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Preface

0.1 Can modeling be taught?

The essential skills of modeling — abstraction, analysis, simulation, and vali-

dation — are central in engineering, natural sciences, social sciences, medicine,

and many other fields. Some students learn these skills implicitly, but in most

schools they are not taught explicitly, and students get little practice. That’s

the problem this book is meant to address.

At Olin College, we use this book in a class called Modeling and Simulation,

which all students take in their first semester. My colleagues, John Geddes

and Mark Somerville, and I developed this class and taught it for the first time

in 2009.

It is based on our belief that modeling should be taught explicitly, early, and

throughout the curriculum. It is also based on our conviction that computation

is an essential part of this process.

If students are limited to the mathematical analysis they can do by hand, they

are restricted to a small number of simple physical systems, like a projectile

moving in a vacuum or a block on a frictionless plane.

And they will only work with bad models; that is, models that are too simple

for their intended purpose. In nearly every mechanical system, air resistance

and friction are essential features; if we ignore them, our predictions will be

wrong and our designs won’t work.

In most freshman physics classes, students don’t make modeling decisions;

sometimes they are not even aware of the decisions that have been made for

them. Our goal is to teach the entire modeling process and give students a

chance to practice it.
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0.2 How much programming do I need?

If you have never programmed before, you should be able to read this book,

understand it, and do the exercises. I will do my best to explain everything you

need to know; in particular, I have chosen carefully the vocabulary I introduce,

and I try to define each term the first time it is used. If you find that I have

used a term without defining it, let me know.

If you have programmed before, you will have an easier time getting started,

but you might be uncomfortable in some places. I take an approach to pro-

gramming you have probably not seen before.

Most programming classes1 have two big problems:

1. They go “bottom up”, starting with basic language features and gradu-

ally adding more powerful tools. As a result, it takes a long time before

students can do anything more interesting than convert Fahrenheit to

Celsius.

2. They have no context. Students learn to program with no particular goal

in mind, so the exercises span an incoherent collection of topics, and the

exercises tend to be unmotivated.

In this book, you learn to program with an immediate goal in mind: writing

simulations of physical systems. And we proceed “top down”, by which I mean

we use professional-strength data structures and language features right away.

In particular, we use the following Python libraries:

� NumPy for basic numerical computation (see https://www.numpy.org/).

� SciPy for scientific computation (see https://www.scipy.org/).

� Matplotlib for visualization (see https://matplotlib.org/).

� Pandas for working with data (see https://pandas.pydata.org/).

� SymPy for symbolic computation, (see https://www.sympy.org).

� Pint for units like kilograms and meters (see https://pint.readthedocs.

io).

1Including many I have taught.

https://www.numpy.org/
https://www.scipy.org/
https://matplotlib.org/
https://pandas.pydata.org/
https://www.sympy.org
https://pint.readthedocs.io
https://pint.readthedocs.io
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� Jupyter for reading, running, and developing code (see https://jupyter.

org).

These tools let you work on more interesting programs sooner, but there are

some drawbacks: they can be hard to use, and it can be challenging to keep

track of which library does what and how they interact.

I have tried to mitigate these problems by providing a library, called modsim,

that makes it easier to get started with these tools, and provides some addi-

tional capabilities.

Some features in the modsim library are like training wheels; at some point you

will probably stop using them and start working with the underlying libraries

directly. Other features you might find useful the whole time you are working

through the book, and later.

I encourage you to read the the modsim library code. Most of it is not com-

plicated, and I tried to make it readable. Particularly if you have some pro-

gramming experience, you might learn something by reverse engineering my

design decisions.

0.3 How much math and science do I need?

I assume that you know what derivatives and integrals are, but that’s about

all. In particular, you don’t need to know (or remember) much about finding

derivatives or integrals of functions analytically. If you know the derivative of

x2 and you can integrate 2x dx, that will do it2. More importantly, you should

understand what those concepts mean; but if you don’t, this book might help

you figure it out.

You don’t have to know anything about differential equations.

As for science, we will cover topics from a variety of fields, including demogra-

phy, epidemiology, medicine, thermodynamics, and mechanics. For the most

part, I don’t assume you know anything about these topics. In fact, one of the

skills you need to do modeling is the ability to learn enough about new fields

to develop models and simulations.

2And if you noticed that those two questions answer each other, even better.

https://jupyter.org
https://jupyter.org
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When we get to mechanics, I assume you understand the relationship between

position, velocity, and acceleration, and that you are familiar with Newton’s

laws of motion, especially the second law, which is often expressed as F = ma

(force equals mass times acceleration).

I think that’s everything you need, but if you find that I left something out,

please let me know.

0.4 Getting started

To run the examples and work on the exercises in this book, you have to:

1. Install Python on your computer, along with the libraries we will use.

2. Copy my files onto your computer.

3. Run Jupyter, which is a tool for running and writing programs, and load

a notebook, which is a file that contains code and text.

The next three sections provide details for these steps. I wish there were an

easier way to get started; it’s regrettable that you have to do so much work

before you write your first program. Be persistent!

0.5 Installing Python

You might already have Python installed on your computer, but you might

not have the latest version. To use the code in this book, you need Python

3.6 or later. Even if you have the latest version, you probably don’t have all

of the libraries we need.

You could update Python and install these libraries, but I strongly recom-

mend that you don’t go down that road. I think you will find it easier to use

Anaconda, which is a free Python distribution that includes all the libraries

you need for this book (and more).

Anaconda is available for Linux, macOS, and Windows. By default, it puts all

files in your home directory, so you don’t need administrator (root) permission
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to install it, and if you have a version of Python already, Anaconda will not

remove or modify it.

Start at https://www.anaconda.com/download. Download the installer for

your system and run it. You don’t need administrative privileges to install

Anaconda, so I recommend you run the installer as a normal user, not as

administrator or root.

I suggest you accept the recommended options. On Windows you have the

option to install Visual Studio Code, which is an interactive environment for

writing programs. You won’t need it for this book, but you might want it for

other projects.

By default, Anaconda installs most of the packages you need, but there are a

few more you might have to add. Once the installation is complete, open a

command window. On macOS or Linux, you can use Terminal. On Windows,

open the Anaconda Prompt that should be in your Start menu.

Run the following command (copy and paste it if you can, to avoid typos):

conda install jupyterlab pandas seaborn sympy beautifulsoup4 lxml

Some of these packages might already be installed. Then run this command:

conda install -c unidata pint

That should be everything you need.

0.6 Copying my files

The code for this book is available from https://github.com/AllenDowney/

ModSimPy, which is a Git repository. Git is a software tool that helps you

keep track of the programs and other files that make up a project. A collection

of files under Git’s control is called a repository (the cool kids call it a “repo”).

GitHub is a hosting service that provides storage for Git repositories and a

convenient web interface.

Before you download these files, I suggest you copy my repository on GitHub,

which is called forking. If you don’t already have a GitHub account, you’ll

need to create one.

https://www.anaconda.com/download
https://github.com/AllenDowney/ModSimPy
https://github.com/AllenDowney/ModSimPy
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Use a browser to view the homepage of my repository at https://github.

com/AllenDowney/ModSimPy. You should see a gray button in the upper right

that says Fork. If you press it, GitHub will create a copy of my repository that

belongs to you.

Now, the best way to download the files is to use a Git client, which is a

program that manages git repositories. You can get installation instructions

for Windows, macOS, and Linux at http://modsimpy.com/getgit.

In Windows, I suggest you accept the options recommended by the installer,

with two exceptions:

� As the default editor, choose nano instead of vim.

� For “Configuring line ending conversions”, select “Check out as is, com-

mit as is”.

For macOS and Linux, I suggest you accept the recommended options.

Once the installation is complete, open a command window. On Windows,

open Git Bash, which should be in your Start menu. On macOS or Linux, you

can use Terminal.

To find out what directory you are in, type pwd, which stands for “print work-

ing directory”. On Windows, most likely you are in Users\yourusername. On

MacOS or Linux, you are probably in your home directory, /home/yourusername.

The next step is to copy files from your repository on GitHub to your computer;

in Git vocabulary, this process is called cloning. Run this command:

git clone https://github.com/YourGitHubUserName/ModSimPy

Of course, you should replace YourGitHubUserName with your GitHub user

name. After cloning, you should have a new directory called ModSimPy.

If you don’t want to use Git, you can download my files in a Zip archive from

http://modsimpy.com/zip. You will need a program like WinZip or gzip to

unpack the Zip file. Make a note of the location of the files you download.

https://github.com/AllenDowney/ModSimPy
https://github.com/AllenDowney/ModSimPy
http://modsimpy.com/getgit
http://modsimpy.com/zip
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0.7 Running Jupyter

The code for each chapter, and starter code for the exercises, is in Jupyter

notebooks. If you have not used Jupyter before, you can read about it at

https://jupyter.org.

To start Jupyter on macOS or Linux, open a Terminal; on Windows, open Git

Bash. Use cd to “change directory” into the code directory in the repository:

cd ModSimPy/code

Then launch the Jupyter notebook server:

jupyter notebook

Jupyter should open a window in a browser, and you should see the list of

notebooks in my repository. Click on the first notebook, chap01.ipynb and

follow the instructions to run the first few “cells”. The first time you run a

notebook, it might take several seconds to start, while some Python files get

initialized. After that, it should run faster.

Feel free to read through the notebook, but it might not make sense until you

read Chapter 1.

You can also launch Jupyter from the Start menu on Windows, the Dock on

macOS, or the Anaconda Navigator on any system. If you do that, Jupyter

might start in your home directory or somewhere else in your file system, so

you might have to navigate to find the ModSimPy directory.

Contributor List

If you have a suggestion or correction, send it to downey@allendowney.com.

Or if you are a Git user, send me a pull request!

If I make a change based on your feedback, I will add you to the contributor

list, unless you ask to be omitted.

If you include at least part of the sentence the error appears in, that makes it

easy for me to search. Page and section numbers are fine, too, but not as easy

to work with. Thanks!

https://jupyter.org
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Chapter 1

Modeling

This book is about modeling and simulation of physical systems. The following

diagram shows what I mean by “modeling”:

A
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Starting in the lower left, the system is something in the real world we are

interested in. Often, it is something complicated, so we have to decide which

details can be left out; removing details is called abstraction.

The result of abstraction is a model, which is a description of the system that

includes only the features we think are essential. A model can be represented
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in the form of diagrams and equations, which can be used for mathematical

analysis. It can also be implemented in the form of a computer program,

which can run simulations.

The result of analysis and simulation might be a prediction about what the

system will do, an explanation of why it behaves the way it does, or a design

intended to achieve a purpose.

We can validate predictions and test designs by taking measurements from

the real world and comparing the data we get with the results from analysis

and simulation.

For any physical system, there are many possible models, each one including

and excluding different features, or including different levels of detail. The

goal of the modeling process is to find the model best suited to its purpose

(prediction, explanation, or design).

Sometimes the best model is the most detailed. If we include more features,

the model is more realistic, and we expect its predictions to be more accurate.

But often a simpler model is better. If we include only the essential features

and leave out the rest, we get models that are easier to work with, and the

explanations they provide can be clearer and more compelling.

As an example, suppose someone asked you why the orbit of the Earth is nearly

elliptical. If you model the Earth and Sun as point masses (ignoring their

actual size), compute the gravitational force between them using Newton’s

law of universal gravitation, and compute the resulting orbit using Newton’s

laws of motion, you can show that the result is an ellipse.

Of course, the actual orbit of Earth is not a perfect ellipse, because of the

gravitational forces of the Moon, Jupiter, and other objects in the solar system,

and because Newton’s laws of motion are only approximately true (they don’t

take into account relativistic effects).

But adding these features to the model would not improve the explanation;

more detail would only be a distraction from the fundamental cause. However,

if the goal is to predict the position of the Earth with great precision, including

more details might be necessary.
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Choosing the best model depends on what the model is for. It is usually a

good idea to start with a simple model, even if it is likely to be too simple,

and test whether it is good enough for its purpose. Then you can add features

gradually, starting with the ones you expect to be most essential. This process

is called iterative modeling.

Comparing results of successive models provides a form of internal valida-

tion, so you can catch conceptual, mathematical, and software errors. And by

adding and removing features, you can tell which ones have the biggest effect

on the results, and which can be ignored.

Comparing results to data from the real world provides external validation,

which is generally the strongest test.

1.1 The falling penny myth

Let’s see an example of how models are used. You might have heard that a

penny dropped from the top of the Empire State Building would be going so

fast when it hit the pavement that it would be embedded in the concrete; or

if it hit a person, it would break their skull.

We can test this myth by making and analyzing a model. To get started, we’ll

assume that the effect of air resistance is small. This will turn out to be a bad

assumption, but bear with me.

If air resistance is negligible, the primary force acting on the penny is gravity,

which causes the penny to accelerate downward.

If the initial velocity is 0, the velocity after t seconds is at, and the distance

the penny has dropped is

h = at2/2

Using algebra, we can solve for t:

t =
√

2h/a

Plugging in the acceleration of gravity, a = 9.8 m/s2 and the height of the

Empire State Building, h = 381 m, we get t = 8.8 s. Then computing v = at
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we get a velocity on impact of 86 m/s, which is about 190 miles per hour. That

sounds like it could hurt.

Of course, these results are not exact because the model is based on simplifi-

cations. For example, we assume that gravity is constant. In fact, the force

of gravity is different on different parts of the globe, and gets weaker as you

move away from the surface. But these differences are small, so ignoring them

is probably a good choice for this scenario.

On the other hand, ignoring air resistance is not a good choice. Once the penny

gets to about 18 m/s, the upward force of air resistance equals the downward

force of gravity, so the penny stops accelerating. After that, it doesn’t matter

how far the penny falls; it hits the sidewalk (or your head) at about 18 m/s,

much less than 86 m/s, as the simple model predicts.

The statistician George Box famously said “All models are wrong, but some

are useful.” He was talking about statistical models, but his wise words apply

to all kinds of models. Our first model, which ignores air resistance, is very

wrong, and probably not useful. In the notebook for this chapter, you will see

another model, which assumes that acceleration is constant until the penny

reaches terminal velocity. This model is also wrong, but it’s better, and it’s

good enough to refute the myth.

The television show Mythbusters has tested the myth of the falling penny more

carefully; you can view the results at http://modsimpy.com/myth. Their work

is based on a mathematical model of motion, measurements to determine the

force of air resistance on a penny, and a physical model of a human head.

1.2 Computation

There are (at least) two ways to work with mathematical models, analysis

and simulation. Analysis often involves algebra and other kinds of symbolic

manipulation. Simulation often involves computers.

In this book we do some analysis and a lot of simulation; along the way, I

discuss the pros and cons of each. The primary tools we use for simulation are

the Python programming language and Jupyter, which is an environment for

writing and running programs.

http://modsimpy.com/myth
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As a first example, I’ll show you how I computed the results from the previous

section using Python.

First I create a variable to represent acceleration.

a = 9.8 * meter / second**2

A variable is a name that corresponds to a value. In this example, the name is

a and the value is the number 9.8 multiplied by the units meter / second**2.

This example demonstrates some of the symbols Python uses to perform math-

ematical operations:

Operation Symbol

Addition +

Subtraction -

Multiplication *

Division /

Exponentiation **

Next, we can compute the time it takes for the penny to drop 381 m, the height

of the Empire State Building.

h = 381 * meter

t = sqrt(2 * h / a)

These lines create two more variables: h gets the height of the building in

meters; t gets the time, in seconds, for the penny to fall to the sidewalk. sqrt

is a function that computes square roots. Python keeps track of units, so the

result, t, has the correct units, seconds.

Finally, we can compute the velocity of the penny after t seconds:

v = a * t

The result is about 86 m/s, again with the correct units.
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This example demonstrates analysis and computation using Python. Next

we’ll see an example of simulation.

Before you go on, you might want to read the notebook for this chapter,

chap01.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.



Chapter 2

Bike share

This chapter presents a simple model of a bike share system and demonstrates

the features of Python we’ll use to develop simulations of real-world systems.

Along the way, we’ll make decisions about how to model the system. In the

next chapter we’ll review these decisions and gradually improve the model.

2.1 Bikeshare

Imagine a bike share system for students traveling between Olin College and

Wellesley College, which are about 3 miles apart in eastern Massachusetts.

Suppose the system contains 12 bikes and two bike racks, one at Olin and one

at Wellesley, each with the capacity to hold 12 bikes.

As students arrive, check out a bike, and ride to the other campus, the number

of bikes in each location changes. In the simulation, we’ll need to keep track

of where the bikes are. To do that, I’ll create a State object, which is defined

in the modsim library.

Before we can use the library, we have to import it:

from modsim import *
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This line of code is an import statement that tells Python to read the file

modsim.py and make the functions it defines available.

Functions in the modsim.py library include sqrt, which we used in the previous

section, and State, which we are using now. State creates a State object,

which is a collection of state variables.

bikeshare = State(olin=10, wellesley=2)

The state variables, olin and wellesley, represent the number of bikes at each

location. The initial values are 10 and 2, indicating that there are 10 bikes at

Olin and 2 at Wellesley. The State object created by State is assigned to a

new variable named bikeshare.

We can read the variables inside a State object using the dot operator, like

this:

bikeshare.olin

The result is the value 10. Similarly, for:

bikeshare.wellesley

The result is 2. If you forget what variables a state object has, you can just

type the name:

bikeshare

The result looks like a table with the variable names and their values:

value

olin 10

wellesley 2

The state variables and their values make up the state of the system. We can

update the state by assigning new values to the variables. For example, if a

student moves a bike from Olin to Wellesley, we can figure out the new values

and assign them:
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bikeshare.olin = 9

bikeshare.wellesley = 3

Or we can use update operators, -= and +=, to subtract 1 from olin and

add 1 to wellesley:

bikeshare.olin -= 1

bikeshare.wellesley += 1

The result is the same either way, but the second version is more versatile.

2.2 Defining functions

So far we have used functions defined in modsim and other libraries. Now we’re

going to define our own functions.

When you are developing code in Jupyter, it is often efficient to write a few

lines of code, test them to confirm they do what you intend, and then use

them to define a new function. For example, these lines move a bike from Olin

to Wellesley:

bikeshare.olin -= 1

bikeshare.wellesley += 1

Rather than repeat them every time a bike moves, we can define a new func-

tion:

def bike_to_wellesley():

bikeshare.olin -= 1

bikeshare.wellesley += 1

def is a special word in Python that indicates we are defining a new function.

The name of the function is bike_to_wellesley. The empty parentheses

indicate that this function requires no additional information when it runs.

The colon indicates the beginning of an indented code block.

The next two lines are the body of the function. They have to be indented;

by convention, the indentation is 4 spaces.
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When you define a function, it has no immediate effect. The body of the func-

tion doesn’t run until you call the function. Here’s how to call this function:

bike_to_wellesley()

When you call the function, it runs the statements in the body, which update

the variables of the bikeshare object; you can check by displaying or plotting

the new state.

When you call a function, you have to include the parentheses. If you leave

them out, like this:

bike_to_wellesley

Python looks up the name of the function and displays:

<function __main__.bike_to_wellesley>

This result indicates that bike_to_wellesley is a function. You don’t have

to know what __main__ means, but if you see something like this, it probably

means that you looked up a function but you didn’t actually call it. So don’t

forget the parentheses.

Just like bike_to_wellesley, we can define a function that moves a bike from

Wellesley to Olin:

def bike_to_olin():

bikeshare.wellesley -= 1

bikeshare.olin += 1

And call it like this:

bike_to_olin()

One benefit of defining functions is that you avoid repeating chunks of code,

which makes programs smaller. Another benefit is that the name you give the

function documents what it does, which makes programs more readable.
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2.3 Print statements

As you write more complicated programs, it is easy to lose track of what is

going on. One of the most useful tools for debugging is the print statement,

which displays text in the Jupyter notebook.

Normally when Jupyter runs the code in a cell, it displays the value of the last

line of code. For example, if you run:

bikeshare.olin

bikeshare.wellesley

Jupyter runs both lines of code, but it only displays the value of the second

line. If you want to display more than one value, you can use print statements:

print(bikeshare.olin)

print(bikeshare.wellesley)

print is a function, so it takes an argument in parentheses. It can also take a

sequence of arguments separated by commas, like this:

print(bikeshare.olin, bikeshare.wellesley)

In this example, the two values appear on the same line, separated by a space.

Print statements are also useful for debugging functions. For example, we can

add a print statement to move_bike, like this:

def bike_to_wellesley():

print('Moving a bike to Wellesley')

bikeshare.olin -= 1

bikeshare.wellesley += 1

Each time we call this version of the function, it displays a message, which

can help us keep track of what the program is doing.

The argument of this print is a string, which is a sequence of letters and

other symbols in quotes.
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2.4 If statements

The modsim library provides a function called flip that takes as an argument

a probability between 0 and 1:

flip(0.7)

The result is one of two values: True with probability 0.7 or False with

probability 0.3. If you run this function 100 times, you should get True about

70 times and False about 30 times. But the results are random, so they might

differ from these expectations.

True and False are special values defined by Python. Note that they are

not strings. There is a difference between True, which is a special value, and

'True', which is a string.

True and False are called boolean values because they are related to Boolean

algebra (http://modsimpy.com/boolean).

We can use boolean values to control the behavior of the program, using an if

statement:

if flip(0.5):

print('heads')

If the result from flip is True, the program displays the string 'heads'.

Otherwise it does nothing.

The punctuation for if statements is similar to the punctuation for function

definitions: the first line has to end with a colon, and the lines inside the if

statement have to be indented.

Optionally, you can add an else clause to indicate what should happen if the

result is False:

if flip(0.5):

print('heads')

else:

print('tails')

http://modsimpy.com/boolean
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Now we can use flip to simulate the arrival of students who want to borrow a

bike. Suppose students arrive at the Olin station every 2 minutes, on average.

In that case, the chance of an arrival during any one-minute period is 50%,

and we can simulate it like this:

if flip(0.5):

bike_to_wellesley()

If students arrive at the Wellesley station every 3 minutes, on average, the

chance of an arrival during any one-minute period is 33%, and we can simulate

it like this:

if flip(0.33):

bike_to_olin()

We can combine these snippets into a function that simulates a time step,

which is an interval of time, in this case one minute:

def step():

if flip(0.5):

bike_to_wellesley()

if flip(0.33):

bike_to_olin()

Then we can simulate a time step like this:

step()

2.5 Parameters

The previous version of step is fine if the arrival probabilities never change,

but in reality, these probabilities vary over time.

So instead of putting the constant values 0.5 and 0.33 in step we can replace

them with parameters. Parameters are variables whose values are set when

a function is called.
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Here’s a version of step that takes two parameters, p1 and p2:

def step(p1, p2):

if flip(p1):

bike_to_wellesley()

if flip(p2):

bike_to_olin()

The values of p1 and p2 are not set inside this function; instead, they are

provided when the function is called, like this:

step(0.5, 0.33)

The values you provide when you call the function are called arguments. The

arguments, 0.5 and 0.33, get assigned to the parameters, p1 and p2, in order.

So running this function has the same effect as:

p1 = 0.5

p2 = 0.33

if flip(p1):

bike_to_wellesley()

if flip(p2):

bike_to_olin()

The advantage of using parameters is that you can call the same function

many times, providing different arguments each time. Adding parameters to a

function is called generalization, because it makes the function more general,

that is, less specific.

2.6 For loops

At some point you will get sick of running cells over and over. Fortunately,

there is an easy way to repeat a chunk of code, the for loop. Here’s an

example:
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for i in range(4):

bike_to_wellesley()

The punctuation here should look familiar; the first line ends with a colon,

and the lines inside the for loop are indented. The other elements of the for

loop are:

� The words for and in are special words we have to use in a for loop.

� range is a Python function we’re using here to control the number of

times the loop runs.

� i is a loop variable that gets created when the for loop runs.

In this example we don’t actually use i; we will see examples later where we

use the loop variable inside the loop.

When this loop runs, it runs the statements inside the loop four times, which

moves one bike at a time from Olin to Wellesley.

2.7 TimeSeries

When we run a simulation, we usually want to save the results for later anal-

ysis. The modsim library provides a TimeSeries object for this purpose. A

TimeSeries contains a sequence of time stamps and a corresponding sequence

of values. In this example, the time stamps are integers representing minutes,

and the values are the number of bikes at one location.

We can create a new, empty TimeSeries like this:

results = TimeSeries()

And we can add a value to a TimeSeries like this:

results[0] = bikeshare.olin

The number in brackets is the time stamp, also called a label.
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We can use a TimeSeries inside a for loop to store the results of the simulation:

for i in range(10):

step(0.3, 0.2)

results[i] = bikeshare.olin

Each time through the loop, we call step, which updates bikeshare. Then

we store the number of bikes at Olin in results. We use the loop variable, i,

as the time stamp.

When the loop exits, results contains 10 time stamps, from 0 through 9, and

the number of bikes at Olin at the end of each time step.

TimeSeries is a specialized version of Series, which is defined by Pandas, one

of the libraries we’ll be using extensively. The Series object provides many

functions; one example is mean, which we can call like this:

results.mean()

You can read the documentation of Series at http://modsimpy.com/series.

2.8 Plotting

The modsim library provides a function called plot we can use to plot results:

plot(results)

plot can take an additional argument that gives the line a label; this label

will appear in the legend of the plot, if we create one.

plot(results, label='Olin')

label is an example of a keyword argument, so called because we provide

a “keyword”, which is label in this case, along with its value. Arguments

without keywords are called positional arguments because they are assigned

to parameters according to their position. It is good to know these terms

because they appear in Python error messages.

http://modsimpy.com/series
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Figure 2.1: Simulation of a bikeshare system showing number of bikes at Olin
over time.

Whenever you make a figure, you should label the axes. The modsim library

provides decorate, which labels the axes and gives the figure a title and legend:

decorate(title='Olin-Wellesley Bikeshare',

xlabel='Time step (min)',

ylabel='Number of bikes')

Figure 2.1 shows the result.

plot and decorate are based on Pyplot, which is a Python library for gener-

ating figures. You can read more about plot and the arguments it takes at

http://modsimpy.com/plot.

Before you go on, you might want to read the notebook for this chapter,

chap02.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.

http://modsimpy.com/plot
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Chapter 3

Iterative modeling

To paraphrase two Georges, “All models are wrong, but some models are more

wrong than others.” In this chapter, I demonstrate the process we use to make

models less wrong.

As an example, we’ll review the bikeshare model from the previous chapter,

consider its strengths and weaknesses, and gradually improve it. We’ll also see

ways to use the model to understand the behavior of the system and evaluate

designs intended to make it work better.

3.1 Iterative modeling

The model we have so far is simple, but it is based on unrealistic assumptions.

Before you go on, take a minute to review the model from the previous chap-

ters. What assumptions is it based on? Make a list of ways this model might

be unrealistic; that is, what are the differences between the model and the real

world?

Here are some of the differences on my list:

� In the model, a student is equally likely to arrive during any one-minute

period. In reality, this probability varies depending on time of day, day

of the week, etc.



20 Chapter 3 Iterative modeling

� The model does not account for travel time from one bike station to

another.

� The model does not check whether a bike is available, so it’s possible for

the number of bikes to be negative (as you might have noticed in some

of your simulations).

Some of these modeling decisions are better than others. For example, the first

assumption might be reasonable if we simulate the system for a short period

of time, like one hour.

The second assumption is not very realistic, but it might not affect the results

very much, depending on what we use the model for.

On the other hand, the third assumption seems problematic, and it is relatively

easy to fix. In Section 3.4, we will.

This process, starting with a simple model, identifying the most important

problems, and making gradual improvements, is called iterative modeling.

For any physical system, there are many possible models, based on different

assumptions and simplifications. It often takes several iterations to develop a

model that is good enough for the intended purpose, but no more complicated

than necessary.

