CHAPTER 3

LOAD FLOW ANALYSIS

[CONTENTS: Review of solution of equations, direct and iterative methods,
classification of buses, importance of slack bus and Ygys based analysis,
constraints involved, load flow equations, GS method: algorithms for finding the
unknowns, concept of acceleration of convergence, NR method- algorithms for
finding the unknowns, tap changing transformers, Fast decoupled load flow,
illustrative examples]

REVIEW OF NUMERICAL SOLUTION OF EQUATIONS

The numerical analysis involving the solution of algebraic simultaneous equations
forms the basis for solution of the performance equations in computer aided electrical
power system analyses, such as during linear graph analysis, load flow analysis
(nonlinear equations), transient stability studies (differential equations), etc. Hence, it
is necessary to review the general forms of the various solution methods with respect
to al forms of equations, as under:
1. Solution Linear equations:
* Direct methods:
- Cramer’s (Determinant) Method,
- Gauss Elimination Method (only for smaller systems),
- LU Factorization (more preferred method), etc.
* |terative methods:
- Gauss Method
- Gauss-Siedel Method (for diagonally dominant systems)
2. Solution of Nonlinear equations:
I terative methods only:
- Gauss-Siedel Method (for smaller systems)
- Newton-Raphson Method (if corrections for variables are small)
3. Solution of differential equations:
Iterative methods only:
- Euler and Modified Euler method,
- RK 1V-order method,

- Milne’s predictor-corrector method, etc.



It isto be observed that the nonlinear and differential equations can be solved only by
the iterative methods. The iterative methods are characterized by the various
performance features as under:

= Selection of initial solution/ estimates

= Determination of fresh/ new estimates during each iteration

»  Selection of number of iterations as per tolerance limit

» Time per iteration and total time of solution as per the solution method selected

= Convergence and divergence criteria of the iterative solution

= Choice of the Acceleration factor of convergence, etc.

A comparison of the above solution methodsisasunder:

= Ingeneral, the direct methods yield exact or accurate solutions. However, they
are suited for only the smaller systems, since otherwise, in large systems, the
possible round-off errors make the solution process inaccurate.

= The iterative methods are more useful when the diagonal elements of the
coefficient matrix are large in comparison with the off diagonal elements. The
round-off errors in these methods are corrected at the successive steps of the
iterative process.

= The Newton-Raphson method is very much useful for solution of non —linear
equations, if all the values of the corrections for the unknowns are very small
in magnitude and the initial values of unknowns are selected to be reasonably

closer to the exact solution.

LOAD FLOW STUDIES

Introduction: Load flow studies are important in planning and designing future
expansion of power systems. The study gives steady state solutions of the voltages at
all the buses, for a particular load condition. Different steady state solutions can be
obtained, for different operating conditions, to help in planning, design and operation

of the power system.

Generally, load flow studies are limited to the transmission system, which involves

bulk power transmission. The load at the buses is assumed to be known. Load flow



studies throw light on some of the important aspects of the system operation, such as.
violation of voltage magnitudes at the buses, overloading of lines, overloading of
generators, stability margin reduction, indicated by power angle differences between
buses linked by aline, effect of contingencies like line voltages, emergency shutdown
of generators, etc. Load flow studies are required for deciding the economic operation
of the power system. They are also required in transient stability studies. Hence, |oad-

flow studies play avital role in power system studies.

Thus the load flow problem consists of finding the power flows (real and reactive)
and voltages of a network for given bus conditions. At each bus, there are four
quantities of interest to be known for further analysis: the real and reactive power, the
voltage magnitude and its phase angle. Because of the nonlinearity of the algebraic
equations, describing the given power system, their solutions are obviously, based on
the iterative methods only. The constraints placed on the load flow solutions could be:

= The Kirchhoff’s relations holding good,

Capability limits of reactive power sources,

Tap-setting range of tap-changing transformers,

Specified power interchange between interconnected systems,

Selection of initial values, acceleration factor, convergence limit, etc.

Classification of buses for LFA: Different types of buses are present based on the

specified and unspecified variables at a given bus as presented in the table below:

Tablel. Classification of busesfor LFA

Sl Specified | Unspecified
No. Bus Types Variables variables Remarks
Slack/ V|, O: are assumed if not
1 . P )
Swing Bus VI, 8 5 Qe | eified as 1.0 and O°
Generator/ A generator is present at the
2 Machine/ PV Bus Pe, |V Qe 8 machine bus
0,
3 | Load/ PQBuUs Pe, Qo VL5 | e Do RussEeciie
Voltage ‘a’ is the % tap change in
4 Controlled Bus Pe,Qe, [V 6, a tap-changing transformer




Importance of swing bus. The slack or swing bus is usualy a PV-bus with the
largest capacity generator of the given system connected to it. The generator at the
swing bus supplies the power difference between the “specified power into the system
at the other buses” and the “total system output plus losses”. Thus swing bus is
needed to supply the additional real and reactive power to meet the losses. Both the
magnitude and phase angle of voltage are specified at the swing bus, or otherwise,
they are assumed to be equal to 1.0 p.u. and 0° , as per flat-start procedure of iterative
solutions. The real and reactive powers at the swing bus are found by the computer
routine as part of the load flow solution process. It is to be noted that the source at the
swing bus is a perfect one, called the swing machine, or slack machine. It is voltage
regulated, i.e., the magnitude of voltage fixed. The phase angle is the system reference
phase and hence is fixed. The generator at the swing bus has a torque angle and
excitation which vary or swing as the demand changes. This variation is such as to

produce fixed voltage.

