Chapter Ten

Simulation

13.1 Overview of Simulation

- When do we prefer to develop **simulation model** over an analytic model?
 - When not all the underlying assumptions set for analytic model are valid.
 - When mathematical complexity makes it hard to provide useful results.
 - When "good" solutions (not necessarily optimal) are satisfactory.
- A simulation develops a model to numerically evaluate a system over some time period.
- By estimating characteristics of the system, *the best alternative* from *a set of alternatives under consideration* can be selected.

13.1 Overview of Simulation

Continuous simulation systems monitor the system each time a change in its state takes place.

 Discrete simulation systems monitor changes in a state of a system at discrete points in time.

 Simulation of most practical problems requires the use of a computer program.

13.1 Overview of Simulation

Approaches to developing a simulation model

- Using add-ins to Excel such as @Risk or Crystal Ball
- Using general purpose programming languages such as: FORTRAN, PL/1, Pascal, Basic.
- Using simulation languages such as GPSS, SIMAN, SLAM.
- Using a simulator software program.
- Modeling and programming skills, as well as knowledge of statistics are required when implementing the simulation approach.

10.2 Monte Carlo Simulation

Monte Carlo simulation generates random events.
Random events in a simulation model are needed when the input data includes random variables.
To reflect the relative frequencies of the random variables, the *random number mapping* method is used.

JEWEL VENDING COMPANY – an example for the random mapping technique

Jewel Vending Company (JVC) installs and stocks vending machines.

Bill, the owner of JVC, considers the installation of a certain product ("Super Sucker" jaw breaker) in a vending machine located at a new supermarket.

JEWEL VENDING COMPANY – an example of the random mapping technique

Data

- The vending machine holds 80 units of the product.
- The machine should be filled when it becomes half empty.

Daily demand distribution is estimated from similar vending machine placements.

- P(Daily demand = 0 jaw breakers) = 0.10
- P(Daily demand = 1 jaw breakers) = 0.15
- P(Daily demand = 2 jaw breakers) = 0.20
- P(Daily demand = 3 jaw breakers) = 0.30
- P(Daily demand = 4 jaw breakers) = 0.20
- P(Daily demand = 5 jaw breakers) = 0.05

Bill would like to estimate the expected number of days it takes for a filled machine to become half empty.

Random number mapping – The Probability function Approach

Random number mapping uses the probability function to generate random demand.

A number between 00 and 99 is selected randomly.

The daily demand is determined by the mapping demonstrated below.

Random number mapping – The Cumulative Distribution Approach

0.45

3

0.25

Y = 0.34

0.00

0.10

The daily demand X is determined by the random number Y between 0 and 1, such that X is the smallest value for which $F(X) \ge Y$.

5

F(1) = .25 < .34 F(2) = .45 > .34

4

Simulation of the JVC Problem

A random demand can be generated by hand (for small problems) from a table of pseudo random numbers.

- Using Excel a random number can be generated by
 - The RAND() function
 - The random number generation option (Tools>Data Analysis)

Simulation of the JVC Problem

An illustration of generating a daily random demand.

 Since we have two digit probabilities, we use the first two digits of each random number.

	Random	Two First		Total Demand	
Day	Number	Digits	Demand	to Date	
1	6506	~ 65] ┌─→3	3	
2	7761	77	4	7	
3	6170	61	3	10	
4	8800	88	4	14	
5	4211	42 🦵	2	16	
6	7452	<u> </u>		19	
00-	09 10-25	26-44 45	-74 75-94	95-99	
) /	2	3 4	5	
					11

Simulation of the JVC Problem

The simulation is repeated and stops once total demand reaches 40 or more.

	Random	Two First		Total Demand
Day	Number	Digits	Demand	to Date
1	6506	65	3	(3
2	The numb	per of "simula	ted" days	7
3	required f	J 10		
4	reach 10) 14		
5				16
6	7452	74	3	L 19

Simulation Results and Hypothesis Tests

- The purpose of performing the simulation runs is to find the average number of days required to sell 40 jaw breakers.
- Each simulation run ends up with (possibly) a different number of days.
- A hypothesis test is conducted to test whether or not $\mu = 16$.

Null hypothesis H_0 : $\mu = 16$ Alternative hypothesis H_A : $\mu \neq 16$

Simulation Results and Hypothesis Tests

The test:

- Define α (the significance level).
- Let n be the number of replication runs.
- Build the t-statistic

 $=\frac{\overline{X}-\mu}{s/\sqrt{n}}$

The t-statistic can be used if the random variable observed (number of day required for the total demand to be 40 or more) is normally distributed, while the standard deviation is unknown.