3.2 More than one State object

Before we go on, I want to make a few changes to the code from the previous

chapter. First I’ll generalize the functions we wrote so they take a State

object as a parameter. Then, I’ll make the code more readable by adding

documentation.

Here is one of the functions from the previous chapter, bike_to_wellesley:

def bike_to_wellesley():

bikeshare.olin -= 1

bikeshare.wellesley += 1
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When this function is called, it modifies bikeshare. As long as there is only

one State object, that’s fine, but what if there is more than one bike share

system in the world? Or what if we want to run more than one simulation?

This function would be more flexible if it took a State object as a parameter.

Here’s what that looks like:

def bike_to_wellesley(state):

state.olin -= 1

state.wellesley += 1

The name of the parameter is state rather than bikeshare as a reminder

that the value of state could be any State object, not just bikeshare.

This version of bike_to_wellesley requires a State object as a parameter,

so we have to provide one when we call it:

bike_to_wellesley(bikeshare)

Again, the argument we provide gets assigned to the parameter, so this func-

tion call has the same effect as:

state = bikeshare

state.olin -= 1

state.wellesley += 1

Now we can create as many State objects as we want:

bikeshare1 = State(olin=10, wellesley=2)

bikeshare2 = State(olin=2, wellesley=10)

And update them independently:

bike_to_wellesley(bikeshare1)

bike_to_wellesley(bikeshare2)

Changes in bikeshare1 do not affect bikeshare2, and vice versa. So we can

simulate different bike share systems, or run multiple simulations of the same

system.
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3.3 Documentation

Another problem with the code we have so far is that it contains no documen-

tation. Documentation is text we add to a program to help other programmers

read and understand it. It has no effect on the program when it runs.

There are two forms of documentation, docstrings and comments. A doc-

string is a string in triple-quotes that appears at the beginning of a function,

like this:

def run_simulation(state, p1, p2, num_steps):

"""Simulate the given number of time steps.

state: State object

p1: probability of an Olin->Wellesley customer arrival

p2: probability of a Wellesley->Olin customer arrival

num_steps: number of time steps

"""

results = TimeSeries()

for i in range(num_steps):

step(state, p1, p2)

results[i] = state.olin

plot(results, label='Olin')

Docstrings follow a conventional format:

� The first line is a single sentence that describes what the function does.

� The following lines explain what each of the parameters are.

A function’s docstring should include the information someone needs to know

to use the function; it should not include details about how the function works.

That’s what comments are for.

A comment is a line of text that begins with a hash symbol, #. It usually

appears inside a function to explain something that would not be obvious to

someone reading the program.
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For example, here is a version of bike_to_olin with a docstring and a com-

ment.

def bike_to_olin(state):

"""Move one bike from Wellesley to Olin.

state: State object

"""

# We decrease one state variable and increase the

# other, so the total number of bikes is unchanged.

state.wellesley -= 1

state.olin += 1

At this point we have more documentation than code, which is not unusual

for short functions.

3.4 Negative bikes

The changes we’ve made so far improve the quality of the code, but we haven’t

done anything to improve the quality of the model yet. Let’s do that now.

Currently the simulation does not check whether a bike is available when a

customer arrives, so the number of bikes at a location can be negative. That’s

not very realistic. Here’s an updated version of bike_to_olin that fixes the

problem:

def bike_to_olin(state):

if state.wellesley == 0:

return

state.wellesley -= 1

state.olin += 1

The first line checks whether the number of bikes at Wellesley is zero. If so,

it uses a a return statement, which causes the function to end immediately,

without running the rest of the statements. So if there are no bikes at Wellesley,

we “return” from bike_to_olin without changing the state.

We can update bike_to_wellesley the same way.
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3.5 Comparison operators

The version of bike_to_olin in the previous section uses the equals operator,

==, which compares two values and returns True if they are equal and False

otherwise.

It is easy to confuse the equals operators with the assignment operator, =,

which assigns a value to a variable. For example, the following statement

creates a variable, x, if it doesn’t already exist, and gives it the value 5.

x = 5

On the other hand, the following statement checks whether x is 5 and returns

True or False. It does not create x or change its value.

x == 5

You can use the equals operator in an if statement, like this:

if x == 5:

print('yes, x is 5')

If you make a mistake and use = in an if statement, like this:

if x = 5:

print('yes, x is 5')

That’s a syntax error, which means that the structure of the program is

invalid. Python will print an error message and the program won’t run.

The equals operator is one of the comparison operators. The others are:
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Operation Symbol

Less than <

Greater than >

Less than or equal <=

Greater than or equal >=

Equal ==

Not equal !=

3.6 Metrics

Getting back to the bike share system, at this point we have the ability to

simulate the behavior of the system. Since the arrival of customers is random,

the state of the system is different each time we run a simulation. Models like

this are called random or stochastic; models that do the same thing every

time they run are deterministic.

Suppose we want to use our model to predict how well the bike share system

will work, or to design a system that works better. First, we have to decide

what we mean by “how well” and “better”.

From the customer’s point of view, we might like to know the probability of

finding an available bike. From the system-owner’s point of view, we might

want to minimize the number of customers who don’t get a bike when they

want one, or maximize the number of bikes in use. Statistics like these that

quantify how well the system works are called metrics.

As a simple example, let’s measure the number of unhappy customers. Here’s

a version of bike_to_olin that keeps track of the number of customers who

arrive at a station with no bikes:
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def bike_to_olin(state):

if state.wellesley == 0:

state.wellesley_empty += 1

return

state.wellesley -= 1

state.olin += 1

If a customer arrives at the Wellesley station and finds no bike available,

bike_to_olin updates wellesley_empty which counts the number of un-

happy customers.

This function only works if we initialize wellesley_empty when we create the

State object, like this:

bikeshare = State(olin=10, wellesley=2,

olin_empty=0, wellesley_empty=0)

Assuming we update move_to_wellesley the same way, we can run the sim-

ulation like this (see Section 3.3):

run_simulation(bikeshare, 0.4, 0.2, 60)

Then we can check the metrics:

print(bikeshare.olin_empty, bikeshare.wellesley_empty)

Because the simulation is stochastic, the results are different each time it runs.

Before you go on, you might want to read the notebook for this chapter,

chap03.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.



Chapter 4

Sweeping parameters

In the previous chapter we defined metrics that quantify the performance of

bike sharing this system. In this chapter we see how those metrics depend

on the parameters of the system, like the arrival rate of customers at bike

stations.

We also discuss a program development strategy, called incremental develop-

ment, that might help you write programs faster and spend less time debug-

ging.

4.1 Functions that return values

We have seen several functions that return values; for example, when you run

sqrt, it returns a number you can assign to a variable.

t = sqrt(2 * h / a)

When you run State, it returns a new State object:

bikeshare = State(olin=10, wellesley=2)

Not all functions have return values. For example, when you run step, it

updates a State object, but it doesn’t return a value.
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To write functions that return values, we can use a second form of the return

statement, like this:

def add_five(x):

return x + 5

add_five takes a parameter, x, which could be any number. It computes

x + 5 and returns the result. So if we run it like this, the result is 8:

add_five(3)

As a more useful example, here’s a version of run_simulation that creates a

State object, runs a simulation, and then returns the State object as a result:

def run_simulation():

p1 = 0.4

p2 = 0.2

num_steps = 60

state = State(olin=10, wellesley=2,

olin_empty=0, wellesley_empty=0)

for i in range(num_steps):

step(state, p1, p2)

return state

If we call run_simulation like this:

state = run_simulation()

It assigns the State object from run_simulation to state, which contains

the metrics we are interested in:

print(state.olin_empty, state.wellesley_empty)
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4.2 Two kinds of parameters

This version of run_simulation always starts with the same initial condition,

10 bikes at Olin and 2 bikes at Wellesley, and the same values of p1, p2, and

num_steps. Taken together, these five values are the parameters of the

model, which are values that determine the behavior of the system.

It is easy to get the parameters of a model confused with the parameters

of a function. They are closely related ideas; in fact, it is common for the

parameters of the model to appear as parameters in functions. For example,

we can write a more general version of run_simulation that takes p1 and p2

as function parameters:

def run_simulation(p1, p2, num_steps):

state = State(olin=10, wellesley=2,

olin_empty=0, wellesley_empty=0)

for i in range(num_steps):

step(state, p1, p2)

return state

Now we can run it with different arrival rates, like this:

state = run_simulation(0.6, 0.3, 60)

In this example, 0.6 gets assigned to p1, 0.3 gets assigned to p2, and 60 gets

assigned to num_steps.

Now we can call run_simulation with different parameters and see how the

metrics, like the number of unhappy customers, depend on the parameters.

But before we do that, we need a new version of a for loop.

4.3 Loops and arrays

In Section 2.6, we saw a loop like this:
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for i in range(4):

bike_to_wellesley()

range(4) creates a sequence of numbers from 0 to 3. Each time through the

loop, the next number in the sequence gets assigned to the loop variable, i.

range only works with integers; to get a sequence of non-integer values, we

can use linspace, which is defined in the modsim library:

p1_array = linspace(0, 1, 5)

The arguments indicate where the sequence should start and stop, and how

many elements it should contain. In this example, the sequence contains 5

equally-spaced numbers, starting at 0 and ending at 1.

The result is a NumPy array, which is a new kind of object we have not seen

before. An array is a container for a sequence of numbers.

We can use an array in a for loop like this:

for p1 in p1_array:

print(p1)

When this loop runs, it

1. Gets the first value from the array and assigns it to p1.

2. Runs the body of the loop, which prints p1.

3. Gets the next value from the array and assigns it to p1.

4. Runs the body of the loop, which prints p1.

And so on, until it gets to the end of the array. The result is:

0.0

0.25

0.5

0.75

1.0

This will come in handy in the next section.



4.4 Sweeping parameters 31

4.4 Sweeping parameters

If we know the actual values of parameters like p1 and p2, we can use them to

make specific predictions, like how many bikes will be at Olin after one hour.

But prediction is not the only goal; models like this are also used to explain why

systems behave as they do and to evaluate alternative designs. For example, if

we observe the system and notice that we often run out of bikes at a particular

time, we could use the model to figure out why that happens. And if we are

considering adding more bikes, or another station, we could evaluate the effect

of various “what if” scenarios.

As an example, suppose we have enough data to estimate that p2 is about 0.2,

but we don’t have any information about p1. We could run simulations with

a range of values for p1 and see how the results vary. This process is called

sweeping a parameter, in the sense that the value of the parameter “sweeps”

through a range of possible values.

Now that we know about loops and arrays, we can use them like this:

p1_array = linspace(0, 1, 11)

p2 = 0.2

num_steps = 60

for p1 in p1_array:

state = run_simulation(p1, p2, num_steps)

print(p1, state.olin_empty)

Each time through the loop, we run a simulation with a different value of p1

and the same value of p2, 0.2. Then we print p1 and the number of unhappy

customers at Olin.

To save and plot the results, we can use a SweepSeries object, which is

similar to a TimeSeries; the difference is that the labels in a SweepSeries

are parameter values rather than time values.

We can create an empty SweepSeries like this:

sweep = SweepSeries()
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And add values like this:

for p1 in p1_array:

state = run_simulation(p1, p2, num_steps)

sweep[p1] = state.olin_empty

The result is a SweepSeries that maps from each value of p1 to the resulting

number of unhappy customers. Then we can plot the results:

plot(sweep, label='Olin')

4.5 Incremental development

When you start writing programs that are more than a few lines, you might

find yourself spending more and more time debugging. The more code you

write before you start debugging, the harder it is to find the problem.

Incremental development is a way of programming that tries to minimize

the pain of debugging. The fundamental steps are:

1. Always start with a working program. If you have an example from a

book, or a program you wrote that is similar to what you are working

on, start with that. Otherwise, start with something you know is correct,

like x=5. Run the program and confirm that it does what you expect.

2. Make one small, testable change at a time. A “testable” change is one

that displays something or has some other effect you can check. Ideally,

you should know what the correct answer is, or be able to check it by

performing another computation.

3. Run the program and see if the change worked. If so, go back to Step 2.

If not, you will have to do some debugging, but if the change you made

was small, it shouldn’t take long to find the problem.

When this process works, your changes usually work the first time, or if they

don’t, the problem is obvious. In practice, there are two problems with incre-

mental development:



4.5 Incremental development 33

� Sometimes you have to write extra code to generate visible output that

you can check. This extra code is called scaffolding because you use it

to build the program and then remove it when you are done. That might

seem like a waste, but time you spend on scaffolding is almost always

time you save on debugging.

� When you are getting started, it might not be obvious how to choose

the steps that get from x=5 to the program you are trying to write. You

will see more examples of this process as we go along, and you will get

better with experience.

If you find yourself writing more than a few lines of code before you start

testing, and you are spending a lot of time debugging, try incremental devel-

opment.

Before you go on, you might want to read the notebook for this chapter,

chap04.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Chapter 5

World population

In 1968 Paul Erlich published The Population Bomb, in which he predicted

that world population would grow quickly during the 1970s, that agricultural

production could not keep up, and that mass starvation in the next two decades

was inevitable (see http://modsimpy.com/popbomb). As someone who grew

up during those decades, I am happy to report that those predictions were

wrong.

But world population growth is still a topic of concern, and it is an open ques-

tion how many people the earth can sustain while maintaining and improving

our quality of life.

In this chapter and the next, we use tools from the previous chapters to explain

world population growth since 1950 and generate predictions for the next 50–

100 years.

For background on world population growth, watch this video from the Amer-

ican Museum of Natural History http://modsimpy.com/human.

5.1 World Population Data

The Wikipedia article on world population contains tables with estimates of

world population from prehistory to the present, and projections for the future

(http://modsimpy.com/worldpop).

http://modsimpy.com/popbomb
http://modsimpy.com/human
http://modsimpy.com/worldpop
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To read this data, we will use Pandas, which provides functions for working

with data. The function we’ll use is read_html, which can read a web page

and extract data from any tables it contains. Before we can use it, we have to

import it. You have already seen this import statement:

from modsim import *

which imports all functions from the modsim library. To import read_html,

the statement we need is:

from pandas import read_html

Now we can use it like this:

filename = 'data/World_population_estimates.html'

tables = read_html(filename,

header=0,

index_col=0,

decimal='M')

The arguments are:

� filename: The name of the file (including the directory it’s in) as a

string. This argument can also be a URL starting with http.

� header: Indicates which row of each table should be considered the

header, that is, the set of labels that identify the columns. In this case

it is the first row (numbered 0).

� index_col: Indicates which column of each table should be considered

the index, that is, the set of labels that identify the rows. In this case

it is the first column, which contains the years.

� decimal: Normally this argument is used to indicate which character

should be considered a decimal point, because some conventions use a

period and some use a comma. In this case I am abusing the feature by

treating M as a decimal point, which allows some of the estimates, which

are expressed in millions, to be read as numbers.
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The result, which is assigned to tables, is a sequence that contains one

DataFrame for each table. A DataFrame is an object, defined by Pandas,

that represents tabular data.

To select a DataFrame from tables, we can use the bracket operator like this:

table2 = tables[2]

This line selects the third table (numbered 2), which contains population es-

timates from 1950 to 2016.

We can display the first few lines like this:

table2.head()

The column labels are long strings, which makes them hard to work with. We

can replace them with shorter strings like this:

table2.columns = ['census', 'prb', 'un', 'maddison',

'hyde', 'tanton', 'biraben', 'mj',

'thomlinson', 'durand', 'clark']

Now we can select a column from the DataFrame using the dot operator, like

selecting a state variable from a State object:

census = table2.census / 1e9

un = table2.un / 1e9

These lines select the estimates generated by the United Nations Department

of Economic and Social Affairs (UN DESA) and the United States Census

Bureau.

Each result is a Pandas Series, which is like a DataFrame with just one

column.

The number 1e9 is a shorter, less error-prone way to write 1000000000 or one

billion. When we divide a Series by a number, it divides all of the elements

of the Series. From here on, we’ll express population estimates in terms of

billions.
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Figure 5.1: Estimates of world population, 1950–2016.

5.2 Plotting

Now we can plot the estimates like this:

plot(census, ':', label='US Census')

plot(un, '--', label='UN DESA')

The next two lines plot the Series objects. The format strings ':' and '--'

indicate dotted and dashed lines. For more about format strings in Pyplot,

see http://modsimpy.com/plot.

The label argument provides the string that appears in the legend.

Figure 5.1 shows the result. The lines overlap almost completely; for most

dates the difference between the two estimates is less than 1%.

5.3 Constant growth model

Suppose we want to predict world population growth over the next 50 or 100

years. We can do that by developing a model that describes how populations

http://modsimpy.com/plot
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grow, fitting the model to the data we have so far, and then using the model

to generate predictions.

In the next few sections I demonstrate this process starting with simple models

and gradually improving them.

Although there is some curvature in the plotted estimates, it looks like world

population growth has been close to linear since 1960 or so. So we’ll start with

a model that has constant growth.

To fit the model to the data, we’ll compute the average annual growth from

1950 to 2016. Since the UN and Census data are so close, we’ll use the Census

data.

We can select a value from a Series using the bracket operator:

census[1950]

So we can get the total growth during the interval like this:

total_growth = census[2016] - census[1950]

The numbers in brackets are called labels, because they label the rows of the

Series (not to be confused with the labels we saw in the previous section,

which label lines in a graph).

In this example, the labels 2016 and 1950 are part of the data, so it would

be better not to make them part of the program. Putting values like these

in the program is called hard coding; it is considered bad practice because

if the data change in the future, we have to modify the program (see http:

//modsimpy.com/hardcode).

It would be better to get the first and last labels from the Series like this:

t_0 = get_first_label(census)

t_end = get_last_label(census)

elapsed_time = t_end - t_0

get_first_label and get_last_label are defined in modsim.py; as you

might have guessed, they select the first and last labels from census. The

difference between them is the elapsed time.

http://modsimpy.com/hardcode
http://modsimpy.com/hardcode
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The modsim library also defines get_first_value and get_last_value, which

we can use to compute total_growth:

p_0 = get_first_value(census)

p_end = get_last_value(census)

total_growth = p_end - p_0

Finally, we can compute average annual growth.

annual_growth = total_growth / elapsed_time

The next step is to use this estimate to simulate population growth since 1950.

5.4 Simulation

Our simulation will start with the observed population in 1950, p0, and add

annual_growth each year. To store the results, we’ll use a TimeSeries object:

results = TimeSeries()

We can set the first value in the new TimeSeries by copying the first value

from census:

results[t_0] = census[p_0]

Then we set the rest of the values by simulating annual growth:

for t in linrange(t_0, t_end):

results[t+1] = results[t] + annual_growth

linrange is defined in the modsim library. In this example it returns a NumPy

array of integers from t_0 to t_end, including the first but not the last.

Each time through the loop, the loop variable t gets the next value from the

array. Inside the loop, we compute the population for each year by adding the

population for the previous year and annual_growth. The last time through
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Figure 5.2: Estimates of world population, 1950–2016, and a constant growth
model.

the loop, the value of t is 2015, so the last label in results is 2016, which is

what we want.

Figure 5.2 shows the result. The model does not fit the data particularly well

from 1950 to 1990, but after that, it’s pretty good. Nevertheless, there are

problems:

� There is no obvious mechanism that could cause population growth to

be constant from year to year. Changes in population are determined by

the fraction of people who die and the fraction of people who give birth,

so we expect them to depend on the current population.

� According to this model, we would expect the population to keep growing

at the same rate forever, and that does not seem reasonable.

We’ll try out some different models in the next few sections, but first let’s

clean up the code.

Before you go on, you might want to read the notebook for this chapter,

chap05.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Chapter 6

Modeling growth

In the previous chapter we simulated a model of world population with con-

stant growth. In this chapter we see if we can make a better model with growth

proportional to the population.

But first, we can improve the code from the previous chapter by encapsulating

it in a function and using System objects.

6.1 System objects

Like a State object, a System object contains variables and their values. The

difference is:

� State objects contain state variables, which represent the state of the

system, which get updated in the course of a simulation.

� System objects contain system variables, which represent parameters

of the system, which usually don’t get updated over the course of a

simulation.

For example, in the bike share model, state variables include the number of

bikes at each location, which get updated whenever a customer moves a bike.

System variables include the number of locations, total number of bikes, and

arrival rates at each location.
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In the population model, the only state variable is the population. System

variables include the annual growth rate, the initial time and population, and

the end time.

Suppose we have the following variables, as computed in the previous chapter

(assuming that census is a Series object):

t_0 = get_first_label(census)

t_end = get_last_label(census)

elapsed_time = t_end - t_0

p_0 = get_first_value(census)

p_end = get_last_value(census)

total_growth = p_end - p_0

annual_growth = total_growth / elapsed_time

Some of these are parameters we need to simulate the system; others are

temporary values we can discard. We can put the parameters we need into a

System object like this:

system = System(t_0=t_0,

t_end=t_end,

p_0=p_0,

annual_growth=annual_growth)

t0 and t_end are the first and last years; p_0 is the initial population, and

annual_growth is the estimated annual growth.

Next we’ll wrap the code from the previous chapter in a function:

def run_simulation1(system):

results = TimeSeries()

results[system.t_0] = system.p_0

for t in linrange(system.t_0, system.t_end):

results[t+1] = results[t] + system.annual_growth

return results
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When run_simulation1 runs, it stores the results in a TimeSeries and re-

turns it.

The following function plots the results along with the estimates census and

un:

def plot_results(census, un, timeseries, title):

plot(census, ':', label='US Census')

plot(un, '--', label='UN DESA')

plot(timeseries, color='gray', label='model')

decorate(xlabel='Year',

ylabel='World population (billion)',

title=title)

The color argument specifies the color of the line. For details on color speci-

fication in Pyplot, see http://modsimpy.com/color.

Finally, we can run the simulation like this.

results = run_simulation1(system)

plot_results(census, un, results, 'Constant growth model')

The results are the same as Figure 5.2.

It might not be obvious that using functions and System objects is a big

improvement, and for a simple model that we run only once, maybe it’s not.

But as we work with more complex models, and when we run many simulations

with different parameters, we’ll see that the organization of the code makes a

big difference.

Now let’s see if we can improve the model.

6.2 Proportional growth model

The biggest problem with the constant growth model is that it doesn’t make

any sense. It is hard to imagine how people all over the world could conspire

to keep population growth constant from year to year.

http://modsimpy.com/color


46 Chapter 6 Modeling growth

On the other hand, if some fraction of the population dies each year, and some

fraction gives birth, we can compute the net change in the population like this:

def run_simulation2(system):

results = TimeSeries()

results[system.t_0] = system.p_0

for t in linrange(system.t_0, system.t_end):

births = system.birth_rate * results[t]

deaths = system.death_rate * results[t]

results[t+1] = results[t] + births - deaths

return results

Now we can choose the values of birth_rate and death_rate that best fit

the data. Without trying too hard, I chose:

system.death_rate = 0.01

system.birth_rate = 0.027

Then I ran the simulation and and plotted the results:

results = run_simulation2(system)

plot_results(census, un, results, 'Proportional model')

Figure 6.1 shows the results. The proportional model fits the data well from

1950 to 1965, but not so well after that. Overall, the quality of fit is not as

good as the constant growth model, which is surprising, because it seems like

the proportional model is more realistic.

In the next chapter we’ll try one more time to find a model that makes sense

and fits the data. But first, I want to make a few more improvements to the

code.

6.3 Factoring out the update function

run_simulation1 and run_simulation2 are nearly identical except for the

body of the for loop, where we compute the population for the next year.
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Figure 6.1: Estimates of world population, 1950–2016, and a proportional
model.

Rather than repeat identical code, we can separate the things that change from

the things that don’t. First, I’ll pull out the update code from run_simulation2

and make it a function:

def update_func1(pop, t, system):

births = system.birth_rate * pop

deaths = system.death_rate * pop

return pop + births - deaths

This function takes as arguments the current population, current year, and a

System object; it returns the computed population for the next year.

This update function does not use t, so we could leave it out. But we will

see other functions that need it, and it is convenient if they all take the same

parameters, used or not.

Now we can write a function that runs any model:
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def run_simulation(system, update_func):

results = TimeSeries()

results[system.t_0] = system.p_0

for t in linrange(system.t_0, system.t_end):

results[t+1] = update_func(results[t], t, system)

return results

This function demonstrates a feature we have not seen before: it takes a

function as a parameter! When we call run_simulation, the second parameter

is a function, like update_func1, that computes the population for the next

year.

Here’s how we call it:

results = run_simulation(system, update_func1)

Passing a function as an argument is the same as passing any other value.

The argument, which is update_func1 in this example, gets assigned to the

parameter, which is called update_func. Inside run_simulation, we can run

update_func just like any other function.

The loop in run_simulation calls update_func1 once for each year between

t_0 and t_end-1. The result is the same as Figure 6.1.

6.4 Combining birth and death

While we are at it, we can also simplify the code by combining births and

deaths to compute the net growth rate. Instead of two parameters, birth_rate

and death_rate, we can write the update function in terms of a single param-

eter that represents the difference:

system.alpha = system.birth_rate - system.death_rate

The name of this parameter, alpha, is the conventional name for a proportional

growth rate.
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Here’s the modified version of update_func1:

def update_func2(pop, t, system):

net_growth = system.alpha * pop

return pop + net_growth

And here’s how we run it:

results = run_simulation(system, update_func2)

Again, the result is the same as Figure 6.1.

Before you go on, you might want to read the notebook for this chapter,

chap06.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Chapter 7

Quadratic growth

In the previous chapter we developed a population model where net growth

during each time step is proportional to the current population. This model

seems more realistic than the constant growth model, but it does not fit the

data as well.

There are a few things we could try to improve the model:

� Maybe the net growth rate varies over time.

� Maybe net growth depends on the current population, but the relation-

ship is quadratic, not linear.

In the notebook for this chapter, you will have a chance to try the first option.

In this chapter, we explore the second.

7.1 Quadratic growth

It makes sense that net growth should depend on the current population, but

maybe it’s not a linear relationship, like this:

net_growth = system.alpha * pop

Maybe it’s a quadratic relationship, like this:
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Figure 7.1: Estimates of world population, 1950–2016, and a quadratic model.

net_growth = system.alpha * pop + system.beta * pop**2

We can test that conjecture with a new update function:

def update_func_quad(pop, t, system):

net_growth = system.alpha * pop + system.beta * pop**2

return pop + net_growth

Now we need two parameters. I chose the following values by trial and error;

we will see better ways to do it later.

system.alpha = 0.025

system.beta = -0.0018

And here’s how we run it:

results = run_simulation(system, update_func_quad)

Figure 7.1 shows the result. The model fits the data well over the whole range,

with just a bit of space between them in the 1960s.
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Of course, we should expect the quadratic model to fit better than the constant

and proportional models because it has two parameters we can choose, where

the other models have only one. In general, the more parameters you have to

play with, the better you should expect the model to fit.

But fitting the data is not the only reason to think the quadratic model might

be a good choice. It also makes sense; that is, there is a legitimate reason to

expect the relationship between growth and population to have this form.

To understand it, let’s look at net growth as a function of population. Here’s

how we compute it:

pop_array = linspace(0, 15, 100)

net_growth_array = (system.alpha * pop_array +

system.beta * pop_array**2)

pop_array contains 100 equally spaced values from 0 to 15. net_growth_array

contains the corresponding 100 values of net growth. We can plot the results

like this:

plot(pop_array, net_growth_array)

Previously we have used plot with Series objects. In this example, we use

two NumPy arrays, corresponding to the x and y axes.

Figure 7.2 shows the result. Note that the x-axis is not time, as in the previous

figures, but population. We can divide this curve into four regimes of behavior:

� When the population is less than 3-4 billion, net growth is proportional to

population, as in the proportional model. In this regime, the population

grows slowly because the population is small.

