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Chapter 3 Renewal Theory
3.1. Introduction

A Poisson process can be defined as a counting process for which the interarrival times are iid with an
exponential distribution. A renewal process is more general counting process than Poisson process, which is

defined as below.

Definition 3.1. (Renewal Process) A counting process for which the interarrival times are iid with an arbitrary

distribution is said to be a renewal process.

An event is called a renewal if upon its occurrence everything starts over again probabilistically. Let X, be the

time to the first renewal and let X, (n=2,3,...) be the time between (n-1)st renewal and n-th renewal. Assume

that X, (n=1,2,...) are iid random variables with distribution function of F. To be nontrivial, assume that
F0)=P{X, =0} <1.

Let

u=ELX, 1= [ xdF (v

which will be positive. Define the time of the n-th renewal by
Sn = Z Xi
i=1

Let N(t) be the number of renewals by time t so that
N(t)=max{n:S§, <t}.

Then, the counting process {N(t), t=0} will be a renewal process.

Example 3.1. Consider a component that is used continuously with replacements. Let Y be the lifetime of the
component, which is random with distribution function of G. The component is replaced by a new one upon
failure or at a fixed time period T, whichever comes first. (This replacement policy is called an age
replacement.) Then, each replacement will be a renewal and so counting the number of replacements leads to a
renewal process. An interarrival time X will be Y or T depending on whether the lifetime is shorter than T or not.

That is,
Y ifY<T

X =min(Y,T) =
T ifY>T

The mean interarrival time is obtained by

0 . T T
y=EmmﬂnruzﬁfammYJv>xwx=LPW>xyh=£)G%mdm
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3.2. Distribution of the Number of Renewals
Suppose we are interested in the distribution of N(t). The following result holds.

Proposition 3.1. For a renewal process {N(t), t>0} with interarrival time distribution of F,
PIN@®)=ny=F" ()-F"V (1), n=0,1,...
where F s n-fold convolution of F with F© =1.
(proof) The event {N(t) > n} is equivalent to the event {S, <t}. So,
P{N(t)zn}=P{S, <ti=F" ().

Therefore,
P{N(t)=n} = P{N()=n}—P{N@) = n+1} = F™ ()= F " ().

Definition 3.2. Let m(t) = E[N(t)]. Then m(t) is called a renewal function.

Proposition 3.2. The renewal function is given by
m(t) = ZF(”) ).
n=1

(proof)
m(t) = E[N(1)] = i P{N(t)=n} = i F™@).

n=1 n=1

The second equality holds since N(t) is a nonnegative random variable.

Example 3.2. Consider a renewal process whose interarrival time follows iid with uniform distribution between
0 and 1. Find the renewal function for 0 <t < 1.

(Solution) For 0 <t < 1 the n-fold convolution of F is given by

FO@ =12 n=12,..
n!

which can be shown from the mathematical induction. Note that for 0 <t <1
n—1

‘
F(n+1)(t):P{Sn+l ﬁf}:jp{sml <t|S, =x} Y
0

(n—1)!
" xn—l

:.[OP{X,HI St- e
" xn—l

=Io(t—x) (n—l)!dx
[n+l

BTSN

Therefore, the renewal function for 0 <t < 1 is given by
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o0

m(t) = ZF(”)(t) = itn_': e —1.
n=1 """

n=1
So, the mean number of renewals to occur by time t=0.5 is 0.6487 and the mean number by t=1 is 1.7183 while

the mean interarrival time is 0.5.

It can be shown that the renewal function m(t), 0 <t < oo, uniquely determines the interarrival time distribution F.

For example, m(t)=At corresponds to the exponential distribution with mean 1/A.

Suppose that we are interested in the time of the first renewal after t, which is
N(0)+1

SN(t)+1 = in
i=1

The expected value of this may not be easily obtained since N(t) is dependent on the sequence of X;’s. We

already know that if X; are iid and N is independent of X;’s then
N
E{Z X, } = E[N]E[X]
i=1

Even if N is not independent of X;’s but N is a stopping time of {X, i=1,2,...} then the Wald’s equation states

that the above equality holds.

Definition 3.3. (Stopping time) An integer-valued random variable N is said to be a stopping time for the
sequence of independent random variables, X;, X,, ... if the event {N=n} is independent of X, X2, ... for all

n=1,2,....

Example 3.3 (a). Let X,, n=1, 2,... be independent and P {X,=0}=P{X,=1}=1/2. Also, let
N=min{n: X, +..+ X, =10}

Then, obviously N is a stopping time of {X, i=1,2,...}.

(b) Let X,,, n=1, 2,... be independent and let
N =max{n:X, 25}

Then, N is not a stopping time.

Example 3.4 (2) For a renewal process {N(t), t=0}, N(t)+1 is a stopping time for interarrival times X;’s. It can
be seen that the following events are equivalent:
{(NO+1=n}={N@t)=n-1}={X,+..+ X, <tand X| +..+ X, >t}

So, {N(t)+1=n} depends only on X,,...,X, andisindependentof X,.,,X,.s,.

(b) For a renewal process {N(t), =0}, N(t) is not a stopping time for interarrival times X;’s. The reasoning may

be similar to (a).
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Theorem 3.3. (Wald’s Equation) If X, X,,... are iid random variables with E[X] <o and if N is a stopping
time for X, X,,... such that E[N] <oo, then

N
E{z X,} = E[N]E[X].

i=1

(proof) Let for n=1,2,...
;- 1 ifn<N
"0 ifn>N
then,
N 0
Z X}'l XI'IIH
n=1 n=l1
Hence,

E{i){n}:E[i){nln} = iE[an,,]
n=1 n=1

n=1
Since N is a stopping time the event {N=n} or {I, = 1} depends only on X|,..,X,_; and is independent of

X, . So, I, is independent of X,,. Therefore,

N 0 ©
E{Z} X, } = Z; E[X,E[l,]= E[X]Z P{N >n} = E[X]E[N].

n=1

Proposition 3.4. The expected time of the first renewal after t is given by
E[S yiy 1= u(m() +1)

(proof) The result immediately follows from the Wald’s equation since N(t)+1 is a stopping time for X;’s.

