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REVIEW OF NUMERICAL SOLUTION OF EQUATIONS

The numerical analysis involving the solution of algebraic simultaneous equations

forms the basis for solution of the performance equations in computer aided electrical

power system analyses, such as during linear graph analysis, load flow analysis

(nonlinear equations), transient stability studies (differential equations), etc. Hence, it

is necessary to review the general forms of the various solution methods with respect

to all forms of equations, as under:

1. Solution Linear equations:

* Direct methods:

- Cramer’s (Determinant) Method,

- Gauss Elimination Method (only for smaller systems),

- LU Factorization (more preferred method), etc.

* Iterative methods:

- Gauss Method

- Gauss-Siedel Method (for diagonally dominant systems)

2.    Solution of Nonlinear equations:

Iterative methods only:

- Gauss-Siedel Method (for smaller systems)

- Newton-Raphson Method (if corrections for variables are small)

3.    Solution of differential equations:

Iterative methods only:

- Euler and Modified Euler method,

- RK IV-order method,

- Milne’s predictor-corrector method, etc.
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It is to be observed that the nonlinear and differential equations can be solved only by

the iterative methods. The iterative methods are characterized by the various

performance features as under:

 Selection of initial solution/ estimates

 Determination of fresh/ new estimates during each iteration

 Selection of number of iterations as per tolerance limit

 Time per iteration and total time of solution as per the solution method selected

 Convergence and divergence criteria of the iterative solution

 Choice of the Acceleration factor of convergence, etc.

A comparison of the above solution methods is as under:

 In general, the direct methods yield exact or accurate solutions. However, they

are suited for only the smaller systems, since otherwise, in large systems, the

possible round-off errors make the solution process inaccurate.

 The iterative methods are more useful when the diagonal elements of the

coefficient matrix are large in comparison with the off diagonal elements. The

round-off errors in these methods are corrected at the successive steps of the

iterative process.

 The Newton-Raphson method is very much useful for solution of non –linear

equations, if all the values of the corrections for the unknowns are very small

in magnitude and the initial values of unknowns are selected to be reasonably

closer to the exact solution.

LOAD FLOW STUDIES

Introduction: Load flow studies are important in planning and designing future

expansion of power systems. The study gives steady state solutions of the voltages at

all the buses, for a particular load condition. Different steady state solutions can be

obtained, for different operating conditions, to help in planning, design and operation

of the power system.

Generally, load flow studies are limited to the transmission system, which involves

bulk power transmission. The load at the buses is assumed to be known. Load flow
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studies throw light on some of the important aspects of the system operation, such as:

violation of voltage magnitudes at the buses, overloading of lines, overloading of

generators, stability margin reduction, indicated by power angle differences between

buses linked by a line, effect of contingencies like line voltages, emergency shutdown

of generators, etc. Load flow studies are required for deciding the economic operation

of the power system. They are also required in transient stability studies. Hence, load-

flow studies play a vital role in power system studies.

Thus the load flow problem consists of finding the power flows (real and reactive)

and voltages of a network for given bus conditions. At each bus, there are four

quantities of interest to be known for further analysis: the real and reactive power, the

voltage magnitude and its phase angle. Because of the nonlinearity of the algebraic

equations, describing the given power system, their solutions are obviously, based on

the iterative methods only. The constraints placed on the load flow solutions could be:

 The Kirchhoff’s relations holding good,

 Capability limits of reactive power sources,

 Tap-setting range of tap-changing transformers,

 Specified power interchange between interconnected systems,

 Selection of initial values, acceleration factor, convergence limit, etc.

Classification of buses for LFA: Different types of buses are present based on the

specified and unspecified variables at a given bus as presented in the table below:

Table 1.   Classification of buses for LFA

Sl.
No. Bus Types

Specified
Variables

Unspecified
variables Remarks

1 Slack/
Swing Bus V,  PG, QG

V, : are assumed if not
specified as 1.0 and 00

2 Generator/
Machine/ PV Bus PG, V QG,  A generator is present at the

machine bus

3 Load/ PQ Bus PG, QG V,  About 80% buses are of PQ
type

4 Voltage
Controlled Bus PG,QG, V , a ‘a’ is the % tap change in

tap-changing transformer
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Importance of swing bus: The slack or swing bus is usually a PV-bus with the

largest capacity generator of the given system connected to it.  The generator at the

swing bus supplies the power difference between the “specified power into the system

at the other buses” and the “total system output plus losses”. Thus swing bus is

needed to supply the additional real and reactive power to meet the losses. Both the

magnitude and phase angle of voltage are specified at the swing bus, or otherwise,

they are assumed to be equal to 1.0 p.u. and 00 , as per flat-start procedure of iterative

solutions.  The real and reactive powers at the swing bus are found by the computer

routine as part of the load flow solution process. It is to be noted that the source at the

swing bus is a perfect one, called the swing machine, or slack machine. It is voltage

regulated, i.e., the magnitude of voltage fixed. The phase angle is the system reference

phase and hence is fixed. The generator at the swing bus has a torque angle and

excitation which vary or swing as the demand changes. This variation is such as to

produce fixed voltage.

