PERHITUNGAN EVAPOTRANSPIRASI

Tujuan

- Menentukan besarnya evapotranspirasi tanaman referensi (ET_o) (kebutuhan air tanaman refrensi atau crop water requirement) dengan beberapa metode.
- Membandingkan metode-metode penghitungan Evapotranspirasi tanaman refrensi

Dasar Teori

Pada akhir tahun 1940-an diperkenalkanlah konsep Evapotranspirasi Potensial (PET), yaitu besar evapotranspirasi per satuan waktu tertentu untuk tanah yang sepenuhnya tertutup oleh tanaman budidaya hijau yang rendah. Tanah tersebut memiliki kadar air yang cukup (bukan tanah kering).

Pada awal tahun 1980-an, konsep ini dikoreksi, karena PET tidak langsung berkaitan dengan jenis tanaman tertentu. Muncullah konsep ET_o , dimana tanaman yang digunakan adalah rumput (alfalfa) hijau dengan tinggi yang seragam dan menutupi permukaan tanah dengan kadar ai r yang cukup (tidak kering). Nilai ET_o disebut nilai evapotranspirasi tanaman referensi (reference evapotranspiration). ET_o tanaman-tanaman lain diperoleh dengan mengalikan sebuah konstanta koefisien tanaman (k_c).

Penentuan besarnya nilai kebutuhan air tanaman bisa dihitung berdasarkan persamaan empiris yang telah dikembangkan oleh beberapa peneliti, maupun pengukuran secara langsung di lapangan. Modifikasi formula empiris tersebut banyak dilakukan oleh peneliti dengan mempertimbangkan ketersediaan data klimatologi, ketelitian hasil perhitungan, tujuan pemanfaatan, nilai kebutuhan tanaman tersebut dan lain-lain. Beberapa formulasi yang telah dikenal diantaranya adalah metode Blaney-Criddle, Penman, Radiasi, dll, yang mempunyai kelebihan dan kekurangan masing-masing.

Pada Praktikum ini akan dibahas beberapa metode diantaranya:

- 1. Metode Blaney Criddle
- 2. Metode Radiasi
- 3. Metode Penman-Monteith
- 4. Metode Pan Evaporation

1. Metode Blaney-Criddle

Persamaan asli Blaney-Criddle (1950) memasukkan perhitungan faktor kebutuhan air konsumtif (f) dari temperatur rata-rata (T), and persentase (p) dari total jam penyinaran cerah tahunan dalam periode yang diinginkan (f = p . T/100). Kemudian sebuah konstanta yang diperoleh secara empiris untuk kebutuhan konsumtif tanaman tertentu (K) juga diterapkan dalam perhitungan untuk memperoleh kebutuhan air konsumtif (CU), sehingga diperoleh rumus CU = K . f = K (p.T/100) dimana T dalam °F. CU didefinisikan sebagai jumlah air yang secara potensial dibutuhkan untuk memenuhi kebutuhan evapotranspirasi.

Namun karena pengaruh iklim terhadap kebutuhan air tidak cukup hanya dengan mempertimbangkan temperatur dan panjang hari, maka digunakan perhitungan yang masih menggunakan faktor T dan f, metode ini digunakan untuk menghitung Evapotranspirasi refrensi tanaman (ET_o)

$$ET_o = c \cdot [p \cdot (0.46T + 8)]$$
, mm/hari

dimana:

 $\mathrm{ET_o} = \mathrm{Evapotranspirasi}$ refrensi tanaman dalam mm/hari untuk bulan yang diperhitungkan

T = Temperatur harian rata-rata dalam °C dalam bulan yang diperhitungkan

p = Persentase rata-rata harian dari total jam siang yang diperoleh dari tabel 1. untuk tiap bulan dan lintang yang diketahui.

c = Adjustment faktor yang tergantung dari kelembaban relatif (RH) minimum, jam hari cerah dan angin sepanjang siang

setelah menghitung ET_o , maka dapat ditentukan ET crop dengan mengalikan ET_o dan koefisien tanaman (k_c) , atau dirumuskan :

$$ET_{crop} = k_c \cdot ET_o$$

Contoh Perhitungan

Diketahui:

Kairo, Republik Mesir, Latitude 30° N; Altitude 95 m; Juli

Perhitungan:

	. 0		
Tmax		Σ Nilai T max harian /31	35° C
Tmin		Σ Nilai T min harian /31	22° C
Tharia	an rata-rata	Σ Trataan/31 atau [(Σ Tmax/31)+(Σ Tmi	n/31)]/2
			$28.5^{\circ}\mathrm{C}$
p		dari Tabel 1 untuk 30°N	0.31
p(0.46	T+8)	$0.31(0.46 \times 28.5 + 8)$	6.6 mm/hari
RHmi	n	Data Klimatologi	medium
n/N		Data Klimatologi	high to medium
$U_2 sia$	ng hari	Data Klimatologi	moderate
ET_{o}		Gambar 1, Blok 5 (baris 2)	8.0 mm/hari

Yearly data (using measured temperature data)

	. J	F	М	Α	М	J	J	Α	S	0	N	D
Tmean °C	14	15	17.5	21	25.5	27.5	28.5	28.5	26	24	20	15.5
p	0.24	0.25	0.27	0.29	0.31	0.32	0.31	0.30	0.28	0.26	0.24	0.23
p(0.46T + 8)	3.5	3.8	4.4	5.2	6.2	6.7	6.6	6.4	5.7	5.0	4.2	3.5

using general information and references on humidity, sunshine and wind (Climates of Africa, Griffith, 1972):

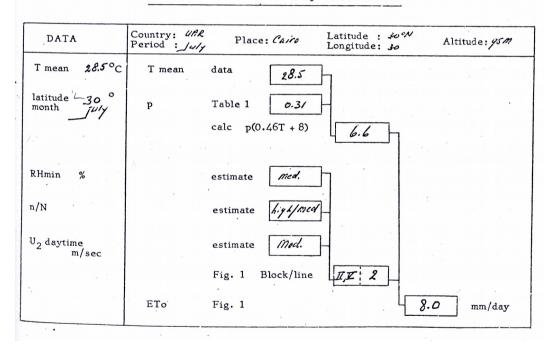
	RHmin	n/N	U daytime	Block Fig. 1	Line Fig. 1
Oct-March April-May	medium low/med	medium high/med	light/mod moderate	V IV, V,,	1-21/
June-July Aug-Sept	medium medium	high/med high/med	moderate light/mod	IV, V I & II <u>1</u> / II & V <u>1</u> / II & V <u>1</u> /	2 1-2 <u>1</u> /

using Figure 1:

	J	F	M	Α	M	. J	J	Α	S	0	N	D	
ETo mm/day	2.8	3.3	4.1	6.5	8.0	8.2	8.0	7.2	6.2	4.6	3.5	2.7	
mm/month													

interpolation required; for instance for May between Blocks IV, V, I and II of p(0.46T + 8) = 6.2 mm/day and ETo = $(8.3 + 7.1 + 9.0 + 7.7) \div 4 = 8.0 \text{ mm/day}$.

Tabel 1 Persentase Harian Rata-Rata Panjang Hari Siang untuk Beberapa Latitude


Table 1	Mean Daily Percentage (p) of Annual Daytime Hours
	for Different Latitudes

Latitude	North South 1/	Jan July	Feb Aug	Mar Sept	Apr Oct	May Nov	June Dec	July Jan	Aug Feb	Sept Mar	Oct Apr	Nov May	Dec June
60 58 56 54 52)°	.15 .16 .17 .18	.20 .21 .21 .22 .22	.26 .26 .26 .26	.32 .32 .32 .31	.38 .37 .36 .36	.41 .40 .39 .38	.40 .39 .38 .37	.34 .34 .33 .33	.28 .28 .28 .28	.22 .23 .23 .23	.17 .18 .18 .19	.13 .15 .16 .17
50 48 46 44 42		.19 .20 .20 .21	.23 .23 .23 .24	.27 .27 .27 .27 .27	.31 .30 .30 .30	.34 .34 .33 .33	.36 .36 .35 .35	.35 .35 .34 .34	.32 .32 .32 .31	.28 .28 .28 .28	.24 .24 .24 .25	.20 .21 .21 .22	.18 .19 .20 .20
40 35 30 25 20 15 10		.22 .23 .24 .24 .25 .26 .26	.24 .25 .25 .26 .26 .26 .27 .27	.27 .27 .27 .27 .27 .27 .27 .27	.30 .29 .29 .29 .28 .28 .28	.32 .31 .30 .29 .29 .28 .28	.34 .32 .32 .31 .30 .29 .29 .28	.33 .32 .31* .31 .30 .29 .29 .28	.31 .30 .30 .29 .29 .28 .28	.28 .28 .28 .28 .28 .28 .28 .28	.25 .25 .26 .26 .26 .27 .27 .27	.22 .23 .24 .25 .25 .26 .26 .27	.21 .22 .23 .24 .25 .25 .26 .27

 $[\]frac{1}{2}$ Southern latitudes: apply 6 month difference as shown.

Format untuk Kalkulasi dengan Metode Perhitungan Blaney-Criddle

Format for Calculation of Blaney-Criddle Method

Gambar 1. RH minimum dan Panjang Hari Siang, dan Kecepatan Angin Siang Hari

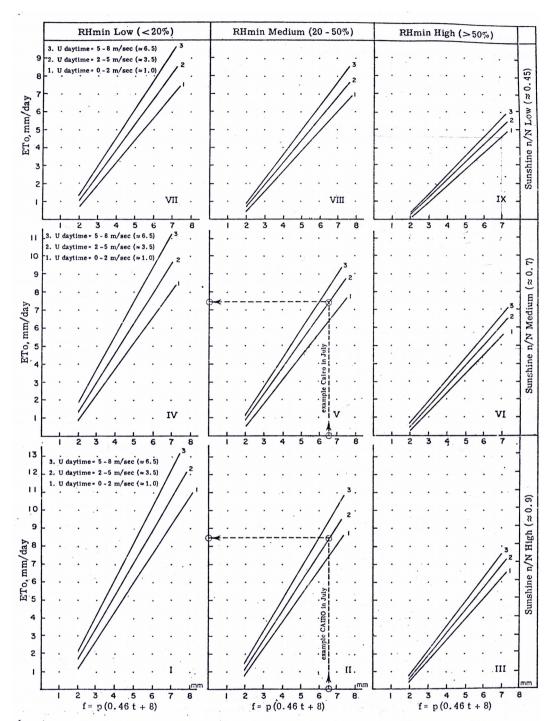


Fig. 1 Prediction of ETo from Blaney-Criddle f factor for different conditions of minimum relative humidity, sunshine duration and day time wind.

