Chapter 1 – Introduction to Computers, Internet and Visual Basic .NET

1

<u>Outline</u>

- 1.1 Introduction
- 1.2 What is a Computer?
- 1.3 Computer Organization
- 1.4 Evolution of Operating Systems
- 1.5 Personal Computing, Distributed Computing and Client/Server Computing
- 1.6 Machine Languages, Assembly Languages and High-Level Languages
- 1.7 Visual Basic .NET
- 1.8 C, C++, Java and C#
- 1.9 Other High-Level Languages
- 1.10 Structured Programming
- 1.11 Key Software Trend: Object Technology
- 1.12 Hardware Trends
- 1.13 History of the Internet and World Wide Web
- 1.14 World Wide Web Consortium (W3C)
- 1.15 Extensible Markup Language (XML)

Chapter 1 – Introduction to Computers, Internet and Visual Basic .NET

<u>Outline</u>

- 1.16 Introduction to Microsoft .NET
- 1.17 .NET Framework and the Common Language Runtime

1.1 Introduction

© 2002 Prentice Hall. All rights reserved.

1.2 What is a Computer?

- Computer
 - Device capable of
 - Performing computations
 - Making logical decisions
 - Works billions of times faster than human beings
 - Fastest supercomputers today
 - Perform hundreds of billions of additions per second

1.2 What is a Computer? (II)

- Programs
 - Sets of instructions that process data
 - Guide computer through orderly sets of actions specified by computer programmers
- Computer system
 - Comprised of various *hardware* devices
 - Keyboard
 - Screen (monitor)
 - Disks
 - Memory
 - Processing Units

1.3 Computer Organization

- Every computer divided into six units
 - 1. Input unit
 - "Receiving" section of computer
 - Obtains data from *input devices*
 - Usually a keyboard, mouse, disk or scanner
 - Places data at disposal of other units
 - 2. Output unit
 - "Shipping" section of computer
 - Puts processed info on various *output devices*
 - Screens, paper printouts, speakers
 - Makes info available outside the computer

1.3 Computer Organization (II)

- 3. Memory unit
 - Rapid access, low capacity "warehouse"
 - Retains information entered through input unit
 - Retains info that has already been processed until can be sent to output unit
 - Often called *memory*, *primary memory*, or *random access memory* (RAM)
- 4. Arithmetic and Logic Unit
 - "Manufacturing" section of computer
 - Performs calculations (addition, subtraction, multiplication and division)
 - Contains decision mechanisms and can make comparisons

1.3 Computer Organization (III)

- 5. Central Processing Unit (CPU)
 - "Administrative" section of computer
 - Coordinates and supervises other sections
- 6. Secondary storage unit
 - Long-term, high-capacity "warehouse"
 - Stores programs or data not currently being used by other units on *secondary storage devices* (like discs)
 - Takes longer to access than primary memory

1.4 Evolution of Operating Systems

- Early Computers
 - Single-user batch processing
 - Jobs on decks of punched cards
 - One job ran at a time
 - Results took hours to process
 - Operating Systems
 - Managed transitions between jobs
 - Increased amount of work computer could accomplish
 - Multiprogramming
 - Simultaneous operation of several jobs
 - Computer resources split between jobs
 - Still took long hours for results

1.4 Evolution of Operating Systems (II)

- Timesharing Operating Systems (1960s)
 - Computers accessed through terminals
 - Devices with keyboards and screens
 - Hundreds of people use system at once
 - Quickly performs small portions of each person's job
 - Gives appearance of running simultaneously

1.4 Evolution of Operating Systems (III)

- UNIX
 - Originally an experimental timesharing OS
 - Developed by Dennis Ritchie and Ken Thompson
 - Developed at Bell Labs
 - Written in C
 - Open-Source software
 - Source code freely distributed among programmers
 - Created large community
 - Powerful and flexible
 - Handled any task a user required
 - Developed into many versions
 - Linux
 - BSD

1.5 Personal Computing, Distributed Computing and Client/Server Computing

- Personal Computing
 - Pioneered by Apple and IBM
 - Computer prices dropped
 - Computers reasonable for personal or business use
 - Stand-alone units
 - People work on personal machines
 - Transported disks to share information
 - "Sneakernet"
 - Machines linked together
 - Telephone lines
 - Local Area Networks (LANs)
 - Led to distributed computing

1.5 Personal Computing, Distributed Computing and Client/Server Computing (II)

- Distributed Computing
 - Work distributed over networks
 - N-Tier applications
 - Split parts of applications over numerous computers
 - User interface
 - Database
 - Business-logic processing
 - Different parts interact when application runs