Importance of YBUS based LFA: The majority of load flow programs employ

methods using the bus admittance matrix, as this method is found to be more

economical. The bus admittance matrix plays a very important role in load floe

analysis. It is a complex, square and symmetric matrix and hence only n(n+1)/2

elements of YBUS need to be stored for a n-bus system. Further, in the YBUS matrix, Yij

= 0, if an incident element is not present in the system connecting the buses ‘i’ and ‘j’.

since in a large power system, each bus is connected only to a fewer buses through an

incident element, (about 6-8), the coefficient matrix, YBUS of such systems would be

highly sparse, i.e., it will have many zero valued elements in it. This is defined by the

sparsity of the matrix, as under:

Percentage sparsity of a
given matrix of nth order:

=
Total no. of zero valued elements of YBUS

Total no. of entries of YBUS

S = (Z / n2) x 100  % (1)

The percentage sparsity of YBUS, in practice, could be as high as 80-90%, especially

for very large, practical power systems. This sparsity feature of YBUS is extensively
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used in reducing the load flow calculations and in minimizing the memory required to

store the coefficient matrices. This is due to the fact that only the non-zero elements

YBUS can be stored during the computer based implementation of the schemes, by

adopting the suitable optimal storage schemes.  While YBUS is thus highly sparse, it’s

inverse, ZBUS, the bus impedance matrix is not so. It is a FULL matrix, unless the

optimal bus ordering schemes are followed before proceeding for load flow analysis.

THE LOAD FLOW PROBLEM

Here, the analysis is restricted to a balanced three-phase power system, so that the

analysis can be carried out on a single phase basis. The per unit quantities are used for

all quantities. The first step in the analysis is the formulation of suitable equations for

the power flows in the system. The power system is a large interconnected system,

where various buses are connected by transmission lines. At any bus, complex power

is injected into the bus by the generators and complex power is drawn by the loads. Of

course at any bus, either one of them may not be present. The power is transported

from one bus to other via the transmission lines. At any bus i, the complex power Si

(injected), shown in figure 1, is defined as

Si = SGi – SDi (2)

Fig.1 power flows at a bus-i

where  Si = net complex power injected into bus i, SGi = complex power injected by

the generator at bus i, and SDi = complex power drawn by the load at bus i.  According

to conservation of complex power, at any bus i, the complex power injected into the
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bus must be equal to the sum of complex power flows out of the bus via the

transmission lines. Hence,

Si = ∑Sij  i = 1, 2, ………..n (3)

where Sij is the sum over all lines connected to the bus and n is the number of buses in

the system (excluding the ground). The bus current injected at the bus-i is defined as

Ii = IGi – IDi  i = 1, 2, ………..n (4)

where IGi is the current injected by the generator at the bus and IDi is the current drawn

by the load (demand) at that bus. In the bus frame of reference

IBUS = YBUS VBUS (5)

where
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is the vector of complex bus voltages.

Equation (5) can be considered as

Ii = j

n

j
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1

 i = 1, 2, ………..n (6)

The complex power Si is given by
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Let  iiiiii jVVV  sincos 

jiij  
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ijijij jBGY 

Hence from (7), we get,

Si =    ijijijijj

n

j
i BjGjVV 



 sincos
1

(8)

Separating real and imaginary parts in (8) we obtain,

Pi =  ijijijij

n

j
ji BGVV  sincos

1




(9)

Qi =  ijijijij

n

j
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1
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

(10)

An alternate form of Pi and Qi can be obtained by representing Yik also in polar form

as Yij= ijijY  (11)

Again, we get from (7),
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


n

j
jjijijii VYV

1
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The real part of (12) gives Pi.
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n
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
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1
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



n

j
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1

)(cos   i = 1, 2,………..n, (13)

Similarly, Qi is imaginary part of (12) and is given by





n

j
jiijjijii VYVQ

1

)(sin  or





n

j
jiijijjii YVVQ

1

)(sin   i = 1, 2,………..n (14)

Equations (9)-(10) and (13)-(14) are the ‘power flow equations’ or the ‘load flow

equations’ in two alternative forms, corresponding to the n-bus system, where each

bus-i is characterized by four variables, Pi, Qi, Vi, and i. Thus a total of 4n

variables are involved in these equations. The load flow equations can be solved for
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any 2n unknowns, if the other 2n variables are specified.  This establishes the need for

classification of buses of the system for load flow analysis into: PV bus, PQ bus, etc.

DATA FOR LOAD FLOW

Irrespective of the method used for the solution, the data required is common for any

load flow. All data is normally in pu. The bus admittance matrix is formulated from

these data. The various data required are as under:

System data: It includes: number of buses-n, number of PV buses, number of

loads, number of transmission lines, number of transformers, number of shunt

elements, the slack bus number, voltage magnitude of slack bus (angle is generally

taken as 0o), tolerance limit, base MVA, and maximum permissible number of

iterations.

Generator bus data: For every PV bus i, the data required includes the bus

number, active power generation PGi, the specified voltage magnitude spiV , , minimum

reactive power limit Qi,min, and maximum reactive power limit Qi,max.

Load data: For all loads the data required includes the the bus number, active

power demand PDi, and the reactive power demand QDi.

Transmission line data: For every transmission line connected between buses

i and k the data includes the starting bus number i, ending bus number k,.resistance of

the line, reactance of the line and the half line charging admittance.

Transformer data:

For every transformer connected between buses i and k the data to be given includes:

the starting bus number i, ending bus number k, resistance of the transformer,

reactance of the transformer, and the off nominal turns-ratio a.

