
1

Chapter 4: Control Structures: Part 1
Outline
4.1 Introduction
4.2 Algorithms
4.3 Pseudocode
4.4 Control Structures
4.5 If/Then Selection Structure
4.6 If/Then/Else Selection Structure
4.7 While Repetition Structure
4.8 Do While/Loop Repetition Structure
4.9 Do Until/Loop Repetition Structure
4.10 Assignment Operators
4.11 Formulating Algorithms: Case Study 1 (Counter-

Controlled Repetition)
4.12 Formulating Algorithms with Top-Down, Stepwise

Refinement: Case Study 2 (Sentinel-Controlled
Repetition)

 2002 Prentice Hall. All rights reserved.

Outline
4.1 Introduction
4.2 Algorithms
4.3 Pseudocode
4.4 Control Structures
4.5 If/Then Selection Structure
4.6 If/Then/Else Selection Structure
4.7 While Repetition Structure
4.8 Do While/Loop Repetition Structure
4.9 Do Until/Loop Repetition Structure
4.10 Assignment Operators
4.11 Formulating Algorithms: Case Study 1 (Counter-

Controlled Repetition)
4.12 Formulating Algorithms with Top-Down, Stepwise

Refinement: Case Study 2 (Sentinel-Controlled
Repetition)

2

4.13 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)

4.14 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 4 (Nested Repetition
Structures)

4.15 Introduction to Windows Application Programming

 2002 Prentice Hall. All rights reserved.

3

4.1 Introduction

• Structured programming
– Control structures

• Helpful in building and manipulating objects

 2002 Prentice Hall. All rights reserved.

4

4.2 Algorithms

• Algorithms
– A procedure for solving a problem, in terms of

• The actions to be executed and
• The order in which these actions are to be executed

 2002 Prentice Hall. All rights reserved.

• Algorithms
– A procedure for solving a problem, in terms of

• The actions to be executed and
• The order in which these actions are to be executed

5

4.3 Pseudocode

• Pseudocode
– Informal language to helps programmers develop algorithms
– Not executed on computers
– Helps conceptualize a program during the program-design

process
– Describes only executable statements

 2002 Prentice Hall. All rights reserved.

• Pseudocode
– Informal language to helps programmers develop algorithms
– Not executed on computers
– Helps conceptualize a program during the program-design

process
– Describes only executable statements

6

4.4 Control Structures

• Transfer of control
– GoTo statement

• It causes programs to become quite unstructured and hard to
follow

• Bohm and Jacopini
– All programs could be written in terms of three control

structures
• Sequence structure
• Selection structure
• Repetition structure

 2002 Prentice Hall. All rights reserved.

• Transfer of control
– GoTo statement

• It causes programs to become quite unstructured and hard to
follow

• Bohm and Jacopini
– All programs could be written in terms of three control

structures
• Sequence structure
• Selection structure
• Repetition structure

7

4.4 Control Structures

• Flowcharts
– Graphical representation of an algorithm
– Drawn using certain special-purpose symbols

• Rectangles
• Diamonds
• Ovals
• Small circles

 2002 Prentice Hall. All rights reserved.

• Flowcharts
– Graphical representation of an algorithm
– Drawn using certain special-purpose symbols

• Rectangles
• Diamonds
• Ovals
• Small circles

8

4.4 Control Structures

add grade to total

add 1 to counter

total = total + grade

counter = counter + 1

 2002 Prentice Hall. All rights reserved.

Fig. 4.1 Flowcharting Visual Basic’s sequence structure.

add 1 to counter counter = counter + 1

9

4.4 Control Structures

• Selection Structures
– If/Then

• Single-selection structure
– If/Then/Else

• Double-selection structure
– Select Case

• Multiple-selection structure

 2002 Prentice Hall. All rights reserved.

• Selection Structures
– If/Then

• Single-selection structure
– If/Then/Else

• Double-selection structure
– Select Case

• Multiple-selection structure

10

4.4 Control Structures

• Repetition Structures
– While
– Do While/Loop
– Do/Loop While
– Do Until/Loop
– Do/Loop Until
– For/Next
– For Each/Next

 2002 Prentice Hall. All rights reserved.

• Repetition Structures
– While
– Do While/Loop
– Do/Loop While
– Do Until/Loop
– Do/Loop Until
– For/Next
– For Each/Next