Note that we cannot apply Wald’s equation to obtain E[S ] since N(t) is not a stopping time. In fact, the

interarrival time containing time t, X y ., has a different distribution from the usual ones. We will consider

this quantity (called spread at t) later.

Example 3.5. (Poisson process) Suppose that {N(t), t>0} is a Poisson process having rate A. Then,
1 1
E[Syiyal= u(m(t)+1) = I(ﬂt +1)=t¢ +z

which is also intuitively derived since S, is t plus time to next event. But,

E[SN(t)] = E[E[SN(t) | N(D]]

N(t
=E|t NG
N(@)+1
The second equality holds since S, | N(£) =n is the largest one among a sample of size n from Unif(0, ).

Using the property that
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o P I Rt for Y ~ Poi(@)
Y+1 a

M}t_l

we have

At A
which is different from um(t) =t.

E[Sy,]= E[t

Def 3.4. Suppose that {N(t), t>0} is a renewal process.
(a) The age at t of the renewal process is defined by
Alt) =t - SN(t)

(b) The excess at t of the renewal process is defined by

Y(t)= SN(t)H -1

(c) The spread at t of the renewal process is defined by
Xy =A@)+Y (@)

Our major interests regarding a renewal process is to obtain long-run properties. In fact, two types of
long-run properties will be analyzed. One is to obtain the long-run (time) average of the quantity of interest and
the other is to obtain the pointwise limit. For example, the long-run average of age in Def. 3.4 will be

[ 4(s)ds
lim*———

—
while the pointwise limit of the expected age will be
lim E[ A(1)].
t—0
The Section 3.3 and Section 3.4 deal with the long-run average and the Section 3.5 and Section 3.6

will describe how to obtain the pointwise limit of the quantity of interest.

3.3. Long-run Renewal Rate
This section deals with the average number of renewals (per unit time) in the long run, which will be

called a long-run renewal rate.

Prop 3.5. For a renewal process {N(t), t=0} having df F for interarrival times,

im M L

t—>00 t /J
where
U= _[0 xdF (x)

(proof) Since S N( 1s the last renewal time prior to t and S N(nys1 18 the first renewal time after t,
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Sy SE<Sypa or

SN(t)< t <SN(t)+1
N(@) N@) N@)

But,

e ifN((;; = lim & +};,.(J;)XN(” = E[X]=p wp.1
and

lim SN0y SN0 NO+L_

= N(t) = N()+1 N(7)

So the result follows.

Theorem 3.6. (Elementary Renewal Theorem) For a renewal process {N(t), t=0} having p of mean interarrival

time
lim ZLVO] _ @ _ 1
t—00 t t—0o0 l‘ ILI

Note that Theorem 3.6 can not be just derived from Prop. 3.5. In general, the limit value of a sequence of

random variables is not same as the limit value of a sequence of means of random variables.

Example 3.6. Let a random variable U follow Unif(0, 1) and let

0 ifU>1/n
= ] , n=12,...
n ifU<L1/n
Then,
limY, =0 wp.1
But,

ElY 1=nP{U <1/n} =n(1/n) =1

Example 3.7. (M/G/1 Loss) Customers arrive at a telephone booth according to a Poisson process having rate A.
However, a customer only enters the booth when it is empty. So, no queues are allowed. The service time (time
duration that a customer occupies the booth) follows df G. This type of queueing system is called M/G/I loss
system.

(a) What is the rate at which customers enter the booth ?

(b) What proportion of potential customers cannot enter the booth (called loss rate) ?

(solution) A renewal occurs every time that a customer actually enters the booth. If N(t) denotes the number of

customers who enter the booth by t, then {N(t), t=0} will be a renewal process having mean interarrival time of
M = mean service time + mean time to next customer's arrival
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Here, the time to the next customer follows exponential with rate A from the memoryless property. So,

1
=, +—
H=Hg 2

where
00
Hs = IO xdG(x) .
(a) Since the rate at which customers enter the booth is just the long-run renewal rate, it is given by

. 1 A
rate at which customersenter=— = ———
uo 1+ Aug

(b) The loss rate of customers is obtained by
loss rate =1 — proportion of customers that enter

Here,
) rate at which customers enter
proportion of customers that enter = -
arrival rate
AN+ Aug) 1
A 1+ A,
So,
A
loss rate = —~H6
1+ Aug

3.4. Renewal Reward Processes

Consider a renewal process {N(t), t>0}. Let us assume that reward will be earned at the time of
renewal. The reward can be cost or profit attached to the renewal. Let R, denote the reward earned at the time

of n-th renewal (n=1,2,...), which are iid random variables having a common mean E[R]. R, may depend on

X , - Then, the total reward earned by t, R(t), will be
N@)

Rt)=DR,.

The new process {R(t), t>0} is called a renewal reward process.

Prop. 3.7. Suppose that {R(t), t=0} is called a renewal reward process having E[R] < oo and E[X] < co. Then, the
long-run reward rate or long-run average reward is given by
R(t E[R
. R(1) _ EIR]
>0 f E[X]

(proof) Since
N(@)

Ry 2% N

n=l1

t N(@) ¢

the result follows if SLLN is applied to each term.
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The interarrival times in a renewal process is often called as renewal cycles. The above result says that the long-

run reward rate is obtained by
E [reward during a cycle]

long - run reward rate = :
E[renewal cycle length |

Prop. 3.8. Suppose that {R(t), t>0} is called a renewal reward process having E[R] < o0 and E[X] < c. Then,

lim ZLRO] _ E[R] .
oo E[X]

Example 3.8. (Age Replacement Model) Consider a component that is used continuously with replacements. Let
Y be the lifetime of the component, which is random with distribution function of G. The component is replaced
by a new one upon failure or at a fixed time period T, whichever comes first. This replacement policy is called
an age replacement. The cost of a new component is ¢, and the additional cost incurred by a failure is ¢, .
Obtain the long-run average cost.

