Big Data

Data Warehouse

Goal of this Module

- Understand how Big Data has been done so far
 - i.e., how to exploit relational database systems
 - which data models to use
 - some interesting algorithms

• Also, understand the limitations and why we need new technology

- you need to understand the starting point!

Puzzle of the Day

- There is a jazz festival in Montreux.
- Make sure Migros Montreux has enough beer.
- This is a Big Data problem!
 - how much beer do we need in each store?
- How does Migros solve that problem today?
 - data warehouses (today)
- How could Migros solve that problem in future?
 - data warehouses + event calendar + Facebook + …
 - (coming weeks)

Selected References on Data Warehouses

• General

- Chaudhuri, Dayal: An Overview of Data Warehousing and OLAP Technology. SIGMOD Record 1997
- Lehner: Datenbanktechnologie f
 ür Data Warehouse Systeme. Dpunkt Verlag 2003
- (...)
- New Operators and Algorithms
 - Agrawal, Srikant: Fast Algorithms for Association Rule Mining. VLDB 1994
 - Barateiro, Galhardas: A Survey of Data Quality Tools. Datenbank Spektrum 2005
 - Börszonyi, Kossmann, Stocker: Skyline Operator. ICDE 2001
 - Carey, Kossmann: On Saying Enough Already in SQL. SIGMOD 1997
 - Dalvi, Suciu: Efficient Query Evaluation on Probabilistic Databases. VLDB 2004
 - Gray et al.: Data Cube... ICDE 1996
 - Helmer: Evaluating different approaches for indexing fuzzy sets. Fuzzy Sets and Systems 2003
 - Olken: Database Sampling A Survey. Technical Report LBL.

- (...)

History of Databases

- Age of Transactions (70s 00s)
 - Goal: reliability make sure no data is lost
 - 60s: IMS (hierarchical data model)
 - 80s: Oracle (relational data model)
- Age of Business Intelligence (95 -)
 - Goal: analyze the data -> make business decisions
 - Aggregate data for boss. Tolerate imprecision!
 - SAP BW, Microstrategy, Cognos, ... (rel. model)
- Age of "Big Data" and "Data for the Masses" – Goal: everybody has access to everything, M2M – Google (text), Cloud (XML, JSON: Services)

Some Selected Topics

- Motivation and Architecture
- SQL Extensions for Data Warehousing (DSS)
- Algorithms and Query Processing Techniques
- ETL, Virtual Databases (Data Integration)
- Parallel Databases
- Column Stores, Vector Databases
- Data Mining
- Probabilistic Databases
- Temporal Databases
- This is a whole class for itself (Spring semester)
 - we will only scratch the surface here

OLTP vs. OLAP

- OLTP Online Transaction Processing
 - Many small transactions (point queries: UPDATE or INSERT)
 - Avoid redundancy, normalize schemas
 - Access to consistent, up-to-date database
- OLTP Examples:
 - Flight reservation (see IS-G)
 - Order Management, Procurement, ERP
- Goal: 6000 Transactions per second (Oracle 1995)

OLTP vs. OLAP

- OLAP Online Analytical Processing
 - Big queries (all the data, joins); no Updates
 - Redundancy a necessity (Materialized Views, specialpurpose indexes, de-normalized schemas)
 - Periodic refresh of data (daily or weekly)
- OLAP Examples
 - Management Information (sales per employee)
 - Statistisches Bundesamt (Volkszählung)
 - Scientific databases, Bio-Informatics
- Goal: Response Time of seconds / few minutes

OLTP vs. OLAP (Water and Oil)

- Lock Conflicts: OLAP blocks OLTP
- Database design:
 - OLTP normalized, OLAP de-normalized
- Tuning, Optimization
 - OLTP: inter-query parallelism, heuristic optimization
 - OLAP: intra-query parallelism, full-fledged optimization
- Freshness of Data:
 - OLTP: serializability
 - OLAP: reproducability
- Precision:
 - OLTP: ACID
 - OLAP: Sampling, Confidence Intervals

Solution: Data Warehouse

- Special Sandbox for OLAP
- Data input using OLTP systems
- Data Warehouse aggregates and replicates data (special schema)
- New Data is *periodically* uploaded to Warehouse
- Old Data is deleted from Warehouse
 - Archiving done by OLTP system for legal reasons

Limitations of State of the Art

Data Warehouses in the real World

- First industrial projects in 1995
- At beginning, 80% failure rate of projects
- Consultants like Accenture dominate market
- Why difficult: Data integration + cleaning, poor modeling of business processes in warehous
- Data warehouses are expensive (typically as expensive as OLTP system)
- Success Story: WalMart 20% cost reduction because of Data Warehouse (just in time...)

Products and Tools

- Oracle 11g, IBM DB2, Microsoft SQL Server, ...
 All data base vendors
- SAP Business Information Warehouse (Hana)
 ERP vendors
- MicroStrategy, Cognos
 - Specialized vendors
 - "Web-based EXCEL"
- Niche Players (e.g., Btell)

– Vertical application domain

ETL Process

- Major Cost Factors of Data Warehousing
 - define schema / data model (next)
 - define ETL process

ETL Process

- extract: suck out the data from OLTP system
- transform: clense it, bring it into right format
- load: add it to the data warehouse

• Staging areas

- modern data warehouses keep results at all stages

Some Details

- Extract
 - easy, if OLTP is a relational database
 - (use triggers, replication facilities, etc.)
 - more difficult, if OLTP data comes from file system
- Transform
 - data clensing: can be arbitrary complicated
 - machine learning, workflow with human input, ...
 - structures: many tools that generate code
- Load
 - use bulkloading tools from vendors

