Chapter Ten
 Simulation

13.1 Overview of Simulation

When do we prefer to develop simulation model over an analytic model?

- When not all the underlying assumptions set for analytic model are valid.
- When mathematical complexity makes it hard to provide useful results.
- When "good" solutions (not necessarily optimal) are satisfactory.
- A simulation develops a model to numerically evaluate a system over some time period.
- By estimating characteristics of the system, the best alternative from a set of alternatives under consideration can be selected.

13.1 Overview of Simulation

- Continuous simulation systems monitor the system each time a change in its state takes place.
- Discrete simulation systems monitor changes in a state of a system at discrete points in time.
- Simulation of most practical problems requires the use of a computer program.

13.1 Overview of Simulation

- Approaches to developing a simulation model
- Using add-ins to Excel such as @Risk or Crystal Ball
- Using general purpose programming languages such as: FORTRAN, PL/1, Pascal, Basic.
- Using simulation languages such as GPSS, SIMAN, SLAM.
- Using a simulator software program.
- Modeling and programming skills, as well as knowledge of statistics are required when implementing the simulation approach.

10.2 Monte Carlo Simulation

Monte Carlo simulation generates random events.
Random events in a simulation model are needed when the input data includes random variables.

To reflect the relative frequencies of the random variables, the random number mapping method is used.

JEWEL VENDING COMPANY -

 an example for the random mapping techniqueJewel Vending Company (JVC) installs and stocks vending machines.

Bill, the owner of JVC, considers the installation of a certain product ("Super Sucker" jaw breaker) in a vending machine located at a new supermarket.

JEWEL VENDING COMPANY -

 an example of the random mapping technique- Data
- The vending machine holds 80 units of the product.

The machine should be filled when it becomes half empty.

- Daily demand distribution is estimated from similar vending machine placements.
- $P($ Daily demand $=0$ jaw breakers $)=0.10$
- $P($ Daily demand $=1$ jaw breakers $)=0.15$
- P(Daily demand $=2$ jaw breakers) $=0.20$
- P(Daily demand $=3$ jaw breakers $)=0.30$
- P(Daily demand $=4$ jaw breakers) $=0.20$
- $P($ Daily demand $=5$ jaw breakers $)=0.05$
Bill would like to estimate the expected number of days it takes for a filled machine
to become half empty.

Random number mapping The Probability function Approach

Random number mapping uses the probability function to generate random demand.

A number between 00 and 99 is selected randomly.

The daily demand is determined by the mapping demonstrated below.

Random number mapping -

 The Cumulative Distribution Approach

Simulation of the JVC Problem

- A random demand can be generated by hand (for small problems) from a table of pseudo random numbers.

Using Excel a random number can be generated by

- The RAND() function
- The random number generation option (Tools>Data Analysis)

Simulation of the JVC Problem

An illustration of generating a daily random demand.

- Since we have two digit probabilities, we use the first two digits of each random number.

Simulation of the JVC Problem

The simulation is repeated and stops once total demand reaches 40 or more.

Day	Random Number	Two First Digits	Demand	Total Demand to Date
1	6506 65 \qquad 3 The number of "simulated" days required for the total demand to reach 40 or more is recorded.			3
2				7
3				$\{10$
4				14
5				16 19

Simulation Results and Hypothesis Tests

- The purpose of performing the simulation runs is to find the average number of days required to sell 40 jaw breakers.
- Each simulation run ends up with (possibly) a different number of days.
- A hypothesis test is conducted to test whether or not $\mu=16$.

Null hypothesis
Alternative hypothesis $\quad H_{A}: \mu \neq 16$

Simulation-Results and Hypothesis Tests

The test:

- Define α (the significance level).
- Let n be the number of replication runs.
- Build the t-statistic

The t-statistic can be used if the random variable observed (number of day required for the total demand to be 40 or more) is normally distributed, while the standard deviation is unknown.

- Reject H_{0} if $\mathrm{t}>\mathrm{t}_{\alpha / 2}$ or $\mathrm{t}<-\mathrm{t}_{\alpha / 2}$
($\mathrm{t}_{\alpha / 2}$ has $\mathrm{n}-1$ degrees of freedom.)

