
Hadoop

The new world of Big Data
(programming model)

Overview

• Background

• Google MapReduce

• The Hadoop Ecosystem
– Core components:
• Hadoop MapReduce

• Hadoop Distributed File System (HDFS)

– Other selected Hadoop projects:
• HBase

• Hive

• Pig

2

What is Hadoop?

• Hadoop is an ecosystem of tools for processing
“Big Data”.

• Hadoop is an open source project.

3

The Hadoop Family
MapReduce Distributed computation framework (data processing model

and execution environment)

HDFS Distributed file system

HBase Distributed, column-oriented database

Hive Distributed data warehouse

Pig Higher-level data flow language and parallel execution
framework

ZooKeeper Distributed coordination service

Avro Data serialization system (RPC and persistent data storage)

Sqoop Tool for bulk data transfer between structured data stores
(e.g., RDBMS) and HDFS

Oozie Complex job workflow service

Chukwa System for collecting management data

Mahout Machine learning and data mining library

BigTop Packaging and testing

4

Hadoop: Architectural Design Principles

• Linear scalability
– More nodes can do more work within the same time

– Linear on data size, linear on compute resources

• Move computation to data
– Minimize expensive data transfers

– Data is large, programs are small

• Reliability and Availability: Failures are common

• Simple computational model (MapReduce)
– Hides complexity in efficient execution framework

• Streaming data access (avoid random reads)
– More efficient than seek-based data access

5

A Typical Hadoop Cluster Architecture

6

cluster
switch

rack
switch

…

~ 30-40 servers per rack

1 GB

3-4 GB

Hadoop Main Cluster Components

• HDFS daemons
– NameNode: namespace and block management (~ master in GFS)

– DataNodes: block replica container (~ chunkserver in GFS)

• MapReduce daemons
– JobTracker: client communication, job scheduling, resource

management, lifecycle coordination (~ master in Google MR)

– TaskTrackers: task execution module (~ worker in Google MR)

NameNode JobTracker

TaskTracker TaskTracker TaskTracker

DataNodeDataNodeDataNode
7

MapReduce Job Execution in Hadoop

8

Job Submission (1-4)

• Client submits MapReduce job through
Job.submit() call

• Job submission process
– Get new job ID from JobTracker

– Determine input splits for job

– Copy job resources (job JAR file, configuration file,
computed input splits) to HDFS into directory named
after the job ID

– Inform JobTracker that job is ready for execution

9

Job Initialization (5-6)

• JobTracker puts ready job into internal queue

• Job scheduler picks job from queue
– Initializes it by creating job object

– Creates list of tasks
• One map task for each input split

• Number of reduce tasks determined by
mapred.reduce.tasks property in Job, which is set by
setNumReduceTasks()

• Tasks need to be assigned to worker nodes

10

Task Assignment (7)

• TaskTrackers send heartbeats to JobTracker
– Indicate if ready to run new tasks

– Number of “slots” for tasks depends on number of cores
and memory size

• JobTracker replies with new task
– Chooses task from first job in priority-queue
• Chooses map tasks before reduce tasks

• Chooses map task whose input split location is closest to machine
running the TaskTracker instance (data-local < rack-local < off-
rack; data locality optimization)

– Could also use other scheduling policy

11

Task Execution (8-10)

• TaskTracker copies job JAR and other
configuration data from HDFS to local disk

• Creates local working directory

• Creates TaskRunner instance

• TaskRunner launches new JVM (or reuses one
from another task) to execute the JAR

12

Monitoring Job Progress

• Tasks report progress to TaskTracker

• TaskTracker includes task progress in
heartbeat message to JobTracker

• JobTracker computes global status of job
progress

• JobClient polls JobTracker regularly for status

• Visible on console and web UI

13

Handling Task Failures

• Error reported to TaskTracker and logged

• Hanging task detected through timeout

• JobTracker will automatically re-schedule
failed tasks
– Tries up to mapred.map.max.attempts many times