(solution) If we let N(t) be the number of replacements of components by t and let R(t) be the amount of cost
incurred by t, then, {R(t), t>0} becomes a renewal-reward process. The expected cycle length is given from
Example 3.1. by

E [cycle length] = E[min(Y,T)] = J;T G (x)dx

The reward or cost during a cycle, R, is expressed by

R c ifY>T
C e e, fYST

So, its expected value is obtained by
E[Rl|=c,P{Y >T}+(c, +c,))PiY <T} =c, +¢c,G(T)

Hence, the long-run average cost is given by

E [cost during a cycle] ¢ +c,G(T)
Elcyclelength] j‘ "G (x)dx
0

long - run average cost =

Note that the long-run average cost a function of T and so the optimal value which minimized the long-run

average cost can be determined by differentiation.

Example 3.9. Jobs arrive at a service person according to a Poisson process having rate A. Assume that each job
has random value whose distribution function is F. The service person only accept a job when he/she is idle and
the job has value greater than v. The service time for an accepted job follows df G. Obtain the long-run average
reward.

(solution) The renewal cycle is said to begin whenever a job (no matter what value it has) arrives when the

server is idle. Then, the renewal cycle is expressed by
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time to next job if value<v
renewal cycle=+ . ) o ]
time to next job + service time if value> v

So,

E[renewal cycle] = % +uF(v)

where
Hs = IO xdG(x) .
The expected reward during a cycle is obtained by

E[reward] = E[value | value > v]P{value > v} = I " xdF (x).

Hence, the long-run average reward is given by

E[reward] L xXdF (x)
Elrenewalcycle] 1/A+ u,F (v)

long - run average reward =

Example 3.10. (Average Age) The long-run average age or just average age is given by
t
J. A(s)ds
average age = lim~>———
t—0 l‘

Assuming that we are earning rewards at a rate equal to the age, the numerator represents the total reward earned

by t. So, if we apply Prop. 3.7. then,

X
E[reward during a cycle] EU@ Sds} E[X7]
average age = = =
E[X] E[X] 2E[X]

Prop. 3.9. The average spread is greater than or equal to the mean interarrival time of a renewal process. (This is
called inspection paradox.)
(proof) It can be easily shown that the average excess is same as the average age given in Example 3.10. So, we

need to show that

average spread = > E[ X] = mean interarrival time

E[X?]
[X]

The above follows since the variance of X is nonnegative.
3.5. Renewal Equations
Renewal equations are useful for deriving the quantity of interest associated with a renewal process as a function

of time. A renewal equation is expressed by a recursive form through an integral equation. The solution to a

renewal equation can be easily obtained.
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To introduce the form of a renewal equation, let us consider the renewal function:
m(t) = E[N(1)]

which is an already known quantity. This can be evaluated by conditioning on X, the time of the first renewal:

m() = j EIN(t)| X, = x]dF (x).
0

The integrand can be evaluated by dividing into two cases: one is the case where the first renewal occurs after

time t and the other is the case where the first renewal occurs before time t. The former case follows
E[N®|X,=x>t]=0

since there are no renewals observed by t. The latter case follows
E[N@®)| X, =x€[0,t]]=1+m(t—x)

since the first renewal occurs by t and the expected number of renewals between time x and t will be m(t-x) from

the definition of the renewal function. So,

m() = j {1+ m(t — x)}dF (x)
0

- F(t)+ J' m(t — x)dF (x)
0

The above form of equation is called a renewal equation if m(.) is considered as unknown.
Suppose that Z(t) is an unknown function associated with a renewal process with distribution function

of F. Then the general form of renewal equation is given by

Z(t) = O(t) + j Z(t - x)dF (x)
0

where Q(t) is a known function. If we write the second term as

Z*F(1) = J'Z(t —x)dF(x)
0

then the renewal equation can be given by
Z(1)=Q0)+Z*F(1)

Proposition. The solution to the renewal equation in Eq.( ) is given by

2= 00+ [ 0t~ x)dm(x)
0

where m(t) is the renewal function.

(Proof) We need to show that
Z*F(1)=0%*m(1)

If we convolve Eq.( ) with F, then we have

Z*F()=Q*F(t) + Q*m*F(t)
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= Q*F(t) + Q*(m(t)-F(1))
= Q*F(t) + Q*m(t) — Q*F(t)
= Q*m(t).

Note that dm(x) can be interpreted as the probability that a renewal occurs in (x, x+dx) since

dm(x) = Z dF ™ (x) = Z 7 (x)dx = z P{n™ renewal occurs in (x, x +dx)} .

n=1 n=1 n=1

In summary, a quantity of interest associated with a renewal process, Z(t) say, can be obtained through the

following four-step approach:

1)
2)

3)
4)

Example (Mean Excess at t) Let Y(t) be the excess at time t. Let us find the following mean excess:

1

2)

3)

Condition Z(t) on X, .

Evaluate by renewal arguments the integrand or conditional Z(t) on two cases of X,: for X, >t

for X, <t

Uncondition to derive the renewal equation for Z(t).

Obtain the solution to the renewal equation to find Z(t).

g(t) = E[Y(D].
Conditioning on X, gives

g0 = [ EY(@)| X, = xWdF (2)
0

The integrand for X, >t will be
E[Y#)| X, =x>t]=x—t
while for X, <tit will be
E[Y®)| X, = x€[0,7]] = g(t —x)
since upon the first renewal everything starts over again.

So,

a(f) = J'(x —1)dF(x)+ J' 2(t - x)dF (x)
t 0

If we let

h(t) = J' (x—1)dF (x)

then we have the following renewal equation for g(t):

20 =h(0)+ [ glt-0dF ()
0

4) The solution for g(t) is given by

and
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a(t) = h(r) + j h(t - x)dm(x) .
0

Example (Distribution of Excess at t) Obtain the df of excess at t.

(solution) Let
H, (t)=P{Y(t)< y}.

The four-step approach is as follows:

1) H,(f) = TP{Y(t) < y| X, = xJdF (x).