11

4.4 Control Structures

Visua l Ba sic Keywords

AddHandler AddressOf Alias And

AndAlso Ansi As Assembly
Auto Boolean ByRef Byte
ByVal Call Case Catch
CBool CByte CChar CDate
CDec CDbl Char CInt
Class CLng CObj Const
CShort CSng CStr CType
Date Decimal Declare Default
Delegate Dim Do Double
Each Else ElseIf End
Enum Erase Error Event
Exit ExternalSource False Finally
For Friend Function Get
GetType GoTo Handles If
Implements Imports In Inherits
Integer Interface Is Lib
Like Long Loop Me
Mod Module MustInherit MustOverride
MyBase MyClass Namespace New
Next Not Nothing NotInheritable
NotOverridable Object On Option
Optional Or OrElse Overloads
Overridable Overrides ParamArray Preserve

 2002 Prentice Hall. All rights reserved.

Visua l Ba sic Keywords

AddHandler AddressOf Alias And

AndAlso Ansi As Assembly
Auto Boolean ByRef Byte
ByVal Call Case Catch
CBool CByte CChar CDate
CDec CDbl Char CInt
Class CLng CObj Const
CShort CSng CStr CType
Date Decimal Declare Default
Delegate Dim Do Double
Each Else ElseIf End
Enum Erase Error Event
Exit ExternalSource False Finally
For Friend Function Get
GetType GoTo Handles If
Implements Imports In Inherits
Integer Interface Is Lib
Like Long Loop Me
Mod Module MustInherit MustOverride
MyBase MyClass Namespace New
Next Not Nothing NotInheritable
NotOverridable Object On Option
Optional Or OrElse Overloads
Overridable Overrides ParamArray Preserve

Fig. 4.2 Visual Basic keywords.

12

4.4 Control Structures

Private Property Protected Public
RaiseEvent ReadOnly ReDim Region
Rem RemoveHandler Resume Return
Select Set Shadows Shared
Short Single Static Step
Stop String Structure Sub
SyncLock Then Throw To
True Try TypeOf Unicode
Until When While With
WithEvents WriteOnly Xor #Const
#If...Then...#Else - -= &

&= * *= /
/= \ \= ^
^= + += =
The following are retained as keywords, although they are no longer
supported in Visual Basic.NET
Let Variant Wend
Fig. 4.2 Visua l Basic keywords.

 2002 Prentice Hall. All rights reserved.

Private Property Protected Public
RaiseEvent ReadOnly ReDim Region
Rem RemoveHandler Resume Return
Select Set Shadows Shared
Short Single Static Step
Stop String Structure Sub
SyncLock Then Throw To
True Try TypeOf Unicode
Until When While With
WithEvents WriteOnly Xor #Const
#If...Then...#Else - -= &

&= * *= /
/= \ \= ^
^= + += =
The following are retained as keywords, although they are no longer
supported in Visual Basic.NET
Let Variant Wend
Fig. 4.2 Visua l Basic keywords.

Fig. 4.2 Visual Basic keywords.

13

4.5 If/Then Selection Structure

• A selection structure chooses among alternative
courses of action.

• It is a single-entry/single-exit structure
• Example

If studentGrade >= 60 Then
Console.WriteLine(“Passed”)

End If

 2002 Prentice Hall. All rights reserved.

• A selection structure chooses among alternative
courses of action.

• It is a single-entry/single-exit structure
• Example

If studentGrade >= 60 Then
Console.WriteLine(“Passed”)

End If

14

4.5 If/Then Selection Structure

Grade >= 60 true Console.WriteLine(“Passed”)

 2002 Prentice Hall. All rights reserved.

Fig. 4.3 Flowcharting a single-selection If/Then structure.

Grade >= 60 Console.WriteLine(“Passed”)

false

15

4.6 If/Then/Else Selection Structure

• Example
If studentGrade >= 60 Then

Console.WriteLine(“Passed”)
Else

Console.WriteLine(“Failed”)
End If

• Nested If/Then/Else structures
– Test for multiple conditions by placing one structure inside

the other.
– ElseIf keyword

 2002 Prentice Hall. All rights reserved.

• Example
If studentGrade >= 60 Then

Console.WriteLine(“Passed”)
Else

Console.WriteLine(“Failed”)
End If

• Nested If/Then/Else structures
– Test for multiple conditions by placing one structure inside

the other.
– ElseIf keyword

16

4.6 If/Then/Else Selection Structure

Grade >= 60 true Console.WriteLine(“Passed”)falseConsole.WriteLine(“Failed”)

 2002 Prentice Hall. All rights reserved.

Fig. 4.4 Flowcharting a double-selection If/Then/Else structure.