Shunt element data: The data needed for the shunt element includes the bus

number where element is connected, and the shunt admittance (Gsh + j Bsh).

GAUSS – SEIDEL (GS) METHOD

The GS method is an iterative algorithm for solving non linear algebraic equations.

An initial solution vector is assumed, chosen from past experiences, statistical data or

from practical considerations. At every subsequent iteration, the solution is updated
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till convergence is reached. The GS method applied to power flow problem is as

discussed below.

Case (a): Systems with PQ buses only:

Initially assume all buses to be PQ type buses, except the slack bus. This means that

(n–1) complex bus voltages have to be determined. For ease of programming, the

slack bus is generally numbered as bus-1. PV buses are numbered in sequence and PQ

buses are ordered next in sequence. This makes programming easier, compared to

random ordering of buses. Consider the expression for the complex power at bus-i,

given from (7), as:

Si = Vi

*
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
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

n

j
jij VY

This can be written as


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Since *
iS = Pi – jQi, we get,
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Rearranging the terms, we get,
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Equation (17) is an implicit equation since the unknown variable, appears on both

sides of the equation. Hence, it needs to be solved by an iterative technique. Starting

from an initial estimate of all bus voltages, in the RHS of (17) the most recent values

of the bus voltages is substituted. One iteration of the method involves computation of

all the bus voltages. In Gauss–Seidel method, the value of the updated voltages are

used in the computation of subsequent voltages in the same iteration, thus speeding up
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convergence. Iterations are carried out till the magnitudes of all bus voltages do not

change by more than the tolerance value. Thus the algorithm for GS method is as

under:

Algorithm for GS method

1. Prepare data for the given system as required.

2. Formulate the bus admittance matrix YBUS. This is generally done by the

rule of inspection.

3. Assume initial voltages for all buses, 2,3,…n. In practical power systems,

the magnitude of the bus voltages is close to 1.0 p.u. Hence, the complex

bus voltages at all (n-1) buses (except slack bus) are taken to be 1.0 00.

This is normally refered as the flat start solution.

4. Update the voltages. In any  stk 1 iteration, from (17) the voltages are

given by
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
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Y
 i=2,3,…n (18)

Here note that when computation is carried out for bus-i, updated values

are already available for buses 2,3….(i-1) in the current (k+1)st iteration.

Hence these values are used. For buses (i+1)…..n, values from previous,

kth iteration are used.

5. Continue iterations till

  )()1()1( k
i

k
i

k
i VVV  i = 2,3,…n (19)

Where, is the tolerance value. Generally it is customary to use a value of

0.0001 pu.

6. Compute slack bus power after voltages have converged using (15)

[assuming bus 1 is slack bus].

*
1S = P1 – jQ1 = *

1V 










n

j
jj VY

1
1 (20)

7. Compute all line flows.

8. The complex power loss in the line is given by Sik + Ski. The total loss in

the system is calculated by summing the loss over all the lines.
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Case (b): Systems with PV buses also present:

At PV buses, the magnitude of voltage and not the reactive power is specified. Hence

it is needed to first make an estimate of Qi to be used in (18). From (15) we have

Qi = – Im










j

n

j
iji VYV

1

*

Where Im stands for the imaginary part. At any (k+1)st iteration, at the PV bus-i,

)1( k
iQ = – Im









 







)(*)()1(
1

1

*)( )()( k
j

n

ij
ij

k
i

k
j

i

j
ij

k
i VYVVYV (21)

The steps for ith PV bus are as follows:

1. Compute )1( k
iQ using (21)

2. Calculate Vi using (18) with Qi = )1( k
iQ

3. Since iV is specified at the PV bus, the magnitude of Vi obtained in step 2

has to be modified and set to the specified value spiV , . Therefore,

)1(
,

)1(   k
ispi

k
i VV  (22)

The voltage computation for PQ buses does not change.

Case (c): Systems with PV buses with reactive power generation limits specified:

In the previous algorithm if the Q limit at the voltage controlled bus is violated during

any iteration, i.e )1( k
iQ computed using (21) is either less than Qi, min or greater than

Qi,max, it means that the voltage cannot be maintained  at the specified value due to

lack of reactive power support. This bus is then treated as a PQ bus in the (k+1)st

iteration and the voltage is calculated with the value of  Qi set as follows:

If Qi < Qi,min

Then   Qi = Qi,min.

If Qi > Qi,max

Then   Qi = Qi,max.

(23)
If in the subsequent iteration, if Qi falls within the limits, then the bus can be switched

back to PV status.

Acceleration of convergence

It is found that in GS method of load flow, the number of iterations increase with

increase in the size of the system. The number of iterations required can be reduced if
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the correction in voltage at each bus is accelerated, by multiplying with a constant α,

called the acceleration factor. In the (k+1)st iteration we can let

 )()1()()1( )( k
i

k
i

k
i

k
i VVVdaccelerateV    (24)

where α is a real number. When α =1, the value of )1( k
iV is the computed value. If

1 < α < 2, then the value computed is extrapolated. Generally α is taken between 1.2

to 1.6, for GS load flow procedure. At PQ buses (pure load buses) if the voltage

magnitude violates the limit, it simply means that the specified reactive power

demand cannot be supplied, with the voltage maintained within acceptable limits.