Importance of Ygys based LFA: The mgjority of load flow programs employ
methods using the bus admittance matrix, as this method is found to be more
economical. The bus admittance matrix plays a very important role in load floe
analysis. It is a complex, square and symmetric matrix and hence only n(n+1)/2
elements of Y gys need to be stored for a n-bus system. Further, in the Y gys matrix, Y
=0, if anincident element is not present in the system connecting the buses ‘i’ and j’.
since in alarge power system, each bus is connected only to a fewer buses through an
incident element, (about 6-8), the coefficient matrix, Y gys of such systems would be
highly sparse, i.e., it will have many zero valued elements in it. Thisis defined by the

sparsity of the matrix, as under:

Percentage sparsity of a Total no. of zero valued e ements of Ygys

given matrix of n" order:

Tota no. of entriesof Ygus

S (Z 1 n?) x 100 % (1)

The percentage sparsity of Ygys, in practice, could be as high as 80-90%, especially

for very large, practical power systems. This sparsity feature of Y gys is extensively



used in reducing the load flow calculations and in minimizing the memory required to
store the coefficient matrices. This is due to the fact that only the non-zero elements
Ysus can be stored during the computer based implementation of the schemes, by
adopting the suitable optimal storage schemes. While Y gys is thus highly sparse, it’s
inverse, Zgus, the bus impedance matrix is not so. It is a FULL matrix, unless the

optimal bus ordering schemes are followed before proceeding for load flow analysis.

THE LOAD FLOW PROBLEM

Here, the analysis is restricted to a balanced three-phase power system, so that the
analysis can be carried out on a single phase basis. The per unit quantities are used for
al quantities. The first step in the analysis is the formulation of suitable equations for
the power flows in the system. The power system is a large interconnected system,
where various buses are connected by transmission lines. At any bus, complex power
isinjected into the bus by the generators and complex power is drawn by the loads. Of
course at any bus, either one of them may not be present. The power is transported
from one bus to other via the transmission lines. At any bus i, the complex power S

(injected), shown in figure 1, is defined as

S =S - Soi (2
PitjQi  PeitjQei
Bus-i % | s Y
L |PoidQni
System in
bus Frame i .l CG)
of Reference
D
Eef. Bus

Fig.l power flowsat a bus-i

where S = net complex power injected into busi, Sgi = complex power injected by
the generator at busi, and Sp; = complex power drawn by the load at busi. According

to conservation of complex power, at any bus i, the complex power injected into the



bus must be equal to the sum of complex power flows out of the bus via the
transmission lines. Hence,

S=73S; Viz=1,2, oo n ©)
where S is the sum over al lines connected to the bus and n is the number of busesin
the system (excluding the ground). The bus current injected at the bus-i is defined as

li=lgi - Ip Viz=1,2, oo n )
where |g; isthe current injected by the generator at the bus and | p; is the current drawn
by the load (demand) at that bus. In the bus frame of reference

lsus = Yus Veus ®)
where

lgus=1 . isthe vector of currentsinjected at the buses,

n

Y gus isthe bus admittance matrix, and
\

V2
Vgus=| . isthe vector of complex bus voltages.

v

n

Equation (5) can be considered as

li= Y'YV, Vi=1,2 . n (6)
j=1

The complex power S is given by

Si = Vi Ii*
= Vi (Zn:Y” V]J
=V (ivi;vrj 0

Let ViAN|£d, =V |(cosd, + jsind,)

d, =d, —d,



Y; =G; + |B;

Hence from (7), we get,

s=Y Vi V| (cosd, + jsind,) (G, - jB) 6)
i1
Separating real and imaginary partsin (8) we obtain,
P = Zn: V|V (G, cosd, + B, sind, ) 9)
=1
Q= V|V, (G, snd, - 8 cosd, ) (10)
-1

An dlternate form of P, and Q; can be obtained by representing Yk aso in polar form
as Yi= Y| <a (11)
Again, we get from (7),
s =M|4d; ), ‘Yij‘é_qij Ni‘l_dj (12)
j=1
Therea part of (12) givesP.

P =M| JZri;|Yu||VJ| COS(—qn + d, —dj)

:|Vi|zn:‘YinVj‘cos—(qij—di+dj) or
j=1
R:Zn: [\/i”\/jHYij‘cos(qij —d +d,) Vi=1,2,cc....n, (13)
=1
Similarly, Q; isimaginary part of (12) and is given by
Q =|\/i|Zn:‘Yin\/j‘sin—(q”—dierj) or
j=1
Qi:—zn: MV Y| sint@y = d+d)  vi=12. n (14)
j=1

Equations (9)-(10) and (13)-(14) are the ‘power flow equations’ or the ‘load flow

equations’ in two alternative forms, corresponding to the n-bus system, where each
bus-i is characterized by four variables, P, Q, [Vi|, and &. Thus a total of 4n

variables are involved in these equations. The load flow equations can be solved for



any 2n unknowns, if the other 2n variables are specified. This establishes the need for
classification of buses of the system for load flow analysis into: PV bus, PQ bus, etc.

DATA FOR LOAD FLOW

Irrespective of the method used for the solution, the data required is common for any
load flow. All data is normally in pu. The bus admittance matrix is formulated from
these data. The various data required are as under:

System data: It includes: number of buses-n, number of PV buses, number of
loads, number of transmission lines, number of transformers, number of shunt
elements, the slack bus number, voltage magnitude of slack bus (angle is generally
taken as 0°), tolerance limit, base MVA, and maximum permissible number of
iterations.

Generator_bus data: For every PV bus i, the data required includes the bus

number, active power generation Pg;, the specified voltage magnitude[\/iysp| , minimum

reactive power limit Q; min, and maximum reactive power limit Q; max.
L oad data: For all loads the data required includes the the bus number, active
power demand Pp;, and the reactive power demand Qp;.

Transmission line data: For every transmission line connected between buses

i and k the data includes the starting bus number i, ending bus number k,.resistance of
the line, reactance of the line and the half line charging admittance.

Transformer data:

For every transformer connected between buses i and k the data to be given includes:
the starting bus number i, ending bus number k, resistance of the transformer,
reactance of the transformer, and the off nominal turns-ratio a.