Metode Radiasi

Metode Radiasi pada dasarnya adalah adaptasi dari Rumus Makkink (1957). Metode ini disarankan untuk daerah dimana data-data iklim yang tersedia termasuk temperatur udara, penyinaran matahari, keadaan awan atau radiasi, namun tidak termasuk kecepatan angin dan kelembaban. Dibandingkan dengan metode Blaney-Criddle, metode ini memberikan input yang lebih sedikit. Pada beberapa kasus untuk daerah equatorial, pulau kecil atau daerah yang punya altitude tinggi, Metode Radiasi lebih baik dari Metode Blaney-Criddle

Rumus yang direkomendasikan untuk Metode Radiasi adalah:

$$ET_o = c \cdot (W \cdot R_s)$$
, mm/hari

dimana:

 $\mathrm{ET_o} = \mathrm{Evapotranspirasi}$ refrensi tanaman dalam mm/hari untuk periode yang diperhitungkan

 R_s = Radiasi matahari dalam equivalen Evaporasi, mm/hari

W = Weighing factor yang tergantung dari Temperatur dan Altitude

c = Adjustment faktor yang tergantung dari kelembaban relatif (RH) rata-rata dan angin sepanjang siang

Untuk menghitung R_s dari lama penyinaran matahari (sunshine duration) atau radiasi surya, untuk menentukan weighing factor (W) dari temperatur dan altitude data, dan untuk memilih nilai c yang tepat berdasarkan hubungan antara $W.R_s$ dan ET_o pada gambar 2 untuk beberapa nilai kelembaban rata-rata dan kondisi angin siang hari, maka digunakan prosedur di bawah ini ;

a. Radiasi Surya

 R_a adalah radiasi yang diterima oleh atmosfer yang paling atas, sebagian dari R_a diserap dan tersebar saat melewati atmosfer. Bagian dari R_a termasuk yang tersebar dan mengenai permukaan tanah diidentifikasi sebagai R_s .

 $R_{\rm s}$ dapat diukur secara langsung, namun dapat juga dihitung dari data lama penyinaran seperti pada persamaan :

 $R_s = (0.25 + 0.50 \frac{n}{N}) \cdot R_a$ dimana n/N adalah rasio antara lama (jam) cerah

dan kemungkinan maksimum jam cerah ($sunshine\ hours$). N
 diperoleh dari tabel 3. Data n diambil dari Campbell Stokes sunshine recorder. Nila
i Ra untuk lintang dan bulan yang berbeda diberikan pada tabel 2.

Contoh:

Diketahui:

Kairo, Latitude 30°N, Juli, sunshine (n), rata-rata 1.5 jam/hari

Perhitungan:

 R_a dari Tabel 2. = 6.8 mm/hari N dari Tabel 3. = 3.9 mm/hari

 R_s $(0.25 + 0.50 \text{ n/N})R_a$ $= (0.25 + 0.50 (11.5/3.9)) \times 6.8$

= 11.2 mm/hari

b. Weighting Factor (W)

Weighing factor menunjukkan efek temperature dan altitude terhadap hubungan antara R_s dan ET_o . Nilai W yang berkaitan dengan temperatur dan altitude diberikan di tabel 4.

Contoh:

Diketahui:

Kairo, Altitude 95 m, Trata-rata: 28.5 °C

Perhitungan:

W dari Tabel 4. = 0.77

c. Adjustment Factor (c)

Adjustment factor diberikan sebagai hubungan antara bagian radiasi (W.R $_{\rm s}$) dan Evapotranpirasi refrensi tanaman (ET $_{\rm o}$) ditunjukkan pada grafik gambar 2. Sebagian besar tergantung pada rata-rata RH dan kecepatan angin hari siang (daytime wind) (mulai jam 07.00 – 19.00) pada ketinggian 2 m dari permukaan tanah

Contoh:

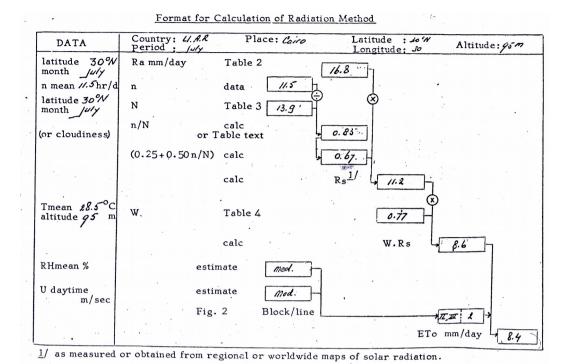
Diketahui:

Kairo, latitude 30°, altitude 95 m, Juli, $R_s=1.2$ mm/hari, W=0.77, $W.R_s=8.6$ mm/hari, angin hari siang (wind daytime) = moderate, RH rata-rata = medium

Perhitungan:

Dari Gambar 2. RH rata-rata = medium Uday = medium $ET_o \qquad \qquad \text{(untuk W.R}_s = 8.6 \text{ mm/hari)} \qquad = (8.7 + 8.0)/2 \\ = 8.4 \text{ mm/hari}$

Contoh Perhitungan


Diketahui:

Kairo, Republik Mesir, Latitude 30° N ; Altitude 95 m; Juli . Trata-rata = 28.5 °C, sunshine (n) rata-rata = 1.5 jam/hari; angin hari siang ($wind\ daytime$) U = moderate; Rhrata-rata = medium Perhitungan :

$R_{\rm a}$	dari Tabel 2.			6.8 mm/hari
$R_{\rm s}$	$(0.25 + 0.5 \text{ n/N}) . R_a$	n	=	11.5 jam/hari
		N	=	13.9 jam/hari
		n/N	=	0.83
		$R_{\rm s}$	=	11.2 mm/hari
W	dari Tabel 4.			0.77
$W.R_s$				8.6 mm/hari
ET_{o}	dari Gambar 2, Blok II da	an III		
	Baris 3			$8.4~\mathrm{mm/hari}$

	ī	F	M	Α	М	Ι.	ī	Α	s	0	N	D	
Tmean ^O C Rs min/day	14 5.0	15 6.4	17.5 8.5	21	25.5	27.5 11.4	28.5 11.2	28.5	26	24 7.1	20 5.5	15.5 4.6	
RHmean Wind daytime) III	III	III	II	II	II	av.II & III	av.II & III	III	8	av.III k IV	av. III & IV	
		av. 1&2	av. 1&2	av. 1&2	2	2	2	av. 1&2	av. 1&2		av. 1&2	av. 1&2	
W (W.Rs)	0.61 3.0	0.62 4.0	0.65 5.5	0.70 6.9	0.74 8.1	0.76 8.7	0.77 8.6	0.77 8.0	0.75 6.8	0.73 5.2	3 0.68	0.63 2.9	
ETo mm/day	2.5	3.4:	4.8	6.7	8.2	8.8	8.4	7.4	6.0	4.5	3.0	2.2	
mm/montl	h 78	95	149	201	254	264	260	229	180	140	90	68	

Format untuk izaikulasi dengan ivietode i erintungan izadiasi

Tabel 2. Radiasi Ekstra Terresterial (Ra) dinyatakan dalam Equivalen Evaporasi

4-000 00-4-0 **50000** 10875 3355 Dec 17. 888888 8,8,9,8 18. 17. 17. 15.55.75 132207 08754 50//8 00000 00000 16. 567575 90999 17. 1771 74991 54507 ∞ 987954 02470 Oct 127.77. ក្មស៊ីស៊ីស៊ីស៊ី ភូសិស្តិស 222222 43332 Sept (02739 70047 20000 ∞00-12C 04104 122111 13333 24444 445555 ထွေ့လူပုံပုံ 1001004 50000 92830 07004 こてつろらめ 176667 ~∞∞ ∞∞ 11000 13222 224444 0.010 48790 N0404 00801 コンケこンケ 6444 m 600 cc 88 0 0 0 0 110. 133.12 Southern Hemisphere June $\frac{600444}{100000}$ 07870 048755 11000 22222 May 017371 911001 08779 047-12 8-148-14 22.11.2 44550 Apr 464RQ 660RQ 05048 07250 ス・ナアの18 6.67.7. 99999 12.2.1 51333 444465 Mar 9259 ഗയ വ ഗയ 00400 120510 1709977 ស៊ីស៊ីស៊ីស៊ីស៊ី 21112 33225 7777 ស៊ីស៊ីស៊ីស៊ី Feb 70-05 44400 ひひ44の 210875 78017 N. N. O. O. O. 00000 44555 16616 5151515 500/000 $\omega \omega \omega \omega \omega$ 879104 8-01-9 4-8560 17. 5.5.5.5.5.5 1777 7777 1777 080,440 7-978 24BB 10.7 111.1 11.6 12.0 967748 ストのアン A <u>∞</u> ∞ ω ω Ο 722373 004 00 1821500 122221 1544433 78000 69614 7337 90000 √
80
10
4 oct 7. 88. 89. 99. 10. 10. 446.66.69 122.21 55557 Sept 50000 0.00 91959 80,010 $\alpha\alpha\alpha\alpha\alpha\alpha\alpha$ 33322 4425.55 121112 14444 ក្រុក្តីកុក្តក Northern Hemisphero Aug 07237 20450 77788 08170 5447-08 ស៊ីស៊ីស៊ីស៊ី <u>ಸ್ಟರ್</u>ಗ್ರಸ್ತ ភូស៊ីស៊ីស៊ី 555544 12444 45007 77788 \$ 10004 6-010 6-0066-July 16. 16. 16. 77777 16.16 51515 24440 20000 08794 4-05-5 807486 June 17. 17. 16. 16. 555.55 1771 31444 20008 44400 004440 81087 78194 May 16615 16 16 16 16 16 16 15 15 15 252744 25720 77000 1.0 4 ruww Apr V0WV0 9999912444 ស្តីស្តីស្តី ស៊ីស៊ីស៊ីស៊ី 433332 ក្រុស៊ីស៊ីស៊ីស៊ី Mar 9.4 9.8 10.2 11.0 40/01 48748 14/0,0 884500 N 1222 55554 44445 ប្រកួលប្រកួ 10101 90400 70000 200000 てよらのほ 11. 25555 444666 8.44777 6.67778 800001 1112121 8.6060 40406 8.6897 46048 200000