� Between 4 billion and 10 billion, the population grows quickly because

there are a lot of people.

� Above 10 billion, population grows more slowly; this behavior models

the effect of resource limitations that lower birth rates or increase death

rates.
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Figure 7.2: Net growth as a function of population.

� Above 14 billion, resources are so limited that the death rate exceeds the

birth rate and net growth becomes negative.

Just below 14 billion, there is a point where net growth is 0, which means that

the population does not change. At this point, the birth and death rates are

equal, so the population is in equilibrium.

7.2 Equilibrium

To find the equilibrium point, we can find the roots, or zeros, of this equation:

∆p = αp+ βp2

where ∆p is net population growth, p is current population, and α and β are

the parameters of the model. We can rewrite the right hand side like this:

∆p = p(α + βp)

which is 0 when p = 0 or p = −α/β. In this example, α = 0.025 and

β = −0.0018, so −α/β = 13.9.
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In the context of population modeling, the quadratic model is more conven-

tionally written like this:

∆p = rp(1− p/K)

This is the same model; it’s just a different way to parameterize it. Given

α and β, we can compute r = α and K = −α/β.

In this version, it is easier to interpret the parameters: r is the maximum

growth rate, observed when p is small, and K is the equilibrium point. K is

also called the carrying capacity, since it indicates the maximum population

the environment can sustain.

In the next chapter we use the models we have developed to generate predic-

tions.

7.3 Dysfunctions

When people learn about functions, there are a few things they often find

confusing. In this section I present and explain some common problems.

As an example, suppose you want a function that takes as a parameter System

object with variables alpha and beta, and computes the carrying capacity,

-alpha/beta. Here’s a good solution:

def carrying_capacity(system):

K = -system.alpha / system.beta

return K

sys1 = System(alpha=0.025, beta=-0.0018)

pop = carrying_capacity(sys1)

print(pop)

Now let’s see all the ways that can go wrong.

Dysfunction #1: Not using parameters. In the following version, the function

doesn’t take any parameters; when sys1 appears inside the function, it refers

to the object we create outside the function.
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def carrying_capacity():

K = -sys1.alpha / sys1.beta

return K

sys1 = System(alpha=0.025, beta=-0.0018)

pop = carrying_capacity()

print(pop)

This version actually works, but it is not as versatile as it could be. If there

are several System objects, this function can only work with one of them, and

only if it is named sys1.

Dysfunction #2: Clobbering the parameters. When people first learn about

parameters, they often write functions like this:

# WRONG

def carrying_capacity(system):

system = System(alpha=0.025, beta=-0.0018)

K = -system.alpha / system.beta

return K

sys1 = System(alpha=0.03, beta=-0.002)

pop = carrying_capacity(sys1)

print(pop)

In this example, we have a System object named sys1 that gets passed as

an argument to carrying_capacity. But when the function runs, it ignores

the argument and immediately replaces it with a new System object. As a

result, this function always returns the same value, no matter what argument

is passed.

When you write a function, you generally don’t know what the values of the

parameters will be. Your job is to write a function that works for any valid

values. If you assign your own values to the parameters, you defeat the whole

purpose of functions.

Dysfunction #3: No return value. Here’s a version that computes the value

of K but doesn’t return it.
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# WRONG

def carrying_capacity(system):

K = -system.alpha / system.beta

sys1 = System(alpha=0.025, beta=-0.0018)

pop = carrying_capacity(sys1)

print(pop)

A function that doesn’t have a return statement always returns a special value

called None, so in this example the value of pop is None. If you are debugging

a program and find that the value of a variable is None when it shouldn’t be,

a function without a return statement is a likely cause.

Dysfunction #4: Ignoring the return value. Finally, here’s a version where the

function is correct, but the way it’s used is not.

# WRONG

def carrying_capacity(system):

K = -system.alpha / system.beta

return K

sys1 = System(alpha=0.025, beta=-0.0018)

carrying_capacity(sys1)

print(K)

In this example, carrying_capacity runs and returns K, but the return value

is dropped.

When you call a function that returns a value, you should do something with

the result. Often you assign it to a variable, as in the previous examples, but

you can also use it as part of an expression. For example, you could eliminate

the temporary variable pop like this:

print(carrying_capacity(sys1))

Or if you had more than one system, you could compute the total carrying

capacity like this:

total = carrying_capacity(sys1) + carrying_capacity(sys2)



58 Chapter 7 Quadratic growth

Before you go on, you might want to read the notebook for this chapter,

chap07.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.



Chapter 8

Prediction

In the previous chapter we developed a quadratic model of world population

growth from 1950 to 2016. It is a simple model, but it fits the data well and

the mechanisms it’s based on are plausible.

In this chapter we’ll use the quadratic model to generate projections of future

growth, and compare our results to projections from actual demographers.

Also, we’ll represent the models from the previous chapters as differential

equations and solve them analytically.

8.1 Generating projections

We’ll start with the quadratic model from Section 7.1, which is based on this

update function:

def update_func_quad(pop, t, system):

net_growth = system.alpha * pop + system.beta * pop**2

return pop + net_growth

As we saw in the previous chapter, we can get the start date, end date, and

initial population from census, which is a series that contains world population

estimates generated by the U.S. Census:
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t_0 = get_first_label(census)

t_end = get_last_label(census)

p_0 = census[t_0]

Now we can create a System object:

system = System(t_0=t_0,

t_end=t_end,

p_0=p_0,

alpha=0.025,

beta=-0.0018)

And run the model:

results = run_simulation(system, update_func_quad)

We have already seen the results in Figure 7.1. Now, to generate a projection,

the only thing we have to change is t_end:

system.t_end = 2250

results = run_simulation(system, update_func_quad)

Figure 8.1 shows the result, with a projection until 2250. According to this

model, population growth will continue almost linearly for the next 50–100

years, then slow over the following 100 years, approaching 13.9 billion by 2250.

I am using the word “projection” deliberately, rather than “prediction”, with

the following distinction: “prediction” implies something like “this is what

we should reasonably expect to happen, at least approximately”; “projection”

implies something like “if this model is actually a good description of what is

happening in this system, and if nothing in the future causes the parameters

of the model to change, this is what would happen.”

Using “projection” leaves open the possibility that there are important things

in the real world that are not captured in the model. It also suggests that,

even if the model is good, the parameters we estimate based on the past might

be different in the future.
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Figure 8.1: Quadratic model of world population growth, with projection from
2016 to 2250.

The quadratic model we’ve been working with is based on the assumption that

population growth is limited by the availability of resources; in that scenario,

as the population approaches carrying capacity, birth rates fall and death rates

rise because resources become scarce.

If that assumption is valid, we might be able to use actual population growth

to estimate carrying capacity, especially if we observe the transition into the

regime where the growth rate starts to fall.

But in the case of world population growth, those conditions don’t apply.

Over the last 50 years, the net growth rate has leveled off, but not yet started

to fall, so we don’t have enough data to make a credible estimate of carrying

capacity. And resource limitations are probably not the primary reason growth

has slowed. As evidence, consider:

� First, the death rate is not increasing; rather, it has declined from 1.9%

in 1950 to 0.8% now (see http://modsimpy.com/mortality). So the

decrease in net growth is due entirely to declining birth rates.

� Second, the relationship between resources and birth rate is the opposite

of what the model assumes; as nations develop and people become more

wealthy, birth rates tend to fall.

http://modsimpy.com/mortality
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We should not take too seriously the idea that this model can estimate carrying

capacity. But the predictions of a model can be credible even if the assump-

tions of the model are not strictly true. For example, population growth might

behave as if it is resource limited, even if the actual mechanism is something

else.

In fact, demographers who study population growth often use models similar

to ours. In the next section, we’ll compare our projections to theirs.

8.2 Comparing projections

Table 3 from http://modsimpy.com/worldpop contains projections from the

U.S. Census and the United Nations DESA:

table3 = tables[3]

For some years, one agency or the other has not published a projection, so

some elements of table3 contain the special value NaN, which stands for “not

a number”. NaN is often used to indicate missing data.

Pandas provides functions that deal with missing data, including dropna,

which removes any elements in a series that contain NaN. Using dropna, we

can plot the projections like this:

def plot_projections(table):

census_proj = table.census / 1e9

un_proj = table.un / 1e9

plot(census_proj.dropna(), 'b:', label='US Census')

plot(un_proj.dropna(), 'g--', label='UN DESA')

The format string 'b:' indicates a blue dotted line; g-- indicates a green

dashed line.

We can run our model over the same interval:

system.t_end = 2100

results = run_simulation(system, update_func_quad)

http://modsimpy.com/worldpop
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Figure 8.2: Projections of world population generated by the U.S. Census
Bureau, the United Nations, and our quadratic model.

And compare our projections to theirs. Figure 8.2 shows the results. Real

demographers expect world population to grow more slowly than our model

projects, probably because their models are broken down by region and coun-

try, where conditions are different, and they take into account expected eco-

nomic development.

Nevertheless, their projections are qualitatively similar to ours, and theirs

differ from each other almost as much as they differ from ours. So the results

from this model, simple as it is, are not entirely crazy.

Before you go on, you might want to read the notebook for this chapter,

chap08.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Chapter 9

Analysis

In this chapter we express the models from previous chapters as difference

equations and differential equations, solve the equations, and derive the func-

tional forms of the solutions. We also discuss the complementary roles of

mathematical analysis and simulation.

9.1 Recurrence relations

The population models in the previous chapter and this one are simple enough

that we didn’t really need to run simulations. We could have solved them

mathematically. For example, we wrote the constant growth model like this:

model[t+1] = model[t] + annual_growth

In mathematical notation, we would write the same model like this:

xn+1 = xn + c

where xn is the population during year n, x0 is a given initial population,

and c is constant annual growth. This way of representing the model is a

recurrence relation; see http://modsimpy.com/recur.

Sometimes it is possible to solve a recurrence relation by writing an equation

that computes xn, for a given value of n, directly; that is, without computing

the intervening values from x1 through xn−1.

http://modsimpy.com/recur
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In the case of constant growth we can see that x1 = x0 + c, and x2 = x1 + c.

Combining these, we get x2 = x0 + 2c, then x3 = x0 + 3c, and it is not hard

to conclude that in general

xn = x0 + nc

So if we want to know x100 and we don’t care about the other values, we can

compute it with one multiplication and one addition.

We can also write the proportional model as a recurrence relation:

xn+1 = xn + αxn

Or more conventionally as:

xn+1 = xn(1 + α)

Now we can see that x1 = x0(1 + α), and x2 = x0(1 + α)2, and in general

xn = x0(1 + α)n

This result is a geometric progression; see http://modsimpy.com/geom.

When α is positive, the factor 1 + α is greater than 1, so the elements of the

sequence grow without bound.

Finally, we can write the quadratic model like this:

xn+1 = xn + αxn + βx2n

or with the more conventional parameterization like this:

xn+1 = xn + rxn(1− xn/K)

There is no analytic solution to this equation, but we can approximate it with a

differential equation and solve that, which is what we’ll do in the next section.

9.2 Differential equations

Starting again with the constant growth model

xn+1 = xn + c

http://modsimpy.com/geom
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If we define ∆x to be the change in x from one time step to the next, we can

write:

∆x = xn+1 − xn = c

If we define ∆t to be the time step, which is one year in the example, we can

write the rate of change per unit of time like this:

∆x

∆t
= c

This model is discrete, which means it is only defined at integer values of n

and not in between. But in reality, people are born and die all the time, not

once a year, so a continuous model might be more realistic.

We can make this model continuous by writing the rate of change in the form

of a derivative:
dx

dt
= c

This way of representing the model is a differential equation; see http:

//modsimpy.com/diffeq.

We can solve this differential equation if we multiply both sides by dt:

dx = cdt

And then integrate both sides:

x(t) = ct+ x0

Similarly, we can write the proportional growth model like this:

∆x

∆t
= αx

And as a differential equation like this:

dx

dt
= αx

If we multiply both sides by dt and divide by x, we get

1

x
dx = α dt

http://modsimpy.com/diffeq
http://modsimpy.com/diffeq
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Now we integrate both sides, yielding:

lnx = αt+K

where ln is the natural logarithm and K is the constant of integration. Expo-

nentiating both sides1, we have

exp(ln(x)) = exp(αt+K)

which we can rewrite

x = exp(αt) exp(K)

Since K is an arbitrary constant, exp(K) is also an arbitrary constant, so we

can write

x = C exp(αt)

where C = exp(K). There are many solutions to this differential equation,

with different values of C. The particular solution we want is the one that has

the value x0 when t = 0.

When t = 0, x(t) = C, so C = x0 and the solution we want is

x(t) = x0 exp(αt)

If you would like to see this derivation done more carefully, you might like this

video: http://modsimpy.com/khan1.

9.3 Analysis and simulation

Once you have designed a model, there are generally two ways to proceed:

simulation and analysis. Simulation often comes in the form of a computer

program that models changes in a system over time, like births and deaths, or

bikes moving from place to place. Analysis often comes in the form of algebra;

that is, symbolic manipulation using mathematical notation.

Analysis and simulation have different capabilities and limitations. Simulation

is generally more versatile; it is easy to add and remove parts of a program

and test many versions of a model, as we have done in the previous examples.

1The exponential function can be written exp(x) or ex. In this book I use the first form
because it resembles the Python code.

http://modsimpy.com/khan1
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But there are several things we can do with analysis that are harder or impos-

sible with simulations:

� With analysis we can sometimes compute, exactly and efficiently, a value

that we could only approximate, less efficiently, with simulation. For

example, in Figure 7.2, we can see that net growth goes to zero near 14

billion, and we could estimate carrying capacity using a numerical search

algorithm (more about that later). But with the analysis in Section 7.2,

we get the general result that K = −α/β.

� Analysis often provides “computational shortcuts”, that is, the ability

to jump forward in time to compute the state of a system many time

steps in the future without computing the intervening states.

� We can use analysis to state and prove generalizations about models;

for example, we might prove that certain results will always or never

occur. With simulations, we can show examples and sometimes find

counterexamples, but it is hard to write proofs.

� Analysis can provide insight into models and the systems they describe;

for example, sometimes we can identify regimes of qualitatively different

behavior and key parameters that control those behaviors.

When people see what analysis can do, they sometimes get drunk with power,

and imagine that it gives them a special ability to see past the veil of the

material world and discern the laws of mathematics that govern the universe.

When they analyze a model of a physical system, they talk about “the math

behind it” as if our world is the mere shadow of a world of ideal mathematical

entities2.

This is, of course, nonsense. Mathematical notation is a language designed

by humans for a purpose, specifically to facilitate symbolic manipulations like

algebra. Similarly, programming languages are designed for a purpose, specif-

ically to represent computational ideas and run programs.

Each of these languages is good for the purposes it was designed for and less

good for other purposes. But they are often complementary, and one of the

goals of this book is to show how they can be used together.

2I am not making this up; see http://modsimpy.com/plato.

http://modsimpy.com/plato
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9.4 Analysis with WolframAlpha

Until recently, most analysis was done by rubbing graphite on wood pulp3,

a process that is laborious and error-prone. A useful alternative is symbolic

computation. If you have used services like WolframAlpha, you have used

symbolic computation.

For example, if you go to https://www.wolframalpha.com/ and type

df(t) / dt = alpha f(t)

WolframAlpha infers that f(t) is a function of t and alpha is a parameter; it

classifies the query as a “first-order linear ordinary differential equation”, and

reports the general solution:

f(t) = c1 exp(αt)

If you add a second equation to specify the initial condition:

df(t) / dt = alpha f(t), f(0) = p_0

WolframAlpha reports the particular solution:

f(t) = p0 exp(αt)

WolframAlpha is based on Mathematica, a powerful programming language

designed specifically for symbolic computation.

9.5 Analysis with SymPy

Python has a library called SymPy that provides symbolic computation tools

similar to Mathematica. They are not as easy to use as WolframAlpha, but

they have some other advantages.

3Or “rubbing the white rock on the black rock”, a line I got from Woodie Flowers, who
got it from Stephen Jacobsen.

https://www.wolframalpha.com/
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Before we can use SymPy, we have to import it:

from sympy import *

SymPy defines many functions, and some of them conflict with functions de-

fined in modsim and the other libraries we’re using. To avoid these conflicts, I

suggest that you do symbolic computation with SymPy in a separate notebook.

SymPy defines a Symbol object that represents symbolic variable names, func-

tions, and other mathematical entities.

The symbols function takes a string and returns Symbol objects. So if we run

this assignment:

t = symbols('t')

Python understands that t is a symbol, not a numerical value. If we now run

expr = t + 1

Python doesn’t try to perform numerical addition; rather, it creates a new

Symbol that represents the sum of t and 1. We can evaluate the sum using

subs, which substitutes a value for a symbol. This example substitutes 2 for

t:

expr.subs(t, 2)

The result is 3.

Functions in SymPy are represented by a special kind of Symbol:

f = Function('f')

Now if we write f(t), we get an object that represents the evaluation of a

function, f , at a value, t. But again SymPy doesn’t actually try to evaluate

it.
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9.6 Differential equations in SymPy

SymPy provides a function, diff, that can differentiate a function. We can

apply it to f(t) like this:

dfdt = diff(f(t), t)

The result is a Symbol that represents the derivative of f with respect to t.

But again, SymPy doesn’t try to compute the derivative yet.

To represent a differential equation, we use Eq:

alpha = symbols('alpha')

eq1 = Eq(dfdt, alpha*f(t))

The result is an object that represents an equation, which is displayed like

this:
d

dt
f(t) = αf(t)

Now we can use dsolve to solve this differential equation:

solution_eq = dsolve(eq1)

The result is the equation

f(t) = C1 exp(αt)

This is the general solution, which still contains an unspecified constant,

C1. To get the particular solution where f(0) = p0, we substitute p0 for C1.

First, we have to create two more symbols:

C1, p_0 = symbols('C1 p_0')

Now we can perform the substitution:

particular = solution_eq.subs(C1, p_0)

The result is

f(t) = p0 exp(αt)

This function is called the exponential growth curve; see http://modsimpy.

com/expo.

http://modsimpy.com/expo
http://modsimpy.com/expo
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9.7 Solving the quadratic growth model

In the notebook for this chapter, you will see how to use the same tools to solve

the quadratic growth model with parameters r and K. The general solution

is

f(t) =
K exp(C1K + rt)

exp(C1K + rt)− 1

To get the particular solution where f(0) = p0, we evaluate the general solution

at t = 0, which yields:

f(0) =
K exp(C1K)

exp(C1K)− 1

Then we set this expression equal to p0 and solve for C1. The result is:

C1 =
1

K
ln

(
− p0
K − p0

)
Finally, we substitute this value of C1 into the general solution, which yields:

f(t) =
Kp0 exp(rt)

K + p0 exp(rt)− p0

This function is called the logistic growth curve; see http://modsimpy.

com/logistic. In the context of growth models, the logistic function is often

written, equivalently,

f(t) =
K

1 + A exp(−rt)
where A = (K − p0)/p0.

If you would like to see this differential equation solved by hand, you might

like this video: http://modsimpy.com/khan2

9.8 Summary

The following tables summarize the results so far:

Growth type Discrete (difference equation)

Constant linear: xn = p0 + αn

Proportional geometric: xn = p0(1 + α)n

http://modsimpy.com/logistic
http://modsimpy.com/logistic
http://modsimpy.com/khan2
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Continuous (differential equation)

Constant linear: x(t) = p0 + αt

Proportional exponential: x(t) = p0 exp(αt)

Quadratic logistic: x(t) = K/(1 + A exp(−rt))

What I’ve been calling the constant growth model is more commonly called

“linear growth” because the solution is a line. Similarly, what I’ve called

proportional is commonly called “exponential”, and what I’ve called quadratic

is commonly called “logistic”. I avoided these terms until now because they

are based on results we had not derived yet.

Before you go on, you might want to read the notebook for this chapter,

chap09sympy.ipynb. For instructions on downloading and running the code,

see Section 0.4.



Chapter 10

Case studies

This chapter reviews the computational patterns we have seen so far and

presents exercises where you can apply them.

10.1 Computational tools

In Chapter 1 we used Pint to define units and perform calculations with units:

meter = UNITS.meter

second = UNITS.second

a = 9.8 * meter / second**2

In Chapter 2 we defined a State object that contains variables that represent

the state of a system, usually changing over time:

bikeshare = State(olin=10, wellesley=2)

We used update operators like += and -= to change state variables. We used

print statements to display the values of variables.

We used the flip function to simulate random arrivals, and used if statements

to check the results.

We learned to define new functions that take parameters:
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def step(p1, p2):

if flip(p1):

bike_to_wellesley()

if flip(p2):

bike_to_olin()

We used a for loop with the range function to execute the body of the loop

a specified number of times.

for i in range(4):

step(p1, p2)

We learned to create a TimeSeries object and use it to store the value of a

state variable as it changes over time:

results = TimeSeries()

for i in range(10):

step(0.3, 0.2)

results[i] = bikeshare.olin

We used plot to plot the results, decorate to label the axes, and savefig to

save the figure.

plot(results, label='Olin')

decorate(xlabel='Time step (min)',

ylabel='Number of bikes')

savefig('chap01-fig01.pdf)

In Chapter 3 we used comparison operators to check for certain conditions and

the return statement to end the execution of a function.

def bike_to_olin(state):

if state.wellesley == 0:

state.wellesley_empty += 1

return

state.wellesley -= 1

state.olin += 1

In Chapter 4 we wrote a version of run_simulation that uses a return state-

ment to return a value:
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def run_simulation(p1, p2, num_steps):

state = State(olin=10, wellesley=2,

olin_empty=0, wellesley_empty=0)

for i in range(num_steps):

step(state, p1, p2)

return state

This version of run_simulation returns the final value of state, which con-

tains metrics we can use to measure the performance of the system.

We used linspace to create a NumPy array of equally spaced values, and a

for loop to loop through the array. We used a SweepSeries to store results

from a series of simulations, mapping from the value of a parameter to the

value of a resulting metric.

p1_array = linspace(0, 1, 11)

sweep = SweepSeries()

for p1 in p1_array:

state = run_simulation(p1, p2, num_steps)

sweep[p1] = state.olin_empty

In Chapter 5 we used Pandas to read data from a web page and store the

results in a DataFrame. We selected a column from the DataFrame to get a

Series.

In Chapter 6 we created a System object to contain the parameters of the

model, and defined another version of run_simulation:

def run_simulation(system, update_func):

results = TimeSeries()

results[system.t_0] = system.p_0

for t in linrange(system.t_0, system.t_end):

results[t+1] = update_func(results[t], t, system)

return results
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This version takes a System object as a parameter, and an update function.

Instead of returning the final state of the system, it returns a TimeSeries that

contains the state as it changes over time.

The update function takes the current state of the system, the time, and the

System object as parameters, and returns the new state. For example, here’s

the update function for the quadratic growth model.

def update_func_quad(pop, t, system):

net_growth = system.alpha * pop + system.beta * pop**2

return pop + net_growth

In this example, the state of the system is a single number, pop. Later we’ll

see examples where state is represented by a State object with more than one

variable.

Chapter 7 introduces the quadratic growth model and Chapter 8 uses the

model to generate predictions, but neither chapter introduces new computa-

tional tools.

Chapter 9 introduces SymPy, which we can use to create Symbol objects:

t, alpha = symbols('t alpha')

f = Function('f')

Write differential equations:

dfdt = diff(f(t), t)

eq1 = Eq(dfdt, alpha*f(t))

And solve them:

solution_eq = dsolve(eq1)

That’s a brief summary of the computational tools we have seen so far.

10.2 Under the hood

So far we’ve been using DataFrame and Series objects without really under-

standing how they work. In this section we’ll review what we know so far and

get into a little more detail.
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Figure 10.1: The elements that make up a DataFrame and a Series.

Each DataFrame contains three objects: index is a sequence of labels for the

rows, columns is a sequence of labels for the columns, and values is a NumPy

array that contains the data.

In the DataFrame objects in this chapter, index contains years from 1950 to

2016, columns contains names of agencies and people that produce population

estimates, and values is an array of estimates.

A Series is like a DataFrame with one column: it contains a string name that

is like a column label, an index, and an array of values.

Figure 10.1 shows the elements of a DataFrame and Series graphically.

To determine the types of these elements, we can use the Python function

type:

type(table2)

type(table2.index)

type(table2.columns)

type(table2.values)

The type of table2 is DataFrame. The type of table2.index is Int64Index,

which is similar to a Series.
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The type of table2.columns is Index, which might seem strange, because

“the” index is the sequence of row labels. But the sequence of column labels

is also a kind of index.

The type of table2.values is ndarray, which is the primary array type pro-

vided by NumPy; the name indicates that the array is “n-dimensional”; that

is, it can have an arbitrary number of dimensions.

In census or un, the index is an Int64Index object and the values are stored

in an ndarray.

In the modsim library, the functions get_first_label and get_last_label

provide a simple way to access the index of a DataFrame or Series:

def get_first_label(series):

return series.index[0]

def get_last_label(series):

return series.index[-1]

In brackets, the number 0 selects the first label; the number -1 selects the last

label.

Several of the objects defined in modsim are modified versions of Series

objects. State and System objects are Series where the labels are vari-

ables names. A TimeSeries is a Series where the labels are times, and a

SweepSeries is a Series where the labels are parameter values.

Defining these objects wasn’t necessary; we could do all the same things using

Series objects. But giving them different names makes the code easier to

read and understand, and helps avoid certain kinds of errors (like getting two

Series objects mixed up).

If you write simulations in Python in the future, you can continue using the

objects in modsim, if you find them useful, or you can use Pandas objects

directly.

10.3 One queue or two?

This chapter presents two cases studies that let you practice what you have

learned so far. The first case study is related to queueing theory, which is
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Figure 10.2: One queue, one server (left), one queue, two servers (middle), two
queues, two servers (right).

the study of systems that involve waiting in lines, also known as “queues”.

Suppose you are designing the checkout area for a new store. There is enough

room in the store for two checkout counters and a waiting area for customers.

You can make two lines, one for each counter, or one line that feeds both

counters.

In theory, you might expect a single line to be better, but it has some practical

drawbacks: in order to maintain a single line, you might have to install barriers,

and customers might be put off by what seems to be a longer line, even if it

moves faster.

So you’d like to check whether the single line is really better and by how much.

Simulation can help answer this question.

Figure 10.2 shows the three scenarios we’ll consider. As we did in the bike

share model, we’ll assume that a customer is equally likely to arrive during

any time step. I’ll denote this probability using the Greek letter lambda, λ,

or the variable name lam. The value of λ probably varies from day to day, so

we’ll have to consider a range of possibilities.

Based on data from other stores, you know that it takes 5 minutes for a

customer to check out, on average. But checkout times are variable: most

customers take less than 5 minutes, but some take substantially more. A

simple way to model this variability is to assume that when a customer is

checking out, always have the same probability of finishing during the next

time step, regardless of how long they have been checking out. I’ll denote this

probability using the Greek letter mu, µ, or the variable name mu.

If we choose µ = 1/5 per minute, the average time for each checkout will be

5 minutes, which is consistent with the data. Most people takes less than
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5 minutes, but a few take substantially longer, which is probably not a bad

model of the distribution in real stores.

Now we’re ready to get started. In the repository for this book, you’ll find a

notebook called queue.ipynb that contains some code to get you started and

instructions.

As always, you should practice incremental development: write no more than

one or two lines of code a time, and test as you go!

10.4 Predicting salmon populations

Each year the U.S. Atlantic Salmon Assessment Committee reports estimates

of salmon populations in oceans and rivers in the northeastern United States.

The reports are useful for monitoring changes in these populations, but they

generally do not include predictions.

The goal of this case study is to model year-to-year changes in population,

evaluate how predictable these changes are, and estimate the probability that

a particular population will increase or decrease in the next 10 years.