JVC - A Flow Chart

Flow charts help guide the simulation program

JVC-Excel Spreadsheet

JVC-Excel Spreadsheet

	A	B	C	D	E		H
1	Replication	Days		Days		$=(E 3-16) / E 4$	
2	1	18					
3	2	15		Mean	16.6		
4	3	14		Standard Error	0.541603		
5	4	18		Median	17	t	1.107823
6	5	17		Mode	18	p -value	0.296665
7	6	17		Standard Deviation	1.712698		
8	- The p-value $=.2966 \ldots$ This value is quite high ${ }_{\text {b }} 27$						
9							
10	compared to any reasonable significance level.						
11	- Based on this data there is insufficient =TDIST(ABS(H5),9,2)						
12	evidence to infer that the mean number of						
13	days differs from 16.				19		
14 15				Count	66 10		

10.3 Simulation Modeling of Inventory Systems

- Inventory simulation models are used when underlying assumptions needed for analytical solutions are not met.
Typical inputs into the simulation model are
- Order cost
- Holding cost
- Lead time
- Demand distribution

10.3 Simulation Modeling of Inventory Systems - continued

- Frequently, the Fixed-Time Simulation approach is appropriate for the modeling of inventory problems.
- The system is monitored periodically.
- The activities associated with demand, orders, and shipments are determined, and the system is updated accordingly.
- Typical output is the average total cost for a given inventory policy.

ALLEN APPLIANCE COMPANY An example of an inventory simulation

- Allen Appliance stocks and sells the KitchenChef electric mixer.
- Allen wishes to determine an optimal inventory policy for the mixer based on the following data:

Data

- Unit cost is $\$ 200$, and selling price is $\$ 260$.
- Annual holding cost rate is 26%.
- Orders are placed at the end of a week, and arrive at the beginning of a week, two weeks later.
- Ordering cost is $\$ 45$ per order.
- Backorder cost is $\$ 5$ per unit per week.
- Backorder administrative cost is $\$ 2$ per unit.

Continued...

ALLEN APPLIANCE COMPANY

Distribution of..

- The number of customers who arrive weekly:
$P($ Arrivals $=0)=.10$
$P($ Arrivals $=1)=.30$
$P($ Arrivals $=2)=.25$
$P($ Arrivals $=3)=.20$
$P($ Arrivals = 4$)=.15$
- The demand per customer:

$$
\begin{aligned}
& P(\text { Demand }=1)=0.10 \\
& P(\text { Demand }=2)=0.15 \\
& P(\text { Demand }=3)=0.40 \\
& P(\text { Demand }=4)=0.35
\end{aligned}
$$

AAC - The Planned Shortage Model

- Let us assume first a constant demand rate, and use the planned shortage model. We need to calculate the following parameters:
- Average weekly demand =
(Average number of customers/week)(Average demand/customer) =
$[.10(0)+.25(2)+.2(3)+.15(4)][.10(1)+.15(2)+.40(3)+.35(4)]=$ (2)(3) = 6
- Holding cost per unit per week =
(Ann. Holding cost rate)(Unit cost)/52 = .26(200)/52 = \$1

AAC - The Planned Shortage Model

Using the template inventory.x|s for the planned shortage model, and assuming a constant demand of 6 units per week (312 per year) we have:

- Optimal ordering policy:
- $Q^{*}=24.88$ (rounded to 25)
- $S^{*}=2.15$ (rounded to to 2); Reorder when inventory is at a level of 10.
- Total annual cost TC(Q*, $\left.\mathrm{S}^{*}\right)=\$ 63582.48$

AAC - The Simulation Model

Because demand is uncertain, a simulation models has been developed.
A continuous review (R, Q) system is studied first, where $\mathrm{R}=10$ and $\mathrm{Q}=25$.

AAC- The Simulation Model

The random number mapping associated with the distributions are:

Number of Arrivals
0
1
2
3
4

Probability
.10
.30
.25
.20
.15

Probability
.10
.15
.40
.35

Random \# mapping
00-09
10-39
40-64
65-84
85-99
Random \# mapping
00-09
10-24
25-64
65-99

AAC - The Simulation Logic

The simulation keeps track of the following quantities:

- Beginning inventory for the week = Ending inventory of the previous week + order received.
- Number of retailers arriving, their demand, and the total weekly demand.
- Ending inventory for the week = Beginning inventory + order received - weekly demand.