Examples on GS load flow analysis:

Example-1: Obtain the voltage at bus 2 for the simple system shown in Fig 2, using

the Gauss–Seidel method, if V1 = 1 00 pu.

Fig : System of Example 1

Solution:

Here the capacitor at bus 2, injects a reactive power of 1.0 pu. The complex power

injection at bus 2 is

S2 = j1.0 – (0.5 + j 1.0) = – 0.5 pu.

V1 = 1 00

YBUS = 
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  
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)1(
2

1
VY

V

jQP

Y
V

k

k

Since V1 is specified it is a constant through all the iterations. Let the initial voltage at

bus 2, 0
2V = 1 + j 0.0 = 1 00 pu.
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2

1
j

j
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= 0.9375 – j 0.249999 = 0.970261  –14.9310

 













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0
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2 012
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2

1
j

j
V

= 0.933612 – j 0.248963 = 0.966237  –14.9310

 













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0
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2 012
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5.0

2

1
j

j
V

= 0.933335 – j 0.25 = 0.966237  –14.9950

Since the difference in the voltage magnitudes is less than 10-6 pu, the iterations can

be stopped. To compute line flow

5.0

995.14966237.001 00

12

21
12 jZ

VV
I







= 0.517472  −14.9310

*
12112 IVS  = 1 00 × 0.517472  14.9310

= 0.5 + j 0.133329 pu

5.0

01995.14966237.0 00

12

12
21 jZ

VV
I







= 0.517472  −194.930

*
21221 IVS  = – 0.5 + j 0.0 pu

The total loss in the line is given by

S12 + S21 =  j 0.133329 pu

Obviously, it is observed that there is no real power loss, since the line has no

resistance.
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Example-2:

For the power system shown in fig. below, with the data as given in tables below,

obtain the bus voltages at the end of first iteration, by applying GS method.

Power System of Example 2

Line data of example 2

SB EB
R

(pu)
X

(pu) 2
CB

1 2 0.10 0.40 -
1 4 0.15 0.60 -
1 5 0.05 0.20 -
2 3 0.05 0.20 -
2 4 0.10 0.40 -
3 5 0.05 0.20 -

Bus data of example 2

Bus No.
PG

(pu)
QG

(pu)
PD

(pu)
QD

(pu)
SPV

(pu)
δ

1 - - - - 1.02 0o

2 - - 0.60 0.30 - -
3 1.0 - - - 1.04 -
4 - - 0.40 0.10 - -
5 - - 0.60 0.20 - -

Solution:  In this example, we have,

 Bus 1 is slack bus, Bus 2, 4, 5 are PQ buses, and Bus 3 is PV bus

 The lines do not have half line charging admittances

P2 + jQ2 = PG2 + jQG2 – (PD2 + jQD2) = – 0.6 – j0.3
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P3 + jQ3 = PG3 + jQG3 – (PD3 + jQD3) = 1.0 + jQG3

Similarly P4 + jQ4 = – 0.4 – j0.1,          P5 + jQ5 = – 0.6 – j0.2

The Ybus formed by the rule of inspection is given by:

Ybus =

2.15685
-j8.62744

-0.58823
+j2.35294

0.0+j0.0 -0.39215
+j1.56862

-1.17647
+j4.70588

-0.58823
+j2.35294

2.35293
-j9.41176

-1.17647
+j4.70588

-0.58823
+j2.35294

0.0+j0.0

0.0+j0.0 -1.17647
+j4.70588

2.35294
-j9.41176

0.0+j0.0 -1.17647
+j4.70588

-0.39215
+j1.56862

-0.58823
+j2.35294

0.0+j0.0 0.98038
-j3.92156

0.0+j0.0

-1.17647
+j4.70588

0.0+j0.0 -1.17647
+j4.70588

0.0+j0.0 2.35294
-j9.41176

The voltages at all PQ buses are assumed to be equal to 1+j0.0 pu. The slack bus

voltage is taken to be 0
1V = 1.02+j0.0 in all iterations.












 0

525
0

424
0

323121*
2

22

22

1
2

1
VYVYVYVY

V

jQP

Y
V o

o

=   






 oj

j

j

Y
002.135294.258823.0

0.00.1

3.06.01

22

     000.135294.258823.0004.170588.417647.1  jj o

= 0.98140 −3.0665o =  0.97999 – j0.0525

Bus 3 is a PV bus. Hence, we must first calculate Q3. This can be done as under:

Q3 =    32323232233131313113 cossincossin  BGVVBGVV 

   343434344333333333

2

3 cossincossin  BGVVBGV 

+  3535353553 cossin  BGVV 

We note that δ1 = 0o;  δ2 = –3.0665o;    δ3 = 0o; δ4 = 0o and   δ5 = 0o

 δ31 = δ33 = δ34 = δ35 = 0o (δik = δi – δk);       δ32 = 3.0665o

Q3 = 1.04 [1.02 (0.0+j0.0) + 0.9814 {–1.17647 × sin(3.0665o) – 4.70588

×cos(3.0665o)}+1.04{–9.41176 ×cos(0o)}+1.0 {0.0 + j0.0}+1.0{–4.70588×cos(00)}]

= 1.04 [–4.6735 + 9.78823 – 4.70588]   =  0.425204 pu.