As an example, I use data from page 18 of the 2017 report, which provides

population estimates for the Narraguagus and Sheepscot Rivers in Maine.

In the repository for this book, you’ll find a notebook called salmon.ipynb

that contains some code to get you started and instructions.

You should take my instructions as suggestions; if you want to try something

different, please do!

10.5 Tree growth

This case study is based on “Height-Age Curves for Planted Stands of Dou-

glas Fir, with Adjustments for Density”, a working paper by Flewelling, Col-

lier, Gonyea, Marshall, and Turnblom, available from http://modsimpy.com/

trees.

http://modsimpy.com/trees
http://modsimpy.com/trees
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Figure 10.3: Site index curves for tree growth.

It provides “site index curves”, which are curves that show the expected height

of the tallest tree in a stand of Douglas firs as a function of age, for a stand

where the trees are the same age.

Depending on the quality of the site, the trees might grow more quickly or

slowing. So each curve is identified by a “site index” that indicates the quality

of the site.

Figure 10.3 shows site curves for three different site indices. The goal of this

case study is to explain the shape of these curves; that is, why trees grow the

way they do.

As a starting place, let’s assume that the ability of the tree to gain mass is

limited by the area it exposes to sunlight, and that the growth rate (in mass)

is proportional to that area. In that case we can write: mn+1 = mn + αA

where mn is the mass of the at time step n, A is the area exposed to sunlight,

and α is an unknown growth parameter.

To get from m to A, I’ll make the additional assumption that mass is propor-

tional to height raised to an unknown power: m = βhD where h is height, β is

an unknown constant of proportionality, and D is the dimension that relates

height and mass. I start by assuming D = 3, but then revisit that assumption.
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Finally, we’ll assume that area is proportional to height squared:

A = γh2

I specify height in feet, and choose units for mass and area so that β = 1 and

γ = 1. Putting all that together, we can write a difference equation for height:

hDn+1 = hDn + αh2n

The solution to this equation turns out to be close to a straight line, which

is not a bad model for the growth curves. But the model that trees can grow

forever, and we know that’s not true. As trees get taller, it gets harder for

them to move water and nutrients against the force of gravity, and their growth

slows.

We can model this effect by adding a factor to the model similar to what we

saw in the logistic model of population growth. Instead of assuming:

mn+1 = mn + αA

Let’s assume

mn+1 = mn + αA(1− h/K)

where K is similar to the carrying capacity of the logistic model. As h ap-

proaches K, the factor (1− h/K) goes to 0, causing growth to level off.

In the repository for this book, you’ll find a notebook called trees.ipynb that

implements both models and uses them to fit the data. There are no exercises

in this case study; it is mostly meant as an example of what you can do with

the tools we have so far, and a preview of what we will be able to do with the

tools in the next few chapters.
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Epidemiology

In this chapter, we develop a model of an epidemic as it spreads in a susceptible

population, and use it to evaluate the effectiveness of possible interventions.

My presentation of the SIR model in the next few chapters is based on an

excellent article by David Smith and Lang Moore1.

11.1 The Freshman Plague

Every year at Olin College, about 90 new students come to campus from

around the country and the world. Most of them arrive healthy and happy,

but usually at least one brings with them some kind of infectious disease. A

few weeks later, predictably, some fraction of the incoming class comes down

with what we call “The Freshman Plague”.

In this chapter we introduce a well-known model of infectious disease, the

Kermack-McKendrick model, and use it to explain the progression of the dis-

ease over the course of the semester, predict the effect of possible interventions

(like immunization) and design the most effective intervention campaign.

So far we have done our own modeling; that is, we’ve chosen physical sys-

tems, identified factors that seem important, and made decisions about how

1Smith and Moore, “The SIR Model for Spread of Disease,” Journal of Online Mathe-
matics and its Applications, December 2001, at http://modsimpy.com/sir.

http://modsimpy.com/sir
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to represent them. In this chapter we start with an existing model and reverse-

engineer it. Along the way, we consider the modeling decisions that went into

it and identify its capabilities and limitations.

11.2 The SIR model

The Kermack-McKendrick model is a simple version of an SIR model, so-

named because it considers three categories of people:

� S: People who are “susceptible”, that is, capable of contracting the dis-

ease if they come into contact with someone who is infected.

� I: People who are “infectious”, that is, capable of passing along the

disease if they come into contact with someone susceptible.

� R: People who are “recovered”.

In the basic version of the model, people who have recovered are considered to

be immune to reinfection. That is a reasonable model for some diseases, but

not for others, so it should be on the list of assumptions to reconsider later.

Let’s think about how the number of people in each category changes over time.

Suppose we know that people with the disease are infectious for a period of

4 days, on average. If 100 people are infectious at a particular point in time,

and we ignore the particular time each one became infected, we expect about

1 out of 4 to recover on any particular day.

Putting that a different way, if the time between recoveries is 4 days, the

recovery rate is about 0.25 recoveries per day, which we’ll denote with the

Greek letter gamma, γ. If the total number of people in the population is N ,

and the fraction currently infectious is i, the total number of recoveries we

expect per day is γiN .

Now let’s think about the number of new infections. Suppose we know that

each susceptible person comes into contact with 1 person every 3 days, on

average, in a way that would cause them to become infected if the other

person is infected. We’ll denote this contact rate with the Greek letter beta,

β.
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It’s probably not reasonable to assume that we know β ahead of time, but

later we’ll see how to estimate it based on data from previous outbreaks.

If s is the fraction of the population that’s susceptible, sN is the number of

susceptible people, βsN is the number of contacts per day, and βsiN is the

number of those contacts where the other person is infectious.

In summary:

� The number of recoveries we expect per day is γiN ; dividing by N yields

the fraction of the population that recovers in a day, which is γi.

� The number of new infections we expect per day is βsiN ; dividing by N

yields the fraction of the population that gets infected in a day, which is

βsi.

This model assumes that the population is closed; that is, no one arrives or

departs, so the size of the population, N , is constant.

11.3 The SIR equations

If we treat time as a continuous quantity, we can write differential equations

that describe the rates of change for s, i, and r (where r is the fraction of the

population that has recovered):

ds

dt
= −βsi

di

dt
= βsi− γi

dr

dt
= γi

To avoid cluttering the equations, I leave it implied that s is a function of

time, s(t), and likewise for i and r.

SIR models are examples of compartment models, so-called because they

divide the world into discrete categories, or compartments, and describe transi-

tions from one compartment to another. Compartments are also called stocks

and transitions between them are called flows.
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Susceptible Infectious Recovered

β γ

Figure 11.1: Stock and flow diagram for an SIR model.

In this example, there are three stocks — susceptible, infectious, and recov-

ered — and two flows — new infections and recoveries. Compartment mod-

els are often represented visually using stock-and-flow diagrams (see http:

//modsimpy.com/stock. Figure 11.1 shows the stock and flow diagram for an

SIR model.

Stocks are represented by rectangles, flows by arrows. The widget in the

middle of the arrows represents a valve that controls the rate of flow; the

diagram shows the parameters that control the valves.

11.4 Implementation

For a given physical system, there are many possible models, and for a given

model, there are many ways to represent it. For example, we can represent

an SIR model as a stock-and-flow diagram, as a set of differential equations,

or as a Python program. The process of representing a model in these forms

is called implementation. In this section, we implement the SIR model in

Python.

I’ll represent the initial state of the system using a State object with state

variables S, I, and R; they represent the fraction of the population in each

compartment.

We can initialize the State object with the number of people in each compart-

ment, assuming there is one infected student in a class of 90:

init = State(S=89, I=1, R=0)

And then convert the numbers to fractions by dividing by the total:

http://modsimpy.com/stock
http://modsimpy.com/stock
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init /= sum(init)

For now, let’s assume we know the time between contacts and time between

recoveries:

tc = 3 # time between contacts in days

tr = 4 # recovery time in days

We can use them to compute the parameters of the model:

beta = 1 / tc # contact rate in per day

gamma = 1 / tr # recovery rate in per day

Now we need a System object to store the parameters and initial conditions.

The following function takes the system parameters as function parameters

and returns a new System object:

def make_system(beta, gamma):

init = State(S=89, I=1, R=0)

init /= sum(init)

t0 = 0

t_end = 7 * 14

return System(init=init, t0=t0, t_end=t_end,

beta=beta, gamma=gamma)

The default value for t_end is 14 weeks, about the length of a semester.

11.5 The update function

At any point in time, the state of the system is represented by a State object

with three variables, S, I and R. So I’ll define an update function that takes

as parameters a State object, the current time, and a System object:
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def update_func(state, t, system):

s, i, r = state

infected = system.beta * i * s

recovered = system.gamma * i

s -= infected

i += infected - recovered

r += recovered

return State(S=s, I=i, R=r)

The first line uses a feature we have not seen before, multiple assignment.

The value on the right side is a State object that contains three values. The

left side is a sequence of three variable names. The assignment does just

what we want: it assigns the three values from the State object to the three

variables, in order.

The local variables, s, i and r, are lowercase to distinguish them from the

state variables, S, I and R.

The update function computes infected and recovered as a fraction of the

population, then updates s, i and r. The return value is a State that contains

the updated values.

When we call update_func like this:

state = update_func(init, 0, system)

The result is a State object with these values:

value

S 0.985388

I 0.011865

R 0.002747

You might notice that this version of update_func does not use one of its

parameters, t. I include it anyway because update functions sometimes depend
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on time, and it is convenient if they all take the same parameters, whether

they need them or not.

11.6 Running the simulation

Now we can simulate the model over a sequence of time steps:

def run_simulation(system, update_func):

state = system.init

for t in linrange(system.t0, system.t_end):

state = update_func(state, t, system)

return state

The parameters of run_simulation are the System object and the update

function. The System object contains the parameters, initial conditions, and

values of t0 and t_end.

The outline of this function should look familiar; it is similar to the function

we used for the population model in Section 6.1.

We can call run_simulation like this:

system = make_system(beta, gamma)

final_state = run_simulation(system, update_func)

The result is the final state of the system:

value

S 0.520819

I 0.000676

R 0.478505

This result indicates that after 14 weeks (98 days), about 52% of the population

is still susceptible, which means they were never infected, less than 1% are

actively infected, and 48% have recovered, which means they were infected at

some point.



92 Chapter 11 Epidemiology

11.7 Collecting the results

The previous version of run_simulation only returns the final state, but we

might want to see how the state changes over time. We’ll consider two ways to

do that: first, using three TimeSeries objects, then using a new object called

a TimeFrame.

Here’s the first version:

def run_simulation(system, update_func):

S = TimeSeries()

I = TimeSeries()

R = TimeSeries()

state = system.init

t0 = system.t0

S[t0], I[t0], R[t0] = state

for t in linrange(system.t0, system.t_end):

state = update_func(state, t, system)

S[t+1], I[t+1], R[t+1] = state

return S, I, R

First, we create TimeSeries objects to store the results. Notice that the

variables S, I, and R are TimeSeries objects now.

Next we initialize state, t0, and the first elements of S, I and R.

Inside the loop, we use update_func to compute the state of the system at

the next time step, then use multiple assignment to unpack the elements of

state, assigning each to the corresponding TimeSeries.

At the end of the function, we return the values S, I, and R. This is the first

example we have seen where a function returns more than one value.

Now we can run the function like this:

system = make_system(beta, gamma)

S, I, R = run_simulation(system, update_func)
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Figure 11.2: Time series for S, I, and R over the course of 98 days.

We’ll use the following function to plot the results:

def plot_results(S, I, R):

plot(S, '--', label='Susceptible')

plot(I, '-', label='Infected')

plot(R, ':', label='Resistant')

decorate(xlabel='Time (days)',

ylabel='Fraction of population')

And run it like this:

plot_results(S, I, R)

Figure 11.2 shows the result. Notice that it takes about three weeks (21 days)

for the outbreak to get going, and about six weeks (42 days) before it peaks.

The fraction of the population that’s infected is never very high, but it adds

up. In total, almost half the population gets sick.
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11.8 Now with a TimeFrame

If the number of state variables is small, storing them as separate TimeSeries

objects might not be so bad. But a better alternative is to use a TimeFrame,

which is another object defined in the modsim library.

A TimeFrame is almost identical to a DataFrame, which we used in Section 5.1,

with just a few changes I made to adapt it for our purposes.

Here’s a more concise version of run_simulation using a TimeFrame:

def run_simulation(system, update_func):

frame = TimeFrame(columns=system.init.index)

frame.row[system.t0] = system.init

for t in linrange(system.t0, system.t_end):

frame.row[t+1] = update_func(frame.row[t], system)

return frame

The first line creates an empty TimeFrame with one column for each state

variable. Then, before the loop starts, we store the initial conditions in the

TimeFrame at t0. Based on the way we’ve been using TimeSeries objects, it

is tempting to write:

frame[system.t0] = system.init

But when you use the bracket operator with a TimeFrame or DataFrame, it

selects a column, not a row. For example, to select a column, we could write:

frame['S']

To select a row, we have to use row, like this:

frame.row[system.t0] = system.init

Since the value on the right side is a State, the assignment matches up the

index of the State with the columns of the TimeFrame; that is, it assigns the
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S value from system.init to the S column of frame, and likewise with I and

R.

We can use the same feature to write the loop more concisely, assigning the

State we get from update_func directly to the next row of frame.

Finally, we return frame. We can call this version of run_simulation like

this:

results = run_simulation(system, update_func)

And plot the results like this:

plot_results(results.S, results.I, results.R)

As with a DataFrame, we can use the dot operator to select columns from a

TimeFrame.

Before you go on, you might want to read the notebook for this chapter,

chap11.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Chapter 12

Optimization

In the previous chapter I presented the SIR model of infectious disease and

used it to model the Freshman Plague at Olin. In this chapter we’ll consider

metrics intended to quantify the effect of the disease and interventions that

might reduce the negative effects.

12.1 Metrics

When we plot a time series, we get a view of everything that happened when

the model ran, but often we want to boil it down to a few numbers that

summarize the outcome. These summary statistics are called metrics, as we

saw in Section 3.6.

In the SIR model, we might want to know the time until the peak of the

outbreak, the number of people who are sick at the peak, the number of

students who will still be sick at the end of the semester, or the total number

of students who get sick at any point.

As an example, I will focus on the last one — the total number of sick students

— and we will consider interventions intended to minimize it.

When a person gets infected, they move from S to I, so we can get the total

number of infections by computing the difference in S at the beginning and

the end:
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def calc_total_infected(results, system):

return results.S[system.t0] - results.S[system.t_end]

In the notebook that accompanies this chapter, you will have a chance to write

functions that compute other metrics. Two functions you might find useful

are max and idxmax.

If you have a Series called S, you can compute the largest value of the series

like this:

largest_value = S.max()

And the label of the largest value like this:

time_of_largest_value = S.idxmax()

If the Series is a TimeSeries, the label you get from idxmax is a time or

date. You can read more about these functions in the Series documentation

at http://modsimpy.com/series.

12.2 Immunization

Models like this are useful for testing “what if?” scenarios. As an example,

we’ll consider the effect of immunization.

Suppose there is a vaccine that causes a student to become immune to the

Freshman Plague without being infected. How might you modify the model

to capture this effect?

One option is to treat immunization as a short cut from susceptible to recov-

ered without going through infectious. We can implement this feature like

this:

def add_immunization(system, fraction):

system.init.S -= fraction

system.init.R += fraction

http://modsimpy.com/series
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Figure 12.1: Time series for S, with and without immunization.

add_immunization moves the given fraction of the population from S to R.

If we assume that 10% of students are vaccinated at the beginning of the

semester, and the vaccine is 100% effective, we can simulate the effect like

this:

system2 = make_system(beta, gamma)

add_immunization(system2, 0.1)

results2 = run_simulation(system2, update_func)

For comparison, we can run the same model without immunization and plot

the results. Figure 12.1 shows S as a function of time, with and without

immunization.

Without immunization, almost 47% of the population gets infected at some

point. With 10% immunization, only 31% gets infected. That’s pretty good.

Now let’s see what happens if we administer more vaccines. This following

function sweeps a range of immunization rates:
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def sweep_immunity(immunize_array):

sweep = SweepSeries()

for fraction in immunize_array:

sir = make_system(beta, gamma)

add_immunization(sir, fraction)

results = run_simulation(sir, update_func)

sweep[fraction] = calc_total_infected(results, sir)

return sweep

The parameter of sweep_immunity is an array of immunization rates. The

result is a SweepSeries object that maps from each immunization rate to the

resulting fraction of students ever infected.

Figure 12.2 shows a plot of the SweepSeries. Notice that the x-axis is the

immunization rate, not time.

As the immunization rate increases, the number of infections drops steeply. If

40% of the students are immunized, fewer than 4% get sick. That’s because

immunization has two effects: it protects the people who get immunized (of

course) but it also protects the rest of the population.

Reducing the number of “susceptibles” and increasing the number of “resis-

tants” makes it harder for the disease to spread, because some fraction of

contacts are wasted on people who cannot be infected. This phenomenon is

called herd immunity, and it is an important element of public health (see

http://modsimpy.com/herd).

The steepness of the curve in Figure 12.2 is a blessing and a curse. It’s a

blessing because it means we don’t have to immunize everyone, and vaccines

can protect the “herd” even if they are not 100% effective.

But it’s a curse because a small decrease in immunization can cause a big

increase in infections. In this example, if we drop from 80% immunization to

60%, that might not be too bad. But if we drop from 40% to 20%, that would

trigger a major outbreak, affecting more than 15% of the population. For a

serious disease like measles, just to name one, that would be a public health

catastrophe.

http://modsimpy.com/herd
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Figure 12.2: Fraction of the population infected as a function of immunization
rate.

One use of models like this is to demonstrate phenomena like herd immunity

and to predict the effect of interventions like vaccination. Another use is to

evaluate alternatives and guide decision making. We’ll see an example in the

next section.

12.3 Hand washing

Suppose you are the Dean of Student Life, and you have a budget of just

$1200 to combat the Freshman Plague. You have two options for spending

this money:

1. You can pay for vaccinations, at a rate of $100 per dose.

2. You can spend money on a campaign to remind students to wash hands

frequently.

We have already seen how we can model the effect of vaccination. Now let’s

think about the hand-washing campaign. We’ll have to answer two questions:
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1. How should we incorporate the effect of hand washing in the model?

2. How should we quantify the effect of the money we spend on a hand-

washing campaign?

For the sake of simplicity, let’s assume that we have data from a similar cam-

paign at another school showing that a well-funded campaign can change stu-

dent behavior enough to reduce the infection rate by 20%.

In terms of the model, hand washing has the effect of reducing beta. That’s

not the only way we could incorporate the effect, but it seems reasonable and

it’s easy to implement.

Now we have to model the relationship between the money we spend and the

effectiveness of the campaign. Again, let’s suppose we have data from another

school that suggests:

� If we spend $500 on posters, materials, and staff time, we can change

student behavior in a way that decreases the effective value of beta by

10%.

� If we spend $1000, the total decrease in beta is almost 20%.

� Above $1000, additional spending has little additional benefit.

In the notebook for this chapter you will see how I used a logistic curve to

fit this data. The result is the following function, which takes spending as a

parameter and returns factor, which is the factor by which beta is reduced:

def compute_factor(spending):

return logistic(spending, M=500, K=0.2, B=0.01)

I use compute_factor to write add_hand_washing, which takes a System

object and a budget, and modifies system.beta to model the effect of hand

washing:

def add_hand_washing(system, spending):

factor = compute_factor(spending)

system.beta *= (1 - factor)
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Figure 12.3: Fraction of the population infected as a function of hand-washing
campaign spending.

Now we can sweep a range of values for spending and use the simulation to

compute the effect:

def sweep_hand_washing(spending_array):

sweep = SweepSeries()

for spending in spending_array:

sir = make_system(beta, gamma)

add_hand_washing(sir, spending)

results, run_simulation(sir, update_func)

sweep[spending] = calc_total_infected(results, sir)

return sweep

Here’s how we run it:

spending_array = linspace(0, 1200, 20)

infected_sweep = sweep_hand_washing(spending_array)
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Figure 12.4: Fraction of the population infected as a function of the number
of doses.

Figure 12.3 shows the result. Below $200, the campaign has little effect. At

$800 it has a substantial effect, reducing total infections from 46% to 20%.

Above $800, the additional benefit is small.

12.4 Optimization

Let’s put it all together. With a fixed budget of $1200, we have to decide how

many doses of vaccine to buy and how much to spend on the hand-washing

campaign.

Here are the parameters:

num_students = 90

budget = 1200

price_per_dose = 100

max_doses = int(budget / price_per_dose)

The fraction budget/price_per_dose might not be an integer. int is a built-

in function that converts numbers to integers, rounding down.



12.4 Optimization 105

We’ll sweep the range of possible doses:

dose_array = linrange(max_doses, endpoint=True)

In this example we call linrange with only one argument; it returns a NumPy

array with the integers from 0 to max_doses. With the argument endpoint=True,

the result includes both endpoints.

Then we run the simulation for each element of dose_array:

def sweep_doses(dose_array):

sweep = SweepSeries()

for doses in dose_array:

fraction = doses / num_students

spending = budget - doses * price_per_dose

sir = make_system(beta, gamma)

add_immunization(sir, fraction)

add_hand_washing(sir, spending)

run_simulation(sir, update_func)

sweep[doses] = calc_total_infected(sir)

return sweep

For each number of doses, we compute the fraction of students we can im-

munize, fraction and the remaining budget we can spend on the campaign,

spending. Then we run the simulation with those quantities and store the

number of infections.

Figure 12.4 shows the result. If we buy no doses of vaccine and spend the

entire budget on the campaign, the fraction infected is around 19%. At 4

doses, we have $800 left for the campaign, and this is the optimal point that

minimizes the number of students who get sick.

As we increase the number of doses, we have to cut campaign spending, which

turns out to make things worse. But interestingly, when we get above 10 doses,
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the effect of herd immunity starts to kick in, and the number of sick students

goes down again.

Before you go on, you might want to read the notebook for this chapter,

chap12.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.



Chapter 13

Sweeping two parameters

In the previous chapters I presented an SIR model of infectious disease, specif-

ically the Kermack-McKendrick model. We extended the model to include

vaccination and the effect of a hand-washing campaign, and used the extended

model to allocate a limited budget optimally, that is, to minimize the number

of infections.

But we assumed that the parameters of the model, contact rate and recovery

rate, were known. In this chapter, we explore the behavior of the model as we

vary these parameters, use analysis to understand these relationships better,

and propose a method for using data to estimate parameters.

13.1 Unpack

Before we analyze the SIR model, I want to make a few improvements to the

code. In the previous chapter, we used this version of run_simulation:
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def run_simulation(system, update_func):

frame = DataFrame(columns=system.init.index)

frame.row[system.t0] = system.init

for t in linrange(system.t0, system.t_end):

frame.row[t+1] = update_func(frame.row[t], t, system)

system.results = frame

Because we read so many variables from system, this code is a bit cluttered.

We can clean it up using unpack, which is defined in the modsim library.

unpack takes a System object as a parameter and makes the system variables

available without using the dot operator. So we can rewrite run_simulation

like this:

def run_simulation(system, update_func):

unpack(system)

frame = TimeFrame(columns=init.index)

frame.row[t0] = init

for t in linrange(t0, t_end):

frame.row[t+1] = update_func(frame.row[t], t, system)

system.results = frame

The variables you unpack should be treated as read-only. Modifying them is

not an error, but it might not have the behavior you expect. In the notebook

for this chapter, you can use unpack to clean up update1.

13.2 Sweeping beta

Recall that β is the contact rate, which captures both the frequency of inter-

action between people and the fraction of those interactions that result in a

new infection. If N is the size of the population and s is the fraction that’s

susceptible, sN is the number of susceptibles, βsN is the number of contacts
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per day between susceptibles and other people, and βsiN is the number of

those contacts where the other person is infectious.

As β increases, we expect the total number of infections to increase. To quan-

tify that relationship, I’ll create a range of values for β:

beta_array = linspace(0.1, 1.1, 11)

Then run the simulation for each value and print the results.

for beta in beta_array:

sir = make_system(beta, gamma)

run_simulation(sir, update1)

print(sir.beta, calc_total_infected(sir))

We can wrap that code in a function and store the results in a SweepSeries

object:

def sweep_beta(beta_array, gamma):

sweep = SweepSeries()

for beta in beta_array:

system = make_system(beta, gamma)

run_simulation(system, update1)

sweep[system.beta] = calc_total_infected(system)

return sweep

Now we can run sweep_beta like this:

infected_sweep = sweep_beta(beta_array, gamma)

And plot the results:

label = 'gamma = ' + str(gamma)

plot(infected_sweep, label=label)

The first line uses string operations to assemble a label for the plotted line:

� When the + operator is applied to strings, it joins them end-to-end, which

is called concatenation.
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Figure 13.1: Total number of infected students as a function of the parameter
beta, with gamma = 0.25.

� The function str converts any type of object to a String representation.

In this case, gamma is a number, so we have to convert it to a string

before trying to concatenate it.

If the value of gamma is 0.25, the value of label is the string 'gamma = 0.25'.

Figure 13.1 shows the results. Remember that this figure is a parameter sweep,

not a time series, so the x-axis is the parameter beta, not time.

When beta is small, the contact rate is low and the outbreak never really takes

off; the total number of infected students is near zero. As beta increases, it

reaches a threshold near 0.3 where the fraction of infected students increases

quickly. When beta exceeds 0.5, more than 80% of the population gets sick.

13.3 Sweeping gamma

Now let’s see what that looks like for a few different values of gamma. Again,

we’ll use linspace to make an array of values:
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Figure 13.2: Total number of infected students as a function of the parameter
beta, for several values of gamma.

gamma_array = linspace(0.1, 0.7, 4)

And run sweep_beta for each value of gamma:

for gamma in gamma_array:

infected_sweep = sweep_beta(beta_array, gamma)

label = 'gamma = ' + str(gamma)

plot(infected_sweep, label=label)

Figure 13.2 shows the results. When gamma is low, the recovery rate is low,

which means people are infectious longer. In that case, even a low contact rate

(beta) results in an epidemic.

When gamma is high, beta has to be even higher to get things going. That

observation suggests that there might be a relationship between gamma and

beta that determines the outcome of the model. In fact, there is. In the

next two chapters I demonstrate it by running simulations, then derive it by

analysis.

Before you go on, you might want to read the notebook for this chapter,
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chap13.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.



Chapter 14

Analysis

In the previous chapters we used simulation to predict the effect of an infectious

disease in a susceptible population and to design interventions that would

minimize the effect.

In this chapter we use analysis to investigate the relationship between the

parameters, beta and gamma, and the outcome of the simulation.

14.1 Nondimensionalization

Before we go on, let’s wrap the code from the previous chapter in a function:

def sweep_parameters(beta_array, gamma_array):

frame = SweepFrame(columns=gamma_array)

for gamma in gamma_array:

frame[gamma] = sweep_beta(beta_array, gamma)

return frame

sweep_parameters takes as parameters two arrays: a range of values for beta

and a range of values for gamma.

It creates a SweepFrame to store the results, with one column for each value

of gamma and one row for each value of beta. A SweepFrame is a kind of
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DataFrame, defined in the modsim library. Its purpose is to store results from

a two-dimensional parameter sweep.

Each time through the loop, we run sweep_beta. The result is a SweepSeries

object with one element for each value of gamma. The assignment

frame[gamma] = sweep_beta(beta_array, gamma)

stores the values from the SweepSeries object as a new column in the SweepFrame,

corresponding to the current value of gamma.

At the end, the SweepFrame stores the fraction of students infected for each

pair of parameters, beta and gamma.

