
1

Outline
3.1 Introduction
3.2 Simple Program: Printing a Line of Text
3.3 Another Simple Program: Adding Integers
3.4 Memory Concepts
3.5 Arithmetic
3.6 Decision Making: Equality and Relational Operators
3.7 Using a Dialog to Display a Message

Chapter 3 – Introduction to Visual Basic
Programming

 2002 Prentice Hall. All rights reserved.

Outline
3.1 Introduction
3.2 Simple Program: Printing a Line of Text
3.3 Another Simple Program: Adding Integers
3.4 Memory Concepts
3.5 Arithmetic
3.6 Decision Making: Equality and Relational Operators
3.7 Using a Dialog to Display a Message

2

3.1 Introduction

• In this chapter we introduce
– Visual Basic programming

• We present examples that illustrate several important features
of the language

– Console applications
• Applications that contain only text output
• Output is displayed in a command window

 2002 Prentice Hall. All rights reserved.

• In this chapter we introduce
– Visual Basic programming

• We present examples that illustrate several important features
of the language

– Console applications
• Applications that contain only text output
• Output is displayed in a command window

3

3.2 Simple Program: Printing a Line of Text

• Simple program that displays a line of text
• When the program is run

– output appears in a command window

• It illustrates important Visual Basic features
– Comments
– Modules
– Sub procedures

 2002 Prentice Hall. All rights reserved.

• Simple program that displays a line of text
• When the program is run

– output appears in a command window

• It illustrates important Visual Basic features
– Comments
– Modules
– Sub procedures

Outline
4

Welcome1.vb

Program Output

1 ' Fig. 3.1: Welcome1.vb
2 ' Simple Visual Basic program.
3
4 Module modFirstWelcome
5
6 Sub Main()
7 Console.WriteLine("Welcome to Visual Basic!")
8 End Sub ' Main
9
10 End Module ' modFirstWelcome

Welcome to Visual Basic!

Single-quote character (')
indicates that the remainder
of the line is a comment

Visual Basic console
applications consist of pieces
called modules

The Main procedure is the entry
point of the program. It is present
in all console applications

The Console.WriteLine
statement displays text output
to the console

•A few Good Programming Practices
– Comments

• Every program should begin with one or more comments

– Modules
• Begin each module with mod to make modules easier to identify

– Procedures
• Indent the entire body of each procedure definition one “level” of
indentation

 2002 Prentice Hall.
All rights reserved.

•A few Good Programming Practices
– Comments

• Every program should begin with one or more comments

– Modules
• Begin each module with mod to make modules easier to identify

– Procedures
• Indent the entire body of each procedure definition one “level” of
indentation

5

3.2 Simple Program: Printing a Line of Text

• Now a short step-by-step explanation of how to
create and run this program using the features of
Visual Studio .NET IDE…

 2002 Prentice Hall. All rights reserved.

6

3.2 Simple Program: Printing a Line of Text

1. Create the console application
– Select File > New > Project…
– In the left pane, select Visual Basic Projects
– In the right pane, select Console Application
– Name the project Welcome1
– Specify the desired location

2. Change the name of the program file
– Click Module1.vb in the Solution Explorer window
– In the Properties window, change the File Name

property to Welcome1.vb

 2002 Prentice Hall. All rights reserved.

1. Create the console application
– Select File > New > Project…
– In the left pane, select Visual Basic Projects
– In the right pane, select Console Application
– Name the project Welcome1
– Specify the desired location

2. Change the name of the program file
– Click Module1.vb in the Solution Explorer window
– In the Properties window, change the File Name

property to Welcome1.vb

7

3.2 Simple Program: Printing a Line of Text
Left pane Right pane

 2002 Prentice Hall. All rights reserved.

Fig. 3.2 Creating a Console Application with the New Project dialog.

Project
name

File
location

8

3.2 Simple Program: Printing a Line of Text
Editor window (containing
program code)

 2002 Prentice Hall. All rights reserved.

Fig. 3.3 IDE with an open console application.

9

3.2 Simple Program: Printing a Line of Text

Solution Explorer

Click Module1.vb to
display its properties

Properties window

 2002 Prentice Hall. All rights reserved.

Fig. 3.4 Renaming the program file in the Properties window.