2 Table

Extra Terrestrial Radiation (Ra) expressed in equivalent evaporation in mm/day

555445

Tabel 3. Durasi Harian Rata-Rata dari Maksimum Lama (Jam) Penyinaran yang Mungkin (N) untuk Bulan dan Latitude yang Berbeda

Tabel 4. Nilai Weighting Factor (W) sebagai Efek Radiasi pada ETo pada Temperatur dan Altitud yang Berbeda

)ec	June	20.00 1.00 1.00 1.00 1.00	9.8 10.5 10.6 11.2 11.5	12.1		40	.85 .86 .87	.89
D				1	ndes	38	.85	.88
Nov	May	9.37	10.3 10.6 10.9 11.2 11.4	12.1	Altita	36	.83 .84 .85	.88
•					s and	34	.82	.85
Oct	Apr	10.8 10.9 10.9 11.0 11.1	11.5	12.1	ature	32	.80	.85
Į.		79999S	4488811	1	emper	30	.78 .79 .80	.82
Sept	Mar	12.6 12.6 12.6 12.6 12.5	12.4 12.3 12.3 12.2 12.2 12.1	12.	ent T	28	*77. 87.	.81
1g	Feb	25000	13.5 13.0 12.8 12.8 12.3 12.3	. 1.)iffer	26	.75	.79
Aug	귝	71 71 71 13 13	133	12	o at I	24	.73	77.
July	Jan	15.9 15.6 15.4 15.2 14.9	455.55 200.55 300.55 300.55	2.1	on ET	2.2	.71	.75
_					ation	20	.70	.73
June	Dec	16.3 16.0 15.7 15.2 15.2	14.5 14.5 13.7 13.3 12.7	12.1	f Radi	18	99. 79.	.73
'n	>	40004	000-000	, ,	fect o	16	.65 .65	.69
May	Nov	15.4 15.2 14.9 14.7 14.6	45.53.33.55	12.	he Ef	14	.62	99.
Apr	Oct	8957446	13.1 12.9 12.7 12.5 12.5	2.1	for 1	12	.53	75.
V	0		222222	12	or (W	10	.55	.61
Mar	Sept	11.9	11.9	12.1	Fact	80	22. 22. 23	.58
					ghting	9	.51	55. 85
Feb	Aug	10.1 10.2 10.5 10.5 10.6	111111111111111111111111111111111111111	12.1	of Wei	4	46	.52
ď	luly	23.182.79	0.17		Values of Weighting Factor (W) for the Effect of Radiation on ETo at Different Temperatures and Altitudes	2	0.43	.52
Jan	Ju	mmonono		12		O o	ude m 0 500	2 000
ern s	srn 5					Temperature ^o C	at altitude m 0 500 1 000	2 6
Northern Lats	Southern Lats	0584444	102233	0 0	Table 4	Cempe	W at a	

Gambar 2. Prediksi ET_o dari $W.R_s$ untuk beberapa Kondisi RH rata-rata dan Kecepatan Angin Hari Siang ($daytime\ wind$)

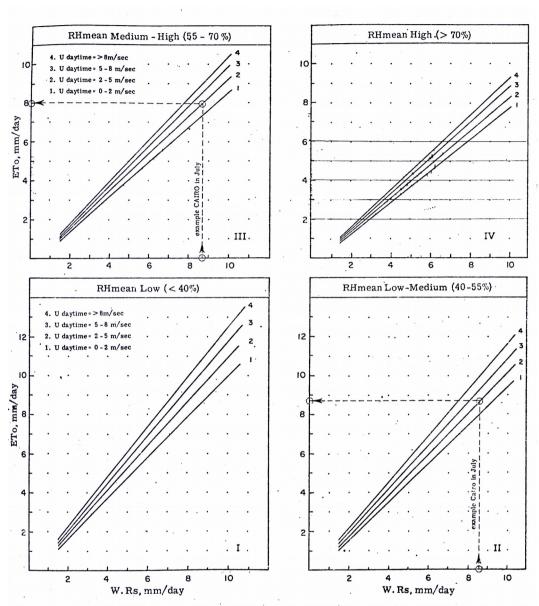


Fig. 2 Prediction of ETo from W.RS for different conditions of mean relative humidity and day time wind.

3. Metode Penman

Penman, pada tahun 1948 mengajukan persamaan untuk menghitung evapotranpirasi ;

$$E_o = \frac{\Delta H + \gamma E_a}{\Delta + \gamma}$$

dimana:

 $E_{\scriptscriptstyle 0} = Evapotranspirasi refrensi tanaman dalam mm/hari untuk periode yang diperhitungkan$

H = Faktor yang bergantung pada radiasi dan panjang penyinaran

E_a = Faktor yang tergantung pada kecepatan angin dan tekanan uap

 Δ/γ = Parameter empiris yang bergantung pada temperatur

Penjabaran persamaan-persamaan tersebut dapat dicari pada berbagai literatur, namun untuk keperluan praktis telah dikembangkan nomogram yang mempermudah perhitungan. Prinsip nomogram tersebut adalah secara grafis memplot nilai-nilai yang diketahui sehingga diperoleh nilai E_0 yang dicari.

Data-data input yang diperlukan untuk menghitung E_o menggunakan nomogram Penman adalah :

- Suhu udara rata-rata (t, °C)
- Kelembaban rata-rata (h)
- Penutupan langit oleh awan (n/D)
- Kecepatan angin rata-rata (u₂, m/s)
- Radiasi gelombang pendek (R_A, g/cal/cm²/day)

Contoh Perhitungan

Diketahui suhu udara rata-rata = 18 °C

$$n/D = 0.4$$
; $R_A = 800$ g cal/cm²/day; $h = 0.6$; $u_2 = 3$ m/s

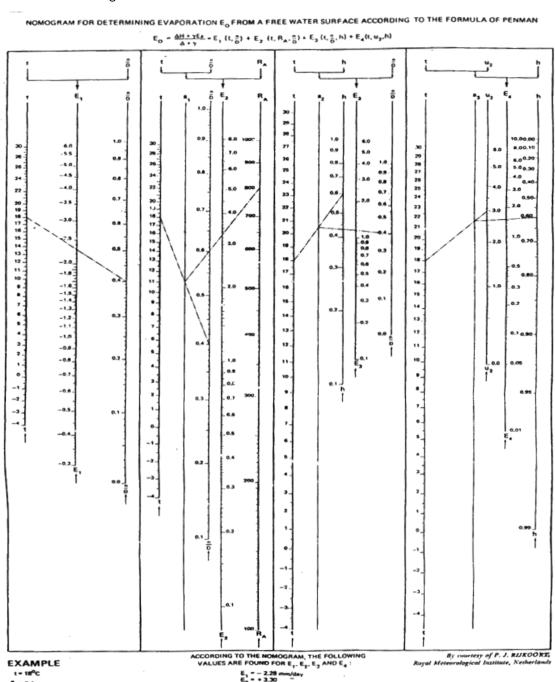
maka penyelesaian penggunakan nomogram adalah

$$E_o = E_1 + E_2 + E_3 + E_4$$

E₁ diperoleh dengan menarik garis antara t dan n/D

E₂ diperoleh dengan menarik garis antara t dan n/D lalu hasilnya ditarik garis ke R_A

E₃ diperoleh dengan menarik garis antara t dan h, lalu hasilnya ditarik garis ke n/D


E₄ dieproeh dengan menarik garis antara t dan u₂, lalu hasilnya ditarik ke h

Cara menarik garis dapat dilihat pada Gambar 3.

Tabel 5. Nilai R_A (g cal/cm²/day)

Ketin ggia n (derajat)	Jan.	Feb.	Mar.	Apr.	Mei	Jun.	Jul	Agt.	Sep.	Okt.	Nov.	Des	Tahun
U 90	0	0 .	. 55	518	903	1077	944	605	136	0	0	0	3540
80	0	3	143	518	875	1060	930	600	219	17	0	0	3660
60	86	234	424	687	866	983	892	714	494	258	113	55	4850
40	358	538	663	× 847	930	1001	941	843	719	528	397	318	6750
20	631	795	821	914	912	947	912	887	856	740	666	599	8070
Kutub	844	963	878	876	803	803	792	820	891	866	873	829	8540
20	970	1020	832	737	608	580	588	680	820	892	986	978	8070
40	998	963	686	515	358	308	333	453	648	817	994	1033	6750
60	947	802	459	240	95	50	77	187	403	648	920	1013	4850
80	981	649	181	9	ő	0	0	0	113	459	917	1094	3660
S 90	995	656	92	ó	ŏ	ŏ	ō	ŏ	30	447	932	1110	3540

Gambar 3. Nomogram Penman

SO THAT Eo -

u. - 3.0 m/sec

3. Metode Penman-Monteith

Untuk daerah dimana tersedia data-data temperature, kelembaban, angin dan durasi hari cerah, atau radiasi, maka adaptasi dari metode Penmann sangat disarankan. Metode Penman pertama kali diintroduksi pada tahun 1948. Namun dalam perkembangannya, metode ini disempurnakan oleh Monteith.