We can run sweep_parameters like this:

frame = sweep_parameters(beta_array, gamma_array)

Then we can loop through the results like this:

for gamma in frame.columns:

series = frame[gamma]

for beta in series.index:

frac_infected = series[beta]

print(beta, gamma, frac_infected)

This is the first example we’ve seen with one for loop inside another:

� Each time the outer loop runs, it selects a value of gamma from the

columns of the DataFrame and extracts the corresponding column as a

Series.

� Each time the inner loop runs, it selects a value of beta from the Series

and selects the corresponding element, which is the fraction of student

infected.

In this example, frame has 4 columns, one for each value of gamma, and 11

rows, one for each value of beta. So these loops print 44 lines, one for each

pair of parameters.

Now let’s think about possible relationships between beta and gamma:
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� When beta exceeds gamma, that means there are more contacts (that is,

potential infections) than recoveries. The difference between beta and

gamma might be called the “excess contact rate”, in units of contacts per

day.

� As an alternative, we might consider the ratio beta/gamma, which is the

number of contacts per recovery. Because the numerator and denomina-

tor are in the same units, this ratio is dimensionless, which means it

has no units.

Describing physical systems using dimensionless parameters is often a useful

move in the modeling and simulation game. It is so useful, in fact, that it has

a name: nondimensionalization (see http://modsimpy.com/nondim).

So we’ll try the second option first. In the notebook for this chapter, you can

explore the first option as an exercise.

The following function wraps the previous loops and plots the fraction infected

as a function of the ratio beta/gamma:

def plot_sweep_frame(frame):

for gamma in frame.columns:

series = frame[gamma]

for beta in series.index:

frac_infected = series[beta]

plot(beta/gamma, frac_infected, 'ro')

Figure 14.1 shows that the results fall neatly on a single curve, at least ap-

proximately. That means that we can predict the fraction of students who will

be infected based on a single parameter, the ratio beta/gamma. We don’t need

to know the values of beta and gamma separately.

14.2 Contact number

Recall that the number of new infections in a given day is βsiN , and the num-

ber of recoveries is γiN . If we divide these quantities, the result is βs/γ, which

is the number of new infections per recovery (as a fraction of the population).

http://modsimpy.com/nondim
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Figure 14.1: Total fraction infected as a function of contact number.

When a new disease is introduced to a susceptible population, s is approxi-

mately 1, so the number of people infected by each sick person is β/γ. This

ratio is called the “contact number” or “basic reproduction number” (see

http://modsimpy.com/contact). By convention it is usually denoted R0,

but in the context of an SIR model, this notation is confusing, so we’ll use c

instead.

The results in the previous section suggest that there is a relationship be-

tween c and the total number of infections. We can derive this relationship by

analyzing the differential equations from Section 11.3:

ds

dt
= −βsi

di

dt
= βsi− γi

dr

dt
= γi

In the same way we divided the contact rate by the infection rate to get the

dimensionless quantity c, now we’ll divide di/dt by ds/dt to get a ratio of

rates:
di

ds
= −1 +

1

cs

http://modsimpy.com/contact
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Dividing one differential equation by another is not an obvious move, but in

this case it is useful because it gives us a relationship between i, s and c that

does not depend on time. From that relationship, we can derive an equation

that relates c to the final value of S. In theory, this equation makes it possible

to infer c by observing the course of an epidemic.

Here’s how the derivation goes. We multiply both sides of the previous equa-

tion by ds:

di =

(
−1 +

1

cs

)
ds

And then integrate both sides:

i = −s+
1

c
log s+ q

where q is a constant of integration. Rearranging terms yields:

q = i+ s− 1

c
log s

Now let’s see if we can figure out what q is. At the beginning of an epidemic,

if the fraction infected is small and nearly everyone is susceptible, we can use

the approximations i(0) = 0 and s(0) = 1 to compute q:

q = 0 + 1 +
1

c
log 1

Since log 1 = 0, we get q = 1.

Now, at the end of the epidemic, let’s assume that i(∞) = 0, and s(∞) is an

unknown quantity, s∞. Now we have:

q = 1 = 0 + s∞ −
1

c
log s∞

Solving for c, we get

c =
log s∞
s∞ − 1

By relating c and s∞, this equation makes it possible to estimate c based on

data, and possibly predict the behavior of future epidemics.
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14.3 Analysis and simulation

Let’s compare this analytic result to the results from simulation. I’ll create an

array of values for s∞

s_inf_array = linspace(0.0001, 0.9999, 31)

And compute the corresponding values of c:

c_array = log(s_inf_array) / (s_inf_array - 1)

To get the total infected, we compute the difference between s(0) and s(∞),

then store the results in a Series:

frac_infected = 1 - s_inf_array

frac_infected_series = Series(frac_infected, index=c_array)

Recall from Section 10.2 that a Series object contains an index and a corre-

sponding sequence of values. In this case, the index is c_array and the values

are from frac_infected.

Now we can plot the results:

plot(frac_infected_series)

Figure 14.2 compares the analytic results from this section with the simulation

results from Section 14.1. Over most of the range they are consistent with each

other, with one discrepancy: when the contact number is less than 1, analysis

indicates there should be no infections; but in the simulations a small part of

the population is affected even when c < 1.

The reason for the discrepancy is that the simulation divides time into a dis-

crete series of days, whereas the analysis treats time as a continuous quantity.

In other words, the two methods are actually based on different models. So

which model is better?

Probably neither. When the contact number is small, the early progress of

the epidemic depends on details of the scenario. If we are lucky, the original

infected person, “patient zero”, infects no one and there is no epidemic. If we
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Figure 14.2: Total fraction infected as a function of contact number, showing
results from simulation and analysis.

are unlucky, patient zero might have a large number of close friends, or might

work in the dining hall (and fail to observe safe food handling procedures).

For contact numbers near or less than 1, we might need a more detailed model.

But for higher contact numbers the SIR model might be good enough.

Figure 14.2 shows that if we know the contact number, we can compute the

fraction infected. But we can also read the figure the other way; that is, at

the end of an epidemic, if we can estimate the fraction of the population that

was ever infected, we can use it to estimate the contact number.

Well, at least in theory. In practice, it might not work very well, because of

the shape of the curve. When the contact number is near 2, the curve is quite

steep, which means that small changes in c yield big changes in the number

of infections. If we observe that the total fraction infected is anywhere from

20% to 80%, we would conclude that c is near 2.

On the other hand, for larger contact numbers, nearly the entire population

is infected, so the curve is quite flat. In that case we would not be able to

estimate c precisely, because any value greater than 3 would yield effectively
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the same results. Fortunately, this is unlikely to happen in the real world; very

few epidemics affect anything like 90% of the population.

So the SIR model has limitations; nevertheless, it provides insight into the

behavior of infectious disease, especially the phenomenon of herd resistance.

As we saw in the previous chapter, if we know the parameters of the model, we

can use it to evaluate possible interventions. And as we saw in this chapter, we

might be able to use data from earlier outbreaks to estimate the parameters.

Before you go on, you might want to read the notebook for this chapter,

chap14.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Heat

So far the systems we have studied have been physical in the sense that they

exist in the world, but they have not been physics, in the sense of what physics

classes are usually about. In the next few chapters, we’ll do some physics,

starting with thermal systems, that is, systems where the temperature of

objects changes as heat transfers from one to another.

15.1 The coffee cooling problem

The coffee cooling problem was discussed by Jearl Walker in Scientific Amer-

ican in 19771; since then it has become a standard example of modeling and

simulation.

Here is my version of the problem:

Suppose I stop on the way to work to pick up a cup of coffee, which

I take with milk. Assuming that I want the coffee to be as hot as

possible when I arrive at work, should I add the milk at the coffee

shop, wait until I get to work, or add the milk at some point in

between?

1Walker, “The Amateur Scientist”, Scientific American, Volume 237, Issue 5, November
1977.
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To help answer this question, I made a trial run with the milk and coffee in

separate containers and took some measurements2:

� When served, the temperature of the coffee is 90 ◦C. The volume is

300 mL.

� The milk is at an initial temperature of 5 ◦C, and I take about 50 mL.

� The ambient temperature in my car is 22 ◦C.

� The coffee is served in a well insulated cup. When I arrive at work after

30 minutes, the temperature of the coffee has fallen to 70 ◦C.

� The milk container is not as well insulated. After 15 minutes, it warms

up to 20 ◦C, nearly the ambient temperature.

To use this data and answer the question, we have to know something about

temperature and heat, and we have to make some modeling decisions.

15.2 Temperature and heat

To understand how coffee cools (and milk warms), we need a model of temper-

ature and heat. Temperature is a property of an object or a system; in SI

units it is measured in degrees Celsius (◦C). Temperature quantifies how hot

or cold the object is, which is related to the average velocity of the particles

that make up the object.

When particles in a hot object contact particles in a cold object, the hot object

gets cooler and the cold object gets warmer as energy is transferred from one

to the other. The transferred energy is called heat; in SI units it is measured

in joules (J).

Heat is related to temperature by the following equation (see http://modsimpy.

com/thermass):

Q = C∆T

where Q is the amount of heat transferred to an object, ∆T is resulting change

in temperature, and C is the thermal mass of the object, which quantifies

2This is fiction. I usually drink tea and bike to work.

http://modsimpy.com/thermass
http://modsimpy.com/thermass
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how much energy it takes to heat or cool it. In SI units, thermal mass is

measured in joules per degree Celsius (J/◦C).

For objects made primarily from one material, thermal mass can be computed

like this:

C = mcp

where m is the mass of the object and cp is the specific heat capacity of the

material (see http://modsimpy.com/specheat).

We can use these equations to estimate the thermal mass of a cup of coffee.

The specific heat capacity of coffee is probably close to that of water, which

is 4.2 J/(g ◦C). Assuming that the density of coffee is close to that of water,

which is 1 g/mL, the mass of 300 mL of coffee is 300 g, and the thermal mass

is 1260 J/◦C.

So when a cup of coffee cools from 90 ◦C to 70 ◦C, the change in temperature,

∆T is 20 ◦C, which means that 25 200 J of heat energy was transferred from

the coffee to the surrounding environment (the cup holder and air in my car).

To give you a sense of how much energy that is, if you were able to harness

all of that heat to do work (which you cannot3), you could use it to lift a cup

of coffee from sea level to 8571 m, just shy of the height of Mount Everest,

8848 m.

Assuming that the cup has less mass than the coffee, and is made from a

material with lower specific heat, we can ignore the thermal mass of the cup.

For a cup with substantial thermal mass, we might consider a model that

computes the temperature of coffee and cup separately.

15.3 Heat transfer

In a situation like the coffee cooling problem, there are three ways heat trans-

fers from one object to another (see http://modsimpy.com/transfer):

� Conduction: When objects at different temperatures come into contact,

the faster-moving particles of the higher-temperature object transfer ki-

netic energy to the slower-moving particles of the lower-temperature ob-

ject.

3See http://modsimpy.com/thermo.

http://modsimpy.com/specheat
http://modsimpy.com/transfer
http://modsimpy.com/thermo
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� Convection: When particles in a gas or liquid flow from place to place,

they carry heat energy with them. Fluid flows can be caused by external

action, like stirring, or by internal differences in temperature. For exam-

ple, you might have heard that hot air rises, which is a form of “natural

convection”.

� Radiation: As the particles in an object move due to thermal energy,

they emit electromagnetic radiation. The energy carried by this radiation

depends on the object’s temperature and surface properties (see http:

//modsimpy.com/thermrad).

For objects like coffee in a car, the effect of radiation is much smaller than the

effects of conduction and convection, so we will ignore it.

Convection can be a complex topic, since it often depends on details of fluid

flow in three dimensions. But for this problem we will be able to get away

with a simple model called “Newton’s law of cooling”.

15.4 Newton’s law of cooling

Newton’s law of cooling asserts that the temperature rate of change for an

object is proportional to the difference in temperature between the object and

the surrounding environment:

dT

dt
= −r(T − Tenv)

where T , the temperature of the object, is a function of time, t; Tenv is the

temperature of the environment, and r is a constant that characterizes how

quickly heat is transferred between the system and the environment.

Newton’s so-called “law” is really a model in the sense that it is approximately

true in some conditions, only roughly true in others, and not at all true in

others.

For example, if the primary mechanism of heat transfer is conduction, New-

ton’s law is “true”, which is to say that r is constant over a wide range of

temperatures. And sometimes we can estimate r based on the material prop-

erties and shape of the object.

http://modsimpy.com/thermrad
http://modsimpy.com/thermrad
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When convection contributes a non-negligible fraction of heat transfer, r de-

pends on temperature, but Newton’s law is often accurate enough, at least

over a narrow range of temperatures. In this case r usually has to be esti-

mated experimentally, since it depends on details of surface shape, air flow,

evaporation, etc.

When radiation makes up a substantial part of heat transfer, Newton’s law is

not a good model at all. This is the case for objects in space or in a vacuum,

and for objects at high temperatures (more than a few hundred degrees Celsius,

say).

However, for a situation like the coffee cooling problem, we expect Newton’s

model to be quite good.

15.5 Implementation

To get started, let’s forget about the milk temporarily and focus on the coffee.

I’ll create a State object to represent the initial temperature:

init = State(T=90)

And a System object to contain the parameters of the system:

coffee = System(init=init,

volume=300,

r=0.01,

T_env=22,

t_0=0,

t_end=30,

dt=1)

The values of volume, T_env, and t_end come from the statement of the

problem. I chose the value of r arbitrarily for now; we will figure out how to

estimate it soon.

dt is the time step we use to simulate the cooling process. Strictly speaking,

Newton’s law is a differential equation, but over a short period of time we can
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approximate it with a difference equation:

∆T = −r(T − Tenv)dt

where dt is a small time step and ∆T is the change in temperature during that

time step.

Note: I use ∆T to denote a change in temperature over time, but in the

context of heat transfer, you might also see ∆T used to denote the difference

in temperature between an object and its environment, T −Tenv. To minimize

confusion, I avoid this second use.

Now we can write an update function:

def update_func(state, t, system):

unpack(system)

T = state.T

T += -r * (T - T_env) * dt

return State(T=T)

Like previous update functions, this one takes a State object, a time, and a

System object.

Now if we run

update_func(init, 0, coffee)

we see that the temperature after one minute is 89.3 ◦C, so the temperature

drops by about 0.7 ◦C/min, at least for this value of r.

Here’s a version of run_simulation that simulates a series of time steps from

t_0 to t_end:
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def run_simulation(system, update_func):

unpack(system)

frame = TimeFrame(columns=init.index)

frame.row[t_0] = init

ts = linrange(t_0, t_end, dt)

for t in ts:

frame.row[t+dt] = update_func(frame.row[t], t, system)

# store the final temperature in T_final

system.T_final = get_last_value(frame.T)

return frame

This function is similar to previous versions of run_simulation.

One difference is that it uses linrange to make an array of values from t_0 to

t_end with time step dt. The result does not include t_end, so the last value

in the array is t_end-dt.

Also, it stores the final temperature as a system variable, T_final.

We can run it like this:

results = run_simulation(coffee, update_func)

The result is a TimeFrame object with one row per time step and just one

column, T. The temperature after 30 minutes is 72.3 ◦C, which is a little

higher than stated in the problem, 70 ◦C. We can adjust r and find the right

value by trial and error, but we’ll see a better way in the next chapter.

First I want to wrap what we have so far in a function:
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def make_system(T_init=90, r=0.01, volume=300, t_end=30):

init = State(T=T_init)

return System(init=init,

T_final=T_init,

volume=volume,

r=r,

T_env=22,

t_0=0,

t_end=t_end,

dt=1)

make_system takes the system parameters and packs them into a System ob-

ject. Now we can simulate the system like this:

coffee = make_system(T_init=90, r=0.01,

volume=300, t_end=30)

results = run_simulation(coffee, update_func)

Before you go on, you might want to read the notebook for this chapter,

chap15.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Mixing

In the previous chapter we wrote a simulation of a cooling cup of coffee. Given

the initial temperature of the coffee, the temperature of the atmosphere, and

the rate parameter, r, we can predict how the temperature of the coffee will

change over time.

In general, we don’t know the value of r, but we can use measurements to

estimate it. Given an initial temperature, a final temperature, and the time

in between, we can find r by trial and error.

In this chapter, we’ll see a better way to find r, using a SciPy function called

fsolve.

And the we’ll get back to solving the coffee cooling problem.

16.1 Using fsolve

SciPy provides a method called fsolve that finds the roots of non-linear equa-

tions. As a simple example, suppose you want to find the roots of the polyno-

mial

f(x) = (x− 1)(x− 2)(x− 3)

where root means a value of x that makes f(x) = 0. Because of the way I

wrote the polynomial, we can see that if x = 1, the first factor is 0; if x = 2,

the second factor is 0; and if x = 3, the third factor is 0, so those are the roots.
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But usually it’s not that easy. In that case fsolve can help. First, we have

to write a function that evaluates f :

def func(x):

return (x-1) * (x-2) * (x-3)

Now we call fsolve like this:

fsolve(func, x0=0)

The first argument is the function whose roots we want. The second argument,

x0, is an initial guess about where a root might be. Generally, the closer the

initial guess is to an actual root, the faster fsolve runs. In this case, with the

initial guess x0=0, the result is 1.

Often fsolve finds the root that’s closest to the initial guess. In this example,

when x0=1.9, fsolve returns 2, and when x0=2.9, fsolve returns 3. But

this behavior can be unpredictable; with x0=1.5, fsolve returns 3.

So how can we use fsolve to estimate r?

What we want is the value of r that yields a final temperature of 70 ◦C. To

work with fsolve, we need a function that takes r as a parameter and returns

the difference between the final temperature and the goal:

def error_func1(r):

system = make_system(r=r)

results = run_simulation(system, update)

return system.T_final - 70

I call a function like this an “error function” because it returns the difference

between what we got and what we wanted, that is, the error. When we find

the right value of r, this error will be 0.

We can test error_func1 like this, using our initial guess for r:

error_func1(r=0.01)

The result is an error of 2.3 ◦C, because the final temperature with this value

of r is too high.
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Figure 16.1: Temperature of the coffee and milk over time.

Now we can call fsolve like this:

solution = fsolve(error_func1, 0.01)

r_coffee = solution[0]

The return value from fsolve is an array with a single element, which is the

root fsolve found. In this example, r_coffee turns out to be about 0.012,

in units of 1/min.

As one of the exercises for this chapter, you will use the same process to

estimate r_milk.

With the correct values of r_coffee and r_milk, the simulation results should

look like Figure 16.1, which shows the temperature of the coffee and milk over

time.

16.2 Mixing liquids

When we mix two liquids, the temperature of the mixture depends on the

temperatures of the ingredients, but it might not be obvious how to compute

it.
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Assuming there are no chemical reactions that either produce or consume heat,

the total thermal energy of the system is the same before and after mixing; in

other words, thermal energy is conserved.

If the temperature of the first liquid is T1, the temperature of the second

liquid is T2, and the final temperature of the mixture is T , the heat transfer

into the first liquid is C1(T − T1) and the heat transfer into the second liquid

is C2(T − T2), where C1 and C2 are the thermal masses of the liquids.

In order to conserve energy, these heat transfers must add up to 0:

C1(T − T1) + C2(T − T2) = 0

We can solve this equation for T:

T =
C1T1 + C2T2
C1 + C2

For the coffee cooling problem, we have the volume of each liquid; if we also

know the density, ρ, and the specific heat capacity, cp, we can compute thermal

mass:

C = ρV cp

If we assume that the density and specific heat of the milk and coffee are equal,

they drop out of the equation, and we can write:

T =
V1T1 + V2T2
V1 + V2

where V1 and V2 are the volumes of the liquids. As an exercise, you can look

up the density and specific heat of milk to see how good this approximation

is.

The following function takes two System objects that represent the coffee and

milk, and creates a new System to represent the mixture:
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def mix(s1, s2):

assert s1.t_end == s2.t_end

V_mix = s1.volume + s2.volume

T_mix = (s1.volume * s1.T_final +

s2.volume * s2.T_final) / V_mix

mixture = make_system(T_init=T_mix,

t_end=0,

r=s1.r,

volume=V_mix)

return mixture

The first line is an assert statement, which is a way of checking for errors. It

compares t_end for the two systems to confirm that they have been cooling

for the same time. If not, assert displays an error message and stops the

program.

The next two statements compute the total volume of the mixture and its

temperature. Finally, mix makes a new System object and returns it.

This function uses the value of r from s1 as the value of r for the mixture. If s1

represents the coffee, and we are adding the milk to the coffee, this is probably

a reasonable choice. On the other hand, when we increase the amount of liquid

in the coffee cup, that might change r. So this is an assumption we might want

to revisit.

16.3 Mix first or last?

Now we have everything we need to solve the problem. First I’ll create objects

to represent the coffee and cream, and run for 30 minutes.
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coffee = make_system(T_init=90, t_end=30,

r=r_coffee, volume=300)

coffee_results = run_simulation(coffee, update_func)

milk = make_system(T_init=5, t_end=30,

r=r_milk, volume=50)

milk_results = run_simulation(milk, update_func)

The final temperatures, before mixing, are 70 ◦C and 21.8 ◦C. Then I’ll mix

them:

mix_last = mix(coffee, milk)

After mixing, the temperature is 63.1 ◦C, which is still warm enough to be

enjoyable. Would we do any better if we added the milk first?

To find out, I’ll create new objects for the coffee and milk:

coffee = make_system(T_init=90, r=r_coffee,

volume=300, t_end=30)

milk = make_system(T_init=5, r=r_milk,

volume=50, t_end=30)

Then mix them and simulate 30 minutes:

mix_first = mix(coffee, milk)

results = run_simulation(mix_first, update_func)

The final temperature is only 61.4 ◦C. So it looks like adding the milk at the

end is better, by about 1.7 ◦C. But is that the best we can do?

16.4 Optimization

Adding the milk after 30 minutes is better than adding immediately, but maybe

there’s something in between that’s even better. To find out, I’ll use the

following function, which takes t_add as a parameter:
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def run_and_mix(t_add, t_total=30):

coffee = make_system(T_init=90, t_end=t_add,

r=r_coffee, volume=300)

coffee_results = run_simulation(coffee, update_func)

milk = make_system(T_init=5, t_end=t_add,

r=r_milk, volume=50)

milk_results = run_simulation(milk, update_func)

mixture = mix(coffee, milk)

mixture.t_end = t_total - t_add

results = run_simulation(mixture, update_func)

return mixture.T_final

When t_add=0, we add the milk immediately; when t_add=30, we add it at

the end. Now we can sweep the range of values in between:

sweep = SweepSeries()

for t_add in linspace(0, 30, 11):

sweep[t_add] = run_and_mix(t_add, 30)

Figure 16.2 shows the result. Again, note that this is a parameter sweep, not

a time series. The x-axis is the time when we add the milk, not the index of

a TimeSeries.

The final temperature is maximized when t_add=30, so adding the milk at the

end is optimal.

In the notebook for this chapter you will have a chance to explore this solution

and try some variations. For example, suppose the coffee shop won’t let me

take milk in a separate container, but I keep a bottle of milk in the refrigerator

at my office. In that case is it better to add the milk at the coffee shop, or

wait until I get to the office?
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Figure 16.2: Final temperature as a function of the time the milk is added.

16.5 Analysis

Simulating Newton’s law of cooling is almost silly, because we can solve the

differential equation analytically. If

dT

dt
= −r(T − Tenv)

the general solution is

T (t) = C1 exp(−rt) + Tenv

and the particular solution where T (0) = Tinit is

Tenv + (−Tenv + Tinit) exp(−rt)

You can see how I got this solution using SymPy in chap16sympy.ipynb in

the repository for this book. If you would like to see it done by hand, you can

watch this video: http://modsimpy.com/khan3.

Now we can use the observed data to estimate the parameter r. If we observe

T (tend) = Tend, we can plug tend and Tend into the particular solution and solve

http://modsimpy.com/khan3
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for r. The result is:

r =
1

tend
log

(
Tinit − Tenv
Tend − Tenv

)
Plugging in tend = 30 and Tend = 70 (and again with Tinit = 90 and Tenv = 22),

the estimate for r is 0.0116.

We can use the following function to compute the time series:

def run_analysis(system):

unpack(system)

T_init = init.T

ts = linrange(t_0, t_end, dt, endpoint=True)

T_array = T_env + (T_init - T_env) * exp(-r * ts)

results = TimeFrame(T_array, index=ts, columns=['T'])

system.T_final = get_last_value(results.T)

return results

This function is similar to run_simulation; it takes a System as a parameter

and returns a TimeFrame as a result.

Because linrange returns a NumPy array, T_array is also a NumPy array.

To be consistent with run_simulation, we have to put it into a TimeFrame.

We can run it like this:

r_coffee2 = 0.0116

coffee2 = make_system(T_init=90, r=r_coffee2,

volume=300, t_end=30)

results = run_analysis(coffee2)

The final temperature is 70 ◦C, as it should be. In fact, the results are identical

to what we got by simulation, with a small difference due to round off.

Before you go on, you might want to read the notebook for this chapter,

chap16.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Chapter 17

Pharmacokinetics

Pharmacokinetics is the study of how drugs and other substances move

around the body, react, and are eliminated. In this chapter, we implement

one of the most widely used pharmacokinetic models: the so-called minimal

model of glucose and insulin in the blood stream.

We will use this model to fit data collected from a patient, and use the param-

eters of the fitted model to quantify the patient’s ability to produce insulin

and process glucose.

My presentation in this chapter follows Bergman (2005) “Minimal Model” (ab-

stract at http://modsimpy.com/bergman, PDF at http://modsimpy.com/

minmod).

17.1 The glucose-insulin system

Glucose is a form of sugar that circulates in the blood of animals; it is used

as fuel for muscles, the brain, and other organs. The concentration of blood

sugar is controlled by the hormone system, and especially by insulin, which

is produced by the pancreas and has the effect of reducing blood sugar.

In people with normal pancreatic function, the hormone system maintains

homeostasis; that is, it keeps the concentration of blood sugar in a range

that is neither too high or too low.

http://modsimpy.com/bergman
http://modsimpy.com/minmod
http://modsimpy.com/minmod
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But if the pancreas does not produce enough insulin, or if the cells that should

respond to insulin become insensitive, blood sugar can become elevated, a

condition called hyperglycemia. Long term, severe hyperglycemia is the

defining symptom of diabetes mellitus, a serious disease that affects almost

10% of the population in the U.S. (see http://modsimpy.com/cdc).

One of the most-used tests for hyperglycemia and diabetes is the frequently

sampled intravenous glucose tolerance test (FSIGT), in which glucose is in-

jected into the blood stream of a fasting subject (someone who has not eaten

recently); then blood samples are collected at intervals of 2–10 minutes for 3

hours. The samples are analyzed to measure the concentrations of glucose and

insulin.

By analyzing these measurements, we can estimate several parameters of the

subject’s response; the most important is a parameter denoted SI , which quan-

tifies the effect of insulin on the rate of reduction in blood sugar.

17.2 The glucose minimal model

The “minimal model” was proposed by Bergman, Ider, Bowden, and Cobelli1.

It consists of two parts: the glucose model and the insulin model. I will present

an implementation of the glucose model; as a case study, you will have the

chance to implement the insulin model.

The original model was developed in the 1970s; since then, many variations

and extensions have been proposed. Bergman’s comments on the development

of the model provide insight into their process:

We applied the principle of Occam’s Razor, i.e. by asking what

was the simplest model based upon known physiology that could

account for the insulin-glucose relationship revealed in the data.

Such a model must be simple enough to account totally for the

measured glucose (given the insulin input), yet it must be possi-

ble, using mathematical techniques, to estimate all the character-

istic parameters of the model from a single data set (thus avoiding

unverifiable assumptions).