File Name
property

10

3.2 Simple Program: Printing a Line of Text

3. Change the name of the module
– Module names must be modified in the editor window
– Replace the identifier Module1 with

modFirstWelcome
4. Writing code

– Type the code contained in line 7 of Fig. 3.1 between Sub
Main() and End Sub
• Note that after typing the class name and the dot operator the

IntelliSense is displayed. It lists a class’s members.
• Note that when typing the text between the parenthesis

(parameter), the Parameter Info and Parameter List windows
are displayed

 2002 Prentice Hall. All rights reserved.

3. Change the name of the module
– Module names must be modified in the editor window
– Replace the identifier Module1 with

modFirstWelcome
4. Writing code

– Type the code contained in line 7 of Fig. 3.1 between Sub
Main() and End Sub
• Note that after typing the class name and the dot operator the

IntelliSense is displayed. It lists a class’s members.
• Note that when typing the text between the parenthesis

(parameter), the Parameter Info and Parameter List windows
are displayed

11

3.2 Simple Program: Printing a Line of Text

5. Run the program
– To compile, select Build > Build Solution

• This creates a new file, named Welcome1.exe
– To run, select Debug > Start Without Debugging

 2002 Prentice Hall. All rights reserved.

12

3.2 Simple Program: Printing a Line of Text

Partially-typed member Member list

Description of
highlighted member

 2002 Prentice Hall. All rights reserved.

Fig. 3.5 IntelliSense feature of the Visual Studio .NET IDE.

13

3.2 Simple Program: Printing a Line of Text

Up arrow Down arrow

Parameter List window

 2002 Prentice Hall. All rights reserved.

Fig. 3.6 Parameter Info and Parameter List windows.

Parameter Info window

14

3.2 Simple Program: Printing a Line of Text

Command window prompts the user to
press a key after the program terminates

 2002 Prentice Hall. All rights reserved.

Fig. 3.7 Executing the program shown in Fig. 3.1.

Command window prompts the user to
press a key after the program terminates

15

3.2 Simple Program: Printing a Line of Text

Omitted parenthesis character
(syntax error)

Blue underline
indicates a

syntax error

 2002 Prentice Hall. All rights reserved.

Fig. 3.8 IDE indicating a syntax error.

Task List window

Error description(s)

Outline
16

Welcome2.vb

Program Output

1 ' Fig. 3.9: Welcome2.vb
2 ' Writing line of text with multiple statements.
3
4 Module modSecondWelcome
5
6 Sub Main()
7 Console.Write("Welcome to ")
8 Console.WriteLine("Visual Basic!")
9 End Sub ' Main
11
12 End Module ' modSecondWelcome

Welcome to Visual Basic!

Method Write does not position the output
cursor at the beginning of the next line

Method WriteLine positions the output
cursor at the beginning of the next line

 2002 Prentice Hall.
All rights reserved.

17

3.3 Another Simple Program: Adding
Integers

• User input two integers
– Whole numbers

• Program computes the sum
• Display result

 2002 Prentice Hall. All rights reserved.

Outline
18

Addition.vb

1 ' Fig. 3.10: Addition.vb
2 ' Addition program.
3
4 Module modAddition
5
6 Sub Main()
7
8 ' variables for storing user input
9 Dim firstNumber, secondNumber As String
10
11 ' variables used in addition calculation
12 Dim number1, number2, sumOfNumbers As Integer
13
14 ' read first number from user
15 Console.Write("Please enter the first integer: ")
16 firstNumber = Console.ReadLine()
17
18 ' read second number from user
19 Console.Write("Please enter the second integer: ")
20 secondNumber = Console.ReadLine()
21
22 ' convert input values to Integers
23 number1 = firstNumber
24 number2 = secondNumber
25
26 sumOfNumbers = number1 + number2 ' add numbers
27
28 ' display results
29 Console.WriteLine("The sum is {0}", sumOfNumbers)
30
31 End Sub ' Main
32
33 End Module ' modAddition

Declarations begin with keyword Dim
These variables store strings of characters

These variables store integers values

First value entered by user is assigned
to variable firstNumber

Method ReadLine causes program
to pause and wait for user input

 2002 Prentice Hall.
All rights reserved.

1 ' Fig. 3.10: Addition.vb
2 ' Addition program.
3
4 Module modAddition
5
6 Sub Main()
7
8 ' variables for storing user input
9 Dim firstNumber, secondNumber As String
10
11 ' variables used in addition calculation
12 Dim number1, number2, sumOfNumbers As Integer
13
14 ' read first number from user
15 Console.Write("Please enter the first integer: ")
16 firstNumber = Console.ReadLine()
17
18 ' read second number from user
19 Console.Write("Please enter the second integer: ")
20 secondNumber = Console.ReadLine()
21
22 ' convert input values to Integers
23 number1 = firstNumber
24 number2 = secondNumber
25
26 sumOfNumbers = number1 + number2 ' add numbers
27
28 ' display results
29 Console.WriteLine("The sum is {0}", sumOfNumbers)
30
31 End Sub ' Main
32
33 End Module ' modAddition