2) For X >t
PY)<y|X,>t+y}=0
PYH)<y|X, e(tt+y)}=1
For X, <t
PY@)<y|X, =xe(0,0)}=H (t—x)

3 H, ()= dF(0)+ [ H (t-x)dF(x) = F(t+ y) = F()+ [ H,(t = x)dF (x)

4) Hy(t):F(t+y)—F(t)+j;[F(t+y—x)—F(t—x)}dm(x)

3.6. Key Renewal Theorem

In order to obtain the pointwise limit of a quantity of interest we first derive the quantity as a function of time

and take a limit. Suppose that we are interested in the pointwise limit of Z(t) in Eq.( ). Then,
t
lim Z(¢) = lim Q(¢) + lim IQ(t —x)dm(x) .
t—o0 —0 t—© 0

The Key Renewal Theorem is to obtain the second term in the right-hand side. The existence of the limit

requires some conditions. The following definitions are needed to describe these conditions.

Definition . A nonnegative random variable X is said to be /attice if there exists d > 0 such that

iP{X:nd}:l.

n=0

The largest d having this property is said to be the period of X.
If X is lattice and X has a distribution function of F, then we say that F is lattice.

Example

(a) If X follows Poisson distribution with mean A, then X is lattice with period 1.
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(b) If P{X=4}=P{X=8}=P{X=12}=P{X=14}=1/4, then X is lattice with period 2.
(c) If P{X=21}=1/3 and P{X=6m}=2/3, then X is lattice with period 2.
(d) If P{X=/2 }=P{X=4/3 }=1/2, then X is not lattice.

Theorem (Key Renewal Theorem) If F is not lattice and Q(t) is directly Riemann integrable, then
! 0
lim IQ(t — ¥)dm(x) = - j 0(0)dt
t—0 J0 y7dl

where m(t) is the renewal function and

H= I:;ch (x).

Sufficient conditions for Q(t) to be directly Riemann integrable are:

1) Q=0

2) Q(t) is nonincreasing

3) J:'Q(t)dt <o

Example (Limiting Mean Excess) Let Y(t) be the excess at t. The mean excess is obtained in Example by

E[Y(1)] = h(t) + J' h(t - x)dm(x)
0

where

h(t) = J' (x—1)dF (x).

So,
lim E[Y ()] = lim A(¢) + lim Ioth(t —x)dm(x)

t—>0o0
t
- lim j h(t - x)dm(x)
t—0 J0

If we assume that the second moment of an interarrival time (X, say) is finite, then the function h(t) is directly
Riemann integrable. If we assume that F is not lattice in addition, we can apply Key Renewal Theorem to obtain

the limiting mean excess as follows:

lim E[Y (1)] = lim '[(:h(t — X)dm(x)

_ 1
= jo h(t)dt

= %IT(X —1)dF (x)dt

If we change the order of two integrals, we have
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MnEWUH=lTj@—0mdFu)
o IUO 0
:L “xldx
219
_E[X’]
T 2E[X]

Note that the result is same as the average excess.

Theorem (Blackwell’s Theorem)

1) If F is not lattice, then

@gma+@—m0n=ﬁ

2) If F is lattice with period d, then

lim E[number of renewals at nd] = a

n—>x0

Note that Blackwell’s Theorem for lattice case states

lim P[renewal occurs at nd | = 4
n—>0 ﬂ

since the number of renewals at time nd will be 1 or 0.

Example. Suppose that interarrival times have the following distribution.

2 wp.1/2
4 wp.l/2

Then, X is lattice with d=2. So,

lim E[number of renewals at 2] = lim P[renewal occurs at 2n] = %

n—>0 n—>0

3.7. Alternating Renewal Processes

Consider a renewal process whose interarrival times are N, having the distribution F. Suppose that an
interarrival time consists of an ON period and an OFF period such that X, =Z,+Y, where Z, is the n-th

ON period and 7,

n

is the n-th OFF period. Suppose also that Z, areiidas Hand Y, areiid as G. Z, and

Y, may not be independent.

Let
1if the systemis ON at t
[(t):{ if the sy.

0 otherwise
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1(t)

We are interested in
1) What is the long-run proportion of time that the system is ON ?

t
i Ll(x)dx
t—> t

=9

2) What is the limiting probability that the system is ON ?
lim P{I(t)=1} =7
t—o

Theorem . The long-run proportion of time that the system is On is given by

lim /O g7 )
t—>o ¢ EX,]

(proof) Obvious from the result from the renewal-reward process.

Theorem . If E[Z, +Y,]<o andF is non-lattice, then
ElZ,]

S A NTA)

(proof)
Let P(t)=P {I(t)=1}. Then apply four-step approach to obtain P(t).
Condition on X, . Then,

P(t) = J‘?{I(t) —1] X, = x}dF(x).

The integrand is evaluated as follows:
i) for X,;>t
P{Z, >t; H (1)

P{I(t)=1|X, >t} = P{Z, > 1| X, >t}=P{X s
1

ifor X, <t
P{I(t)=1|X, =x€(0,0)} = P(t—x)

Therefore we have the following renewal equation:
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He (t)

P(t) = o 20 pegys I Pt — x)dF (x)

—H 1)+ J.OP(I — X)dF(x)

The solution to the above equation is given by

P()=HE (1) + '[; HE (1 = x)dm(x)

Hence by KRT,
t
lim P() = lim J' HE (1 = x)dm(x)
t—>00 t—>
H¢(x)d.
E[X 130 J. (x)dx
_ElZ,]
CEX,]
Remarks:
E[ON period
) IimP{@)=1}= M = long-run proportion of time that is ON
-0 Elcyclelength]
E[OFF jod
2) lim P{I(¢) = 0} = LLOFE period]
1> Elcyclelength]

Example . (Limiting distributions of Age/Excess/Spread) Consider an ordinary renewal process having the non-
lattice distribution function of F with a finite mean for the interarrival times. Let A(t), Y(t) and X y,),; be the

age, excess, and spread at time t of the renewal process. Obtain the limiting distributions of them, respectively.

