Recursion

Mata Kuliah: Algoritma \& Logika Informatika (IFC3504)

Alwin M. Sambul, s.T,, M.Eng., Ph.D.

Motivation

\square Repitisi \rightarrow Statemen kendali iteratif
\square For statemen
\square While statemen
\square Cara lain untuk melakukan repetisi:
\square Recursion \rightarrow recursive function

Apa itu Recursion?

\square Recursion adalah proses yang dilakukan oleh sebuah prosedur dimana salah satu langkah dalam prosedur tersebut adalah menjalankan prosedur itu sendiri dari awal.
\square Prosedur yang melakukan proses tsb disebut Recursive.

Recursive Function

Recursive function adalah sebuah fungsi yang memanggil dirinya sendiri.

Function A

Pemanggilan fungsi yg umum

Function
Definitions

Function
Instances

Function A

Function C

Pemanggilan recursive function

Execution

Instances

Function

 Definition

Function A1
Call to $A \gg$
\cdot
\cdot

Function A2
Function A3

Demo 1

Contoh recursive function sederhana

Infinite Recursion

Infinite Recursion terjadi ketika pemanggilan fungsi dalam recursion function dilakukan secara unconditional (tidak bersyarat).

Demo 2

Contoh infinite recursive function

Good practice

Recursion function yang baik harus melibatkan condition (syarat) yang akan menghindari terjadinya infinite recursion.

```
>> def funcRec(x):
... print(x)
... if }x<100
        funcRec(x+1)
```


2

Recursive Function untuk pemecahan masalah

Faktorial

Factorial(1) = 1
\square Factorial(2) $=2.1=2$
Factorial(3) $=3.2 .1=6$
Factorial(4) $=4.3 .2 .1=24$
Factorial(5) $=5.4 .3 .2 .1=120$
Dst...

Demo 3

Membuat program factorial tanpa recursion

Factorial dengan recursion

\square Dengan fungsi factorial:

- Factorial(0) $=1$
- Factorial(1) $=1$. Factorial $(0)=1$
- Factorial $(2)=2 . \operatorname{Factorial}(1)=2$
$\square \operatorname{Factorial}(3)=3 . \operatorname{Factorial}(2)=6$
\square Factorial $(4)=4 . \operatorname{Factorial}(3)=24$
- Dst...
\square Secara umum, factorial dari bilangan bulat n, dimana n positif dan bukan 0 , adalah:

$$
\begin{aligned}
\text { factorial }(n) & =\left\{\begin{array}{ll}
1, & \\
n \cdot \text { factorial }(n-1), & \\
n=0 \\
& =\text { otherwise }
\end{array} . \begin{array}{ll}
n
\end{array}\right)
\end{aligned}
$$

Demo 4

Membuat program factorial dengan recursion

