


2 

 

R.S. Johnson

Integration and differential equations

Download free eBooks at bookboon.com



3 

 

Integration and differential equations
© 2012 R.S. Johnson & bookboon.com
ISBN 978-87-7681-970-5

Download free eBooks at bookboon.com

http://bookboon.com


Integration and differential equations

4 

Contents

Contents
	 Preface to these two texts	 8

Part I	 An introduction to the standard methods of elementary integration	 9

	 List of Integrals	 10

	 Preface	 11

1	 Introduction and Background	 12
1.1	 The Riemann integral	 12
1.2	 The fundamental theorem of calculus	 17
1.4	 Theorems on integration	 19
1.5	 Standard integrals	 23
1.6	 Integration by parts	 26
1.7	 Improper integrals	 32
1.8	 Non-uniqueness of representation	 35
	 Exercises 1	 36

2	� The integration of rational functions	 38
2.1	 Improper fractions	 38
2.2	 Linear denominator, Q(x)	 39

Download free eBooks at bookboon.com

Click on the ad to read more

www.sylvania.com

We do not reinvent  
the wheel we reinvent 
light.
Fascinating lighting offers an infinite spectrum of 
possibilities: Innovative technologies and new  
markets provide both opportunities and challenges. 
An environment in which your expertise is in high 
demand. Enjoy the supportive working atmosphere 
within our global group and benefit from international 
career paths. Implement sustainable ideas in close 
cooperation with other specialists and contribute to 
influencing our future. Come and join us in reinventing 
light every day.

Light is OSRAM

http://s.bookboon.com/osram


Integration and differential equations

5 

Contents

2.3	 Quadratic denominator, Q(x)	 41
2.4	 Cubic denominator, Q(x)	 44
	 Exercises 2	 48

3	� The integration of trigonometric functions	 49
3.1	 Simple products	 49
3.2	 Powers of sin and cos	 50
3.3	 Rational functions of sin and cos	 54
	 Exercises 3	 56

	 Answers	 58

Part II	 The integration of ordinary differential equations	 60

	 List of Equations	 61

	 Preface	 62

1	 What is a differential equation ?	 63
1.1	 The nature and solution of differential equations	 63
1.2	 Classification of ODEs 	 63
1.3	 Overview of the equations to be discussed	 65

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read more

EADS unites a leading aircraft manufacturer, the world’s largest 
helicopter supplier, a global leader in space programmes and a 
worldwide leader in global security solutions and systems to form 
Europe’s largest defence and aerospace group. More than 
140,000 people work at Airbus, Astrium, Cassidian and Eurocopter, 
in 90 locations globally, to deliver some of the industry’s most 
exciting projects.

An EADS internship offers the chance to use your theoretical 
knowledge and apply it first-hand to real situations and assignments 
during your studies. Given a high level of responsibility, plenty of 

learning and development opportunities, and all the support you need, 
you will tackle interesting challenges on state-of-the-art products.

We welcome more than 5,000 interns every year across 
disciplines ranging from engineering, IT, procurement and 
finance, to strategy, customer support, marketing and sales. 
Positions are available in France, Germany, Spain and the UK.

To find out more and apply, visit www.jobs.eads.com. You can also 
find out more on our EADS Careers Facebook page.

Internship opportunities

CHALLENGING PERSPECTIVES

http://www.jobs.eads.com


Integration and differential equations

6 

Contents

2	 First order ODEs: standard results	 67
2.1	 Separable equations	 67
2.2	 Homogeneous equations	 69
2.3	 The general linear equation	 73

3	� First order ODEs: special equations	 79
3.1	 The Bernoulli equation	 79
3.2	 The Clairaut equation	 80
3.3	 The Riccati equation	 84
3.4	 Exact differentials	 87
3.5	 Missing variables	 90

4	 Second order ODEs	 93
4.1	 Constant coefficient equations	 93
4.2	 The Euler equation	 96
4.3	 Reduction of order	 98
4.4	 Variation of parameters	 100
4.5	 Finding particular integrals directly	 102
4.6	 Missing variables	 105
	 Exercises 4	 107

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read more

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 
© Deloitte & Touche LLP and affiliated entities.

360°
thinking.

Discover the truth at www.deloitte.ca/careers 

http://www.deloitte.ca/careers


Integration and differential equations

7 

Contents

5	 More general aspects of ODEs	 108
5.1	 Interchanging x and y	 108
5.2	 Singular solutions	 109
5.3	 Uniqueness 	 112
	 Exercises 5	 116

	 Answers	 117

	 Index	 119

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

We will turn your CV into 
an opportunity of a lifetime

Do you like cars? Would you like to be a part of a successful brand?
We will appreciate and reward both your enthusiasm and talent.
Send us your CV. You will be surprised where it can take you.

Send us your CV on
www.employerforlife.com

http://www.employerforlife.com


Preface to these two texts
These two texts in this one cover, entitled ‘An introduction to the standard methods of elementary integration’ (Part I) 
and ‘The integration of ordinary differential equations’ (Part II), are two of the ‘Notebook’ series available as additional 
and background reading to students at Newcastle University (UK). This pair constitutes a basic introduction to both 
the elementary methods of integration, and also the application of some of these techniques to the solution of standard 
ordinary differential equations. Thus the first is a natural precursor to the second, but each could be read independently.

Each text is designed to be equivalent to a traditional text, or part of a text, which covers the relevant material, with many 
worked examples and some set exercises (for which the answers are provided). The necessary background is described in 
the preface to each Part, and there is a comprehensive index, covering the two parts, at the end.
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List of Integrals
This is a list of the integrals, and related problems, that constitute the worked examples considered here.

List of Integrals 

This is a list of the integrals, and related problems, that constitute the worked examples 
considered here. 
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Preface
The material presented here is intended to provide an introduction to the methods for the integration of elementary 
functions. This topic is fundamental to many modules that contribute to a modern degree in mathematics and related 
studies – and especially those with a mathematical methods/applied/physics/engineering slant. The material has been 
written to provide a general introduction to the relevant ideas, and not as a text linked to a specific course of study that 
makes use of integration. Indeed, the intention is to present the material so that it can be used as an adjunct to a number 
of different modules or courses – or simply to help the reader gain a broader experience of, and an improved level of 
skill in, these important mathematical ideas. The aim is to go a little beyond the routine methods and techniques that 
are usually presented in conventional modules, but all the standard ideas are discussed (and can be accessed through the 
comprehensive index). This material should therefore prove a useful aid to those who want more practice, and also to 
those who would value a more complete and systematic presentation of the standard methods of integration.

It is assumed that the reader has a basic knowledge of, and practical experience in, the methods of integration that are 
typically covered at A-level (or anything equivalent), although the presentation used here ensures that the newcomer 
should not be at a loss. It is, however, necessary that the reader has met the simplest ideas (and results) that underpin the 
differential calculus, and to have met partial fractions. This brief notebook does not attempt to include any applications 
of integration; this is properly left to a specific module that might be offered, most probably, in a conventional applied 
mathematics or engineering mathematics or physics programme. However, there is much to be gained by a more formal 
‘pure mathematical’ introduction to these ideas, and so we will touch on this at the start of Chapter 1. Some of the methods 
are employed in the integration of ordinary differential equations, which comprises Part II of this text.

The approach adopted here is to present some general ideas, which initially involve a notation, a definition, a theorem, 
etc., in order to provide a fairly firm foundation for the techniques that follow; but most particularly we present many 
carefully worked examples (there are 45 in total). Some exercises, with answers, are also offered as an aid to a better 
understanding of the methods.
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1	 Introduction and Background
Being able to integrate functions is an essential skill for a mathematician (or engineer or physicist) who has an interest in, 
for example, mathematical methods and applications – or who just likes a challenge! Certainly many simple integration 
problems can be answered by a mathematical package (such as Maple), but even this – on occasion – fails if the function 
to be integrated has not been written in an appropriate form. (It also fails to integrate functions that, typically, involve 
an arbitrary power and require the construction of a recursion formula.) In addition, Maple will produce only one form 
of the answer, even when others are available (and we may prefer one rather than another, in a particular context). Here, 
we will devote much effort to a systematic development of the basic techniques of integration. However, we shall begin 
by laying appropriate foundations, which will include a brief description of the notion of integration and its connection 
with the differential calculus: the fundamental theorem of calculus. We will then use this theorem as the springboard for 
obtaining the basic rules of integration and for deriving, for example, the method of integration by parts. Of course, we 
shall include a careful discussion of both definite and indefinite integrals.

1.1	 The Riemann integral

We start with the familiar problem of finding the area under a (continuous and bounded) curve. Let the curve be y f x= ( )
, and suppose that the area required lies between x a=  and x b=  (b a> ) and between y = 0  and y f x= ( ) ; this 
is shown in the figure below

where, for convenience, we have drawn the case f x( ) > 0 . (We will discuss the situation where f x( ) < 0  a little later.) 
The area under the curve is estimated by rectangles (‘slices’, if you like) of width h1 , h2 , …, hN , and each of height 
f f xn n= ( ) , n N= 0 1, , ..., , where x xn=  is some value in (or on the boundary of) the rectangle of width hn . 

Furthermore, this height of the rectangle can be chosen to produce estimates of the area that are either above or below 
the actual area; an example of this is shown in the figure below, where the maximum and minimum values in a particular 
rectangle are easily identified:
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Thus the area under the curve can be approximated by

f x h f x h f x h f x hN N n n
n

N
( ) ( ) .... ( ) ( )0 1 1 2 1 1

1
+ + =− −

=
∑

or, equivalently, f x hn n
n

N
( )

=
∑

1
.
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Definition

If f x hn n
n

N
( )

=
∑

1
 has a limit as hn → 0  ( n N= 1 2, ,..., , with N →∞ ), no matter how the region is subdivided, 

then this is called the Riemann integral of f x( ) . (Equally, we could have used f x hn n
n

N
( )−

=
∑ 1

1
.) We write the limit 

as .

This notation for the integral comes from the shape of the ‘s’ (for ‘sum’) used in the 17th century – the symbol – and 
the width of the subdivision, originally ' 'δ x . Note that this definition used by Riemann has produced the definite integral. 
Before we proceed, it is instructive to see that this approach can be used to obtain the integral ‘directly’, without recourse 
to conventional integration.

Example 1

Use Riemann’s definition of the integral to find the area under the curve 

y f x x= =( ) 2  from x = 0  to x X= >( )0 .

We choose to construct subdivisions of equal width (and since any is permitted, this is allowed), so an approximation 
to the area is

f h h f h h f Nh h( ) ( ) ..... ( )+ +2

where we have Nh X= . Thus we obtain

= + +h N N N3 1
6 1 2 1. ( )( )

= + +1
6 2X X h X h( )( )

.

Now the exact expression for the area is obtained from

[G.F.B. Riemann (1826-1866), German mathematician, laid the foundations for Einstein’s work by developing the theories 
of non-Euclidean geometry; he also made very significant contributions to topological spaces and to analysis.]
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Comment: If we wished, we could make this process more mathematically robust by showing that the limit (the area) 
does exist and so avoid the notion of ‘approximately equal to’. Thus we may write (see the figure above)

h n h A h nh
n

N

n

N
( ) ( )− < <

= =
∑ ∑1 2

1

2

1

for any finite N; this gives

1
6

3 1
6

31 2 1 1 2 1h N N N A h N N N( ) ( ) ( )( )− − < < + +

or 	   1
6

1
62 2( ) ( ) ( )( )X h X X h A X X h X h− − < < + + .

Now as h → 0 , for X fixed, this confirms that A X→ 1
3

3 . 

One immediate consequence of the Riemann definition is that if f x( ) < 0 , we shall produce a negative value for f h×  
– and so we have the notion of ‘negative area’. This, as we can readily see, is simply the result of computing an area when 
the curve y f x= ( )  drops below the x-axis; if we then wanted the ‘physical’ area, we would form −∑ f x hn( )  for 
every f xn( ) < 0 . Of course, if some f xn( ) > 0  and some f xn( ) < 0 , we shall be adding positive and negative 
contributions, and some cancellation will inevitably occur. It is clear, therefore, that if we wanted the physical area 
between the curve and the x-axis, we must first identify the points where y f x= ( )  crosses the axis, and then compute 
the Riemann integral between each consecutive pair of zeros. The negative areas are then multiplied by −1 and added 
to the positive-valued contributions. 

We observe that another significant consequence of the Riemann definition is that we can permit the function,  
f x( ) , to be discontinuous (provided that the area remains finite); thus we may allow the type of function represented 

in the figure below:
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That this is possible, within the definition, is immediately apparent if we choose boundaries between particular subdivisions 
to coincide with x a=  and with x b=  (in the figure). (Those already familiar with elementary integration will recognise 
here the equivalent interpretation of integrating up to x a= , then between x a=  and x b= , and then from x b=
, and adding the results.)
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Finally, we note that we may disconnect the definition of the Riemann integral from the concept of area. It is sufficient 
to be given y f x= ( ) , and a subdivision from x a=  and x b=  into widths h1 , h2 , …, with associated values x1
, x2 , … . Then we form the object

f x hn n
n

N
( )

=
∑

1
;

if this has a limit as hn → 0 , n N= 1 2, ,...,  (so N →∞ ), then we write it as .

It is clear that, at this stage, we have not introduced the concept of ‘integration’ in the calculus sense (as will probably be 
familiar from school mathematics), nor do we have the ‘indefinite integral’. All this hinges on the next important – indeed 
fundamental – idea that we must introduce.

Historical Note: The technique of putting upper and lower bounds on an area, and then using some limiting argument – or 
though it was never expressed like this – was known to the Greek mathematicians, in particular Eudoxus (408-355BC), and 
exploited with great success by Archimedes (287-212BC). (So Riemann’s definition amounts to a more precise statement of 
the ideas developed well over 2000 years earlier.) Methods for finding the area under a curve were rather well-developed 
by the time of Newton (1642-1727) and Leibniz (1646-1716), but these methods tended to be rather ad hoc, tailored to 
specific types of problem. The fundamental connection with the differential calculus (see below) was made – altogether 
independently – by Newton and Leibniz, although it was the latter who gave us the name ‘integral calculus’. He wanted 
to convey the idea of integrate in the sense of ‘bringing together’ or ‘combining’; that is, the summing (‘combining’) of the 
elements (‘slices’) that contribute to the total area. Hence Leibniz introduced the word integral to be the total area, and 
then the link with the differential calculus followed naturally – for Leibniz – to the name integral calculus.