Metode Penman-Monteith yang diadaptasi oleh FAO dipertahankan sebagai standar untuk menghitung ET_{o} dari data meteorologi

$$ET_o = \frac{0.408 \cdot \Delta (R_n - G) + \gamma \frac{900}{T + 273} u_2(e_s - e_a)}{\Delta + \gamma (1 + 0.34 \cdot u_2)}, \, \text{mm/hari}$$

dimana:

 $\mathrm{ET_o}$ = Evapotranspirasi refrensi tanaman dalam mm/hari untuk periode yang

diperhitungkan

 R_n = Radiasi matahari Net pada permukaan tanaman (MJ/m.hari)

T = Temperatur udara pada ketinggian 2 m (°C)

u₂ = Kecepatan angin pada ketinggian 2 m dari permukaan (m/detik)

 e_s = Tekanan uap jenuh (kPa) e_a = Tekanan uap aktual (kPa)

e_s-e_a = Defisit tekanan uap jenuh (kPa)

 Δ = Kemiringan kurva tekanan uap (kPa/°C)

 γ = Konstanta psikrometrik (kPa/°C)

BOX 11										
	sheet for ET _O (FAC	Penman-Monteith) using meteorological ta	bles of Annex 2							
Parameter	s									
Tmev	°c									
T _{min}	°C	$T_{mean} = (T_{max} + T_{min})/2$	°C							
T _{mean}	°C	Δ (Table 2.4 of Annex 2)	kPa/	°C						
Altitude	m	γ (Table 2.2 of Annex 2)	kPa/	°C						
Uэ	m/s	(1 + 0.34 u ₂)								
$\Delta / [\Delta + \gamma (1 + 0.34 u_2)]$										
$\gamma / [\Delta + \gamma (1 + 0.34 u_2)]$										
[900 / (T _{mean} + 273)]u ₂										
		_								
Vapour pre	Vapour pressure deficit									
T _{max}	°C	e°(T _{max}) (Table 2.3)	kPa							
T _{min}	°c	e°(T _{min}) (Table 2.3)	kPa							
Saturation v	vapour pressure	$e_s = [(e^{\circ}(T_{max}) + e^{\circ}(T_{min})]/2$	kPa							
e _a de	erived from dewpoi									
T _{dew}	°c	$e_a = e^{\circ}(T_{class})$ (Table 2.3)	kPa							
	erived from maximu	ım and minimum relative humidity:								
RH _{max}	%	e°(T _{min}) RH _{max} /100	kPa							
RH _{min}	%	e°(T _{max}) RH _{min} /100	kPa							
		e _a : (average)	kPa							
OR e _a derived from maximum relative humidity: (recommended if there are errors in RH _{min})										
RHmay	%	e _e = e°(T _{min}) RH _{max} /100	kPa							
OR ea derived from mean relative humidity: (less recommended due to non-linearities)										
RH _{mean}	%	e _a = e _s RH _{mean} /100	kPa							
	Vapour pressure deficit (e _s - e _a) kPa									

Radiation	Radiation										
Latitude		0									
Day			R _a (Table 2.6)		MJ m ⁻² d ⁻¹						
Month			N (Table 2.7)		hours						
n		hours	n/N								
	If no R	s data ava	lable: R _s = (0.25 + 0.50 n/N) R _a		MJ m ⁻² d ⁻¹						
		$R_{SO} = [0.75]$	5 + 2 (Altitude)/ 100 000] R _a		MJ m ⁻² d ⁻¹						
			R _S /R _{SO}								
	$R_{ns} = 0.77 R_s$ MJ m ⁻² d ⁻¹										
T _{max}			σT _{max,K} 4 (Table 2.8)		MJ m ⁻² d ⁻¹						
T _{min}			σT _{min,K} ⁴ (Table 2.8)		MJ m ⁻² d ⁻¹						
		(σT _n	nax,K ⁴ + σT _{min,K} 4)/2		MJ m ⁻² d ⁻¹						
ea		kPa	(0.34 - 0.14 √e ₈)								
R _s /R _{so}			(1.35 R _s /R _{so} - 0.35)								
R _{nl} = (σT _{max,K} 4	[‡] + σT _{min,} k	(4)/2 (0.34 - 0.14 (e _a) (1.35 R _s /R _{so} - 0.35)		MJ m ⁻² d ⁻¹						
			R _n = R _{ns} - R _{nl}		MJ m ⁻² d ⁻¹						
T _{month}		°C	G _{day} (assume)	0	MJ m ⁻² d ⁻¹						
T _{month-1}		ç	G _{month} = 0.14 (T _{month} - T _{month-1})		MJ m ⁻² d ⁻¹						
			R _n – G		MJ m ⁻² d ⁻¹						
			0.408 (R _n - G)		mm/day						
Grass refe	Grass reference evapotranspiration										
	$\left[\frac{\Delta}{\Delta + \gamma \left(1 + 0.34 u_2\right)}\right] \left[0.408 \left(R_n - G\right)\right] \\ mm/day$										
$\left[\frac{\gamma}{\Delta + \gamma \left(1 + 0.34 u_2\right)}\right] \left[\frac{900}{T + 273}\right] u_2 \left[\left(e_g - e_a\right)\right] \qquad \qquad mm$											
	$ET_{o} = \frac{0.408\Delta (R_{n} - G) + \gamma \frac{900}{T + 273} u_{2} (e_{s} - e_{a})}{\Delta + \gamma (1 + 0.34 u_{2})}$ mm/d										

TABLE 2.1 Atmospheric pressure (P) for different altitudes (z)

$$P = 101.3 \left(\frac{293 - 0.0065 \text{ z}}{293} \right)^{5.26}$$
 (Eq. 7)

Z (m)	P (kPa)	z (m)	P (kPa)	z (m)	P (kPa)	z (m)	P (kPa)
0	101.3	1000	90.0	2000	79.8	3000	70.5
50	100.7	1050	89.5	2050	79.3	3050	70.1
100	100.1	1100	89.0	2100	78.8	3100	69.6
150	99.5	1150	88.4	2150	78.3	3150	69.2
200	99.0	1200	87.9	2200	77.9	3200	68.8
250	98.4	1250	87.4	2250	77.4	3250	68.3
300	97.8	1300	86.8	2300	76.9	3300	67.9
350	97.2	1350	86.3	2350	76.4	3350	67.5
400	96.7	1400	85.8	2400	76.0	3400	67.1
450	96.1	1450	85.3	2450	75.5	3450	66.6
500	95.5	1500	84.8	2500	75.0	3500	66.2
550	95.0	1550	84.3	2550	74.6	3550	65.8
600	94.4	1600	83.8	2600	74.1	3600	65.4
650	93.8	1650	83.3	2650	73.7	3650	65.0
700	93.3	1700	82.8	2700	73.2	3700	64.6
750	92.7	1750	82.3	2750	72.7	3750	64.1
800	92.2	1800	81.8	2800	72.3	3800	63.7
850	91.6	1850	81.3	2850	71.8	3850	63.3
900	91.1	1900	80.8	2900	71.4	3900	62.9
950	90.6	1950	80.3	2950	71.0	3950	62.5
1000	90.0	2000	79.8	3000	70.5	4000	62.1

TABLE 2.2

Psychrometric constant (γ) for different altitudes (z) $\gamma = \frac{c_p P}{\epsilon \lambda} = 0.665 \times 10^{-3} P$ (Eq. 8)

L								
	Z (m)	γ kPa/°C	z (m)	γ kPa/°C	z (m)	γ kPa/°C	z (m)	γ kPa/°C
	0 100 200 300 400 500 600 700 800 900	0.067 0.067 0.066 0.065 0.064 0.064 0.063 0.062 0.061	1000 1100 1200 1300 1400 1500 1600 1700 1800 1900	0.060 0.059 0.058 0.058 0.057 0.056 0.056 0.055 0.054	2000 2100 2200 2300 2400 2500 2600 2700 2800 2900	0.053 0.052 0.052 0.051 0.051 0.050 0.049 0.049 0.048	3000 3100 3200 3300 3400 3500 3600 3700 3800 3900	0.047 0.046 0.046 0.045 0.045 0.044 0.043 0.043 0.042

Based on λ= 2.45 MJ kg⁻¹ at 20°C.

TABLE 2.3
Saturation vapour pressure (e°(T)) for different temperatures (T)

$$e^{o}(T) = 0.6108 \exp\left[\frac{17.27 \text{ T}}{T + 237.3}\right]$$
 (Eq. 11)

T °C	e _s kPa	T °C	e°(T) kPa	T °C	e°(T) kPa	T °C	e _s kPa
		1					
1.0	0.657	13.0	1.498	25.0	3.168	37.0	6.275
1.5	0.681	13.5	1.547	25.5	3.263	37.5	6.448
2.0	0.706	14.0	1.599	26.0	3.361	38.0	6.625
2.5	0.731	14.5	1.651	26.5	3.462	38.5	6.806
3.0	0.758	15.0	1.705	27.0	3.565	39.0	6.991
3.5	0.785	15.5	1.761	27.5	3.671	39.5	7.181
4.0	0.813	16.0	1.818	28.0	3.780	40.0	7.376
4.5	0.842	16.5	1.877	28.5	3.891	40.5	7.574
5.0	0.872	17.0	1.938	29.0	4.006	41.0	7.778
5.5	0.903	17.5	2.000	29.5	4.123	41.5	7.986
6.0	0.935	18.0	2.064	30.0	4.243	42.0	8.199
6.5	0.968	18.5	2.130	30.5	4.366	42.5	8.417
7.0	1.002	19.0	2.197	31.0	4.493	43.0	8.640
7.5	1.037	19.5	2.267	31.5	4.622	43.5	8.867
8.0	1.073	20.0	2.338	32.0	4.755	44.0	9.101
8.5	1.110	20.5	2.412	32.5	4.891	44.5	9.339
9.0	1.148	21.0	2.487	33.0	5.030	45.0	9.582
9.5	1.187	21.5	2.564	33.5	5.173	45.5	9.832
10.0	1.228	22.0	2.644	34.0	5.319	46.0	10.086
10.5	1.270	22.5	2.726	34.5	5.469	46.5	10.347
11.0	1.313	23.0	2.809	35.0	5.623	47.0	10.613
11.5	1.357	23.5	2.896	35.5	5.780	47.5	10.885
12.0	1.403	24.0	2.984	36.0	5.941	48.0	11.163
12.5	1.449	24.5	3.075	36.5	6.106	48.5	11.447

TABLE 2.4 Slope of vapour pressure curve (Δ) for different temperatures (T)

$$\Delta = \frac{4098 \left[0.6108 \exp\left(\frac{17.27 \text{ T}}{\text{T} + 237.3}\right) \right]}{\left(\text{T} + 237.3\right)^2}$$
 (Eq. 13)