Shunt element data: The data needed for the shunt element includes the bus

number where element is connected, and the shunt admittance (Gg, + j Bh).

GAUSS - SEIDEL (GS) METHOD

The GS method is an iterative algorithm for solving non linear algebraic equations.
Aninitial solution vector is assumed, chosen from past experiences, statistical data or

from practical considerations. At every subsequent iteration, the solution is updated



till convergence is reached. The GS method applied to power flow problem is as
discussed below.

Case (a): Systemswith PQ buses only:

Initially assume all buses to be PQ type buses, except the slack bus. This means that
(n-1) complex bus voltages have to be determined. For ease of programming, the
slack busis generally numbered as bus-1. PV buses are numbered in sequence and PQ
buses are ordered next in sequence. This makes programming easier, compared to
random ordering of buses. Consider the expression for the complex power at bus-i,

given from (7), as.

This can be written as
S v [ZYU’ ij (15)
=1
Since S’ =P —jQ;, we get,

R-JQ_ <
\/i ; /.

So that,

R-IQ_Y,; V, + > Y, V, (16)
v j
J

Rearranging the terms, we get,

P S vv| Vi=23...... n 17)

Equation (17) is an implicit equation since the unknown variable, appears on both
sides of the equation. Hence, it needs to be solved by an iterative technique. Starting
from an initial estimate of all bus voltages, in the RHS of (17) the most recent values
of the bus voltages is substituted. One iteration of the method involves computation of
all the bus voltages. In Gauss-Seidel method, the value of the updated voltages are
used in the computation of subsequent voltages in the same iteration, thus speeding up



convergence. Iterations are carried out till the magnitudes of all bus voltages do not
change by more than the tolerance value. Thus the agorithm for GS method is as

under:

Algorithm for GS method
1. Prepare datafor the given system as required.

2. Formulate the bus admittance matrix Ygus. This is generally done by the
rule of inspection.

3. Assume initial voltages for all buses, 2,3,...n. In practical power systems,
the magnitude of the bus voltages is close to 1.0 p.u. Hence, the complex
bus voltages at al (n-1) buses (except slack bus) are taken to be 1.0~ 0°.
Thisisnormally refered as the flat start solution.

4. Update the voltages. In any (k+1)* iteration, from (17) the voltages are
given by

v = 1R - ZY VED = 3y vR | vi=23,...n (18)

Yii ( )) j=1 j=i+l
Here note that when computation is carried out for bus-i, updated values
are already available for buses 2,3....(i-1) in the current (k+1)% iteration.
Hence these values are used. For buses (i+1).....n, values from previous,
K™ iteration are used.

5. Continueiterations till

AV = v, -y Vi=23,..n (19)

Where, e isthe tolerance value. Generadly it is customary to use a value of
0.0001 pu.
6. Compute slack bus power after voltages have converged using (15)

[assuming bus 1 is slack bus].

S=P-jQ = [Z i J] (20)

7. Compute al lineflows.
8. The complex power loss in the line is given by S + S;. The total loss in

the system is calculated by summing the loss over all the lines.

10



Case (b): Systemswith PV buses also present:
At PV buses, the magnitude of voltage and not the reactive power is specified. Hence
it is needed to first make an estimate of Q; to be used in (18). From (15) we have
Q=-Im {v DY, VJ}
j=1

Where Im stands for the imaginary part. At any (k+1)¥ iteration, at the PV bus-i,
i-1 n
Qi(kﬂ) =—|Im {(\/i(k))* ZY” Vj(k+1) + (\/i(k))* ZYU Vj(k)} (21)
j=1 j=i

The stepsfor i PV bus are as follows:

1. Compute Q**? using (21)
2. Calculate V; using (18) with Q = Q**
3. Since |V,| is specified at the PV bus, the magnitude of V; obtained in step 2
has to be modified and set to the specified value |V, | . Therefore,
Vi = [Vi,Sp| zd (22)

The voltage computation for PQ buses does not change.

Case (c): Systemswith PV buseswith reactive power generation limits specified:
In the previous algorithm if the Q limit at the voltage controlled busis violated during

any iteration, i.e Q™ computed using (21) is either less than Q;, min Or greater than
Qi.max, 1t means that the voltage cannot be maintained at the specified value due to
lack of reactive power support. This bus is then treated as a PQ bus in the (k+1)¥
iteration and the voltage is calculated with the value of Q; set asfollows:

If Qi < Qi min If Qi> Qi max

Then Qi = Qi min. Then Qi = Qimax.

(23)
If in the subsequent iteration, if Q; falls within the limits, then the bus can be switched

back to PV status.

Acceler ation of conver gence

It is found that in GS method of load flow, the number of iterations increase with

increase in the size of the system. The number of iterations required can be reduced if

11



the correction in voltage at each bus is accelerated, by multiplying with a constant q,
called the acceleration factor. In the (k+1) iteration we can let

V,Y (accelerate d) =V, +a (v« - v,®) (24)
where o is a real number. When a =1, the value of V**? is the computed value. If

1 < a < 2, then the value computed is extrapolated. Generally a is taken between 1.2
to 1.6, for GS load flow procedure. At PQ buses (pure load buses) if the voltage
magnitude violates the limit, it simply means that the specified reactive power

demand cannot be supplied, with the voltage maintained within acceptable limits.

Examples on GSload flow analysis:

Example-1: Obtain the voltage at bus 2 for the simple system shown in Fig 2, using
the Gauss-Seidel method, if V; = 1.2 0°pu.