That is,
1) lim P{A(¢) < x}
{—>0

2) lim P{Y(f)<x}

3)  lim P{X gy, <X}
t—©

(Solution)

1) (Limiting Age Distribution) Suppose for a fixed x that the system is ON as long as the age is less than or
equal to x. Let

1) = {1 if A(t)<x

0 otherwise

Then, from Theorem 2,
E[ON period]

lim P{A(¢t) < x}=1lim P{I(¢) =1} = .
t—w M=y 10 do=h E[cyclelength]

In a renewal cycle of length X “ON period” is the minimum of x and X. Note that the whole cycle is ON if X <
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X. So,

E[ON period] = E[min(x, X)] = J'F (y)dy .
0

Hence,

lim P{A() < 3} = ﬁ [Feoma
0

which is called an equilibrium distribution function of F. Note that we can derive this result through our four-
step approach and applying Key Renewal Theorem.
2) (Limiting Excess Distribution) Suppose for a fixed x that the system is ON as long as the excess is less than

or equal to x. In a renewal cycle larger than x OFF period appears first before ON period begins. Let
1 ifY(@)<
- { R(OEE

0 otherwise

Then, from Theorem 2,

lim P{Y (1) < x} = lim P{I(r) = 1} = LONperiod] 1 I Fe(y)dy,
t>® 1> Elcyclelength] E[X] 0

which is same as the limiting age distribution.

3) (Limiting Spread Distribution) Suppose that the system is ON when the spread is less than or equal to x. Let

1) = L if Xy <x
0 otherwise

Then,
E[ON period]

lim P{Y(¢#) < x}=lim P{I(¢t) =1} =
t—w = t—w Ho=h E[cyclelength]

Note in this case that the whole cycle will be ON or OFF depending on cycle length < x or cycle length > x. So,
E[ON period] = E[ON period | X < x]P{X < x} + E[ON period | X > x]P{X > x}
=E[X | X <x]P{X <x}

= jﬁ YdF(y)
0

Therefore,

X
1
lim PLX 1y < =—j dF(y).
;gg Xy S} E[X]Oy )

Example (Busy Period in M/G/1 Queue) Consider an M/G/1 queue where customers arrive according to a
Poisson process with rate A to a one-server facility and service time of a customer follows the distribution
function of G. A busy period is an interval that begins when an arrival finds the system empty and ends when,
for the first time after that, a departure leaves the system empty. Idle periods are the intervals between
successive busy periods. We are interested in the expected length of a busy period.

Successive busy periods and idle periods comprise an alternating renewal process since a renewal occurs

whenever a busy period begins. Let B denote a busy period and I denote an idle period. Also let S denote the
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service time of a customer. Assume that A E[S] <1 to have a stable system. Then,
proportion of time that system is busy = %
But, the followings are known to hold:

proportion of time that system is busy = P {server is busy}

= E[number of customers in service]

=\ E[S].
The last equality holds from Little’s Law. The second last equality holds since there is one server. Therefore,
E[B
AE[S]= _ EB]
E[B]+E[I]
where E[I] = 1/A from the memoryless property of an exponential distribution. So, we have
EB) =151
1-AE[S]

Example. (Inventory Model) Customers arrive at a store to purchase a certain product according to renewal
process with interarrival distribution of F, non-lattice. The demand of a customer is random and follows
distribution G independently of arrival times. This store adopts (s, S) policy. Derive the limiting distribution of

the inventory level.

(Solution)
Let X, be the sequence of interarrival times of customers having distribution of F and Y, be the sequence of
customer demands having distribution of G.

Also, let J(t) be the inventory level at time t. Assume that J(0)=S. Then, we would like to know
lim P{J(t)2x}=2,s<x<S
t—>0

We can say that a renewal occurs whenever the inventory level goes up to S. This occurs at the first time that the
cumulative demand exceeds S-s. We divide a renewal cycle into ON period and OFF period according to
whether J(#)>x ornot. Let
1 ifJ@)=zx
1o { 0

0 otherwise

Then, from Theorem 2, we have
B .
lim PLJ () > x} = lim P (1) = 1} = —LON period]
> -0 E[cycle length]
Let
N,=min{n:Y, +..+Y, >S—x},
which represents the number of customers whose total demand first exceeds S-x. Note that a cycle length is the

time until N, customers arrive and that ON period is the time until N, customers arrive.

Then,
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=

X

E{ X,}
lim PLI(6) > x} = E[ON period] _ -1 _ E[N,]

Elcycle length] s E[N,]
E X;

=

Il
—_

i

If we think of a renewal process having Y,,n=1,2,... as interarrival times, then

no

E[N, )= E[#renewalsby S —x]+1 / Ny-th renewal
=mg(S—-x)+1
(50 | v |y
N T A
where
0
0 S-x
me () = ZG(”) ).
n=1
Therefore,
E[N 1 S-
lim PLI() > xp = 2Vl _Tme(S=0) o
t—o0 E[Nv] 1+mG(S—S)

3.8. Delayed Renewal Processes

Consider a renewal process having distribution F for the interarrival times. Suppose we start observing the
process from a certain time point.

Let

X, : time to the first renewal after observing
X, (n=23,...): time between (n-1)st and n-th renewal

Then, X, has the different distribution G, say, from F for other interarrival times. Let us define the time of the

n-th event as before (n=1,2,...):
Sn = Z Xi
i=1

Let
Np(t)=max{n:S, <t}.
Then, {N(¢),t =0} is said to be a delayed (or general) renewal process. Note that if G=F it will be an ordinary

renewal process.

Example (Parallel System) A parallel system with three identical components is considered. The time to
failure of a component is iid as exponential with rate A and the time to repair is iid as exponential with rate p.

Note that the system breaks down whenever all three components are down.
Let N(t) be the number of times the system breaks down by time t. Then, we see that {N(¢),t>0}isa

delayed renewal process. Let X, be the time to the first system breakdown and X, be the time between the

first and second breakdown. Then X, is the time until all three components are down plus the time to repair of
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any one component. However, X, (n>2) is the time until all functioning (not necessarily all three)
components are down plus the time to repair of any one component. Therefore, the distribution of X, is

different from that of X, (n>2).

The distribution of N () is given by
P{N,(t)=n}=P{S, <t}—P{S,., <t} =G*F" V() -G*F™ (1), n=12,..
P{N,(t)=0} = P{X, >t} =G ().

The renewal function is given by

mp(1)=E[Np(1)]= i G*F"™ (1),

n=1

Theorem . The solution to the following renewal equation
where H=Q+Q*m (solution to H=Q+H*F) is given by
Hp=0p+0*mp.