T	∆	T	∆	T	∆	۳°	∆
°C	kPa/°C	°C	kPa/°C	°C	kPa/°C		kPa/°C
10.0	0.082	22.0	0.161	34.0	0.296	46.0	0.515
10.5	0.085	22.5	0.165	34.5	0.303	46.5	0.526
11.0	0.087	23.0	0.170	35.0	0.311	47.0	0.538
11.5	0.090	23.5	0.174	35.5	0.318	47.5	0.550
12.0	0.092	24.0	0.179	36.0	0.326	48.0	0.562
12.5	0.095	24.5	0.184	36.5	0.334	48.5	0.574

TABLE 2.5

Number of the day in the year (J)

Number	of the day in th	e year (J)				
Day	January	February	March*	April*	May*	June*
					404	450
1	1 2 3 4	32	60	91	121	152
2	2	33	61	92	122	153
3	3	34	62	93	123	154
4		35	63	94	124	155
5	5	36	64	95	125	156
6	5 6 7	37	65	96	126	157
7	7	38	66	97	127	158
8	8	39	67	98	128	159
	9	40	68	99	129	160
9	10	41	69	100	130	161
10						
	11	42	70	101	131	162
11	12	43	71	102	132	163
12	13	44	72	103	133	164
13	14	45	73	104	134	165
14	15	46	74	105	135	166
15	16	47	75	106	136	167
16	17	48	76	107	137	168
17	18	49	77	108	138	169
18	19	50	78	109	139	170
19	20	51	79	110	140	171
	20	٥,	,,,	110	140	.,,,
20	21	52	80	111	141	172
	22	53	81	112	142	173
21	23	54	82	113	143	174
22	24	55	83	114	144	175
23	2 4 25	56	84	115	145	176
24	26 26	57	85	116	146	177
25	26 27	58	86	117	147	178
26		59	87	117	148	179
27	28		88	119	149	180
28	29	(60)	89	120	150	181
29	30					
30	31		90	-	151	-
	l					
31						

TAB∧E2□ add 1 if leap year

```
J can be determined for each day (D) of month (M) by
J = INTEGER(275 M/9 - 30 + D) - 2
IF (M < 3)
THEN J = J + 2
```

also, IF (leap year and (M > 2)) THEN J = J + 2

For ten-day calculations, compute J for day D = 5, 15 and 25

For monthly calculations, J at the middle of the month is approximately given by

J = INTEGER(30.4 M - 15)

TABLE 2.6. Daily extraterrestrial radiation (Ra) for different latitudes for the $15^{\,\mathrm{th}}$ day of the month 1

$$R_a = \frac{24(60)}{\pi} G_{so} d_r [\omega_s \sin(\varphi) \sin(\delta) + \cos(\varphi) \cos(\delta) \sin(\omega_s)] \ (Eq. \ 21)$$

(values in MJ $\rm m_{-2}~day^{-1})^{2}$

lay	,																																				
150.00	Dec	45.3	44.7	44.1	43.9	43.9	43.9	44.0	44.1	44.3	44.4	44.5	44.5	44.6	44.6	44.6	44.6	44.5	44.4	44.3	44.1	43.9	43.6	43.3	43.0	42.6	42.1	41.7	41.2	40.6	40.0	39.4	38.7	38.0	37.2	36.4	35.6
	Nov	37.3	37.4	37.6	38.0	38.3	38.7	39.1	39.5	39.9	40.2	40.6	40.9	41.1	41.4	41.6	41.8	41.9	42.0	42.0	42.0	42.0	41.9	41.8	41.7	41.4	41.2	40.9	40.6	40.2	39.8	39.3	38.8	38.2	37.6	37.0	36.3
	Oct	23.5	24.4	25.4	26.3	27.2	28.1	28.9	29.8	30.6	31.4	32.1	32.8	33.5	34.1	34.7	35.3	35.8	36.3	36.7	37.1	37.5	37.8	38.0	38.3	38.4	38.6	38.7	38.7	38.7	38.6	38.5	38.4	38.2	38.0	37.7	37.4
	Sep	10.7	11.9	13.1	14.4	15.5	16.7	17.9	19.0	20.1	21.2	22.2	23.3	24.3	25.2	26.2	27.1	28.0	28.8	29.6	30.4	31.1	31.8	32.5	33.1	33.7	34.2	34.7	35.2	35.6	36.0	36.3	36.6	36.8	37.0	37.1	37.2
9	Aug	2.2	3.2	4.2	5.3	6.4	7.6	8.7	6.6	11.1	12.2	13.4	14.6	15.7	16.8	18.0	19.1	20.2	21.2	22.3	23.3	24.3	25.3	26.3	27.2	28.1	28.9	29.8	30.6	31.3	32.1	32.8	33.4	34.0	34.6	35.2	35.7
emisphe	July	0.0	0.0	0.5	1.2	2.0	5.9	3.9	6.4	6.0	7.1	8.2	9.3	10.4	11.6	12.8	13.9	15.1	16.2	17.4	18.5	19.6	20.7	21.8	22.9	24.0	25.0	26.0	27.0	27.9	28.9	29.8	30.7	31.5	32.3	33.1	33.9
Southern Hemisphere	Jun	0.0	0.0	0.1	9.0	1.2	2.0	5.9	3.9	4.9	0.9	7.1	8.2	9.3	10.5	11.6	12.8	13.9	15.1	16.2	17.4	18.5	19.7	20.8	21.9	23.0	24.1	25.1	26.2	27.2	28.1	29.1	30.0	30.9	31.8	32.6	33.4
Sou	May	0.2	8.0	1.5	2.4	3.4	4.4	5.5	9.9	7.7	8.8	10.0	11.1	12.3	13.5	14.6	15.8	16.9	18.1	19.2	20.3	21.4	22.5	23.5	24.6	25.6	26.6	27.5	28.5	29.4	30.2	31.1	31.9	32.7	33.4	34.1	34.8
	Apr	4.9	6.0	7.2	8.4	9.6	10.8	12.0	13.2	14.4	15.6	16.7	17.9	19.0	20.1	21.2	22.3	23.3	24.3	25.3	26.3	27.2	28.1	29.0	29.8	30.6	31.3	32.1	32.8	33.4	34.0	34.6	35.1	35.6	36.0	36.4	36.8
	Mar	15.8	16.9	18.1	19.3	20.4	21.5	22.6	23.6	24.6	25.6	26.6	27.5	28.4	29.3	30.1	30.9	31.7	32.4	33.0	33.7	34.3	34.8	35.3	35.8	36.2	36.6	37.0	37.2	37.5	37.7	37.8	37.9	38.0	38.0	38.0	37.9
	Feb	28.6	29.3	30.0	30.8	31.5	32.3	33.0	33.7	34.3	35.0	35.6	36.2	36.7	37.2	37.7	38.1	38.5	38.9	39.2	39.4	39.6	39.8	39.9	40.0	40.1	40.0	40.0	39.9	39.7	39.6	39.3	39.0	38.7	38.3	37.9	37.5
1	Jan	41.4	41.0	40.9	41.0	41.2	41.5	41.7	42.0	42.2	42.5	42.7	42.9	43.0	43.2	43.3	43.4	43.4			3	Н		42.8	42.5			41.5		40.6	40.1	39.5	38.9	38.3	37.6	36.9	36.2
Lat.	deg.	70	89	99	64	62	09	58	99	54	52	20	60	i de la		42	40	66	36	100	8	30	28	26	24	22	20	18	16	14	12	10	8	9	4	2	0
100 CO	Dec	0.0	0.0	0.1	9.0	1.3	2.2	3.1	4.2	5.2	6.4	7.5	8.7	6.6	11.1	12.4	13.6	14.8	16.1	17.3	18.5	19.8	21.0	22.2	23.3	24.5	25.6	26.8	27.9	28.9	30.0	31.0	32.0	32.9	33.9	34.8	35.6
	Nov	0.1	0.7	1.5	2.4	3.4	4.4	5.5	6.7	7.8	9.0	10.2	11.4	12.6	13.9	15.1	16.3	17.5	18.7	19.9	21.1	22.2	23.3	24.5	25.5	26.6	27.7	28.7	29.62	30.6	31.5	32.4	33.3	34.1	34.9	35.6	36.3
The second	Oct	4.9	0.9	7.2	8.5	2.6	10.9	12.1	13.3	14.5	15.7	16.9	18.1	19.2	20.3	21.4	22.5	23.6	24.6	25.6	26.6	27.6	28.5	29.3	30.2	31.0	31.8	32.5	33.2	33.9	34.5	35.1	35.6	36.1	36.6	37.0	37.4
	Sep	14.9	16.1	17.3	18.4	19.5	50.6	21.7	22.7	23.7	24.7	25.7	26.6	27.5	28.4	29.2	30.0	30.7	31.5	32.1	32.8	33.4	33.9	34.5	34.9	35.4	35.8	36.1	36.4	36.7	36.9	37.1	37.2	37.3	37.3	37.3	37.2
o o	Aug	28.0	28.6	29.3	30.0	30.6	31.3	32.0	32.6	33.2	33.8	34.4	34.9	35.4	35.9	36.3	36.7	37.0	37.4	37.6	37.9	38.0	38.2	38.3	38.3	38.4	38.3	38.2	38.1	38.0	37.8	37.5	37.2	36.9	36.5	36.1	35.7
Northern Hemisphere	\vdash	39.4		38.8	38.8	39.0	39.2	39.4	39.6	39.8	40.1	40.2	Н			-	\vdash	Н				Н	Н				-	-	2	Н	37.6	37.1	36.5	35.9	35.3		33.9
hern He	Jun	42.5	42.0	41.4	41.2	41.2	41.2	41.3	41.4	41.5	41.6	41.7	41.8		41.9	41.9	41.9	41.8	41.7	41.6	41.4	41.2			-	40.0		39.1	-		26	37.0	36.3	35.7	35.0	34.2	33.4
Nor	\vdash	35.2		-	6	36.3	36.6	37.0	4	8	2				39.3			39.9										39.0		4	38.0	9	37.1	36.6		4	34.8
	⊢	23.0	-	-	25.8	9.92	27.5	28.4	29.2	30.0	30.8	31.5	Н		Н	Н		Н		Н	Н	_				Н	-	_	_	38.1	38.0	37.9	37.8	H		37.1	36.8
	-	10.4	-	Н	Н		-	-	-	Н	\vdash	-	Н	_	\vdash	Н	-	\vdash	\vdash	\vdash	-	_	Н	-	-	Н	-	_	_	Н	Н	Н		Н	Н	н	_
	!	2.6	_	-		Н	-	_	-	\vdash	-	_	_	_	-	H	⊢	-	-	⊢	_	_	_	_		Н	_	_	_			_	ш	Н	Н		_
	_	0.0	_	_	_		_	_	_	_	_	_			_	_	_	\vdash	_	_			_	_	_	_	_	_	_								
60	I.	EC.				000								6	1																	-		-			1.5

- Values for Ra on the 15th day of the month provide a good estimate (error < 1 %) of Ra averaged over all days within the month. Only for high latitudes greater than 55° (N or S) during winter months deviations may be more than 1%.
- Values can be converted to equivalent values in mm/day by dividing by Lambda = 2.45.