1.5 Personal Computing, Distributed Computing and Client/Server Computing (III)

- Client/Server Computing
 - Workstations
 - High-powered desktop machines
 - Easily share information over computer networks
 - Servers
 - Store programs and data
 - Information accessed by clients
 - Capabilities provided by modern Operating Systems
 - Windows (and its variants), UNIX, Linux, MacOS

1.6 Machine Languages, Assembly Languages and High-Level Languages

- Programming Languages
 - Hundreds exist today
 - Fall into three categories
 - Machine languages
 - Assembly languages
 - High-level languages

1.6 Machine Languages, Assembly Languages and High-Level Languages (II)

- Machine Languages
 - Only language understood directly by computer
 - Defined by computer's hardware design
 - Machine-dependent
 - Languages specific to particular computers
 - Incomprehensible to human readers
 - Streams and numbers
 - Ultimately reduced to 0s and 1s
 - Instruct most elementary of operations
 - Slow, tedious and error-prone
 - Led to Assembly languages

1.6 Machine Languages, Assembly Languages and High-Level Languages (III)

- Assembly Languages
 - English-like abbreviations
 - Represent elementary operations of computer
 - Translated to machine language
 - Assemblers convert to machine language
 - High-speed conversion
 - More clear to human readers
 - Still tedious to use
 - Many instructions for simple tasks
 - Led to high-level languages

1.6 Machine Languages, Assembly Languages and High-Level Languages (IV)

- High-Level Languages
 - Single statements accomplish substantial tasks
 - Translated to machine language
 - Compilers convert to machine language
 - Conversion takes considerable time
 - Interpreters run programs without compiling
 - Used in development environment
 - Instructions comprehensible to humans
 - Look like everyday English
 - Contain common mathematical notation

1.7 Visual Basic .NET

- History of Visual Basic
 - Evolved from BASIC
 - Beginner's All-Purpose Symbolic Instruction Code
 - Introduction to programming for novices
 - Introduced by Microsoft (1991)
 - Made programming for Windows much easier
 - IDE facilitates quicker programming
 - Rapid Application Development
 - Provided many extra features
 - Event handling
 - Graphical user interfaces
 - Object-oriented programming

1.7 Visual Basic .NET (II)

- .NET Strategy
 - Motivated by popularity of electronic devices
 - Provide interaction between wide variety of devices
 - Web-based applications distributed to different devices
 - Cell phones
 - Personal Digital Assistants
 - Personal computers
 - Allow communication between programs of disparate languages

1.7 Visual Basic .NET (III)

- Visual Basic .NET
 - Enhanced object orientation
 - Powerful library of components
 - Application development made even quicker
 - Enhanced language interoperability
 - Interaction between different languages
 - Old software compatible with Visual Basic .NET programs
 - Interaction over the Internet
 - Simple Object Access Protocol (SOAP)
 - Extensible Markup Language (XML)
 - Promotes use of Web services

1.8 C, C++, Java and C#

- History of C
 - Developed by Dennis Ritchie
 - Evolved from the B language at Bell Labs
 - Added data type features
 - Gained recognition as language of UNIX
 - Now a widely used language
 - Available on most computers
 - Language of most major operating systems
 - Led to development of C++

1.8 C, C++, Java and C# (II)

- C++
 - Developed by Bjarne Stroustrup at Bell Labs (1980s)
 - Extension of C
 - Uses elements from Simula 67
 - Simulation programming language
 - Provides features to "spruce up" C
 - Provides Object-oriented technology
 - Hybrid language
 - Possible to program structurally
 - Possible to program with object-oriented technology
 - Possible to use both

1.8 C, C++, Java and C# (III)

- Object-Oriented Programming
 - Uses objects
 - Reusable software components
 - Modeled after items in the real world
 - More productive than structured programming
 - Easier to understand, correct and modify

1.8 C, C++, Java and C# (IV)

- History of Java
 - Sun Microsystems corporate research project (1991)
 - Code-name Green
 - Based on C and C++
 - Intended for intelligent consumer-electronic devices
 - Lack of popularity almost causes cancellation
 - Sudden popularity of WWW provides new potential
 - Java capable of dynamic content
 - Animated and interactive content
 - Grabbed attention of business community
 - Now very widely used
 - Enhance functionality of WWW servers
 - Provide applications for consumer devices

1.8 C, C++, Java and C# (V)

- C#
 - Developed by Anders Hejlsberg and Scott Wiltamuth at Microsoft
 - Roots in C, C++ and Java
 - Adapts best features of each language
 - Designed for .NET platform specifically
 - Provides many features associated with .NET
 - Object-oriented
 - Powerful class library of pre-built components

1.9 Other High-Level Languages

- Fortran (Formula Translator)
 - Developed at IBM (1950s)
 - Scientific and engineering applications
 - Creates scientific and engineering applications
 - Still widely used
- COBOL (Common Business Oriented Language)
 - Developed by computer users, manufacturers and the government (1959)
 - Efficient manipulation of large amounts of data
 - Commonly associated with business software
- Pascal
 - Developed by Professor Nicklaus Wirth (late 1960s)
 - For academic use