Proof
Hp=0p+H*G=0,+(Q+0*m)*G=0,+0*G+0*m*G
=0p +0*G+Q*(mp —G)=0p +0*mp

Example (Distribution of Excess) Let Y, (¢#) be the excess at t of a delayed renewal process. Obtain the tail

distribution of the excess.

(Solution)

Fix y and let Y(t) be the excess at t of an ordinary renewal process. Also let
H(t) = P{Y (1) > y}.

Hp ()= P{Yp (1) >y
Condition on X :
Hpy ()= [ PV, (0> y | X, = 4dG(x)
Evaluate the integrand:
PYp@) >yl X >t+y}=1
PYp(0)> y| X, =xe(t,t+)} =0
PYp()>y| X, =xe(0,0}=H(-x)
So, the renewal equation is

Hp(t) =G (t+y)+ L’H(t — 0)dG(x)

Solve the renewal equation using Theorem 1

HD(t):GC(t+y)+JZFc(t+y—x)de(x)
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Theorem . Suppose that {N, (¢), >0} is a delayed renewal process having G for the time to the first renewal

and F for the interarrival times thereafter. Let u, = I xdF (x). Then,

N, (¢
1) nmﬂziw.p.l.
t—o t :UF
t
2 fimT2O_ L
t—o0 t :uF

3) IfF is not lattice, then for alla > 0

a
mp(t+a)y—mp(t) >—— ast— o,
HF

4) IfF and G are lattice with period d, then

d
E[number of renewals at nd] > —— as n— .

HF
5) IfFisnotlattice, up <co and h is directly Riemann integrable, then
t 00
lim Jh(t —xX)dmp (x) = Lj h(t)dt.
t—0 JO Hp 0

Example . A fair coin is tossed repeatedly and each outcome of H for head or T for tail is recorded sequentially.
We are interested in the long-run rate at which the pattern “THTH” occurs.
Suppose for example that the sequence is

HTHTTHTHTHHHTHTKH. ..
Then, the pattern is observed at n=8 for the first time, n=10 for the second time, n=16 for the third time and so
on.
Let N(n) be the number of patterns observed by time n. Then {N(n),n>1} is a delayed renewal process since
the distribution of the time to the first pattern is different from that of the other inter-pattern times.
The long-run rate at which the pattern occurs is obtained as follows:

From Theorem 1(1),

Rate at which the pattern occurs = lim N() = !
n—e 1 E[time between patterns]
Also from Theorem 1(4) with d=1
1 . .
= lim E[number of renewals at n] = lim P{pattern occurs atn} = (1/ 2)4.
Eltime between patterns] n-w n—>n

Note that
E[time to the first pattern] = E[time to TH] + E[time from TH to THTH]
= E[time to TH] + E[time from THTH to THTH]
=(12)*+(1/2)"

Example (Limiting distribution of excess) Let Y, (f) be the excess at t of a delayed renewal process. Find
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the limiting tail distribution of the excess.
(Solution)
Since
!
PWp(0)> 7} =Gt )+ [ FE -+ y=x)dmp ()
0
from KRT

lim P{Y, > »} =ijF0(t+y)dt:LJ'mFC(x)dFF;(y)
t—o Hp 90 Hp oy

So, the limiting distribution of the excess of a delayed renewal process is same as that of an ordinary renewal

process.

Definition (Equilibrium Renewal Process). A delayed renewal process with G=F, is said to be a

equilibrium renewal process, where F, is the equilibrium distribution of F given by

Fo=—[ Fe .
Hp ¥0

Theorem. For the equilibrium renewal process the followings hold:

1) The equilibrium renewal function is given by

t
m, () =—
HF

2) The excess at t has the distribution of £, for all t >0. That is,
PY,(t)<x}=F,(x) forallt=>0.

3) It has stationary increments. Thatis, N,(s+¢)—N,(s) has the same distribution as N, (¢).

Proof:

1) The Laplace transform of a general renewal function is given by

iin(@) = [ e amy 0 =Y [T e a@ P 1) =) GOIF @) =
n=0

n=l

G(s)
1-F(s)
Therefore, for G=F,

~ 1-F(s
Fo(s)=12E6)
HEsS
so it reduces to
- 1
m,(s) = .
HpS

So, the result follows.

2) It immediately follows from Example 4.
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3) We know that the time to the first renewal from time O follows F, and that the time to the first renewal from

s also follows F, foralls >0 . So, the result follows.

Note: The equilibrium renewal process is also called the stationary renewal process or stationary point process.

3.9. Regenerative Processes

Definition. A stochastic process {X(¢),>0} with state space {0, 1, 2, ...} is said to be a regenerative

process if there exits a time S, such that the continuation of the process beyond S, is a probabilistic replica

of the whole process starting at 0.

Note that the successive regenerative cycles constitute a renewal process.

Example

(a) An alternating renewal process having ON and OFF states is a regenerative process with state 1 and 0.

(b)If X(t) denotes the number of customers in system of M/G/1 queue, then {X(¢),#>0} is a regenerative

process with state {0, 1, 2, ...}. The regenerative point is the time the arrival finds the system empty.

Theorem . Suppose that {X(¢),7 >0} is a regenerative process. If S, follows F, non-lattice and E[S,]<x,

then
[amount of time in state j during a cycle]

E
P; =lim P{X(t) = j} =
t—>n Elregenerative cycle]

Proof.
Fix j and let P(t)=P{X(t)=j}.

Condition on §:
P)=P{X(t)=j|8, >t}P{S, >t} + J-;P(t —x)dF (x)
= P{X(1)=j,S, > 11+ I;P(t —x)dF(x)
Solving the above renewal equation gives
Pt)=P{X()=j,S, >t}+ .L[P{X(t—x) =7,8; > t—x}dm(x)
Applying KRT, we have

B 1
7 ELS,]

J:jD{X(t) = .S, > t)dt

To interpret the result we let
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0 otherwise

an{l if X(t)=J,8, >t

Then,

Elamount of time in state j during st cycle] = E“O}(t)dt} = I%[I(t)]dt = er{X(t) =7,8, >tidt
0 0 0

So, the result follows.