SG1 J_sf j1.0
o ﬁ@
SD1

S,,=0.5+j1

Fig: System of Example 1
Solution:
Here the capacitor at bus 2, injects a reactive power of 1.0 pu. The complex power
injectionat bus2is
S$,=j1.0-(0.5+j 1.0) =- 0.5 pu.
Vi=120
-j2 12}

Y =
BUS |:12 _12

V2(k+1) — i I:)2 — J?Z —Y21V1
Y22 (\/z(k))
Since V; is specified it is a constant through al the iterations. Let the initial voltage at

bus2, V. =1+j0.0=120pu.

12



1 [-05 |
Vie | 792 (j2x1.0°
2 —szzoO (i2~ )}

=1.0-j0.25=1.030776 /- 14.036°

VI 05 (j2x1.0°)
~j2|1.030776./14.036
= 0.94118 - j 0.23529 = 0.970145 / ~14.036°
VA 0> (j2x1.0°)
~j2| 0.970145./14.036

0.9375 - 0.249999 = 0.970261 ~-14.931°

VA 05 (j2x1.00)
= j2| 0.970261./14.931

VA 05 (j2x120°)
— j2| 0.966237./14.931

=0.933335-j 0.25 =0.966237 ~-14.995

0.933612 - j 0.248963 = 0.966237 .~ -14.931°

Since the difference in the voltage magnitudes is less than 10°° pu, the iterations can

be stopped. To compute line flow

V, -V, 1/0° - 0.966237/ —14.995°
e == 05
12 "

= 0517472 £/ ~14.931°
S, =V,I,,=120°x 0517472 £ 14.931°
=05+ 0.133329 pu

_V, -V,  0.966237 £ -14.995° ~1./0°
Z, j0.5

|21

= 0.517472 £ -194.93°
S, =V,l,,=-05+j0.0pu
Thetotal lossinthelineis given by
S+ S = j 0.133329 pu

Obvioudly, it is observed that there is no real power loss, since the line has no

resistance.

13



Example-2:
For the power system shown in fig. below, with the data as given in tables below,

obtain the bus voltages at the end of first iteration, by applying GS method.

o @

G (2) ()

3 3

Power System of Example 2

Line data of example 2

R | X
(pu) | (pu)
0.10 | 0.40
0.15 | 0.60
0.05 | 0.20
0.05 | 0.20
0.10 | 0.40
0.05 | 0.20

SB | EB

1 1 1 1 1 1 |'\.)|(.)m

WININFP PP
W o=r~N

Bus data of example 2

BusNo. | Fe | Qe | Po | Qo Vel 5
(pu) | (pu) | (pu) | (PY) | (pu)

1 - - - - 1o

2 - | - Joe0[030] - |-

3 10| - [ - | - |104] -

4 - | - Jo40]010] - |-

5 - | - Joe0|020] - |-

Solution: In thisexample, we have,
e Buslisdack bus, Bus2, 4,5 are PQ buses, and Bus 3 is PV bus
e Thelines do not have half line charging admittances
P2 +[Q2=Ps2 +]Qc2— (Pp2 +jQp2) =-0.6-j0.3

14



P3 + Qs = Pg3 + Qa3 — (Ppz + ]Qps) = 1.0 + Qa3
Similarly P, +jQ4=-0.4-]0.1,

Y bus =

The voltages at all PQ buses are assumed to be equal to 1+j0.0 pu. The slack bus

Ps+jQs=-0.6-)0.2
The Y psformed by the rule of inspection is given by:

2.15685 | -0.58823 | 0.0+j0.0 | -0.39215 | -1.17647

j8.62744 | +j2.35294 +j1.56862 | +j4.70588

-0.58823 | 2.35293 | -1.17647 | -0.58823 | 0.0+j0.0

+j2.35204 | -j9.41176 | +j4.70588 | +j2.35204

0.0+0.0 | -1.17647 | 2.35294 | 0.0+j0.0 | -1.17647
+j4.70588 | -j9.41176 +/4.70588

-0.39215 | -0.58823 | 0.0+j0.0 | 0.98038 | 0.0+j0.0

+j1.56862 | +j2.35294 j3.92156

-1.17647 | 0.0+0.0 | -1.17647 | 0.0+j0.0 | 2.35294

+j4.70588 +j4.70588 [j9.41176

voltage istaken to be V,° = 1.02+j0.0 in all iterations,

V=

:i{—o.mjos_
Y22

1.0

—{(-1.17647 + j4.70588) x 1.04/0° | - {(- 0.58823 + | 2.35294) x 1.0/0° |

- j0.0

= 0.98140 £ -3.0665° = 0.97999 —j0.0525

Bus 3isaPV bus. Hence, we must first calculate Qs. This can be done as under:

1P —j o
v { 2 o3 2 Yy Vi =Yy V30 =Y V40 =Yy Vso
Yo, Vv,

{(~0.58823 + 2.35294) x 1.02/0°}

Qs= M| My (Gy sindy, — By, cosdy, ) + V| V,| (G, sind,, — B, cosd,, )
+ V" (G Sindy, — By, cosdy,) +Vy| V.| (G,, sind,, — B,, cosd,,)

+ [Va| [\/5| (G355ind35 - Bas COSd35)
We note that 8; = 0% &, = -3.0665%;

o 031 =033 =034 =335 = 0° (Bik = & — Ok);

63 = 00; 64 = Oo
632 = 306650

and 85=0°

Qs = 1.04[1.02 (0.0+j0.0) + 0.9814 { —1.17647 x sin(3.0665°) — 4.70588

xC0S(3.0665°)} +1.04{ -9.41176 xcos(0%)} +1.0 { 0.0 + j0.0} +1.0{—4.70588xc0s(0%)} ]

ol
Y33

Ps_jQ3

\A

= 1.04 [-4.6735 + 9.78823 — 4.70588] = 0.425204 pu.