• Reject H₀ if t > $t_{\alpha/2}$ or t <- $t_{\alpha/2}$

($t_{\alpha/2}$ has n-1 degrees of freedom.)

JVC – A Flow Chart

Flow charts help guide the simulation program

JVC – Excel Spreadsheet

JVC – Excel Spreadsheet

	A	В	С	D	E	F	G	Н
1	Replication	Days		Days		(E3	8-16)/E4	
2	1	18						
3	2	15		Mean	16.6			
4	3	14		Standard Error	0.541603			
5	4	18		Median	17		t	1.107823
6	5	17		Mode	18		p-value	0.296665
7	6	17		Standard Deviation	1.712698			
8	7	45		Comula Monionea	2,022333			
9	• The p-value =.2966 This value is quite high ₅₂₇							
10	compared to any reasonable significance level. 232							
11	• Based on this data there is insufficient =TDIST(ABS(H5),9,2)							(5),9,2)
12	² avidance to infer that the mean number of ¹⁴							
13	13 loss differe from 40							
14	days diff	days differs from 16.						
15				Count	10			

10.3 Simulation Modeling of Inventory Systems

Inventory simulation models are used when underlying assumptions needed for analytical solutions are not met.

- Typical inputs into the simulation model are
 - Order cost
 - Holding cost
 - Lead time
 - Demand distribution

10.3 Simulation Modeling of Inventory Systems – continued

Frequently, the Fixed-Time Simulation approach is appropriate for the modeling of inventory problems.

- The system is monitored periodically.
- The activities associated with demand, orders, and shipments are determined, and the system is updated accordingly.
- Typical output is the average total cost for a given inventory policy.

ALLEN APPLIANCE COMPANY – An example of an inventory simulation

- Allen Appliance stocks and sells the KitchenChef electric mixer.
 Allen wishes to determine an optimal inventory policy for the mixer based on the following data:
 - Data
 - Unit cost is \$200, and selling price is \$260.
 - Annual holding cost rate is 26%.
 - Orders are placed at the end of a week, and arrive at the beginning of a week, two weeks later.
 - Ordering cost is \$45 per order.
 - Backorder cost is \$5 per unit per week.
 - Backorder administrative cost is \$2 per unit.

Continued...

ALLEN APPLIANCE COMPANY

Distribution of...

• The number of customers who arrive weekly: P(Arrivals = 0) = .10P(Arrivals = 1) = .30P(Arrivals = 2) = .25P(Arrivals = 3) = .20P(Arrivals = 4) = .15• The demand per customer: P(Demand = 1) = 0.10P(Demand = 2) = 0.15P(Demand = 3) = 0.40P(Demand = 4) = 0.35

AAC – The Planned Shortage Model

- Let us assume first a constant demand rate, and use the planned shortage model. We need to calculate the following parameters:
 - Average weekly demand =

 (Average number of customers/week)(Average demand/customer) =
 [.10(0)+.25(2)+.2(3)+.15(4)][.10(1)+.15(2)+.40(3)+.35(4)] =
 (2)(3) = 6
 - Holding cost per unit per week = (Ann. Holding cost rate)(Unit cost)/52 = .26(200)/52 = \$1

AAC – The Planned Shortage Model

Using the template inventory.xls for the planned shortage model, and assuming a constant demand of 6 units per week (312 per year) we have:

- Optimal ordering policy:
 - Q^{*} = 24.88 (rounded to 25)
 - S* = 2.15 (rounded to to 2); Reorder when inventory is at a level of 10.
- Total annual cost $TC(Q^*,S^*) =$ \$63582.48

AAC – The Simulation Model

Because demand is uncertain, a simulation models has been developed.
 A continuous review (R,Q) system is studied first, where R = 10 and Q = 25.

AAC – The Simulation Model

The random number mapping associated with the distributions are:

Number of Arrivals	<u>Probability</u>	Random # mapping
0	.10	00 - 09
1	.30	10 – 39
2	.25	40 - 64
3	.20	65 – 84
4	.15	85 – 99
Demand/customer	<u>Probability</u>	Random # mapping
1	.10	00 - 09
2	.15	10 – 24
3	.40	25 – 64
4	.35	65 – 99

۲

AAC – The Simulation Logic

- The simulation keeps track of the following quantities:
 - Beginning inventory for the week = Ending inventory of the previous week + order received.
 - Number of retailers arriving, their demand, and the total weekly demand.
 - Ending inventory for the week = Beginning inventory + order received – weekly demand.