TABLE 2.7. Mean daylight hours (N) for different latitudes for the 15th of the month1

$$N = \frac{24}{\pi} \omega_s \text{ (Eq. 34)}$$

4	Anc	ŀ	ŀ	ŀ											200					
-			Jun	July Aug	Sep	Oct	Nov	Dec	deg.	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov
	-	21.3 2	24.0 2		6 12.8	8.3	2.3	0.0	70	24.0	17.4	13.0	8.4	2.7	0.0	0.0	6.4	11.2	15.7	21.7
۳	15.3			2.3 17.0	12.7	8.7	4.1	0.0	89	21.9	16.7	12.9	8.7	4.3	0.0	1.7	7.0	11.3	15.3	19.9
11.2				20.3 16.4	4 12.7	9.0	5.2	1.9	99	20.1	16.2	12.8	9.1	5.3	2.0	3.7	9.7	11.3	15.0	18.8
11.2 1	14.7	17.9 2	9	19.2 16.0	0 12.6	9.3	6.0	3.7	64	19.0	15.8	12.8	9.3	6.1	3.7	4.8	8.0	11.4	14.7	18.0
11.3	14.4			18.4 15.7	7 12.6	9.5	9.9	4.8	62	18.3	15.5	12.7	9.6	6.7	8.4	9.6	8.3	11.4	14.5	17.4
11.4	H	16.8	18.4	17.7 15.3	3 12.5	9.7	7.1	5.6	09	17.6	15.2	12.6	9.8	7.2	5.6	6.3	8.7	11.5	14.3	16.9
11.4	-		17.8 1	17.2 15.1	1 12.5	6.6	7.5	6.2	58	17.1	14.9	12.6	6.6	9.7	6.2	8.9	8.9	11.5	14.1	16.5
11.5 1	13.9		17.3	16.8 14.8	8 12.4	10.1	7.9	6.7	99	16.7	14.7	12.5	10.1	8.0	6.7	7.2	9.2	11.6	13.9	16.1
-	-	\vdash	16.8	16.4 14.6	6 12.4		8.2	7.1	54	16.3	14.5	12.5	10.2	8.3	7.2	9.7	9.4	11.6	13.8	15.8
	-	\vdash	2	16.0 14.4	-		8.5	7.5	52	16.0	14.3	12.5	10.4	8.6	7.5	8.0	9.6	11.6	13.7	15.5
11.6 1	-	\vdash	-	15.7 14.3	3 12.3	10.4	8.7	7.9	90	15.7	14.2	12.4	10.5	8.8	6.7	8.3	9.7	11.7	13.6	15.3
11.6	13.4	15.0	15.8	15.5 14.1	1 12.3	10.6	9.0	8.2	48	15.4	14.0	12.4	10.6	9.0	8.2	8.5	6.6	11.7	13.4	15.0
	\vdash		2	15.2 14.0			9.2	8.5	46	15.2	13.9	12.4	10.7	9.2	8.5	8.8	10.0	11.7	13.3	14.8
	13.2	14.6	15.3	15.0 13.8	8 12.3		9.4	8.7	44	14.9	13.7	12.4	10.8	9.4	8.7	0.6	10.2	11.7	13.3	14.6
	-	-	0	14.8 13.7	7 12.3		9.6	9.0	42	14.7	13.6	12.3	10.8	9.6	9.0	9.2	10.3	11.7	13.2	14.4
11.7	13.1	14.2	8	14.6 13.6	6 12.2	10.9	9.7	9.2	40	14.5	13.5	12.3	10.9	9.8	9.5	9.4	10.4	11.8	13.1	14.3
11.7 1	-		14.6 1	14.4 13.5	5 12.2	11.0	6.6	9.4	38	14.4	13.4	12.3	11.0	6.6	9.4	9.6	10.5	11.8	13.0	14.1
-	-	-		14.2 13.4	-	11.1	10.1	9.6	36	14.2	13.3	12.3	11.1	10.1	9.6	9.8	10.6	11.8	-	13.9
	-	-	3			11.1	10.2	9.7	34	14.0	13.2	12.2	11.1	10.2	9.7	6.6	10.7	11.8	12.9	13.8
11.8	-	\vdash		13.9 13.2	2 12.2	11.2	10.3	6.6	32	13.9	13.1	12.2	11.2	10.4	6.6	10.1	10.8	11.8	12.8	13.7
11.8 1	12.7	13.5 1	6	13.8 13.1	1 12.2	11.3	10.5	10.1	30	13.7	13.0	12.2	11.3	10.5	10.1	10.2	10.9	11.8	12.7	13.5
-						11.3	10.6	10.2	28	13.6	13.0	12.2	11.3	10.6	10.2	10.4	11.0	11.8	12.7	13.4
			13.6 1	13.5 12.9	12.1	11.4	10.7	10.4	26	13.5	12.9	12.2	11.4	10.7	10.4	10.5	11.1	11.9	12.6	13.3
		Н	2		0.00	11.4	10.8	10.5	24	13.3	12.8	12.2	11.4	10.8	10.5	10.7	11.2	11.9	12.6	13.2
		13.1	3			11.5	10.9	10.7	22	13.2	12.7	12.1	11.5	10.9	10.7	10.8	11.2	11.9	12.5	13.1
	12.5		13.2 1	13.1 12.7		11.5	11.0	10.8	20	13.1	12.7	12.1	11.5	11.1	10.8	10.9	11.3	11.9	12.5	13.0
11.9			1	13.0 12.6		11.6	11.1	10.9	18	13.0	12.6	12.1	11.6	11.2	10.9	11.0	11.4	11.9	12.4	12.9
11.9	12.4		6	12.9 12.5	12.1	11.6	11.2	11.1	16	12.9	12.5	12.1	11.6	11.3	11.1	11.1	11.5	11.9		12.8
			8	12.8 12.5	5 12.1	11.7	11.3	11.2	14	12.7	12.4	12.1	11.7	11.4	11.2	11.2	11.5	11.9	12.3	12.7
11.9			7	12.6 12.4	12.1	11.7	11.4	11.3	12	12.6	12.4	12.1	11.7	11.4	11.3	11.4	11.6	11.9	12.3	12.6 12.7
11.9 1	12.2	12.5 1	12.6 1	12.5 12.3	3 12.1	11.8	11.5	11.4	10	12.5	12.3	12.1	11.8	11.5	11.4	11.5	11.7	11.9	12.2	12.5
11.9 1	12.2	12.4	12.5 1	12.4 12.3	3 12.0	11.8	11.6	11.5	8	12.4	12.3	12.1	11.8	11.6	11.5	11.6	11.7	12.0	12.2	12.4
			3	12.3 12.2	2 12.0	11.9	11.7	11.7	9	12.3	12.2	12.0	11.9	11.7	11.7	11.7	11.8	12.0	12.1	12.3
	12.1	12.2	2	12.2 12.1			11.8	11.8	4	12.2	12.1	12.0	11.9	11.8	11.8	11.8	11.9	12.0	12.1	12.2
-	-		-	2.1 12.	1 12.0	12.0	11.9	11.9	2	12.1	12.1	12.0	12.0	11.9	11.9	11.9	11.9	12.0	12.0	12.1
12.0 1	12.0	12.0 1	12.0 1	12.0 12.0	0 12.0	12.0	12.0	12.0	c	120	120	000	000	000	000	000	000			

Soedirman

Values for N on the 15th day of the month provide a good estimate (error < 1 %) of N averaged over all days within the month. Only for high latitudes greater than 55° (N or S) during winter months deviations may be more than 1%.

TABLE 2.8

σT _K 4 (Stefan	-Boltzmann law) a	t different temp	eratures (T)		
With σ = 4.9 and T _K = T[03 10 ⁻⁹ MJ K ⁻⁴ m ⁻ ^C C] + 273.16	-2 _{day} -1			
T (°C)	σΤ _Κ . ⁴ (MJ m ⁻² d ⁻¹)	T (°C)	σΤ _{κ.} 4 (MJ m ⁻² d ⁻¹)	T (°C)	σΤ _Κ ⁴ (MJ m ⁻² d ⁻¹)
1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 6.5 7.0 6.5 7.0 8.5 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 13.5 14.0	27.70 27.90 28.11 28.31 28.52 28.72 28.93 29.14 29.35 29.56 29.78 29.99 30.21 30.42 30.64 30.86 31.08 31.30 31.52 31.74 31.97 32.19 32.42 32.65 32.88 33.11 33.34 33.57 33.81	17.0 17.5 18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0 22.5 23.0 23.5 24.0 24.5 25.0 25.5 26.0 26.5 27.0 27.5 28.0 28.5 29.0 29.5 30.0	34.75 34.99 35.24 35.48 35.72 35.97 36.21 36.46 36.71 36.96 37.21 37.47 37.72 37.98 38.23 38.49 38.75 39.01 39.27 39.53 39.80 40.06 40.33 40.60 40.87 41.14 41.41 41.69 41.96	33.0 33.5 34.0 34.5 35.0 35.5 36.0 36.5 37.0 37.5 38.0 39.5 40.0 40.5 41.0 41.5 42.0 42.5 43.0 44.5 44.0 44.5 45.0 46.5 47.0	43.08 43.64 43.93 44.21 44.50 44.79 45.08 45.37 45.67 45.96 46.26 46.56 46.85 47.15 47.76 48.06 48.37 48.68 48.37 48.68 48.99 49.30 49.61 49.92 50.24 50.56 50.87 51.19 51.51
15.5 16.0 16.5	34.04 34.28 34.52	31.5 32.0 32.5	42.24 42.52 42.80	47.5 48.0 48.5	51.84 52.16 52.49