Grade >= 60 Console.WriteLine(“Passed”)Console.WriteLine(“Failed”)

17

4.7 While Repetition Structure

• Repetition structure
– Allows the programmer to specify that an action should be

repeated, depending on the value of a condition

• Example (pseudocode)
While there are more items on my shopping list

Purchase next item
Cross it off my list

 2002 Prentice Hall. All rights reserved.

• Repetition structure
– Allows the programmer to specify that an action should be

repeated, depending on the value of a condition

• Example (pseudocode)
While there are more items on my shopping list

Purchase next item
Cross it off my list

Outline
18

While.vb

Program Output

1 ' Fig. 4.5: While.vb
2 ' Demonstration of While structure.
3
4 Module modWhile
5
6 Sub Main()
7 Dim product As Integer = 2
8
9 ' structure multiplies and displays product
10 ' while product is less than 1000
11 While product <= 1000
12 Console.Write("{0} ", product)
13 product = product * 2
14 End While
15
16 Console.WriteLine() ' write a blank line
17
18 ' print result
19 Console.WriteLine("Smallest power of 2 " & _
20 "greater than 1000 is {0}", product)
21 Console.ReadLine() ' prevents window from closing
22 End Sub ' Main
23
24 End Module ' modWhile

The decision is tested each
time the loop iterates

 2002 Prentice Hall.
All rights reserved.

While.vb

Program Output

1 ' Fig. 4.5: While.vb
2 ' Demonstration of While structure.
3
4 Module modWhile
5
6 Sub Main()
7 Dim product As Integer = 2
8
9 ' structure multiplies and displays product
10 ' while product is less than 1000
11 While product <= 1000
12 Console.Write("{0} ", product)
13 product = product * 2
14 End While
15
16 Console.WriteLine() ' write a blank line
17
18 ' print result
19 Console.WriteLine("Smallest power of 2 " & _
20 "greater than 1000 is {0}", product)
21 Console.ReadLine() ' prevents window from closing
22 End Sub ' Main
23
24 End Module ' modWhile

2 4 8 16 32 64 128 256 512
Smallest power of 2 greater than 1000 is 1024

19

4.4 Control Structures

product <= 1000 true product = product * 2

 2002 Prentice Hall. All rights reserved.

Fig. 4.6 Flowchart of the While repetition structure.

false

20

4.8 Do While/Loop Repetition Structure

• This structure behaves like the While repetition
structure

 2002 Prentice Hall. All rights reserved.

Outline
21

DoWhile.vb

Program Output

1 ' Fig. 4.7: DoWhile.vb
2 ' Demonstration of the Do While/Loop structure.
3
4 Module modDoWhile
5
6 Sub Main()
7 Dim product As Integer = 2
8
9 ' structure multiplies and displays
10 ' product while product is less than 1000
11 Do While product <= 1000
12 Console.Write("{0} ", product)
13 product = product * 2
14 Loop
15
16 Console.WriteLine() ' write a blank line
17
18 ' print result
19 Console.WriteLine("Smallest power of 2 " & _
20 "greater than 1000 is {0}", product)
21 Console.ReadLine() ' prevent window from closing
22 End Sub
23
24 End Module ' modDoWhile

Failure to provide the body of the structure with
an action that causes the condition to become
false creates an infinite loop

 2002 Prentice Hall.
All rights reserved.

DoWhile.vb

Program Output

1 ' Fig. 4.7: DoWhile.vb
2 ' Demonstration of the Do While/Loop structure.
3
4 Module modDoWhile
5
6 Sub Main()
7 Dim product As Integer = 2
8
9 ' structure multiplies and displays
10 ' product while product is less than 1000
11 Do While product <= 1000
12 Console.Write("{0} ", product)
13 product = product * 2
14 Loop
15
16 Console.WriteLine() ' write a blank line
17
18 ' print result
19 Console.WriteLine("Smallest power of 2 " & _
20 "greater than 1000 is {0}", product)
21 Console.ReadLine() ' prevent window from closing
22 End Sub
23
24 End Module ' modDoWhile

2 4 8 16 32 64 128 256 512
Smallest power of 2 greater than 1000 is 1024

22

4.8 Do While/Loop Repetition Structure

product <= 1000 true product = product * 2

 2002 Prentice Hall. All rights reserved.

Fig. 4.8 Flowchart of a Do While/Loop repetition structure.

false

23

4.9 Do Until/Loop Repetition Structure

• It tests a condition for falsity for repetition to
continue.