AAC – The Simulation Logic

- The simulation determines whether or not an order should be placed as follows:
 - Is the ending inventory<10 and is there no outstanding order? If so, place an order and keep track of the lead time.
- The simulation calculates the Weekly cost:
 - Ordering cost (if applicable) + Holding cost (if ending inventory > 0) + Backorder cost (if ending inventory < 0).

AAC – 10 week simulation results

Week	Beginning Inventory	Random # (Col. 1)	# of Customers	Random # (Col. 2)	Customer Demand	Weekly Demand	Ending Inventory	Order Placed?	Lead Time	Weekly Cost
1	25	65	3	33	3					
				98	4					
				26	3	10	15	No	_	\$15
2	15	77	3	91	4					
				96	4					
				48	3	11	4	Yes	2	\$49
3	4	61	2	82	4					
				27	3	7	-3	No	1	\$21

- Initial inventory = 25.
- Weekly cost = Order cost (if any) + 1(Stock on hand) + 2(New back orders) + 5(Total backorders)
- Total cost for 10 weeks = \$415 (weekly average = \$41.5).

AAC – 1000 weeks of simulation spreadsheet results

INPUTS					
Q =	25	Ch =	1		
R =	10	Co =	45		
		Cs =	5		
		Cb =	2		
OUTPUT					
Average Cost =	33.109				
Day	Start of Week	# of Customer	Total	End of Week	Total
	Inventory	Arrivals	Demand	Inventory	Cost
1	25	3	9	16	16
2	16	2	7	9	54
3	9	3	11	-2	14
4	-2	1	4	-6	38
5	19	0	0	19	19
6	19	1	4	15	15
7	15	1	2	13	13

10.4 Simulation of a Queuing System

In queuing systems time itself is a random variable. Therefore, we use the *next event simulation* approach.

The simulated data are updated each time a new event takes place (not at a fixed time periods.)

The process interactive approach is used in this kind of simulation (all relevant processes related to an item as it moves through the system, are traced and recorded).

CAPITAL BANK An example of queuing system simulation Capital Bank is considering opening the bank on Saturdays morning from 9:00 a.m. Management would like to determine the waiting time on Saturday morning based on the following data:

CAPITAL BANK

Data:

- There are 5 teller positions of which only three will be staffed.
- Ann Doss is the head teller, experienced, and fast.
- Bill Lee and Carla Dominguez are associate tellers less experienced and slower.

CAPITAL BANK

Data:

Service time distributions:

Ann's Service T	Time Distribution	Bill and Carla's	s Service Time D	Distribution
<u>Service Time</u>	<u>Probability</u>	<u>Service Time</u>	<u>Probability</u>	
.5 minutes	.05	1 minute	.05	
1	.10	1.5	.15	
1.5	.20	2	.20	
2	.30	2.5	.30	
2.5	.20	3	.10	
3	.10	3.5	.10	
3.5	.05	4	.05	
		4.5	.05	

CAPITAL BANK

Data: Customer inter-arrival time distribution inter-arrival time **Probability** .65 .5 Minutes .15 .15 1.5 .05 2 Service priority rule is first come first served A simulation model is required to analyze the service. ۲

CAPITAL BANK – Solution

Calculating expected values:

- E(inter-arrival time) = .5(.65)+1(.15+1.5(.15)+2(.05) = .80 minutes [75 customers arrive per hour on the average, (60/.8=75)]
- E(service time for Ann) = .1(.05)+1(.10)+...+3.5(.05) = 2 minutes [Ann can serve 60/2=30 customers per hour on the average]
- E(Service time for Bill and Carla) = 1(.05)+1.5(.15)+...+4.5(.05) = 2.5 minutes [Bill and Carla can serve 60/2.5=24 customers per hour on the average].

CAPITAL BANK – Solution

To reach a steady state the bank needs to employ all the three tellers (30+2(24) = 78 > 75).