AAC - The Simulation Logic

The simulation determines whether or not an order should be placed as follows:

- Is the ending inventory ≤ 10 and is there no outstanding order? If so, place an order and keep track of the lead time.
- The simulation calculates the Weekly cost:
- Ordering cost (if applicable) + Holding cost (if ending inventory >0) + Backorder cost (if ending inventory < 0).

$A A C-10$ week simulation results

Week	Beginning Inventory	Random $\#$ (Col. 1)	\# of Customers	Random \# (Col. 2)	Customer Demand	Weekly Demand	Ending Inventory	Order Placed?	Lead Time	Weekly Cost	
1	25	65	3	33	3						
				98	4						
2	15	77	3	26	3	10	15	No	-	$\$ 15$	
				91	4						
			96	4							
3	4	61	2	48	3	11	4	Yes	2	$\$ 49$	
				82	4						

- Initial inventory = 25 .
- Weekly cost = Order cost (if any) +1 (Stock on hand) +2 (New back orders) + 5(Total backorders)
- Total cost for 10 weeks = \$415 (weekly average = \$41.5).

AAC - 1000 weeks of simulation

 spreadsheet results| INPUTS | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & Q= \\ & R= \end{aligned}$ | 25 | $\mathrm{Ch}=$ | 1 | | |
| | 10 | $\mathrm{Co}=$ | 45 | | |
| | | Cs = | 5 | | |
| | | $\mathrm{Cb}=$ | 2 | | |
| OUTPUT | | | | | |
| Average Cost $=$ | 33.109 | | | | |
| | | | | | |
| Day | Start of Week | \# of Customer | Total | End of Week | Total |
| | Inventory | Arrivals | Demand | Inventory | Cost |
| 1 | 25 | 3 | 9 | 16 | 16 |
| 2 | 16 | 2 | 7 | 9 | 54 |
| 3 | 9 | 3 | 11 | -2 | 14 |
| 4 | -2 | 1 | 4 | -6 | 38 |
| 5 | 19 | 0 | 0 | 19 | 19 |
| 6 | 19 | 1 | 4 | 15 | 15 |
| 7 | 15 | 1 | 2 | 13 | 13 |

10.4 Simulation of a Queuing System

- In queuing systems time itself is a random variable. Therefore, we use the next event simulation approach.
- The simulated data are updated each time a new event takes place (not at a fixed time periods.)
- The process interactive approach is used in this kind of simulation (all relevant processes related to an item as it moves through the system, are traced and recorded).

CAPITAL BANK

An example of queuing system simulation Capital Bank is considering opening the bank on Saturdays morning from 9:00 a.m.
Management would like to determine the waiting time on Saturday morning based on the following data:

CAPITAL BANK

Data:

There are 5 teller positions of which only three will be staffed.

- Ann Doss is the head teller, experienced, and fast.
- Bill Lee and Carla Dominguez are associate tellers less experienced and slower.

CAPITALBANK

Data:

Service time distributions:

Ann's Service Time Distribution
Service Time

.5 minutes	.05
1	.10
1.5	.20
2	.30
2.5	.20
3	.10
3.5	.05

Bill and Carla's Service Time Distribution

CAPITAL BANK

Data:

Customer inter-arrival time distribution

inter-arrival time	Probability
.5 Minutes	.65
1	.15
1.5	.15
2	.05

- Service priority rule is first come first served
- A simulation model is required to analyze the service .

CAPITAL BANK - Solution

- Calculating expected values:
- E (inter-arrival time $)=.5(.65)+1(.15+1.5(.15)+2(.05)=.80$ minutes [75 customers arrive per hour on the average, (60/.8=75)]
- E (service time for Ann) $=.1(.05)+1(.10)+\ldots+3.5(.05)=2$ minutes [Ann can serve 60/2=30 customers per hour on the average]
- $E($ Service time for Bill and Carla) $=$ $1(.05)+1.5(.15)+\ldots+4.5(.05)=2.5$ minutes [Bill and Carla can serve 60/2.5=24 customers per hour on the average].

CAPITAL BANK - Solution

- To reach a steady state the bank needs to employ all the three tellers $(30+2(24)=78>75)$.

