Chapter 4: Control Structures: Part 1

Outline

4.1 Introduction

4.2 Algorithms

4.3 Pseudocode

4.4 Control Structures

4.5 If/Then Selection Structure

4.6 If/Then/Else Selection Structure

4.7 While Repetition Structure

4.8 Do While/Loop Repetition Structure

4.9 Do Until/Loop Repetition Structure

410 Assignment Operators

4.11 Formulating Algorithms: Case Study 1 (Counter-
Controlled Repetition)

412 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 2 (Sentinel-Controlled
Repetition)

© 2002 Prentice Hall. All rights reserved. - -

413 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 3 (Nested Control Structures)

414 Formulating Algorithms with Top-Down, Stepwise
Refinement: Case Study 4 (Nested Repetition
Structures)

415 Introduction to Windows Application Programming

© 2002 Prentice Hall. All rights reserved. - -

4.1 Introduction

e Structured programming

— Control structures
» Helpful in building and manipulating objects

© 2002 Prentice Hall. All rights reserved. - -

4.2 Algorithms

* Algorithms

— A procedure for solving a problem, in terms of
* The actions to be executed and
 The order in which these actions are to be executed

© 2002 Prentice Hall. All rights reserved. - -

4.3 Pseudocode

* Pseudocode
— Informal language to helps programmers develop algorithms
— Not executed on computers

— Helps conceptualize a program during the program-design
process

— Describes only executable statements

© 2002 Prentice Hall. All rights reserved. - -

4.4 Control Structures

e Transfer of control
— GoTo statement
* [t causes programs to become quite unstructured and hard to

follow

 Bohm and Jacopini
— All programs could be written in terms of three control
structures
e Sequence structure
 Selection structure
« Repetition structure

© 2002 Prentice Hall. All rights reserved. - -

4.4 Control Structures

 Flowcharts

— Graphical representation of an algorithm

— Drawn using certain special-purpose symbols
* Rectangles
* Diamonds
e Ovals

e Small circles

© 2002 Prentice Hall. All rights reserved. - -

4.4 Control Structures

I

add grade to total total = total + grade

add 1 to counter counter = counter + 1

!

Fig. 4.1 Flowcharting Visual Basic’s sequence structure.

© 2002 Prentice Hall. All rights reserved. - -

4.4 Control Structures

* Selection Structures
— If/Then
 Single-selection structure
— If/Then/Else

 Double-selection structure
— Select Case

« Multiple-selection structure

© 2002 Prentice Hall. All rights reserved. - -

4.4 Control Structures

* Repetition Structures

While

Do While/Loop
Do/Loop While
Do Until/Loop
Do/Loop Until
For/Next

For Each/Next

© 2002 Prentice Hall. All rights reserved. - -

10

4.4 Control Structures

Visual Basic Keywords
AddHandler AddressOf Alias And
AndAlso Ansi As Assembly
Auto Boolean ByRef Byte
ByVal Call Case Catch
CBool CByte CChar CDate
CDec CDbl Char Clnt
Class CLng CObj Const
CShort CSng CStr CType
Date Decimal Declare Default
Delegate Dim Do Double
Each Else Elself End
Enum Erase Error Event
Exit ExternalSource |False Finally
For Friend Function Get
GetType GoTo Handles If
Implements Imports In Inherits
Integer Interface Is Lib
Like Long Loop Me
Mod Module MustInherit MustOverride
MyBase MyClass Namespace New
Next Not Nothing Notlnheritable
NotOverridable |Object On Option
Optional Or OrElse Overloads
Overridable Overrides ParamArray Preserve
Fig. 4.2 Visual Basic keywords.

© 2002 Prentice Hall. All rights reserved.