 2002 Prentice Hall. All rights reserved.

Outline
24

DoUntil.vb

Program Output

1 ' Fig. 4.9: DoUntil.vb
2 ' Demonstration of the Do Until/Loop Structure.
3
4 Module modDoUntil
5
6 Sub Main()
7 Dim product As Integer = 2
8
9 ' find first power of 2 greater than 1000
10 Do Until product > 1000
11 Console.Write("{0} ", product)
12 product = product * 2
13 Loop
14
15 Console.WriteLine() ' write a blank line
16
17 ' print result
18 Console.WriteLine("Smallest power of 2 " & _
19 "greater than 1000 is {0}", product)
20 End Sub ' Main
21
22 End Module ' modDoUntil

The loop ends when the condition becomes
true

 2002 Prentice Hall.
All rights reserved.

DoUntil.vb

Program Output

1 ' Fig. 4.9: DoUntil.vb
2 ' Demonstration of the Do Until/Loop Structure.
3
4 Module modDoUntil
5
6 Sub Main()
7 Dim product As Integer = 2
8
9 ' find first power of 2 greater than 1000
10 Do Until product > 1000
11 Console.Write("{0} ", product)
12 product = product * 2
13 Loop
14
15 Console.WriteLine() ' write a blank line
16
17 ' print result
18 Console.WriteLine("Smallest power of 2 " & _
19 "greater than 1000 is {0}", product)
20 End Sub ' Main
21
22 End Module ' modDoUntil

2 4 8 16 32 64 128 256 512
Smallest power of 2 greater than 1000 is 1024

25

4.9 Do Until/Loop Repetition Structure

product > 1000 product = product * 2false

 2002 Prentice Hall. All rights reserved.

Fig. 4.10 Flowcharting the Do Until/Loop repetition structure.

true

26

4.10 Assignment Operators

• Binary operators
– +, -, *, ^, &, / or \

variable = variable operator expression
variable operator= expression

• Example
– Addition assignment operator, +=

value = value + 3
value += 3

 2002 Prentice Hall. All rights reserved.

• Binary operators
– +, -, *, ^, &, / or \

variable = variable operator expression
variable operator= expression

• Example
– Addition assignment operator, +=

value = value + 3
value += 3

27

4.10 Assignment Operators

Assignment opera tor Samp le exp ression Exp lana tion Assigns

Assume: c = 4, d =
"He"
+= c += 7 c = c + 7 11 to c
-= c -= 3 c = c - 3 1 to c
*= c *= 4 c = c * 4 16 to c
/= c /= 2 c = c / 2 2 to c
\= c \= 3 c = c \ 3 1 to c
^= c ^= 2 c = c ^ 2 16 to c
&= d &= "llo" d = d & "llo" "Hello" to d
Fig. 4.11 Assignment opera tors.

 2002 Prentice Hall. All rights reserved.

Assignment opera tor Samp le exp ression Exp lana tion Assigns

Assume: c = 4, d =
"He"
+= c += 7 c = c + 7 11 to c
-= c -= 3 c = c - 3 1 to c
*= c *= 4 c = c * 4 16 to c
/= c /= 2 c = c / 2 2 to c
\= c \= 3 c = c \ 3 1 to c
^= c ^= 2 c = c ^ 2 16 to c
&= d &= "llo" d = d & "llo" "Hello" to d
Fig. 4.11 Assignment opera tors.

Fig. 4.11 Assignment operators.

Outline
28

Assignment.vb

Program Output

1 ' Fig. 4.12: Assignment.vb
2 ' Using an assignment operator to calculate a power of 2.
3
4 Module modAssignment
5
6 Sub Main()
7 Dim exponent As Integer ' power input by user
8 Dim result As Integer = 2 ' number to raise to a power
9
10 ' prompt user for exponent
11 Console.Write("Enter an integer exponent: ")
12 result = Console.ReadLine()
13
14 result ^= exponent ' same as result = result ^ exponent
15 Console.WriteLine(“result ^= exponent: {0}", result)
16
17 result = 2 ' reset base value
18 result = result ^ exponent
19 Console.WriteLine(“result = result ^ exponent: {0}", result)
20
21 End Sub ' Main
22
23 End Module ' modAssignment

Same effect on the variable result

 2002 Prentice Hall.
All rights reserved.

Assignment.vb

Program Output

1 ' Fig. 4.12: Assignment.vb
2 ' Using an assignment operator to calculate a power of 2.
3
4 Module modAssignment
5
6 Sub Main()
7 Dim exponent As Integer ' power input by user
8 Dim result As Integer = 2 ' number to raise to a power
9
10 ' prompt user for exponent
11 Console.Write("Enter an integer exponent: ")
12 result = Console.ReadLine()
13
14 result ^= exponent ' same as result = result ^ exponent
15 Console.WriteLine(“result ^= exponent: {0}", result)
16
17 result = 2 ' reset base value
18 result = result ^ exponent
19 Console.WriteLine(“result = result ^ exponent: {0}", result)
20
21 End Sub ' Main
22
23 End Module ' modAssignment

Enter an integer exponent: 8
result ^= exponent: 256
result = result ^ exponent: 256

29

4.11 Formulating Algorithms: Case Study 1
(Counter-Controlled Repetition)

• Counter-controlled repetition
– Counter

• Variable that specifies the number of times that a set of
statements will execute

 2002 Prentice Hall. All rights reserved.

30

4.11 Formulating Algorithms: Case Study 1
(Counter-Controlled Repetition)

Set total to zero
Set grade counter to one

While grade counter is less than or equal to 10
Input the next grade
Add the grade to the total
Add one to the grade counter

Set the class average to the total divided by 10
Print the class average

 2002 Prentice Hall. All rights reserved.

Set total to zero
Set grade counter to one

While grade counter is less than or equal to 10
Input the next grade
Add the grade to the total
Add one to the grade counter

Set the class average to the total divided by 10
Print the class average

Fig. 4.13 Pseudocode algorithm that uses counter-controlled repetition to solve
the class-average problem.