CAPITAL BANK - The Simulation logic

- If no customer waits in line, an arriving customer seeks service by a free teller in the following order: Ann, Bill, Carla.
If all the tellers are busy the customer waits in line and takes then the next available teller.
- The waiting time is the time a customer spends in line, and is calculated by

[Time service begins] minus [Arrival Time]

CAPITAL - Simulation Demonstration

Mapping Interarrival time $80-94 \longrightarrow 1.5$ minutes

Mapping Ann's Service time
$35-64 \rightarrow 2$ minutes

CAPITAL - Simulation Demonstration

	Random	Arrival	Random	Ann		Bill		Carla		Waiting Time
Customer	Number	Time	Number	Start	Finish	Start	Finish	Start	Finish	
1	89	1.5	63	1.5	3.5					0
2	(88)	$\rightarrow 3$	-(46)			3	5.5			0
					Anil	1			5	
7	26	7	59	7.5	9.5					0.5
8	16	7.5	28			8.5	10.5			1
9	40	8	79					9	12	1
10	65	9	64	9.5	11.5					0.5
11	61	9.5	33			10.5	12.5			1

Mapping Interarrival time $80-94 \longrightarrow 1.5$ minutes

Mapping Bill's Service time $40-69 \rightarrow 2.5$ minutes

CAPITAL - Simulation Demonstration

CAPITAL - 1000 Customer Simulation

Average Waiting Time in Line $=$ Average Waiting Time in System $=$				$\begin{aligned} & 1.670 \\ & 3.993 \end{aligned}$							
				Ann		Bill		Carla		Waiting	Waiting
Customer	Random Number	Arrival Time	Random Number	Start	Finish			Start	Finish	Time Line	Time System
1	0.87	1.5	0.96	1.5	5					0	3.5
2	0.18	2.0	0.76			2	5			0	3.0
3	0.49	2.5	0.78					2.5	5.5	0	3.0
4	0.86	4.0	0.49	5	7					1	3.0
5	0.54	4.5	0.85			5	8.5			0.5	4.0
6	0.61	5.0	0.55					5.5	8	0.5	3.0
7	0.91	6.5	0.90	7	10					0.5	3.5
8	0.64	7.0	0.62					8	10.5	1	3.5

CAPITAL - 1000 Customer Simulation

Average waiting time in line $\left(\mathrm{W}_{\mathrm{q}}\right)=1.67$ minutes Average inter-arrival
Average waiting time in the system $\mathrm{W}=3.993$ minutes time $=.80$ minutes.

- To determine the other performance measures, we can use Little's formulas:

Average number of customers in line $L_{q}=(1 / 80)(1.67)=2.0875$ customers Average number of customers in the system $=(1 / 80)(3.993)=4.99$ customers.

Mapping for Continuous Random Variables

Example

- The Explicit inverse distribution method can be used to generate a random number X from the exponential distribution with $\mu=2$ (i.e. service time is exponentially distributed, with an average of 2 customers per minute).
- Randomly select a number from the uniform distribution between 0 and 1. The number selected is $\mathrm{Y}=.3338$.
- Solve the equation: $X=F^{-1}(Y)=-(1 / \mu) \ln (1-Y)=$ $-(1 / 2) \ln (1-.3338)=.203$ minutes.

Mapping for Continuous Random Variables-

 Using Excel

Random numbers and Excel

Excel can generate continuously distributed random numbers for various distribution.

- Normal =NORMINV
- Beta: =BETAINV
- Chi squared: =CHIINV
- Gamma: =GAMMAINV

Random numbers

Normalily distributed by Excel -

	A	B
1	Mean =	35
2	Standard Deviation =	3
3		
4	Car	Speed
5	1	36.94
6	2	32.68
7	3	32.40
8	4	31.88
9	5	34.72
10	6	35.02
11	7	35.27
12	8	39.16
13	9	31.58
14	10	40.81
15	11	33.10
16	12	35.17
17	13	36.63
18	14	37.39

Simulation of an M / M / 1 Queue

- Applying the process interaction approach we have:
- New arrival time $=$ Previous arrival time + Random interarrival time.
- Service finish time $=$ Service start time + Random service time.
- A customer joins the line if there is a service in progress (its arrival time < current service finish time).
- A customer gets served when the server becomes idle.
- Waiting times and number of customers in line and in the system are continuously recorded.

LANFORD SUB SHOP

An example of the $\mathrm{M} / \mathrm{M} / 1$ queuing simulation

- Lanford Sub Shop sells sandwiches prepared byits only employee, the owner Frank Lanford.
- Frank can serve a customer in 1 minute on the average according to an exponential distribution.
- During lunch time, 11:30 a.m. to 1:30 p.m., an average of 30 customers an hour arrive at the shop according to a Poisson distribution.