11

4.4 Control Structures

Private Property Protected Public
RaiseEvent ReadOnly ReDim Region
Rem RemoveHandler |Resume Return
Select Set Shadows Shared
Short Single Static Step
Stop String Structure Sub
SyncLock Then Throw To
True Try TypeOf Unicode
Until When While With
WithEvents WriteOnly Xor #Const
#If...Then.. #Else |- -= &

&= * *= /

/= \ \= A

A= + += =

The following are retained as keywords, although they are no longer
supported in Visual Basic. NET

Let |Variant |Wend
Fig. 4.2 Visual Basic keywords.
Fig. 4.2 Visual Basic keywords.

© 2002 Prentice Hall. All rights reserved.

12

4.5 I1f/Then Selection Structure

« A selection structure chooses among alternative
courses of action.

It 1s a single-entry/single-exit structure

 Example
If studentGrade >= 60 Then
Console.Writeline ("Passed”)
End If

© 2002 Prentice Hall. All rights reserved. - -

13

4.5 I1f/Then Selection Structure

Grade >= 60 true Console.WriteLine (“Passed”)

g

Fig. 4.3 Flowcharting a single-selection If/Then structure.

false

© 2002 Prentice Hall. All rights reserved. - -

4.6 If/Then/Else Selection Structure

« Example
If studentGrade >= 60 Then
Console.WriteLine ("Passed”)
Else
Console.WriteLine ("Failed”)
End If

* Nested I£/Then/Else structures

— Test for multiple conditions by placing one structure inside
the other.

— ElseIf keyword

© 2002 Prentice Hall. All rights reserved. - -

15

4.6 If/Then/Else Selection Structure

Console.WriteLine (“Failed”)

false

Grade >=

60

true

Console.WriteLine (“Passed”)

Fig. 4.4 Flowcharting a double-selection If/Then/Else structure.

© 2002 Prentice Hall. All rights reserved.

16

4.7 While Repetition Structure

« Repetition structure

— Allows the programmer to specify that an action should be
repeated, depending on the value of a condition

« Example (pseudocode)

While there are more items on my shopping list
Purchase next item
Cross it off my list

© 2002 Prentice Hall. All rights reserved. - -

17

1 ' Fig. 4.5: While.vb

2 ' Demonstration of While structure.

3

4 Module modWhile

5

6 Sub Main ()

7 Dim product As Integer = 2

8

9 ' structure multiplies and disppfeosse—=mnadiias

10 ' while product is less than 10| The decision is tested each
1L UL TPEREEEERS 52 LU time the loop iterates
12 Console.Write("{0} ", produl _,

13 product = product * 2

14 End While

15

16 Console.Writeline() ' write a blank line

17

18 ' print result

19 Console.WriteLine("Smallest power of 2 " & _

20 "greater than 1000 is {0}", product)

21 Console.ReadLine() ' prevents window from closing
22 End Sub ' Main

23

24 End Module ' modWhile

2 4 8 16 32 64 128 256 512

Smallest power of 2 greater than 1000 is 1024

A Outline
V4
While.vb

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

18

4.4 Control Structures

1

product <= 1000 product = product * 2

Fig. 4.6 Flowchart of the While repetition structure.

© 2002 Prentice Hall. All rights reserved. - -

4.8 Do While/Loop Repetition Structure

e This structure behaves like the While repetition
structure

© 2002 Prentice Hall. All rights reserved. - -

20

o Jdo U WNPRE

2

' Fig. 4.7: DoWhile.vb

' Demonstration of the Do While/Loop structure. v

Module modDoWhile

Sub Main ()
Dim product As Integer = 2

' structure multiplies and displa

Do While product <= 1000
Console.Write (" {0} "
product = product * 2

Loop

A

Outline

DoWhile.vb

| false creates an infinite loop

Failure to provide the body of the structure with
an action that causes the condition to become

Console.Writeline() ' write a blank line

' print result

Console.WriteLine("Smallest power of 2 " & _
"greater than 1000 is {0}", product)
Console.Readline() ' prevent window from closing
End Sub

End Module ' modDoWhile

8 16 32 64 128 256 512

Smallest power of 2 greater than 1000 is 1024

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

21

4.8 Do While/Loop Repetition Structure

1

product <= 1000 product = product * 2

Fig. 4.8 Flowchart of a Do While/Loop repetition structure.