(similar for reduce)

– Job is aborted when task failure rate exceeds
mapred.max.map.failures.percent (similar for
reduce)

14

Handling TaskTracker & JobTracker Failures

• TaskTracker failure detected by JobTracker
from missing heartbeat messages
– JobTracker re-schedules map tasks and not

completed reduce tasks from that TaskTracker

• Hadoop cannot deal with JobTracker failure
– Could use Google’s proposed JobTracker take-over

idea, using ZooKeeper to make sure there is at
most one JobTracker

– Improvements in progress in newer releases…

15

Moving Data from Mappers to Reducers

• “Shuffle & Sort” phase
– synchronization barrier between map and reduce phase

– one of the most expensive parts of a MapReduce
execution

• Mappers need to separate output intended for
different reducers

• Reducers need to collect their data from all
mappers and group it by key
– keys at each reducer are processed in order

16

Shuffle & Sort Overview

17

Hadoop Assessment

• Very I/O intensive
– write intermediate results to disk

– great for fault tolerance, but poor performance

• Idea: Keep intermediate results in memory
– Resilient Data Sets: lineage of how to recompute

– Key idea of Spark (UC Berkeley, AMP Lab)

– Much better performance, okay fault tolerance

• Many other wrinkles in Hadoop implementation
– expect 10x performance with RDBMS

18

Combiner Functions

• Pre-reduces mapper output before transfer to
reducers (to minimize data transferred)

• Does not change program semantics

• Usually same as reduce function, but has to have
same output type as Map

• Works only for certain types of reduce functions
(commutative and associative (a.k.a.
distributive))
– E.g.: max(5, 4, 1, 2) = max(max(5, 1), max(4, 2))

19

Partitioner Functions

• Partitioner determines which keys are assigned
to which reduce task

• Default HashPartitioner essentially assigns keys
randomly

• Create custom partitioner by implementing your
own getPartition() method of Partitioner in
org.apache.hadoop.mapreduce

20

MapReduce Development Steps

• Write Map and Reduce functions
– Create unit tests

• Write driver program to run a job
– Can run from IDE with small data subset for testing

– If test fails, use IDE for debugging

– Update unit tests and Map/Reduce if necessary

• Once program works on small test set, run it on full
data set
– If there are problems, update tests and code accordingly

• Fine-tune code, do some profiling

21

Local (Standalone) Mode

• Runs same MapReduce user program as cluster
version, but does it sequentially on a single
machine

• Does not use any of the Hadoop daemons

• Works directly with local file system
– No HDFS, hence no need to copy data to/from HDFS

• Great for development, testing, initial debugging

22

Pseudo-Distributed Mode

• Still runs on a single machine, but simulating a real
Hadoop cluster
– Simulates multiple nodes

– Runs all daemons

– Uses HDFS

• For more advanced testing and debugging

• You can also set this up on your laptop

23

Programming Language Support

• Java API (native)

• Hadoop Streaming API
– allows writing map and reduce functions in any

programming language that can read from standard
input and write to standard output

– Examples: Ruby, Python

• Hadoop Pipes API
– allows map and reduce functions written in C++ using

sockets to communicate with Hadoop’s TaskTrackers

24

	Slide 1
	Overview
	What is Hadoop?
	The Hadoop Family
	Hadoop: Architectural Design Principles
	A Typical Hadoop Cluster Architecture
	Hadoop Main Cluster Components
	MapReduce Job Execution in Hadoop
	Job Submission (1-4)
	Job Initialization (5-6)
	Task Assignment (7)
	Task Execution (8-10)
	Monitoring Job Progress
	Handling Task Failures
	Handling TaskTracker & JobTracker Failures
	Moving Data from Mappers to Reducers
	Shuffle & Sort Overview
	Hadoop Assessment
	Combiner Functions
	Partitioner Functions
	MapReduce Development Steps
	Local (Standalone) Mode
	Pseudo-Distributed Mode
	Programming Language Support

