
MapReduce

The new world of Big Data
(programming model)

Overview

• Background

• Google MapReduce

• The Hadoop Ecosystem
– Core components:

• Hadoop MapReduce

• Hadoop Distributed File System (HDFS)

– Other selected Hadoop projects:
• HBase

• Hive

• Pig

2

The Computational Setting
• Computations that need the power of many computers

– large datasets

– use of thousands of CPUs in parallel

• Big data management, storage, and analytics
– cluster as a computer

3

MapReduce & Hadoop: Historical Background
• 2003: Google publishes about its cluster architecture & distributed file system (GFS)

• 2004: Google publishes about its MapReduce programming model used on top of
GFS
– both GFS and MapReduce are written in C++ and are closed-source, with Python and Java APIs

available to Google programmers only

• 2006: Apache & Yahoo! -> Hadoop & HDFS
– open-source, Java implementations of Google MapReduce and GFS with a diverse set of APIs

available to public

– evolved from Apache Lucene/Nutch open-source web search engine (Nutch MapReduce and
NDFS)

• 2008: Hadoop becomes an independent Apache project
– Yahoo! uses Hadoop in production

• Today: Hadoop is used as a general-purpose storage and analysis platform for big
data
– other Hadoop distributions from several vendors including EMC, IBM, Microsoft, Oracle,

Cloudera, etc.

– many users (http://wiki.apache.org/hadoop/PoweredBy)

– research and development actively continues…

4

Google: The Data Challenge

• Jeffrey Dean, Google Fellow, PACT’06 keynote speech:
– 20+ billion web pages x 20KB = 400 TB

– One computer can read 30-35 MB/sec from disk
• ~ 4 months to read the web

– ~ 1,000 hard drives just to store the web

– Even more to “do” something with the data

– But: Same problem with 1,000 machines < 3 hours

• MapReduce CACM’08 article:
– 100,000 MapReduce jobs executed in Google every day

– Total data processed > 20 PB of data per day

5

Google Cluster Architecture: Key Ideas

• Single-thread performance less important than scale-out
– For large problems, total throughput/$ is more important than peak performance.

• Stuff breaks
– If you have 1 server, it may stay up three years (1,000 days).

– If you have 10,000 servers, expect to lose 10 per day.

• “Ultra-reliable” hardware doesn’t really help
– At large scales, the most reliable hardware still fails, albeit less often

• Software still needs to be fault-tolerant

• Commodity machines without fancy hardware give better performance/$

Have a reliable computing infrastructure from clusters of unreliable commodity PCs.
Replicate services across many machines to increase request throughput and

availability.
Favor price/performance over peak performance.

6

Google File System (GFS) Architecture

• Files divided into fixed-sized chunks (64 MB)
– Each chunk gets a chunk handle from the master
– Stored as Linux files

• One master
– Maintains all file system metadata
– Talks to each chunkserver periodically

• Multiple chunkservers
– Store chunks on local disks
– No caching of chunks (not worth it)

• Multiple clients
– Clients talk to the master for metadata operations
– Metadata can be cached at the clients
– Read / write data from chunkservers

7

• Single master, multiple chunkservers

• To overcome single-point of failure & scalability bottleneck:
– Use shadow masters

– Minimize master involvement (large chunks; use only for metadata)

GFS Architecture

8

Overview of this Lecture Module

• Background

• Google MapReduce

• The Hadoop Ecosystem
– Core components:

• Hadoop MapReduce

• Hadoop Distributed File System (HDFS)

– Other selected Hadoop projects:
• HBase

• Hive

• Pig

9

MapReduce

• a software framework first introduced by
Google in 2004 to support parallel and fault-
tolerant computations over large data sets on
clusters of computers

• based on the map/reduce functions commonly
used in the functional programming world

10

MapReduce in a Nutshell

• Given:
– a very large dataset

– a well-defined computation task to be performed on elements of
this dataset (preferably, in a parallel fashion on a large cluster)

• MapReduce framework:
– Just express what you want to compute (map() & reduce()).

– Don’t worry about parallelization, fault tolerance, data
distribution, load balancing (MapReduce takes care of these).

– What changes from one application to another is the actual
computation; the programming structure stays similar.