1.10 Structured Programming

- Early Software Development
 - Complex and costly for businesses (1960s)
 - Costs exceeded budgets
 - Final products unreliable
 - Research led to structured programming
 - Disciplined approach to programming
 - Programs clear and easy to modify
 - Several languages resulted from research
 - C, Pascal, Ada

1.10 Structured Programming (II)

- Structured Languages
 - Pascal
 - Designed for teaching structured programming
 - Lacked features for commercial use
 - C
 - Had features Pascal didn't
 - Quickly adopted by programmers
 - Ada
 - Developed by U.S. Department of Defense (late 1970s)
 - Based on Pascal
 - DOD wanted one language for all its needs
 - Supported multitasking
 - Many activities occur in parallel

1.11 Key Software Trend: Object Technology

- What is Object Technology?
 - Packaging scheme for creating software units
 - Units are objects
 - Any noun can be represented as an object
 - Date object, time object, car object
 - Have properties
 - Size, color, weight
 - Perform actions
 - Moving, sleeping, drawing
 - Defined in classes
 - Specify general format
 - Provide specific attributes and behaviors

1.11 Key Software Trend: Object Technology (II)

- Object-Oriented programming
 - Based on nouns
 - Reflects way world is perceived
 - Advantages over structured programming
 - More natural process
 - Results in better productivity
 - Classes provide reusability
 - Microsoft Foundation Classes (MFC)
 - Easier to maintain
 - Programs more understandable
 - Focus on behaviors and interactions
 - Less attention to details

1.12 Hardware Trends

- Improving technologies
 - Internet community thrives on improvements of
 - Hardware
 - Software
 - Communications
 - Cost of products and services
 - Consistently dropping over the decades
 - Computer capacity and speed
 - Doubles every two years (on average)
 - Microprocessor chip
 - Laid groundwork in late 1970s and 1980s for productivity improvements of the 1990s

1.13 History of the Internet and World Wide Web

- ARPAnet
 - Implemented in late 1960's by ARPA (Advanced Research Projects Agency of DOD)
 - Networked computer systems of a dozen universities and institutions with 56KB communications lines
 - Grandparent of today's Internet
 - Intended to allow computers to be shared
 - Became clear that key benefit was allowing fast communication between researchers – *electronic-mail* (*email*)

1.13 History of the Internet and World Wide Web (II)

- ARPA's goals
 - Allow multiple users to send and receive info at same time
 - Network operated *packet switching* technique
 - Digital data sent in small packages called *packets*
 - Packets contained data, address info, error-control info and sequencing info
 - Greatly reduced transmission costs of dedicated communications lines
 - Network designed to be operated without centralized control
 - If portion of network fails, remaining portions still able to route packets

1.13 History of the Internet and World Wide Web (III)

- Transmission Control Protocol (TCP)
 - Name of protocols for communicating over ARPAnet
 - Ensured that messages were properly routed and that they arrived intact
- Organizations implemented own networks
 - Used both for intra-organization and communication

1.13 History of the Internet and World Wide Web (IV)

- Huge variety of networking hardware and software appeared
 - ARPA achieved inter-communication between all platforms with development of the *IP*
 - Internetworking Protocol
 - Current architecture of Internet
 - Combined set of protocols called TCP/IP
- The Internet
 - Limited to universities and research institutions
 - Military became big user
 - Next, government decided to access Internet for commercial purposes

1.13 History of the Internet and World Wide Web (V)

- Internet traffic grew
 - Businesses spent heavily to improve Internet
 - Better service their clients
 - Fierce competition among communications carriers and hardware and software suppliers
 - Result
 - *Bandwidth* (info carrying capacity) of Internet increased tremendously
 - Costs plummeted

1.13 History of the Internet and World Wide Web (VI)

- WWW
 - Allows computer users to locate and view multimedia-based documents
 - Introduced in 1990 by Tim Berners-Lee
 - Developed information system based on hyperlinked text documents
 - HyperText Markup Language (HTML)
 - Developed communication protocols as backbone
- WWW today
 - Makes information instantly accessible
 - Merges computing and communication technologies

1.14 World Wide Web Consortium (W3C)

- W3C
 - Founded in 1994 by Tim Berners-Lee
 - Devoted to developing non-proprietary and interoperable technologies for the World Wide Web and making the Web universally accessible
 - Standardization
 - W3C *Recommendations*: technologies standardized by W3C
 - include Extensible HyperText Markup Language (XHTML), Cascading Style Sheets (CSS) and the Extensible Markup Language (XML)
 - Document must pass through Working Draft, Candidate Recommendation and Proposed Recommendation phases before considered for W3C Recommendation

