
Recursion

Alwin M. Sambul, S.T., M.Eng., Ph.D.

UNIVERSITAS SAM RATULANGI MANADO
FAKULTAS TEKNIK, JURUSAN TEKNIK ELEKTRO
Program Studi S-1 Teknik Informatika

Mata Kuliah: Algoritma & Logika Informatika (IFC3504)

Motivation
2

¨  Repitisi à Statemen kendali iteratif
¤ For statemen
¤ While statemen

¨  Cara lain untuk melakukan repetisi:
¤ Recursion à recursive function

Apa itu recursion? 1

Apa itu Recursion?
4

¨  Recursion adalah proses
yang dilakukan oleh sebuah
prosedur dimana salah satu
langkah dalam prosedur
tersebut adalah menjalankan
prosedur itu sendiri dari
awal.

¨  Prosedur yang melakukan
proses tsb disebut Recursive.

Recursive Function
5

¨  Recursive function adalah sebuah fungsi yang
memanggil dirinya sendiri.

11.1 Recursive Functions 461

 MOTIVATION

 Almost all computation involves the repetition of
steps. Iterative control statements, such as the for
and while statements, provide one means of control-
ling the repeated execution of instructions. Another
way is by the use of recursion .

 In recursive problem solving , a problem is
repeatedly broken down into similar subproblems,
until the subproblems can be directly solved with-
out further breakdown. For example, consider the
method of searching for a name in a sorted list of
names below.

 1. If the list contains only one name, then if the
name found is the name you are looking for,
then terminate with “name found,” otherwise terminate with “name not found.”

 2. Otherwise, look at the middle item in the list. If that is the name you are looking for, then
terminate with “name found.”

 3. Otherwise, continue by searching in a similar manner either the top half of the list, if the name
you are looking for is alphabetically before the middle name of the list, or the bottom half of
list, if the name you are looking for is alphabetically after.

 The fi rst two steps of this method are straightforward. The detail comes when the list needs to be
continually broken down into sublists, and the appropriate sublists are searched. The beauty of re-
cursive problem solving, however, is that the details of how to solve (smaller) subproblems do not
need to be specifi ed—the same steps that were used on the original list still apply. Although it is
natural to try to think through all the resulting steps that are taken to recursively solve a problem, the
power of “recursive thinking” is to understand that doing so is unnecessary. In this chapter, we dem-
onstrate the power of recursive problem solving by looking at some classic examples that highlight
its effectiveness.

 FUNDAMENTAL CONCEPTS

 11.1 Recursive Functions
 Computational problem solving via the use of recursion is a pow-
erful problem-solving approach. The development and use of
 recursive functions, however, requires a different perspective on
computation than we have had so far. We discuss the design and
use of recursive functions in this section.

 11.1.1 What Is a Recursive Function?

 A recursive function is often defi ned as “a function that calls
 itself.” While this is an accepted defi nition, it is not necessarily the
most appropriate explanation, for it plants in one’s mind the image
given in Figure 11-1.

FIGURE 11-1 Recursive
 Function Defi nition

c11Recursion.indd Page 461 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 461 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

www.it-ebooks.info

Pemanggilan fungsi yg umum
6

462 CHAPTER 11 Recursion

 The illustration in the fi gure depicts a function, A, that is defi ned at some point to call func-
tion A (itself). The notion of a self-referential function is inherently confusing. There are two types
of entities related to any function however—the function defi nition , and any current execution
 instances .

 What is meant by the phrase “a function that calls itself ” is a function execution instance that
calls another execution instance of the same function. A function defi nition is a “cookie cutter” from
which any number of execution instances can be created. Every time a call to a function is made,
another execution instance of the function is created. Thus, while there is only one defi nition for any
function, there can be any number of execution instances. In order to fully understand the mecha-
nism of recursive function calls, we fi rst consider the general mechanism of non-recursive function
calls as depicted in Figure 11-2.

FIGURE 11-2 General Function Calls

 In the function calls in the fi gure, there is no trouble visualizing the sequence of events that occur.
First, an execution instance from the defi nition of function A is created and begins executing. When
the call to function B is reached, the execution instance of function A is suspended while an execu-
tion instance of function B is created and begins executing. In turn, when the function call to func-
tion C is reached, function B suspends execution while an execution instance of function C is
 created and begins executing.

 This calling and suspending of executing function instances could (theoretically) continue
indefi nitely. However, in this case, function C does not make a call to any other function. Thus, it
simply executes until termination, returning control to the function that called it, function B.
Function B then continues its execution until terminating, returning control to the function that
called it, function A. Finally, function A completes and terminates, returning control to wherever
it was called from.

 Now, let’s consider the situation when the original function, function A, is a recursive
 function—that is, its defi nition includes a call to function A (itself). As depicted in Figure 11-3, each
current execution instance of function A will spawn a new execution instance of function A.

c11Recursion.indd Page 462 05/11/12 5:43 PM user-019Ac11Recursion.indd Page 462 05/11/12 5:43 PM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

www.it-ebooks.info

Pemanggilan recursive function
7

11.1 Recursive Functions 463

FIGURE 11-3 Recursive Function Execution Instances

 Note that the execution of a series of recursive function instances is similar to the execution of a
series of non-recursive instances, except that the execution instances are “clones” of each other (that
is, of the same function defi nition). Thus, since all instances are identical, the function calls occur in
exactly the same place in each.