1.2	 The fundamental theorem of calculus

Let us consider the function defined by

which we may think of as the (signed) area under the curve y f x= ( ) , from x a=  to x X= , if that is helpful. 
Further, we introduce

and then we form

;

but from the Riemann definition, we have that

A X h A X f X h h( ) ( ) ( )+ − ≈ +θ
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where 0 1≤ ≤θ  is arbitrarily assigned to give a suitable approximate value – or even the exact value. (We assume, for 
convenience here, that f x( )  is continuous for a x X< < .) Thus we have

A X h A X
h

f X h( ) ( ) ( )+ −
≈ +θ

which becomes progressively more accurate as h → 0 ; in the limit we obtain

i.e. 
d
d

A
X

f X= ( ) .

Thus the function A X( )  – the integral of f X( )  – is that function whose derivative is f X( ) : it is the ‘anti-derivative’ 

of f X( ) . (Note that, in this context, the function must also satisfy A a( ) = 0 .) Hence the problem of finding  

is one of reversing the process of differentiation: we have introduced the essential connection between the differential 

calculus and the fundamental notion of integration.

1.3 Primitives

Given any function f x( ) , the construction of a function whose derivative is f x( )  produces a primitive. So, for example, 
given f x x( ) = 2 , we have that 1

3
3x  is a primitive, but so is 1

3
3 1x +  and 1

3
3 1000x − , because for each

according to the elementary rules of the differential calculus. The most general version of this property leads to the general 
integral, or indefinite integral, of x2 :

1
3

3x C+  where C is an arbitrary constant;

the indefinite integral is written as . 

The construction of a primitive is, of course, fundamental to the evaluation of the definite integral. The quantity

(which, as we have already mentioned, can be interpreted as a specific area) is defined by
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A b A a( ) ( )−  where 
d
d

A
x

f x= ( )

e.g. the area as far as x b= , less the area to x a= . In our example above, this becomes

,

and the arbitrary constant is irrelevant: any primitive will do. (We may observe that we have, in this description of 
integration, the hierarchy: primitive →  indefinite integral →  definite integral.)

Example 2

Find the value of .

A primitive for e3x  is 1
3

3e x  (because ), and so the value of the definite integral is

.

1.4	 Theorems on integration

The process of integration is often greatly simplified when certain elementary properties (of the underlying differentiation 
process) are invoked. We will obtain these with the notation
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We assume that f x( )  and F x( )  both exist throughout the domain that we might wish to use; it is usual to call f x( )  
the integrand (i.e. that which is to be integrated).

Theorem 1

Since we have 
d
d
F
x

f x= ( ) , then

 where k is a constant,

thus 

Theorem 2

Given ,

then, for a c b≤ ≤ ,

Thus we have the property

and each of these can be further sub-divided (at least a finite number of times).

Theorem 3

Given 	

so ‘reversing the direction of integration’ (b to a rather than a to b) changes the sign of the integral. 
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Theorem 4

Suppose now that we also have  where 
d
d
G
x

g x= ( ) ; we form

and so we obtain

which describes the linearity of the ‘integral operator’.

Theorem 5

We are given, now, that x h u= ( )  (and we assume that this is a one-to-one mapping for all x of interest); we form 
F x F h u( ) ( )= , and then

d
d
F
x

f x= ( )  becomes 
d
dx

F h u f h u( ) ( )=  or d
d

d
d

F
u

u
x

f h u= ( ) ,

according to the familiar ‘chain rule’. Thus

d
d

d
d

F
u

f h u x
u

f h u h u= = ′( ) ( ) ( )

(on invoking another familiar rule: , and using the prime as the shorthand for the derivative), and 
hence

but , so we obtain

for any (suitable) x h u= ( ) .

This result provides the basis for the method of substitution, which is used to find the integral of a function that – apparently 
– cannot be integrated directly. Indeed, this can be used in a simple form to obtain a particularly illuminating result; given 
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consider the integral

where a (≠ 0 ) and b are real constants. According to Theorem 5, we may introduce ax b u+ =  (equivalently 
x u b a h u= − ≡( ) ( ) ), so that ′ = −h u a( ) 1 , which gives

[Check: .]

In other words, whenever we are able to integrate f x( ) , then we can always integrate f ax b( )+ .

Another important application of this property arises when the integrand, as given, has the structure of the derivative of ‘a 
function of a function’. Consider
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(which, as described above, we assume is a one-to-one function, so that x is defined by x g u= −1( ) and is unique); thus 
we obtain

 

if we suppose that F u( )  is a primitive of .

1.5	 Standard integrals

The definition 

of a primitive enables us to produce a list of common primitives, based on elementary differentiation. These, coupled 
with the various properties described in §1.4, enable a number of integration problems to be solved directly. Although 
this is useful, and it is an essential starting point, this barely represents what is generally regarded as the mathematical 
exercise (and challenge) that is ‘integration’. It is this latter aspect that will be the main thrust of Part I. Nevertheless, we 
should record the most common primitives that are met in elementary mathematics; these are provided in the list below.
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Comment: Most of these should be familiar to the reader but, wherever there is any doubt, simply find d dF x  to check 
the result in the table. The one entry which, although generally accepted, sometimes causes unease is f x x( ) = −1 , 
F x x( ) ln= ; we briefly explain this. Suppose, first, that x > 0 , then

;

on the other hand, if we have x y= − < 0  (so that y > 0 ), then again

.

But this can be expressed as

,

Download free eBooks at bookboon.com



Integration and differential equations

25 

Introduction and Background

where d dx y = −1  i.e.  for x < 0 ;

thus we have 

Example 3

Write down primitives associated with the integrals of each of these functions:

All these follow directly from the standard results, together with some of the theorems presented in §1.4; so we obtain
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As a check, you should differentiate these answers in order to confirm that d dF x f x= ( ) .

Now let us work through a few definite integrals.

Example 4

Evaluate these definite integrals:

To answer these, we first find a primitive.

1.6	 Integration by parts

This important and powerful result is obtained from the standard rule for the derivative of a product:
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(where the prime denotes the derivative), so that

Now let w be any primitive of v i.e. , then we may write

or 	

which is the required formula. In the case of a definite integral, we have

and so .

Note that, in each formula, the term  is any primitive of v x( ) ; further observe that, in the case of the definite 
integral, the product  is formed before any evaluation is imposed.

Example 5

Use the method of integration by parts to find these definite and indefinite integrals:

(a) We choose to differentiate ln x  and to integrate xn  in the integrand, and so
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where C is the arbitrary constant of integration.

(b) In this case we – apparently – do not have a product, but we may always generate one by using the interpretation: 
arctan arctanx x= ×1  and then (obviously) we would elect to integrate the ‘1’, so

where C is the arbitrary constant of integration.

(c) This problem requires two integrations by parts:
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(and you might wish to check that 2 5 01− >−e , for it is clear that ).

(d) We follow the same route as used in (b): write 4 1 42 2− = × −x x , to give

This result does not look promising, until we observe that we have generated an equation for the required integral:

Comment: This result could have been obtained without integration; the integral represents the area under the 

curve y x= −4 2 , 0 2≤ ≤x , which is one quarter of the area of the circle of radius 2, so the required area is  
1
4

22× =π π( ) .

The technique employed in (b) and (d) above is an important one, and it can be generalised to the extent that we may write
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for suitable g x( ) , if that is useful.

Example 6

Use integration by parts to find an equation involving  hence find the value of 
.

In this case, we note that it would be very convenient if we had  (because ), so let us write

Now, at first sight, this appears not to be helpful, but when we set , our expression above becomes

which is a reduction formula (or recurrence relation). We have, alternatively,

where we have written n for n + 1. The definite-integral version of this is 

and so 
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where .  Thus we have

The idea used in this example is often employed in order to find a representation of integrals (or the value of definite 
integrals) that have a structure that suggests a pattern (or is one of a pattern that might be proposed). Thus, in the case  
of ,  we might first consider ,   obtain a reduction formula and then proceed to find the 
value that we require – which, of course, is exactly the route that we followed in Example 6. This is one of the most powerful 
applications of the method of integration by parts; we will therefore present another example of this type.
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Example 7

Find a reduction formula for  and hence construct a primitive for  .

We write 

which is a reduction formula. Now we can use this as follows:

where  is a primitive; hence a primitive for  is

1
5

5 1
3

3tan tan tanθ θ θ θ− + −

(which can be checked by differentiation).

The process of integration involves one further (minor) complication that we must address, although – as we shall see – 
this does lead to an important general comment about integration and the notion of the existence of integrals.

1.7	 Improper integrals

In all our previous considerations, we have assumed that the function to be integrated – the integrand – is bounded and, 
further, that the integration region (from a to b, say) is a finite domain. When either or both these requirements are not 
met, then we have an improper integral; we shall now examine these two possibilities.

We consider the definite integral

 with primitive F x( ) ;

let us suppose that a is fixed, but that b →∞ . (We can equally consider b fixed and allow a → −∞ , or even b →∞  
and a → −∞ , as simple extensions of the argument that we are about to present.) From the definition of a definite 
integral we have
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;

if F b F a( ) ( )−  has a finite limit as b →∞ , then the integral exists i.e. it is uniquely defined and finite. (It is ‘improper’ 
because of the infinite limit of integration, and this interpretation of the value of the definite integral becomes necessary.) 
Thus we define, when it exists,

.

Example 8

Decide whether these integrals exist; when an integral exists, find its value.

.

In each case we form  and then allow b →∞ :

(a)  as b →∞ , so the integral exists and takes 

this value;

(b)  but this does not have a limit as b →∞  (although 

it does remain bounded, it forever oscillates between 0 and 2): the integral does not 

exist;

(c)  but lnb →∞  as b →∞ , so this integral 

does not exist.

An integral is also called ‘improper’ if f x( )  is undefined at any point over the range of integration e.g.  is 
improper because the function f x x( ) = −1  is undefined at x = 0  which is in the range of integration. However, the 
integrals of such functions may exist. Consider
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 (with 
d
d
F
x

f x= ( ) ),

where ε > 0  and f x( )  exists for x a b∈ + ε ,  but is undefined at x a= . (Any integral with one – or more – values 
of x at which f x( )  does not exist can be written as a sum of integrals – Theorem 2 – to produce a contribution as 
described above or, equivalently, one like , or a combination of the two.) Thus we have

and if F b F a( ) ( )− + ε  has a limit as ε → 0 , then the integral exists. Thus we define, when it exists,

where ε → +0  denotes an approach to zero through the positive numbers.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

“The perfect start 
of a successful, 
international career.”

CLICK HERE 
to discover why both socially 

and academically the University 

of Groningen is one of the best 

places for a student to be 
www.rug.nl/feb/education

Excellent Economics and Business programmes at:

http://www.rug.nl/feb/bookboon?utm_source=AdBookboon&utm_medium=Bookboon&utm_campaign=130215Bookboon


Integration and differential equations

35 

Introduction and Background

Example 9

Decide whether these integrals exist; when an integral exists, find its value.

(a) �  as ε → +0 , so the integral exists and has this value;

(b)  as ε →
+0 , so the integral does not exist;

(c) �  as ε →
+0  (because ε εln → −0 as ε →

+0 ), so this 

integral exists and has this value.

1.8	 Non-uniqueness of representation

We finally comment on one other aspect of integration which, at first sight, may appear irritating but which is ultimately a 
powerful tool. We have seen that the process of integration is not unique in that we can produce any number of primitives, 
each differing from the other by additive constants. However, there often exists a non-uniqueness of representation i.e. 
different methods of integration may give results that appear different (and then, of course, in a particular context we may 
prefer one rather than another). A simple example appears in the table of elementary integrals (p. 15):

yet this non-unique representation has important consequences.

We have

and so we obtain

i.e. arcsin arccosx x+ = constant .
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Evaluation on, for example, x = 0  yields

arcsin arccosx x+ =
π
2 ,

a fundamental identity.

Example 10

Confirm that arctan(sinh )x , 2arctan( )ex , 2 2arctan(tanh( ))x  and arcsin(tanh )x  are all primitives of 

.

For each, we find the derivative:

Exercises 1

1. Find all these definite and indefinite integrals (when they exist):
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2. Find reduction formulae for

3. �Integrate , according to the list of integrals on p.15; now use the substitution x u
u

=
−
+

1 α
α

tan
tan

 (where α  is 

a constant), integrate and hence deduce the standard identity

tan( ) tan tan
tan tan

A B A B
A B

+ =
+

−1 .
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2	� The integration of rational 
functions

It is quite common to encounter functions that are rational, that is, they take the form of (polynomial)/(polynomial). 
Indeed, a recognised and important skill in basic mathematics is knowing how to rewrite such functions so as to make 
the process of integration almost routine. The aim, in this chapter, is to develop a systematic approach to these problems, 
at least for a reasonable class of polynomials (and certainly the ones most often encountered). Let us first itemise the 
polynomials that we shall discuss.

We will investigate

where P x( )  and Q x( )  are polynomials. We allow P x( )  to be a polynomial of any (finite) degree, but we shall restrict 

the choices for Q x( )  (although what we present should make it possible to extend the ideas to more complicated Qs). 

(Remember that the degree of a polynomial is the highest power of x that appears.) The simplest Q x( )  is x a+ , where 

a ≠ 0  is a constant; the case a = 0  produces a trivial problem. Note that the coefficient of x has been absorbed into 

P x( ) . A simple extension of this choice for Q is Q x x a m( ) ( )= +  ( m > 1 , integer), which we shall also discuss. Then 

we consider Q x x bx c( ) = + +2 2  (where the constant c is not zero); this problem gives rise to three cases, depending 

on whether x bx c2 2 0+ + =  has two distinct, real roots, a repeated root or a complex pair of roots. Finally, we shall 

examine in detail the choice , although we will take the opportunity to comment briefly 

on some of the obvious generalisations and extensions of all these.