 0

535
0

434
1

232131*
3

33

33

1
3

1
VYVYVYVY

V

jQP

Y
V o

o
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=   








)0665.398140.0(70588.47647.1
0.004.1

425204.00.11

33

oj
j

j

Y

  )01(70588.417647.1 oj 

=  1.05569 3.077o =  1.0541 + j0.05666 pu.

Since it is a PV bus, the voltage magnitude is adjusted to specified value and 1
3V is

computed as: 01
3 077.304.1 V pu












 0

545
1

343
1

242141*
4

44

44

1
4

1
VYVYVYVY

V

jQP

Y
V o

o

=   






 oj

j

j

Y
002.156862.139215.0

0.00.1

1.04.01

44

  )0665.398140.0(35294.258823.0 oj 

=
92156.398038.0

8366.345293.0

j

j




= 0.955715 –7.303o pu =  0.94796– j0.12149












 1

454
1

353
1
252151*

5

55

55

1
5

1
VYVYVYVY

V

jQP

Y
V o

o

=   






 oj

j

j

Y
002.170588.417647.1

0.00.1

2.06.01

55

  oj 077.304.170588.417647.1 

=  0.994618 −1.56o =  0.994249 – j0.027

Thus at end of 1st iteration, we have,

V1 = 1.02 00 pu                      V2 = 0.98140  –3.0660 pu

V3 = 1.04 3.0770 pu               V4 = 0.955715 –7.3030 pu

and V5 = 0.994618 –1.560 pu

Example-3:

Obtain the load flow solution at the end of first iteration of the system with data as

given below. The solution is to be obtained for the following cases

(i) All buses except bus 1 are PQ Buses

(ii) Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu

(iii) Bus 2 is PV bus, with voltage magnitude specified as 1.04 and 0.25≤Q2≤1.0

pu.
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Fig. System for Example 3

Table: Line data of example 3

SB EB
R

(pu)
X

(pu)
1 2 0.05 0.15
1 3 0.10 0.30
2 3 0.15 0.45
2 4 0.10 0.30
3 4 0.05 0.15

Table: Bus data of example 3

Bus No.
Pi

(pu)
Qi

(pu)
Vi

1 – – 1.04 00

2 0.5 – 0.2 –
3 – 1.0 0.5 –
4 – 0.3 – 0.1 –

Solution: Note that the data is directly in terms of injected powers at the buses. The

bus admittance matrix is formed by inspection as under:

YBUS =

3.0 – j9.0 –2.0 + j6.0 – 1.0 + j3.0 0
–2.0 + j6.0 3.666 – j11.0 – 0.666 + j2.0 – 1.0 + j3.0
–1.0 + j3.0 –0.666 + j2.0 3.666 – j11.0 –2.0 + j6.0

0 –1.0 + j3.0 – 2.0 + j6.0 3.0 – j9.0

Case(i): All buses except bus 1 are PQ Buses

Assume all initial voltages to be 1.0 00 pu.












 0

424
0

323121*
2

22

22

1
2

1
VYVYVY

V

jQP

Y
V o

o
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=     






 oj

j

j

Y
004.10.60.2

0.00.1

2.05.01

22

         000.10.30.100.10.2666.0  jj o

= 1.02014 2.605o












 0

434
1

232131*
3

33

33

1
3

1
VYVYVY

V

jQP

Y
V o

o

=   








)0.004.1(0.30.1
0.00.1

5.00.11

33

oj
j

j

Y

       000.10.60.2)605.202014.1(0.2666.0  jj o

=  1.03108 – 4.831o












 1

343
1
242141*

4

44

44

1
4

1
VYVYVY

V

jQP

Y
V o

o

=     






 oj

j

j

Y
605.202014.10.30.1

0.00.1

1.03.01

44

  )831.403108.1(0.60.2 oj 

= 1.02467 −0.51o

Hence

1
1V = 1.04  00 pu 1

2V = 1.02014  2.6050 pu

1
3V = 1.03108  –4.8310 pu 1

4V = 1.02467 –0.510 pu

Case(ii): Bus 2 is a PV bus whose voltage magnitude is specified as 1.04 pu

We first compute Q2.

Q2 =     2222222222121212112 cossincossin  BGVBGVV 

    242424244232323233 cossincossin  BGVBGV 

= 1.04 [1.04 {–6.0} + 1.04 {11.0}+1.0{– 2.0} + 1.0 {–3.0}=  0.208 pu.

1
2V =     







 oj

j

Y
004.10.60.2

004.1

208.05.01
0

22

         000.10.30.100.10.2666.0  jj o

= 1.051288 + j0.033883

The voltage magnitude is adjusted to 1.04.  Hence 1
2V = 1.04 1.8460
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1
3V =   









)0.004.1(0.30.1
00.1

5.00.11
0

33

oj
j

Y

       000.10.60.2)846.104.1(0.2666.0  jj o

= 1.035587 – 4.951o pu.

1
4V =     







 oj

j

j

Y
846.104.10.30.1

0.00.1

1.03.01

44

  )951.4035587.1(0.60.2 oj 

= 0.9985 – 0.178o

Hence at end of 1st iteration we have:

1
1V = 1.04  00 pu 1

2V = 1.04  1.8460 pu

1
3V = 1.035587  –4.9510 pu 1

4V = 0.9985 –0.1780 pu

Case (iii):Bus 2 is PV bus, with voltage magnitude specified as 1.04 & 0.25≤Q2≤1 pu.