 Clearly, if the defi nition of a recursive function were written so that the function calls itself
unconditionally, then every execution instance would unconditionally call another execution
 instance, ad infi nitum. Such a nonterminating sequence of calls is referred to as infi nite recur-
sion , similar to the notion of an infi nite loop. Therefore, properly designed recursive functions
always conditionally call another execution instance so that eventually the chain of function
calls terminates.

 Now that we have better understanding of recursive functions, we can use the description of a
recursive function as “a function that calls itself,” understanding that this means that the function
 defi nition is self-referential, while the function execution instances are not. Next we will look at a
classic example of a recursive function, computing the factorial of a given number.

L E T ’ S T R Y I T

From the Python Shell, enter the following and observe the results.

... def rfunc(n): ... def rfunc(n):
 print(n) if n 55 1:
 if n . 0: return 1
 rfunc(n 2 1) else:
 return n 1 rfunc(n 2 1)

... rfunc(4) ... rfunc(1)
??? ???

... rfunc(0) ... rfunc(3)
??? ???

... rfunc(100) ... rfunc(100)
??? ???

A recursive function is a function (defi nition) that conditionally calls itself.

c11Recursion.indd Page 463 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 463 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

www.it-ebooks.info

Contoh recursive function sederhana

Demo 1

Infinite Recursion
9

Infinite Recursion terjadi ketika pemanggilan fungsi
dalam recursion function dilakukan secara un-
conditional (tidak bersyarat).

Contoh infinite recursive function

Demo 2

Good practice
11

Recursion function yang baik harus melibatkan
condition (syarat) yang akan menghindari terjadinya
infinite recursion.

SYARAT

Recursive Function untuk pemecahan masalah 2

Faktorial
13

¨  Factorial(1) = 1
¨  Factorial(2) = 2 . 1 = 2
¨  Factorial(3) = 3 . 2 . 1 = 6

¨  Factorial(4) = 4 . 3 . 2 . 1 = 24
¨  Factorial(5) = 5 . 4 . 3 . 2 . 1 = 120
¨  Dst…

Membuat program factorial tanpa recursion

Demo 3

Factorial dengan recursion
15

¨  Dengan fungsi factorial:
¤  Factorial(0) = 1

¤  Factorial(1) = 1 . Factorial(0) = 1
¤  Factorial(2) = 2 . Factorial(1) = 2

¤  Factorial(3) = 3 . Factorial(2) = 6
¤  Factorial(4) = 4 . Factorial(3) = 24

¤  Dst…

¨  Secara umum, factorial dari bilangan bulat n,
dimana n positif dan bukan 0, adalah:

11.1 Recursive Functions 465

 Applying this defi nition, the computation of the factorial of 4 would be,

 factorial(4) 5 4 ? 5 ? 6 ? 7 ? 8 ? 9 ? 10 ? 11 ? 12 ? . . .

 If we implemented this (incorrect) version of factorial as a recursive function, the function would also
never terminate. The problem, however, it is not because a base case is not included. It is because the
problem is not being broken down into subproblems in which the base case can be applied.

 This highlights three important characteristics of any recursive function, given in Figure 11-4.

 Going back to the original (correct) defi nition of the factorial function therefore,

 factorial(n) 5 1, if n 5 0
 5 n ? factorial(n 2 1), otherwise

 we see that the fi rst condition holds since the base case, factorial(0) 5 1, can be applied without any
future recursive breakdown of the problem. It follows the second condition since the problem is
broken down into a subproblem that is a smaller instance of the original. Finally, it meets that third
condition since the results of the original problem can be determined by multiplying the solution of
each subproblem. Thus, this is a properly defi ned recursive function. We next look at an actual im-
plementation of a recursive factorial function.

5

 Examination of this function reveals that the recursive function call is conditionally made. That is,
only if n is not equal to zero is another execution instance created, otherwise the current execution

 Every properly defi ned recursive function must have at least one base case, and must redefi ne the
problem into subproblems that work towards a base case such that the solution of the original
problem can be derived from the solutions of the recursively solved subproblems.

 A Recursive Factorial Function Implementation
 Given a recursive defi nition of the factorial function, we can simply write it as Python program code.
This is given in Figure 11-5.

FIGURE 11-4 Requirements of a Properly Designed Recursive Function

FIGURE 11-5 Recursive Factorial Function
Implementation

c11Recursion.indd Page 465 23/10/12 10:53 AM user-019Ac11Recursion.indd Page 465 23/10/12 10:53 AM user-019A /Volumes/203/WB00845/9780470555156/Volumes/203/WB00845/9780470555156

www.it-ebooks.info

Membuat program factorial dengan recursion

Demo 4