Outline
31

Average1.vb

1 ' Fig. 4.14: Average1.vb
2 ' Using counter-controlled repetition.
3
4 Module modAverage
5
6 Sub Main()
7 Dim total As Integer ' sum of grades
8 Dim gradeCounter As Integer ' number of grades input
9 Dim grade As Integer ' grade input by user
10 Dim average As Double ' class average
11
12 ' initialization phase
13 total = 0 ' set total to zero
14 gradeCounter = 1 ' prepare to loop
15
16 ' processing phase
17 While gradeCounter <= 10
18
19 ' prompt for input and read grade from user
20 Console.Write("Enter integer grade: ")
21 grade = Console.ReadLine()
22
23 total += grade ' add grade to total
24
25 gradeCounter += 1 ' add 1 to gradeCounter
26 End While
27
28 ' termination phase
29 average = total / 10
30
31 ' write a blank line and display class average
32 Console.WriteLine()
33 Console.WriteLine("Class average is {0}", average)
34

total accumulates the sum of the
grades enteredgradeCounter counts the number

of grades entered

The While structure iterates while the value of
gradeCounter is less than or equal to 10.

 2002 Prentice Hall.
All rights reserved.

1 ' Fig. 4.14: Average1.vb
2 ' Using counter-controlled repetition.
3
4 Module modAverage
5
6 Sub Main()
7 Dim total As Integer ' sum of grades
8 Dim gradeCounter As Integer ' number of grades input
9 Dim grade As Integer ' grade input by user
10 Dim average As Double ' class average
11
12 ' initialization phase
13 total = 0 ' set total to zero
14 gradeCounter = 1 ' prepare to loop
15
16 ' processing phase
17 While gradeCounter <= 10
18
19 ' prompt for input and read grade from user
20 Console.Write("Enter integer grade: ")
21 grade = Console.ReadLine()
22
23 total += grade ' add grade to total
24
25 gradeCounter += 1 ' add 1 to gradeCounter
26 End While
27
28 ' termination phase
29 average = total / 10
30
31 ' write a blank line and display class average
32 Console.WriteLine()
33 Console.WriteLine("Class average is {0}", average)
34

gradeCounter is incremented to indicate that
a grade has been processed. The condition
eventually becomes false, terminating the loop

Outline
32

Average1.vb

Program Output

35 End Sub ' Main
36
37 End Module ' modAverage

Enter integer grade: 89
Enter integer grade: 70
Enter integer grade: 73
Enter integer grade: 85
Enter integer grade: 64
Enter integer grade: 92
Enter integer grade: 55
Enter integer grade: 57
Enter integer grade: 93
Enter integer grade: 67
Class average is 74.5

 2002 Prentice Hall.
All rights reserved.

334.12 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 2

(Sentinel-Controlled Repetition)
• Sentinel value

– Indicates “end of data entry”
– Choosing a sentinel value that is also a legitimate data value

could result in a logic error

• Top-down, stepwise refinement
– The top is a single statement that conveys the overall

function of the program
– Each refinement is a complete specification of the algorithm;

only the level of detail in each refinement varies

 2002 Prentice Hall. All rights reserved.

• Sentinel value
– Indicates “end of data entry”
– Choosing a sentinel value that is also a legitimate data value

could result in a logic error

• Top-down, stepwise refinement
– The top is a single statement that conveys the overall

function of the program
– Each refinement is a complete specification of the algorithm;

only the level of detail in each refinement varies

344.12 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 2

(Sentinel-Controlled Repetition)
• Algorithms (three phases)

– Initialization phase
• Initializes the program variables

– Processing phase
• Inputs data values and adjusts program variables accordingly

– Termination phase
• Calculates and prints the results

 2002 Prentice Hall. All rights reserved.

• Algorithms (three phases)
– Initialization phase

• Initializes the program variables
– Processing phase

• Inputs data values and adjusts program variables accordingly
– Termination phase

• Calculates and prints the results

354.12 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 2

(Sentinel-Controlled Repetition)
Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade to the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

 2002 Prentice Hall. All rights reserved.

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade to the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

Fig. 4.15 Pseudocode algorithm that uses sentinel-controlled repetition to solve
the class-average problem.