If 0.25 ≤ Q2 ≤ 1.0 pu then the computed value of Q2 = 0.208 is less than the lower

limit. Hence, Q2 is set equal to 0.25 pu. Iterations are carried out with this value of Q2.

The voltage magnitude at bus 2 can no longer be maintained at 1.04. Hence, there is

no necessity to adjust for the voltage magnitude. Proceeding as before we obtain at

the end of first iteration,

1
1V = 1.04  00 pu 1

2V = 1.05645  1.8490 pu

1
3V = 1.038546  –4.9330 pu 1

4V = 1.081446 4.8960 pu

Limitations of GS load flow analysis:

GS method is very useful for very small systems.  It is easily adoptable, it can be
generalized and it is very efficient for systems having less number of buses.
However, GS LFA fails to converge in systems with one or more of the features as
under:

• Systems having large number of radial lines
• Systems with short and long lines terminating on the same bus
• Systems having negative values of transfer admittances
• Systems with heavily loaded lines, etc.

GS method successfully converges in the absence of the above problems. However,
convergence also depends on various other set of factors such as: selection of slack
bus, initial solution, acceleration factor, tolerance limit, level of accuracy of results
needed, type and quality of computer/ software used, etc.
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NEWTON –RAPHSON METHOD

Newton-Raphson (NR) method is used to solve a system of non-linear algebraic

equations of the form f(x) =0. Consider a set of n non-linear algebraic equations given

by

nixxxf ni ......2,10).......,( 21  (25)

Let 00
2

0
1 ..........., nxxx , be the initial guess of unknown variables and

00
2

0
1 ......., nxxx  be the respective corrections. Therefore,

nixxxxxxf nni ......2,10).........,( 000
2

0
2

0
1

0
1  (26)

The above equation can be expanded using Taylor’s series to give

).......,( 00
2

0
1 ni xxxf +











































 00

2
2

0
1

0

1

..... n
n

iii x
x

f
x

x

f
x

x

f

+ Higher order terms = 0  ni ......2,1 (27)

Where,
0

1










x

f i ,
0

2










x

f i , ……..…
0












n

i

x

f
are the partial derivatives of fi with respect

to nxxx ......., 21 respectively, evaluated at ( nxxx 0
0

2
0

1 ..........., ). If the higher order terms

are neglected, then (27) can be written in matrix form as
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= 0 (28)

In vector form (28) can be written as

0000  XJF

Or 000 XJF 

Or 0100 ][ FJX  (29)

And 001 XXX  (30)
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Here, the matrix [J] is called the Jacobian matrix. The vector of unknown variables is

updated using (30). The process is continued till the difference between two

successive iterations is less than the tolerance value.

NR method for load flow solution in polar coordinates

In application of the NR method, we have to first bring the equations to be solved, to

the form 0),...,( 21 ni xxxf , where nxxx ,..., 21 are the unknown variables to be

determined. Let us assume that the power system has 1n PV buses and 2n PQ buses.

In polar coordinates the unknown variables to be determined are:

(i) i , the angle of the complex bus voltage at bus i, at all the PV and PQ buses. This

gives us 21 nn  unknown variables to be determined.

(ii) iV , the voltage magnitude of bus i, at all the PQ buses. This gives us 2n unknown

variables to be determined.

Therefore, the total number of unknown variables to be computed is: 21 2nn  , for

which we need 21 2nn  consistent equations to be solved. The equations are given

by,

0,,  calispii PPP (31)

0,,  calispii QQQ (32)

Where spiP , Specified active power at bus i

spiQ , Specified reactive power at bus i

caliP , Calculated value of active power using voltage estimates.

caliQ , Calculated value of reactive power using voltage estimates

P Active power residue

Q Reactive power residue

The real power is specified at all the PV and PQ buses. Hence (31) is to be solved at

all PV and PQ buses leading to 21 nn  equations. Similarly the reactive power is

specified at all the PQ buses. Hence, (32) is to be solved at all PQ buses leading to 2n

equations.
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We thus have 21 2nn  equations to be solved for 21 2nn  unknowns. (31) and (32)

are of the form F(x) = 0. Thus NR method can be applied to solve them.  Equations

(31) and (32) can be written in the form of (30) as:





















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







VJJ

JJ

Q

P 

43

21 (33)

Where 4321 ,,, JJJJ are the negated partial derivatives of P and Q with respect

to corresponding  and V . The negated partial derivative of P , is same as the partial

derivative of Pcal, since Psp is a constant. The various computations involved are

discussed in detail next.

Computation of Pcal and Qcal:

The real and reactive powers can be computed from the load flow equations as:

 ikikikikk

n

k
iiCali BGVVPP  sincos

1
,  


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n
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iiii BGVVVG  sincos
1

2  



(34)

 ikikikikk

n

k
iiCali BGVVQQ  cossin

1
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 ikikikikk

n

ik
k
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1
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


(35)

The powers are computed at any  str 1 iteration by using the voltages available from

previous iteration. The elements of the Jacobian are found using the above equations

as:

Elements of J1
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


ikikikikki
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

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Elements of J3
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i BVQBGVVBVV
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Q
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
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Thus, the linearized form of the equation could be considered again as:
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The elements are summarized below:

(i)
2

iiii
i

i
ii VBQ

P
H 







(ii)  ikikikikkiikik
k

i
ik BGVVebfa

P
H 


cossin 




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iiiii
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i
ii VGPV
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P
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




(iv)  ikikikikkiikikk
k

i
ik BGVVfbeaV

V

P
N  sincos 
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Q
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




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(vi) ikikik
k

i
ik Nfbea

Q
M 



 )(



(vii)
2

iiiii
i

i
ii VBQV

V

Q
L 





(viii) ikikikk
k

i
ik HebfaV

V

Q
L 






In the above equations,

ikikik jBGY 

)sin(cos kkkkk jVjfe  

And ))(( kkikikkk jfejBGjba  (36)

If 0.00.0 jYik  (if there is no line between buses i and k ) then the corresponding

off-diagonal elements in the Jacobian matrix will also be zero. Hence, the Jacobian is

also a sparse matrix.