1Bergman RN, Ider YZ, Bowden CR, Cobelli C., “Quantitative estimation of insulin
sensitivity”, Am J Physiol. 1979 Jun;236(6):E667-77. Abstract at http://modsimpy.com/

insulin.

http://modsimpy.com/cdc
http://modsimpy.com/insulin
http://modsimpy.com/insulin
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The most useful models are the ones that achieve this balance: including

enough realism to capture the essential features of the system without too

much complexity to be practical. In this case the practical limit is the ability

to estimate the parameters of the model using data, and to interpret the

parameters meaningfully.

Bergman discusses the features he and his colleagues thought were essential:

(1) Glucose, once elevated by injection, returns to basal level due

to two effects: the effect of glucose itself to normalize its own

concentration [...] as well as the catalytic effect of insulin to allow

glucose to self-normalize (2) Also, we discovered that the effect

of insulin on net glucose disappearance must be sluggish — that

is, that insulin acts slowly because insulin must first move from

plasma to a remote compartment [...] to exert its action on glucose

disposal.

To paraphrase the second point, the effect of insulin on glucose disposal, as

seen in the data, happens more slowly than we would expect if it depended

primarily on the the concentration of insulin in the blood. Bergman’s group

hypothesized that insulin must move, relatively slowly, from the blood to a

“remote compartment” where it has its effect.

At the time, the remote compartment was a modeling abstraction that might,

or might not, reflect something physical. Later, according to Bergman, it was

“shown to be interstitial fluid”, that is, the fluid that surrounds tissue cells. In

the history of mathematical modeling, it is common for hypothetical entities,

added to models to achieve particular effects, to be found later to correspond

to physical entities.

The glucose model consists of two differential equations:

dG

dt
= −k1 [G(t)−Gb]−X(t)G(t)

dX

dt
= k3 [I(t)− Ib]− k2X(t)

where

� G is the concentration of blood glucose as a function of time and dG/dt

is its rate of change.
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� I is the concentration of insulin in the blood as a function of time, which

is taken as an input into the model, based on measurements.

� Gb is the basal concentration of blood glucose and Ib is the basal concen-

tration of blood insulin, that is, the concentrations at equilibrium. Both

are constants estimated from measurements at the beginning or end of

the test.

� X is the concentration of insulin in the tissue fluid as a function of time,

and dX/dt is its rate of change.

� k1, k2, and k3 are positive-valued parameters that control the rates of

appearance and disappearance for glucose and insulin.

We can interpret the terms in the equations one by one:

� −k1 [G(t)−Gb] is the rate of glucose disappearance due to the effect of

glucose itself. When G(t) is above basal level, Gb, this term is negative;

when G(t) is below basal level this term is positive. So in the absence of

insulin, this term tends to restore blood glucose to basal level.

� −X(t)G(t) models the interaction of glucose and insulin in tissue fluid,

so the rate increases as either X or G increases. This term does not

require a rate parameter because the units of X are unspecified; we can

consider X to be in whatever units would make the parameter of this

term 1.

� k3 [I(t)− Ib] is the rate at which insulin diffuses between blood and tissue

fluid. When I(t) is above basal level, insulin diffuses from the blood into

the tissue fluid. When I(t) is below basal level, insulin diffuses from

tissue to the blood.

� −k2X(t) is the rate of insulin disappearance in tissue fluid as it is con-

sumed or broken down.

The initial state of the model is X(0) = Ib and G(0) = G0, where G0 is a

constant that represents the concentration of blood sugar immediately after

the injection. In theory we could estimate G0 based on measurements, but

in practice it takes time for the injected glucose to spread through the blood

volume. Since G0 is not measurable, it is treated as a free parameter of the

model, which means that we are free to choose it to fit the data.
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Figure 17.1: Glucose and insulin concentrations measured by FSIGT.

17.3 Data

To develop and test the model, I use data from Pacini and Bergman2. The

dataset is in a file in the repository for this book, which we can read into a

DataFrame:

data = pd.read_csv('data/glucose_insulin.csv',

index_col='time')

data has two columns: glucose is the concentration of blood glucose in

mg/dL; insulin is concentration of insulin in the blood in µU/mL (a medical

“unit”, denoted U, is an amount defined by convention in context). The index

is time in min.

Figure 17.1 shows glucose and insulin concentrations over 182 min for a subject

with normal insulin production and sensitivity.

2“MINMOD: A computer program to calculate insulin sensitivity and pancreatic respon-
sivity from the frequently sampled intravenous glucose tolerance test”, Computer Methods
and Programs in Biomedicine 23: 113-122, 1986.
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17.4 Interpolation

Before we are ready to implement the model, there’s one problem we have to

solve. In the differential equations, I is a function that can be evaluated at

any time, t. But in the DataFrame, we only have measurements at discrete

times. This is a job for interpolation!

The modsim library provides a function named interpolate, which is a wrap-

per for the SciPy function interp1d. It takes any kind of Series as a param-

eter, including TimeSeries and SweepSeries, and returns a function. That’s

right, I said it returns a function.

So we can call interpolate like this:

I = interpolate(data.insulin)

Then we can call the new function, I, like this:

I(18)

The result is 31.66, which is a linear interpolation between the actual mea-

surements at t=16 and t=19. We can also pass an array as an argument to

I:

ts = linrange(t_0, t_end, endpoint=True)

I(ts)

The result is an array of interpolated values for equally-spaced values of t.

interpolate can take additional arguments, which it passes along to interp1d.

You can read about these options at http://modsimpy.com/interp.

17.5 Implementation

To get started, we’ll assume that the parameters of the model are known. We’ll

implement the model and use it to generate time series for G and X. Then we’ll

see how to find the parameters that generate the series that best fits the data.

http://modsimpy.com/interp
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Taking advantage of estimates from prior work, we’ll start with these values:

params = Params(G0 = 290,

k1 = 0.03,

k2 = 0.02,

k3 = 1e-05)

A Params object is similar to a System or State object; it is useful for holding

a collection of parameters.

We can pass params and data to make_system:

def make_system(params, data):

G0, k1, k2, k3 = params

Gb = data.glucose[0]

Ib = data.insulin[0]

t_0 = get_first_label(data)

t_end = get_last_label(data)

init = State(G=G0, X=0)

return System(G0=G0, k1=k1, k2=k2, k3=k3,

init=init, Gb=Gb, Ib=Ib,

t_0=t_0, t_end=t_end, dt=2)

make_system uses the measurements at t=0 as the basal levels, Gb and Ib. It

gets t_0 and t_end from the data. And it uses the parameter G0 as the initial

value for G. Then it packs everything into a System object.

Here’s the update function:
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def update_func(state, t, system):

G, X = state

unpack(system)

dGdt = -k1 * (G - Gb) - X*G

dXdt = k3 * (I(t) - Ib) - k2 * X

G += dGdt * dt

X += dXdt * dt

return State(G=G, X=X)

As usual, the update function takes a State object, a time, and a System

object as parameters. The first line update uses multiple assignment to extract

the current values of G and X. The second line uses unpack so we can read the

system variables without using the dot operator.

Computing the derivatives dGdt and dXdt is straightforward; we just translate

the equations from math notation to Python.

Then, to perform the update, we multiply each derivative by the discrete time

step dt, which is 2 min in this example. The return value is a State object

with the new values of G and X.

Before running the simulation, it is a good idea to run the update function

with the initial conditions:

update_func(system.init, system.t_0, system)

Now we are ready to run the simulation. We’ll use this version of run_simulation,

which is very similar to previous versions:
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Figure 17.2: Results from simulation of the glucose minimal model.

def run_simulation(system, update_func):

unpack(system)

frame = TimeFrame(columns=init.index)

frame.loc[t0] = init

ts = linrange(t0, t_end, dt)

for t in ts:

frame.row[t+dt] = update_func(frame.row[t], t, system)

return frame

We can run it like this:

results = run_simulation(system, update_func)

The top plot in Figure 17.2 shows simulated glucose levels from the model

along with the measured data. The bottom plot shows simulated insulin levels
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in tissue fluid, which is in unspecified units, and not to be confused with

measured insulin levels in the blood.

With the parameters I chose, the model fits the data well, but we can do

better.

In the next chapter, we replace run_simulation with a better differential

equation solver, then search for the parameters that yield the best fit for the

data.

Before you go on, you might want to read the notebook for this chapter,

chap17.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.



Chapter 18

Numerical methods

In the previous chapter, we implemented the glucose minimal model using

run_simulation, which solves differential equations using discrete time steps.

This method works well enough for many applications, but it is not very

accurate. In this chapter we explore a better option: using an ODE solver.

Then we use a search algorithm to find the model parameters that yield the

best fit for the data.

18.1 Solving differential equations

So far we have solved differential equations by rewriting them as difference

equations. In the current example, the differential equations are:

dG

dt
= −k1 [G(t)−Gb]−X(t)G(t)

dX

dt
= k3 [I(t)− Ib]− k2X(t)

If we multiply both sides by dt, we have:

dG = [−k1 [G(t)−Gb]−X(t)G(t)] dt

dX = [k3 [I(t)− Ib]− k2X(t)] dt
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When dt is very small, or more precisely infinitesimal, this equation is ex-

act. But in our simulations, dt is 2 min, which is small but not infinitesimal.

In effect, the simulations assume that the derivatives dG/dt and dX/dt are

constant during each 2 min time step.

This method, evaluating derivatives at discrete time steps and assuming that

they are constant in between, is called Euler’s method (see http://modsimpy.

com/euler).

Euler’s method is good enough for some simple problems, but there are many

better ways to solve differential equations. Rather than implement these meth-

ods ourselves, we will use functions from SciPy. The modsim library provides

a function called run_ode_solver, which uses the SciPy function solve_ivp.

The “ODE” in run_ode_solver stands for “ordinary differential equation in-

tegrator”. The equations we are solving are “ordinary” because all the deriva-

tives are with respect to the same variable; in other words, there are no partial

derivatives.

The “IVP” in solve_ivp stands for “initial value problem”, which is the term

for problems where you start with an initial value and figure out how the

system changes over time, or sometimes space or another quantity.

solve_ivp can use one of several ODE solvers; by default it uses a Runge-

Kutta-Fehlberg method. These methods are adaptive; that is, they choose

the step size automatically, using small steps when necessary to limit errors,

and large steps when possible to be efficient.

To use run_ode_solver, we have to provide a “slope function”, like this:

def slope_func(state, t, system):

G, X = state

unpack(system)

dGdt = -k1 * (G - Gb) - X*G

dXdt = k3 * (I(t) - Ib) - k2 * X

return dGdt, dXdt

http://modsimpy.com/euler
http://modsimpy.com/euler
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slope_func is similar to update_func; in fact, it takes the same parameters

in the same order. But slope_func is simpler, because all we have to do is

compute the derivatives, that is, the slopes. We don’t have to do the updates;

run_ode_solver does them for us.

Now we can call run_ode_solver like this:

results, details = run_ode_solver(system, slope_func,

t_eval=data.index)

run_ode_solver is similar to run_simulation: it takes a System object and

a slope function as parameters, and returns a TimeFrame as a result. results

has one row for each time step and one column for each state variable. In this

example, the rows are the values from data.index; the columns are the state

variables, G and X.

run_ode_solver also returns details, which is a ModSimSeries with informa-

tion about how the solver ran, including a success code, a diagnostic message,

and other information. A ModSimSeries is like a System or State object; it

contains a set of variables and their values.

run_ode_solver takes an optional argument, t_eval, which indicates where

we want to evaluate the solution. In this case we want the results to have the

same time steps as the data, so we can compare them easily.

The results are similar to what we saw in Figure 17.2. The biggest relative

difference is less than 1%.

18.2 Least squares

So far we have been taking the parameters as given, but in general we don’t

have that luxury. Normally we are given the data and we have to search for

the parameters that yield a time series that best matches the data.

We will do that now, in two steps:

1. First we’ll define an error function that takes a set of parameters,

simulates the system with the given parameters, and computes the errors,

that is, the differences between the simulation results and the data.
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2. Then we’ll use fit_leastsq, to search for the parameters that minimize

mean squared error (MSE).

When fit_leastsq runs, it calls error_func many times, each time with a

different set of parameters, until it converges on the parameters that minimize

MSE.

Here’s the error function:

def error_func(params, data):

system = make_system(params, data)

results, details = run_ode_solver(system, slope_func)

errors = results.G - data.glucose

return errors

error_func takes as parameters a Params object and a DataFrame containing

the measurements. It uses make_system to create a System object, and calls

run_ode_solver using the same slope function we saw in Section 18.1.

Then it computes the difference between the simulation results and the data.

Since results.G and data.glucose are both Series objects, errors is also

a Series.

Now, to do the actual minimization, we run fit_leastsq:

best_params, details = fit_leastsq(error_func, params, data)

The first return value is a Params object with the parameters that yield the

best fit for the data. The second return value is a ModSimSeries object with

more information.

18.3 Interpreting parameters

To see the results, we can pass best_params to make_system and then run

the simulation:

system = make_system(best_params, data)

results, details = run_ode_solver(system, slope_func,

t_eval=data.index)
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Figure 18.1: Simulation of the glucose minimal model with parameters that
minimize MSE.

Figure 18.1 shows the results. The simulation matches the measurements well

except during the first few minutes after the injection.

But we don’t expect the model to do well in this regime.

The problem is that the model is non-spatial; that is, it does not take into

account different concentrations in different parts of the body. Instead, it

assumes that the concentrations of glucose and insulin in blood, and insulin in

tissue fluid, are the same throughout the body. This way of representing the

body is known among experts as the “bag of blood” model.

Immediately after injection, it takes time for the injected glucose to circulate.

During that time, we don’t expect a non-spatial model to be accurate. For this

reason, we should not take the estimated value of G0 too seriously; it is useful

for fitting the model, but not meant to correspond to a physical, measurable

quantity.

On the other hand, the other parameters are meaningful; in fact, they are the

reason the model is useful. Using the best-fit parameters, we can estimate two

quantities of interest:
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� “Glucose effectiveness”, E, which is the tendency of elevated glucose to

cause depletion of glucose.

� “Insulin sensitivity”, S, which is the ability of elevated blood insulin to

enhance glucose effectiveness.

Glucose effectiveness is defined as the change in dG/dt as we vary G:

E ≡ −δĠ
δG

where Ġ is shorthand for dG/dt. Taking the derivative of dG/dt with respect

to G, we get

E = k1 +X

The glucose effectiveness index, SG, is the value of E when blood insulin

is near its basal level, Ib. In that case, X approaches 0 and E approaches k1.

So we can use the best-fit value of k1 as an estimate of SG.

Insulin sensitivity is defined as the change in E as we vary I:

S ≡ −δE
δI

The insulin sensitivity index, SI , is the value of S when E and I are at

steady state:

SI ≡
δESS

δISS

E and I are at steady state when dG/dt and dX/dt are 0, but we don’t actually

have to solve those equations to find SI . If we set dX/dt = 0 and solve for X,

we find the relation:

XSS =
k3
k2
ISS

And since E = k1 +X, we have:

SI =
δESS

δISS
=
δXSS

δISS

Taking the derivative of XSS with respect to ISS, we have:

SI = k3/k2
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So if we find parameters that make the model fit the data, we can use k3/k2
as an estimate of SI .

For the example data, the estimated values of SG and SI are 0.029 and for

8.9 × 10−4. According to Pacini and Bergman, these values are within the

normal range.

Before you go on, you might want to read the notebook for this chapter,

chap18.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Chapter 19

Case studies

This chapter reviews the computational patterns we have seen so far and

presents exercises where you can apply them.

19.1 Computational tools

In Chapter 11 we saw an update function that uses multiple assignment to

unpack a State object and assign the state variables to local variables.

def update_func(state, t, system):

s, i, r = state

infected = system.beta * i * s

recovered = system.gamma * i

s -= infected

i += infected - recovered

r += recovered

return State(S=s, I=i, R=r)

And in run_simulation we used multiple assignment again to assign state

variables to a row in a TimeFrame:
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def run_simulation(system, update_func):

frame = TimeFrame(columns=system.init.index)

frame.row[system.t0] = system.init

for t in linrange(system.t0, system.t_end):

frame.row[t+1] = update_func(frame.row[t], system)

return frame

In Chapter 12 we used the functions max and idxmax to compute metrics:

largest_value = S.max()

time_of_largest_value = S.idxmax()

And we saw the logistic function, a general function which is useful for mod-

eling relationships between variables, like the effectiveness of an intervention

as a function of expenditure.

In Chapter 13 we saw the unpack function, which makes system variables

available as if they were local variables.

def run_simulation(system, update_func):

unpack(system)

frame = TimeFrame(columns=init.index)

frame.row[t0] = init

for t in linrange(t0, t_end):

frame.row[t+1] = update_func(frame.row[t], t, system)

system.results = frame

One thing to remember when you use unpack: if you modify any of the un-

packed variables, the change does not affect the System object.

In Chapter 14 we used a SweepFrame object to sweep two parameters.
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def sweep_parameters(beta_array, gamma_array):

frame = SweepFrame(columns=gamma_array)

for gamma in gamma_array:

frame[gamma] = sweep_beta(beta_array, gamma)

return frame

In Chapter 15 we used linrange to create an array of values with a given step

size. linrange is similar to linspace: the difference is that linrange lets

you specify the space between values, and it computes the number of values;

linspace lets you specify the number of values, and it computes the space

between them.

Here’s a version of run_simulation that uses linrange:

def run_simulation(system, update_func):

unpack(system)

frame = TimeFrame(columns=init.index)

frame.row[t_0] = init

ts = linrange(t_0, t_end, dt)

for t in ts:

frame.row[t+dt] = update_func(frame.row[t], t, system)

# store the final temperature in T_final

system.T_final = get_last_value(frame.T)

return frame

In Chapter 16 we used fsolve to find the value of a parameter that yields a

particular result. We defined an error function:

def error_func1(r):

system = make_system(r=r)

results = run_simulation(system, update)

return system.T_final - 70

And passed it to fsolve with an initial guess, like this:
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solution = fsolve(error_func1, 0.01)

r_coffee = solution[0]

In Chapter 17 we used interpolate, which returns a function:

I = interpolate(data.insulin)

which we can call like any other function, passing as an argument either a

single value or a NumPy array:

I(18)

ts = linrange(t_0, t_end)

I(ts)

We also used a Params object, which is a collection of parameters.

params = Params(G0 = 290,

k1 = 0.03,

k2 = 0.02,

k3 = 1e-05)

Chapter 18 introduces run_ode_solver which computes numerical solutions

to differential equations.

run_ode_solver uses a slope function, which is similar to an update function:

def slope_func(state, t, system):

G, X = state

unpack(system)

dGdt = -k1 * (G - Gb) - X*G

dXdt = k3 * (I(t) - Ib) - k2 * X

return dGdt, dXdt

We used run_ode_solver to write an error function, which takes a Params

object, runs a simulation, and returns the difference between the simulation

results and the data:
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def error_func(params, data):

system = make_system(params, data)

results, details = run_ode_solver(system, slope_func,

t_eval=data.index)

errors = results.G - data.glucose

return errors

Then we passed the error function to fit_leastsq, which finds the set of

parameters that minimizes the errors:

best_params, fit_details = fit_leastsq(error_func, params, data)

19.2 Under the hood

unpack is a function in the modsim library that copies the variables and values

from a System object into a special Python data structure that stores global

variables. To be honest, it is a bit of a hack; that is, it may be expedient, but

it might not be an example of software engineering you should emulate.

fsolve is based on a Scipy function that is also called fsolve; you can

read more about it at http://modsimpy.com/fsolve. It uses a numeri-

cal method called Powell’s method, and you can read more about that at

http://modsimpy.com/powell.

run_ode_solver uses the SciPy function solve_ivp, which you can read

about at http://modsimpy.com/ivp. By default it uses an algorithm called

RK45, or RKF45, which you can read about at http://modsimpy.com/runge).

fit_leastsq is based on the SciPy function leastsq; you can read about it

at http://modsimpy.com/sq. By default it uses a version of the Levenberg-

Marquardt method, which you can read about at http://modsimpy.com/lm.

These SciPy functions don’t work with the units provided by Pint, so the

modsim library turns off unit-checking before calling them. This mechanism is

a bit of a hack, so you might get some unexpected behavior. If so, I suggest

you make a modest effort to fix them problem, but don’t spend too much time

on it.

http://modsimpy.com/fsolve
http://modsimpy.com/powell
http://modsimpy.com/ivp
http://modsimpy.com/runge
http://modsimpy.com/sq
http://modsimpy.com/lm 
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Carrying units through computations like this is not as common as it should

be, so the tools are not as polished as they could be. I think it is worth trying,

because you can catch a lot of errors by checking units; but if it gets to be too

much trouble, you can always remove the units from the code. In that case,

you should add comments that document the units for all variables!

The rest of this chapter presents case studies you can use to practice what you

have learned so far.

19.3 The insulin minimal model

Along with the glucose minimal model in Chapter 17, Berman et al. developed

an insulin minimal model, in which the concentration of insulin, I, is governed

by this differential equation:

dI

dt
= −kI(t) + γ [G(t)−GT ] t

where

� k is a parameter that controls the rate of insulin disappearance indepen-

dent of blood glucose.

� G(t) is the measured concentration of blood glucose at time t.

� GT is the glucose threshold; when blood glucose is above this level, it

triggers an increase in blood insulin.

� γ is a parameter that controls the rate of increase (or decrease) in blood

insulin when glucose is above (or below) GT .

The initial condition is I(0) = I0. As in the glucose minimal model, we treat

the initial condition as a parameter which we’ll choose to fit the data.

The parameters of this model can be used to estimate, φ1 and φ2, which are

values that “describe the sensitivity to glucose of the first and second phase

pancreatic responsivity”. They are related to the parameters as follows:

φ1 =
Imax − Ib
k(G0 −Gb)
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φ2 = γ × 104

where Imax is the maximum measured insulin level, and Ib and Gb are the basal

levels of insulin and glucose.

In the repository for this book, you will find a notebook, insulin.ipynb,

which contains starter code for this case study. Use it to implement the insulin

model, find the parameters that best fit the data, and estimate these values.

19.4 Low-Pass Filter

The following circuit diagram1 shows a low-pass filter built with one resistor

and one capacitor.

R

C

Vin

Vout

A “filter” is a circuit takes a signal, Vin, as input and produces a signal, Vout,

as output. In this context, a “signal” is a voltage that changes over time.

A filter is “low-pass” if it allows low-frequency signals to pass from Vin to Vout
unchanged, but it reduces the amplitude of high-frequency signals.

By applying the laws of circuit analysis, we can derive a differential equation

that describes the behavior of this system. By solving the differential equation,

we can predict the effect of this circuit on any input signal.

Suppose we are given Vin and Vout at a particular instant in time. By Ohm’s

law, which is a simple model of the behavior of resistors, the instantaneous

current through the resistor is:

IR = (Vin − Vout)/R

where R is resistance in ohms (W).

1From http://modsimpy.com/divider

http://modsimpy.com/divider
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Assuming that no current flows through the output of the circuit, Kirchhoff’s

current law implies that the current through the capacitor is:

IC = IR

According to a simple model of the behavior of capacitors, current through

the capacitor causes a change in the voltage across the capacitor:

IC = C
dVout
dt

where C is capacitance in farads (F). Combining these equations yields a

differential equation for Vout:

dVout
dt

=
Vin − Vout

RC

In the repository for this book, you will find a notebook, filter.ipynb, which

contains starter code for this case study. Follow the instructions to simulate

the low-pass filter for input signals like this:

Vin(t) = A cos(2πft)

where A is the amplitude of the input signal, say 5 V, and f is the frequency

of the signal in Hz.

In the repository for this book, you will find a notebook, filter.ipynb, which

contains starter code for this case study. Read the notebook, run the code,

and work on the exercises.

19.5 Thermal behavior of a wall

This case study is based on a paper by Gori, et al2 that models the thermal

behavior of a brick wall, with the goal of understanding the “performance gap

2Gori, Marincioni, Biddulph, Elwell, “Inferring the thermal resistance and effective ther-
mal mass distribution of a wall from in situ measurements to characterise heat transfer at
both the interior and exterior surfaces”, Energy and Buildings, Volume 135, pages 398-409,
http://modsimpy.com/wall2.

The authors put their paper under a Creative Commons license, and make their data
available at http://modsimpy.com/wall. I thank them for their commitment to open,
reproducible science, which made this case study possible.

http://modsimpy.com/wall2
http://modsimpy.com/wall 
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between the expected energy use of buildings and their measured energy use”.

The following figure shows the scenario and their model of the wall:

On the interior and exterior surfaces of the wall, they measure temperature and

heat flux over a period of three days. They model the wall using two thermal

masses connected to the surfaces, and to each other, by thermal resistors.

The primary methodology of the paper is a Bayesian method for inferring the

parameters of the system (two thermal masses and three thermal resistances).

The primary result is a comparison of two models: the one shown here with two

thermal masses, and a simpler model with only one thermal mass. They find

that the two-mass model is able to reproduce the measured fluxes substantially

better.

For this case study we will implement their model and run it with the estimated

parameters from the paper, and then use fit_leastsq to see if we can find

parameters that yield lower errors.

In the repository for this book, you will find a notebook, wall.ipynb with the

code and results for this case study.
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Chapter 20

Projectiles

So far the differential equations we’ve worked with have been first order,

which means they involve only first derivatives. In this chapter, we turn

our attention to second order ODEs, which can involve both first and sec-

ond derivatives.

We’ll revisit the falling penny example from Chapter 1, and use odeint to

find the position and velocity of the penny as it falls, with and without air

resistance.

20.1 Newton’s second law of motion

First order ODEs can be written

dy

dx
= G(x, y)

where G is some function of x and y (see http://modsimpy.com/ode). Second

order ODEs can be written

d2y

dx2
= H(x, y,

dy

dt
)

where H is a function of x, y, and dy/dx.

http://modsimpy.com/ode
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In this chapter, we will work with one of the most famous and useful second

order ODE, Newton’s second law of motion:

F = ma

where F is a force or the total of a set of forces, m is the mass of a moving

object, and a is its acceleration.

Newton’s law might not look like a differential equation, until we realize that

acceleration, a, is the second derivative of position, y, with respect to time, t.

With the substitution

a =
d2y

dt2

Newton’s law can be written

d2y

dt2
= F/m

And that’s definitely a second order ODE. In general, F can be a function of

time, position, and velocity.

Of course, this “law” is really a model, in the sense that it is a simplification

of the real world. Although it is often approximately true:

� It only applies if m is constant. If mass depends on time, position,

or velocity, we have to use a more general form of Newton’s law (see

http://modsimpy.com/varmass).

� It is not a good model for very small things, which are better described

by another model, quantum mechanics.

� And it is not a good model for things moving very fast, which are better

described by yet another model, relativistic mechanics.

However, for medium-sized things with constant mass, moving at medium-

sized speeds, Newton’s model is phenomenally useful. If we can quantify the

forces that act on such an object, we can predict how it will move.

http://modsimpy.com/varmass
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20.2 Dropping pennies

As a first example, let’s get back to the penny falling from the Empire State

Building, which we considered in Section 1.1. We will implement two models

of this system: first without air resistance, then with.

Given that the Empire State Building is 381 m high, and assuming that the

penny is dropped with velocity zero, the initial conditions are:

init = State(y=381 * m,

v=0 * m/s)

where y is height above the sidewalk and v is velocity. The units m and s are

from the UNITS object provided by Pint:

m = UNITS.meter

s = UNITS.second

The only system parameter is the acceleration of gravity:

g = 9.8 * m/s**2

In addition, we’ll specify the duration of the simulation:

t_end = 10 * s

We need a System object to contain the system parameters:

system = System(init=init, g=g, t_end=t_end)

Now we need a slope function, and here’s where things get tricky. As we have

seen, run_ode_solver can solve systems of first order ODEs, but Newton’s

law is a second order ODE. However, if we recognize that

1. Velocity, v, is the derivative of position, dy/dt, and

2. Acceleration, a, is the derivative of velocity, dv/dt,



170 Chapter 20 Projectiles

we can rewrite Newton’s law as a system of first order ODEs:

dy

dt
= v

dv

dt
= a

And we can translate those equations into a slope function:

def slope_func(state, t, system):

y, v = state

unpack(system)

dydt = v

dvdt = -g

return dydt, dvdt

The first parameter, state, contains the position and velocity of the penny.