EXAMPLE 17 Determination of E	ET _o with mean monthly data		
	average climatic data of April of Bangkok (Thailand) locat	ted at 13 °4	14'N and at an
-	Monthly average daily maximum temperature (T _{max}) =	34.8	°C
_	Monthly average daily minimum temperature (T _{min}) =	25.6	°C
-	Monthly average daily vapour pressure (e _a) =	2.85	kPa
Measured at 2 m	Monthly average daily wind speed (u ₂) =	2	m/s
_	Monthly average sunshine duration (n) =	8.5	hours/day
For April	Mean monthly average temperature (Tmonth.i) =	30.2	°C
For March	Mean monthly average temperature (T _{month,i-1}) =	29.2	°C
Determination acc	ording to outline of Box 11 (calculation sheet ET _O)		
Parameters			
-	T _{mean} = [(T _{max} = 34.8) + (T _{min} = 25.6)]/2 =	30.2	°C
From Table 2.4 or Eq. 13:	Δ =	0.246	kPa/°C
From Table 2.1			
and Table 2.2 or Eq. 7 and Eq. 8:	Altitude =	2	m
	P =	101.3	kPa
	γ=	0.0674	kPa/°C
-	(1 + 0.34 u ₂) =	1.68	-
-	$\Delta I[\Delta + \gamma (1+0.34u_2)] = 0.246/[(0.246 + 0.0674 (1.68)] =$	0.685	
-	$\gamma[\Delta+\gamma(1+0.34u_2)] = 0.0667/[0.246 + 0.0674 (1.68)] =$	0.188	-
-	900/(T _{mean} +273) u ₂ =	5.94	-
Vapour pressure de			
From Table 2.3 or	T _{max} =	34.8	°C
Eq. 11:	e°(T _{max}) =	5.56	kPa
From Table 2.3 or	T _{min} =	25.6	°C
Eq. 11:	e°(T _{min}) =	3.28	kPa
-	e _S = (5.56 + 3.28)/2 =	4.42	kPa
Given	e _a =	2.85	kPa
-	Vapour pressure deficit (e _S -e _B) = (4.42 - 2.85) =	1.57	kPa

Radiation (for mon	th = April)			
From Table 2.6 or 2.5 or Eq. 21:	J = (for 15 April) Latitude = 13°44'N = (13 + 44/60)= R _a =	105 13.73 38.06	- °N MJ m ⁻² day ⁻¹	
N (Table 2.7 or Eq. 34):	Daylength N =	12.31	hours	
-	n/N = (8.5/12.31) =	0.69		
-	$R_S = [0.25 + 0.50 (0.69)] 38.06 =$ $R_{SO} = (0.75 + 2 (2)/100 000) 38.06 =$	22.65 28.54	MJ m ⁻² day ⁻¹ MJ m ⁻² day ⁻¹	
-	R _S /R _{SO} = (22.65/28.54) =	0.79 17.44	- MJ m ⁻² day ⁻¹	
From Table 2.8:	R _{ns} = 0.77 (22.65) = T _{max} =	34.8	°C C	
	σT _{max.K} 4 =	44.10	MJ m ⁻² day ⁻¹	
From Table 2.8:	T _{min} =	25.6	°C	
	στ _{min,K} 4 =	39.06	MJ m ⁻² day ⁻¹	
-	$(\sigma T_{\text{max.K}}^4 + \sigma T_{\text{min.K}}^4)/2 = (44.10 + 39.06)/2 =$	41.58	MJ m ⁻² day ⁻¹	
For:	e _a =	2.85	kPa	
Then:	(0.34-0.14\ea) Dr. Ardiansyah, Teknik Pertanian	$- I_{DIVe}^{0.10}$	rsitas Jenderal Soedi	irmar
For:	R _S /R _{SO} =	0.79	-	
Then:	(1.35 R _s /R _{s0} - 0.35) =	0.72	-	
-	R _{nl} = 41.58 (0.10) 0.72 =	3.11	MJ m ⁻² day ⁻¹	
-	R _n = (17.44 - 3.11) =	14.33	MJ m ⁻² day ⁻¹	
-	G = 0.14 (30.2 - 29.2) =	0.14	MJ m ⁻² day ⁻¹	
	(D) (11.00 0.11)		24	

Radiation (for mont	th = April)		
From Table 2.6 or	J = (for 15 April)	105	-
2.5 or Eq. 21:	Latitude = 13°44'N = (13 + 44/60)=	13.73	°N MJ m ⁻² day ⁻¹
	R _a =	38.06	MJ m ⁻² day ⁻¹
N (Table 2.7 or Eq. 34):	Daylength N =	12.31	hours
-	n/N = (8.5/12.31) =	0.69	-
-	R _S = [0.25 + 0.50 (0.69)] 38.06 =	22.65	MJ m ⁻² day ⁻¹
-	R _{SO} = (0.75 + 2 (2)/100 000) 38.06 =	28.54	MJ m ⁻² day ⁻¹
-	R _S /R _{SO} = (22.65/28.54) =	0.79	-
-	R _{ns} = 0.77 (22.65) =	17.44	MJ m ⁻² day ⁻¹
From Table 2.8:	T _{max} =	34.8	°C
	στ .A =	44.10	MJ m ⁻² day ⁻¹
From Table 2.8:	σT _{max.K} 4 =	25.6	°C
From Table 2.6:	T _{min} =	25.6	-0
	$\sigma T_{min,K}^4 =$	39.06	MJ m ⁻² day ⁻¹
-	$(\sigma T_{\text{max.K}}^4 + \sigma T_{\text{min.K}}^4)/2 = (44.10 + 39.06)/2 =$	41.58	MJ m ⁻² day ⁻¹
For:	e _a =	2.85	kPa
Then:	(0.34-0.14√e _a) =	0.10	-
For:	R _s /R _{so} =	0.79	-
Then:	(1.35 R _S /R _{SO} - 0.35) =	0.72	-
-	R _{nl} = 41.58 (0.10) 0.72 =	3.11	MJ m ⁻² day ⁻¹
-	R _n = (17.44 - 3.11) =	14.33	MJ m ⁻² day ⁻¹
-	G = 0.14 (30.2 - 29.2) =	0.14	MJ m ⁻² day ⁻¹
-	(R ₀ - G) = (14.33 - 0.14) =	14.19	MJ m ⁻² day ⁻¹
-	0.408 (R _n - G) =	5.79	mm/day
Grass reference eva	apotranspiration		
-	0.408 (R _n -G) Δ/[Δ+γ(1+0.34u ₂)] -		
-	(5.79) 0.685 =	3.97	mm/day
-	$900u_2/(T+273)$ (e _s -e _s) $\gamma / [\Delta + \gamma (1+0.34u_2)] =$		
-	5.94(1.57)0.188 =	1.75	mm/day
	ET ₀ = (3.97 + 1.75) =	5.72	mm/day
	= · 0 - fores · · · · · · · · · ·		
The grass reference	e evapotranspiration is 5.7 mm/day.		

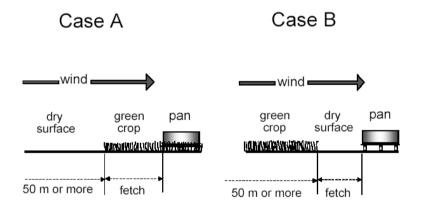
4. Metode Pan Evaporation

Laju evaporasi dari panci yang diisi dengan air sangat mudah sekali untuk diteliti. Dengan tidak adanya hujan, jumlah air yang diuapkan selama periode tertentu (mm/hari) sebanding dengan penurunan air panci pada periode tersebut. Panci membutuhkan pengukuran yang terintegrasi antara efek radiasi, angin, temperatur, dan kelembaban dan penguapan dari permukaan air bebas. Walaupun respon panci terhadap faktor iklim terkadang sama dengan respon tanaman, namun perlu terdapat beberapa faktor yang signifikan yang menyebabkan keduanya berbeda.

Dengan adanya perbedaan antara pan-evaporation dengan permukaan tanaman, kegunaan panci untuk memprediksi ET_{o} untuk periode 10 hari atau lebih lama mungkin dapat mendekati.

Hubungan antara evaporasi panci dan evapotranspirasi refrensi (ET_o) dinyatakan dalam koefisien empiris sebagai berikut :

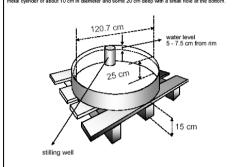
$$ET_o = K_p \cdot E_{pan}$$
, mm/hari


dimana:

ET_o = Evapotranspirasi refrensi (mm/hari)

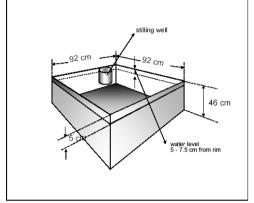
 K_p = Koefisien panci (-)

E_{pan} = Evaporasi panci (mm/hari)


Panci Evaporasi terdiri dari panci kelas A, dan Colorado Sunken Pan. Untuk memilih koefisien panci yang tepat, tidak hanya tergantung dari tipe panci tapi juga tergantung dari penutupan tanah oleh vegetasi pada stasiun pengukuran. Lingkungan sekitarnya seperti kecepatan angin dan kelembaban juga harus diperiksa. Ada dua kondisi panci pengukuran, dimana pada kasus A panci diletakkan pada lingkungan dengan rumput yang pendek dan disekitarnya adalah tanah kosong, sedangkan pada kasus B, panci diletakkan di tanah yang kosong dan disekitarnya terdapat penutupan tanah oleh vegetasi rumput

Kondisi Peletakkan Panci Evaporasi

Koefisien Panci untuk Panci Kelas A dan Panci Colorado Sunken pada berbagai penutupan tanah, kondisi iklim, dan fetch (jarak tutupan permukaan yang teridentifikasi) diberikan pada tabel 5 dan tabel 6. Sedangkan tabel 7, merupakan persamaan regresi yang digunakan untuk menghitung koefisien panci dan diperoleh dari tabel 5 dan 6. Rasio antara Evaporasi yang diperoleh dengan menggunakan Panci Kelas A dan Colorado Sunken Pan pada beberapa kondisi iklim yang berbeda diberikan pada tabel 8.