Theorem . Suppose that {X(¢),t 20} is aregenerative process. If E[S;]< o, then w.p. 1

amount of timein j during (0,t) _ E[amount of timein j during a cycle]

lim
t—w t Elcyclelength]

Proof.
Suppose that a reward is earned at rate 1 whenever the process is in state j. Then, it follows from the result of

renewal-reward process.

Example . A tourist center makes arrangement of a tour whenever k customers are gathered. Customers arrive at
the center according to a Poisson process with rate A. Obtain the limiting probability that n customers are
waiting for a tour (n=0, 1, 2, ..., k-1)

(Solution) Let X(t) be the number of customers waiting at t and S, be the time that k customers are gathered at

the first time. Then, {X(t), t=0} will be a regenerative process. From Theorem 1,
E[period of n customers waiting]

E[S,]

lim P{X () = n} =

But, E[period of n customers waiting] = 1/A and E[S,]=k/A. So,
lim P{X(t)=n}=1/k,k=0, 1,... k-1.
t—0

Example . Buses arrive at a bus stop according to a Poisson process with rate .. Customers arrive at the bus
stop according to a Poisson process with rate A independently of buses. A bus arriving at the bus stop
immediately loads all customers already arrived. What is the long-run proportion of time that k customers (k=0,

1, ...) are waiting at the bus stop ?

Solution.

Every time a bus arrives will be a regenerative point. So, from Theorem 2
E[amount of time with k customers]

Long-run proportion of time in k customers = P, = - —
Elinterarrival time of buses]

Let T, be the amount of time with k customers in a cycle. Then,
E[T,1=E[T} | T, =0]P{T, =0} + E[T} | T} > O0]P{T, >0} = E[T} | T}, > 0]P{T, >0}

T, given that T} >0 lasts until one more customer arrives or a bus arrives, whichever comes first. So,
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1
A+u’

E[T, |T, >0]=

The event T, >0 occurs when the number of customers arriving in a cycle is greater than or equal to k. This

occurs when each of first k customers arrives before a bus arrives. So, from the memoryless property we have

k
P{T, >0} = (%)

Y7
Therefore,
k
1 A
E[Tk]: ( j
A+pu\A+pu
Hence,
2 k
Y7
P, = uE[T, = k=0,1, ...
k= ME[T ] A+,u(/1+,uJ
O

A F A

3.0, AR ES] BAAC] AR Sdolil FUZ Unif(0, DEXE (ZXIFE F & 2hE =
Renewal Process o] t3le] th3 &350 &3t AIZF t 7hA] o] TAAAA TS Nk o

(a) F 2] n-fold convolution F7 (¢ ,n=12,.. & T3}z
(b) E[N®]Z T3t2}
() AlIZF t A5 ARALAIA A 7| A E T3kt

R

N

Ft

¢

3.2. rate A9 ¥ol&IAA A event 7FAY AIZFS S 2 kA, A A(t) E A
N age, Y(t) & A7t t oA excess B kA, ©eSS -5},

(a) P{Sg> t | So Xy =7

(b) P{A(t) >s ) =7?

(¢) P{A(t) > s, Y(t) >x } =7

(d) A(t) < Y(t) 7F 599 Holg},

3.3, {Ni(t), t=0} ¢ {No(t), t=0} 2 A= %< renewal process ©°|™, Z}7}¢]
interarrival E—E Fi, Fp oF 2ok, N(t) = Ny(t) + No(t) 2 3}

beh

ol

(a) {N(t), t=0} & renewal process 17} ? 743 A9
(b) lim N(t)/t & 3te}.

t— ©
(c) (o] A= (a),(b) o THAGF.)

renewal process {Ni(t), t=0} & Z event E°] AZ EHoer &F p & count 991
stoh. Ne(t) & AIZE t 7FA] count ¥ event 78 & o], {Nc(t), t=0}% renewal process
Q7F 2 ks Agsiet.
(d) lim Ne(t)/t & F-3fet.



2002-09-12 C.H. JUN

t— o

3.4. Taxi =773 Taxi 7} rate A ¢l Poisson process & =23y £JL rate 7} p ¢
Poisson process = EZ&stc)al slty, 194 o]n 3 Taxi 7} 57230l 7Igad]la 9Jow

& Taxi & 1F (@ji}i) Vi, Y% v R o' d o] Zthela 9o
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DAY, &9 stgo] g adk.) AZE 0 dAE sG] vloidtta 7hg e,

(a) g2 oz EARMY 5ol Edol taxi & BaZHlE7) ?
(b) T=Ao® @A g9 taxi 7} WA= 7M7) ?

3.5. n M HFEOR o]FF gystem ©] YU FE I © A2 5HOZE exponential time

with rate A; ¢ ZEsirt 4SS do7n, o]E 83+ exponential time with
rate p; (i=1,2 ,n) 7} Adgasi, sk F3Fol gy HA system ©] down =
o]Zo] FuH E}f\l up Hopaget. g o]l U4 system ©] down W™ HHE

2ol R o 7 AgE wEgYrt. =, BE FFo] 2ZEE uw  system ©] up AEHo]H,
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3.6. Renewal process 914 A(H)E A7 tol 2] Age, Y()E AlZF tol A 9] Excess 2F & w v} tf
3l Reward = % 2]3}al Renewal Reward processi o]-g3to] th&S 3het
1 .[ _AGs)
Hoo 0 A(s) + Y(s)

N

AN @ Wk A AR Azde] s
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(c) =2 3 W A 9 w3 3 Eo] C f9 vgo] Eva & u Frjyge=z & o
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=

¢
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AT BQeA AEFn Dok, Seol A ARe BE I S T RES EA
S AN Bgom BF Uy o ASPEE etk BE 1 223 Bdels PE
27} Aolgtt SolE FAL WHHE ol WA & Ak E i o Feuge
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3.16. oW REo] uF R E test d=d test 7+ A X, (n=1,2,...) & iid random
variable ©]™ X347} F(t), E[X] = n =Fgoh.  test oA F-3Fo] A AHES wHHstH
SA AR A sk, FEel £ Hgol 1/N ¢l iid exponential ®XE
w2k, W test db&dH B[S C, FF wAMHES C oW, test Aol AlHOA RS

Aol U 713 (G test 74A19] 71Zb) 9] k wje] ®§o] =vhar

jF(t) de M dt
0

() (b) o ATE o] g3to] $1o] A Weke] BN W g Fareh.