© 2002 Prentice Hall. All rights reserved. - -

22

4.9 Do Until/Loop Repetition Structure

* It tests a condition for falsity for repetition to
continue.

© 2002 Prentice Hall. All rights reserved. - -

23

o Jdo U WNPRE

2

4

' Fig. 4.9: DoUntil.vb A Outline
' Demonstration of the Do Until/Loop Structure. v
Module modDoUntil DoUntil.vb
e LEm) The loop ends when the condition becomes
Dim product As Integer = 2
true
' find first power greater than 1000
Do Until product > 1000
Console.Write("{0} ", product)
product = product * 2
Loop
Console.Writeline() ' write a blank line

' print result
Console.Writeline ("Smallest power of 2 "
"greater than 1000 is {0}", product)
End Sub ' Main

End Module ' modDoUntil

8 16 32 64 128 256 512

Smallest power of 2 greater than 1000 is 1024

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

24

4.9 Do Until/Loop Repetition Structure

1

product > 1000 product = product * 2

Fig. 4.10 Flowcharting the Do Until/Loop repetition structure.

© 2002 Prentice Hall. All rights reserved. - -

4.10 Assignment Operators

* Binary operators
o +9_9*9A9 &,/Or\
variable = variable operator expression

variable operator= expression

 Example

— Addition assignment operator, +=
value = value + 3
value += 3

© 2002 Prentice Hall. All rights reserved. - -

26

4.10 Assignment Operators

Assignment operator Sample expression Explanation Assigns
Assume: ¢ = 4,d =

"He"

+= c += 7/ c=c+ / ITtoe
= c =3 c=c -3 ltoe
*= c *= 4 c=c*4 16toc
/= c /=2 c=c/ 2 2toc
\= c \=3 c=c\ 3 ltoe
n= c *=2 c=c*?2 16 toc
&= d &= "llo" d=4d & "llo" "Hello" to d
Fig. 411 Assignment operators.

© 2002 Prentice Hall. All rights reserved.

Fig. 4.11 Assignment operators.

27

o Jdo U WNPRE

' Fig. 4.12: Assignment.vb
' Using an assignment operator to calculate a power of 2.

Module modAssignment
Sub Main ()
Dim exponent As Integer ' power input by user
Dim result As Integer = 2 ' number to raise to a power
' prompt user for exponent
Console.Write("Enter an integer exponent: ")

result = Console.ReadLine ()

result “= exponente.!_same as result = result * exponent

A
\%

Assignment.vb

Outline

Console.Writeline (“resu cnont. (011 aacialid

Same effect on the variable result

result = 2 ' reset base val
result = result * exponent
Console.Writeline (“result = result * exponent: {0}", result)

End Sub ' Main

End Module ' modAssignment

Enter an integer exponent: 8
result “= exponent: 256
result = result * exponent: 256

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

28

4.11 Formulating Algorithms: Case Study 1
(Counter-Controlled Repetition)

« Counter-controlled repetition

— Counter

» Variable that specifies the number of times that a set of
statements will execute

© 2002 Prentice Hall. All rights reserved. - -

29

4.11 Formulating Algorithms: Case Study 1
(Counter-Controlled Repetition)

Set total to zero
Set grade counter to one

While grade counter is less than or equal to 10
Input the next grade
Add the grade to the total
Add one to the grade counter

Set the class average to the total divided by 10
Print the class average

Fig. 4.13 Pseudocode algorithm that uses counter-controlled repetition to solve
the class-average problem.

