Ordinary Differential Equations

Exact Equations and Integrating Factor

Abadi Universitas Negeri Surabaya

Exact Equations & Integrating Factors

Consider a first order ODE of the form M(x, y) + N(x, y)y' = 0

Suppose there is a function ψ such that $\psi_x(x,y) = M(x,y), \psi_y(x,y) = N(x,y)$

and such that $\psi(x, y) = c$ defines $y = \phi(x)$ implicitly. Then

$$M(x,y) + N(x,y)y' = \frac{\partial\psi}{\partial x} + \frac{\partial\psi}{\partial y}\frac{dy}{dx} = \frac{d}{dx}\psi(x,\phi(x))$$

and hence the original ODE becomes d

 $\frac{d}{dx}\psi\big(x,\phi(x)\big)=0$

Thus $\psi(x, y) = c$ defines a solution implicitly.

In this case, the ODE is said to be exact.

Theorem 1

Suppose an ODE can be written in the form M(x, y) + N(x, y)y' = 0(1)

where the functions M, N, M_y and N_x are all continuous in the rectangular region $\mathcal{R}: (x, y) \in (\alpha, \beta) \times (\gamma, \delta)$. Then Eq. (1) is an **exact** differential equation iff

$$M_{y}(x,y) = N_{x}(x,y), \forall (x,y) \in \mathcal{R}$$
(2)

That is, there exists a function ψ satisfying the conditions $\psi_x(x,y) = M(x,y), \quad \psi_y(x,y) = N(x,y)$ (3) iff *M* and *N* satisfy Eq. (2).

Example 1: Exact Equation (1 of 4)

Consider the following differential equation.

$$\frac{dy}{dx} = -\frac{x+4y}{4x-y}$$

Then M(x,y) = x + 4y, N(x,y) = 4x - yand hence

 $M_{y}(x,y) = 4 = N_{x}(x,y) \Rightarrow \text{ODE is exact}$ From Theorem 1, there exist $\psi(x,y)$ such that $\psi_{x}(x,y) = x + 4y, \quad \psi_{y}(x,y) = 4x - y$ Thus

 $\psi(x,y) = \int \psi_x(x,y) dx = \int (x+4y) dx = \frac{1}{2}x^2 + 4xy + C(y)$

Example 1: Solution (2 of 4)

We have $\psi_x(x,y) = x + 4y$, $\psi_y(x,y) = 4x - y$ and

 $\psi(x,y) = \int \psi_x(x,y) dx = \int (x+4y) dx = \frac{1}{2}x^2 + 4xy + C(y)$ It follows that $\psi_y(x,y) = 4x - y = 4x - C'(y) \Rightarrow C'(y) = -y \Rightarrow C(y) = -\frac{1}{2}y^2 + k$ Thus

$$\psi(x,y) = \frac{1}{2}x^2 + 4xy - \frac{1}{2}y^2 + k$$

By Theorem 1, the solution is given implicitly by
$$x^2 + 8xy - y^2 = c$$

Example 1: Direction Field and Solution Curves

Our differential equation and solutions are given by $\frac{dy}{dx} = -\frac{x+4y}{4x-y} \Leftrightarrow (x+4y) + (4x-y)y' = 0 \Rightarrow x^2 + 8xy - y^2 = 0$

A graph of the direction field for this differential equation, along with several solution curves, is given below.

Example 2: Exact Equation (1 of 3)

Consider the following differential equation.

$$(y\cos x + 2xe^{y}) + (\sin x + x^{2}e^{y} - 1)y' = 0.$$

Then $M(x, y) = y \cos x + 2xe^y$, $N(x, y) = \sin x + x^2e^y - 1$ and hence

 $M_y(x, y) = \cos x + 2xe^y = N_x(x, y) \Rightarrow \text{ODE is Exact}$ From Theorem 1,

 $\psi_x(x,y) = M = y \cos x + 2xe^y, \psi_y(x,y) = N = \sin x + x^2e^y - 1$ Thus

$$\psi(x,y) = \int \psi_x(x,y) dx = \int (y \cos x + 2xe^y) dx = y \sin x + x^2 e^y + C(y)$$

Example 2: Solution (2 of 3)

From this

 $\psi(x,y) = \int \psi_x(x,y) dx = \int (y \cos x + 2xe^y) dx = y \sin x + x^2 e^y + C(y)$ It follows that

$$\psi_y(x, y) = \sin x + x^2 e^y - 1 = \sin x + x^2 e^y + C'(y)$$

$$\Rightarrow C'(y) = -1 \Rightarrow C(y) = -y + k$$

Thus

$$\psi(x,y) = y\sin x + x^2 e^y - y + k$$

Theorem 1, the solution is given implicitly by $y \sin x + x^2 e^y - y = c$. Example 2: Direction Field and Solution Curves

Our differential equation and solutions are given by $(y \cos x + 2xe^y) + (\sin x + x^2e^y - 1)y' = 0$ $y \sin x + x^2e^y - y = c.$

A graph of the direction field for this differential equation, along with several solution curves, is given below.