2.1	 Improper fractions

The first stage in the simplification process is to reduce the rational function so that its fractional part is ‘proper’ i.e. the 
degree of the polynomial in the numerator is less than that in the denominator. This is accomplished by dividing – but 
note below how we accomplish this – Q x( )  into P x( ) . We start with 

P x
Q x

x b x b
x a x a

n
n

n

m
m

m
( )
( )

....
....

=
+ + +

+ + +
−

−

−
−

1
1

0

1
1

0

where n m≥  (which defines the fraction to be improper); the division then leaves, at worst, a fraction  ( ) ( )P x Q x  with 
 ( )P x  a polynomial of degree m−1 : this is a proper fraction. Once this has been completed, the integration can begin.

Example 11

Reduce x x x x x
x x

5 4 3 2

2
3 5 2 1

1
− + − + −

+ +
 to a form that contains, at worst, a proper fraction.
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First we write 

and then we have

x x x x x
x x

x x x x
x x

5 4 3 2

2
3 2

2
3 5 2 1

1
4 8 6 5

1
− + − + −

+ +
= − + − +

−

+ +
,

which is the required form.

2.2	 Linear denominator, Q(x)

We consider 

f x P x
Q x

x b x b
x a

n
n

n
( ) ( )

( )
....

= =
+ + +

+
−

−
1

1
0

which can be written in the form

f x x c x c d
x a

n
n

n( ) ....= + + + +
+

−
−

−1
2

2
0

for appropriate coefficients c0 , c1 , …, cn−2  and d. It is immediately apparent that each of these terms can be integrated 
– they are all elementary functions – so we can always find  in this case.

Example 12

Find .

First we write x x x x x x x x3 2 22 1 1 2 1 4 1 3− + + = + − + + + −( ) ( ) ( ) , and then the integral becomes

where C is the arbitrary constant of integration.

Comment: It should be clear that we can generalise this result to the situation where Q x x a m( ) ( )= +  ( m > 1 , integer). 
In this case, the fractions that appear, in general, will take the form

d
x a

d
x a

d
x a

m
m

1 2
2+ + +

,
( )

, ....,
( )

,

and each of these can be integrated.
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Example 13

Find .

First we write the numerator as

x x x x x x x x x5 4 22 2 2 2 6 2 5( ) ( ) ( ) ( ) ( )− − − + − + − + − +

= − − + − + − + − + − + +( ) ( ) ( ) ( ) ( ) ( )x x x x x x x x x x2 2 2 2 2 5 2 11 2 28 54 3 2

= − − + − + − + − + + − +( ) ( ) ( ) ( ) ( ) ( )x x x x x x x x x2 2 3 2 8 2 21 2 53 28 2 52 3 2 .

Thus the integral becomes

= + + + + − −
−

−
−

+1
4

4 3 2
24 21 53 2 28

2
5

2 2
x x x x x

x x
Cln

( ) ( ) .
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2.3	 Quadratic denominator, Q(x)

This case is significantly more involved than the previous one, essentially because there are three variants (depending on 
the nature of the roots of Q x( ) = 0 ) each leading to a different integration procedure. Let us be given

f x P x
Q x

x a x a
x bx c

n
n

n
( ) ( )

( )
....

= =
+ + +

+ +
−

−
1

1
0

2 2 ;
further, we will suppose that this improper fraction is reduced to a proper fraction (and a suitable polynomial), as described 
earlier. Thus we need to consider in detail only the term

px q
x bx c

+

+ +2 2
,

where p and q are constants. To proceed, we write

x bx c x b c b2 2 22+ + = + + −( )

and then we consider the three cases:

c b− <2 0 , c b− =2 0 , c b− >2 0 .
Case (1): c b− <2 0

It is convenient to write c b− = − <2 2 0λ ( ) , so that

x bx c x b x b x b2 2 22+ + = + − = + − + +( ) ( )( )λ λ λ

and then it is simply a matter of expressing

px q
x b x b

+
+ − + +( )( )λ λ

in partial fractions; integration then follows directly.

Example 14

Find .

We first write x x x x x x x3 2 21 4 3 4 4 3 13 11− = + + − + + + +( ) ( )

so that the integral becomes

.
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But x x x x x2 24 3 2 1 1 3+ + = + − = + +( ) ( )( )  (which you probably realised immediately), and so we write

13 11
4 3

13 11
1 3 1 32

x
x x

x
x x

A
x

B
x

+

+ +
=

+
+ +

=
+

+
+( )( )

which requires A = −1 and B = 14 , and this produces the integral in the form

.

Case (2): c b− =2 0

This is particularly straightforward: Q x x b( ) ( )= + 2 , so we have the case m = 2  in the generalisation Q x x a m( ) ( )= +  
included in §2.2.

Example 15

Find the value of .

First we note that x x x2 26 9 3− + = −( ) , and so we write

x x x x x x x x x x4 2 3 22 3 2 3 3 3 7 3 24 3 70− + − = − + − + − + − +( ) ( ) ( ) ( )

= − − + − + − + +( ) ( ) ( ) ( )x x x x x x3 3 6 3 25 3 99 702
;

the integral therefore becomes

Case (3): c b− >2 0

Now we set c b− = >2 2 0λ ( )  and then ( )x b+ +2 2λ  cannot be factorised (into real factors). The division 
P x Q x( ) ( )  will therefore produce, in general, the fraction
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px q
x b

+

+ +( )2 2λ

which is rewritten, first, to accommodate the derivative of the denominator:

These two terms can be integrated, the first producing a logarithmic term and the second (after a substitution) is an arctan 
term. Thus we are able to complete the integration. (Note that there is no suggestion that the ‘formula’ just derived should 
be committed to memory – it is simply presented to make clear that the problem can be solved.)

Example 16

Find .

We observe that x x x2 28 25 4 9− + = − +( ) , and then we write

x x x x x x x x3 2 23 1 8 25 8 8 25 36 199− + = − + + − + + −( ) ( )

to give the integral in the form
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.

In the last term, we set x u− =4 3tan  to give  (a primitive); hence the 
required integral is

.

2.4	 Cubic denominator, Q(x)

We start here with Q x x x x( ) = + + +3 2α β γ , and recall that a cubic equation [ Q x( ) = 0 ] with real coefficients 
must have at least one real root; let this be x a= − , then we shall write

Q x x a x bx c( ) ( )( )= + + +2 2 .

Thus our integrand becomes

f x P x
Q x

x d x d
x a x bx c

n
n

n
( ) ( )

( )
....

( )( )
= =

+ + +

+ + +
−

−
1

1
0

2 2
which will, after division by Q x( ) , reduce to the problem of integrating (in general)

rx px q
x a x bx c

2

2 2
+ +

+ + +( )( ) .

This, in turn, can be expressed as the two partial fractions

A
x a

Bx C
x bx c+

+
+

+ +2 2
,

which can be further developed, depending on the value of c b− 2  (exactly as in §2.3): the integration can be completed.

Example 17

Find .
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First we note that x x x x x3 2 21 1 1+ + + = + +( )( ) , so we have two (real) factors only; then we write

x x x x x x x x x x6 3 3 3 2 2 3 21 1 1− + = + + + − + + +( ) ( )

− + + + + + +( )x x x x x3 2 21 2 2 .

Thus we have the integral

where we may express

2 2
1

2 2
1 1 1 1

2

3 2

2

2 2
x x

x x x
x x

x x
A

x
Bx C
x

+ +

+ + +
=

+ +

+ +
=

+
+

+

+( )( )

which requires A = 3 2 , B C= = 1 2 , so now our integral becomes

Comment: Some generalisations of these techniques are fairly straightforward. For example, a polynomial Q x( )  that 
possesses any number of linear factors (including repeated factors), and any number of quadratic factors (but none 
repeated), can be integrated by applying the techniques just outlined. Here is an example of this approach, but one in 
which some of the quadratic factors cannot be further reduced to linear factors.

Example 18

Find .

Because the degree of the numerator is already less than that in the denominator, we need simply to represent the integrand 
as suitable partial fractions. Thus we write

x
x x x x x x

A
x

B
x

C
x

−

+ − + + + +
=

+
+

+
+

−
2

1 1 2 2 2 5 1 1 12 2 2 2( )( )( )( ) ( )

+
+

+ +
+

+

+ +

Dx E
x x

Fx G
x x2 22 2 2 5
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which requires A = 1 16 , B = 3 8 , C = −1 160 , D = −1 15 , E = −8 15 , F = 1 96 , G = 11 96 . Now we 
express

− +

+ +
=
− + −

+ +
=
− + −

+ +

1
15

2

1
30

7
15

2

1
30

7
15

2
8

2 2

2 2

2 2

2 2

1 1

( ) ( ) ( )

( )

x

x x

x

x x

x

x

and

1
96
2

1
192

10
96

2

1
192

5
48

2
11

2 5

2 2

2 5

2 2

1 4

( ) ( ) ( )

( )

x

x x

x

x x

x

x

+

+ +
=

+ +

+ +
=

+ +

+ + .

Thus the integral becomes
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Finally, the appearance of repeated quadratic factors (which do not have real factors) poses a slightly more testing problem. 
Let us suppose that Q x( )  contains a factor ( )x bx c n2 2+ +  (with c b− >2 0 ), for some integer n > 1 , then an 
expansion in partial fractions, followed by division, will produce a new type of term:

px q
x bx c n

+

+ +( )2 2 .

It is immediately clear that, if we now write

px q p x b q pb+ = + + −1
2 2 2( ) ,

then the only term that requires any discussion is

.

This integral is most neatly tackled by constructing a reduction formula for it. We set

where we choose to use ( )x b+  as the primitive of , and so we have

=
+

+ +
+ + − +

x b
x bx c

nI n b c In n n
( )

( )2
2

1
2

2 2

i.e. 2 1 2
2

2
1 2n b c I n I x b

x bx c
n n n( ) ( )

( )
− = − −

+

+ +
+ .

So, for example, we have
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is a primitive. We use this result in the next example.

Example 19

Find .

The partial-fraction form of the integrand is

A
x

Bx C
x x

Dx E
x x−

+
+

+ +
+

+

+ +3 4 13 4 132 2 2( )
,

which requires A = 7 1156 , B = −7 1156 , C = −49 1156 , D = 27 34 , E = 19 34 . Then we write the second 
and third terms as

−
+ +

+ +
+

+ −

+ +

7
1156

2 4 5

4 13
1

34
2 4 35

4 13

1
2

2

27
2

2 2
( ) ( )

( )

x

x x

x

x x

with 

from the result obtained above. Thus the integral is

,

where we have suppressed some of the arithmetic.

Comment: The previous example is obviously somewhat involved, mainly because of the cumbersome coefficients (even 
though the coefficients in the original problem are quite simple – this is a typical complication in these problems). The main 
purpose of this example is to demonstrate that such integrals are susceptible to the methods that we have been describing.

Exercises 2

Find these definite and indefinite integrals:
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3	� The integration of trigonometric 
functions

In this chapter, we will discuss three important types of integral, typified by

where f x x(sin ,cos )  is a rational function of its arguments. Of course, more complicated examples exist (some of 
which can be integrated using conventional methods) but those shown above are the ones most commonly encountered. 
Nevertheless, they are sufficient to allow us to describe the standard techniques for tackling all such problems.

3.1	 Simple products

The products sin cosmx nx , sin sinmx nx  and cos cosmx nx  ( m n≠ ) are functions that can be integrated routinely, 
once an appropriate identity is invoked. Thus with

sin cos sin( ) sin( )mx nx m n x m n x= + + −1
2 ;
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sin sin cos( ) cos( )mx nx m n x m n x= − − +1
2 ;

cos cos cos( ) cos( )mx nx m n x m n x= + + −1
2 ,

we immediately reduce these problems to elementary integrals.

Example 20

Find .

This integral becomes

Comment: The cases where m n=  also follow directly, for then we use

Example 21

Find the value of .

First we write

and then integration yields the result

1
2

1
8

1
4

1
12 0

2
4 2 6

4
0

4
x x x x− − + = − =sin sin sin

π π π

.

3.2	 Powers of sin and cos

We now turn to the more complicated integrals of the type

,

which is best analysed via a reduction formula. Let
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and write  (but we could equally construct  thus 
we obtain

.

This has generated an equation relating Im n,  and Im n+ −2 2, , but it is usually more convenient to write

sin cos sin ( cos ) cos sin cos sin cosm n m n m n m nx x x x x x x x x+ − − −= − = −2 2 2 2 21

which leads to

or	   

This reduction formula is valid for any m and n (for which the integrals exist), but it is plainly a particularly useful 
identity if m and n are integers. In this case, and with n odd for m any integer, we have developed a powerful result, as 
the following example will demonstrate.

Example 22

Find .

We have 

and then

(as a primitive). Thus we have
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Comment: It should be clear that, if n is even, for any m, then the procedure is not quite so straightforward: the reduction 
formula will produce the integral

However, this is still a routine problem if m is odd, for then we simply set sin sin sinm mx x x= −1  and then use 
sin cos2 21x x= −  as many times as is necessary; indeed, if n is not too large, this manoeuvre can be used immediately, 
without recourse to the reduction formula.

Example 23

Find the value of .

We write 
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which can now be integrated to give

.

However, if m is even, then we must take more care; let us write

and then use

sin sin sinm mx x x= −1
.

Integrating by parts then gives

i.e. 	   

(Again, we observe that m need not necessarily be an integer – even or odd – in this reduction formula.) If m is even, 
then we can reduce Jm  to the determination of .

Example 24

Find  

Example 24 

Find sin4 x xd . 

We have                       J x x x x J4
4 1

4
3

23= = − + sin cos sind  
and                     J x x J2

1
2 0= − +cos sin   with J x0 =  (a primitive); 

thus we obtain 

sin cos sin cos sin4 1
4

3 3
8

3
8x x x x x x x Cd = − − + + . 

We have 

Example 24 

Find sin4 x xd . 