1.14 World Wide Web Consortium (W3C) (II)

- W3C Structure
 - 3 Hosts
 - Massachusetts Institute of Technology (MIT)
 - INRIA (Institut National de Recherche en Informatique et Automatique)
 - Keio University of Japan
 - 400 Members (including Deitel & Associates)
- W3C homepage at <u>www.w3.org</u>
- W3C Goals
 - User Interface Domain
 - Technology and Society Domain
 - Architecture Domain and Web Accessibility Initiatives

1.15 Extensible Markup Language

- HTML limitations
 - Lack of extensibility
 - Inability to add or change features
 - Developers become frustrated
 - Code becomes erroneous
 - Led to more development on HTML
 - W3C created Cascading Style Sheets as temporary solution
 - New technology for formatting documents
 - Led to research for a standardized extensible language
 - W3C developed Extensible Markup Language (XML)
 - Combined power of SGML with simplicity of HTML
 - Developed XML-based standards for style-sheets and advanced hyperlinking

1.15 Extensible Markup Language (II)

- XML features
 - Data independence
 - Separation of content from its presentation
 - Allows any application to conceivably process XML documents
 - Improves Web functionality and interoperability
 - Reduces server load and network traffic
 - Integration with applications other than Web services
 - Communication between applications employing XML
 - Structure allows easy integration with database applications

1.15 Extensible Markup Language (III)

- Communication using XML
 - Simple Object Access Protocol (SOAP)
 - Framework for expressing application semantics, encoding that data and packing it in modules
 - Structured into three parts
 - Envelope
 - Describes content and recipient of SOAP message
 - Encoding rules
 - XML-based
 - Remote Procedure Call (RPC) representation
 - Commands other computers to perform a task

1.16 Introduction to Microsoft .NET

- .NET initiative
 - Introduced by Microsoft (June 2000)
 - Vision for embracing the Internet in software development
 - Independence from specific language or platform
 - Applications developed in any .NET compatible language
 Visual Basic .NET, Visual C++ .NET, C# and more
 - Programmers can contribute to applications using the language in which they are most competent
 - Architecture capable of existing on multiple platforms
 - New program development process
 - Provides increased productivity

1.16 Introduction to Microsoft .NET (II)

- Key components of .NET
 - Web services
 - Applications used over the Internet
 - Software reusability
 - Web services provide solutions for wide variety of companies
 - Cheaper than developing one-time solutions that can't be reused
 - Single applications perform all operations for a company via various Web services
 - Manage taxes, bills, investments and more
 - Pre-packaged components
 - Make application development quicker and easier
 - Developers no longer need to be concerned with details of components

1.16 Introduction to Microsoft .NET (III)

- Keys to interaction
 - XML and SOAP
 - "Glue" that combines various Web services to form applications
 - XML gives meaning to data
 - SOAP allows communication to occur easily

1.16 Introduction to Microsoft .NET (IV)

- Other concepts
 - Universal data access
 - Eliminates need to synchronize files
 - Updating multiple copies of same file to the most recent
 - Data resides at one central location
 - Accessible by anyone with connection and proper authorization
 - Data formatted appropriately for display on various devices
 - Same document seen on PC, PDA, cell phone and other devices
 - Additional information available at Microsoft Web site www.microsoft.com/net

1.17 .NET Framework and the Common Language Runtime

- .NET Framework
 - Heart of .NET strategy
 - Manages and executes applications and Web services
 - Provides security, memory management and other programming capabilities
 - Includes Framework class library (FCL)
 - Pre-packaged classes ready for reuse
 - Used by any .NET language
 - Details contained in Common Language Specification (CLS)
 - Submitted to European Computer Manufacturers Association to make the framework easily converted to other platforms
 - Executes programs by Common Language Runtime (CLR)

1.17 .NET Framework and the Common Language Runtime (II)

- Common Language Runtime (CLR)
 - Central part of framework
 - Executes Visual Basic .NET programs
 - Compilation process
 - Two compilations take place
 - Programs compiled to Microsoft Intermediate Language (MSIL)
 - Defines instructions for CLR
 - MSIL code translated into machine code
 - Machine code for a particular platform

1.17 .NET Framework and the Common Language Runtime (III)

- Why two compilations?
 - Platform independence
 - .NET Framework can be installed on different platforms
 - Execute .NET programs without any modifications to code
 - Language independence
 - .NET programs not tied to particular language
 - Programs may consist of several .NET-compliant languages
 - Old and new components can be integrated

1.17 .NET Framework and the Common Language Runtime (IV)

- Other advantages of CLR
 - Execution-management features
 - Manages memory, security and other features
 - Relieves programmer of many responsibilities
 - More concentration on program logic