Outline
36

ClassAverage2.vb

1 ' Fig. 4.16: ClassAverage2.vb
2 ' Using sentinel-controlled repetition to
3 ' display a class average.
4
5 Module modClassAverage
6
7 Sub Main()
8 Dim total As Integer ' sum of grades
9 Dim gradeCounter As Integer ' number of grades input
10 Dim grade As Integer ' grade input by user
11 Dim average As Double ' average of all grades
12
13 ' initialization phase
14 total = 0 ' clear total
15 gradeCounter = 0 ' prepare to loop
16
17 ' processing phase
18 ' prompt for input and read grade from user
19 Console.Write("Enter integer grade, -1 to Quit: ")
20 grade = Console.ReadLine()
21
22 ' sentinel-controlled loop where -1 is the sentinel value
23 While grade <> -1
24
25 total += grade ' add gradeValue to total
26 gradeCounter += 1 ' add 1 to gradeCounter
27
28 ' prompt for input and read grade from user
29 Console.Write("Enter integer grade, -1 to Quit: ")
30 grade = Console.ReadLine()
31 End While
32

In sentinel-controlled repetition, a value is read
before the program reaches the While structure

 2002 Prentice Hall.
All rights reserved.

1 ' Fig. 4.16: ClassAverage2.vb
2 ' Using sentinel-controlled repetition to
3 ' display a class average.
4
5 Module modClassAverage
6
7 Sub Main()
8 Dim total As Integer ' sum of grades
9 Dim gradeCounter As Integer ' number of grades input
10 Dim grade As Integer ' grade input by user
11 Dim average As Double ' average of all grades
12
13 ' initialization phase
14 total = 0 ' clear total
15 gradeCounter = 0 ' prepare to loop
16
17 ' processing phase
18 ' prompt for input and read grade from user
19 Console.Write("Enter integer grade, -1 to Quit: ")
20 grade = Console.ReadLine()
21
22 ' sentinel-controlled loop where -1 is the sentinel value
23 While grade <> -1
24
25 total += grade ' add gradeValue to total
26 gradeCounter += 1 ' add 1 to gradeCounter
27
28 ' prompt for input and read grade from user
29 Console.Write("Enter integer grade, -1 to Quit: ")
30 grade = Console.ReadLine()
31 End While
32

In a sentinel-controlled loop, the prompts
requesting data entry should remind the user of
the sentinel value

Outline
37

ClassAverage2.vb

Program Output

33 ' termination phase
34 If gradeCounter <> 0 Then
35 average = total / gradeCounter
36
37 ' display class average
38 Console.WriteLine()
39 Console.WriteLine("Class average is {0:F}", average)
40 Else ' if no grades were entered
41 Console.WriteLine("No grades were entered")
42 End If
43
44 End Sub ' Main
45
46 End Module ' modClassAverage
47

Enter Integer Grade, -1 to Quit: 97
Enter Integer Grade, -1 to Quit: 88
Enter Integer Grade, -1 to Quit: 72
Enter Integer Grade, -1 to Quit: -1
Class average is 85.67

 2002 Prentice Hall.
All rights reserved.

ClassAverage2.vb

Program OutputEnter Integer Grade, -1 to Quit: 97
Enter Integer Grade, -1 to Quit: 88
Enter Integer Grade, -1 to Quit: 72
Enter Integer Grade, -1 to Quit: -1
Class average is 85.67

384.13 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 3 (Nested

Control Structures)

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
 Add one to passes
Else
 Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

 2002 Prentice Hall. All rights reserved.

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
 Add one to passes
Else
 Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

Fig. 4.17 Pseudocode for examination-results problem.

Outline
39

Analysis.vb

1 ' Fig. 4.18: Analysis.vb
2 ' Using counter-controlled repetition to display exam results.
3
4 Module modAnalysis
5
6 Sub Main()
7 Dim passes As Integer = 0 ' number of passes
8 Dim failures As Integer = 0 ' number of failures
9 Dim student As Integer = 1 ' student counter
10 Dim result As String ' one exam result
11
12 ' process 10 exam results; counter-controlled loop
13 While student <= 10
14 Console.WriteLine("Enter result (P = pass, F = fail)")
15 result = Console.ReadLine()
16
17 ' nested control structures
18 If result = "P" Then
19 passes += 1 ' increment number of passes
20 Else
21 failures += 1 ' increment number of failures
22 End If
23
24 student += 1 ' increment student counter
25 End While
26
27 ' display exam results
28 Console.WriteLine("Passed: {0}{1}Failed: {2}", passes, _
29 vbCrLf, failures)
30
31 ' raise tuition if than 8 students pass
32 If passes > 8 Then
33 Console.WriteLine("Raise Tuition")
34 End If
35

The While loop inputs and processes
the 10 examination results

The If/Then/Else structure is a nested
control. It is enclosed inside the While.