We have                       J x x x x J4
4 1

4
3

23= = − + sin cos sind  
and                     J x x J2

1
2 0= − +cos sin   with J x0 =  (a primitive); 

thus we obtain 

sin cos sin cos sin4 1
4

3 3
8

3
8x x x x x x x Cd = − − + + . 

and 

Example 24 

Find sin4 x xd . 

We have                       J x x x x J4
4 1

4
3

23= = − + sin cos sind  
and                     J x x J2

1
2 0= − +cos sin   with J x0 =  (a primitive); 

thus we obtain 

sin cos sin cos sin4 1
4

3 3
8

3
8x x x x x x x Cd = − − + + . 
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thus we obtain

Example 24 

Find sin4 x xd . 

We have                       J x x x x J4
4 1

4
3

23= = − + sin cos sind  
and                     J x x J2

1
2 0= − +cos sin   with J x0 =  (a primitive); 

thus we obtain 

sin cos sin cos sin4 1
4

3 3
8

3
8x x x x x x x Cd = − − + + . 

.

3.3	 Rational functions of sin and cos

We complete this investigation of elementary integrals by examining the class of problems that arise from the integration 
of rational functions of sin and cos. All such integrals can be reduced to integrals of rational functions, and so all may 
be integrated by employing the methods described in Chapter 2. The transformation (substitution) that we adopt is an 
important one that holds a central position within the standard methods of integration: we use tangents of half angles.

Write , then we have

with	   

and 	   .

Now since we start with the integral of a rational function of sin and cos, , and the transformation 
that we propose introduces only rational terms (in t), we will necessarily produce a rational function of t to integrate. 
Note, however, that although this is a general method, which will demonstrate that all problems of this type can be 
reduced to one involving ‘standard’ integration methods, particular problems may be solved by a more direct route. We 
present two examples.

Example 25

Find .

We introduce , as described above, which gives

to complete the calculation, we set t u= 3tan , and so we obtain
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Example 26

Find .

Introduce , then the integral becomes
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Now we follow the procedures of Chapter 2: we write

which requires A B= − = 1 4  and C = −1 2 , and so we obtain

In the terms containing 1 3 2( )+ t , we set t u= 3 tan , to produce

Comment: The term in  here can be written in a number of ways e.g.

which is probably to be preferred.

Exercises 3

1. Find these definite and indefinite integrals:

Download free eBooks at bookboon.com



Integration and differential equations

57 

The integration of trigonometric functions

2. Find formulae for  where n is a positive integer, even 

or odd.

3. Show that  (a great result!).
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Answers
Exercises 1

1. 	 (a) ; (b) − − +1
2 2 1ln cos( )x C ; (c) ;

	 (d) − + + +x x x x x C2 2 2cos cos sin ; (e) 
π
2

1− ; (f) 1 ; (g) does not exist; 

	 (h) ; (i) ln3 .

2. 	 (a) ( ) (ln )1 1
1+ = −+

−α αI x x nIn
n

n ; (b) .

Exercises 2

	 (a) 1
2

2 5 7 2x x x C− − − +ln ; (b) 2
3

3 5
8

2 1
2

17
16 1 2 37

16 1 2
x x x x

x
C− + + + +

+
+ln

( )
; 

	 (c) − + −2 2 319
5

6
5ln ln ; (d) ; 

	 (e) 13
50

13
100

2 59
505 4 5 2ln ln( ) arctan( )x x x x C− − + + + + + ; 
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	 (f) 565
78

2221
1352

1180
16911 7 3+ −ln( ) ln .

Exercises 3

1. 	 (a) − − +1
18

1
29cos cosx x C ; (b) 

π
4

2
5

− ; (c) ;

	 (d) ; (e) 
π
5

; 

	 (f) .

2. Both can be expressed as  where Γ  is the gamma function, where 
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List of Equations
This is a list of the types of equation, and specific examples, whose solutions are discussed. (Throughout, we write y y x= ( )  
and a prime denotes the derivative.)

List of Equations

This is a list of the types of equation, and specific examples, whose solutions are 
discussed. (Throughout, we write y y x= ( )  and a prime denotes the derivative.) 

′ =y f x g y( ) ( )  – separable …….. p.67;             ′ = +y x y2 1 2   ……..………... p.67;

1 1+ ′ =−e x yy   ……………..…. p.68;            1 2 02− ′ + =e ex xy y y  sec tan  .. p.69; 

′ = + +y f ax by c( )  …………..… p.69;            ′ =y F y x( )  – homogeneous …. p.70;

yy y x′ = −2  ……………….…… p.71;           xy y y x′ = + −2 2  ………...….. p.72;

x y y x yy x y x1 2− ′ = + −− −e e  ( )  ………………………………………..…….. p.73;

′ + =y p x y q x( ) ( )  – general linear ….. p.73;          ′ + =y
x

y x3  ………..…….… p.75;

1 4 22+ ′ + =x y xy x   ……………….. p.76;          ′ − =y x y x xsin cos sin2 2  … p.77;

′ + =y p x y q x yn( ) ( ) – general Bernoulli … p.79;        ′ − =y xy xy3  ……...…… p.79; 

y xy y= ′ + ′α ( )  – general Clairaut ………. p.81;        y xy
y

= ′ +
′

1
4

 ………..…. p.81;

y x y y= ′ + ′β α( ) ( )  – general Lagrange …. p.82;         y x y y= + ′ −( )2 2
31   …. p.83;

′ = + +y a x y b x y c x( ) ( ) ( )2  – general Riccati .. p.84; x y xy x y2 2 28 20′ = − − …. p.85;

′ = − + +y y xy x2 22 1 (with a solution y x= ) … p.87;  x y y y+ ′ + =2 0   …… p.88;               

2 2xyy x y′ = +  ……..………... p.89;            φ( , )y y′ = 0  – x missing ………….. p.90;               

y y y= ′ + ′( )2  …………..….... p.91;           φ( , )x y′ = 0  – y missing …….…….. p.91;               

′ + ′ =y y x( )3  ……. p.91;   ay by cy g x′′ + ′ + = ( )  – constant coefficients ……… p.93;
4 8 3 0′′ − ′ + =y y y  …………... p.95;              ′′ − ′ + =y y y8 16 0  ………….…… p.95;

′′ + ′ + =y y y4 13 0  …………… p.96;             y y y y yiv + ′′′ + ′′ + ′ + = 0 …...….. p.96;

ax y bxy cy g x2 ′′ + ′ + = ( )  – a, b, c constant ….. p.96;    x y xy y2 2 6 0′′ + ′ − =  …. p.98;

1 2 2 6 12 2 2
+ ′′ − ′ + = +x y xy y x     (given a solution y x=  of homog. eqn.) ….. p.99;

′′ + =y y xsin …………….. p.101;   x y x y y x2 21 2 3′′ + + ′ + =( )  (PI only) ..…. p.102;

′′ + ′ − = −y y y x x2 2e  (PI only).. p.103; ′′ + ′ − = +y y y x x x2 2 2sin cos  (PI only).p.104;

x y y xy x2 2 22 2′′ − ′ + ′ =( )  ………… p.106;              yy y′′ + ′ =( )2 1  ……….… p.106; 

xf y g y y h y( ) ( ) ( )+ ′ =  – interchange x and y …. p.108;    x y y yy+ ′ =2e   ... p.109; 

y A A x= +−( )2 11 2 2    – find envelope …………………….……… p.111;  

′ = + +y a x y b x y c x( ) ( ) ( )2  – uniqueness theorem …………………. p.113;  

′ = +y y1 2 ………………………… p.113;    ′ = − − −y y x1 12 2     ………. p.115
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Preface
This text is intended to provide an introduction to the methods for solving ordinary differential equations (ODEs). The 
material covered includes all the ideas that are discussed in any basic course at university, but excludes the methods of 
series solution. In addition, the presentation is intended to provide a general introduction to the relevant ideas, rather 
than as a text to be associated with any specific module or type of module. Indeed, the aim is to present the material in 
a way that enhances the understanding of the topic, and so can be used as an adjunct to a number of different modules 
– or simply to help the reader gain a broader experience. The plan is to go beyond the methods and techniques that are 
typically presented, but all the standard ideas are discussed here (and can be accessed through the comprehensive index).

It is assumed that the reader has a basic knowledge of, and practical experience in, the differential and the integral calculus; 
that is, minimally, something equivalent to a good pass in A-level Pure Mathematics, provided that the corresponding 
skills are firmly in place. An understanding of the techniques of integration, as developed in Part I, will prove very useful. 
We do not attempt to include any applications of the differential equations (e.g. in physics or engineering); this is properly 
left to a specific course of study that might be offered in a conventional applied mathematics or engineering mathematics 
or physics programme.

The approach adopted here is to present some general ideas, which might involve a notation, or a definition, or a theorem, 
or a classification, but most particularly methods of solution, explained with a number of carefully worked examples (there 
are 34 in total). A small number of exercises, with answers, are also offered, for the interested reader.
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1	 What is a differential equation ?
In this chapter we will briefly describe the nature of an ordinary differential equation (ODE), and what it means to solve 
it. Further, we will also mention the different types of solution that may arise. The classification of ODEs will be given, 
and with it an overview of the various types of equation that we will study in this notebook.

1.1	 The nature and solution of differential equations

A differential equation is a relation, but more usually an algebraic equation, connecting a function, y x( ),  and one or 
more derivatives of y. Thus relations (equations) such as

f x y y( , , )′ = 0 , for example: ′ + − =y x y x2 0,

or f x y y y( , , , ) ,′ ′′ = 0  for example: x y x y y x′′ + − ′ + − =( ) ,1 2 02

where the prime denotes the derivative e.g. d
d

y
x

y≡ ′,  are differential equations. Any function, y x( ),  which satisfies the 

equation is a solution, and any solution which contains as many independent, arbitrary constants as the highest derivative 

in the equation is the general solution. Thus the first example above will have a general solution which contains one 

arbitrary constant, and the second will have two. (Important and special, exceptional solutions – singular solutions – will 

be mentioned later.)

In the final analysis, any function – which may be defined via a relation – which has been proposed as a solution exists 
where it is defined, provided that it also satisfies the original differential equation. By ‘defined’ we mean that the function 
is to remain bounded and, in the context that we describe here, also to remain real. That the function is a solution is 
simply confirmed by direct substitution; if there is any doubt on this score, a suitable check should be performed. Indeed, 
because some equations may possess exceptional solutions, this – often routine – calculation becomes a necessary exercise 
in special cases.

1.2	 Classification of ODEs 

Ordinary differential equations are classified according to the highest derivative that appears in the equation, how this 
derivative appears and how the other terms in the equation appear. Often the correct identification of the classification 
(and then of the type, as we describe later) provides the first step in finding a solution of the equation. Let us first give 
the relevant definitions.

The order of the equation is the highest derivative in the equation (and so this will also specify the number of independent 
arbitrary constants that must appear in the general solution). The degree of the equation is the highest power (i.e. degree) 
of the highest derivative in the equation (after all the derivative terms have been rationalised e.g.  must 
be regarded as  so of degree 3). A linear differential equation is one of the form
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L y g x( ) ( ),=

where L is a differential operator with the property that, for general y1  and y2 ,

An example of such an operator is 

L
x

x
x

x≡ + + +
d
d

d
d

2

2 2 3( )

which gives the equation ′′ + ′ + + =y xy x y g x2 3( ) ( ).

We see that the operator L on y does not itself contain y, although it may contain x explicitly (in the coefficients). 

Here are a few examples that should help to explain this classification.

(a) ′ + =y xy x2 : order 1, degree 1, linear;

(b) ′ + =y xy x2 2 : order 1, degree 1, nonlinear;

(c) : order 1, degree 2;

(d) xy x y y x′′ + + ′ + =( )1 2 2 : order 2, degree 1, linear;

(e) ′′ + ′ + =y y y xsin : order 2, degree 1, nonlinear;

(f) : order 2, degree 3.

Finally, we may also, for a linear ODE – and this applies only to linear equations – describe the functions that contribute 
to the general solution; this important idea is one which, as we shall see later, helps us to seek solutions. Consider the 
linear ODE

L y g x( ) ( ),=

where g(x) is given (and often called the forcing term); let us write the solution as the sum of two functions:

y x y x y xI II( ) ( ) ( )= + ,

so that L y L y y L y L y g xI II I II( ) ( ) ( ) ( ) ( ).= + = + =
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We choose

L yI( ) = 0  and L y g xII( ) ( ),=

where yII  is any function which satisfies the original equation; yI  is the most general solution of the homogeneous 
equation i.e. the one without a forcing term. (The formal definition of homogeneity will be given later; see §2.2.) It is 
usual to call yI  the complementary function or simply CF (and then we often write this solution as yCF ); the solution 
yII  is a particular integral or PI (and then, correspondingly, we write yPI ). The complete general solution is therefore

y y yCF PI= + .

1.3	 Overview of the equations to be discussed

In Chapter 2 we will describe the methods of solution for the standard, first order ODEs that are commonly met in the 
early stages of modern mathematics programmes. In particular, we examine these three types of equation:

separable e.g. ′ = + +y x y( )( )1 1 ;

homogeneous e.g. ′ =
−

+
y x y

x y

2 2

2 2
;

general linear of the form ′ + =y p x y q x( ) ( ).
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This is followed, in Chapter 3, by a discussion of a number of other important

equations and special cases of some note. So we will find the solutions of these equations:

Bernoulli equation: ′ + =y p x y q x yn( ) ( ) ;

Clairaut equation:  where α  is a given function of ′y ,  and its generalisation – the Lagrange 
equation: ;

Riccati equation: ′ = + +y a x y b x y c x( ) ( ) ( ).2

We also consider the equations that are, or may be written as, exact differentials; finally the special cases of  

f x y y( , , )′ = 0 , with either x or y absent, will be analysed.

In Chapter 4 we consider second-order, linear ODEs, and in particular those with constant coefficients, such as

′′ + ′ + =y y y2 3 0

and those of Euler type e.g.

x y xy y2 2 3 0′′ + ′ + = .