LANFORD SUB SHOP . Solution

- Input Data

$$
\lambda=30, \mu=60 .
$$

Data generated by the simulation:

- $\mathrm{C} \#$ = The number of the arriving customer.
- R\#1 = The random number used to determine interarrivals.
- IAT = The interarrival time.
- AT = The arrival time for the customer.
- TSB = The time at which service begins for the customer.
- WT = The waiting time a customer spends in line.
- R\#2 $=$ The random number used to determine the service time.
- ST = The service time.
- TSE = The time at which service end for the customer

LANFORD SUB SHOP Simulation for first 10 Customers

Arrival Time Time Service Begins Service Time Time Service Ends

C\#	R\#1	IAT	AT	TSB	WT	R\#2	ST	TSE
1	0.6506	2.10	2.10	2.10	0	0.7761	1.5	3.6
2	0.6170	1.92	4.02	4.02	0	0.8800	2.12	6.14
3	0.4211	1.09	5.11	6.14	1.03	0.7452	$\rightarrow 1.37$	7.51
4	0.1182	0.25	5.36	7.51	$\begin{aligned} & 2.15 \\ & 2.59 \end{aligned}$	0.4012	0.51	8.02
Average waiting time $=$$(0+0+1.03+\ldots+2.04) / 10=1.59$						0.6299	0.99	9.01
					1.99	0.1085	0.11	9.12
					1.73	0.6969	1.19	10.31
8	0.1696	0.37	7.76	10.31	2.55	0.0267	0.03	10.34
9	0.3175	0.76	8.52	10.34	1.82	0.7959	1.59	11.93
10	0.4958	1.37	9.89	11.93	2.04	0.4281	0.56	12.49

The interarrival time $=-\ln (1-0.4211) / 30=0.0182$ hours $=1.09$ minutes

The explicit inverse method

End of service $=6.14+1.37$
Waiting time $=6.14-5.11$

Arrival time of custemer $3=$ Arrival time of customer $2+1.09=4.02+1.09$

LANFORD SUB SHOP Simulation for first 1000 Customers

ConductingSimulation using Crystal Ball

Two new manus and a new toolbar are added to the Excel screen:

Cell Run CBTools Help
Define Assumption...
Define Decision...
Define Forecast...
Select All Assumptions
Select All Decisions
Select All Forecasts
Select Some...
Freeze Assumptions...
Copy Data
Paste Data
Clear Data
Cell Preferences...

Run
Reset
Single Step
Run Preferences.

Eorecast Windows...
Open Overlay Chart
Open Irend Chart
Open Sensitivity Chart
Create Report.
Extract Data,
Saye Run,
Restore Run. .
Close Crystal Ball
About Crystal Ball.,

Conducting Simulation using Crystal Ball

- The new Toolbar is:

Hypothesis Testing with Crystal Ball-

Revisit the Bill Newel Vending Machine Problem
Recall: Bill wishes to determine the average number of days it will take to sell 40 or more jawbreakers.

The file JVC.xls contains the simulation run for one filling of the vending machine.

Hypothesis Testing with Crystal BallRevisit the Bill Newel Vending Machine Problem

EX Microsoft Excel - Jw

Three steps in performing the simulation:

1. Highlight the cell you wish to forecast (F1), and click on the Forecast icon ${ }^{山}$ In the dialog box that appears type in the forecast name and change the units to Days. Press OK.

Forecast Name: 粗 Time to sell 40 Jaw Breakers
Units: Days

OK
Cancel
More >>
Help

Hypothesis Testing with Crystal Ball-
 Revisit the Bill Newel Vending Machine Problem

EX Microsoft Excel - JwC

Three steps in performing the simulation:
2. Click the setup preference icon Type in the number of runs in the dialog box. Press OK.

Maximum Number of Trials: 500

$\sqrt{ }$ Stop if Specified Precision is Reached Confidence Level: | $\mathbf{9 5 . 0 0}$ |
| :---: |

V Stop if Calculation Error Occurs

Irials
Sampling
Speed
Macros
Options
<
2>

Hypothesis Testing with Crystal Ball-
 Revisit the Bill Newel Vending Machine Problem

EX Microsoft Excel - JwC

Three steps in performing the simulation:
3. The frequency chart is the result of 500 simulation runs.

