

18.1 Contour Integrals

DEFINITION 18.1

Contour Integral

Let f be defined at points of a smooth curve C given by z = x(t) + iy(t), $a \le t \le b$. The **contour integral** of f along C is

$$\int_{C} f(z)dz = \lim_{\|\Delta z_{k}\| \to 0} \sum_{k=1}^{n} f(z_{k}^{*}) \Delta z_{k}$$

$$\tag{1}$$

THEOREM 18.1

Evaluation of a Contour Integral

If f is continuous on a smooth curve C given by z(t) = x(t) + iy(t), $a \le t \le b$, then

$$\int_{C} f(z) \, dz = \int_{a}^{b} f(z(t))z'(t) \, dt \tag{3}$$

Evaluate
$$\int_{C}^{-} z dz$$

where C is given by x = 3t, $y = t^2$, $-1 \le t \le 4$. Solution

$$z(t) = 3t + it^{2}, z'(t) = 3 + 2it$$

$$f(z(t)) = 3t + it^{2} = 3t - it^{2}$$
Thus,
$$\int_{C} z dz = \int_{-1}^{4} (3t - it^{2})(3 + 2it) dt$$

$$= \int_{-1}^{4} (2t^{3} + 9t) dt + i \int_{-1}^{4} 3t^{2} dt = 195 + 65i$$

Evaluate
$$\oint_C \frac{1}{z} dz$$

where C is the circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$.

Solution

$$z(t) = \cos t + i \sin t = e^{it}, \ z'(t) = ie^{it}$$

$$f(z) = \frac{1}{z} = e^{-it}$$
Thus,
$$\oint_{-z}^{1} dz = \int_{0}^{2\pi} e^{-it} ie^{it} dt = 2\pi i$$

THEOREM 18.2

Properties of Contour Integrals

Suppose f and g are continuous in a domain D and C is a smooth curve lying entirely in D. Then:

(i)
$$\int_C kf(z) dz = k \int_C f(z) dz$$
, k a constant

(ii)
$$\int_{C} [f(z) + g(z)] dz = \int_{C} f(z) dz + \int_{C} g(z) dz$$

(iii)
$$\int_C f(z) dz = \int_{C_1} f(z) dz + \int_{C_2} f(z) dz$$
, where C is the union of the smooth curve C_1 and C_2 .

(iv)
$$\int_{-C} f(z) dz = -\int_{C} f(z) dz$$
, where $-C$ denotes the curve having the opposite orientation of C .

Evaluate $\int_C (x^2 + iy^2) dz$ where C is the contour in Fig 18.1.

Solution

Fig 18.1

Example 3 (2)

We have

$$\int_C (x^2 + iy^2) dz = \int_{C_1} (x^2 + iy^2) dz + \int_{C_2} (x^2 + iy^2) dz$$

Since C_1 is defined by y = x, then z(x) = x + ix, z'(x) = 1 + i, $f(z(x)) = x^2 + ix^2$, and

$$\int_{C_1} (x^2 + iy^2) dz = \int_0^1 (x^2 + ix^2)(1+i) dx$$
$$= (1+i)^2 \int_0^1 x^2 dx = \frac{2}{3}i$$

Example 3 (3)

The curve C_2 is defined by x = 1, $1 \le y \le 2$. Then z(y) = 1 + iy, z'(y) = i, $f(z(y)) = 1 + iy^2$. Thus $\int_{C_2} (x^2 + iy^2) dz = \int_1^2 (1 + iy^2) i dy$ $= -\int_1^2 y^2 dy + i \int_1^2 dy = -\frac{7}{3} + i$ Finally, $\int_C (x^2 + iy^2) dz = \frac{2}{3}i + (-\frac{7}{3} + i) = -\frac{7}{3} + \frac{5}{3}i$

THEOREM 18.3

A Bounding Theorem

If f is continuous on a smooth curve C and if $|f(z)| \le M$ for all z on C, then $\left| \int_{c} f(z) dz \right| \le ML$, where L is the length of C.

This theorem is sometimes called the ML-inequality

Find an upper bound for the absolute value of

$$\oint_C \frac{e^z}{z+1} dz$$

where C is the circle |z| = 4.

Solution

Since $|z + 1| \ge |z| - 1 = 3$, then

$$\left| \frac{e^z}{z+1} \right| \le \frac{|e^z|}{|z|-1} = \frac{|e^z|}{3} \tag{5}$$

Example 4 (2)

In addition, $|e^z| = e^x$, with |z| = 4, we have the maximum value of x is 4. Thus (5) becomes

$$\left|\frac{e^z}{z+1}\right| \le \frac{e^4}{3}$$

Hence from Theorem 18.3,

$$\left| \oint_C \frac{e^z}{z+1} \, dz \right| \le \frac{8\pi e^4}{3}$$

18.2 Cauchy-Goursat Theorem

Cauchy's Theorem

Suppose that a function f is analytic in a simply connected domain D and that f' is continuous in D. Then for every simple closed contour C in D,

$$\oint_C f(z)dz = 0$$

This proof is based on the result of Green's Theorem.

$$\oint_C f(z)dz$$

$$= \oint_C u(x, y) dx - v(x, y) dy + i \oint_C v(x, y) dx + u(x, y) dy$$

$$= \iint\limits_{D} \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) dA + i \iint\limits_{D} \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right) dA \tag{1}$$

Now since f is analytic, the Cauchy-Riemann equations imply the integral in (1) is identical zero.

