Ordinary Differential Equations

Exact Equations and Integrating Factor

Abadi
Universitas Negeri Surabaya

Exact Equations \& Integrating Factors

- Consider a first order ODE of the form

$$
M(x, y)+N(x, y) y^{\prime}=0
$$

- Suppose there is a function ψ such that

$$
\psi_{x}(x, y)=M(x, y), \psi_{y}(x, y)=N(x, y)
$$

and such that $\psi(x, y)=c$ defines $y=\phi(x)$ implicitly. Then

$$
M(x, y)+N(x, y) y^{\prime}=\frac{\partial \psi}{\partial x}+\frac{\partial \psi}{\partial y} \frac{d y}{d x}=\frac{d}{d x} \psi(x, \phi(x))
$$

and hence the original ODE becomes

$$
\frac{d}{d x} \psi(x, \phi(x))=0
$$

- Thus $\psi(x, y)=c$ defines a solution implicitly.
- In this case, the ODE is said to be exact.

Theorem 1

Suppose an ODE can be written in the form

$$
\begin{equation*}
M(x, y)+N(x, y) y^{\prime}=0 \tag{1}
\end{equation*}
$$

where the functions M, N, M_{y} and N_{x} are all continuous in the rectangular region $\mathcal{R}:(x, y) \in(\alpha, \beta) \times(\gamma, \delta)$. Then Eq. (1) is an exact differential equation iff

$$
\begin{equation*}
M_{y}(x, y)=N_{x}(x, y), \forall(x, y) \in \mathcal{R} \tag{2}
\end{equation*}
$$

That is, there exists a function ψ satisfying the conditions

$$
\begin{equation*}
\psi_{x}(x, y)=M(x, y), \quad \psi_{y}(x, y)=N(x, y) \tag{3}
\end{equation*}
$$

iff M and N satisfy Eq. (2).

Example 1: Exact Equation (1 of 4)

Consider the following differential equation.

$$
\frac{d y}{d x}=-\frac{x+4 y}{4 x-y}
$$

Then $M(x, y)=x+4 y, N(x, y)=4 x-y$ and hence

$$
M_{y}(x, y)=4=N_{x}(x, y) \Rightarrow \text { ODE is exact }
$$

From Theorem 1, there exist $\psi(x, y)$ such that

$$
\psi_{x}(x, y)=x+4 y, \quad \psi_{y}(x, y)=4 x-y
$$

Thus

$$
\psi(x, y)=\int \psi_{x}(x, y) d x=\int(x+4 y) d x=\frac{1}{2} x^{2}+4 x y+C(y)
$$

Example 1: Solution (2 of 4)

We have $\psi_{x}(x, y)=x+4 y, \quad \psi_{y}(x, y)=4 x-y$ and

$$
\psi(x, y)=\int \psi_{x}(x, y) d x=\int(x+4 y) d x=\frac{1}{2} x^{2}+4 x y+C(y)
$$

It follows that
$\psi_{y}(x, y)=4 x-y=4 x-C^{\prime}(y) \Rightarrow C^{\prime}(y)=-y \Rightarrow C(y)=-\frac{1}{2} y^{2}+k$ Thus

$$
\psi(x, y)=\frac{1}{2} x^{2}+4 x y-\frac{1}{2} y^{2}+k
$$

By Theorem 1, the solution is given implicitly by

$$
x^{2}+8 x y-y^{2}=c
$$

Example 1:
 Direction Field and Solution Curves

Our differential equation and solutions are given by

$$
\frac{d y}{d x}=-\frac{x+4 y}{4 x-y} \Leftrightarrow(x+4 y)+(4 x-y) y^{\prime}=0 \Rightarrow x^{2}+8 x y-y^{2}=0
$$

A graph of the direction field for this differential equation, along with several solution curves, is given below.