*

- Y31 Vlo - Y32 Vzl - Y34 V4O - Y35 Vso




_ 1 [10-j0.425204
Y33

: {(~1.7647 + j4.70588) x (0.98140 —3.0665°)}
1.04— j0.0

—{(-1.17647 + j4.70588) x (120°)|
= 1.05569 ~ 3.077° = 1.0541 +j0.05666 pu.
Since it is a PV bus, the voltage magnitude is adjusted to specified value and V; is

computed as:  V, =1.04./3.077°pu

1P -] o
V41 = |:4—OJQ4 —Yu Vo =Yy Vzl — Y Vsl —Yss Vso}
A Vv,

_ Yi {—0-4—“’0-1 — {(~0.39215 + j1.56862)x 1.02./0°}
44

1.0- j0.0
—{(-0.58823 + j2.35294) x(0.98140./ — 3.0665°) |

_ 0.45293 - ]3.8366
0.98038 — j3.92156

= 0.955715 ~/ -7.303° pu = 0.94796-j0.12149

1P —j o
Vsl = _|: : oJQ5 Y Vi =Yg Vzl = Ys3 Vsl =Y, Vzll}
Yss Vs

: (117647 + j4.70588) x 1.02./0° |
1.0-j0.0

_ i{—o.m jo2
Y55
—{(-1.17647 + j4.70588) x 1.04./3.077° |

= 0.994618 / -1.56° = 0.994249 - j0.027

Thus at end of 1% iteration, we have,

V1=1.0220%pu V. =0.98140 ~-3.066° pu
V3=1.04£3.077° pu V4 =0.955715 2 -7.303° pu
and Vs = 0.994618 ~ -1.56° pu

Example-3:
Obtain the load flow solution at the end of first iteration of the system with data as
given below. The solution is to be obtained for the following cases
(i)  All buses except bus 1 are PQ Buses
(i) Bus2isa PV buswhose voltage magnitude is specified as 1.04 pu
(iii) Bus 2 is PV bus, with voltage magnitude specified as 1.04 and 0.25<Q,<1.0
pu.

16
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Fig. System for Example 3

ol

Table: Line data of example 3

R X
B EB | ou | (u)
1 2 0.05 0.15
1 3 0.10 0.30
2 3 0.15 0.45
2 4 0.10 0.30
3 4 0.05 0.15

Table: Busdata of example 3

P Q Vi
Bus No. (ou) (pu)
1 - - 1.04,0°
2 05 | -0.2 -
3 -10 | 05 -
4 -03 | -01 -

Solution: Note that the data is directly in terms of injected powers at the buses. The

bus admittance matrix is formed by inspection as under:

3.0-j90 | —20+j60 | —1.0+j3.0 0

Vo= | =20+]6.0 | 3.666-j110 | - 0.666+j2.0 | ~1.0+j30
BUST1_-1.0+)3.0| -0.666 +j2.0 | 3.666—j11.0 | 2.0+ 6.0

0 -1.0+j3.0 | —2.0+j6.0 | 3.0-j9.0

Case(i): All buses except bus 1 are PQ Buses
Assume all initial voltagesto be 1.0 2 0° pu.

1Pk - JQ o
Vzl VI % —Yu Vi =Yy V30 — Yo V4O
Yz Vv,

17



_ {20+ j6.0)x(1.0420°)}

1[05+j02
Y,, | 1.0- j0.0

—{(~0.666 + j2.0)x (1.0£0°)} - {(~1.0+ }3.0) x(1.020°)]
= 1.02014 / 2.605°

Vsl = Yi {F%\;OJQS Y V° =Yy Vzl — Yy Vf}
B 3

1 [-10- jos5 . |
= 1 220-005 40964 j3.0)x (L0400
Y { 1o-jop ~ 10+ 130)x( )

—{(-0.666 + j2.0)x (1.02014./2.605°) | — {(— 2.0 + }6.0) x (1.0.20° )|
= 1.03108 /- 4.831°

1]|PR - JQ o
Vv, = v [_4\/—0* Y V=YV = Y Vs
4 4

1 [03+j01 . o
. {m ~{~1.0+ j3.0)x(1.02014,2.605° )
—{-20+ j6.0)x(1.03108/ - 4.831°) |

=1.02467 ~ -0.51°

Hence
V! =1.04 20°pu V, =1.02014 £ 2.605° pu
V} =1.03108 ~-4.831° pu V;} =1.02467 2 -0.51° pu
Case(ii): Bus2isaPV buswhose voltage magnitude is specified as 1.04 pu

We first compute Q..
QZ = [\/2|[[V1| (G2lSind21 - B21COSdz1) + [Vz| (Gzzsindzz - Bzz COSdzz)

+ [\/3| (stsindzs - st COSdzs) + [\/4| (Gz4Sind24 - Bz4 COSd24)]

= 1.04[1.04{-6.0} + 1.04{11.0}+1.0{- 2.0} + 1.0{-3.0}= 0.208 pu.

{20+ j6.0)x(1.0420°)}

Vi = i{o.s- j0.208

Y, | 1.04£0°
—{(-0.666 + j2.0)x (1.0£0°)} - {(~1.0+ }3.0) x(1.020°)
= 1.051288 +j0.033883
The voltage magnitude is adjusted to 1.04. Hence V, = 1.04 / 1.846"
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,_ 1[-10-jo5 g .. . o
—{(-0.666 + j2.0)x (1.04.,1.846°)} - {~ 2.0 + }6.0) x (L.0LC°)}|
= 1.035587 / - 4.951° pu.
. _ 1fo3+jo1 g . . .
VA ﬁ{m {10+ j3.0)x(1.0421.846°)}

—{~2.0+ j6.0)x(1.035587.2 - 4.951°)}
=0.9985 /- 0.178°
Hence at end of 1% iteration we have:

V! =104 £0°pu V} =104 £1.846° pu

V; =1.035587 £ -4.951° pu V;} =0.9985 2 -0.178° pu
Case (iii):Bus 2 is PV bus, with voltage magnitude specified as 1.04 & 0.255Q.<1 pu.
If 0.25< Q2 < 1.0 pu then the computed value of Q, = 0.208 is less than the lower
limit. Hence, Q. is set equal to 0.25 pu. Iterations are carried out with this value of Q.
The voltage magnitude at bus 2 can no longer be maintained at 1.04. Hence, there is

no necessity to adjust for the voltage magnitude. Proceeding as before we obtain at
the end of first iteration,

V! =104 £0°pu V; =1.05645 £ 1.849° pu
V; =1.038546 £ -4.933° pu V; = 1.081446 £ 4.896° pu

Limitations of GSload flow analysis:

GS method is very useful for very small systems. It is easily adoptable, it can be
generalized and it is very efficient for systems having less number of buses.
However, GS LFA fails to converge in systems with one or more of the features as
under:

» Systems having large number of radia lines

» Systemswith short and long lines terminating on the same bus

» Systems having negative values of transfer admittances

» Systemswith heavily loaded lines, etc.

GS method successfully converges in the absence of the above problems. However,
convergence also depends on various other set of factors such as. selection of slack
bus, initial solution, acceleration factor, tolerance limit, level of accuracy of results
needed, type and quality of computer/ software used, etc.
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NEWTON -RAPHSON METHOD

Newton-Raphson (NR) method is used to solve a system of non-linear algebraic

equations of the form f(x) =0. Consider a set of n non-linear algebraic equations given

by
f (X, X5 X,) =0 i=12...n (25

= x.", be the inital guess of unknown variables and
AX T AXy Ax.° be the respective corrections. Therefore,
£ +A%°, %" + A% x P+ AX ") = 0 i=12...Nn (26)

The above equation can be expanded using Taylor’s series to give

0
of, of, of;
fi (X10 ) Xzo ....... Xno) + [(—axllj Axlo + [iijzo +..... + (KJAX?]

+ Higher order terms =0 Vi=12...n (27)
0 0 0
Where, i , a—f' ) eeeeeeiens a—f' are the partial derivatives of f; with respect
oX, OX, oX,
t0 X,, X,.......X, respectively, evaluated at (X,°, X,"........... %,"). If the higher order terms

are neglected, then (27) can be written in matrix form as
£° 0%, i 0X, i oX, i %

AP I L My )] A%
_ 0%, OX, OX, _

+ =0 (28)

R (afn] (a%nj (a%nJ A%,
9% OX, X, ) |
In vector form (28) can be written as
FO+J°AX°=0

Or FO=-J%X"°
Or AX® = —J°]'F° (29)
And Xt =X%+AX® (30)

20



Here, the matrix [J] is called the Jacobian matrix. The vector of unknown variablesis
updated using (30). The process is continued till the difference between two

successive iterations is less than the tolerance value.

NR method for load flow solution in polar coordinates
In application of the NR method, we have to first bring the equations to be solved, to

the form f (x,%,,...x,) =0, where x;,X,,..x, are the unknown variables to be
determined. Let us assume that the power system has n, PV buses and n, PQ buses.
In polar coordinates the unknown variables to be determined are:

(i)d,, the angle of the complex bus voltage at busi, at al the PV and PQ buses. This
gives us n, + n, unknown variables to be determined.

(i) V|, the voltage magnitude of busi, at all the PQ buses. This gives us n, unknown

variables to be determined.

Therefore, the total number of unknown variables to be computed is:n, +2n,, for

which we need n, +2n, consistent equations to be solved. The equations are given

by,

AR =Py -PReu =0 (3D)
AQi = Qi,sp - Qi,cal =0 (32)
Where P ¢ = Specified active power at busi

Q.o = Specified reactive power at busii
P . = Calculated value of active power using voltage estimates.
Q,.a = Calculated value of reactive power using voltage estimates

AP = Active power residue

AQ = Reactive power residue
The real power is specified at all the PV and PQ buses. Hence (31) is to be solved at
al PV and PQ buses leading to n, +n, equations. Similarly the reactive power is
specified at all the PQ buses. Hence, (32) isto be solved at all PQ buses leading to n,
equations.
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We thus have n, +2n, equations to be solved for n, +2n, unknowns. (31) and (32)

are of the form F(x) = 0. Thus NR method can be applied to solve them. Equations
(31) and (32) can be written in the form of (30) as:

AP J, J,| Ad
= (33)
AQ| 3, J,]AV|
Where J,,J,,J;,J, are the negated partial derivatives of AP and AQ with respect

to corresponding d and |V| . The negated partial derivative of AP, is same as the partial

derivative of Pey, since Pg, is a constant. The various computations involved are
discussed in detail next.

Computation of Pgy and Qcq:

The rea and reactive powers can be computed from the load flow equations as:

Pea =R = Z[Vu "Vk|(Gik cosd,, + By, Sindik)
k=1

=G,V [+ Zn:[\/I V,|(G, cosd,, + B, sind,, ) (34)

ki

Qea =Q = DV |V,[(G, sind, - B, cosd,)
k=1

= -B,M[* + >V M[(G,. sind,, - B cosd,,) (35)

ki

The powers are computed at any (r +1)* iteration by using the voltages available from

previous iteration. The elements of the Jacobian are found using the above equations
as.