11

MapReduce in a Nutshell

• Here is the framework in simple terms:
– Read lots of data.

– Map: extract something that you care about from each record.

– Shuffle and sort.

– Reduce: aggregate, summarize, filter, or transform.

– Write the results.

• One can use as many Maps and Reduces as needed to
model a given problem.

12

MapReduce vs. Traditional RDBMS

13

MapReduce Traditional RDBMS

Data size Petabytes Gigabytes

Access Batch Interactive and batch

Updates Write once, read many
times

Read and write many
times

Structure Dynamic schema Static schema

Integrity Low High (normalized data)

Scaling Linear Non-linear (general SQL)

Functional Programming Foundations

• map in MapReduce  map in FP

• reduce in MapReduce  fold in FP

• Note: There is no precise 1-1 correspondence,
but the general idea is similar.

14

map() in Haskell
• Create a new list by applying f to each element of the input list.

• Definition of map:

map :: (a  b)  [a]  [b]-- type of map

map f [] = [] -- the empty list case

map f (x:xs) = f x : map f xs -- the non-empty list case

• Example: Double all numbers in a list.

Haskell-prompt > map ((*) 2) [1, 2, 3]

[2, 4, 6]

15

f f f f f f

Implicit Parallelism in map()

• In a purely functional setting, an element of a list being
computed by map cannot see the effects of the
computations on other elements.

• If the order of application of a function f to elements in
a list is commutative, then we can reorder or parallelize
execution.

• This is the “secret” that MapReduce exploits.

16

fold() in Haskell
• Move across a list, applying a function f to each

element plus an accumulator. f returns the next
accumulator value, which is combined with the next
element of the list.

• Two versions: fold left & fold right

17

accumulators

f f f f f returned

initial

fold() in Haskell
• Definition of fold left:

foldl :: (b  a  b)  b  [a]  b -- type of foldl

foldl f y [] = y -- the empty list case

foldl f y (x:xs) = foldl f (f y x) xs -- the non-empty list case

• Definition of fold right:

foldr :: (a  b  b)  b  [a]  b -- type of foldr

foldr f y [] = y -- the empty list case

foldr f y (x:xs) = f x (foldr f y xs) -- the non-empty list case

• Example: Compute the sum of all numbers in a list.

Haskell-prompt > foldl (+) 0 [1, 2, 3] foldl (+) 0 [1, 2, 3]

6  (((0 + 1) + 2) + 3)

  6

18

reduce() in Haskell

• reduce is a type-specialized version of fold.

• Definition of reduce:

reduce :: (a  a  a)  a  [a]  a -- type of reduce

reduce = foldl -- definition of reduce

19

MapReduce Basic Programming Model

• Transform a set of input key-value pairs to a
set of output values:
– Map: (k1, v1)  list(k2, v2)

– MapReduce library groups all intermediate pairs
with same key together.

– Reduce: (k2, list(v2))  list(v2)

20

MapReduce Canonical Example
“Count word occurrences in a set of documents.”

map (String key, String value):
// key: document name
// value: document contents
for each word w in value:

EmitIntermediate(w, "1");

reduce (String key, Iterator values):
// key: a word
// values: a list of counts
int result = 0;
for each v in values:

result += ParseInt(v);
Emit(AsString(result));

21

map(k1, v1)  list(k2, v2) reduce(k2, list(v2))  list(v2)

MapReduce Parallelization

• Multiple map() functions run in parallel, creating
different intermediate values from different input data
sets.

• Multiple reduce() functions also run in parallel, each
working on a different output key.

• All values are processed independently.

• Bottleneck: The reduce phase can’t start until the map
phase is completely finished.

22

MapReduce Parallel Processing Model

23

Data store 1 Data store n
map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

map

(key 1,
values...)

(key 2,
values...)

(key 3,
values...)

Input key*value
pairs

Input key*value
pairs

== Barrier == : Aggregates intermediate values by output key

reduce reduce reduce

key 1,
intermediate

values

key 2,
intermediate

values

key 3,
intermediate

values

final key 1
values

final key 2
values

final key 3
values

...