We will also include the method of variation of parameters, and its simpler variant that allows for the reduction of the 
order of the equation. This latter method is particularly useful when we need to find a second solution of the equation 
or a particular integral (PI); methods for finding some PIs directly will also be developed.

Finally, in Chapter 5, we look at three ideas that play a rôle in any deeper study of ODEs. First, the manoeuvre of 
interchanging x and y, so that we treat the solution as x(y) rather than y(x); secondly, the occurrence of singular solutions 
and how to find them; thirdly, we conclude with a few comments on uniqueness, and invoke this property to generate 
two familiar trigonometric identities.

Exercises 1

Use the information in §1.2 to classify the following equations.

(a) ′ + =y x y xsin e ; (b) xy x y′ + =2 2 ; (c) ; 

(d) ′′ + ′ + =y y y 0 ; (e) x y xy y x2 2′′ + ′ + = ; (f) xy y y x x′′ + ′ + =2 2 e ; 

(g) ′′′ + ′′ + ′ + =y y yy xy xsin ; (h) y y y xiv + ′′ + = .
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2	 First order ODEs: standard results
We present the three standard and most common types of equation, and associated methods of solution, that are taught 
in introductory courses on ODEs. In each case we describe the underlying technique that is involved and present three 
worked examples; a few exercises are offered at the end of the chapter.

2.1	 Separable equations

The simplest of all types of first order ODEs – because the problem immediately reduces to direct integration – takes the 
form

′ =y f x g y( ) ( );

the expression on the right is a product of a function of x and a function of y. (This is what is meant by ‘separable’.) Note 
that this form is equivalent, for suitable f and g, to

To proceed, we simply write 

′
=

y
g y

f x
( )

( )  (for g y( ) ≠ 0 )

and then integrate each side of this equation with respect to x:

The process of integration will generate one arbitrary constant – not two, because each integration produces an additive 
arbitrary constant which can be combined into a single one. Any exceptional solutions, if they exist, that are associated 
with division by zero (here g y( ) = 0 ) can be investigated separately (and, more often than not, they pose no difficulties).

Example 1

Find the general solution of the equation 

We write 
′

+
=

y
y

x
1

22  (and we note that 1 12+ ≥y : there can be no division by zero), and so

Download free eBooks at bookboon.com



Integration and differential equations

68 

First order ODEs: standard results

where A is an arbitrary constant. The general solution is therefore

Example 2

Find the general solution of the equation  and then that solution which satisfies y( ) .0 1=

We write yy x

x

x′ =
+

=
+−

1
1 1e

e
e

 (and 1 1+ >−e x  for ∀ x) and so we obtain

where A is an arbitrary constant. The general solution is

Now y( )0 1=  requires that

1 2 2= ± +A ln
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which is satisfied only if we select A = −1 2 2ln  and then use the positive sign; the resulting solution is therefore

Example 3

Find the general solution of the equation 

Here we write the equation as 
sec
tan

2 2
1

y
y

y
x

x′ = −
−

e
e

 (for tan y ≠ 0 , 1 0− ≠ex ), and so we obtain

ln tan lny Ax= − +2 1 e  or 

where A, and then B, are arbitrary constants. Thus the general solution is

However, before we leave this example, we must examine the possibility that the conditions excluded when we divided 
might give rise to other solutions. If tan y = 0 , all the corresponding solutions ( y n n= = ± ±π , , , , ...0 1 2 ) arise 
from the choice B = 0 , so these solutions are already included. The case x = 0  corresponds to tan y = 0 , and this is 
consistent with both the original equation and the solution. Thus both special solutions are valid and are recovered from 
the general solution.

Comment: Before we leave this type of ODE, we observe that an equation of the form

′ = + +y f ax by c( ),

where a, b and c are constants, can be recast as a separable equation by writing 

u ax by c= + +  to give  or ′ = +u bf u a( ) ,

which is clearly separable.

2.2	 Homogeneous equations

We describe, first, the notion of homogeneity. A function, f x y( , ),  is said to be homogeneous of degree n if

f kx ky k f x yn( , ) ( , )=  (∀ ≠k 0 ).
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A differential equation

′ =y f x y( , )

is of homogeneous type if f x y( , )  is homogeneous of degree 0 e.g.

f x y x y
x y

( , ) = −

+

2 2

2 2
 gives 

On the other hand, f x y x
x y

( , ) =
+

2
 is not:

f kx ky k x
k x y

k x
x y

( , )
( )

=
+

=
+

2 2 2
 so it is of degree 1.

[This same basic notion of homogeneity can be used to describe linear ODEs. Consider the linear, second order ODE

a x y b x y c x y g x( ) ( ) ( ) ( ),′′ + ′ + =

where the dependence on x is altogether immaterial. The equation with g x( ) ≡ 0  is homogeneous of degree 1 in y; to 
see this, write ky for y to give

a x ky b x ky c x ky( ) ( ) ( )′′ + ′ + = 0

i.e. 	 k a x y b x y c x y( ) ( ) ( )′′ + ′ + = 0

(and then we recover a x y b x y c x y( ) ( ) ( ) ,′′ + ′ + = 0  since k ≠ 0 ).

Thus the equation with no forcing term (i.e. zero right-hand side) is usually referred to as the homogeneous equation; note 
that this argument clearly fails if there is a right-hand side, independent of y, because then k cannot be factored out.]

We now return to the first-order ODE of homogeneous type:

′ =y f x y( , )  with f kx ky f x y( , ) ( , ),=

which clearly requires that the form of f is

homogeneous function of degree
homogeneous function of degree 

n
n ,

and very often these two functions are simple polynomials (in x and y). The method of solution is based on the recognition 
that

f kx ky f x y f x y F y x( , ) ( , ) ( , ) ( ),= ⇒ =
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for some F; thus we seek a solution for y x  rather than for y directly. We set v x y x x( ) ( ) ,=  so that y x xv x( ) ( ),=  
and we now solve for v x( ) ; once we have v, it is elementary to find y. Hence we obtain the equation

′ = + ′ =y v xv F v( )  i.e. xv F v v′ = −( ) ,

which is of separable form; see the previous section.

Example 4

Find the general solution of the equation yy y x′ = −2 .

When written as ′ =
−y y x
y

2
 we see that this equation is of homogeneous type, so we set (in the original equation) 

y xv=  to give

xv v xv x v( ) ( )+ ′ = −2 1  and so xvv v v v′ = − − = − −2 1 12 2( )  ( x ≠ 0 ).

We note, for v to be defined, that necessarily x ≠ 0  and so the condition imposed to manipulate the equation does not 
constitute a further restriction. The resulting solution of the equation may, however, still be defined on x = 0 ; this is 
readily checked in particular cases. Thus we have
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Thus we may write

where B is an arbitrary constant. Notice that the best we can obtain here is an integral of the original equation – not an 
explicit solution in the form y y x= ( ) ; this is not untypical of solutions of homogeneous-type ODEs. Finally, if v = 1  
i.e. y x= ,  then the manipulation above is not valid, but this is a solution of the original equation and, furthermore, it 
is recovered from the general solution with the choice B = 0.

Example 5

Find all the solutions of the equation xy y y x′ = + −2 2 .

This equation is of homogeneous type, so we write y xv= :

Thus we obtain

ln lnv v x A+ − = +2 1

or v v
x

B+ −
=

2 1  i.e. y y x Bx+ − =2 2 2

is the general solution, where B is an arbitrary constant. We see that the case v = ±1 i.e. y x= ±  are two further solutions 
of the original differential equation, but neither can be recovered from the general solution for any choice of B. The case 

0x =  simply gives 0y =  (a point). Hence the complete description of the solutions is

y x B x
B

( ) = +1
2

2 2
; y x x( ) .= ±

Comment: In this example, we see that there is not a unique solution for all possible boundary conditions. So, if we are 
given y a a( ) = , for any a ≠ 0,  then both y x=  and  are possible solutions.
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Example 6

Find the general solution of the equation 

The presence of the exponential terms does not affect the homogeneity, so we set y xv=  (and note that the equation 
itself implies 0x ≠ ) to give

or	   

Thus we obtain 

(and v v+ −e  is never zero; indeed, v v+ ≥−e 1) and so

which produces the general integral of the equation in the form

y x Bxy x+ =−e 2.

2.3	 The general linear equation

We now turn to the equation that is linear in y (and of the first order, of course); this equation takes the form

′ + =y p x y q x( ) ( )

for general functions p and q. In order to solve this equation, we first consider the case with zero right-hand side i.e.

′ + =y p x y( ) ;0

this equation is separable, so we are able to solve directly:

(for y ≠ 0 , although we observe that y ≡ 0  is a solution of our reduced equation). Thus
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and the details of the representation of this solution are irrelevant. We could, for example, dispense with the arbitrary 
constant A, because the integral is indefinite; on the other hand, we could write 

– or use any other suitable fixed lower limit – and then the use of A is necessary. The important property to note is that

and so, after differentiating this expression once, we obtain
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which is the left-hand side of the equation, multiplied by the exponential function. Thus, if we choose to follow this 
construction applied to our original equation (with the q x( )  retained and the exp factor can never be zero), we will obtain

Note that we may accomplish this without actually performing the integration of p x( )  (although, in practice, this is usually 
possible and is therefore done). When the integration is possible, the technique requires only that a suitable function can 

be found which is proportional to , so any arbitrary constant – which would be multiplicative – is 
unnecessary. 

From what has gone before, we see that we may now write

the left-hand side can be written as the derivative of a simple term – the product of y x( )  and a known function. The 
left-hand side has been converted into an exact differential. The function that makes this possible – the exponential here 
– is called an integrating factor because, of course, it leads directly to the equation being integrated completely. Performing 
this integration, and rearranging, gives

although it is far from good practice to remember, quote and substitute into this formula. This construct does, however, 
demonstrate that all linear, first-order equations can be solved. (This general form of solution is accepted as the solution, 
even if the integrals cannot be expressed in terms of known functions; written like this, the solution is said to have been 
reduced to a quadrature, implying that a numerical method would need to be employed, in general, to take it any further.)

Example 7

Find the general solution of the equation ′ + =y
x

y x3 .

The integrating factor is obtained from

and it is sufficient to take simply x3  as the integrating factor; thus we form
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This becomes  and so x y x A3 1
5

5= +

or y x x A
x

( ) ,= +
1
5

2
3

which is the general solution, with A the arbitrary constant.

Example 8

Find the general solution of the equation  and then that solution which satisfies y( ) .0 1=

In order to identify the integrating factor, we must first write the equation as

′ +
+

=
+

y x
x

y x
x

4
1

2
12 2

and then we construct

Thus we choose to multiply the second version of the equation by  (or the first version by ) to give

so that 

or 

Thus the general solution is

where A is the arbitrary constant.

Finally, the solution which satisfies y( )0 1=  must have A = 1 , so the required solution is
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Example 9

Find the general solution of the equation ′ − =y x y x xsin cos sin .2 2

First, we write

′ − = =y y x x
x

xcot sin
sin

cos2 2 4  ( sin 0x ≠ )

and the integrating factor is

and so we elect to multiply the second version of the equation by 1 sin ;x  this gives
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Thus we obtain y x x Asin ln sin= +4

and so the general solution, with arbitrary constant A, is

y x A x x x( ) sin sin ln sin= + 4

(which is defined as sin x → 0 ).

This concludes our discussion of the standard methods available for the solution of first order ODEs.

Exercises 2

Find all the solutions of these equations, writing these explicitly in the form y y x= ( )  wherever possible.

and for (d) also find that solution which satisfies y( ) .0 4=
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3	� First order ODEs: special equations
We now turn to a consideration of some types of equation that do not fall into the categories discussed in Chapter 2 but 
which, nevertheless, can be solved.

3.1	 The Bernoulli equation

This equation is the simplest that we consider in this chapter: it can be transformed into the standard linear form (§2.3). 
The most general form of the equation is

′ + =y p x y q x yn( ) ( )

where n is any constant (although we exclude n = 0  and n = 1  because, in these two cases, the equation is immediately 
a version of the linear equation). To see how we should proceed, we divide throughout by yn:

y y p x y q xn n− −′ + =( ) ( )1
 ( y ≠ 0 )

and we observe that the derivative of y n1− ,  with respect to x, is ( )1− ′−n y yn  which is essentially the first term in the 
equation. This suggests that we introduce u x y n( ) = −1 , so that ′ = − ′−u n y yn( ) ,1  and hence the equation becomes

1
1−

′ + =
n

u p x u q x( ) ( )

which is linear in u x( ),  and so we may use the technique described in §2.3.

Example 10

Find the general solution of the equation ′ − =y xy xy3.

We introduce u y= −2  ( y ≠ 0 , but we note that y ≡ 0  is obviously a solution of the given equation); thus ′ = − ′−u y y2 3  
and so we obtain

− ′ − =1
2

3 3 3y u xy u xy  or 1
2 ′ + = −u xu x.

Writing this as ′ + = −u xu x2 2 ,  we see that this equation has the integrating factor

and so we construct
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and so we have 
2 2

e e .x xu A= − +  

Thus the general solution for u is

2
( ) e 1xu x A −= − ,

where A is an arbitrary constant; then the required solution for y is

y x
A x

( ) = ±
−−

1

1
2

e ,

and y = 0  is recovered when we allow A→ +∞ .

3.2	 The Clairaut equation

The structure of this equation is, at first sight, considerably more involved than anything that we have met so far; it takes 
the form

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

Sweden 
www.teknat.umu.se/english

Think Umeå. Get a Master’s degree!
• modern campus • world class research • 31 000 students 
• top class teachers • ranked nr 1 by international students

Master’s programmes:
• Architecture • Industrial Design • Science • Engineering  

http://s.bookboon.com/umeaa


Integration and differential equations

81 

First order ODEs: special equations

where α  is any function of ′y .  The method we adopt, in an effort to simplify the problem, is to differentiate the equation 
once (so we will assume that the solution, if one exists, has a continuous second derivative in some domain). This derivative 
of the equation then produces

and this equation has solutions

′′ =y 0  and 
d
d
α
′
= −

y
x.