 2002 Prentice Hall.
All rights reserved.

1 ' Fig. 4.18: Analysis.vb
2 ' Using counter-controlled repetition to display exam results.
3
4 Module modAnalysis
5
6 Sub Main()
7 Dim passes As Integer = 0 ' number of passes
8 Dim failures As Integer = 0 ' number of failures
9 Dim student As Integer = 1 ' student counter
10 Dim result As String ' one exam result
11
12 ' process 10 exam results; counter-controlled loop
13 While student <= 10
14 Console.WriteLine("Enter result (P = pass, F = fail)")
15 result = Console.ReadLine()
16
17 ' nested control structures
18 If result = "P" Then
19 passes += 1 ' increment number of passes
20 Else
21 failures += 1 ' increment number of failures
22 End If
23
24 student += 1 ' increment student counter
25 End While
26
27 ' display exam results
28 Console.WriteLine("Passed: {0}{1}Failed: {2}", passes, _
29 vbCrLf, failures)
30
31 ' raise tuition if than 8 students pass
32 If passes > 8 Then
33 Console.WriteLine("Raise Tuition")
34 End If
35

Identifier vbCrLf is the combination of
the carriage return and linefeed characters

Outline
40

Analysis.vb

Program Output

36 End Sub ' Main
37
38 End Module ' modAnalysis

Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Passed: 9
Failed: 1
Raise Tuition

 2002 Prentice Hall.
All rights reserved.

Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Passed: 9
Failed: 1
Raise Tuition

Outline
41

Analysis.vb

Program Output

Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
P
Passed: 6
Failed: 4

 2002 Prentice Hall.
All rights reserved.

Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
P
Enter result (P = pass, F = fail)
F
Enter result (P = pass, F = fail)
P
Passed: 6
Failed: 4

424.14 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 4 (Nested

Repetition Structures)

Initialize side to the value input
Initialize row to 1

If side is less than or equal to 20

While row is less than or equal to side
Set column to one

While column is less than or equal to side
Print *
Increment column by one

Print a line feed/carriage return
Increment row by one

Else
Print “Side is too large”

 2002 Prentice Hall. All rights reserved.

Initialize side to the value input
Initialize row to 1

If side is less than or equal to 20

While row is less than or equal to side
Set column to one

While column is less than or equal to side
Print *
Increment column by one

Print a line feed/carriage return
Increment row by one

Else
Print “Side is too large”

Fig. 4.19 Second refinement of the pseudocode.

Outline
43

PrintSquare.vb

1 ' Fig. 4.20: PrintSquare.vb
2 ' Program draws square of $.
3
4 Module modPrintSquare
5
6 Sub Main()
7 Dim side As Integer ' square side
8 Dim row As Integer = 1 ' current row
9 Dim column As Integer ' current column
10
11 ' obtain side from user
12 Console.Write("Enter side length (must be 20 or less): ")
13 side = Console.ReadLine()
14
15 If side <= 20 Then ' If true, while is tested
16
17 ' this while is nested inside the If
18 While row <= side ' controls row
19 column = 1
20
21 ' this loop prints one row of * characters
22 ' and is nested inside the While in line 18
23 While (column <= side)
24 Console.Write("* ") ' print * characters
25 column += 1 ' increment column
26 End While
27
28 Console.WriteLine() ' position cursor on next line
29 row += 1 ' increment row
30 End While
31 Else ' condition (side <= 20) is false
32 Console.WriteLine("Side too large")
33 End If
34

Three levels of nesting

 2002 Prentice Hall.
All rights reserved.

1 ' Fig. 4.20: PrintSquare.vb
2 ' Program draws square of $.
3
4 Module modPrintSquare
5
6 Sub Main()
7 Dim side As Integer ' square side
8 Dim row As Integer = 1 ' current row
9 Dim column As Integer ' current column
10
11 ' obtain side from user
12 Console.Write("Enter side length (must be 20 or less): ")
13 side = Console.ReadLine()
14
15 If side <= 20 Then ' If true, while is tested
16
17 ' this while is nested inside the If
18 While row <= side ' controls row
19 column = 1
20
21 ' this loop prints one row of * characters
22 ' and is nested inside the While in line 18
23 While (column <= side)
24 Console.Write("* ") ' print * characters
25 column += 1 ' increment column
26 End While
27
28 Console.WriteLine() ' position cursor on next line
29 row += 1 ' increment row
30 End While
31 Else ' condition (side <= 20) is false
32 Console.WriteLine("Side too large")
33 End If
34