Number of Days to Sell 40 Jaw Breakers

Hypothesis Testing with Crystal Ball-

 Revisit the Bill Jewel Vending Machine ProblemThe hypothesis test is:

- $H_{0}: \mu=16$ $H_{A}: \mu \neq 16$
- From the frequency chart it appears the times follow a normal distribution.
- We can use the t-distribution to test the above hypotheses.

Hypothesis Testing with Crystal Ball-

Revisit the Bill Newel Vending Machine Problem

- From View>Statistics we get the following resulis:

$$
\text { Mean = 16; Standárd error }=.10
$$

With a sample of 500 (499 degrees of freedom), we can use the Z value to conduct the test. The value of 6.2 is large enough to reject the null hypothesis for any reasonable significance level.

Confidence Interval with Crystal Ball-

 Revisit the Bill Newel Vending Machine Problem- We repeat the experiment for another 5000 days. The statistics of this experiment are:

$$
\text { Mean = } 16.44 \text { Standard error = } 03
$$

- The confidence interval is:

$$
\left\{\overline{\mathrm{x}}-\mathrm{t}_{\alpha / 2, n-1} \mathrm{~s} / \sqrt{\mathrm{n}}, \overline{\mathrm{X}}+\mathrm{t}_{\alpha / 2, n-1} \mathrm{~s} / \sqrt{\mathrm{n}}\right\}
$$

This results in: $\{16.44 \pm 1.96(.03)\}=\{16.38,16.50\}$.

Determining an Inventory PolicyRevisiting Allen Appliances Comp.

- We compare a (R,M) policy to the (R, Q) policy studied previously.
The cell (J11) that calculates the fixed order Q* for the simulation of the (R, Q) policy, is changing to $Q^{*}+(R-I)$ for the simulation of the (R, M) policy.
- The comparative study results are shown next.

Comparing the (R, Q) and (R, M) Inventory Policies

Comparing the (R, Q) and (R, M) Inventory Policies

(4) Forecast: Average Cost =				
Edit Preferences View Run Help				
Cell B7	Statistics			
	Statistic	Val		Value
	Trials		500	500
	Mean		32.14	29.22
	Median		32.05	29.21
	Mode		32.89	28.41
	Standard Deviation		1.40	0.79
	Variance		1.97	0.63
	Skewness		0.50	0.12
	Kurtosis		3.55	$(\mathrm{R}, \mathrm{M})^{2.93}$
	Coeff. of Variability	(R, Q)	0.04	(R,M) 0.03
	Range Minimum		28.74	27.17
	Range Maximum		37.67	32.01
	Range Width		8.93	4.84
	Mean Std. Error		0.06	0.04

Edit Preferences Yiew Run Help
Cell B7
Statistics

Comparing the (R, Q) and (R, M) Inventory Policies

Is there sufficient evidence in the simulated data to infer that the (R, M) policy is less expensive than the (R, Q) policy?

Comparing the (R, Q) and (R, M) Inventory Policies

- Hypothesis test
- $\mathrm{H}_{0}: \mu_{1}-\mu_{2}=0$
$H_{A}: \mu_{1}-\mu_{2}>0$

Population 1 - the (R,Q) policy weekly cost
Population 2 - the (R, M) policy weekly cost

- The rejection region in standard terms: $Z>Z_{\alpha}$.
- The Z statistic is

We have a clear evidence that the (R, M) policy is cheaper.

Finding the "Best" (R,M) policy

- Let us run the simulation for various values of Q between 23 and 32 .
We create a decision table in Crystal Ball as follows:
- Reset the simulation ${ }^{1}$
- Define the average cost (B7) as the forecast value (highlight cell B7 and click 山—).
- Define the order quantity as the decision variable (highlight cell B2 and click $\mathbf{\omega}_{\text {) }}$).

Finding the "Best" (R,M) policy Creating a decision table in Crystal Ball

- In the dialog box that appears make the following changes:
Cell B2: Define Decision Variable

Name: $D=Q$
Variable Bounds
Lower: 22523
Upper: 25532

Finding the "Best" (R,M) policy Creating a decision table in Crystal Ball

continued

- Define the reorder point (B3) as a decision variable
- (Highlight cell B3 and click on 이).
- On the dialog that appears we make the changes:
- Name of the decision variable: R (delete R=)
- Lower bound = 8
- Upper bound = 17
- Variable type = Discrete
- Step = 1

Finding the "Best" (R, M) policy Creating a decision table in Crystal Ball continued
 - Setup the decision table

- Select Decision Table from the CBTools menu bar. In the dialog box that appears click "Next" (because "Average Cost $=$ " is already highlighted).
- In the dialog box that appears select each variable (Q and then R and move each one to the right hand list (by clicking the button >>).