Example 2: Exact Equation (1 of 3)

Consider the following differential equation.

$$
\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}-1\right) y^{\prime}=0 .
$$

Then $M(x, y)=y \cos x+2 x e^{y}, N(x, y)=\sin x+x^{2} e^{y}-1$ and hence

$$
M_{y}(x, y)=\cos x+2 x e^{y}=N_{x}(x, y) \Rightarrow \text { ODE is Exact }
$$

from Theorem 1,

$$
\psi_{x}(x, y)=M=y \cos x+2 x e^{y}, \psi_{y}(x, y)=N=\sin x+x^{2} e^{y}-1
$$

Thus

$$
\psi(x, y)=\int \psi_{x}(x, y) d x=\int\left(y \cos x+2 x e^{y}\right) d x=y \sin x+x^{2} e^{y}+C(y)
$$

Example 2: Solution (2 of 3)

From this

$$
\psi(x, y)=\int \psi_{x}(x, y) d x=\int\left(y \cos x+2 x e^{y}\right) d x=y \sin x+x^{2} e^{y}+C(y)
$$

It follows that

$$
\begin{aligned}
\psi_{y}(x, y) & =\sin x+x^{2} e^{y}-1=\sin x+x^{2} e^{y}+C^{\prime}(y) \\
& \Rightarrow C^{\prime}(y)=-1 \Rightarrow C(y)=-y+k
\end{aligned}
$$

Thus

$$
\psi(x, y)=y \sin x+x^{2} e^{y}-y+k
$$

Theorem 1, the solution is given implicitly by

$$
y \sin x+x^{2} e^{y}-y=c
$$

Example 2:
 Direction Field and Solution Curves

Our differential equation and solutions are given by

$$
\begin{gathered}
\left(y \cos x+2 x e^{y}\right)+\left(\sin x+x^{2} e^{y}-1\right) y^{\prime}=0 \\
y \sin x+x^{2} e^{y}-y=c .
\end{gathered}
$$

A graph of the direction field for this differential equation, along with several solution curves, is given below.

Example 3: Non-Exact Equation (1 of 3)

Consider the following differential equation.

$$
\left(3 x y+y^{2}\right)+\left(2 x y+x^{3}\right) y^{\prime}=0
$$

Then

$$
M(x, y)=3 x y+y^{2}, \quad N(x, y)=2 x y+x^{3}
$$

and hence

$$
M_{y}(x, y)=3 x+2 y \neq 2 y+3 x^{2}=N_{x}(x, y) \Rightarrow \text { ODE is not exact }
$$

To show that our differential equation cannot be solved by this method, let us seek a function ψ such that

$$
\psi_{x}(x, y)=M=3 x y+y^{2}, \quad \psi_{y}(x, y)=N=2 x y+x^{3}
$$

Thus

$$
\psi(x, y)=\int \psi_{x}(x, y) d x=\int\left(3 x y+y^{2}\right) d x=\frac{3}{2} x^{2} y+x y^{2}+C(y)
$$

Example 3: Non-Exact Equation (2 of 3)

It follows that

$$
\begin{aligned}
& \psi_{y}(x, y)=2 x y+x^{3}=\frac{3}{2} x^{2}+2 x y+C^{\prime}(y) \\
\Rightarrow & C^{\prime}(y) \stackrel{?}{=} x^{3}-\frac{3}{2} x^{2} \Rightarrow C(y) \stackrel{? ? 2}{=} x^{3} y-\frac{3}{2} x^{2} y+k
\end{aligned}
$$

Thus there is no such function ψ. However, if we (incorrectly) proceed as before, we obtain

$$
x^{3} y+x y^{2}=c
$$

as our implicitly defined y, which is not a solution of ODE.

Integrating Factors

It is sometimes possible to convert a differential equation that is not exact into an exact equation by multiplying the equation by a suitable integrating factor $\mu(x, y)$:

$$
\begin{gathered}
M(x, y)+N(x, y) y^{\prime}=0 \\
\mu(x, y) M(x, y)+\mu(x, y) N(x, y) y^{\prime}=0
\end{gathered}
$$

For this equation to be exact, we need

$$
(\mu M)_{y}=(\mu N)_{x} \Leftrightarrow M \mu_{y}-N \mu_{x}+\left(M_{y}-N_{x}\right) \mu=0
$$

This partial differential equation may be difficult to solve. If μ is a function of x alone, then $\mu_{y}=0$ and hence we solve

$$
\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu
$$

provided right side is a function of x only.
Similarly if μ is a function of y alone. $\quad \Rightarrow \frac{d \mu}{d y}=-\frac{M_{y}-N_{x}}{M} \mu$

Example 4: Non-Exact Equation

Consider the following non-exact differential equation.

$$
\left(3 x y+y^{2}\right)+\left(x^{2}+x y\right) y^{\prime}=0
$$

Seeking an integrating factor, we solve the linear equation

$$
\frac{d \mu}{d x}=\frac{M_{y}-N_{x}}{N} \mu \Leftrightarrow \frac{d \mu}{d x}=\frac{\mu}{x} \Rightarrow \mu(x)=x
$$