Elementsof J;

S_CFI): B iNI "Vk|{Gik (_Sindik)Jr Bic COSd‘k}

k=1
ki

= _Qi - Bii |Vi |2

% = VMG (~sind, (D) + B, (cosd, )(~D)
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Elements of J3

9 _ S (G, cosd, + By sind, )~ R~ G,

od, &
ki
2;3 = -V, |V[(G, cosd,, + B, sind,,)

Elements of J»

a[V||\/|—2[\/| G, +[\/|Z|Vk|lecosd,k+B,ksmd )=P +NM|'G,
k¢|

oP )
a|VI ||Vk| = N "Vk|(Gik cosd;, + By Slndik)
K
Elementsof J4

8[\/||V|_ -2V[B, +§|V||Vk|leS|nd B, cosd, )= Q —V|’B,

5|Vk||Vk|‘[V||Vk|(G.ksmd ~B, cosd, )

Thus, the linearized form of the equation could be considered again as:
AP H N

PARMNEd
AQ M [V|

The elements are summarized below:

oP,

(i) Hi = EZ—Q B.||V|

. oP, .
(i) Hy =£:ak fi —be :[Vi ”Vk|(Gik sind, - B, COSdik)

oP 2
(i) Ny = —~V|=R +G;V,
SAVRLRENY

(V) N, =1

VAL

=a,6 +bf = |V| "Vk|(Gik cosd, + By, Sindik)

V) My =Z—§=R _Gii|vi|2
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. 0Q.
(Vi) My, :%:_(akq +b, f) =-N,

. oQ, 2
(vii) Ly =—=+V|=Q —-B;V,
i) 1, = 2= -

00.
al\?ll||vk| = fi _bkel = Hik

(viii) L, =

In the above equations,
Yy =Gy + [By
e+ if, =[Vi|(cosd, + jsind,)

And a + jb, = (G, + |B,)(g + if,) (36)

If Y,, =0.0+ jO.0(if there is no line between buses i and k ) then the corresponding

off-diagonal elements in the Jacobian matrix will aso be zero. Hence, the Jacobian is

also a sparse matrix.

Size of the sub-matrices of the Jacobian: The dimensions of the various sub-
matrices are as per the table below:

Matrix Size

H (n+ng) x (Ng+ny)

N (n+ng) x ()

M (n2)x (ny+ny)

L (N2)x ()

J (N+2n,) x (N +2ny)
AP (n+ny) x 1
AQ nox 1
JA%) (n+ng)x 1

AV|IV| npx 1
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ALGORITHM FORNR METHOD
IN POLAR COORDINATES

1. Formulate the Y gus

2. Assumeinitial voltages asfollows:
V, =V, [£0° (atal PV buses)
V, =120° (at all PQ buses)
3. At (r+1)¥iteration, calculate P at all the PV and PQ buses andQ,"* at all the

PQ buses, using voltages from previous iteration,\/i“) . The formulae to be used are

Rea =R =GV |2 +Z[Vi ”Vk|(Gik cosd, + B, sind, )
k=l

ki

Qea=Q = ~BM[ + Y N[M(G,sind, - B, cosd, )

ki

4. Calculate the power mismatches (power residues)

AR =P -P ., (a PV and PQ buses)

AQ" =Q - Q" (at PQbuses)
5. Calculate the Jacobian [ J™] usingV,"” and its elements spread over H, N, M, L

sub- matrices using the relations derived asin (36).

6. Compute

Ad (r)

AVOL | [J(,)]l[AP(r)}
1 AQ(F)
Vi

7. Update the variables as follows:

4, =d,” +Ad” (atall buses)

[Vi|(r+1) Z[Vi|(r) +AI\/i|(r)

8. Go to step 3 and iterate till the power mismatches are within acceptabl e tolerance.
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DECOUPLED LOAD FLOW

In the NR method, the inverse of the Jacobian has to be computed at every iteration.
When solving large interconnected power systems, alternative solution methods are
possible, taking into account certain observations made of practical systems. These

are,

e Change in voltage magnitude ;| at a bus primarily affects the flow of reactive
power Q in the lines and leaves the real power P unchanged. This observation
’V ‘ is much larger than —— ’V ‘ Hence, in the Jacobian, the elements

of the sub-matrix[N], which contains terms that are partial derivatives of red

implies that —

power with respect to voltage magnitudes can be made zero.

e Change in voltage phase angle at a bus, primarily affects the real power flow P

over the lines and the flow of Q isrelatively unchanged. This observation implies

9Q

that R is much larger than——
od; od;

. Hence, in the Jacobian the e ements of the sub-

matrix [M ], which contains terms that are partia derivatives of reactive power

with respect to voltage phase angles can be made zero.

These observations reduce the NRLF linearised form of equation to

FYRHN E:

From (37) it is obvious that the voltage angle corrections Ad are obtained using real

power residues AP and the voltage magnitude corrections |AV| are obtained from

reactive power residuesAQ. This equation can be solved through two alternate

strategies as under:

26



Strategy-1
(i) Calculate AP"),AQ") and J©

)]

AQ(T)

Ad (r)
(i) Compute AN v

’V(r)

(iii) Update d and V.

(iv) Go to step (i) and iterate till convergence is reached.

Strategy-2
(i) Compute AP") and Sub-matrix H ). From (37) find Ad) = [H O] AP
(i) Update d using d™¥ =d + Ad".

(iii) Use d ¥ to calculate AQ") and L™

Al ©)
v
(v)Update, V)| =V ) +|av )

(vi) Goto step (i) and iterate till convergence is reached.

(iv) Compute =LY aQ®

In thefirst strategy, the variables are solved simultaneoudly. In the second strategy the
iteration is conducted by first solving for Ad and using updated values of d to

cal cuIateA[\/|. Hence, the second strategy results in faster convergence, compared to

thefirst strategy.
FAST DECOUPLED LOAD FLOW

If the coefficient matrices are constant, the need to update the Jacobian at every
iteration is eliminated. This has resulted in development of fast decoupled load Flow
(FDLF). Here, certain assumptions are made based on the observations of practical

power systems as under:
e Bj >>Gj; (Since the % ratio of transmission lines is high in well designed

systems)
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e The voltage angle difference (di —d J.) between two buses in the system is very
small. Thismeanscos(di —dj); land sin(di —dj):
° Qi << Bii[vi|2

With these assumptions the elements of the Jacobian become
Hik = Lik = _[Vi ”Vk|Bik (i # k)
Hii = Lii Z_Bii[vi|2