3.17. oj® Au|7} random A&t Zssivhrb o]l Ul B HE random AlZHESE T E
a8ty 7 2y gA] Asdvar v A AeAzt 2 jaA FYAbS A X,
X 2 82 Xy = Xy + Xy = Aed, X; £ iid oltf. AEAe X F & wEn,

i T agd o

FE AR k FFe ME wiEbA ]l agelclel wet e FEE mEsd
TS BEG & HEY, Hgo] ¢ . 17

ol e}

(a) renewal cycle & #A938laL mean cycle time & F5F2F. (o] A|7+S finite 3lth.)

(b) 1 7/ %ol o g7t JAPFTd A &S T8ket.

(c) @AZMG == v]&S 3.

() oj| doJeo] Al-HlA mFdQ i o ogt |yt AgFolgt & i, ™o A

R

3.18. interarrival time 9] ®37} iid F ¢l renewal process®l 4] AlZF 7441 9] renewal =5 N(t)gt & uj,
E[N(t)? ]l th3t renewal equation =3t 1 3| & F3}e}.

3.19. interarrival time ] 37} iid F Q1 renewal processol A AIZF t 29-9] renewal A% Sy, .l
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‘;H@ o enewal equation% fxstar 1 & Felkek. Z237F Wald’s Equatione AFE3H A3}

3.20. interarrival time ©] iid F < renewal processollA AJZF t oA 2] age & A(t) =
Uetd o o5& T8kt

(a) E[A(t)] ol #3} renewal equation & %38t 1 3|E F3fat.
=9

(b) lim E[A(t)]

t—>00

3.21. interarrival time 9] # 37} iid F ¢ renewal process®l| 4] A]7F tol| A1 9] SpreadE X(t)} 3HAL

(a) E[X(1)]2] renewal equations =33l 1 3|E 8f2)
b) imE[X(t)] € 32} Average spread$} 5L g7} 2

3.22. interarrival time ©] iid F ¢! renewal processollA] A|ZF t oA 2] excess & Y(t) = YERE o

&tet.
(@) P{Y(t) <y} I %ﬂ'§ renewal equation & =33l L = F&ke).
() imP{Y() <y} =? (F&A A4 7H4)

t->00

3. Renewal Process A Y(t) %: AlZE t ol A9 Excess #F 8FA}.  Interarrival time X;'s
3] <o

23. t
& B¥ F (pdf: f) & wp=n E[X o|t}.

(a) E[(Y(t))* 1 o] W3t renewal equation &
(b) E[(Y(£))* 1 ¢ pointwise limit & F3tgt. o] F&A7} &A1) ¢ate] oW 2SS
check 3}ojoF sp=7F 2

324. oWl A Ao AElE | >2>3 > .>n->1.. S22 nhe AH
A i o] MEEE A AOA g <o 4R BT F 2 nad
g v oEale o Az o] A jol g tES
(@) P, E long-run oA e joll 915 AlZke] Bl& (fraction of time)ol 2} & o} ©]& s}t
(b) H=ol s et
Py(0) = Ff(0)+ [ Ff (1= x)dm(x)
AN mpE AH NEEZ of9A A=} 2
© ol zelM A limP,(¢) 7} EAst=7E 2 o] W S¥AE Fateh. AAE (@9 ¥
t—©

asket,

—lé il

M
= o
R
= o

3.25. "up", "down" O & ©]Fo{A|+= alternating renewal process °|A up time & EX+E= F,,
down time & F, & W&t} (up + down) cycle & EX F & w29 1 HHFL pp (K o)

ghal @}, AR 0 olA up period 7F AlFtE AR dejo] AlZE t ol oisl K & v
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Lo]
Kq

I} 0_1_4

if?i o4 A% up period o e 717 (t AN up L)

=0 (t oA down ¥w)

() o1 a7 k = 0 o g8l H(t) = PK > k) (¢ >0) o2 o3 ] oo Zwste.
H(x):F;(t+k)+jF;(Hk-x)dm(x)

(b) ch&el FBAZ Faeh olm A o] FAAS Al 2

lim H(t)

t—> 00

(c) (a), (b) < #AIGlo] renewal reward process & ©o]&3te] tf9 F3AE F3het.

t
lim j H(x)dx/t
t—00
0
3.26. oJW 3 Alo] WA S7-F random &2 =2Fcha k. gl WAE A7 3
e Mg Ezgrhal gkak. o] WMol Ez Ao o g2 FEE ZHS o, o
Abgro]l A& 7|t okst AIZke] XS sl

(a) constant

(b) exponential

(¢) 0 T 60 3 I
HAFS Wol E=9li=g oWl o]Gol| Al 7}?

327, old) a3 2L AsEe] Yx wAws} qTE 2F A3 234 SANEAA
SUE|, ASBIC W B>AD B 2EE AKARS U2 A% SYHOE PIL F (UK
SAE TE AT YA

@ U1 Azl Col ERF Aol FHA FAAT 5 AL FES Tk c
E R I A EE )

() QeI2) Azl Col BAT ol A3 Astol WsE JIvkelis FFALS ot

=

3.28. inter—arrival time X; 7} 3% F (density f) = 2'+ renewal process = 1L8]3lx}. o,
0 <E[Xi ] =pn<ow. 9] renewal process 2| age 54 excess = 47 A(t), Y(t) = & uw
M 2§ process {D(t), t=0} & v o] At} D(t) = min[A(t), Y(t)]

(a) Xy =2, Xo =4, X3=1< wl AJZF[0, 7] aIA<] {D(t), t>0} 9] sample path & Z12]&}.

(b) {D(t), t>0} = regenerative process 217} ? ztets] A 3s}e}.

(¢c) K(t) = PAD(t) > z} 2 & o, K(t) = Q(t) + Qm(t) 7} "Htar k. Q(t) & F3h).

(3714 m(t) = renewal function )

(d) oW ZZANA lim K(t) 7} EAS=7F 2 o] o] wEriw & u o] S 3lg).
t—>0
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