Method ReadLine causes program
to pause and wait for user input

Implicit conversion from String to
Integer

Sums integers and assigns result to
variable sumOfNumbers

Format indicates that the argument
after the string will be evaluated and
incorporated into the string

Outline
19

Addition.vb

Please enter the first integer: 45
Please enter the second integer: 72
The sum is 117

 2002 Prentice Hall.
All rights reserved.

20

3.3 Another Simple Program: Adding
Integers

If the user types a non-integer value, such
as “hello,” a run-time error occurs

 2002 Prentice Hall. All rights reserved.

Fig. 3.11 Dialog displaying a run-time error.

If the user types a non-integer value, such
as “hello,” a run-time error occurs

21

3.4 Memory Concepts

• Variables
– correspond to actual locations in the computer’s memory
– Every variable has a

• Name
• Type
• Size
• value

– A value placed in a memory location replaces the value
previously stored

• The previous value is destroyed
– When value is read from a memory location, it is not

destroyed

 2002 Prentice Hall. All rights reserved.

• Variables
– correspond to actual locations in the computer’s memory
– Every variable has a

• Name
• Type
• Size
• value

– A value placed in a memory location replaces the value
previously stored

• The previous value is destroyed
– When value is read from a memory location, it is not

destroyed

22

3.4 Memory Concepts

Fig. 3.12 Memory location showing name and value of variable number1.

45number1

45number1

 2002 Prentice Hall. All rights reserved.

Fig. 3.13 Memory locations after values for variables number1 and number2 have been input.

45

45

number1

number2

23

3.5 Arithmetic

• Arithmetic operators
– Visual Basic use various special symbols not used in algebra

• Asterisk (*), keyword Mod
– Binary operators

• Operates using two operands
– sum + value

– Unary operators
• Operators that take only one operand
– +9, -19

 2002 Prentice Hall. All rights reserved.

• Arithmetic operators
– Visual Basic use various special symbols not used in algebra

• Asterisk (*), keyword Mod
– Binary operators

• Operates using two operands
– sum + value

– Unary operators
• Operators that take only one operand
– +9, -19

24

3.5 Arithmetic

45

45

number1

number2

sumOfNumbers 45

 2002 Prentice Hall. All rights reserved.

Fig. 3.14 Memory locations after an addition operation.

sumOfNumbers 45

25

3.5 Arithmetic

• Integer division
– Uses the backslash, \
– 7 \ 4 evaluates to 1

• Floating-point division
– Uses the forward slash, /
– 7 / 4 evaluates to 1.75

• Modulus operator, Mod
– Yields the remainder after Integer division
– 7 Mod 4 yields 3

 2002 Prentice Hall. All rights reserved.

• Integer division
– Uses the backslash, \
– 7 \ 4 evaluates to 1

• Floating-point division
– Uses the forward slash, /
– 7 / 4 evaluates to 1.75

• Modulus operator, Mod
– Yields the remainder after Integer division
– 7 Mod 4 yields 3

26

3.5 Arithmetic

Visua l Ba sic opera tion Arithmetic opera tor Algeb ra ic exp ression Visua l Ba sic
exp ression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division (float) / x / y or <Anchor10> or
x  y

x / y

Division (Integer) \ none v \ u
Modulus % r mod s r Mod s
Exponentiation ^ q p q ^ p
Unary Negative - –e –e
Unary Positive + +g +g

Fig. 3.14 Arithmetic opera tors.

 2002 Prentice Hall. All rights reserved.

Visua l Ba sic opera tion Arithmetic opera tor Algeb ra ic exp ression Visua l Ba sic
exp ression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division (float) / x / y or <Anchor10> or
x  y

x / y

Division (Integer) \ none v \ u
Modulus % r mod s r Mod s
Exponentiation ^ q p q ^ p
Unary Negative - –e –e
Unary Positive + +g +g

Fig. 3.14 Arithmetic opera tors.

Fig. 3.14 Arithmetic Operators.