Customer Inter-arrival Time					
Time	Random #s				
.5 minutes	00 - 64				
1 minute	65 - 79				
1.5 minutes	80 - 94				
2 minutes	95 – 99				

Ann's Service Time					
Time	Random #s				
.5 minutes	00 - 04				
1 minute	05 – 14				
1.5 minutes	15 – 34				
2 minutes	35 –64				
2.5 minutes	65 – 84				
3 minutes	85 – 94				
3.5 minutes	95 - 99				

Bill and Carla's Service Time					
Time	Random #s				
1 minute	00 - 04				
1.5 minutes	05 – 19				
2 minutes	20 - 39				
2.5 minutes	40 - 69				
3 minutes	70 - 79				
3.5 minutes	80 - 89				
4 minutes	90 - 94				
4.5 minutes	95 - 99				
CAPITAL BANK – The Simulation logic

- If no customer waits in line, an arriving customer seeks service by a free teller in the following order: Ann, Bill, Carla.
 - If all the tellers are busy the customer waits in line and takes then the next available teller.
- The waiting time is the time a customer spends in line, and is calculated by

[*Time service begins*] minus [Arrival Time]

CAPITAL – Simulation Demonstration

	Random	Arrival	Random	Ą	nn	E	Bill	C	aria	Waiting
Customer	Number	Time	Number	Start	Finish	Start	Finish	Start	Finish	Time
1 _		→1.5 <u>_</u>	<mark>-63</mark>	15	35					0
2	88	3.0	1.5 46			3	5.5			0
-			1.0 1	.5 1.	5 _{1.5} Bil	1.5			3.5	
7	26	7	59	7.5	9.5					0.5
8	16	7.5	28			8.5	10.5			1
9	40	8	79					9	12	1
10	65	9	64	9.5	11.5					0.5
11	61	9.5	33			10.5	12.5			1
<u>Mapping</u> <u>I</u> 30 – 94 →	nterarriva 1.5 minut	<u>l time</u> es	<u>Mappi</u> 35 – 6	Mapping Ann's Service time 35 – 64—►2 minutes						

CAPITAL – Simulation Demonstration

	Random	Arrival	Random	A	Ann		Bill	C	arla	Waiting	
Customer	Customer Number Time Number Start Finish S		Start	Finish	Start	Finish	Time				
1	89	1.5	63	1.5	3.5					0	
2 🗆		→ 3	<mark>-46</mark>			3	5.5			0	
-					Bil Ann	1.5		3	3.5	/	2
7	26	7	59	7.5	9.5					0.5	
8	16	7.5	28			8.5	10.5			1	
9	40	8	79					9	12	1	
10	65	9	64	9.5	11.5					0.5	
11	61	9.5	33			10.5	12.5			1	
<u>Mapping</u> <u>I</u> 30 – 94 → 7	nterarriva 1.5 minut	<u>l time</u> es	<u>Mappi</u> 40 – 6	ng <u>Bil</u> 9—∙2.	l' <u>s Serv</u> 5 minut	ice tim es	<u>ne</u>				

CAPITAL – Simulation Demonstration

	Random	Arrival	Random	A	'nn	Bill		Carla		Waiting
Customer	Number	Time	Number	Start	Finish	Start	Finish	Start	Finish	Time
1	89	1.5	63	1.5	3.5					0
2	88		46			(3)	5.5			0
-							N	Vaiting	time –	
7	26	(7)	59	(7.5)	9.5					0.5
8	16	7.5	28			8.5	10.5			1
9	40	8	79					9	12	1
10	65	9	64	9.5	11.5					0.5
11	61	9.5	33			10.5	12.5			1

CAPITAL – 1000 Customer Simulation

Average Waiting Time in Line =				1.670							
Average \	Naiting Ti	ime in S	System =	3.993							
				<u>Aı</u>	<u>nn</u>	<u>B</u>	<u>ill</u>	<u>Ca</u>	i <u>rla</u>	Waiting	Waiting
	Random	Arrival	Random							Time	Time
Customer	Number	Time	Number	Start	Finish	Start	Finish	Start	Finish	Line	System
1	0.87	1.5	0.96	1.5	5					0	3.5
2	0.18	2.0	0.76			2	5			0	3.0
3	0.49	2.5	0.78					2.5	5.5	0	3.0
4	0.86	4.0	0.49	5	7					1	3.0
5	0.54	4.5	0.85			5	8.5			0.5	4.0
6	0.61	5.0	0.55					5.5	8	0.5	3.0
7	0.91	6.5	0.90	7	10					0.5	3.5
8	0.64	7.0	0.62					8	10.5	1	3.5

CAPITAL – 1000 Customer Simulation

Mapping for Continuous Random Variables

Example

- The Explicit inverse distribution method can be used to generate a random number X from the exponential distribution with μ = 2 (i.e. service time is exponentially distributed, with an average of 2 customers per minute).
 - Randomly select a number from the uniform distribution between 0 and 1. The number selected is Y = .3338.
 - Solve the equation: $X = F^{-1}(Y) = -(1/\mu)\ln(1 Y) =$

 $-(1/2)\ln(1-.3338) = .203$ minutes.