BOX 12 Description of Class A pan

BOX 13 Description of Colorado sunken pan

The Colorado sunken pan is 92 cm (3 ft) square and 46 cm (18 in) deep, made of 3 mr placed in the ground with the rim 5 cm (2 in) above the soil level. Also, the dimensions 1 m 0.5 m deep are frequently used. The pan is painted with black tar paint. The water level is at or slightly below ground level, i.e., 5-7.5 cm below the rim.

Measurements are taken similarly to those for the Class A pan. Siting and are also similar to those for the Class A pan.

Deskripsi Panci Kelas A dan Colorado Sunken Pan

TABLE 5
Pan coefficients (K_p) for Class A pan for different pan siting and environment and different levels of mean relative humidity and wind speed (FAO Irrigation and Drainage Paper No. 24)

Class A pan		placed i	n short green	cropped	Case B: Pan	placed in	n dry fallow	area
RH mean	area	low	medium	high		low	medium	high
		low < 40	40 -70	high > 70		low < 40	40 -70	high > 70
(%) →	Marin december	< 40	40 -/0	> /0	ME- A	< 40	40 - 70	> /0
	Windward			l	Windward	l		
	side			l	side	l		1
Wind speed	distance of			l	distance of	l		1
(m s ⁻¹)	green crop			l	dry fallow	l		1
	(m)				(m)			
Light	1	.55	.65	.75	1	.7	.8	.85
< 2	10	.65	.75	.85	10	.6	.7	.8
	100	.7	.8	.85	100	.55	.65	.75
	1 000	.75	.85	.85	1 000	.5	.6	.7
Moderate	1	.5	.6	.65	1	.65	.75	.8
2-5	10	.6	.7	.75	10	.55	.65	.7
	100	.65	.75	.8	100	.5	.6	.65
	1 000	.7	.8	.8	1 000	.45	.55	.6
Strong	1	.45	.5	.6	1	.6	.65	.7
5-8	10	.55	.6	.65	10	.5	.55	.65
	100	.6	.65	.7	100	.45	.5	.6
	1 000	.65	.7	.75	1 000	.4	.45	.55
Very strong	1	.4	.45	.5	1	.5	.6	.65
> 8	10	.45	.55	.6	10	.45	.5	.55
	100	.5	.6	.65	100	.4	.45	.5
	1 000	55	6	65	1 000	35	4	45

Pan coefficients (Kp) for Colorado sunken pan for different pan siting and environment and different levels of mean relative humidity and wind speed (FAO Irrigation and Drainage Paper No. 24)

Sunken Colorado	Case A: Pan placed in short green cropped area				Case B: Pan placed in dry fallow area (1)					
RH mean (%) →		low < 40	medium 40 -70	high > 70		low < 40	medium 40 -70	high > 70		
Wind speed (m s ⁻¹)	Windward side distance of green crop (m)				Windward side distance of dry fallow (m)					
Light	1	.75	.75	.8	1	1.1	1.1	1.1		
< 2	10	1.0	1.0	1.0	10	.85	.85	.85		
	≥ 100	1.1	1.1	1.1	100	.75	.75	.8		
					1 000	.7	.7	.75		
Moderate	1	.65	.7	.7	1	.95	.95	.95		
2-5	10	.85	.85	.9	10	.75	.75	.75		
	≥ 100	.95	.95	.95	100	.65	.65	.7		
					1 000	.6	.6	.65		
Strong	1	.55	.6	.65	1	.8	.8	.8		
5-8	10	.75	.75	.75	10	.65	.65	.65		
	≥ 100	.8	.8	.8	100	.55	.6	.65		
					1 000	.5	.55	.6		
Very strong	1	.5	.55	.6	1	.7	.75	.75		
> 8	10	.65	.7	.7	10	.55	.6	.65		
	≥ 100	.7	.75	.75	100	.5	.55	.6		
					1 000	.45	.5	.55		

(1) For extensive areas of bare-fallow soils and no agricultural development, reduce K_{pan} by 20% under hot, windy conditions; by 5-10% for moderate wind, temperature and humidity conditions.

TABLE 7

Range

variables

Pan coefficients (Kn): regression equations derived from Tables 5 and 6 Class A pan with $K_D = 0.108 - 0.0286 \, u_2 + 0.0422 \, ln(FET) + 0.1434 \, ln(RH_{mean})$ green fetch - 0.000631[ln(FET)]² ln(RH_{mean}) $K_p = 0.61 + 0.00341 RH_{mean} - 0.000162 u_2 RH_{mean}$ Class A pan with dry fetch $-0.00000959 u_2 FET + 0.00327 u_2 ln(FET)$ - 0.00289u2 ln(86.4u2) - 0.0106 ln(86.4u2)ln(FET) +0.00063 [ln(FET)]²ln(86.4u₂) Colorado sunken $K_p = 0.87 + 0.119 \ln(FET) - 0.0157 [\ln(86.4u_2)]^2$ pan with fetch green $-0.0019[ln(FET)]^2ln(86.4u_2) + 0.013ln(86.4u_2)$ In(RH_{mean}) - 0.000053In(86.4u₂)In(FET)RH_{mean} Colorado sunken pan with dry fetch ${\rm K_p = 1.145 - 0.080u_2 + 0.000903(u_2)^2 ln(RH_{mean})}$ - 0.0964ln(FET) + 0.0031u₂ln(FET) + 0.0015[ln(FET)]2ln(RH_{mean}) Coefficients and pan coefficient [] average daily wind speed at 2 m height (m s⁻¹) parameters u₂ average daily relative humidity [%] = (RH_{max} + RH_{min})/2 $\mathsf{RH}_{\mathsf{mean}}$

FET

1 m ≤ FET ≤ 1 000 m

30% ≤ RH_{mean} ≤ 84%

1 m s⁻¹ ≤ u₂ ≤ 8 m s⁻¹

TABLE 8
Ratios between the evaporation from sunken pans and a Colorado sunken pan for different climatic conditions and environments (FAO Irrigation and Drainage Paper No. 24)

fetch, or distance of the identified surface type (grass or short green agricultural crop for case A, dry crop or bare soil for case B upwind of the evaporation pan)

(these limits must be observed)

· ·				Ratio E _{pan} mentioned and E _{pan} Colorado									
Climate			Humid-temperate climate										
Ground cover surrounding pan (50 m or more)			Short green cover Dry fallow		Short green cover		Dry fallow						
	Pan area (m ²)												
GI 20 diameter 5 m, depth 2 m ormer Soviet Union) 19.6		1.0		1.1		1.05		1.25					
Sunken pan diameter 12 ft (3.66 m) depth 3.3 ft (Israel)	10.5												
BPI diameter 6 ft (1.83 m), depth 2 ft (0.61 m) (USA)	2.6												
Kenya pan diameter 4 ft (1.22 m) depth 14 in (0.356 m)	1.2												
Australian pan diameter 3 ft (0.91 m) depth 3 ft (0.91 m)	0.7					1.0						1.0	
Symmons pan 6 ft ² (0.56 m ²) depth 2 ft (0.61 m)	0.6												
Aslyng pan 0.33 m ² , depth 1 m (Denmark)	0.3								1	.0			
GGI 3000 diameter 0.618 cm, depth 60-80 cm (former Soviet Union)	0.3												
Sunken pan diameter 50 cm, depth 25 cm (Netherlands)	0.2		1	.0	0	.95			1.0		0	.95	

EXAMPLE 21

Determination of ET_O from pan evaporation using tables

Given the daily evaporation data for the first week of July for a Class A pan installed in a green area surrounded by short irrigated field crops: 8.2, 7.5, 7.6, 6.8, 7.6, 8.9 and 8.5 mm/day. In that period the mean wind speed is 1.9 m/s and the daily mean relative humidity is 73%. Determine the 7-day average reference evapotranspiration.

Pan is installed on a green surface: Case A

Pan is surrounded by irrigated crops: Wind speed is light: Relative humidity is high:	fetch _{max} = u < RHmean >	1 000 2 70	m m/s %
From Table 5 (for above conditions):	K _n =	0.85	-
- From Eq. 55:	E _{pan} = (8.2+7.5+7.6+6.8+7.6+8.9+8.5)/7 = ET ₀ = 0.85 (7.9) =	7.9 6.7	mm/day mm/day

The 7-day average of the crop reference evapotranspiration is 6.7 mm/day

Alat dan Bahan

Data Klimatologi bulanan yang mencakup ; temperatur maksimum, temperatur minimum, (atau temperatur rata-rata sebagai penganti), kecepatan angin, fraksi hari cerah, ketinggian tanah (altitude), Lokasi (Latitude) suatu daerah tertentu

Metode Praktikum

Praktikum dilakukan dengan mencari nilai evaporasi atau evapotranspirasi menggunakan beberapa metode yang diminta pada paragraf berikut :

Sebuah lokasi terletak pada 40° 30′ North, dan ketinggian (altitude) 120 mdpl. Data-data iklim pada bulan Oktober, November, dan Desember diberikan pada tabel berikut :

Bulan	Suhu rata-rata harian t , °C	Kelembaban rata-rata h	Kecepatan angin u_2 , m/s	Fraksi hari cerah n/D		
	(1)	(2)	(3)	(4)		
Oktober	14.4	0.54	0.8	0.41		
November	8.3	0.20	1.3	0.28		
Desember	3.9	0.56	1.7	0.25		

Tentukan evapotransporasi dengan metode

- a) Blaney Criddle (gunakan kolom (1) untuk T, dan Tabel 1 untuk nilai p)
- b) Radiasi (gunakan kolom (1) untuk Trata-rata, kolom (2) untuk RH, dan kolom (3) untuk U, kolom 4 untuk n/N)
- c) Nomogram Penman (gunakan kolom 1, 2, 3, dan 4, serta Tabel 5 untuk nilai R_A , gunakan nomogram Penman di Gambar 3)

(meskipun metode Penman-Monteith dan Panci Evaporasi diberikan pada teori, pada praktikum ini tidak diminta mengerjakan)

PUSTAKA

Dooren, J. 1977. Guidelines for Predicting Crop Water Requirement. FAO Irrigation and Drainage Paper.

Allen R.G., Luis S.P., Dirk R., Martin S. 1990. Crop Evapotranspiration, Guidelines for Predicting Crop Water Requirement. FAO Irrigation and Drainage Paper