© 2002 Prentice Hall. All rights reserved. - -

30

o Jdo U WNPRE

A

' Fig. 4.14: Averagel.vb Outline
' Using counter-controlled repetil total accumulates the sum of the w7l
grade§ gradeCounter counts the number
Module modAverage
of grades entered agel.vb
Sub Main ()
Dim total As Inte ' sum of grades
Dim gradeCounter As Integer ' number of grades input
Dim grade As Integer ' grade input by user
Dim average As Double ' class average
' initialization phq The While structure iterates while the value of
total = 0 gradeCounter is less than or equal to 10.
gradeCounter =
' pro sing phase
While gradeCounter <= 10
' prompt for input ap<d—=eesd =wode fxom oo
Console.Write ("Enter | gradeCounter is incremented to indicate that
grade = Console.Readl , grade has been processed. The condition
total += grad . | eventually becomes false, terminating the loop
gradeCounter += 1 ' add 1 to gradeCounter
End While
' termination phase
average = total / 10
' write a blank line and display class average
Console.Writeline ()
Console.Writeline ('"Class average is {0}", average)
© 2002 Prentice Hall.

All rights reserved.

31

35
36

37 End Module

Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter
Enter

Class

End Sub ' Main

integer
integer
integer
integer
integer
integer
integer
integer
integer
integer

average

' modAverage
grade: 89
grade: 70
grade: 73
grade: 85
grade: 64
grade: 92
grade: 55
grade: 57
grade: 93
grade: 67
is 74.

A
\%

Averagel.vb

Outline

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

32

4.12 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 2
(Sentinel-Controlled Repetition)

 Sentinel value

— Indicates “end of data entry”
— Choosing a sentinel value that 1s also a legitimate data value
could result 1n a logic error
 Top-down, stepwise refinement

— The top 1s a single statement that conveys the overall
function of the program

— Each refinement 1s a complete specification of the algorithm;
only the level of detail in each refinement varies

© 2002 Prentice Hall. All rights reserved. - -

33

4.12 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 2
(Sentinel-Controlled Repetition)

* Algorithms (three phases)
— Initialization phase
* Initializes the program variables
— Processing phase
 Inputs data values and adjusts program variables accordingly
— Termination phase
 Calculates and prints the results

© 2002 Prentice Hall. All rights reserved. - -

34

4.12 Formulating Algorithms with Top-Down,

Stepwise Refinement: Case Study 2
(Sentinel-Controlled Repetition)

Initialize total to zero
Initialize counter to zero

Input the first grade (possibly the sentinel)

While the user has not as yet entered the sentinel
Add this grade to the running total
Add one to the grade counter
Input the next grade (possibly the sentinel)

If the counter is not equal to zero
Set the average to the total divided by the counter
Print the average

Else
Print “No grades were entered”

Fig. 4.15 Pseudocode algorithm that uses sentinel-controlled repetition to solve
the class-average problem.

© 2002 Prentice Hall. All rights reserved. - -

35

o Jdo U WNPRE

' Fig. 4.16: ClassAverage2.vb

' Using sentinel-controlled repetition to v

' display a class average.
Module modClassAverage

Sub Main ()
Dim total As Integer
Dim gradeCounter As Integer
Dim grade As Integer
Dim average As Double

' initialization phase

A

Outline

36

ClassAverage2.vb

' sum of grades

' number of grades input
' grade input by user

' average of all grades

total = 0
gradeCounter = 0

In sentinel-controlled repetition, a value is read
before the program reaches the While structure

' processing phase

' prompt for input and ad grade from user

Console.Write("Enter jihteger grade, -1

grade = Console.ReadLine ()

In a sentinel-controlled loop, the prompts
requesting data entry should remind the user of

' sentinel-controlled loop where -1 is the sentinel value

While grade <> -1

total += grade ' add gradeValue to total
gradeCounter += 1 ' add 1 to gradeCounter

' prompt for input and read grade from user
Console.Write ("Enter integer grade, -1 to Quit: ")

grade = Console.ReadLine ()
End While

© 2002 Prentice Hall.
All rights reserved.