Finding the "Best" (R,M) policy Creating a decision table in Crystal Ball continued
 Select one or two decisions (step 2 of 3)

 Select one or two decisions to evaluate:
 Avalable Dectision Variables

 Chosen Desision Varibbles

Finding the "Best" (R,M) policy

 Creating a decision table in Crystal Ball continuedSpecify options [step 3 of 3]
? x

Decision Table

Crystal Ball Tool © Decisioneering 1998-2000

Simulation Control
Test $\sqrt{10}$ values for Q
Test $\sqrt{10}$ values for R
Run each simulation for 100

While Running

C show forecasts as defined
© Show only target forecast
C Hide all forecasts

Finding the＂Best＂（R，M）policy Anelyzing the Simulation Results

	A	B	C	D	E	F	G	H	I	J	K	L
1	Trend	$\begin{gathered} 0 \\ \ddot{B N} \\ \hline \end{gathered}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \mathscr{O} \\ & \stackrel{y}{\mathscr{O}} \end{aligned}$	$\begin{aligned} & 0 \\ & \hline 3 \end{aligned}$	$\begin{aligned} & \mathscr{O} \\ & \text { BO } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \hline 0 ⿴ 囗 口 灬 \end{aligned}$	$\begin{aligned} & 8 \\ & \text { O} \end{aligned}$	$\begin{aligned} & \mathscr{O} \\ & \stackrel{O}{\Theta} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	
2	R（8）	32.49628	32.0207	31.50864	31.2252	30.78742	30.57182	30.12943	30.11337	29.97291	29.80672	
3	R（9）	31.18105	30.61218	30.34156	29.893	29.6994	29.46378	29.14451	29.2245	29.01147	28.99288	2
4	R （10）	29.98043	29.51874	29.19553	28.90977	28.74925	28.58188	28.48685	28.4306	28.23725	28.31075	3
5	R （11）	28.99812	28.58733	28.34429	28.14743	27.92502	27.89588	27.87937	27.6989	27.77291	27.7307	
6	R （12）	28.25184	27.88557	27.62985	27．Let US refine the search for the optimal							
7	R （13）	27.4851	27.30369	27.17235								
8	R （14）	27.05469	26.89896	26.76435	6． policy．Around the point（ $Q=25, R=14$							
9	R （15）	26.82684	26.67352	26．5／48／								
10	R （16）	26.72675	26.69879	26.60806	We perform more simulations with 500							
11	R（17）	26.72559	26.68186	26.69509								
12 13		1	2	3	runs per each pair of Q and R ．							

Finding the "Best" (R,M) policy Analyzing the Simulation Results

	A	C	D	E	F	G	H
	Trend Chart						
	Overlay Chart						
1	Forecast Charts	N	\%	茑	Y		
2	R (13)	27.357762	27.145664	27.074616	26.966922	1	
3	R (14)	26.886306	26.79954	26.742982	26.76362	2	
4	R (15)	26.668446	26.610806	26.598362	26.693134	3	
5	R (16)	26.657282	26.641588	26.653122	26.72946	4	
6	R (17)	26.737086	26.736996	26.813514	26.879124	5	
7		2	3	4	5		
8							

"The "best" (R,M) inventory policy should be based on $\mathrm{Q}=25$, or 26 and $\mathrm{R}=15$.

Copyright © 2002 John Wiley \& Sons, Inc. All rights reserved. Reproduction or translation of this work beyond that named in Section 117 of the United States Copyright Act without the express written consent of the copyright owner is unlawful. Requests for further information should be addressed to the Permissions Department, John Wiley \& Sons, Inc. Adopters of the textbook are granted permission to make back-up copies for their own use only, to make copies for distribution to students of the course the textbook is used in, and to modify this material to best suit their instructional needs. Under no circumstances can copies be made for resale. The Publisher assumes no responsibility for errors, omissions, or damages, caused by the use of these programs or from the use of the information contained herein.