27

3.5 Arithmetic

• Rules of operator precedence
1. Operators in expressions contained within parentheses
2. Exponentiation
3. Unary positive and negative
4. Multiplication and floating-point division
5. Integer division
6. Modulus operations
7. Addition and subtraction operations

 2002 Prentice Hall. All rights reserved.

• Rules of operator precedence
1. Operators in expressions contained within parentheses
2. Exponentiation
3. Unary positive and negative
4. Multiplication and floating-point division
5. Integer division
6. Modulus operations
7. Addition and subtraction operations

28

3.5 Arithmetic

Opera tor(s) Opera tion Order of eva lua tion (p rec edenc e)
() Parentheses Evaluated first. If the parentheses are nested, the

expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same
level” (i.e., not nested), they are evaluated from left
to right.

^ Exponentiation Evaluated second. If there are several such operators,
they are evaluated from left to right.

+, – Sign operations Evaluated third. If there are several such operators,
they are evaluated from left to right.

*, / Multiplication and
Division

Evaluated fourth. If there are several such operators,
they are evaluated from left to right.

\ Integer
division

Evaluated fifth. If there are several such operators,
they are evaluated from left to right.

Mod Modulus Evaluated sixth. If there are several such operators,
they are evaluated from left to right.

+, – Addition and
Subtraction

Evaluated last. If there are several such operators,
they are evaluated from left to right.

Fig. 3.15 Prec edenc e of a rithmetic opera tors.

 2002 Prentice Hall. All rights reserved.

Opera tor(s) Opera tion Order of eva lua tion (p rec edenc e)
() Parentheses Evaluated first. If the parentheses are nested, the

expression in the innermost pair is evaluated first. If
there are several pairs of parentheses “on the same
level” (i.e., not nested), they are evaluated from left
to right.

^ Exponentiation Evaluated second. If there are several such operators,
they are evaluated from left to right.

+, – Sign operations Evaluated third. If there are several such operators,
they are evaluated from left to right.

*, / Multiplication and
Division

Evaluated fourth. If there are several such operators,
they are evaluated from left to right.

\ Integer
division

Evaluated fifth. If there are several such operators,
they are evaluated from left to right.

Mod Modulus Evaluated sixth. If there are several such operators,
they are evaluated from left to right.

+, – Addition and
Subtraction

Evaluated last. If there are several such operators,
they are evaluated from left to right.

Fig. 3.15 Prec edenc e of a rithmetic opera tors.

Fig. 3.15 Precedence of arithmetic operators.

29

3.5 Arithmetic

Step 1.

Step 2.

Step 3.

y = 2 * 5 * 5 + 3 * 5 + 7

2 * 5 is 10 (Leftmost multiplication)

y = 10 * 5 + 3 * 5 + 7

10 * 5 is 50 (Leftmost multiplication)

y = 50 + 3 * 5 + 7
3 * 5 is 15 (Multiplication before addition)

 2002 Prentice Hall. All rights reserved.

Fig. 3.16 Order in which a second-degree polynomial is evaluated.

Step 5.

Step 4.

Step 6.

3 * 5 is 15 (Multiplication before addition)

y = 50 + 15 + 7

50 + 15 is 65 (Leftmost addition)

y = 65 + 7

65 + 7 is 72 (Last addition)

y = 72 (Last operation—place 72 into y)

30

3.6 Decision Making: Equality and Relational
Operators

• If/Then structure
– Allows a program to make decision based on the truth or

falsity of some expression
– Condition

• The expression in an If/Then structure
– If the condition is true, the statement in the body of the

structure executes
– Conditions can be formed by using

• Equality operators
• Relational operators

 2002 Prentice Hall. All rights reserved.

• If/Then structure
– Allows a program to make decision based on the truth or

falsity of some expression
– Condition

• The expression in an If/Then structure
– If the condition is true, the statement in the body of the

structure executes
– Conditions can be formed by using

• Equality operators
• Relational operators

31

3.6 Decision Making: Equality and Relational
Operators

Sta ndard a lgeb ra ic
equa lity op era tor or
rela tiona l opera tor

Visua l Ba sic
equa lity
or rela tiona l
opera tor

Examp le
of Visua l Basic
c ond ition

Mea ning of
Visua l Ba sic c ond ition

Equality
operators
 = x = y x is equal to y
 <> x <> y x is not equal to y
Relational
operators
> > x > y x is greater than y
< < x < y x is less than y

>= x >= y x is greater than or equal to y
? <= x <= y x is less than or equal to y
Fig. 3.17 Equa lity and re la tiona l opera tors.