33
34
35
36
37
38
39
40
41
42
43
44
45

' termination phase
If gradeCounter <> 0 Then
average = total / gradeCounter

' display class average

Console.Writeline ()

Console.WritelLine('"Class average is {0:F}", average)
Else ' if no grades were entered

Console.WriteLine ("No grades were entered")
End If

End Sub ' Main

46 End Module ' modClassAverage

47

Enter
Enter
Enter
Enter

Class

Integer Grade, -1 to Quit: 97
Integer Grade, -1 to Quit: 88
Integer Grade, -1 to Quit: 72
Integer Grade, -1 to Quit: -1

average is 85.67

A 37

Outline
V4

ClassAverage2.vb

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

4.13 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 3 (Nested
Control Structures)

Initialize passes to zero
Initialize failures to zero
Initialize student to one

While student counter is less than or equal to ten
Input the next exam result

If the student passed
Add one to passes
Else
Add one to failures

Add one to student counter

Print the number of passes
Print the number of failures

If more than eight students passed
Print “Raise tuition”

Fig. 4.17 Pseudocode for examination-results problem.

© 2002 Prentice Hall. All rights reserved. - -

o Jdo U WNPRE

' Fig. 4.18: Analysis.vb
' Using counter-controlled repetition to display exam results.

Module modAnalysis

Sub Main () The While loop inputs and processes

Dim passes As

Dim failures A the 10 examination results -

Dim student As Inte
Dim result As Strj

' process 10

=1 ' student counter
' one exam result

xam results; counter-controlled loop

While student <=
Console.Write
result = Cons

The I£f/Then/Else structure is a nested
control. It 1s enclosed inside the While.

If result = "P
passes += 1

' nested control structures

" Then
' increment number of passes

1 ' increment number of failures

Else
l failures +=
End If

Identifier vbCrL£ is the combination of
student | the carriage return and linefeed characters

End While

' display am results

Console JMriteLine

("Passed: {0}{1l}Failed: {2}", passes, _

vbCrLf, failures)

' raise tuition if than 8 students pass
If passes > 8 Then
Console.Writeline ("Raise Tuition")

End If

A
\%

Analysis.vb

Outline

© 2002 Prentice Hall.
All rights reserved.

39

36 End Sub
37

38 End Module
Enter result (P
P

Enter result (P
F

Enter result (P
P

Enter result (P
P

Enter result (P
P

Enter result (P
P

Enter result (P
P

Enter result (P
P

Enter result (P
P

Enter result (P
P

Passed: 9
Failed: 1

Raise Tuition

Main
modAnalysis
pass, = fail)
pass, = fail)
pass, = fail)
pass, = fail)
pass, = fail)
pass, = fail)
pass, = fail)
pass, = fail)
pass, = fail)
pass, = fail)

A
\%

Analysis.vb

Outline

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

40

Enter
P
Enter
F
Enter
P
Enter
F
Enter
F
Enter
P
Enter
P
Enter
P
Enter
F
Enter
P

result

result

result

result

result

result

result

result

result

result

Passed: 6
Failed: 4

(P
(P
(P
(P
(P
(P
(P
(P
(P

(P

pass,

pass,

pass,

pass,

pass,

pass,

pass,

pass,

pass,

pass,

fail)
fail)
fail)
fail)
fail)
fail)
fail)
fail)
fail)

fail)

A
\%

Analysis.vb

Outline

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

41

4.14 Formulating Algorithms with Top-Down,
Stepwise Refinement: Case Study 4 (Nested
Repetition Structures)

Initialize side to the value input
Initialize row to 1

If side is less than or equal to 20

While row is less than or equal to side
Set column to one

While column is less than or equal to side
Print *

Increment column by one

Print a line feed/carriage return
Increment row by one

Else
Print “Side is too large”

Fig. 4.19 Second refinement of the pseudocode.

© 2002 Prentice Hall. All rights reserved. - -

42

o Jdo U WNPRE

Fig. 4.20: PrintSquare.vb

' Program draws square of §$.