The matrix (37) reduces to

[AP]= V[V, |8 Jad]
[AQ]- ﬁvnv\B"{ } (39)

Where Bi and B, " ae negative of the susceptances of respective elements of the

bus admittance matrix. In (38) if we divide LHS and RHS by ;| and assume V| =1,

we get,

_M} 5 Jad

NJ B Wq )

Equations (39) congtitute the Fast Decoupled load flow equations. Further

simplification is possible by:
e Omitting effect of phase shifting transformers
e Setting off-nominal turnsratio of transformersto 1.0

e In forming B, omitting the effect of shunt reactors and capacitors which

ij ?
mainly affect reactive power

e Ignoring seriesresistance of linesin forming the Y ps.
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With these assumptions we obtain a loss-less network. In the FDLF method, the
matrices [B'] and [B"] are constants and need to be inverted only once at the

beginning of the iterations.
REPRESENTATION OF TAP CHANGING TRANSFORMERS

Consider atap changing transformer represented by its admittance connected in series

with an ideal autotransformer as shown (a= turnsratio of transformer)

Ypq

Fig. 2. Equivalent circuit of a tap setting transfor mer

Ip A

@ B C @I‘l

I ==

Fig. 3. m-Equivalent circuit of Fig.2 above.

By equating the bus currents in both the mutually equivalent circuits as above, it can
be shown that the m-equivalent circuit parameters are given by the expressions as
under:

() Fixed tap setting transfor mers (on no load)

A=Ypg a

B =1/a(Va-1) Ypq

C=(-Ya Ypq
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(i) Tap changing under load (TCUL) transformers (on load)
A=Ypq

B =(Va-1) (Ja+ 1-Eg/Ep) Ypq

C=(1-Y/a) (Ep/Eq) Ypq

Thus, here, in the case of TCUL transformers, the shunt admittance values are

observed to be a function of the bus voltages.

COMPARISON OF LOAD FLOW METHODS

The comparison of the methods should take into account the computing time required
for preparation of data in proper format and data processing, programming ease,
storage requirements, computation time per iteration, number of iterations, ease and
time required for modifying network data when operating conditions change, etc.
Since all the methods presented are in the bus frame of reference in admittance form,
the data preparation is same for all the methods and the bus admittance matrix can be
formed using a simple algorithm, by the rule of inspection. Due to simplicity of the
equations, Gauss-Seidel method is relatively easy to program. Programming of NR
method is more involved and becomes more complicated if the buses are randomly
numbered. It is easier to program, if the PV buses are ordered in sequence and PQ

buses are a so ordered in sequence.

The storage requirements are more for the NR method, since the Jacobian elements
have to be stored. The memory is further increased for NR method using rectangul ar
coordinates. The storage requirement can be drastically reduced by using sparse
matrix techniques, since both the admittance matrix and the Jacobian are sparse
matrices. The time taken for a single iteration depends on the number of arithmetic
and logical operations required to be performed in a full iteration. The Gauss —Seidel
method requires the fewest number of operations to complete iteration. In the NR
method, the computation of the Jacobian is necessary in every iteration. Further, the
inverse of the Jacobian also has to be computed. Hence, the time per iteration is larger
than in the GS method and is roughly about 7 times that of the GS method, in large
systems, as depicted graphically in figure below. Computation time can be reduced if
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the Jacobian is updated once in two or three iterations. In FDLF method, the Jacobian
is constant and needs to be computed only once. In both NR and FDLF methods, the

time per iteration increases directly as the number of buses.

Time units

al
4] NE
2
| | | -
0 40 80 120 No. of buses

Figure4. Time per Iteration in GSand NR methods

The number of iterations is determined by the convergence characteristic of the
method. The GS method exhibits a linear convergence characteristic as compared to
the NR method which has a quadratic convergence. Hence, the GS method requires
more number of iterations to get a converged solution as compared to the NR method.
In the GS method, the number of iterations increases directly as the size of the system
increases. In contrast, the number of iterations is relatively constant in NR and FDLF
methods. They require about 5-8 iterations for convergence in large systems. A
significant increase in rate of convergence can be obtained in the GS method if an
acceleration factor is used. All these variations are shown graphically in figure below.
The number of iterations also depends on the required accuracy of the solution.
Generally, a voltage tolerance of 0.0001 pu is used to obtain acceptable accuracy and
the real power mismatch and reactive power mismatch can be taken as 0.001 pu. Due
to these reasons, the NR method is faster and more reliable for large systems. The
convergence of FDLF method is geometric and its speed is nearly 4-5 times that of
NR method.
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Time units

60
40|
20
R
| | |
0 40 80 120 No. ﬂfhllses

Figure5. Total timeof Iteration in
GSand NR methods

No. of iterations

&
1200
0|
m_—
il | | | -
i ' ; i
0 1.2 1.4 1.6 Acc. Factor

Figure 6. Influence of acceleration factor

on load flow methods
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FINAL WORD

In this chapter, the load flow problem, also called as the power flow problem, has
been considered in detail. The load flow solution gives the complex voltages at al the
buses and the complex power flows in the lines. Though, algorithms are available
using the impedance form of the equations, the sparsity of the bus admittance matrix
and the ease of building the bus admittance matrix, have made algorithms using the
admittance form of equations more popular.

The most popular methods are the Gauss-Seidel method, the Newton-Raphson
method and the Fast Decoupled Load Flow method. These methods have been
discussed in detail with illustrative examples. In smaller systems, the ease of
programming and the memory requirements, make GS method attractive. However,
the computation time increases with increase in the size of the system. Hence, in large
systems NR and FDLF methods are more popular. There is a trade off between
various requirements like speed, storage, reliability, computation time, convergence
characteristics etc. No single method has all the desirable features. However, NR

method is most popular because of its versatility, reliability and accuracy.
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