The former possibility shows that y x Ax B( ) ,= +  where A and B are arbitrary constants; however, in order to satisfy 
the original equation we must have

Ax B Ax A+ = +α ( )  i.e. B A= α ( )

and so we obtain the general solution

y x Ax A( ) ( )= +α

where A is the single – expected – arbitrary constant.

The second solution of the differentiated equation can be expressed as

x p y p p p= − ′ = − ′ +α α α( ), ( ) ( )

where the original version of the differential equation is written with x p= − ′α ( ) ; p is a parameter here. We now have 
a second solution which has been written in parametric form; it contains no arbitrary constant and so is an exceptional 
solution.

Example 11

Find all the solutions of the equation y xy
y

= ′ +
′

1
4

.

First we differentiate with respect to x to give
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which has one solution 

y Ax B= +  with B
A

=
1

4
 i.e. y x Ax

A
( ) = +

1
4

where A is an arbitrary constant; this is the general solution.

A second solution is obtained from

x
p

=
1

4 2  with y xp
p p

= + =
1

4
1

2

and here it is an elementary exercise to eliminate the parameter p, to give

y x2 =

(which certainly cannot be obtained by any choice of the arbitrary constant A in the general solution). Thus we have the 
complete prescription of the solution as

y x Ax
A

( ) = +
1

4
; y x x( ) = ± .

Finally we comment that there is a generalisation of this equation – the Lagrange equation – which is

the same manoeuvre that we adopted for the Clairaut equation now gives

One solution is ′′ =y 0 , provided that there exists at least one real root of the equation  if there are many 
roots, then there will be a corresponding set of straight lines

y x p p xp p= + = +β α α( ) ( ) ( )

where p is a (real) root of p p= β( ) . Note that this solution (or set of solutions) does not contain an arbitrary constant, 
and so we have not generated the general solution.

A second solution of our equation follows, even though  let us write
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which can be expressed in the form

x p p p p x
p

′ + ′ = −β α β( ) ( ) ( ) d
d

where we have written p y= ′.  This is a linear equation in x p x y( ) ( )= ′ : we have interchanged the rôles of the 
dependent and independent variables ! (We shall write more of this idea later; see §5.1.) The upshot is that we may solve 
this equation (see §2.3) to give the solution in the form

x x p= ( )  with y x p p p= +( ) ( ) ( ),β α

which provides a parametric representation of the solution – and because it involves one integration, it will contain one 
arbitrary constant: this is therefore the general solution.

Example 12

Find all the solutions of the equation 

This equation is of Lagrange type because of the term in x (which does not appear as xy′ ). First we differentiate with 
respect to x to give

′ = + ′ − ′ ′′y y y y1 2 2( )  or ( )( ) ,1 1 2 0− ′ + ′ ′′ =y y y

and so one solution is ′′ =y 0  with ′ =y 1 i.e. y x C= + ;  the original equation then requires that
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x C x+ = + 1
3

 so C = 1
3 : y x x( ) .= + 1

3

The other solution arises from

where A is an arbitrary constant. This, together with the original equation, gives

and in this case the parameter p can be eliminated:

which is the general solution.

3.3	 The Riccati equation

This is one of the more important first-order equations; it is of degree 1, but quadratic in y:

′ = + +y a x y b x y c x( ) ( ) ( ).2

The method of solution enables this nonlinear equation to be transformed into a linear, second-order equation. To 
accomplish this, let us seek a solution in the form

y x f x u
u

( ) ( )=
′

where f x( )  is to be chosen so that u x( )  will satisfy a second-order equation. We find ′y  and substitute to give

We now select f x( )  so that the terms  are eliminated: f x a x( ) ( ),= −1  which gives

′ ′
−

′′
= −

′
+

a
a

u
u a

u
u

b
a

u
u

c2
1 ,

and then multiplication throughout by au produces
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This is a linear, second-order ODE (with variable coefficients). The methods for solving this type of equation are well-
known, even if it is necessary to seek a solution as an appropriate power series in some cases (e.g. via the method of 
Frobenius). Of course, in simple cases it may be possible to integrate in terms of elementary functions. The solution of 
the Riccati equation is then recovered from y u au= − ′ ( ).

Example 13

Find the general solution of the equation x y xy x y2 2 28 20′ = − − .

First, we introduce  and then the equation becomes

This simplifies to produce

x u xu u2 8 20 0′′ − ′ + =

and this type of equation has a particularly simple general solution (see §4.2). We set u x x( ) = λ  to give (for x ≠ 0 )

λ λ λ( )− − + =1 8 20 0  or λ λ2 9 20 0− + = ;

thus λ = 4  or 5, and the general solution for u x( )  becomes

u x Ax Bx( ) ,= +4 5

where A and B are the arbitrary constants. The solution of the original Riccati equation is therefore

y u
u

Ax Bx
Ax Bx

=
′
=

+

+

4 53 4

4 5 .

This can be recast (and note that this solution is not defined on x = 0 , so x ≠ 0 ) to produce the general solution

y x Cx
x Cx

( ) = +

+

4 5
2

where C (= B A ) is a single arbitrary constant.
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Comment: If it happens that a (simple) special solution of the Riccati equation is known (so this would be a PI), then it 
is often convenient to proceed in a different way. We write

y x v x
u x

( ) ( )
( )

,= +
1

where v x( )  is the known solution; let us apply this to our general Riccati equation

′ = + +y a x y b x y c x( ) ( ) ( ).2

Substituting for y x( ) , we obtain

but v x( )  is a solution of the original equation, so this reduces to
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Finally, multiplication by u2  then yields

which is a standard linear equation (§2.3).

Example 14

Find the general solution of the equation ′ = − + +y y xy x2 22 1.

When we write this equation in the form

′ = − +y y x( )2 1

it is immediately apparent that there is a solution y x= ; thus we now seek a solution

y x u= +1 .

The equation therefore becomes

 i.e. ′ = −u 1

and so u x A x( ) = −  and then 

y x x
A x

( ) = +
−
1

is the required general solution, where A is the arbitrary constant.

3.4	 Exact differentials

Let us suppose that we have integrated a first order ODE and produced a solution, y x( ),  written in the form

f x y A( , ) = ,

where A is the arbitrary constant. Now we construct a differential equation which has this integral as its solution, by 
differentiating with respect to x:

∂
∂

+
∂
∂

′ =
f
x

f
y

y 0.

So, if the original ODE takes this form i.e.
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a x y b x y y( , ) ( , )+ ′ = 0  with 
a f

x
=
∂
∂

,
 
b f

y
=
∂
∂

,

for some f x y( , ),  then we can integrate directly. An equation of this form is called an exact differential (or, sometimes, 
total differential). We should observe that, with these definitions of a and b, we must have

∂
∂

=
∂
∂

a
y

b
x ;

this constitutes a test for an exact derivative.

Example 15

Find the general solution of the equation 

In this equation, we note that

 and 
∂
∂

=
y

y( ) 1

and so the equation is an exact differential; indeed, writing

∂
∂

=
f
x

y  and 
∂
∂

= +
f
y

x y2

we see that these imply, respectively, that

f x y xy F y( , ) ( )= +  and f x y xy y G x( , ) ( ),= + +1
3

3

where F and G are arbitrary functions. These two versions of f are consistent when we choose F y y A( ) = −1
3

3  and 
G x A( ) = − , where A is an arbitrary constant. So there is a general integral of the equation, which defines the solution; it is

xy y A+ =1
3

3 .

Comment: Even when the ODE is not an exact differential, as given, it may be possible to find a multiplicative factor – an 
integrating factor – which converts it into an exact form. Thus, given

a x y b x y y( , ) ( , ) ,+ ′ = 0

we multiply by g x y( , )  to produce

g x y a x y g x y b x y y( , ) ( , ) ( , ) ( , )+ ′ = 0

which will be an exact differential if
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∂
∂

=
∂
∂y

g x y a x y
x

g x y b x y( , ) ( , ) ( , ) ( , )
,

although this may not be easy to solve (for g). Simple cases may, however, turn out to be fairly straightforward.

Example 16

Find the general solution of the equation 2 2xyy x y′ = + .

We observe that 
∂
∂

=
x

xy y( )2 2  but that  so the equation is not exact. Let us therefore construct

and require that 

i.e.	   
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where the subscripts denote partial derivatives. We can now see that there will be a solution of this equation with g g x= ( )  
only, which then gives

2 4xyg yg′ = −  or xg g′ = −2

and so we may select the integrating factor g x x( ) .= 1 2  Hence we write the original equation in the form

 ( x ≠ 0 )

which now gives 
∂
∂

= +
f
x x

y
x

1 2

2  and 
∂
∂

= −
f
y

y
x

2 ,

i.e. f x y x y
x

F y( , ) ln ( )= − +
2

 and f x y y
x

G x( , ) ( )= − +
2

 (respectively).

Thus we must choose F y A( ) =  and G x x A( ) ln= +  (where A is an arbitrary constant); the general integral of the 
equation is therefore

ln x y
x

A− = −
2

(which is not defined on x = 0 ). In this example, we are able to write the solution explicitly as

,

which is defined as 0x → .

3.5	 Missing variables

We conclude this chapter by considering the equations in which either x or y is absent from the first order ODE 
f x y y( , , )′ = 0 .

First we consider the reduced equation φ( , )y y′ = 0 . The simplest situation that can arise is where this equation can 
be solved for ′y ,  for then

′ =y yψ ( )  and so ,

which presents the solution in the form x x y= ( );  see §5.1.

If, on the other hand, we can solve for y, then we have
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y y= ′θ( )  so ′ = ′ ′ ′′y y yθ ( )  i.e. p p p= ′ ′θ ( )

which gives a parametric representation of the general solution:

y p= θ( )  with .

Example 17

Find the general solution of the equation 

The derivative (with respect to x) of the equation yields

 i.e. 
d
d
p
x

p
p

=
+1 2

and so we have 

which, with y p p= + 2 , provides a parametric representation (parameter p) of the general solution (with A the arbitrary 
constant).

The second case occurs when y is absent: φ( , ) ,x y′ = 0  and then the most straightforward situation arises when we 
can write

′ =y xψ ( )  for then 

If we have x y= ′θ( ),  then the derivative method (used above) can be employed: differentiate with respect to y to give

d
d

d
d

x
y

y y
y

= ′ ′
′θ ( )

 or 

1
p

p p
y

= ′θ ( ) d
d

and we again develop a parametric representation of the general solution:

 with x p= θ( ).

Example 18

Find the general solution of the equation 

The derivative with respect to y gives

 or 
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and so y p p A= + +1
2

2 3
4

4  which, with x p p= + 3,  constitutes a parametric representation of the general solution 
(with A the arbitrary constant).

This concludes the discussion of first-order, ordinary differential equations.

Exercises 3

Find the general solutions of these equations.

(a)  [try 3( )y w x= ]; (b) xy y x y′ − =3 5 1 3 ; 

(c)  (d) y xy y= ′ + ′2 ln ; (e) ′ + + + =y y y2 2 2 0 ; 

(f) x y x y xy2 2 2 1′ = + +  (and one solution is y x= −1 ); 

(g)  (h) x xy y y xy( ) ( )2 3 3 4 0+ ′ + + = ; 

(i) y y y= ′ − ′( ) .1 e
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4	 Second order ODEs
In this chapter we present methods for solving two standard types of linear, second order ODEs. (However, we do not 
describe the construction of power-series solutions, using the method of Frobenius.) In addition, we will describe some 
techniques that are applicable if further information is available (e.g. one solution is known), or the equation takes a special 
form (e.g. y is absent). Finally, we mention some methods for finding particular integrals of linear equations.

4.1	 Constant coefficient equations

We consider the linear equation

ay by cy g x′′ + ′ + = ( )

where a, b and c are given constants. We have already demonstrated (§1.2) that a linear equation possesses a solution 
which comprises a complementary function ( yCF ) and a particular integral ( yPI ); here we concentrate on yCF  (which 
is the general solution of the equation with g ≡ 0 ). In order to develop a general method of solution, we first identify 
the roots of the quadratic equation

a b cλ λ2 0+ + =  : λ =
− ± −b b ac

a

2 4
2

 ;

let us label these λ1  and λ2 ,  and we assume that these are real and distinct. (The other two cases will follow shortly.)

To proceed, let us write (for yCF )

and consider ;

expanding this equation, we obtain

where  and λ λ1 2 = c a : this is our equation for yCF . Thus our second-order equation can be 
written as the pair of equations

d
d
u
x

u− =λ1 0  with u y
x

y= −
d
d

λ2 .
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The first of these has the general solution u x A x( ) = eλ1  (where A is an arbitrary constant), and then the second 
equation becomes

′ − =y y A xλ λ
2 1e .

This equation has an integrating factor (§2.3) e−λ2 x
, so we form

 or ;

thus we obtain  	 ,

where B and C are arbitrary constant. Hence the general solution is

y x B CCF
x x( ) = +e eλ λ1 2

,

which is a general, linear combination of the exponential functions associated with the two roots of the quadratic. We 
note that two arbitrary constants – as expected – have been generated here.

The other two cases can now be examined. First, for repeated roots (λ λ1 2= ), the only change will be that now we have

 and so y x Ax Bx x( ) = +e eλ λ1 1 ,

producing a solution which is no longer purely exponential. The second case occurs when the roots are complex-valued; 
let us write λ α β= ± i , then our solution gives

for arbitrary (complex) constants A and B. This is more conveniently written in terms of trigonometric functions:

.

Now we identify new arbitrary constants:

C A B D A B= + = −, ( )i

to give	  

(It is easily confirmed, by direct substitution, that this is indeed a solution of the original equation, for arbitrary real 
constants C and D. This answers any questions about the validity of working with complex constants and, apparently, a 
complex-valued solution: in the final analysis, a real, general solution has been constructed.)
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The procedure that is typically adopted, in order to find yCF  for the constant coefficient equation, is to seek a solution 
y x= eλ  (for general x). This gives the quadratic equation for λ ,  and from its solution we are then able to write down 

the appropriate general solution by following the ‘recipe’ described above.

Example 19

Find the general solution of the equation 4 8 3 0′′ − ′ + =y y y .