Mapping for Continuous Random Variables – Using Excel

	A	В	С	
1	Mean =	2		
2				
3	Replication	<u>Random Number</u>	Service Time	
4	1	0.3874 🔺	0.2450 🔺	
5	2	0.0549	0.0282	
6	3	0.5173	0.3642	
7	4	0.5491	0.3983	
8	5	0.9826	2.0245	
9	6		1.4073	
10	7	=RAND()	5024	
11	8	Drag to cell	=_I N(1_B/	
12	9	0818		μο42
13	10	0.7735	Drag to ce	1013

Random numbers and Excel

Excel can generate continuously distributed random numbers for various distribution.
 Normal =NORMINV
 Beta: =BETAINV
 Chi squared: =CHIINV
 Gamma: =GAMMAINV

Random numbers Normally distributed by Excel –

	A	В
1	Mean =	35
2	Standard Deviation =	3
3		
4	<u>Car</u>	Speed
5	1	36.94
6	2	32.68
7	3	32.40
8	4	31.88
9	5	34.72
10	6	35.02
11	7	35.27
12	8	39.16
13	9	31.58
14	10	40.81
15	11	33.10
16	12	35.17
17	13	36.63
18	14	37.39

=NORMINV(RAND(),\$B\$1,\$B\$2) Drag to cell B24

Simulation of an M / M / 1 Queue

Applying the process interaction approach we have:

- New arrival time = Previous arrival time + Random interarrival time.
- Service finish time = Service start time + Random service time.
- A customer joins the line if there is a service in progress (its arrival time < current service finish time).
- A customer gets served when the server becomes idle.
- Waiting times and number of customers in line and in the system are continuously recorded.

LANFORD SUB SHOP An example of the M/M/1 queuing simulation

- Lanford Sub Shop sells sandwiches prepared by its only employee, the owner Frank Lanford.
- Frank can serve a customer in 1 minute on the average according to an exponential distribution.
- During lunch time, 11:30 a.m. to 1:30 p.m., an average of 30 customers an hour arrive at the shop according to a Poisson distribution.

Using simulation, Frank wants to determine the average time a customer must wait for service

LANFORD SUB SHOP - Solution

Input Data

 $\lambda = 30, \ \mu = 60.$

Data generated by the simulation:

- C# = The number of the arriving customer.
- R#1 = The random number used to determine interarrivals.
- IAT = The interarrival time.
- AT = The arrival time for the customer.
- TSB = The time at which service begins for the customer.
- WT = The waiting time a customer spends in line.
- R#2 = The random number used to determine the service time.
- ST = The service time.
- TSE = The time at which service end for the customer

LANFORD SUB SHOP – Simulation for first 10 Customers

LANFORD SUB SHOP – Simulation for first 1000 Customers

	A	В	С	D	E	F	G		
1	Arrival Rate	e (lambda)	per hour =	30					
2	Service Ra	te (mu) per	hour =	60					
3									
4	Average W	aiting Time/	: (in minute	s) =	0.97098	2			
5									
6	Cust #	IAT	AT	TSB	WT	ST	TSE		
7									
8	1	3.185907	3.185907	3.185907	l I	<mark>0</mark> 0.161422	3.34733		
9	2	0.907386	4.093294	4.093294	I	0 1.169643	5.262937		
10	3	0.448395	4.541689	5.262937	0.72124	8 0.191208	5.454144		
11	4	0.01861	4.560299	5.454144	0.89384	<u>5 0.860468</u>	6.314613		
12	5	1.188251	5.748551	6.314613	Cell	Value			Formula
13	6	0.66342	6.411971	7.601137	E4	Wq			=AVERAGE(E8:E1007)
14	7	0.906348	7.318318	9.994628	Row 8	}			
15	8	1.205453	8.523771	10.00124	A8	Customer]	Number		=A7+1
16	9	4.724972	13.24874	13.24874	B8	Customer I	Inter-arriva	al Time	=-LN(1-RAND())/(\$D\$1/60)
17	10	1.362563	14.61131	14.61131	C8	Arrival Tir	ne		=B8+C7
10	12	5 357083	21 1768	21 1769	D8	Time Serv:	ice Begins		=MAX(C8.G7)
20	12	0.007000	21.1700	22 38254	E8	Waiting Ti	me		=D8-C8
20	10	0.10001	21.01011	22.00204	E8 Service Time =- $I.N(1-RANDO)/($D$2/6)$			=-LN(1-RAND(1)/(\$D\$2/60)	
					G8	Time Serv	ice Ends		=D8+F8
						THUE BOLD.	100 1511040		20.10

Conducting Simulation using Crystal Ball

Two new manus and a new toolbar are added to the Excel screen: Cell Run CBTools Help

Define Assumption... Define Decision... Define Forecast...