Some Considerations

- When to ETL data?
 - freshness: periodically vs. continuously
 - consistency: do we need to transact the ETLs
- Granularity of ETL?
 - individual tuples vs. batches
 - cost / freshness / quality tradeoffs
 - often a batch can be better clensed
- Infrastructure?
 - ETL from same machine or even same DB
 - workload / performance separation vs. cost

ETL vs. Big Data

- ETL is the exact opposite of "modern" Big Data
 - "speed": does not really work for fast data
 - philosophy: change question -> change ETL workflow
- Big Data prefers in-situ processing
 - "volume": not all data is worth ETLing
 - "statistics": error may be part of the signal (!)
 - "cost:" why bother if you can have it all in one
 - products like SAP Hana also go into this direction
 - "diversity:" increases complexity of ETL process
- But, Big Data has no magic with regard to quality
 - and ETL great if investment is indeed worth-while
 - valuable data vs. mass data

Star Schema (relational)

Fact Table (Order)

No.	Cust.	Date	•••	POS	Price	Vol.	TAX
001	Heinz	13.5.	•••	Mainz	500	5	7.0
002	Ute	17.6.	•••	Köln	500	1	14.0
003	Heinz	21.6.	•••	Köln	700	1	7.0
004	Heinz	4.10.	•••	Mainz	400	7	7.0
005	Karin	4.10.	•••	Mainz	800	3	0.0
006	Thea	7.10.	•••	Köln	300	2	14.0
007	Nobbi	13.11.	•••	Köln	100	5	7.0
008	Sarah	20.12	•••	Köln	200	4	7.0

Fact Table

- Structure:
 - key (e.g., Order Number)
 - Foreign key to all dimension tables
 - measures (e.g., Price, Volume, TAX, ...)
- Store moving data (Bewegungsdaten)
- Very large and normalized

Dimension Table (PoS)

Name	Manager	City	Region	Country	Tel.
Mainz	Helga	Mainz	South	D	1422
Köln	Vera	Hürth	South	D	3311

- De-normalized: City -> Region -> Country
 - Avoid joins
- fairly small and constant size
- Dimension tables store *master data (Stammdaten)*
- Attributes are called *Merkmale* in German

Snowflake Schema

- If dimension tables get too large
 Partition the dimension table
- Trade-Off
 - Less redundancy (smaller tables)
 - Additional joins needed
- Exercise: Do the math!

Typical Queries

- Select by Attributes of Dimensions

 E.g., region = "south"
- Group by Attributes of Dimensions

 E.g., region, month, quarter
- Aggregate on measures
 E.g., sum(price * volumen)

Example

SELECT f.region, z.month, sum(a.price * a.volume)
FROM Order a, Time z, PoS f
WHERE a.pos = f.name AND a.date = z.date
GROUP BY f.region, z.month

South	May	2500
North	June	1200
South	October	5200
North	October	600

Star Schema vs. Big Data

- Star Schema designed for specific questions
 - define "metrics" and "dimensions" upfront
 - thus, define questions you can ask upfront
 - great for operational BI
 - bad for ad-hoc questions (e.g., disasters)
 - breaks philosophy of Big Data (collect, then think)
 - e.g., health record: is "disease" metric or dimension?
- Poor on diversity
 - even if you know all the questions upfront, you may end up with multiple Star schemas

Drill-Down und Roll-Up

- Add attribute to GROUP BY clause

 More detailed results (e.g., more fine-grained results)
- Remove attribute from GROUP BY clause – More coarse-grained results (e.g., big picture)
- GUIs allow "Navigation" through Results
 - Drill-Down: more detailed results
 - Roll-Up: less detailed results
- Typical operation, drill-down along hierarchy:

– E.g., use "city" instead of "region"

Data Cube

North South all

Moving Sums, ROLLUP

- Example: GROUP BY ROLLUP(country, region, city) Give totals for all countries and regions
- This can be done by using the ROLLUP Operator
- Attention: The order of dimensions in the GROUP BY clause matters!!!
- Again: Spreadsheets (EXCEL) are good at this
- The result is a table! (Completeness of rel. model!)

ROLLUP alla IBM UDB

SELECT Country, Region, City, sum(price*vol)
FROM Orders a, PoS f
WHERE a.pos = f.name
GROUP BY ROLLUP(Country, Region, City)
ORDER BY Country, Region, City;

Also works for other aggregate functions; e.g., avg().

Result of ROLLUP Operator

D	North	Köln	1000
D	North	(null)	1000
D	South	Mainz	3000
D	South	München	200
D	South	(null)	3200

Summarizability (Unit)

- Legal Query SELECT product, customer, unit, sum(volume) FROM Order GROUP BY product, customer, unit;
- Legal Query (product -> unit) SELECT product, customer, sum(volume) FROM Order GROUP BY product, customer;
- Illegal Query (add "kg" to "m")!!! SELECT customer, sum(volume) FROM Order GROUP BY customer;

Summarizability (de-normalized data)

Region	Customer	Product	Volume	Populat.
South	Heinz	Balls	1000	3 Mio.
South	Heinz	Nets	500	3 Mio.
South	Mary	Balls	800	3 Mio.
South	Mary	Nets	700	3 Mio.
North	Heinz	Balls	1000	20 Mio.
North	Heinz	Nets	500	20 Mio.
North	Mary	Balls	800	20 Mio.
North	Mary	Nets	700	20 Mio.

Customer, Product -> Revenue Region -> Population

Summarizability (de-normalized data)

• What is the result of the following query?

SELECT region, customer, product, sum(volume) FROM Order GROUP BY ROLLUP(region, customer, product);

- All off-the-shelf databases get this wrong!
- Problem: Total Revenue is 3000 (not 6000!)
- BI Tools get it right: keep track of functional dependencies
- Problem arises if reports involve several unrelated measures.