Size of the sub-matrices of the Jacobian: The dimensions of the various sub-

matrices are as per the table below:

Matrix size

H (n1+n2) (n1+n2)

N (n1+n2) (n2)

M (n2) (n1+n2)

L (n2) (n2)

J (n1+2n2) (n1+2n2)

∆P (n1+n2) 1

∆Q n21

∆δ (n1+n2) 1

VV / n2 1
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ALGORITHM FOR NR METHOD

IN POLAR COORDINATES

1. Formulate the YBUS

2. Assume initial voltages as follows:

0
, 0 spii VV (at all PV buses)

001iV (at all PQ buses)

3. At (r+1)st iteration, calculate )1( r
iP at all the PV and PQ buses and )1( r

iQ at all the

PQ buses, using voltages from previous iteration, )(r
iV . The formulae to be used are

 iCali PP ,  ikikikikk

n

ik
k

iiii BGVVVG  sincos
1

2 



 iCali QQ ,  ikikikikk

n

ik
k

iiii BGVVVB  cossin
1

2  



4. Calculate the power mismatches (power residues)

)1(
,,

)(  r
calispi

r
i PPP (at PV and PQ buses)

)1(
,,

)(  r
calispi

r
i QQQ (at PQ buses)

5. Calculate the Jacobian [ )(rJ ] using )(r
iV and its elements spread over H, N, M, L

sub- matrices using the relations derived as in (36).

6. Compute
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
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1)()(
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][
r

r
rr

r

Q

P
J

V

V


7. Update the variables as follows:

)()()1( r
i

r
i

r
i   (at all buses)

)()()1( r

i

r

i

r

i VVV 

8. Go to step 3 and iterate till the power mismatches are within acceptable tolerance.
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DECOUPLED LOAD FLOW

In the NR method, the inverse of the Jacobian has to be computed at every iteration.

When solving large interconnected power systems, alternative solution methods are

possible, taking into account certain observations made of practical systems. These

are,

 Change in voltage magnitude iV at a bus primarily affects the flow of reactive

power Q in the lines and leaves the real power P unchanged. This observation

implies that
j

i

V

Q




is much larger than

j

i

V

P




. Hence, in the Jacobian, the elements

of the sub-matrix  N , which contains terms that are partial derivatives of real

power with respect to voltage magnitudes can be made zero.

 Change in voltage phase angle at a bus, primarily affects the real power flow P

over the lines and the flow of Q is relatively unchanged. This observation implies

that
j

iP




is much larger than
j

iQ




. Hence, in the Jacobian the elements of the sub-

matrix  M , which contains terms that are partial derivatives of reactive power

with respect to voltage phase angles can be made zero.

These observations reduce the NRLF linearised form of equation to


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
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
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



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



V

V
L

H

Q

P 

0

0
(37)

From (37) it is obvious that the voltage angle corrections  are obtained using real

power residues P and the voltage magnitude corrections V are obtained from

reactive power residues Q . This equation can be solved through  two alternate

strategies as under:
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Strategy-1

(i)  Calculate    rr QP  , and  rJ

(ii) Compute

 
 

 

  
 

  
































r

r
r

r

r

r

Q

P
J

V

V 1



(iii) Update  and V .

(iv) Go to step (i) and iterate till convergence is reached.

Strategy-2

(i) Compute  rP and Sub-matrix  rH . From (37) find       rrr PH 
1



(ii) Up date  using  1r =    rr   .

(iii) Use  1r to calculate  rQ and  rL

(iv) Compute
 

 
    rr

r

r

QL
V

V


 1

(v)Update,      rrr VVV 1

(vi) Go to step (i) and iterate till convergence is reached.

In the first strategy, the variables are solved simultaneously. In the second strategy the

iteration is conducted by first solving for  and using updated values of  to

calculate V . Hence, the second strategy results in faster convergence, compared to

the first strategy.