Module modPrintSquare

Sub Main ()
Dim side As Integer ' square side
Dim row As Integer = 1 ' current row
Dim colp==—2te T=iaocaw l—current column

Three levels of nesting
' obtaim sTIOE ITOmM USEr
Console.Write ("Enter side length (must be 20 or less): ")
side = Console.ReadLine ()

— If side <= 20 Then ' If true, while is tested

' this while is nested inside the If

A

Outline

\%

» While row <= sig - —

column = 1 | Each iteration of the inner loop prints a single *

' this loop prints one row of * characters
' and is nested inside thg”While in line 18
— ” While (column <= side)

Console.Write("* ") ' print * characters
column += 1 ' increment column
End While
Console.WritelLine () ' position cursor on next line
row += 1 ' increment row
End While

Else ' condition (side <= 20) is false
Console.Writeline("Side too large')
End If

PrintSquare.vb

© 2002 Prentice Hall.
All rights reserved.

43

35 End

36

37 End

=
o)
ct
0
)]

* % F %* % % * *
* %F %* % % * *

*

* F F * * * * *
* F F * * * * *

Sub

Module

side length (must be 20 or 1less):

*

* % * * % * *

' Main

* F F * * * * *

*

* ok F F F * ¥
* ok ok * Kk * ¥

' modPrintSquare

*

: Outline
PrintSquare.vb

Program Qutput

© 2002 Prentice Hall.
All rights reserved.

44

4.15 Introduction to Windows Application
Programming

 Windows application

— Consists of at least one class

« Inherits from class Form

« Form is called the superclass or base class
— Keyword Class

» Begins a class definition and is followed by the class name
— Keyword Inherits

* Indicates that the class inherits existing pieces from another
class

© 2002 Prentice Hall. All rights reserved. - -

45

4.15 Introduction to Windows Application

Programming
asimpleProgram.vb [Design]* ASimpleProgram.yb® q [X
|&|;Frmn5impIEPrugram {ASimple j II]% {Declarations) j

F Public Class Frmd3impleProgram
Inherits Systen.Windows.Forms.Form

Couazsg: S -;|| Windows Form Designer generated code

v

- End Class

Fig. 4.21 1IDE showing program code for Fig. 2.15.

© 2002 Prentice Hall. All rights reserved. - -

4.15 Introduction to Windows Application
Programming

* Windows Form Designer generated
code

— Collapsed by default

— The code 1s created by the IDE and normally 1s not edited by
the programmer

— Present in every Windows application

© 2002 Prentice Hall. All rights reserved. - -

47

4.15 Introduction to Windows Application
Programming

Expanded code
% ASimpleProgram - Microsoft ¥isual Basic .NET [design] - ASImpIEPrﬁ'g_lfﬂiﬁ'.'i'E ;|g|5|
File Edit ‘iew Project Build Debug Tools Windew Help
B-a-cE0@ R - -E-E| g b Z
e e S T S
ASimpleProgram.yb | AsinpleProgram.vb [Design] | 4 X
|¢§Frm.ﬂ.5implePrugram j |I]"".3(Declaratinn5] j
FPublic Clasz FrolhiinmplePrograrm o
Inheritz Svyastem. Windows.Forms.Form v

[—]?#Regicnn " Windows Form Desigher genersted code ™

= Punlic Suk Hew()
HyEBa=e . New ()

'This call is required by the Windows Form Designer.
InitiglizcComponcnt()

Picdd any initislization after the InitializeComponent ()] c=all

- End Sub

'Form owerrides dispose to elean up the component list.
=1 Protected Cwverloads Crverrides Sub Dispose (ByWVal disposing As Boolean

]
| T+ Ad=rnoodrner Than F]
| Ready || || Lr 4 ol 1 h i ||:| o

Fig. 4.22 Windows Form Designer generated code when expanded.