The last parameter, system, contains the system parameter g, which is the

magnitude of acceleration due to gravity.

The second parameter, t, is time. It is not used in this slope function because

none of the factors of the model are time dependent (see Section 17.5). I

include it anyway because this function will be called by run_ode_solver,

which always provides the same arguments, whether they are needed or not.

The rest of the function is a straightforward translation of the differential

equations, with the substitution a = −g, which indicates that acceleration is

due to gravity, in the direction of decreasing y. slope_func returns a sequence

containing the two derivatives.

Before calling run_ode_solver, it is a good idea to test the slope function

with the initial conditions:

dydt, dvdt = slope_func(init, 0, system)

The result is 0 m/s for velocity and 9.8 m/s2 for acceleration. Now we can call

run_ode_solver like this:
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Figure 20.1: Height of the penny versus time, with no air resistance.

results, details = run_ode_solver(system, slope_func,

max_step=0.5*s)

The optional argument max_step determines the largest step size run_ode_solver

can use. Specifying max_step makes the simulation take longer, but it makes

the results look better when plotted. It has little or no effect on accuracy.

results in a TimeFrame with two columns: y contains the height of the penny;

v contains its velocity.

We can plot the results like this:

def plot_position(results):

plot(results.y)

decorate(xlabel='Time (s)',

ylabel='Position (m)')

Figure 20.1 shows the result. Since acceleration is constant, velocity increases

linearly and position decreases quadratically; as a result, the height curve is a

parabola.
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The last value of results.y is −109 m, which means we ran the simulation

too long. One way to solve this problem is to use the results to estimate the

time when the penny hits the sidewalk.

The modsim library provides crossings, which takes a TimeSeries and a

value, and returns a sequence of times when the series passes through the

value. We can find the time when the height of the penny is 0 like this:

t_crossings = crossings(results.y, 0)

The result is an array with a single value, 8.818 s. Now, we could run the

simulation again with t_end = 8.818, but there’s a better way.

20.3 Events

As an option, run_ode_solver can take an event function, which detects

an “event”, like the penny hitting the sidewalk, and ends the simulation.

Event functions take the same parameters as slope functions, state, t, and

system. They should return a value that passes through 0 when the event

occurs. Here’s an event function that detects the penny hitting the sidewalk:

def event_func(state, t, system):

y, v = state

return y

The return value is the height of the penny, y, which passes through 0 when

the penny hits the sidewalk.

We pass the event function to run_ode_solver like this:

results, details = run_ode_solver(system, slope_func,

events=event_func)

events can also be a sequence of event functions, if there is more than one

event that might occur.
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run_ode_solver uses Brent’s method to estimate the time of the event pre-

cisely (see http://modsimpy.com/brent).

Before you go on, you might want to read the notebook for this chapter,

chap20.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.

http://modsimpy.com/brent
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Chapter 21

Air resistance

In the previous chapter we simulated a penny falling in a vacuum, that is,

without air resistance. But the computational framework we used is very

general; it is easy to add additional forces, including drag.

In this chapter, I present a model of drag force and add it to the simulation.

21.1 Drag force

As an object moves through a fluid, like air, the object applies force to the

air and, in accordance with Newton’s third law of motion, the air applies an

equal and opposite force to the object (see http://modsimpy.com/newton).

The direction of this drag force is opposite the direction of travel, and its

magnitude is given by the drag equation (see http://modsimpy.com/drageq):

Fd =
1

2
ρ v2 Cd A

where

� Fd is force due to drag, in newtons (N).

� ρ is the density of the fluid in kg/m3.

http://modsimpy.com/newton
http://modsimpy.com/drageq
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� v is the magnitude of velocity in m/s.

� A is the reference area of the object, in m2. In this context, the

reference area is the projected frontal area, that is, the visible area of

the object as seen from a point on its line of travel (and far away).

� Cd is the drag coefficient, a dimensionless quantity that depends on

the shape of the object (including length but not frontal area), its surface

properties, and how it interacts with the fluid.

For objects moving at moderate speeds through air, typical drag coefficients

are between 0.1 and 1.0, with blunt objects at the high end of the range and

streamlined objects at the low end (see http://modsimpy.com/dragco).

For simple geometric objects we can sometimes guess the drag coefficient with

reasonable accuracy; for more complex objects we usually have to take mea-

surements and estimate Cd from the data.

Of course, the drag equation is itself a model, based on the assumption that

Cd does not depend on the other terms in the equation: density, velocity, and

area. For objects moving in air at moderate speeds (below 45 mph or 20 m/s),

this model might be good enough, but we should remember to revisit this

assumption.

For the falling penny, we can use measurements to estimate Cd. In particular,

we can measure terminal velocity, vterm, which is the speed where drag force

equals force due to gravity:

1

2
ρ v2term Cd A = mg

where m is the mass of the object and g is acceleration due to gravity. Solving

this equation for Cd yields:

Cd =
2 mg

ρ v2term A

According to Mythbusters, the terminal velocity of a penny is between 35 and

65 mph (see http://modsimpy.com/mythbust). Using the low end of their

range, 40 mph or about 18 m/s, the estimated value of Cd is 0.44, which is

close to the drag coefficient of a smooth sphere.

Now we are ready to add air resistance to the model.

http://modsimpy.com/dragco
http://modsimpy.com/mythbust
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21.2 Implementation

As the number of system parameters increases, and as we need to do more work

to compute them, we will find it useful to define a Params object to contain

the quantities we need to make a System object. Params objects are similar

to System and State objects; in fact, all three have the same capabilities. I

have given them different names to document the different roles they play.

Here’s the Params object for the falling penny:

params = Params(height = 381 * m,

v_init = 0 * m / s,

g = 9.8 * m/s**2,

mass = 2.5e-3 * kg,

diameter = 19e-3 * m,

rho = 1.2 * kg/m**3,

v_term = 18 * m / s)

The mass and diameter are from http://modsimpy.com/penny. The density

of air depends on temperature, barometric pressure (which depends on alti-

tude), humidity, and composition (http://modsimpy.com/density). I chose

a value that might be typical in New York City at 20 ◦C.

Here’s a version of make_system that takes a Params object and returns a

System:

def make_system(params):

unpack(params)

area = np.pi * (diameter/2)**2

C_d = 2 * mass * g / (rho * area * v_term**2)

init = State(y=height, v=v_init)

t_end = 30 * s

return System(params, area=area, C_d=C_d,

init=init, t_end=t_end)

The first argument of System is params, so the result contains all of the pa-

rameters in params, plus init, area, and C_d.

http://modsimpy.com/penny
http://modsimpy.com/density
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It might not be obvious why we need Params objects, but they will turn out

to be useful soon.

We can make a System like this:

system = make_system(params)

Now here’s a version of the slope function that includes drag:

def slope_func(state, t, system):

y, v = state

unpack(system)

f_drag = rho * v**2 * C_d * area / 2

a_drag = f_drag / mass

dydt = v

dvdt = -g + a_drag

return dydt, dvdt

f_drag is force due to drag, based on the drag equation. a_drag is acceleration

due to drag, based on Newton’s second law.

To compute total acceleration, we add accelerations due to gravity and drag. g

is negated because it is in the direction of decreasing y, and a_drag is positive

because it is in the direction of increasing y. In the next chapter we will use

Vector objects to keep track of the direction of forces and add them up in a

less error-prone way.

To stop the simulation when the penny hits the sidewalk, we’ll use the event

function from Section 20.3:

def event_func(state, t, system):

y, v = state

return y

Now we can run the simulation like this:
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Figure 21.1: Height of the penny versus time, with air resistance.

results, details = run_ode_solver(system, slope_func,

events=event_func, max_step=0.5*s)

Figure 21.1 shows the result. It only takes a few seconds for the penny to

accelerate up to terminal velocity; after that, velocity is constant, so height as

a function of time is a straight line.

In the notebook for this chapter, you’ll have a chance to extend this model.

21.3 Bungee jumping

Suppose you want to set the world record for the highest “bungee dunk”,

which is a stunt in which a bungee jumper dunks a cookie in a cup of tea

at the lowest point of a jump. An example is shown in this video: http:

//modsimpy.com/dunk.

Since the record is 70 m, let’s design a jump for 80 m. We’ll start with the

following modeling assumptions:

� Initially the bungee cord hangs from a crane with the attachment point

80 m above a cup of tea.

http://modsimpy.com/dunk
http://modsimpy.com/dunk
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� Until the cord is fully extended, it applies no force to the jumper. It

turns out this might not be a good assumption; we will revisit it.

� After the cord is fully extended, it obeys Hooke’s Law; that is, it applies

a force to the jumper proportional to the extension of the cord beyond

its resting length. See http://modsimpy.com/hooke.

� The mass of the jumper is 75 kg.

� The jumper is subject to drag force, as in the previous model, so that

their terminal velocity is 60 m/s.

Our objective is to choose the length of the cord, L, and its spring constant,

k, so that the jumper falls all the way to the tea cup, but no farther!

We’ll start with the length of the bungee cord, L at 25 m and spring constant,

k at 40 N/m. Here’s a Params object with all of these parameters:

params = Params(y_attach = 80 * m,

v_init = 0 * m / s,

g = 9.8 * m/s**2,

mass = 75 * kg,

area = 1 * m**2,

rho = 1.2 * kg/m**3,

v_term = 60 * m / s,

L = 25 * m,

k = 40 * N / m)

And here’s a version of make_system that uses v_term to compute C_d:

def make_system(params):

unpack(params)

C_d = 2 * mass * g / (rho * area * v_term**2)

init = State(y=y_attach, v=v_init)

t_end = 20 * s

return System(params, C_d=C_d,

init=init, t_end=t_end)

http://modsimpy.com/hooke
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We can run it like this:

system = make_system(params)

We need a function to compute spring force based on the altitude of the jumper,

y:

def spring_force(y, system):

unpack(system)

distance_fallen = y_attach - y

if distance_fallen <= L:

return 0 * N

extension = distance_fallen - L

f_spring = k * extension

return f_spring

distance_fallen is the distance of the jumper from the attachment point. If

the cord is not fully extended, the spring force is 0. Otherwise we compute

the extension of the cord, extension, and the spring force, f_spring.

I’ll also define a function to compute drag force:

def drag_force(v, system):

unpack(system)

f_drag = -np.sign(v) * rho * v**2 * C_d * area / 2

return f_drag

drag_force uses the NumPy function sign, which returns 1 if the argument

is positive, -1 if it is negative, and 0 if it is 0. This ensures that the drag force

is always in the opposite direction of velocity.

Now here’s the slope function:
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def slope_func(state, t, system):

y, v = state

unpack(system)

a_drag = drag_force(v, system) / mass

a_spring = spring_force(y, system) / mass

dvdt = -g + a_drag + a_spring

return v, dvdt

slope_func uses spring_force and drag_force to compute forces, then di-

vides by mass to get accelerations.

We can run the simulation like this:

ts = linspace(0, system.t_end, 301)

results, details = run_ode_solver(system, slope_func,

max_step=0.3*s)

Again, I use max_step so the results look better when plotted. Figure 21.2

shows the results.

We can find the altitude of the jumper at the lowest point like this:

min(results.y)

For the parameters we chose, the jumper bottoms out at about 5 m, so we

need to increase L or decrease k. In the notebook for this chapter, you’ll have

to a chance to find the best parameters for the bungee dunk.

21.4 Getting acceleration

In fact, there are many combinations of L or decrease k that would work. We

might want to find the combination that minimizes the peak acceleration of

the jumper, providing the maximum time near the sidewalk to make the dunk.
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Figure 21.2: Position and velocity of the bungee jumper.

To do that, we need to know the acceleration of the jumper over time. Al-

though we compute acceleration in the slope function, it is not included in the

results.

It might be tempting to record the acceleration each time the slope function

runs, but we should not do that. The ODE solver calls the slope function

many times with different values of state and t. Because of the way the

solver works, not all of the states and times are actually part of the solution.

So recording acceleration while the solver is running would not work.

Instead, we can use the computed velocities to estimate acceleration as a func-

tion of time.

The modsim library provides gradient, which uses NumPy to estimate the

derivative of a TimeSeries. Here’s how it works:

a = gradient(results.v)

In the notebook for this chapter, chap21.ipynb, you can finish this problem

by finding the combination of L and k that allows the jumper to complete the

bungee dunk while minimizing the acceleration they experience. For instruc-

tions on downloading and running the code, see Section 0.4.
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Chapter 22

Projectiles in 2-D

In the previous chapter we modeled objects moving in one dimension, with

and without drag. Now let’s move on to two dimensions, and baseball!

In this chapter we model the flight of a baseball including the effect of air

resistance. In the next chapter we use this model to solve an optimization

problem.

22.1 Baseball

To model the flight of a baseball, we have to make some modeling decisions.

To get started, we ignore any spin that might be on the ball, and the resulting

Magnus force (see http://modsimpy.com/magnus). Under this assumption,

the ball travels in a vertical plane, so we’ll run simulations in two dimensions,

rather than three.

Air resistance has a substantial effect on most projectiles in air, so we will

include a drag force.

To model air resistance, we’ll need the mass, frontal area, and drag coefficient

of a baseball. Mass and diameter are easy to find (see http://modsimpy.com/

baseball). Drag coefficient is only a little harder; according to The Physics

http://modsimpy.com/magnus
http://modsimpy.com/baseball
http://modsimpy.com/baseball
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of Baseball1, the drag coefficient of a baseball is approximately 0.33 (with no

units).

However, this value does depend on velocity. At low velocities it might be as

high as 0.5, and at high velocities as low as 0.28. Furthermore, the transition

between these regimes typically happens exactly in the range of velocities we

are interested in, between 20 m/s and 40 m/s.

Nevertheless, we’ll start with a simple model where the drag coefficient does

not depend on velocity; as an exercise at the end of this chapter, you will have

a chance to implement a more detailed model and see what effect is has on

the results.

But first we need a new computational tool, the Vector object.

22.2 Vectors

Now that we are working in two dimensions, we will find it useful to work with

vector quantities, that is, quantities that represent both a magnitude and a

direction. We will use vectors to represent positions, velocities, accelerations,

and forces in two and three dimensions.

The modsim library provides a Vector object that represents a vector quantity.

A Vector object is a like a NumPy array; it contains elements that represent

the components of the vector. For example, in a Vector that represents

a position in space, the components are the x and y coordinates (and a z

coordinate in 3-D). A Vector object can also have units, like the quantities

we’ve seen in previous chapters.

You can create a Vector by specifying its components. The following Vector

represents a point 3 m to the right (or east) and 4 m up (or north) from an

implicit origin:

A = Vector(3, 4) * m

You can access the components of a Vector by name using the dot operator,

for example, A.x or A.y. You can also access them by index using brackets,

for example, A[0] or A[1].

1Adair, The Physics of Baseball, Third Edition, Perennial, 2002
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Similarly, you can get the magnitude and angle using the dot operator, A.mag

and A.angle. Magnitude is the length of the vector: if the Vector rep-

resents position, magnitude is the distance from the origin; if it represents

velocity, magnitude is speed, that is, how fast the object is moving, regardless

of direction.

The angle of a Vector is its direction, expressed as the angle in radians from

the positive x-axis. In the Cartesian plane, the angle 0 rad is due east, and

the angle π rad is due west.

Vector objects support most mathematical operations, including addition and

subtraction:

B = Vector(1, 2) * m

A + B

A - B

For the definition and graphical interpretation of these operations, see http:

//modsimpy.com/vecops.

When you add and subtract Vector objects, the modsim library uses NumPy

and Pint to check that the operands have the same number of dimensions and

units. The notebook for this chapter shows examples for working with Vector

objects.

One note on working with angles: in mathematics, we almost always represent

angle in radians, and most Python functions expect angles in radians. But

people often think more naturally in degrees. It can be awkward, and error-

prone, to use both units in the same program. Fortunately, Pint makes it

possible to represent angles using quantities with units.

As an example, I’ll get the degree unit from UNITS, and create a quantity

that represents 45 degrees:

degree = UNITS.degree

angle = 45 * degree

If we need to convert to radians we can use the to function

http://modsimpy.com/vecops
http://modsimpy.com/vecops
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radian = UNITS.radian

rads = angle.to(radian)

If you are given an angle and velocity, you can make a Vector using pol2cart,

which converts from polar to Cartesian coordinates. To demonstrate, I’ll ex-

tract the angle and magnitude of A:

mag = A.mag

angle = A.angle

And then make a new Vector with the same components:

x, y = pol2cart(angle, mag)

Vector(x, y)

Another way to represent the direction of A is a unit vector, which is a vector

with magnitude 1 that points in the same direction as A. You can compute a

unit vector by dividing a vector by its magnitude:

A / A.mag

We can do the same thing using the hat function, so named because unit

vectors are conventionally decorated with a hat, like this: Â.

A.hat()

Now let’s get back to the game.

22.3 Simulating baseball flight

Let’s simulate the flight of a baseball that is batted from home plate at an

angle of 45° and initial speed 40 m/s. Using the center of home plate as the

origin, the x-axis is parallel to the ground; the y-axis is vertical. The initial

height is about 1 m.

As in Section 21.2, I’ll create a Params object that contains the parameters of

the system:
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params = Params(x = 0 * m,

y = 1 * m,

g = 9.8 * m/s**2,

mass = 145e-3 * kg,

diameter = 73e-3 * m,

rho = 1.2 * kg/m**3,

C_d = 0.3,

angle = 45 * degree,

velocity = 40 * m / s,

duration = 6 * s)

The mass, diameter, and drag coefficient of the baseball are from the sources

in Section 22.1. The acceleration of gravity, g, is a well-known quantity, and

the density of air, rho, is based on a temperature of 20 ◦C at sea level (see

http://modsimpy.com/tempress). I chose the value of duration to run the

simulation long enough for the ball to land on the ground.

The following function uses the Params object to make a System object. This

two-step process makes the code more readable and makes it easier to work

with functions like fsolve.

def make_system(condition):

unpack(params)

theta = np.deg2rad(angle)

vx, vy = pol2cart(theta, velocity)

init = State(x=x, y=y, vx=vx, vy=vy)

area = np.pi * (diameter/2)**2

return System(params, init=init, area=area)

make_system uses np.deg2rad to convert angle to radians and pol2cart to

compute the x and y components of the initial velocity. Then it makes the

initial State object, computes area, and creates the System object, which

contains all of the variables in params plus init and area.

Next we need a function to compute drag force:

http://modsimpy.com/tempress
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def drag_force(v, system):

unpack(system)

mag = rho * v.mag**2 * C_d * area / 2

direction = -v.hat()

f_drag = direction * mag

return f_drag

This function differs from the one in Section 21.3 because it takes v as a Vector

and returns f_drag as a Vector. It uses the drag equation to compute the

magnitude of the drag force, and the hat function to compute the direction.

-v.hat() computes a unit vector pointing in the opposite direction of v.

Now we’re ready for a slope function:

def slope_func(state, t, system):

x, y, vx, vy = state

unpack(system)

v = Vector(vx, vy)

a_drag = drag_force(v, system) / mass

a_grav = Vector(0, -g)

a = a_grav + a_drag

return vx, vy, a.x, a.y

As usual, the parameters of the slope function are a State object, time, and

a System object. In this example, we don’t use t, but we can’t leave it out

because when run_ode_solver calls the slope function, it always provides the

same arguments, whether they are needed or not.

The State object contains four state variables: x and y are the components

of position; vx and vy are the components of velocity.

The return values from the slope function are the derivatives of these compo-

nents. The derivative of position is velocity, so the first two return values are

just vx and vy, the values we extracted from the State object. The derivative

of velocity is acceleration, and that’s what we have to compute.
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The total acceleration of the baseball is the sum of accelerations due to gravity

and drag. These quantities have both magnitude and direction, so they are

represented by vectors Vector objects.

We already saw how a_drag is computed. a_grav is a Vector with magnitude

g pointed in the negative y direction.

Using vectors to represent forces and accelerations makes the code concise,

readable, and less error-prone. In particular, when we add a_grav and a_drag,

the directions are likely to be correct, because they are encoded in the Vector

objects. And the units are certain to be correct, because otherwise Pint would

report an error.

As always, we can test the slope function by running it with the initial condi-

tions:

slope_func(system.init, 0, system)

We can use an event function to stop the simulation when the ball hits the

ground.

def event_func(state, t, system):

x, y, vx, vy = state

return y

The event function takes the same parameters as the slope function, and re-

turns the y coordinate. When the y coordinate passes through 0, the simula-

tion stops.

Now we’re ready to run the simulation:

ts = linspace(0, system.t_end, 101)

results, details = run_ode_solver(system, slope_func,

events=event_func, max_step=0.2*s)

results is a TimeFrame object with one column for each of the state variables,

x, y, vx, and vy.

We can get the flight time like this:
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Figure 22.1: Simulated baseball flight, x and y components of position as a
function of time.

flight_time = get_last_label(results) * s

And the final x coordinate like this:

x_dist = get_last_value(results.x) * m

Notice that the results don’t have units; if we want these values to have the

correct units, we have to apply them.

22.4 Trajectories

We can plot the x and y components of position like this:

plot(results.x, label='x')

plot(results.y, label='y')

Figure 22.1 shows the result. As expected, the x component increases mono-

tonically, with decreasing velocity. The y position climbs initially and then

descends, falling slightly below 0 m after 5.1 s.
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Figure 22.2: Simulated baseball flight, trajectory plot.

Another way to view the same data is to plot the x component on the x-axis

and the y component on the y-axis, so the plotted line follows the trajectory

of the ball through the plane:

plot(results.x, results.y, label='trajectory')

Figure 22.2 shows this way of visualizing the results, which is called a trajec-

tory plot (see http://modsimpy.com/trajec).

A trajectory plot can be easier to interpret than a time series plot, because

it shows what the motion of the projectile would look like (at least from one

point of view). Both plots can be useful, but don’t get them mixed up! If you

are looking at a time series plot and interpreting it as a trajectory, you will be

very confused.

Before you go on, you might want to read the notebook for this chapter,

chap22.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.

http://modsimpy.com/trajec
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Chapter 23

Optimization

In the previous chapter we developed a model of the flight of a baseball, includ-

ing gravity and a simple version of drag, but neglecting spin, Magnus force,

and the dependence of the coefficient of drag on velocity.

In this chapter we apply that model to an optimization problem.

23.1 The Manny Ramirez problem

Manny Ramirez is a former member of the Boston Red Sox (an American

baseball team) who was notorious for a relaxed attitude and a taste for prac-

tical jokes that his managers did not always appreciate. Our objective in this

chapter is to solve the following Manny-inspired problem:

What is the minimum effort required to hit a home run in Fenway Park?

Fenway Park is a baseball stadium in Boston, Massachusetts. One of its most

famous features is the “Green Monster”, which is a wall in left field that is

unusually close to home plate, only 310 feet away. To compensate for the short

distance, the wall is unusually high, at 37 feet (see http://modsimpy.com/

wally).

We want to find the minimum velocity at which a ball can leave home plate

and still go over the Green Monster. We’ll proceed in the following steps:

http://modsimpy.com/wally
http://modsimpy.com/wally
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1. For a given velocity, we’ll find the optimal launch angle, that is, the

angle the ball should leave home plate to maximize its height when it

reaches the wall.

2. Then we’ll find the minimal velocity that clears the wall, given that it

has the optimal launch angle.

We’ll use the same model as in the previous chapter, with this Params object:

params = Params(x = 0 * m,

y = 1 * m,

g = 9.8 * m/s**2,

mass = 145e-3 * kg,

diameter = 73e-3 * m,

rho = 1.2 * kg/m**3,

C_d = 0.3,

angle = 45 * degree,

velocity = 40 * m / s,

t_end = 20 * s)

This version of make_system:

def make_system(condition):

unpack(params)

theta = np.deg2rad(angle)

vx, vy = pol2cart(theta, velocity)

init = State(x=x, y=y, vx=vx, vy=vy)

area = np.pi * (diameter/2)**2

return System(params, init=init, area=area)

This slope function:
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def slope_func(state, t, system):

x, y, vx, vy = state

unpack(system)

V = Vector(vx, vy)

a_drag = drag_force(V, system) / mass

a_grav = Vector(0, -g)

a = a_grav + a_drag

return vx, vy, a.x, a.y

And this event function:

def event_func(state, t, system):

x, y, vx, vy = state

return y

23.2 Finding the range

Suppose we want to find the launch angle that maximizes range, that is, the

distance the ball travels in the air before landing. We’ll use a function in the

modsim library, max_bounded, which takes a function and finds its maximum.

The function we pass to max_bounded should take launch angle and a params

object, and return range:

def range_func(angle, params):

params = Params(params, angle=angle)

system = make_system(params)

results, details = run_ode_solver(system, slope_func,

events=event_func)

x_dist = get_last_value(results.x) * m

return x_dist

range_func makes a new Params object with the given value of angle. Then

it makes a System object, calls run_ode_solver, and returns the final value

of x from the results.
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Figure 23.1: Distance from home plate as a function of launch angle, with
fixed velocity.

We can call range_func directly like this:

range_func(45, params)

And we can sweep a sequence of angles like this:

angles = linspace(20, 80, 21)

sweep = SweepSeries()

for angle in angles:

x_dist = range_func(angle, params)

print(angle, x_dist)

sweep[angle] = x_dist

Figure 23.1 shows the results. It looks like the optimal angle is between 40°
and 45°.

We can find the optimal angle more precisely and more efficiently using max_bounded,

like this:
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res = max_bounded(range_func, [0, 90], params)

The first parameter is the function we want to maximize. The second is the

range of values we want to search; in this case it’s the range of angles from

0° to 90°. The third argument can be any object; it gets passed along as an

argument when max_bounded calls range_func.

The return value from max_bounded is an ModSimSeries that contains the

results, including x, which is the angle that yielded the highest range, and

fun, which is the value of range_func when it’s evaluated at x, that is, range

when the baseball is launched at the optimal angle.

For these parameters, the optimal angle is 41.1°, which yields a range of

103.4 m.

23.3 Finishing off the problem

In the notebook for this chapter, chap22.ipynb, you’ll have to chance to finish

off the Manny Ramirez problem. There are a few things you’ll have to do:

� In the previous section the “optimal” launch angle is the one that max-

imizes range, but that’s not what we want. Rather, we want the angle

that maximizes the height of the ball when it gets to the wall (310 feet

from home plate). So you’ll have to write a height function to compute

it, and then use max_bounded to find the revised optimum.

� Once you can find the optimal angle for any velocity, you have to find the

minimum velocity that gets the ball over the wall. You’ll write a function

that takes a velocity as a parameter, computes the optimal angle for that

velocity, and returns the height of the ball, at the wall, using the optimal

angle.

� Finally, you’ll use fsolve to find the velocity that makes the optimal

height at the wall just barely 37 feet.

The notebook provides some additional hints, but at this point you should

have everything you need. Good luck!
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If you enjoy this exercise, you might be interested in this paper: “How to

hit home runs: Optimum baseball bat swing parameters for maximum range

trajectories”, by Sawicki, Hubbard, and Stronge, at http://modsimpy.com/

runs.

http://modsimpy.com/runs
http://modsimpy.com/runs
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Rotation

In this chapter we model systems that involve rotating objects. In general,

rotation is complicated: in three dimensions, objects can rotate around three

axes; objects are often easier to spin around some axes than others; and they

may be stable when spinning around some axes but not others.

If the configuration of an object changes over time, it might become easier or

harder to spin, which explains the surprising dynamics of gymnasts, divers,

ice skaters, etc.

