be
released the version adapted to Moodle 2.x, including new
and improved features.

The architecture of VPL will be re-engineered to
include the case when the Moodle server is running in a
cluster. The problem with the clusters is that, using the
current design, the communication between the console
and the jail for an interactive execution must be done
through the Moodle server, but, if there are a cluster of
servers responding the requests, it is not possible know
what server has to manage the communication.

The Java applet editor will be changed by one
developed using HTML5. Currently the Java applets do
not work properly on systems like iPad, or tablets running
Android.

Acknowledges
We wish to acknowledge the support of the

Department of Informática y Sistemas of the University of

Las Palmas de Gran Canaria to the development of VPL.
We also wish to acknowledge the coordinators and
teachers of the courses that have used VPL during its test
phase for their useful comments.

References
[1] Rees, Michael J. «Automatic assessment aids for Pascal

programs.» SIGPLAN Not. (ACM) 17 (1982): pp 33-42.
[2] Schorsch, Tom. «CAP: an automated selfassessment tool to check

Pascal programs for syntax, logic and style errors.» SIGCSE '95:
Proceedings of the twenty-sixth SIGCSE technical symposium on
Computer science education. ACM, 1995, pp 168-172.

[3] Choy, M., S. Lam, CK Poon, FL Wang, YT Yu, and L. Yuen.
«Towards Blended Learning of Computer Programming
Supported by an Automated System.» Blended Learning, 2007: 9.

[4] Palakal, Mathew J., Frederick W. Myers, and Carla L. Boyd. «An
interactive learning environment for breadth-first computing
science curriculum.» SIGCSE Bull. (ACM) 30 (1998), pp 1-5.

[5] Morris, D.S. «Automatic grading of student's programming
assignments: an interactive process and suite of programs.»
Frontiers in Education, 2003. FIE 2003. 33rd Annual. 2003. S3F-
1-6 vol.3.

[6] Truong, Nghi, Peter Bancroft, y Paul Roe. «A web based
environment for learning to program.» Australian Computer
Society, Inc., 2003, pp 255-264.

[7] Foubister, S.P., GJ Michaelson, and N. Tomes. «Automatic
assessment of elementary Standard ML programs using Ceilidh.»
Journal of Computer Assisted Learning 13 (1997), pp 99-108.

[8] Higgins, Colin A., Geoffrey Gray, Pavlos Symeonidis, and
Athanasios Tsintsifas. «Automated assessment and experiences of
teaching programming.» J. Educ. Resour. Comput. (ACM) 5
(2005): 5.

[9] Joy, Mike, Nathan Griffiths, y Russell Boyatt. «The boss online
submission and assessment system.» J. Educ. Resour. Comput.
(ACM) 5 (2005): 2.

[10] Rodríguez-del-Pino, J.C.; Rubio-Royo, E.; Hernández-Figueroa,
Z. Uses of VPL. 5th International Technology, Education and
Development Conference (INTED). 2011, pp 743-748.

[11] Beck, K. and Gamma, E. JUnit cookbook Available on-line at:
http://JUnit.sourceforge. net/doc/cookbook/cookbook.htm. 2002

[12] Crittenden, V. L.; Hanna, R. C. & Peterson, R. A. The cheating
culture: A global societal phenomenon. Business Horizons, 2009,
52, 337-346

[13] Hughes, J. & McCabe, D. Academic misconduct within higher
education in Canada. Canadian Journal of Higher Education,
2006, 36, 1

[14] McCabe, D. L. Cheating among college and university students: A
North American perspective. International Journal for Educational
Integrity, 2005, 1, 1-11.

[15] Rodríguez-del-Pino, J.C.; Rubio-Royo, E.; Hernández-Figueroa,
Z. Fighting plagiarism: metrics and methods to measure and find
similarities among source code of computer programs in VPL. 3rd
International Conference on Education and New Learning
Technologies (EDULEARN). 2011, pp 4339-4346.

[16] Lesner, B., Brixtel, R., Bazin, C., & Bagan, G. (2010). A novel
framework to detect source code plagiarism: now, students have to
work for real!. Proceedings of the 2010 ACM Symposium on
Applied Computing, ACM, 2010, pp 57-58.