 2002 Prentice Hall. All rights reserved.

Sta ndard a lgeb ra ic
equa lity op era tor or
rela tiona l opera tor

Visua l Ba sic
equa lity
or rela tiona l
opera tor

Examp le
of Visua l Basic
c ond ition

Mea ning of
Visua l Ba sic c ond ition

Equality
operators
 = x = y x is equal to y
 <> x <> y x is not equal to y
Relational
operators
> > x > y x is greater than y
< < x < y x is less than y

>= x >= y x is greater than or equal to y
? <= x <= y x is less than or equal to y
Fig. 3.17 Equa lity and re la tiona l opera tors.

Fig. 3.17 Equality and relational operators.

Outline
32

Comparison.vb

1 ' Fig. 3.19: Comparison.vb
2 ' Using equality and relational operators.
3
4 Module modComparison
5
6 Sub Main()
7
8 ' declare Integer variables for user input
9 Dim number1, number2 As Integer
10
11 ' read first number from user
12 Console.Write("Please enter first integer: ")
13 number1 = Console.ReadLine()
14
15 ' read second number from user
16 Console.Write("Please enter second integer: ")
17 number2 = Console.ReadLine()
18
19 If (number1 = number2) Then
20 Console.WriteLine("{0} = {1}", number1, number2)
21 End If
22
23 If (number1 <> number2) Then
24 Console.WriteLine("{0} <> {1}", number1, number2)
25 End If
26
27 If (number1 < number2) Then
28 Console.WriteLine("{0} < {1}", number1, number2)
29 End If
30
31 If (number1 > number2) Then
32 Console.WriteLine("{0} > {1}", number1, number2)
33 End If

Variables of the same type may
be declared in one declaration

The If/Then structure compares the values
of number1 and number2 for equality

 2002 Prentice Hall.
All rights reserved.

1 ' Fig. 3.19: Comparison.vb
2 ' Using equality and relational operators.
3
4 Module modComparison
5
6 Sub Main()
7
8 ' declare Integer variables for user input
9 Dim number1, number2 As Integer
10
11 ' read first number from user
12 Console.Write("Please enter first integer: ")
13 number1 = Console.ReadLine()
14
15 ' read second number from user
16 Console.Write("Please enter second integer: ")
17 number2 = Console.ReadLine()
18
19 If (number1 = number2) Then
20 Console.WriteLine("{0} = {1}", number1, number2)
21 End If
22
23 If (number1 <> number2) Then
24 Console.WriteLine("{0} <> {1}", number1, number2)
25 End If
26
27 If (number1 < number2) Then
28 Console.WriteLine("{0} < {1}", number1, number2)
29 End If
30
31 If (number1 > number2) Then
32 Console.WriteLine("{0} > {1}", number1, number2)
33 End If

Outline
33

Comparison.vb

Program Output

34
35 If (number1 <= number2) Then
36 Console.WriteLine("{0} <= {1}", number1, number2)
37 End If
38
39 If (number1 >= number2) Then
40 Console.WriteLine("{0} >= {1}", number1, number2)
41 End If
42
43 End Sub ' Main
44
45 End Module ' modComparison

Please enter first integer: 1000
Please enter second integer: 2000
1000 <> 2000
1000 < 2000
1000 <= 2000

 2002 Prentice Hall.
All rights reserved.

Comparison.vb

Program Output
Please enter first integer: 1000
Please enter second integer: 2000
1000 <> 2000
1000 < 2000
1000 <= 2000

Please enter first integer: 515
Please enter second integer: 49
515 <> 49
515 > 49
515 >= 49

Please enter first integer: 333
Please enter second integer: 333
333 = 333
333 <= 333
333 >= 333

34

3.6 Decision Making: Equality and Relational
Operators

Op era tors Assoc ia tivity Typ e
() left to right parentheses
^ left to right exponentiation
* / left to right multiplicative
\ left to right integer division

Mod left to right modulus
+ - left to right additive
= <> < <= > >= left to right equality and relational

Fig. 3.19 Prec ed enc e a nd a ssoc ia tivity of op era to rs introd uc ed in this c ha p te r.

 2002 Prentice Hall. All rights reserved.

Op era tors Assoc ia tivity Typ e
() left to right parentheses
^ left to right exponentiation
* / left to right multiplicative
\ left to right integer division

Mod left to right modulus
+ - left to right additive
= <> < <= > >= left to right equality and relational

Fig. 3.19 Prec ed enc e a nd a ssoc ia tivity of op era to rs introd uc ed in this c ha p te r.

Fig. 3.19 Precedence and associativity of operators introduced in this chapter.