Select All Assumptions Select All Decisions Select All Forecasts Select Some...

Freeze Assumptions...

Copy Data

Paste Data

Clear Data

Cell Preferences...

Run

Reset

Single Step

Run Preferences...

Forecast Windows... Open Overlay Chart Open Trend Chart Open Sensitivity Chart

Create Report... Extract Data,...

Save Run...

Restore Run...

Close Crystal Ball About Crystal Ball...

Conducting Simulation using Crystal Ball

The new Toolbar is:

Recall: Bill wishes to determine the average number of days it will take to sell 40 or more jawbreakers.

The file JVC.xls contains the simulation run for one filling of the vending machine.

	. זער	
122] Eile Edit View 121 227 127 127 127 127 127 127 127 127	Insert Format Iools Data Window Cell	Three steps in performing the simulation: 1. Highlight the cell you wish to forecast (F1),
A 1 Number of Da 2 3 4 Day D 5 1 6 2 7 3 4	E B C ays to Sell 40 Jaw Breakers = ays to Sell 40 Jaw Breakers = Cumulative emand Demand 5 6 3 8	and click on the Forecast icon Im In the dialog box that appears type in the forecast name and change the units to Days. Press OK.
8 4 9 5 10 6 11 7 12 8 13 9 14 10 15 11 16 12 17 13 18 14 19 15 20 16 21 22 23 24 26 26	3 11 4 15 4 19 1 20 3 23 3 26 3 29 1 30 4 34 0 34 3 37 4 41	Cell F1: Define Forecast Forecast Name: Time to sell 40 Jaw Breakers Units: Days OK Cancel More >> Help

	licrosoft Exe	rel - 1VC						
	File Edit Vi	ew Insert	Format Tools	Data Window C C C C C C C C C C C C C	<u>Cell Run Help</u> Σ f _* M * Aria I• ₩ M M * F I 16 Tences	Three steps in performance2. Click the setupType in the numthe dialog box.	rming the simu preference icount of runs in Press OK.	lation: n
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 3 24 25 5 6	Uay 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	Demand 5 3 3 4 4 4 1 3 3 3 3 4 4 0 0 3 3 4 4 0 0 3 3 4 4 0 0 3 3 3 4 4 4 0 3 3 3 4 4 4 4		Ma V V	aximum Numbo Stop if Specifi Confidence Le Stop if Calcula	er of Trials: 500 ied Precision is <u>R</u> eached evel: 95.00 % ation <u>E</u> rror Occurs	<u>Trials</u> <u>Sampling</u> <u>Speed</u> <u>Macros</u> Options << ≥>	
	▶ ▶ \She	et1 / Sheeta	2 <u>/</u> Sheet3 /				r i i i i i i i i i i i i i i i i i i i	

	icrosoft	Excel	- J¥C											
	<u>File E</u> dit	⊻iew	ı <u>I</u> nsert	Format <u>T</u> ools <u>D</u>	ata <u>W</u> indow ⊆	ell R <u>u</u> r	n <u>H</u> elp	Thrope	tone	n norf	ormina	a tha sim	ulati	on.
	൙ 🔲	a	a 🖪	🎨 🐰 🖻 🕨	ວະດະ-Σ	f _*	Aria	111166.3	lehai	n hem	ommið	J IIIE SIIII	ulau	UII.
			<u> </u>					3. Th	e frec	luency	chart	is the re	sult	of
1	~		-	-							• • • • • •		•••••	•
	Δ			-	F	F	-	50	0 sim	ulatior	n runs.	_		
1	Number	r of I	Davs to	Sell 40 Jaw Br	eakers =		16		0 0111				_	
2	Humber		Jujoto	Sell to out Di	Cultors									
3				Cumulative										
4	Day	I	Demand	l Demand		💌 F	orecast: T	ime to Sell 40	Jaw Brea	kers		_		
5		1		<mark>5</mark> 5		Edit	Preference	es View Bun	Help				_	
6		2	I	0 5			0 T-!-!-	<u></u>	<u> </u>	01-1		0.0		
7		3		3 8		50			Freque	ncy Unart		U Uuti	iers	
8		4		3 11 4 45			.184					92		
9		5		4 15 4 10			•							
11		7		4 13 1 20			.138					69		
12		8		3 23		≣								
13		9		3 26		Ē	.092					46	- q	
14		10	:	3 29		pa								
15		11		1 30		2	046	.]]_]		23	<u>s</u>	
16		12		<mark>4</mark> 34			.040			1-1-1		23	×	
17		13	1	0 <mark>0</mark> 34	·									
18		14	I	0 34			.000							
19		15		3 37			11.00	14.00	1	7.00	20.00	23.00		
20		16		4 41					[)ays				
21						b	-Infinity	Ce	tainty [100.00	% ⊿ 🗐	ofinity		
23							innity	00	i tanity ji		/ 	iiiiiiiiy	- 11	
24														
25														
26														
	► N\S	heet	1 / Sheet	:2 / Sheet3 /										