And when you apply a twisting force to a rotating object, the effect is often

contrary to intuition. For an example, see this video on gyroscopic precession

http://modsimpy.com/precess.

In this chapter, we will not take on the physics of rotation in all its glory.

Rather, we will focus on simple scenarios where all rotation and all twisting

forces are around a single axis. In that case, we can treat some vector quantities

as if they were scalars (in the same way that we sometimes treat velocity as a

scalar with an implicit direction).

This approach makes it possible to simulate and analyze many interesting

systems, but you will also encounter systems that would be better approached

with the more general toolkit.

The fundamental ideas in this chapter and the next are angular velocity,

angular acceleration, torque, and moment of inertia. If you are not

http://modsimpy.com/precess
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r

r dθdθ

Figure 24.1: Diagram of a roll of toilet paper, showing change in paper length
as a result of a small rotation, dθ.

already familiar with these concepts, I will define them as we go along, and I

will point to additional reading.

At the end of the next chapter, you will use these tools to simulate the behavior

of a yo-yo (see http://modsimpy.com/yoyo). But we’ll work our way up to

it gradually, starting with toilet paper.

24.1 The physics of toilet paper

As a simple example of a system with rotation, we’ll simulate the manufacture

of a roll of toilet paper. Starting with a cardboard tube at the center, we will

roll up 47 m of paper, the typical length of a roll of toilet paper in the U.S.

(see http://modsimpy.com/paper).

Figure 24.1 shows a diagram of the system: r represents the radius of the roll

at a point in time. Initially, r is the radius of the cardboard core, Rmin. When

the roll is complete, r is Rmax.

I’ll use θ to represent the total rotation of the roll in radians. In the diagram,

dθ represents a small increase in θ, which corresponds to a distance along the

circumference of the roll of r dθ.

http://modsimpy.com/yoyo
http://modsimpy.com/paper
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Finally, I’ll use y to represent the total length of paper that’s been rolled.

Initially, θ = 0 and y = 0. For each small increase in θ, there is a corresponding

increase in y:

dy = r dθ

If we divide both sides by a small increase in time, dt, we get a differential

equation for y as a function of time.

dy

dt
= r

dθ

dt

As we roll up the paper, r increases, too. Assuming that r increases by a fixed

amount per revolution, we can write

dr = k dθ

Where k is an unknown constant we’ll have to figure out. Again, we can divide

both sides by dt to get a differential equation in time:

dr

dt
= k

dθ

dt

Finally, let’s assume that θ increases at a constant rate of 10 rad/s (about 95

revolutions per minute):
dθ

dt
= 10

This rate of change is called an angular velocity. Now we have a system of

three differential equations we can use to simulate the system.

24.2 Implementation

At this point we have a pretty standard process for writing simulations like

this. First, we’ll get the units we need from Pint:

radian = UNITS.radian

m = UNITS.meter

s = UNITS.second

And create a Params object with the parameters of the system:
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params = Params(Rmin = 0.02 * m,

Rmax = 0.055 * m,

L = 47 * m,

t_end = 130 * s)

Rmin and Rmax are the initial and final values for the radius, r. L is the total

length of the paper, and t_end is the length of the simulation in time.

Then we use the Params object to make a System object:

def make_system(params):

unpack(params)

init = State(theta = 0 * radian,

y = 0 * m,

r = Rmin)

k = estimate_k(params)

return System(init=init, k=k, t_end=t_end)

The initial state contains three variables, theta, y, and r.

To get started, we’ll estimate a reasonable value for k; then in Section 24.3

we’ll figure it out exactly. Here’s how we compute the estimate:

def estimate_k(params):

unpack(params)

Ravg = (Rmax + Rmin) / 2

Cavg = 2 * pi * Ravg

revs = L / Cavg

rads = 2 * pi * revs

k = (Rmax - Rmin) / rads

return k

Ravg is the average radius, half way between Rmin and Rmax, so Cavg is the

circumference of the roll when r is Ravg.
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revs is the total number of revolutions it would take to roll up length L if r

were constant at Ravg. And rads is just revs converted to radians.

Finally, k is the change in r for each radian of revolution. For these parameters,

k is about 2.8e-5 m/rad.

Now we can use the differential equations from Section 24.1 to write a slope

function:

def slope_func(state, t, system):

theta, y, r = state

unpack(system)

omega = 10 * radian / s

dydt = r * omega

drdt = k * omega

return omega, dydt, drdt

As usual, the slope function takes a State object, a time, and a System object.

The State object contains hypothetical values of theta, y, and r at time t.

The job of the slope function is to compute the time derivatives of these values.

The time derivative of theta is angular velocity, which is often denoted omega.

We’d like to stop the simulation when the length of paper on the roll is L. We

can do that with an event function that passes through 0 when y equals L:

def event_func(state, t, system):

theta, y, r = state

unpack(system)

return y - L

Now we can run the simulation like this:

results, details = run_ode_solver(system, slope_func,

events=event_func, max_step=1*s)

Figure 24.2 shows the results. theta grows linearly over time, as we should

expect. As a result, r also grows linearly. But since the derivative of y depends

on r, and r is increasing, y grows with increasing slope.
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Figure 24.2: Results from paper rolling simulation, showing rotation, length,
and radius over time.

Because this system is so simple, it is almost silly to simulate it. As we’ll

see in the next section, it is easy enough to solve the differential equations

analytically. But it is often useful to start with a simple simulation as a way

of exploring and checking assumptions.

In order to get the simulation working, we have to get the units right, which can

help catch conceptual errors early. And by plugging in realistic parameters,

we can detect errors that cause unrealistic results. For example, in this system

we can check:

� The total time for the simulation is about 2 minutes, which seems plau-

sible for the time it would take to roll 47 m of paper.
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� The final value of theta is about 1250 rad, which corresponds to about

200 revolutions, which also seems plausible.

� The initial and final values for r are consistent with Rmin and Rmax, as

we intended when we chose k.

But now that we have a working simulation, it is also useful to do some analysis.

24.3 Analysis

The differential equations in Section 24.1 are simple enough that we can just

solve them. Since angular velocity is constant:

dθ

dt
= ω

We can find θ as a function of time by integrating both sides:

θ(t) = ωt+ C1

With the initial condition θ(0) = 0, we find C1 = 0. Similarly,

dr

dt
= kω (24.1)

So

r(t) = kωt+ C2

With the initial condition r(0) = Rmin, we find C2 = Rmin. Then we can plug

the solution for r into the equation for y:

dy

dt
= rω (24.2)

= [kωt+Rmin]ω

Integrating both sides yields:

y(t) =
[
kωt2/2 +Rmint

]
ω + C3

So y is a parabola, as you might have guessed. With initial condition y(0) = 0,

we find C3 = 0.
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We can also use these equations to find the relationship between y and r,

independent of time, which we can use to compute k. Using a move we saw in

Section 14.2, I’ll divide Equations 24.1 and 24.2, yielding

dr

dy
=
k

r

Separating variables yields

r dr = k dy

Integrating both sides yields

r2/2 = ky + C

When y = 0, r = Rmin, so

C =
1

2
R2

min

Solving for y, we have

y =
1

2k
(r2 −R2

min) (24.3)

When y = L, r = Rmax; substituting in those values yields

L =
1

2k
(R2

max −R2
min)

Solving for k yields

k =
1

2L
(R2

max −R2
min) (24.4)

Plugging in the values of the parameters yields 2.8e-5 m/rad, the same as

the “estimate” we computed in Section 24.2. In this case the estimate turns

out to be exact.

In the next chapter, we’ll run the simulation the other way, unrolling the paper.

Before you go on, you might want to read the notebook for this chapter,

chap24.ipynb, and work on the exercises. For instructions on downloading

and running the code, see Section 0.4.
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Torque

In the previous chapter we modeled a scenario with constant angular velocity.

In this chapter we make it more complex; we’ll model a teapot, on a turntable,

revolving with constant angular acceleration and deceleration.

25.1 Angular acceleration

Just as linear acceleration is the derivative of velocity, angular acceleration

is the derivative of angular velocity. And just as linear acceleration is caused

by force, angular acceleration is caused by the rotational version of force,

torque. If you are not familiar with torque, you can read about it at http:

//modsimpy.com/torque.

In general, torque is a vector quantity, defined as the cross product of ~r and
~F , where ~r is the lever arm, a vector from the point of rotation to the point

where the force is applied, and ~F is the vector that represents the magnitude

and direction of the force.

However, for the problems in this chapter, we only need the magnitude of

torque; we don’t care about the direction. In that case, we can compute

τ = rF sin θ

where τ is torque, r is the length of the lever arm, F is the magnitude of force,

and θ is the angle between ~r and ~F .

http://modsimpy.com/torque
http://modsimpy.com/torque
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Since torque is the product of a length and a force, it is expressed in newton

meters (N m).

25.2 Moment of inertia

In the same way that linear acceleration is related to force by Newton’s second

law of motion, F = ma, angular acceleration is related to torque by another

form of Newton’s law:

τ = Iα

Where α is angular acceleration and I is moment of inertia. Just as mass is

what makes it hard to accelerate an object1, moment of inertia is what makes

it hard to spin an object.

In the most general case, a 3-D object rotating around an arbitrary axis,

moment of inertia is a tensor, which is a function that takes a vector as a

parameter and returns a vector as a result.

Fortunately, in a system where all rotation and torque happens around a single

axis, we don’t have to deal with the most general case. We can treat moment

of inertia as a scalar quantity.

For a small object with mass m, rotating around a point at distance r, the

moment of inertia is I = mr2, in SI units kg m2. For more complex objects, we

can compute I by dividing the object into small masses, computing moments

of inertia for each mass, and adding them up.

However, for most simple shapes, people have already done the calculations;

you can just look up the answers. For example, see http://modsimpy.com/

moment.

25.3 Teapots and turntables

Tables in Chinese restaurants often have a rotating tray or turntable that

makes it easy for customers to share dishes. These turntables are supported

1That might sound like a dumb way to describe mass, but its actually one of the funda-
mental definitions.

http://modsimpy.com/moment
http://modsimpy.com/moment
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by low-friction bearings that allow them to turn easily and glide. However,

they can be heavy, especially when they are loaded with food, so they have a

high moment of inertia.

Suppose I am sitting at a table with a pot of tea on the turntable directly

in front of me, and the person sitting directly opposite asks me to pass the

tea. I push on the edge of the turntable with 1 N of force until it has turned

0.5 rad, then let go. The turntable glides until it comes to a stop 1.5 rad from

the starting position. How much force should I apply for a second push so the

teapot glides to a stop directly opposite me?

We’ll answer this question in these steps:

1. I’ll use the results from the first push to estimate the coefficient of friction

for the turntable.

2. As an exercise, you’ll use that coefficient of friction to estimate the force

needed to rotate the turntable through the remaining angle.

Our simulation will use the following parameters:

1. The radius of the turntable is 0.5 m, and its weight is 7 kg.

2. The teapot weights 0.3 kg, and it sits 0.4 m from the center of the

turntable.

Figure 25.1 shows the scenario, where F is the force I apply to the turntable

at the perimeter, perpendicular to the moment arm, r, and τ is the resulting

torque. The blue circle near the bottom is the teapot.

Here’s a Params object with these values

params = Params(radius_disk=0.5*m,

mass_disk=7*kg,

radius_pot=0.4*m,

mass_pot=0.3*kg,

force=1*N,

torque_friction=0.2*N*m,

theta_end=0.5*radian)
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Figure 25.1: Diagram of a turntable with a teapot.

make_system creates the initial state, init, and computes the total moment

of inertia for the turntable and the teapot.

def make_system(params):

unpack(params)

init = State(theta=0, omega=0)

I_disk = mass_disk * radius_disk**2 / 2

I_pot = mass_pot * radius_pot**2

return System(params, init=init, t_end=20*s,

I=I_disk+I_pot)

theta represents the initial angle of the table, in rad; omega represents the

angular velocity in rad/s.

I_disk is the moment of inertia of the turntable, which is based on the moment

of inertia for a horizontal disk revolving around a vertical axis through its

center:

Idisk = mr2/2

I_pot is the moment of inertia of the teapot, which I treat as a point mass
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with:

Ipoint = mr2

Now we can make a System object:

system1 = make_system(params)

Here’s a slope that takes the current state, which contains angle and angular

velocity, and returns the derivatives, angular velocity and angular acceleration:

def slope_func(state, t, system):

theta, omega = state

unpack(system)

torque = radius_disk * force - torque_friction

alpha = torque / I

return omega, alpha

In this scenario, the force I apply to the turntable is always perpendicular to

the lever arm, so sin θ = 1 and the torque due to force is τ = rF .

In a more detailed model, I might quantify force due to friction and the moment

arm of that force, but that’s not really necessary; instead, I chose to quantify

torque due to friction, leaving out the details.

Now we are ready to run the simulation, but first there’s a problem we have

to address.

When I stop pushing on the turntable, the angular acceleration changes abruptly.

We could implement the slope function with an if statement that checks the

value of theta and sets force accordingly. And for a coarse model like this

one, that might be fine. But we will get more accurate results if we simulate

the system in two phases:

1. During the first phase, force is constant, and we run until theta is 0.5

radians.

2. During the second phase, force is 0, and we run until omega is 0.
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Then we can combine the results of the two phases into a single TimeFrame.

Here’s the event function I’ll use for Phase 1; it stops the simulation when

theta reaches theta_end, which is when I stop pushing:

def event_func1(state, t, system):

theta, omega = state

unpack(system)

return theta - theta_end

Now we can run the first phase.

results1, details1 = run_ode_solver(system1, slope_func,

events=event_func1, max_step=0.1*s)

Again, I specify max_step so the results look smoother when I plot them, at

the cost of some extra computation.

Before we run the second phase, we have to extract the final time and state of

the first phase.

t_0 = get_last_label(results1) * s

theta, omega = get_last_value(results1)

init2 = State(theta=theta*radian, omega=omega*radian/s)

Now we can make a System object for Phase 2, with the initial state from

Phase 1, and with force=0.

system2 = System(system1, t_0=t_0, init=init2, force=0)

For the second phase, we need an event function that stops when the turntable

stops; that is, when angular velocity is 0.

def event_func2(state, t, system):

theta, omega = state

return omega

Now we can run the second phase.
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Figure 25.2: Angle and angular velocity of a turntable with applied force and
friction.
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results2, details2 = run_ode_solver(system2, slope_func,

events=event_func2, max_step=0.1*s)

Pandas provides combine_first, which combines results1 and results2.

results = results1.combine_first(results2)

Figure 25.2 shows the results. Angular velocity, omega, increases linearly while

I am pushing, and decreases linearly after I let go. The angle, theta, is the

integral of angular velocity, so it forms a parabola during each phase.

In the next section, we’ll use this simulation to estimate the torque due to

friction.

25.4 Estimating friction

Let’s take the code from the previous section and wrap it in a function.
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def run_two_phases(force, torque_friction, params):

params = Params(params, force=force,

torque_friction=torque_friction)

# run phase 1

system1 = make_system(params)

results1, _ = run_ode_solver(system1, slope_func,

events=event_func1, max_step=0.1*s)

# get the final state from phase 1

t_0 = get_last_label(results1) * s

theta, omega = get_last_value(results1)

init2 = State(theta=theta, omega=omega)

# run phase 2

system2 = System(system1, t_0=t_0, init=init2, force=0)

results2, _ = run_ode_solver(system2, slope_func,

events=event_func2, max_step=0.1*s)

# combine and return the results

results = results1.combine_first(results2)

return results

Now we can use run_two_phases to write an error function we can use, with

fsolve, to find the torque due to friction that yields the observed results from

the first push, a total rotation of 1.5 rad.

def error_func1(torque_friction, params):

force = 1

results = run_two_phases(force, torque_friction, params)

theta_final = get_last_value(results.theta)

print(torque_friction, theta_final)

return theta_final - 1.5

But before we call fsolve, we have to deal with a problem. In order to

support computation with units, the modsim library uses a certain amount of

black magic. With most units, the magic works pretty well, but some units

are problematic, including Newtons.
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However, now that we have a working simulation, and some confidence that it

is correct, it is less important to carry units through the computation.

We can drop them by creating a new Params object with the same values and

no units. The modsim library provides remove_unit, which does just that.

params_nodim = remove_units(params)

The rest of the code works without modification, in part because I designed it

to keep almost all of the units in one place.

Now we can use fsolve to estimate torque due to friction.

guess = 0.2

res = fsolve(error_func1, guess, params_nodim)

The result is 0.166 N m, a little less than the initial guess.

Now that we know the torque due to friction, we can compute the force needed

to rotate the turntable through the remaining angle, that is, from 1.5 rad to

3.14 rad.

In the notebook for this chapter, chap25.ipynb, you will have a chance to

finish off the exercise. For instructions on downloading and running the code,

see Section 0.4.



Chapter 26

Case studies

26.1 Computational tools

In Chapter 20 we rewrote a second order differential equation as a system of

first order equations, and solved them using a slope function like this:

def slope_func(state, t, system):

y, v = state

unpack(system)

dydt = v

dvdt = -g

return dydt, dvdt

We used the crossings function to search for zero-crossings in the simulation

results.

Then we used an event function like this:

def event_func(state, t, system):

y, v = state

return y
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To stop the simulation when an event occurs. Notice that the event function

takes the same parameters as the slope function.

In Chapter 21 we developed a model of air resistance and used a Params object,

which is a collection of parameters:

params = Params(height = 381 * m,

v_init = 0 * m / s,

g = 9.8 * m/s**2,

mass = 2.5e-3 * kg,

diameter = 19e-3 * m,

rho = 1.2 * kg/m**3,

v_term = 18 * m / s)

And we saw a new way to create a System object, copying the variables from

a Params object and adding or changing variables:

return System(params, area=area, C_d=C_d,

init=init, t_end=t_end)

We also used the gradient function to estimate acceleration, given velocity:

a = gradient(results.v)

Chapter 22 introduces Vector objects, which can represent vector quantities,

like position, velocity, force, and acceleration, in 2 or 3 dimensions.

A = Vector(3, 4) * m

It also introduces trajectory plots, which show the path of an object in two

dimensions:

plot(results.x, results.y, label='trajectory')

In Chapter 23 we define a range function that computes the distance a baseball

flies as a function of launch angle:
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def range_func(angle, params):

params = Params(params, angle=angle)

system = make_system(params)

results, details = run_ode_solver(system, slope_func,

events=event_func)

x_dist = get_last_value(results.x) * m

return x_dist

Then we use max_bounded to find the launch angle that maximizes range:

res = max_bounded(range_func, [0, 90], params)

With that, your toolkit is complete. Chapter 24 and Chapter 25 introduce the

physics of rotation, but no new computational tools.

26.2 Under the hood

The crossings function uses InterpolatedUnivariateSpline from SciPy,

which provides a roots function that finds zero-crossings. It uses a cubic

spline to interpolate between the time steps of the ODE solution.

The Params object is identical to the System object in all but name, and based

on a Pandas Series. I sometimes find it useful to use Params objects to create

System objects, but it is not necessary.

The Vector object is a Quantity, as defined by Pint, so it normally has units.

It contains a NumPy array that contains the coordinates. So most vector

arithmetic is really array arithmetic.

max_bounded uses the SciPy function minimize_scalar, which uses Brent’s

method. You can read about it at http://modsimpy.com/minimize).

26.3 Bungee dunk revisited

In Chapter 21, we simulated a bungee jump with a model that took into

account gravity, air resistance, and the spring force of the bungee cord, but

we ignored the weight of the cord.

http://modsimpy.com/minimize


222 Chapter 26 Case studies

It is tempting to say that the cord has no effect because it falls along with the

jumper, but that intuition is incorrect. As the cord falls, it transfers energy

to the jumper.

At http://modsimpy.com/bungee you’ll find a paper1 that explains this phe-

nomenon and derives the acceleration of the jumper, a, as a function of posi-

tion, y, and velocity, v:

a = g +
µv2/2

µ(L+ y) + 2L

where g is acceleration due to gravity, L is the length of the cord, and µ is the

ratio of the mass of the cord, m, and the mass of the jumper, M .

If you don’t believe that their model is correct, this video might convince you:

http://modsimpy.com/drop.

Modify the code from Chapter 21 to model this effect. How does the behavior

of the system change as we vary the mass of the cord? When the mass of the

cord equals the mass of the jumper, what is the net effect on the lowest point

in the jump?

26.4 Spiderman

In this case study we’ll develop a model of Spider-Man swinging from a springy

cable of webbing attached to the top of the Empire State Building. Initially,

Spider-Man is at the top of a nearby building, as shown in Figure 26.1.

The origin, O, is at the base of the Empire State Building. The vector H

represents the position where the webbing is attached to the building, relative

to O. The vector P is the position of Spider-Man relative to O. And L is the

vector from the attachment point to Spider-Man.

By following the arrows from O, along H, and along L, we can see that

H + L = P

1Heck, Uylings, and Kdzierska, “Understanding the physics of bungee jumping”, Physics
Education, Volume 45, Number 1, 2010.

http://modsimpy.com/bungee
http://modsimpy.com/drop
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Figure 26.1: Diagram of the initial state for the Spider-Man case study.

So we can compute L like this:

L = P - H

The goals of this case study are:

1. Implement a model of this scenario to predict Spider-Man’s trajectory.

2. Choose the right time for Spider-Man to let go of the webbing in order

to maximize the distance he travels before landing.

3. Choose the best angle for Spider-Man to jump off the building, and let

go of the webbing, to maximize range.

We’ll use the following parameters:

1. According to the Spider-Man Wiki2, Spider-Man weighs 76 kg.

2. Let’s assume his terminal velocity is 60 m/s.

3. The length of the web is 100 m.

4. The initial angle of the web is 45° to the left of straight down.

2http://modsimpy.com/spider

http://modsimpy.com/spider
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r
F

 τ

Figure 26.2: Diagram of a roll of toilet paper, showing a force, lever arm, and
the resulting torque.

5. The spring constant of the web is 40 N/m when the cord is stretched,

and 0 when it’s compressed.

In the repository for this book, you will find a notebook, spiderman.ipynb,

which contains starter code. Read through the notebook and run the code. It

uses minimize, which is a SciPy function that can search for an optimal set

of parameters (as contrasted with min_bounded, which can only search along

a single axis).

26.5 Kittens

Let’s simulate a kitten unrolling toilet paper. As reference material, see this

video: http://modsimpy.com/kitten.

The interactions of the kitten and the paper roll are complex. To keep things

simple, let’s assume that the kitten pulls down on the free end of the roll with

constant force. Also, we will neglect the friction between the roll and the axle.

Figure 26.2 shows the paper roll with r, F , and τ . As a vector quantity, the

direction of τ is into the page, but we only care about its magnitude for now.

Here’s the Params object with the parameters we’ll need:

http://modsimpy.com/kitten
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params = Params(Rmin = 0.02 * m,

Rmax = 0.055 * m,

Mcore = 15e-3 * kg,

Mroll = 215e-3 * kg,

L = 47 * m,

tension = 2e-4 * N,

t_end = 180 * s)

As before, Rmin is the minimum radius and Rmax is the maximum. L is the

length of the paper. Mcore is the mass of the cardboard tube at the center of

the roll; Mroll is the mass of the paper. tension is the force applied by the

kitten, in N. I chose a value that yields plausible results.

At http://modsimpy.com/moment you can find moments of inertia for simple

geometric shapes. I’ll model the cardboard tube at the center of the roll as a

“thin cylindrical shell”, and the paper roll as a “thick-walled cylindrical tube

with open ends”.

The moment of inertia for a thin shell is just mr2, where m is the mass and r

is the radius of the shell.

For a thick-walled tube the moment of inertia is

I =
πρh

2
(r42 − r41)

where ρ is the density of the material, h is the height of the tube, r2 is the

outer diameter, and r1 is the inner diameter.

Since the outer diameter changes as the kitten unrolls the paper, we have to

compute the moment of inertia, at each point in time, as a function of the

current radius, r. Here’s the function that does it:

def moment_of_inertia(r, system):

unpack(system)

Icore = Mcore / 2 * Rmin**2

Iroll = pi * rho_h / 2 * (r**4 - Rmin**4)

return Icore + Iroll

rho_h is the product of density and height, ρh, which is the mass per area.

rho_h is computed in make_system:

http://modsimpy.com/moment
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def make_system(params):

unpack(params)

init = State(theta = 0 * radian,

omega = 0 * radian/s,

y = L)

area = pi * (Rmax**2 - Rmin**2)

rho_h = Mroll / area

k = (Rmax**2 - Rmin**2) / 2 / L / radian

return System(init=init, k=k, rho_h=rho_h,

Rmin=Rmin, Rmax=Rmax,

Mcore=Mcore, Mroll=Mroll,

t_end=t_end)

make_system also computes k using Equation 24.4.

In the repository for this book, you will find a notebook, kitten.ipynb, which

contains starter code for this case study. Use it to implement this model and

check whether the results seem plausible.

26.6 Simulating a yo-yo

Suppose you are holding a yo-yo with a length of string wound around its axle,

and you drop it while holding the end of the string stationary. As gravity

accelerates the yo-yo downward, tension in the string exerts a force upward.

Since this force acts on a point offset from the center of mass, it exerts a torque

that causes the yo-yo to spin.

Figure 26.3 is a diagram of the forces on the yo-yo and the resulting torque.

The outer shaded area shows the body of the yo-yo. The inner shaded area

shows the rolled up string, the radius of which changes as the yo-yo unrolls.

In this model, we can’t figure out the linear and angular acceleration indepen-
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Figure 26.3: Diagram of a yo-yo showing forces due to gravity and tension in
the string, the lever arm of tension, and the resulting torque.

dently; we have to solve a system of equations:∑
F = ma∑
τ = Iα

where the summations indicate that we are adding up forces and torques.

As in the previous examples, linear and angular velocity are related because

of the way the string unrolls:

dy

dt
= −rdθ

dt

In this example, the linear and angular accelerations have opposite sign. As

the yo-yo rotates counter-clockwise, θ increases and y, which is the length of

the rolled part of the string, decreases.

Taking the derivative of both sides yields a similar relationship between linear

and angular acceleration:
d2y

dt2
= −rd

2θ

dt2

Which we can write more concisely:

a = −rα
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This relationship is not a general law of nature; it is specific to scenarios like

this where there is rolling without stretching or slipping.

Because of the way we’ve set up the problem, y actually has two meanings: it

represents the length of the rolled string and the height of the yo-yo, which

decreases as the yo-yo falls. Similarly, a represents acceleration in the length

of the rolled string and the height of the yo-yo.

We can compute the acceleration of the yo-yo by adding up the linear forces:∑
F = T −mg = ma

Where T is positive because the tension force points up, and mg is negative

because gravity points down.

Because gravity acts on the center of mass, it creates no torque, so the only

torque is due to tension: ∑
τ = Tr = Iα

Positive (upward) tension yields positive (counter-clockwise) angular acceler-

ation.

Now we have three equations in three unknowns, T , a, and α, with I, m, g,

and r as known quantities. It is simple enough to solve these equations by

hand, but we can also get SymPy to do it for us:

T, a, alpha, I, m, g, r = symbols('T a alpha I m g r')

eq1 = Eq(a, -r * alpha)

eq2 = Eq(T - m*g, m * a)

eq3 = Eq(T * r, I * alpha)

soln = solve([eq1, eq2, eq3], [T, a, alpha])

The results are

T = mgI/I∗

a = −mgr2/I∗

α = mgr/I∗
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where I∗ is the augmented moment of inertia, I+mr2. To simulate the system,

we don’t really need T ; we can plug a and α directly into the slope function.

In the repository for this book, you will find a notebook, yoyo.ipynb, which

contains the derivation of these equations and starter code for this case study.

Use it to implement and test this model.
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