© 2002 Prentice Hall. All rights reserved. - -

48

4.15 Introduction to Windows Application
Programming

Click here for Click here for Property initializations
code view design view for lblWwelcome
2% ASimpleProgram - Microsoft Yisual Basic .NET [design] - ASimpleProgran; ¥ ;Iglﬁl
File Edit| “ew Project Buld Depug Tools MWindow Help
@'b*ﬁ?ﬁﬁ|§o “”'*’-’"'* p Debug v|@ - ®
FHRhe | =s 22 6 % 7% .
ASinplePruyram.vl | Asiingilers ugrai vl [Desia] | 4 b
I%FrmnﬁimplePrugram j |§'Initializetumpunent j
|
"1k 1We loome v j

Me.lbllWelcows.Font = New Systewm.Drawing.Font ("Microsoft Sans Seriff™, 24.0!0,
Me.lblWelcome.Location = New Svystem.Drawing.Point (76, 18]

Me.lblWelcome . Mawme = "lhllWelcome' —J
Me.lbllWelcomwe.Size = New System.Drawing.Size (272, 20)
He.lblWelcone. TakhlIndex = 0

Me.lblWelcome. Text = "Deitel && Associates'
Me.lbllWelcome. Textlilign = 3yvztem.Draving.Contentiligrnment. TopCenter -
4 I I [
| Ready I | tnag ol 1 ch 1 [fms] 4

Fig. 4.23 Code generated by the IDE for IblWelcome.

© 2002 Prentice Hall. All rights reserved. - -

4.15 Introduction to Windows Application
Programming

 How IDE updates the generated code

1. Modify the file name
« Change the name of the file to ASimpleProgram.vb

2. Modify the label control’s Text property using the
Properties window

* Change the property of the label to “Deitel and
Associates”

3. Examine the changes in the code view
 Switch to code view and examine the code

4. Modifying a property value in code view

* Change the string assigned to Me . 1blWelcome . Text to
“Visual Basic .NET”

© 2002 Prentice Hall. All rights reserved. - -

4.15 Introduction to Windows Application
Programming

| Properties I

IbiWelcome Swskem.Windows,Forms.Label j
=]l

RightToLeft Mo -
Text property > Text Deitel and Associat
TextAlign TopCenter .
Il=elMnemanic True >
Texk
The kext contained in the control,

' Prnpert"rés B Crvnamic Help |

Fig. 4.24 Using the Properties window to set a property value.

© 2002 Prentice Hall. All rights reserved. - -

4.15 Introduction to Windows Application
Programming

Text
property

% AsimpleProgram - Microsoft Yisual Basic .NET [design] - ASimpleProgram.vb™®

Filz Edt ‘“iew Project Buld Debug Tools Window Help
@'Evﬁﬁﬁléﬁg ﬂ*’-_"'* p Debug v|@

-2 000 Qnk

et b A R e |EE T

ASimpleProgram.vb* | AsimpleProgram, vh [Design]* | o it
|¢|§Frmn5implePrugram j |II%{Declaratiun5} j

| =

"1kb1We loome

]

Me.lbllWelcome.Font = MNew Zystem.Drawing.Font ("Microzoft Zans Zerif’, Z4.0!, 3

Me.lblWelcome.Location = MNew System.Drawing.Point (76, 16) _J

Me.lblWelcome.Mame = "lhllWelcome'

Me.lbllWelcome.3ize = MNew Iystem.Drawing.Iize (272, S0)

Me.lblWeleomws. TabIndex = 0O

» Me.lbllelcome.Text = "Deitel and Associates"

Me.lbllielcome. Textilign = 3ystem.Drawing.Contentilignment. TopCenter 71

4 | I k

| Ready

I || Ln4 Col 1 ch1

| E

Fig. 4.25 Windows Form Designer generated code reflecting new property values.

© 2002 Prentice Hall. All rights reserved.