We set y x= eλ  to obtain  and with eλx ≠ 0  we require the quadratic expression to be zero. 
Thus 

λ λ λ2 3
4

2 1
42 1 0− + = − − =( )

 so 
λ = ±1 1

2 ;

the general solution is therefore

y x A Bx x( ) = +e e2 3 2
,

where A and B are arbitrary constants.

Example 20

Find the general solution of the equation ′′ − ′ + =y y y8 16 0.
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Set y x= eλ  then we obtain λ λ λ2 28 16 4 0− + = − =( ) , so we have a repeated root: λ = 4,  so the general solution is

y x Ax Bx x( ) = +e e4 4
.

Example 21

Find the general solution of the equation ′′ + ′ + =y y y4 13 0,  and then that solution which satisfies 
y y( ) , ( ) .0 1 0 8= ′ = −

Set y x= eλ  then we obtain λ λ λ2 24 13 2 9 0+ + = + + =( ) , and so λ = − ±2 3i ; the general solution is therefore

y x A x B xx( ) ( sin cos ).= +−e 2 3 3

Now the given conditions require

y( )0 1=  so B = 1; ′ = −y ( )0 8  so − = − +8 2 3B A

which give B A= = −1 2, ; thus the solution is

y x x xx( ) (cos sin ).= −−e 2 3 2 3

Comment: This same technique is applicable to constant coefficient, linear ODEs of any order e.g. 

y y y y yiv + ′′′ + ′′ + ′ + = 0,

simply by seeking a solution y x= eλ  and solving the resulting polynomial equation for λ.  The general solution is 
then constructed by following the methods above, and in particular by forming a general, linear combination of all the 
possible solutions.

4.2	 The Euler equation

This equation takes the form

ax y bxy cy g x2 ′′ + ′ + = ( )

where a, b and c are given constants. The complementary function is found by following the same philosophy as for the 
constant coefficient equation, but now based on the function xλ  (rather than eλx ). Thus we seek a solution y x= λ ,  
to give

ax x bx x cx2 2 11 0λ λ λλ λ λ( ) ,− + + =− −

and for this to be valid for any x, we require
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a b c a b a cλ λ λ λ λ( ) ( ) .− + + = + − + =1 02

The roots for λ  then enable the general form of yCF  to be found (by adding solutions, just as before, because the ODE 
is linear); there are three cases.

If the roots are real and distinct (λ λ1 2, ), then we have simply

y x Ax Bx( ) .= +λ λ1 2

If the roots are complex: λ α β= ± i , then we write

and it is then convenient to use , and so we obtain

for arbitrary real constants C and D.

Comment: Euler equations and constant coefficient equations are directly and simply related. To see this, we introduce 
x t= e  into the Euler equation, and treat y y t= ( ) , which gives

d
d

d
d

d
d

ey
x

y
t

t
x

y tt= = ′− ( )  and .

Thus our original homogeneous equation becomes

where the prime now denotes the derivative with respect to t. The resulting equation is a constant coefficient equation:

ay b a y cy′′ + − ′ + =( ) .0

Thus all that we presented in §4.1 can be used e.g. if y t= eλ ,  λ λ λ= 1 2, ,  then

y Ae Be Ax Bxt t= + = +λ λ λ λ1 2 1 2 ,

as obtained above. We may also use this method to obtain the general solution of the Euler equation when the roots are 
repeated (the third case):

y Ate Be Ax x Bxt t= + = +λ λ λ λln .
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Example 22

Find the general solution of the equation x y xy y2 2 6 0′′ + ′ − = .

Set y x= λ , then we obtain λ λ λ λ λ λ λ( ) ( )( )− + − = + − = − + =1 2 6 6 2 3 02 , so λ = −2 3, ; the general 
solution is therefore

y x Ax B
x

( ) ,= +2
3

where A and B are the arbitrary constants.

4.3	 Reduction of order

We now suppose that we have one solution of the homogeneous version of the general, linear second order ODE:

a x y b x y c x y( ) ( ) ( ) ;′′ + ′ + = 0

we write this solution as u x( )  (so that au bu cu′′ + ′ + = 0 ). This assumption is not as extreme as it first seems: we can 
almost always find at least one solution that contributes to yCF  (even if this solution has to be represented as a power 
series). Now we seek a solution of the original equation in the form y u x v x= ( ) ( ),  and solve for v x( );  we obtain, 
therefore,
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a u v u v uv b u v uv cuv g( ) ( )′′ + ′ ′ + ′′ + ′ + ′ + =2

which reduces to 	 auv au bu v g′′ + ′ + ′ =( ) .2

(This is a version of the ‘variation of parameters’ – see §4.4 – because the arbitrary constant in Au x( )  is treated as a 
function: the parameter is allowed to vary.) The resulting equation is a general, first-order equation in ′v  (§2.3) and so the 
method of solution proceeds as if the order of the equation has been reduced. Note that, in addition to this simplification, 
the method will also provide the complete solution in that it will produce the appropriate PI that is generated by g x( ).  
It is not normal practice to continue the formulation of the general solution for v x( ),  and then for y x( );  rather, the 
technique is simply to identify a solution, u x( ),  and follow the procedure indicated above.

Example 23

Find the complete solution of the equation  given that y x=  is a solution of 
the homogeneous equation.

We first check the given information:

which is correct.

Thus we set y xv x= ( )  to give

This equation, regarded as an equation for ′v ,  is written as

which possesses the integrating factor 
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We select the integrating factor 
x

x

2

21+
:

and so 

This gives 

and then one further integration produces

Then the complete – because it contains both the CF and the PI – solution of the original equation is

4.4	 Variation of parameters

Here, we expand on the idea developed in the previous section by supposing that we have available both solutions (of 
a second order, linear ODE) that comprise the CF. (This same method is applicable to any linear, nth order ODE, when 
the CF is completely known.) Consider

a x y b x y c x y g x( ) ( ) ( ) ( )′′ + ′ + =

with two solutions, u x1( )  and u x2 ( ),  of the homogeneous equation given; let us now seek a solution

y x A x u x B x u x( ) ( ) ( ) ( ) ( )= +1 2

(so that both parameters are allowed to vary). Thus we obtain

a A u A u Au B u B u Bu b A u Au B u Bu′′ + ′ ′ + ′′+ ′′ + ′ ′ + ′′ + ′ + ′ + ′ + ′1 1 1 2 2 2 1 1 2 22 2

+ + =c Au Bu g1 2 ;

but u1  and u2  are solutions with g ≡ 0,  so we obtain
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a A u A u B u B u b A u B u g′′ + ′ ′ + ′′ + ′ ′ + ′ + ′ =1 1 2 2 1 22 2 .

Now we choose A x( )  and B x( )  such that

′ + ′ =A u B u1 2 0  (so that ′′ + ′ ′ + ′′ + ′ ′ =A u A u B u B u1 1 2 2 0 )

to leave a x A u B u g x( ) ( ),′ ′ + ′ ′ =1 2

which together provide two equations for ′A x( )  and ′B x( ).  The solution of these equations is

′ = −A g
a

u
W

2 , ′ =B g
a

u
W

1

where W x u u u u( ) = ′ − ′1 2 1 2  (≠ 0  for linearly independent solutions) is called the Wronskian. The general solution of 
the original equation is now expressed as

Example 24

Find the complete solution of the equation ′′ + =y y xsin .
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The general solution of the homogeneous equation is

y A x B x= +sin cos ,

and so we select u x x u x x1 2( ) sin , ( ) cos ,= =  and then

W x x x( ) sin cos .= − − = −2 2 1

Thus we have the complete solution expressed as

4.5	 Finding particular integrals directly

For general, linear equations of second order: 

a x y b x y c x y g x( ) ( ) ( ) ( ),′′ + ′ + =

we can always find the PI by using one form (§4.3) or another (§4.4) of the method of variation of parameters. However, 
if g x( )  takes a simple form – especially in the case of constant-coefficient equations – then it is possible to find the 
PI directly by, essentially, algebraic means. We will briefly present systematic approaches in three simple situations (but 
obvious extensions of these can also be tackled using these techniques). Of course, it is always possible, when seeking PIs, 
to make an appropriate guess and confirm its correctness, but we opt for something more methodical here.

(a) g(x) is a polynomial

In this case, we differentiate the original equation as many times as is necessary to reduce g x( )  to a non-zero constant. 
A form of the PI then follows by solving the equations, starting from the simplest solution – usually a suitable constant 
– of the final equation.

Example 25

Find a particular integral of the equation x y x y y x2 21 2 3′′ + + ′ + =( ) .

We form 
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2 2 1 2 3 22xy x y y x y y x′′ + ′′′ + ′ + + ′′ + ′ =( )

and then 2 4 4 1 2 3 22′′ + ′′′ + + ′′ + + ′′′ + ′′ =y xy x y y x y yiv ( ) ;

this last equation has a simple solution with ′′′ =y 0  and yiv = 0  i.e. ′′ =y 2 9.  Then the preceding equation gives

( )1 4 5 22
9+ + ′ =x y x  or ′ = −y x2

9
2
45 ,

and finally the original equation becomes

(b) g(x) is a polynomial× exponential

We now have an equation that takes the form

a x y b x y c x y P x x( ) ( ) ( ) ( )′′ + ′ + = eα

where P x( )  is a given polynomial. The most direct way to find the PI is to seek a solution in the form y x u x x( ) ( ) ,= eα  
which will reduce the problem to finding a suitable u x( )  following the procedure in case (a).

Example 26

Find a particular integral of the equation ′′ + ′ − = −y y y x x2 2e .

We set y u x x= −( ) ,e 2  which gives

and this simplifies to ′′ − ′ =u u x3 .

Thus we obtain, after one differentiation, ′′′ − ′′ =u u3 1

which has the simple solution ′′ = −u 1 3  ( ′′′ =u 0 ), and so we then have

− − ′ =1
3 3u x  and then we choose u x x x( ) = − −1

6
2 1

9

(and the arbitrary constant is irrelevant for a PI); hence
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(c) g(x) is a polynomial× sin( )α x  (or cos( )α x )

The equation is now

a x y b x y c x y P x x( ) ( ) ( ) ( ) sin( )′′ + ′ + = α

(or = P x x( ) cos( )α  or = +P x x Q x x( ) sin( ) ( ) cos( ),α α  where P x( )  and Q x( )  are polynomials). This time 
we seek a solution

y x u x x v x xPI ( ) ( ) sin( ) ( ) cos( )= +α α

and then obtain two problems, one for each of u x( )  and v x( )  (although these equations, in general, will be coupled); 
the procedure again follows that in case (a). As before, this method is especially relevant when the differential equation 
has constant coefficients.

Example 27

Find a particular integral of the equation ′′ + ′ − = +y y y x x x2 2 2sin cos .

We seek a solution 

y x u x x v x xPI ( ) ( ) sin ( ) cos= +2 2
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and then we obtain

′′ + ′ − + ′′ − ′ −u x u x u x v x v x v xsin cos sin cos sin cos2 4 2 4 2 2 4 2 4 2

+ ′ + + ′ − − − = +u x u x v x v x u x v x x x xsin cos cos sin sin cos sin cos .2 2 2 2 2 2 2 2 2 2 2 2

Eliminating the terms, separately, in sin 2x  and cos ,2x  yields

′′ + ′ − ′ − − =u u v u v x4 6 2 ; ′′ + ′ + ′ − + =v v u v u4 6 2 1.

We must now proceed with a little care; first, we eliminate either u or v (but not necessarily the corresponding derivatives) 
to give e.g.

′′ + ′′ + ′ − ′ − = +u v u v v x3 13 20 3

and the derivative of this produces

′′′ + ′′′ + ′′ − ′′ − ′ =u v u v v3 13 20 1

which has a special solution ′ = −v 1 20  (with ′′ = ′′ = ′′′ = ′′′ =v u v u 0 ). The derivative of our first equation gives

′′′ + ′′ − ′′ − ′ − ′ =u u v u v4 6 2 1,

so we have a solution ′ = − + = −u ( ) .1 6 3 201
10  The two original equations now require

− + − − =3
20

1
5 6 2u v x ; − − + − =1

20
3
5 2 6 1u v

which, upon solution, give u x x( ) = − +3
20

33
40 ; v x x( ) .= − −1

20
49
200

Thus a particular integral is

y x x x x x xPI ( ) ( sin cos ) ( sin cos ).= − + + −
20

3 2 2 1
200

165 2 49 2

4.6	 Missing variables

General second-order equations 

f x y y y( , , , )′ ′′ = 0

will simplify, and usually succumb to one of our earlier methods, if a suitable variable happens to be missing. The simplest 
situation occurs if y is absent, for then the equation becomes of first order in ′y .
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Example 28

Find the general solution of the equation 

First, we set p x y( ) ,= ′  and so obtain

x p p xp x2 2 22 2′ = − +

which is a homogeneous, first-order equation (see §2.2). Thus we now write p xv x= ( ):

xv v v v′ + = − +2 2 2  or xv v v v v′ = − + = − −2 3 2 1 2( )( )

i.e. 

So we obtain ln lnv
v

x A−
−

= +
2
1

 or 
v
v

Bx−
−

=
2
1

 i.e. v Bx
Bx

=
−
−

2
1

and hence 

One final integration then produces the general solution

y x x x Bx CB B
( ) ln= − − − +1

2
2 1 1

2 1

where B and C are the arbitrary constants.

The second case that we will address is when x is absent (but otherwise we have a general equation); here we may treat 

′ =y p y( )  i.e. d
d

d
d

d
d

d
d

2

2
y

x
p
y

y
x

p p
y

= = ,  so

φ( , , )y y y′ ′′ = 0  becomes φ( , , )y p pp′ = 0 :

a first-order equation for p y( ).

Example 29

Find the general solution of the equation yy y′′ + ′ =( ) .2 1

Set p y= ′,  then ′′ = ′y pp y( )  and so we obtain

ypp p′ = −1 2

which is separable (§2.1):
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Thus 	   

i.e. 	   

The general solution is y x B x D( ) ( )= ± + + 2 ,

where B and D are arbitrary constants.