Each iteration of the inner loop prints a single *

Outline
44

PrintSquare.vb

Program Output

35 End Sub ' Main
36
37 End Module ' modPrintSquare

Enter side length (must be 20 or less): 8
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *
* * * * * * * *

 2002 Prentice Hall.
All rights reserved.

45

4.15 Introduction to Windows Application
Programming

• Windows application
– Consists of at least one class
• Inherits from class Form
• Form is called the superclass or base class

– Keyword Class
• Begins a class definition and is followed by the class name

– Keyword Inherits
• Indicates that the class inherits existing pieces from another

class

 2002 Prentice Hall. All rights reserved.

• Windows application
– Consists of at least one class
• Inherits from class Form
• Form is called the superclass or base class

– Keyword Class
• Begins a class definition and is followed by the class name

– Keyword Inherits
• Indicates that the class inherits existing pieces from another

class

46

4.15 Introduction to Windows Application
Programming

 2002 Prentice Hall. All rights reserved.

Fig. 4.21 IDE showing program code for Fig. 2.15.

Collapsed
code

47

4.15 Introduction to Windows Application
Programming

• Windows Form Designer generated
code
– Collapsed by default
– The code is created by the IDE and normally is not edited by

the programmer
– Present in every Windows application

 2002 Prentice Hall. All rights reserved.

• Windows Form Designer generated
code
– Collapsed by default
– The code is created by the IDE and normally is not edited by

the programmer
– Present in every Windows application

48

4.15 Introduction to Windows Application
Programming

Expanded code

 2002 Prentice Hall. All rights reserved.

Fig. 4.22 Windows Form Designer generated code when expanded.

49

4.15 Introduction to Windows Application
Programming

Click here for
code view

Click here for
design view

Property initializations
for lblWelcome

 2002 Prentice Hall. All rights reserved.

Fig. 4.23 Code generated by the IDE for lblWelcome.

50

4.15 Introduction to Windows Application
Programming

• How IDE updates the generated code
1. Modify the file name

• Change the name of the file to ASimpleProgram.vb
2. Modify the label control’s Text property using the

Properties window
• Change the property of the label to “Deitel and

Associates”
3. Examine the changes in the code view

• Switch to code view and examine the code
4. Modifying a property value in code view

• Change the string assigned to Me.lblWelcome.Text to
“Visual Basic .NET”

 2002 Prentice Hall. All rights reserved.

• How IDE updates the generated code
1. Modify the file name

• Change the name of the file to ASimpleProgram.vb
2. Modify the label control’s Text property using the

Properties window
• Change the property of the label to “Deitel and

Associates”
3. Examine the changes in the code view

• Switch to code view and examine the code
4. Modifying a property value in code view

• Change the string assigned to Me.lblWelcome.Text to
“Visual Basic .NET”

51

4.15 Introduction to Windows Application
Programming

Text property

 2002 Prentice Hall. All rights reserved.

Fig. 4.24 Using the Properties window to set a property value.

52

4.15 Introduction to Windows Application
Programming

 2002 Prentice Hall. All rights reserved.

Fig. 4.25 Windows Form Designer generated code reflecting new property values.

Text
property

53

4.15 Introduction to Windows Application
Programming

 2002 Prentice Hall. All rights reserved.

Fig. 4.26 Changing a property in the code view editor.

Text property

54

4.15 Introduction to Windows Application
Programming

Text property value

 2002 Prentice Hall. All rights reserved.

Fig. 4.27 New Text property value reflected in design mode.

55

4.15 Introduction to Windows Application
Programming

5. Change the label’s Text Property at runtime
• Add a method named FrmASimpleProgram_Load to the

class
• Add the statement lblWelcome.Text = “Visual

Basic” in the body of the method definition
6. Examine the results of the FrmASimpleProgram_Load

method
• Select Build > Build Solution then Debug > Start

 2002 Prentice Hall. All rights reserved.

5. Change the label’s Text Property at runtime
• Add a method named FrmASimpleProgram_Load to the

class
• Add the statement lblWelcome.Text = “Visual

Basic” in the body of the method definition
6. Examine the results of the FrmASimpleProgram_Load

method
• Select Build > Build Solution then Debug > Start

56

4.15 Introduction to Windows Application
Programming

FrmASimpleProgram_Load method

 2002 Prentice Hall. All rights reserved.

Fig. 4.28 Adding program code to FrmASimpleProgram_Load.

57

4.15 Introduction to Windows Application
Programming

 2002 Prentice Hall. All rights reserved.

Fig. 4.29 Method FrmASimpleProgram_Load containing program code.

58

4.15 Introduction to Windows Application
Programming

7. Terminate program execution
• Click the close button to terminate program execution

 2002 Prentice Hall. All rights reserved.