Example 3: Non-Exact Equation (1 of 3)

Consider the following differential equation.

$$(3xy + y^2) + (2xy + x^3)y' = 0$$

Then

$$M(x,y) = 3xy + y^2$$
, $N(x,y) = 2xy + x^3$

and hence

 $M_y(x,y) = 3x + 2y \neq 2y + 3x^2 = N_x(x,y) \Rightarrow \text{ODE is not exact}$

To show that our differential equation cannot be solved by this method, let us seek a function ψ such that

 $\psi_x(x,y) = M = 3xy + y^2, \qquad \psi_y(x,y) = N = 2xy + x^3$ Thus

$$\psi(x,y) = \int \psi_x(x,y) dx = \int (3xy + y^2) dx = \frac{3}{2}x^2y + xy^2 + C(y)$$

Example 3: Non-Exact Equation (2 of 3)

It follows that

$$\psi_{y}(x,y) = 2xy + x^{3} = \frac{3}{2}x^{2} + 2xy + C'(y)$$

$$\Rightarrow C'(y) \stackrel{?}{=} x^{3} - \frac{3}{2}x^{2} \Rightarrow C(y) \stackrel{?}{=} x^{3}y - \frac{3}{2}x^{2}y + k$$

Thus there is no such function ψ . However, if we (incorrectly) proceed as before, we obtain $x^3y + xy^2 = c$ as our implicitly defined y, which is not a solution of ODE.

Integrating Factors

It is sometimes possible to convert a differential equation that is not exact into an exact equation by multiplying the equation by a suitable integrating factor $\mu(x, y)$:

M(x, y) + N(x, y)y' = 0 $\mu(x, y)M(x, y) + \mu(x, y)N(x, y)y' = 0$

For this equation to be exact, we need

$$(\mu M)_{y} = (\mu N)_{x} \Leftrightarrow M\mu_{y} - N\mu_{x} + (M_{y} - N_{x})\mu = 0$$

This partial differential equation may be difficult to solve. If μ is a function of x alone, then $\mu_{\nu} = 0$ and hence we solve

$$\frac{d\mu}{dx} = \frac{M_y - N_x}{N}\mu$$

provided right side is a function of x only.

Similarly if μ is a function of y alone.

$$\Rightarrow \frac{d\mu}{dy} = -\frac{M_y - N_x}{M}\mu$$

Example 4: Non-Exact Equation

Consider the following non-exact differential equation. $(3xy + y^2) + (x^2 + xy)y' = 0$ Seeking an integrating factor, we solve the linear equation $\frac{d\mu}{dx} = \frac{M_y - N_x}{N}\mu \Leftrightarrow \frac{d\mu}{dx} = \frac{\mu}{x} \Rightarrow \mu(x) = x$

Multiplying our differential equation by μ , we obtain the exact equation

 $(3x^2y + xy^2) + (x^3 + x^2y)y' = 0,$ which has its solutions given implicitly by

$$x^3y + \frac{1}{2}x^2y^2 = c.$$

Integrating Factor

For $\mu = f(u)$, where u = g(x, y) we have $(\mu M)_y = (\mu N)_x \Leftrightarrow M\mu_y - N\mu_x + (M_y - N_x)\mu = 0$ That becomes $M \frac{d\mu}{du} u_y - N \frac{d\mu}{du} u_x + (M_y - N_x)\mu = 0$ or $\frac{d\mu}{\mu} = \frac{N_x - M_y}{Mu_y - Nu_x} du$

EXAMPLE 4: INTEGRATING FACTOR $\mu = f(u)$

Solve the equation $y dx + (x^2 + y^2 - x) dy = 0$ using the integrating factor as a function of $x^2 + y^2$

Solution :

First of all we check this equation for exactness:

$$\frac{\partial M}{\partial y} = M_y = 1, \qquad \frac{\partial N}{\partial x} = N_x = 2x - 1$$

The partial derivatives of $M_y \neq N_x$ are not equal to each other. Therefore, this equation is not exact.

Now we try to use the integrating factor in the form $u = x^2 + y^2$. Here we have $\frac{\partial u}{\partial x} = 2x$, and $\frac{\partial u}{\partial y} = 2y$

$$\frac{1}{\mu} \frac{d\mu}{du} = \frac{\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x}}{N\frac{\partial u}{\partial x} - M\frac{\partial u}{\partial y}} = \frac{1 - (2x - 1)}{(x^2 + y^2 - x)2x - (y)2y}$$
$$= \frac{2 - 2x}{(x^2 + y^2)(2x - 2)} = \frac{1}{-(x^2 + y^2)} = -\frac{1}{u}$$
$$\frac{1}{\mu} d\mu = -\frac{1}{u} du$$
$$\mu = u^{-1} = \frac{1}{(x^2 + y^2)}$$

hen

By the function $\mu(x, y)$ we can convert the original differential equation into exact $\frac{y}{(x^2 + y^2)}dx + \frac{x^2 + y^2 - x}{(x^2 + y^2)}dy = 0$

where
$$\overline{M}(x,y) = \frac{y}{(x^2+y^2)}$$
 and $\overline{N}(x,y) = \frac{x^2+y^2-x}{(x^2+y^2)} = 1 - \frac{x}{(x^2+y^2)}$

Integrate the first equation with respect to the variable x (considering y as a constant):

$$\psi(x,y) = \int \overline{M}(x,y)dx = \int \frac{y}{(x^2 + y^2)}dx = \arctan\frac{x}{y} + C(y)$$

Substitute this in the first equation system to get: $\frac{\partial u(x,y)}{\partial y} = \frac{-x}{(x^2 + y^2)} + C'(y) = \overline{N}(x,y)$

We have C'(y) = 1 then C(y) = y + k

Hence, the general solution of the given differential equation is written in the form:

$$\arctan \frac{x}{y} + y + k = 0$$

where k is any real number.

Exercises

Find the integrating factor, then solve the following ODEs:

- 1. (x + y)dx + dy = 0
- 2. $2xy(1+y^2)dx (1+x^2+x^2y^2)dy = 0$
- 3. $y + xy^2 + (x x^2y)y' = 0$ using an integrating factor as a function of xy.