Exercises 4

Find the general solutions of these equations.
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5	 More general aspects of ODEs
In this final chapter, we touch on three rather more general ideas that those who seek some deeper ideas may find 
informative. We will extend, a little, the idea that we met in §3.2 and §3.5, where the roles of x and y are interchanged. 
Then we will highlight the important fact that some equations admit exceptional solutions – and we have already met a few 
– but now we put this possibility within a systematic framework of solutions. We conclude by making some observations 
about the nature of uniqueness proofs; with uniqueness available, we can obtain (as examples) two important identities 
between the trigonometric functions.

5.1	 Interchanging x and y

This idea has been encountered in equations of the type φ( , )y y′ = 0  (at the start of §3.5) which take the particular form

There is, however, another important class of equations that also falls into this category (and we limit ourselves to first 
order ODEs); these equations take the form

xf y g y y h y( ) ( ) ( ).+ ′ =
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This equation is of order 1 and degree 1 but, in general, it is nonlinear – maybe highly so, and cannot be integrated (in 
the general case) by any of our methods, as it stands. However, if we elect to treat x x y= ( )  rather than y y x= ( ),  
we may write

h y x
y

xf y g y( ) ( ) ( )d
d

− =

which is a standard, linear equation (§2.3) in x.

Example 30

Find the general solution of the equation 

We write the equation as

′ − =x y x y y2e  or ′ − =x
y

x y y1 e  ( 0y ≠ )

which has the integrating factor , so we elect to use y−1 :

Thus x y Ay= +e  and so the general solution can be expressed by the relation

Ay y xy+ =e ,

where A is an arbitrary constant (and 0y =  simply implies 0x = : a point).

5.2	 Singular solutions

In this section we comment on a special solution which may, exceptionally, be the relevant solution to our first order ODE. 
Some of the early examples (in Chapters 2 and 3) described differential equations that had special solutions that had to be 
checked against the general solution, once it had been obtained. In all but two cases, these solutions, it transpired, could 
be recovered by taking special values (or limits) of the arbitrary constant; thus, eventually, they were not exceptional at 
all. However, in Example 5 (§2.2) and Example 11 (§3.2), we found exceptional solutions that could never be recovered 
from the general solution. Any solution of the differential equation which cannot be obtained from the general solution 
is called a singular solution. It turns out that a singular solution is intimately associated with the general solution: it is 
the envelope of the general solution, mapped out as the arbitrary constant varies. We will explain how this comes about.

Let f x y A( , , ) = 0  be the general solution of a first order ODE, where A is the arbitrary constant. Now a singular solution 
has the same slope as the general solution, at the same point, because this is what the ODE implies. In addition, it also 
coincides – at some point – with consecutive curves of the general solution, generated as A varies from A1  to A2  (say), 
but in the limit as A A1 2→ . This is the definition of an envelope of a family of curves; it requires that f x y A( , , ) = 0  
has a double root in A i.e. ∂

∂
=

f
A

0 . The envelope (if one exists) is therefore the solution(s) obtained by eliminating A 
between
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f x y A( , , ) = 0  and 
∂
∂

=
A

f x y A( , , ) .0

This property is satisfied by our Example 11, where the general solution was given as

,

and so 
∂
∂

= − + =
f
A

x
A
1

4
02 ;

thus the envelope is described by 

 with A x2 1 4=  i.e. y x2 = .

This is the exceptional solution that we found in Example 11; a selection of straight lines – the general solution – and the 
envelope are depicted in the figure below.
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Comment: Any singular solution of the differential equation can be determined directly from the equation simply by 
selecting the condition that ′y  has a repeated root (since, as we have seen, at least two solutions exist with the same slope, 
at some point). In Example 11: x y yy( ) ,′ − ′ + =2 1

4 0  so ′y  has a repeated root if ( ) . .− =y x2 1
44  i.e. y x2 = , as 

previously obtained.

Example 31

Find the envelope of the general solution  (as derived in Example 5).

Given , then

∂
∂

= − =
f
A A

x1
2

1
2

02
2  so A x2 2 1= ,

and eliminating A produces

the envelopes are y x= ± , the exceptional solutions already reported in Example 5.
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Comment: We can readily see that solutions of linear equations can never generate envelope solutions, and so singular 
solutions of these equations do not exist. Consider the solution of some linear equation; it will take the general form

y x A x x( ) ( ) ( )= +α β

for some functions α  and β ,  where A is the arbitrary constant. Thus we have, for any envelope curve,

f x y A y A x x( , , ) ( ) ( )≡ − − =α β 0  and so 
∂
∂

= − =
f
A

xα ( ) 0

which gives y x x( ) ( )= β , which is the general solution with A = 0 : there is no exceptional ‘envelope’ solution. Of 
course, we could have simply noted that a solution which is linear in A (or, equivalently, a differential equation linear in 
′y ) cannot have a repeated root for y′ .

5.3	 Uniqueness 

We have seen, in §5.2, that some ODEs have more than one solution through certain points in the (x,y)-plane. This 
observation prompts us to consider the general issue of uniqueness; perhaps solutions of ODEs suffer from non-uniqueness, 
in a more general sense. (The question of existence is not one that we will pursue here – we have, after all, derived solutions 
of many equations – but this may be a critical issue if solutions cannot be constructed by any method. In this situation, 
a numerical solution may be considered, but this would be a wasteful exercise if we do not have some conviction that a 
suitable solution exists.) We will, in all that follows, consider only first order ODEs.

Most uniqueness theorems assume, first, that the ODE can be expressed as ′ =y f x y( , )  and, secondly, that f satisfies 
a Lipschitz condition in y:

f x y f x y k y y( , ) ( , )1 2 1 2− ≤ − ,

where k is a (positive) constant, for all functions which may be solutions. We now consider the ODE with the boundary 
condition y a b( ) ;=  let us suppose that there are two solutions, y x1( )  and y x2 ( ),  that satisfy both the ODE and the 
given boundary condition. We form

′ − ′ = −y y f x y f x y1 2 1 2( , ) ( , )

and then apply the Lipschitz condition (which, of course, we assume applies here), to give

′ − ′ ≤ − ≤ −y y f x y f x y k y y1 2 1 2 1 2( , ) ( , )  i.e. ′ ≤w k w ,

where w x y x y x( ) ( ) ( ).= −1 2  Thus (provided w ≠ 0  at this stage) we obtain

(ln )w k′ ≤  or A w Bk x a k x ae e− − −≤ ≤( ) ( ) ,
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where A and B are arbitrary constants; but w = 0  on x a= , so at equality within the inequalities we have A B= = 0  
i.e. w ≡ 0 . The solution of the ODE is unique.

In particular cases, we can often use this argument directly, without recourse to the introduction of a general Lipschitz 
condition.

Example 32

Construct a uniqueness theorem for the general Riccati equation ′ = + +y a x y b x y c x( ) ( ) ( )2 ; see §3.3.

Let two solutions that satisfy y x y( )0 0=  be y x1( )  and y x2 ( ) , then we have

or 	   

where w x y x y x( ) ( ) ( ).= −1 2  Thus we may integrate:

,

where v x y x y x( ) ( ) ( )= +1 2  and A is an arbitrary constant; the integral, and therefore w x( ) , exist if y x1( )  and 
y x2 ( )  do (and we know that solutions do exist, at least for suitable a x( ),  b x( )  and c x( ) ). But w = 0  on x x= 0,  

so A = 0 : w ≡ 0  i.e. the solution that exists is unique.

We conclude by invoking uniqueness when we solve our final pair of ODEs; in each, we solve in two different ways and 
set the two representations of the solution equal.

Example 33

Find the general solution of the Riccati equation ′ = +y y1 2 ,  expressed in two different ways (and then equate them).

The standard Riccati approach is to set, in this example, y = − ′φ φ , to give

and so φ( ) sin cos .x A x B x= +

Download free eBooks at bookboon.com



Integration and differential equations

114 

More general aspects of ODEs

The general solution is thus y x C x
C x

( ) tan
tan

,= −
′
=

+
−

φ
φ 1

where C (= − A B ) is the arbitrary constant.

However, this equation can be integrated directly – it is separable – as 

The uniqueness of the solution (which we have demonstrated for this equation in Example 32) implies that

tan( ) tan
tan

x D C x
C x

+ =
+

−1
 (∀x )

and we note that, on x = 0,  we require tan ,D C=  so we obtain

tan( ) tan tan
tan .tan

x D x D
x D

+ =
+

−1

– a very familiar identity.

Download free eBooks at bookboon.com

Click on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read moreClick on the ad to read more

http://s.bookboon.com/volvo


Integration and differential equations

115 

More general aspects of ODEs

Example 34

Find the general solution of the equation ′ = −
−

−
y y

x
1
1

2

2  (usually called Euler’s equation) in two different forms, and 
write down the condition that implies that the two solutions are the same solution.

The equation is separable, so we have

 so arcsin arcsin ,y x A+ =

where A is an arbitrary constant.

However, a little investigation shows that this equation also possesses an integrating factor:

which gives x y y x B1 12 2− + − = ,

where B is a second arbitrary constant. It is rather tiresome (and altogether unnecessary) to solve explicitly for y x( ),  
so we will invoke uniqueness by observing that the two y x( )s  being identical implies that the two constants must be 
related i.e. A F B= ( ) :

for some function F. But for y = 0  we obtain

arcsin ( ),x F x=

which leads to 

Let us introduce α = arcsin x  and β = arcsin ,y  then our identity becomes

sin( ) sin cos cos sin ,α β α β α β+ = +

another very familiar identity.
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Exercises 5

Find the general solutions, and any singular solutions, of these equations.
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Answers
Exercises 1

	 (a) order 1, degree 1, nonlinear; 	 (b) order1, degree 1, linear; (c) order 1, degree 2; 

	 (d) order 2, degree 1, linear; 	 (e) order 2, degree 1, linear; 

	 (f) order 2, degree 1, nonlinear; 	 (g) order 3, degree 1, nonlinear; 

	 (h) order 4, degree 1, linear.

Exercises 2

The arbitrary constant is A in each case.
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Exercises 3

The arbitrary constant is A in each case; the parameter is p.

Exercises 4

The arbitrary constants are A and B in each case.

(a) y x A Bx x( ) = + −e e2 5 ; (b) y x Ax Bx x( ) = +− −e e5 2 5 2 ; 

(c) y x A x B xx( ) ( sin cos )= +−e 2 2 ; (d) ; 

(e) y x Ax B x x( ) = + + +1 2 2 ; (f) y x Ax Bx x x x( ) ln= + + +−2 2 1
4

2 1
12

4
; 

(g) y x A B x x xx x( ) = + + + + +e e2 1
2

3 9
4

2 21
4

45
8

; 

(h) ; 

(i) y x A x B x x x x x( ) sin cos (sin cos )= + + −1
4

; 

Exercises 5

The arbitrary constant is A in each case; any singular solution is quoted separately.

(a) x y Ay y y( ) = + +3 2
; (b) y x A x

A
( ) = +

2
, y x x( ) = ±2 ; 

(c) y x Ax A x( ) = + +2 1
2

2 , y x x( ) = 1
4

2 ; (d) y x A Ax( ) = + −e 1 , y x x( ) = ±2 2e ; 

(e) y x A Ax( ) = − −e 1  (only); (f) y x A x A( ) ( )= − 2 , y x x( ) = 4
27

3
.
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Index
Anti-derivative 18
arbitrary constants 63
area integral 12

Bernoulli equation 79

Calculus fundamental thm 17
CF - complementary 
function

65

Clairaut equation 80
complementary function 
(CF)

65

const coeff/Euler equation 97
constant coefficients 93
constants arbitrary 63
cubic denominator 44

Defined 63
degree of polynomial 38

63
denominator cubic 44

linear 39
quadratic 41

Envelope 109
equation Bernoulli 79

Clairaut 80
const coeff/Euler 97
constant coeffs 93
degree 63
Euler 96
Euler/const coeff 97
Euler's 115
homogeneous 65
integral of 72
Lagrange 82
linear 63
linear, first order 73
order 63
Riccati 84
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Index

second order 93
separable 67

Euler equation 96
Euler/const coeff equation 97
Euler's equation 115
exact differential      75,87
existence of integrals      33,34

63.112

First order equation      67,73
forcing term 64
formula reduction 30
fractions improper 38
function complementary 65

rational 38
trigonometric 49

fundamental theorem calculus 17

General solution 63

Historical note integration 17
homogeneity 65
homogeneous linear 69
homogeneous equation 65,69,70
homogeneous of degree n 69
homogeneous type 69

Improper fractions 38
improper integrals 32
indefinite integral 18
integral area 12

indefinite 18
primitive 18
Riemann      12,14

integral (of an equation) 72
integrals existence of      33,34

improper 32
of trig functions 49
rational functions 38
standard 24

integrating factor      75,88
integration historical note 17
integration by parts 26
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Index

integration theorems      19-21
interchange x and y 83.108

Lagrange equation 82
linear denominator 39
linear equation      63,73
linearity homogeneous 69

63
Lipschitz condition 112
ln(x) 24

Method of substitution 21
missing variables (1st 
order)

90

missing variables (2nd 
order)

105

Non-unique representation 35

Order reduce 98
63

Particular integral (PI) 65.102
PI - particular integral 65.102
polynomial degree of 38
primitive 18

Quadratic denominator 41
quadrature 75

Rational functions integrals of 38
trigonometric 54

recurrence relation 30
reduce order 98
reduction formula 30
Riccati equation 84
Riemann integral      12,14
Riemann, G.F.B. 14

Second order equation 93
separable equations 67
sine identity 115
singular solution 63.109
solution defined 63
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Index

exists 63
general 63
singular 63.109

standard integrals 24
substitution method of 21

Tangent identity 114
theorem fundamental 17
theorems integration      19-21
total differential 87
trigonometric functions integrals of 49

powers 50
rational 54
simple products 49

Uniqueness 112

Variables missing (1st 
order)

90

variables missing (2nd 
order)

105

variation of parameters 99.100

Wronskian 101

x(y) (not y(x)) 83.108
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