35

3.7 Using a Dialog to Display a Message

• Dialogs
– Windows that typically display messages to the user
– Visual Basic provides class MessageBox for creating

dialogs

 2002 Prentice Hall. All rights reserved.

Outline
36

SquareRoot.vb

Program Output

1 ' Fig. 3.20: SquareRoot.vb
2 ' Displaying square root of 2 in dialog.
3
4 Imports System.Windows.Forms ' Namespace containing MessageBox
5
6 Module modSquareRoot
7
8 Sub Main()
9
10 ' Calculate square root of 2
11 Dim root As Double = Math.Sqrt(2)
12
13 ' Display results in dialog
14 MessageBox.Show("The square root of 2 is " & root, _
15 "The Square Root of 2")
16 End Sub ' Main
17
18 End Module ' modThirdWelcome

Sqrt method of the Math class is called
to compute the square root of 2

The Double data type stores floating-
point numbers

Method Show of class MessageBox

Line-continuation character

 2002 Prentice Hall.
All rights reserved.

SquareRoot.vb

Program Output

1 ' Fig. 3.20: SquareRoot.vb
2 ' Displaying square root of 2 in dialog.
3
4 Imports System.Windows.Forms ' Namespace containing MessageBox
5
6 Module modSquareRoot
7
8 Sub Main()
9
10 ' Calculate square root of 2
11 Dim root As Double = Math.Sqrt(2)
12
13 ' Display results in dialog
14 MessageBox.Show("The square root of 2 is " & root, _
15 "The Square Root of 2")
16 End Sub ' Main
17
18 End Module ' modThirdWelcome Line-continuation character

Empty command
window

37

3.7 Using a Dialog to Display a Message

Title bar

Close box

Dialog sized to
accommodate

contents.

 2002 Prentice Hall. All rights reserved.

Fig. 3.21 Dialog displayed by calling MessageBox.Show.

Mouse pointer
OK button allows

the user to dismiss
the dialog.

38

3.7 Using a Dialog to Display a Message

• Assembly
– File that contain many classes provided by Visual Basic
– These files have a .dll (or dynamic link library) extension.
– Example

• Class MessageBox is located in assembly
System.Windows.Forms.dll

• MSDN Documentation
– Information about the assembly that we need can be found in

the MSDN documentation
– Select Help > Index… to display the Index dialog

 2002 Prentice Hall. All rights reserved.

• Assembly
– File that contain many classes provided by Visual Basic
– These files have a .dll (or dynamic link library) extension.
– Example

• Class MessageBox is located in assembly
System.Windows.Forms.dll

• MSDN Documentation
– Information about the assembly that we need can be found in

the MSDN documentation
– Select Help > Index… to display the Index dialog

39

3.7 Using a Dialog to Display a Message

Search string

Filter
Link to MessageBox
documentation

 2002 Prentice Hall. All rights reserved.

Fig. 3.22 Obtaining documentation for a class by using the Index dialog.

Link to MessageBox
documentation

40

3.7 Using a Dialog to Display a Message

Requirements
section heading

MessageBox class
documentation

 2002 Prentice Hall. All rights reserved.

Fig. 3.23 Documentation for the MessageBox class.

Assembly containing
class MessageBox

41

3.7 Using a Dialog to Display a Message

• Reference
– It is necessary to add a reference to the assembly if you wish

to use its classes
– Example

• To use class MessageBox it is necessary to add a reference to
System.Windows.Forms

• Imports
– Forgetting to add an Imports statement for a referenced

assembly is a syntax error

 2002 Prentice Hall. All rights reserved.

• Reference
– It is necessary to add a reference to the assembly if you wish

to use its classes
– Example

• To use class MessageBox it is necessary to add a reference to
System.Windows.Forms

• Imports
– Forgetting to add an Imports statement for a referenced

assembly is a syntax error

42

3.7 Using a Dialog to Display a Message

References folder
(expanded)

Solution Explorer before
reference is added

Solution Explorer after
reference is added

 2002 Prentice Hall. All rights reserved.

Fig. 3.24 Adding a reference to an assembly in the Visual Studio .NET IDE.

References folder
(expanded)

Solution Explorer after
reference is added

System.Windows.Forms
reference

43

3.7 Using a Dialog to Display a Message

Label
Button (displaying
an icon) Menu (e.g., Help) Text box Menu bar

 2002 Prentice Hall. All rights reserved.

Fig. 3.25 Internet Explorer window with GUI components.

