Rekonstruksi Citra

Image Reconstruction

- Image reconstruction is an imaging technique that produces cross-sectional image of an object through the processing of the signal trans-axial projection of the object.
- The term is usually used in image reconstruction tomographic imaging scope.

Tomographic Image Reconstruction

Figure: PET brain images

Figure: CT: 2D $\rightarrow 3 \mathrm{D}$

Projection data acquired from different views are used to reconstruct the image.

Computer Tomografi (CT)

Image Reconstruction

- Analytical tomographic Image Reconstruction
- Iterative Image Reconstruction

Analytical tomographic Image Reconstruction

- Radon transform in 2D
- Back projection

Example: Projection

Radon transform in 2D

- The foundation of analytical reconstruction methods is the Radon transform, which relates a 2D function $f(x, y)$ to the collection of line integrals of the function.
- Let $L(r, \varphi)$ denote the line in the Euclidean plane at angle ϕ counterclock wise from the y axis and at a signed distance r from the origin:

Radon transform in 2D

- Let $\mathrm{p} \varphi(\mathrm{r})$ denote the line integral through $\mathrm{f}(\mathrm{x}, \mathrm{y})$ a long the line $L(r, \varphi)$.
- A straight line in Cartesian coordinates can be described either by its slope-intercept form, $\mathrm{y}=\mathrm{ax}+\mathrm{b}$
- As can be seen by using trigonometry, the inclination is :

$$
a=-\frac{\cos \varphi}{\sin \varphi} \quad b=\frac{r}{\sin \varphi}
$$

Radon transform in 2D

$$
\begin{aligned}
& y=a x+b \\
& y=x\left(-\frac{\cos \varphi}{\sin \varphi}\right)+\frac{r}{\sin \varphi} \\
& y+x \frac{\cos \varphi}{\sin \varphi}=\frac{r}{\sin \varphi} \\
& y \sin \varphi+x \cos \varphi=r \\
& y \sin \varphi+x \cos \varphi-r=0 \\
& p_{\varphi}(r)=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) \delta(x \cos \varphi+y \sin \varphi-r) \mathrm{d} x \mathrm{~d} y
\end{aligned}
$$

BASIC IDEA OF BACK PROJECTION

- PHOTO PROJECTION

- Two trees in a park, make 2 pictures from east and south, try to create a map of the park.

PROJECTION

- LINE INTEGRAL PROJECTION
- Projection $\mathrm{p}(s ; \phi)$ at angle ϕ, s is coordinate on detector

Projection $p(s)$ the same for any ϕ

- LINE INTEGRAL PROJECTION

Projection $p(s, \phi)$ depends on orientation

Back projection

- Placing a value of $\mathrm{p}(\mathrm{s} ; \phi)$ back into the position of the appropriate LOR (Lines of Response)

Back projection Example

- Projection

Back projection Example

- Back projection

Back projection

Back projection

Subtract projection sum from each entry

$a+b$	$a+b$
$a+d$	b
$a+c$	$b+d$
a	$c+b$
$c+d$	$c+d$
c	$a+d$
$a+c$	$b+d$
$c+b$	d

$a+b$ $c+d$

Back projection

Subtract projection sum from each entry

Back projection

Divide by number of projections $-1=3$

a	b
c	d

Back projection

(a) Project a point source

(c) Backproject from a few views

(b) Backproject from one view

(d) Backproject from all views

BACK PROJECTION

- The Radon transform maps a 2D object $f(x, y)$ into a sinogram $p \phi(r)$ consisting of line integrals through the object.
- One approach to try to recover the object from $p \varphi(r)$ would be to take each sinogram value and "smear" it back in to object space along the corresponding ray, as illustrated in Figure.
- This type of operation is called back projection and is fundamental to tomographic image reconstruction.
- Unfortunately in its simplest form this procedure does not recoverth object $f(x, y)$, but in stead yields a blurred version of the object $f_{b}(x, y)$.
- This blurred version $f_{b}(x, y)$ is called a laminogram or layergram

ITERATIVE METHODS

Maximum Likelihood - Expectation Maximisation (ML-EM)

- Objective function to maximise: log-Likelihood (ML)
- Maximisation algorithm: Expectation Maximisation (EM)

ML-EM

$$
x_{i}^{(n+1)}=x_{i}^{(n)} \cdot \frac{1}{\sum_{j} A_{i j}} \cdot \sum_{j} A_{i j} \frac{y_{j}}{\sum_{k} A_{k j} x_{k}^{(n)}}
$$

ML-EM Algorithm

- Initial guess for the image (uniform)

ML-EM

$$
x_{i}^{(n+1)}=x_{i}^{(n)} \cdot \frac{1}{\sum_{j} A_{i j}} \cdot \sum_{j} A_{i j} \frac{y_{j}}{\sum_{k} A_{k j} x_{k}^{(n)}}
$$

- Simulate measurements from estimate (forward proj.)

$$
y_{j}^{\text {simu }}=\sum_{k} A_{k j} x_{k}^{(0)}
$$

ML-EM

$$
x_{i}^{(n+1)}=x_{i}^{(n)} \cdot \frac{1}{\sum_{j} A_{i j}} \cdot \sum_{j} A_{i j} \frac{y_{j}}{\sum_{k} A_{k j} x_{k}^{(n)}}
$$

ML-EM Algorithm

- Compare this with actual measurements

$$
\text { Ratio } R_{j}=\frac{y_{j}}{y_{j}^{\text {simu }}}
$$

ML-EM

$$
x_{i}^{(n+1)}=x_{i}^{(n)} \cdot \frac{1}{\sum_{j} A_{i j}} \cdot \sum_{j} A_{i j} \frac{y_{j}}{\sum_{k} A_{k j} x_{k}^{(n)}}
$$

- Improve image estimate (backward projection)

$$
x_{i}^{(1)}=x_{i}^{(0)} \cdot \frac{1}{\sum_{j} A_{i j}} \cdot \sum_{j} A_{i j} R_{j}
$$

ML-EM

$$
x_{i}^{(n+1)}=x_{i}^{(n)} \cdot \frac{1}{\sum_{j} A_{i j}} \cdot \sum_{j} A_{i j} \frac{y_{j}}{\sum_{k} A_{k j} x_{k}^{(n)}}
$$

- Repeat until convergence

ML-EM Algorithm

ML-EM Algorithm

$?$	$?$
$?$	$?$

2.5	2.5
2.5	2.5

$$
\begin{array}{llll}
\downarrow & \downarrow & \downarrow & \downarrow \\
4 & \downarrow & & \downarrow \\
\hline
\end{array}
$$

$$
c 11=(3 / 5+4 / 5) / 2=0.7
$$

$$
x 11=0.7 \times 2.5=1.75
$$

1.75	2.5
2.5	2.5

ML-EM Algorithm

$$
c 12=(3 / 5+6 / 5) / 2=0.9
$$

$$
x 12=2.25
$$

1.75	2.25
2.5	2.5

ML-EM Algorithm

c13 $=(7 / 5+4 / 5) / 2=1.1$ $\mathrm{x} 13=2.75$

1.75	2.25
2.75	2.5

ML-EM Algorithm

c14 $=(7 / 5+6 / 5) / 2=1.3$
x14 $=3.25$

1.75	2.25
2.75	3.25