The hypothesis test is:

- $H_0: \mu = 16$ $H_A: \mu \neq 16$
- From the frequency chart it appears the times follow a normal distribution.
- We can use the t-distribution to test the above hypotheses.

Hypothesis Testing with Crystal Ball-Revisit the Bill Jewel Vending Machine Problem
From View>Statistics we get the following results: Mean = 16; Standard error = .10

$$t = \frac{mean - 16}{s tan dard error} = \frac{16.62 - 16}{.10} = 6.2$$

With a sample of 500 (499 degrees of freedom), we can use the Z value to conduct the test. The value of 6.2 is large enough to reject the null hypothesis for any reasonable significance level. **Confidence Interval with Crystal Ball-Revisit the Bill Jewel Vending Machine Problem**

 We repeat the experiment for another 5000 days. The statistics of this experiment are: Mean = 16.44 Standard error = .03
 The confidence interval is:

$$\{\overline{X} - t_{\alpha/2,n-1} s / \sqrt{n}, \overline{X} + t_{\alpha/2,n-1} s / \sqrt{n}\}$$

This results in: $\{16.44 \pm 1.96(.03)\} = \{16.38, 16.50\}$.

Determining an Inventory Policy– Revisiting Allen Appliances Comp.

- We compare a (R,M) policy to the (R,Q) policy studied previously.
 - The cell (J11) that calculates the fixed order Q^* for the simulation of the (R,Q) policy, is changing to $Q^* + (R - I)$ for the simulation of the (R,M) policy.
- The comparative study results are shown next.

🙇 Forecas	st: Average Cost =				- O ×
<u>E</u> dit <u>P</u> refer	rences <u>V</u> iew R <u>u</u> n <u>H</u> elp				
Cell B7	Stati	stics			
	Statistic	Value		Value	
	Trials		500	500	
	Mean		32.14	29.22	
	Median		32.05	29.21	
	Mode		32.89	28.41	
	Standard Deviation		1.40	0.79	
	Variance		1.97	0.63	
	Skewness		0.50	0.12	
	Kurtosis		3.55	(DM) 2.93	
	Coeff. of Variability	(K,Q)	0.04	(K,IVI) 0.03	
	Range Minimum		28.74	27.17	
	Range Maximum		37.67	32.01	
	Range Width		8.93	4.84	
	Mean Std. Error		0.06	0.04	

Is there sufficient evidence in the simulated data to infer that the (R,M) policy is less expensive than the (R,Q) policy?

- 🗆 ×

Hypothesis test

• $H_0: \mu_1 - \mu_2 = 0$ $H_A: \mu_1 - \mu_2 > 0$ Population 1 – the (R,Q) policy weekly cost Population 2 - the (R,M) policy weekly cost

- The rejection region in standard terms: $Z > Z_{\alpha}$.
- The Z statistic is

$$Z = \frac{\overline{x}_1 - \overline{x}_2}{\sqrt{\frac{s_1^2}{n} + \frac{s_2^2}{n}}} = \frac{32.14 - 29.22}{\sqrt{\frac{1.97}{500} + \frac{.63}{500}}} = 23.69$$

We have a clear evidence that the (R,M) policy is cheaper.

Finding the "Best" (R,M) policy

- Let us run the simulation for various values of Q between 23 and 32.
 - We create a decision table in Crystal Ball as follows:
 - Reset the simulation
 - Define the average cost (B7) as the forecast value (highlight cell B7 and click).