Multiplying our differential equation by μ, we obtain the exact equation

$$
\left(3 x^{2} y+x y^{2}\right)+\left(x^{3}+x^{2} y\right) y^{\prime}=0
$$

which has its solutions given implicitly by

$$
x^{3} y+\frac{1}{2} x^{2} y^{2}=c
$$

Integrating Factor

For $\mu=f(u)$, where $u=g(x, y)$ we have $(\mu M)_{y}=(\mu N)_{x} \Leftrightarrow M \mu_{y}-N \mu_{x}+\left(M_{y}-N_{x}\right) \mu=0$
That becomes

$$
M \frac{d \mu}{d u} u_{y}-N \frac{d \mu}{d u} u_{x}+\left(M_{y}-N_{x}\right) \mu=0
$$

or

$$
\frac{d \mu}{\mu}=\frac{N_{x}-M_{y}}{M u_{y}-N u_{x}} d u
$$

EXAMPLE 4: INTEGRATING FACTOR $\boldsymbol{\mu}=\boldsymbol{f}(\boldsymbol{u})$

Solve the equation $y d x+\left(x^{2}+y^{2}-x\right) d y=0$ using the integrating factor as a function of $x^{2}+y^{2}$

Solution :

First of all we check this equation for exactness:

$$
\frac{\partial M}{\partial y}=M_{y}=1, \quad \frac{\partial N}{\partial x}=N_{x}=2 x-1
$$

The partial derivatives of $M_{y} \neq N_{x}$ are not equal to each other. therefore, this equation is not exact.
Now we try to use the integrating factor in the form $u=x^{2}+y^{2}$.
Here we have $\frac{\partial u}{\partial x}=2 x$, and $\frac{\partial u}{\partial y}=2 y$

$$
\begin{gathered}
\frac{1}{\mu} \frac{d \mu}{d u}=\frac{\frac{\partial M}{\partial y}-\frac{\partial N}{\partial x}}{N \frac{\partial u}{\partial x}-M \frac{\partial u}{\partial y}}=\frac{1-(2 x-1)}{\left(x^{2}+y^{2}-x\right) 2 x-(y) 2 y} \\
=\frac{2-2 x}{\left(x^{2}+y^{2}\right)(2 x-2)}=\frac{1}{-\left(x^{2}+y^{2}\right)}=-\frac{1}{u} \\
\frac{1}{\mu} d \mu=-\frac{1}{u} d u \\
\mu=u^{-1}=\frac{1}{\left(x^{2}+y^{2}\right)}
\end{gathered}
$$

By the function $\mu(x, y)$ we can convert the original differential equation into exact

$$
\frac{y}{\left(x^{2}+y^{2}\right)} d x+\frac{x^{2}+y^{2}-x}{\left(x^{2}+y^{2}\right)} d y=0
$$

y here $\bar{M}(x, y)=\frac{y}{\left(x^{2}+y^{2}\right)}$ and $\bar{N}(x, y)=\frac{x^{2}+y^{2}-x}{\left(x^{2}+y^{2}\right)}=1-\frac{x}{\left(x^{2}+y^{2}\right)}$

Integrate the first equation with respect to the variable x (considering y as a constant):

$$
\psi(x, y)=\int \bar{M}(x, y) d x=\int \frac{y}{\left(x^{2}+y^{2}\right)} d x=\arctan \frac{x}{y}+C(y)
$$

substitute this in the first equation system to get:

$$
\frac{\partial u(x, y)}{\partial y}=\frac{-x}{\left(x^{2}+y^{2}\right)}+C^{\prime}(y)=\bar{N}(x, y)
$$

We have $C^{\prime}(y)=1$ then $C(y)=y+k$

Hence, the general solution of the given differential equation is written in the form:

$$
\arctan \frac{x}{y}+y+k=0
$$

where k is any real number.

Exercises

Find the integrating factor, then solve the following ODEs:

1. $(x+y) d x+d y=0$
2. $2 x y\left(1+y^{2}\right) d x-\left(1+x^{2}+x^{2} y^{2}\right) d y=0$
3. $y+x y^{2}+\left(x-x^{2} y\right) y^{\prime}=0$ using an integrating factor as a function of $x y$.