FAST DECOUPLED LOAD FLOW

If the coefficient matrices are constant, the need to update the Jacobian at every

iteration is eliminated. This has resulted in development of fast decoupled load Flow

(FDLF). Here, certain assumptions are made based on the observations of practical

power systems as under:

 Bij >>Gij (Since the R
X ratio of transmission lines is high in well designed

systems)
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 The voltage angle difference  ji   between two buses in the system is very

small. This means cos   1 ji  and sin   0.0 ji 

 2

iiii VBQ 

With these assumptions the elements of the Jacobian become

ikkiikik BVVLH   ki 

2

iiiiiii VBLH 

The matrix (37) reduces to

     ijji BVVP

   













V

V
BVVQ ijji (38)

Where ijB and 
ijB are negative of the susceptances of respective elements of the

bus admittance matrix. In (38) if we divide LHS and RHS by iV and assume 1jV ,

we get,

  

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
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
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V

V
B

V

Q
ij (39)

Equations (39) constitute the Fast Decoupled load flow equations. Further

simplification is possible by:

 Omitting effect of phase shifting transformers

 Setting off-nominal turns ratio of transformers to 1.0

 In forming ijB , omitting the effect of shunt reactors and capacitors which

mainly affect reactive power

 Ignoring series resistance of lines in forming the Ybus.
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With these assumptions we obtain a loss-less network. In the FDLF method, the

matrices  B and  B  are constants and need to be inverted only once at the

beginning of the iterations.

REPRESENTATION OF TAP CHANGING TRANSFORMERS

Consider a tap changing transformer represented by its admittance connected in series

with an ideal autotransformer as shown (a= turns ratio of transformer)

Fig. 2. Equivalent circuit of a tap setting transformer

Fig. 3. π-Equivalent circuit of Fig.2 above.

By equating the bus currents in both the mutually equivalent circuits as above, it can

be shown that the π-equivalent circuit parameters are given by the expressions as

under:

(i) Fixed tap setting transformers (on no load)

A = Ypq/ a

B = 1/a (1/a -1) Ypq

C = (1-1/a) Ypq



30

(i) Tap changing under load (TCUL) transformers (on load)

A = Ypq

B = (1/a -1) (1/a + 1 – Eq/Ep) Ypq

C = (1-1/a) (Ep/Eq) Ypq

Thus, here, in the case of TCUL transformers, the shunt admittance values are

observed to be a function of the bus voltages.

COMPARISON OF LOAD FLOW METHODS

The comparison of the methods should take into account the computing time required

for preparation of data in proper format and data processing, programming ease,

storage requirements, computation time per iteration, number of iterations, ease and

time required for modifying network data when operating conditions change, etc.

Since all the methods presented are in the bus frame of reference in admittance form,

the data preparation is same for all the methods and the bus admittance matrix can be

formed using a simple algorithm, by the rule of inspection. Due to simplicity of the

equations, Gauss-Seidel method is relatively easy to program. Programming of NR

method is more involved and becomes more complicated if the buses are randomly

numbered. It is easier to program, if the PV buses are ordered in sequence and PQ

buses are also ordered in sequence.

The storage requirements are more for the NR method, since the Jacobian elements

have to be stored. The memory is further increased for NR method using rectangular

coordinates. The storage requirement can be drastically reduced by using sparse

matrix techniques, since both the admittance matrix and the Jacobian are sparse

matrices. The time taken for a single iteration depends on the number of arithmetic

and logical operations required to be performed in a full iteration. The Gauss –Seidel

method requires the fewest number of operations to complete iteration. In the NR

method, the computation of the Jacobian is necessary in every iteration. Further, the

inverse of the Jacobian also has to be computed. Hence, the time per iteration is larger

than in the GS method and is roughly about 7 times that of the GS method, in large

systems, as depicted graphically in figure below. Computation time can be reduced if
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the Jacobian is updated once in two or three iterations. In FDLF method, the Jacobian

is constant and needs to be computed only once. In both NR and FDLF methods, the

time per iteration increases directly as the number of buses.

Figure 4.  Time per Iteration in GS and NR methods

The number of iterations is determined by the convergence characteristic of the

method. The GS method exhibits a linear convergence characteristic as compared to

the NR method which has a quadratic convergence. Hence, the GS method requires

more number of iterations to get a converged solution as compared to the NR method.

In the GS method, the number of iterations increases directly as the size of the system

increases. In contrast, the number of iterations is relatively constant in NR and FDLF

methods. They require about 5-8 iterations for convergence in large systems. A

significant increase in rate of convergence can be obtained in the GS method if an

acceleration factor is used. All these variations are shown graphically in figure below.

The number of iterations also depends on the required accuracy of the solution.

Generally, a voltage tolerance of 0.0001 pu is used to obtain acceptable accuracy and

the real power mismatch and reactive power mismatch can be taken as 0.001 pu. Due

to these reasons, the NR method is faster and more reliable for large systems. The

convergence of FDLF method is geometric and its speed is nearly 4-5 times that of

NR method.
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Figure 5.  Total time of Iteration in

GS and NR methods

Figure 6. Influence of acceleration factor

on load flow methods
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FINAL WORD

In this chapter, the load flow problem, also called as the power flow problem, has

been considered in detail. The load flow solution gives the complex voltages at all the

buses and the complex power flows in the lines. Though, algorithms are available

using the impedance form of the equations, the sparsity of the bus admittance matrix

and the ease of building the bus admittance matrix, have made algorithms using the

admittance form of equations more popular.

The most popular methods are the Gauss-Seidel method, the Newton-Raphson

method and the Fast Decoupled Load Flow method. These methods have been

discussed in detail with illustrative examples. In smaller systems, the ease of

programming and the memory requirements, make GS method attractive. However,

the computation time increases with increase in the size of the system. Hence, in large

systems NR and FDLF methods are more popular. There is a trade off between

various requirements like speed, storage, reliability, computation time, convergence

characteristics etc. No single method has all the desirable features. However, NR

method is most popular because of its versatility, reliability and accuracy.