In the dialog box that appears make the following changes:

Cell B2: Define Decision Variable	×
Name: 🔽 🔍 📿	
Variable Bounds Lower: 225 23 Upper: 275 32	Variable Type Co <u>n</u> tinuous Discrete Step: 1
<u>OK</u> ancel	<u>H</u> elp

- Define the reorder point (B3) as a decision variable
 - (Highlight cell B3 and click on
 Mean (Highlight cell B3 and click on
 - On the dialog that appears we make the changes:
 - Name of the decision variable: R (delete R=)
 - Lower bound = 8
 - Upper bound = 17
 - Variable type = Discrete
 - Step = 1

Setup the decision table

- Select Decision Table from the CBTools menu bar. In the dialog box that appears click "Next" (because "Average Cost =" is already highlighted).
- In the dialog box that appears select each variable (Q and then R and move each one to the right hand list (by clicking the button >>).

Spe	ecify options (step 3 of 3)	<u>?×</u>	
	Decision Table Crystal Ball Tool & Decisioneering 1998-2000	L2 L3 L4 4.7 L2 L3 L4 L7 L2 Q.X L05 4.9 C.2 1.9 0.3 0.9 4.7 D.2 Q.X L05 4.9 C.2 1.9 0.3 0.9 0.7 L3 C.20 4.9 C.2 1.9 0.3 0.7	
	Simulation Control Test 10 values for Q Test 10 values for R Run each simulation for 100	trials (maximum)	
	While Running Show forecasts as defined Show only target forecast Hide all forecasts		
[< Back Start	Cancel <u>H</u> elp	
Finding the "Best" (R,M) policy Analyzing the Simulation Results

	A	В	С	D	E	F	G	Н		J	K	L	
	Trend	Q	Q	ø	Ø	Q	Q	Ø	Ø	Q	Q		
1		23	(24	22	28	27	28	23	3	Q	32		
-	<u>I Iverlav</u>	00 40000		04,50004			00.57400						
2	R (8)	32.49628	32.0207	31.50864	31.2252	2 30.78742	30.57182	30.12943	30.11337	29.97291	29.80672	1	
3	R (9)	31.18105	30.61218	30.34156	29,893	3 29.6994	29.46378	29.14451	29.2245	29.01147	28.99288	- 2	
4	R (10)	29.98043	29.51874	29.19553	28.90977	28.74925	28.58188	28.48685	28.4306	28.23725	28.31075	3	
5	R (11)	28.99812	28.58733	28.34429	28.14743	3 27.92502	27.89588	27.87937	27.6989	27.77291	27.7307	4	
6	R (12)	28.25184	27.88557	27.62985	27.		e a		1.6	a			
7	R (13)	27.4851	27.30369	27.17235	_26.9 L6	et us re	tine th	e sear	ch tor	the op	otimal		
8	R (14)	27.05469	26.89896	26.76435	26.7	и л		a		'			
9	R (15)	26.82684	26.67352	26.57487	26. P	dicy. A	round	the po	oint (Q	= 25,	K = 14	+	
10	R (16)	26.72675	26.69879	26.60806	26.6			- 1 - E		, 10	F0 0		
11	R (17)	26.72559	26.68186	26.69509	26.8 W	we perform more simulations with 500							
12		1	2	3									
13					ru	runs per each pair of Q and K.							
14													

Finding the "Best" (R,M) policy Analyzing the Simulation Results

	A	С	D	E	F	G	Н
	Trend Chart						
	Overlay Chart		~	0	0		
1	Forecast Charts	2 (24)	2 (25)	2 (26)	2 (27)		
2	R (13)	27.357762	27.145664	27.074616	26.966922	1	
3	R (14)	26.886306	26.79954	26.742982	26.76362	2	
4	R (15)	26.668446	26.610806	26.598364	26.693134	3	
5	R (16)	26.657282	26.641588	26.653122	26.72946	4	
6	R (17)	26.737086	26.736996	26.813514	26.879124	5	
7		2	3	4	5		
8							
a							

"The "best" (R,M) inventory policy should be based on Q = 25, or 26 and R = 15. Copyright © 2002 John Wiley & Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that named in Section 117 of the United States Copyright Act without the express written consent of the copyright owner is unlawful. Requests for further information should be addressed to the Permissions Department, John Wiley & Sons, Inc. Adopters of the textbook are granted permission to make back-up copies for their own use only, to make copies for distribution to students of the course the textbook is used in, and to modify this material to best suit their instructional needs. Under no circumstances can copies be made for resale. The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.