MapReduce Execution Overview

24

Map
phase

Reduce
phase

Input
files

Output
files

Intermediate files
(on local disks)

MapReduce Scheduling

• One master, many workers
– Input data split into M map tasks (typically 64 MB (~ chunk size in GFS))

– Reduce phase partitioned into R reduce tasks (hash(k) mod R)

– Tasks are assigned to workers dynamically

• Master assigns each map task to a free worker
– Considers locality of data to worker when assigning a task

– Worker reads task input (often from local disk)

– Worker produces R local files containing intermediate k/v pairs

• Master assigns each reduce task to a free worker
– Worker reads intermediate k/v pairs from map workers

– Worker sorts & applies user’s reduce operation to produce the output
25

Choosing M and R

• M = number of map tasks, R = number of reduce tasks

• Larger M, R: creates smaller tasks, enabling easier load balancing
and faster recovery (many small tasks from failed machine)

• Limitation: O(M+R) scheduling decisions and O(M*R) in-memory
state at master
– Very small tasks not worth the startup cost

• Recommendation:
– Choose M so that split size is approximately 64 MB

– Choose R a small multiple of the number of workers; alternatively
choose R a little smaller than #workers to finish reduce phase in one
“wave”

26

MapReduce Fault Tolerance
• On worker failure:

– Master detects failure via periodic heartbeats.

– Both completed and in-progress map tasks on that worker
should be re-executed (→ output stored on local disk).

– Only in-progress reduce tasks on that worker should be re-
executed (→ output stored in global file system).

– All reduce workers will be notified about any map re-executions.

• On master failure:
– State is check-pointed to GFS: new master recovers & continues.

• Robustness:
– Example: Lost 1600 of 1800 machines once, but finished fine.

27

MapReduce Data Locality

• Goal: To conserve network bandwidth.

• In GFS, data files are divided into 64 MB blocks and 3
copies of each are stored on different machines.

• Master program schedules map() tasks based on the
location of these replicas:
– Put map() tasks physically on the same machine as one of

the input replicas (or, at least on the same rack / network
switch).

• This way, thousands of machines can read input at
local disk speed. Otherwise, rack switches would
limit read rate.

28

Stragglers & Backup Tasks

• Problem: “Stragglers” (i.e., slow workers) significantly
lengthen the completion time.

• Solution: Close to completion, spawn backup copies of
the remaining in-progress tasks.
– Whichever one finishes first, “wins”.

• Additional cost: a few percent more resource usage.

• Example: A sort program without backup = 44% longer.

29

Other Practical Extensions

• User-specified combiner functions for partial combination
within a map task can save network bandwidth (~ mini-reduce)
– Example: Word Count?

• User-specified partitioning functions for mapping intermediate
key values to reduce workers (by default: hash(key) mod R)
– Example: hash(Hostname(urlkey)) mod R

• Ordering guarantees: Processing intermediate k/v pairs in
increasing order
– Example: reduce of Word Count outputs ordered results.

• Custom input and output format handlers

• Single-machine execution option for testing & debugging

30

Basic MapReduce Program Design

• Tasks that can be performed independently on a data
object, large number of them: Map

• Tasks that require combining of multiple data
objects: Reduce

• Sometimes it is easier to start program design with
Map, sometimes with Reduce

• Select keys and values such that the right objects end
up together in the same Reduce invocation

• Might have to partition a complex task into multiple
MapReduce sub-tasks

31

	Slide 1
	Overview
	The Computational Setting
	MapReduce & Hadoop: Historical Background
	Google: The Data Challenge
	Google Cluster Architecture: Key Ideas
	Google File System (GFS) Architecture
	GFS Architecture
	Overview of this Lecture Module
	MapReduce
	MapReduce in a Nutshell
	MapReduce in a Nutshell
	MapReduce vs. Traditional RDBMS
	Functional Programming Foundations
	map() in Haskell
	Implicit Parallelism in map()
	fold() in Haskell
	fold() in Haskell
	reduce() in Haskell
	MapReduce Basic Programming Model
	Slide 21
	MapReduce Parallelization
	MapReduce Parallel Processing Model
	MapReduce Execution Overview
	MapReduce Scheduling
	Choosing M and R
	MapReduce Fault Tolerance
	MapReduce Data Locality
	Stragglers & Backup Tasks
	Other Practical Extensions
	Basic MapReduce Program Design