52

4.15 Introduction to Windows Application
Programming

LSimpleProgram.«b [Design]* nEimpIEPrugram.vh*| ol X

i&gFrmHEimpIEPrugram (AsimpleProg j |§'Initializetumpunent j

| =l
"1k 1We loome

He.lblWelcome.Font = HNew 3ystem.Drawing.Font ("Hicrosoftc
He.lblWelcome.Location = New 3ystew.Drawing.Point (76, 1€
Me.lbllWelcome.Name = "lhlWelcome™ —I
He.lblWelcome.3ise = New 3vstem.Drawing.3ize (272, &80)
He.lbllWeleowes. Tabh Index = 0O

Text property Me.lblWelcome.Text = "Visual Basic .NET®

MHe.lbllWeleowe. Textilign = System. Drawing. Contentilighnimer «

‘ |)

Fig. 4.26 Changing a property in the code view editor.

© 2002 Prentice Hall. All rights reserved. - -

53

4.15 Introduction to Windows Application
Programming

Text property value

‘ASimpleProgram.vh [Deiign]"-"-| AsimpleProgran. vb* | 4 kX)
- IIhIWEIcumE Syskemn, Winddws, Forms, Label j
ﬁ_;,li'n Simple Program [
' HENE=

RightToLeft Moy -
¥isual Basic NET
Textalign TopCenter

JseMnemaonic True -

Visual
Basic .NET

T Text
The test contained in the contral,

4 I . —4 | _*Ij

Fig. 4.27 New Text property value reflected in design mode.

© 2002 Prentice Hall. All rights reserved. - -

4.15 Introduction to Windows Application
Programming

5. Change the label’s Text Property at runtime

¢ Add a method named FrmASimpleProgram Load to the
class

e Add the statement 1lblWelcome.Text = “Visual
Basic” in the body of the method definition

6. Examine the results of the FrmASimpleProgram Load
method
» Select Build > Build Solution then Debug > Start

© 2002 Prentice Hall. All rights reserved. - -

55

4.15 Introduction to Windows Application
Programming

FrmASimpleProgram Load method

=10} x|
File Edt ‘“iew Project Buld Debug Tools MWindow Help
Bria-c e sBRR o-o-8-8)y - | o :
s B0 e et i|a nime
ASimpleProgram.yb* | AsimpleProgram, vb [Design]* | 4 X
|¢|§Frmn5implePrugram j IIF‘FrmnSimpIEPrugram_Luad ﬂ
| v =
Frivate Sub Frwl3impleProgram Losad (ByWal sender As System.Cbje
1b1Welcome.
2 End Zub E& Tabstop |
-End Class o
P | ek 5ets or sets the text associated with this contral,
EE Textalign
| Feady 5 Top Col 20 Ch 20 ||:| NS

Fig. 4.28 Adding program code to FrmASimpleProgram Load.

© 2002 Prentice Hall. All rights reserved. - -

4.15 Introduction to Windows Application
Programming

*% ASimpleProgram - Microsoft Yisual Basic MET [design] - ASimpleProgramivibn ;[glil
File Edt ‘“iew Project Buld Debug Tools MWindow Help
B-m-cH@ s B2R oo -8B) e - | =
- B0 ot i|a 2iE>
AsimpleProgram.vh | AsimpleProgramn, vh [Design] | 4 X
|a|;Frmn5impIEPrugram j I,‘;g‘FrmnSimpIEPrugram_Luad ﬂ

Frivate Sub Frwl3impleProgram Losad (ByWal sender As System.Cbjed

1b1Welcome. Text = "Wisual Basic!™
End 3Sub
-End Class s
4 | |]
| Ready I [Ln76 Col 20 chzo | ims| 4

Fig. 4.29 Method FrmASimpleProgram Load containing program code.

© 2002 Prentice Hall. All rights reserved. - -

4.15 Introduction to Windows Application
Programming

7. Terminate program execution
* Click the close button to terminate program execution

© 2002 Prentice Hall. All rights reserved. - -

58