THEOREM 18.4

Cauchy-Goursat Theorem

Suppose a function f is a analytic in a simply connected domain D. Then for every simple closed C in D,

$$\oint_C f(z) \, dz = 0$$

Since the interior of a simple closed contour is a simply connected domain, the Cauchy-Goursat Theorem can be stated as If f is analytic at all points within and on a simple closed contour C,

$$\oint_C f(z) \, dz = 0 \tag{2}$$

Evaluate
$$\oint_C e^z dz$$

where C is shown in Fig 18.9.

Solution

The function e^z is entire and C is a simple closed contour. Thus the integral is zero.

Fig 18.9

Evaluate
$$\oint_C \frac{dz}{z^z}$$

where *C* is the ellipse $(x-2)^2 + (y-5)^2/4 = 1$.

Solution

We find that $1/z^2$ is analytic except at z = 0 and z = 0 is not a point interior to or on C. Thus the integral is zero.

Cauchy-Goursat Theorem for Multiply Connected Domains

Fig 18.11(a) shows that C_1 surrounds the "hole" in the domain and is interior to C.

Suppose also that f is analytic on each contour and at each point interior to C but exterior to C_1 . When we introduce the cut AB shown in Fig 18.11(b), the region bounded by the curves is simply connected. Thus from (2)

$$\oint_C f(z) dz + \oint_{C_1} f(z) dz = 0$$

and

$$\oint_C f(z) dz = \oint_{C_1} f(z) dz \tag{3}$$

Fig 18.11 (b)

Evaluate
$$\oint_C \frac{dz}{z-i}$$

where C is the outer contour in Fig 18.12.

Solution

From (3), we choose the simpler circular contour $C_{1:}|z-i|=1$ in the figure. Thus $x=\cos t$, $y=1+\sin t$, $0 \le t \le 2\pi$, or $z=i+e^{it}$, $0 \le t \le 2\pi$. Then

$$\oint_C \frac{dz}{z-i} dz = \oint_{C_1} \frac{dz}{z-i} dz = \int_0^{2\pi} \frac{ie^{it}}{e^{it}} dt = i \int_0^{2\pi} dt = 2\pi i$$

Fig 18.12

*The result in Example 4 can be generalized. We can show that if z_0 is any constant complex number interior to any simple closed contour C, then

$$\oint_C \frac{dz}{(z-z_0)^n} = \begin{cases} 2\pi i, & n=1\\ 0, & n \text{ an integer } \neq 1 \end{cases}$$
 (4)

Evaluate
$$\oint_C \frac{5z+7}{z^2+2z-3} dz$$

where C is the circle |z - 2| = 2.

Solution

$$\frac{5z+7}{z^2+2z-3} = \frac{3}{z-1} + \frac{2}{z+3}$$

and so

$$\oint_C \frac{5z+7}{z^2+2z-3} dz = 3\oint_C \frac{dz}{z-1} + 2\oint_C \frac{dz}{z+3}$$
 (5)

Example 5 (2)

Since z = 1 is interior to C and z = -3 is exterior to C, we have

$$\oint_C \frac{5z+7}{z^2+2z-3} dz = 3(2\pi i) + 2(0) = 6\pi i$$

Fig 18.13

See Fig 18.13. We can show that

$$\oint_C f(z) \, dz = \oint_{C_1} f(z) \, dz + \oint_{C_2} f(z) \, dz$$

THEOREM 18.5

Cauchy-Goursat Theorem for Multiply Connected Domain

Suppose C, C_1 , ..., C_n are simple closed curves with a positive orientation such that C_1 , C_2 , ..., C_n are interior to C but the regions interior to each C_k , k = 1, 2, ..., n, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the C_k , k = 1, 2, ..., n, then

$$\oint_C f(z)dz = \sum_{k=1}^n \oint_{C_k} f(z) dz \tag{6}$$

Evaluate
$$\oint_C \frac{dz}{z^2 + 1}$$

where C is the circle |z| = 3.

Solution

$$\frac{1}{z^2 + 1} = \frac{1/2i}{z - i} - \frac{1/2i}{z + i}$$

$$\oint_C \frac{dz}{z^2 + 1} = \frac{1}{2i} \oint_C \left[\frac{1}{z - i} - \frac{1}{z + i} \right] dz$$

Example 6 (2)

We now surround the points z = i and z = -i by circular contours C_1 and C_2 . See Fig 18.14, we have

$$\oint_{C} \frac{dz}{z^{2} + 1}$$

$$= \frac{1}{2i} \oint_{C_{1}} \left[\frac{1}{z - i} - \frac{1}{z + i} \right] dz + \oint_{C_{2}} \left[\frac{1}{z - i} - \frac{1}{z + i} \right] dz \qquad (7)$$

$$= \frac{1}{2i} \oint_{C_{1}} \frac{dz}{z - i} - \frac{1}{2i} \oint_{C_{1}} \frac{dz}{z + i} + \frac{1}{2i} \oint_{C_{2}} \frac{dz}{z - i} - \frac{1}{2i} \int_{C_{2}} \frac{dz}{z + i}$$

Since
$$\oint_{C_1} \frac{dz}{z - i} i = 2\pi i$$
, $\oint_{C_2} \frac{dz}{z + i} i = 2\pi i$

thus (7) becomes zero.

18.3 Independence of Path

DEFINITION 18.2

Independence of the Path

Let z_0 and z_1 be points in a domain D. A contour integral $\oint_C f(z) dz$ is said to be **independent of the path** if its value is the same for all contours C in D with an initial point z_0 and a terminal point z_1 .

❖ See Fig 18.19.

Fig 18.19

Note that C and C_1 form a closed contour. If f is analytic in D then

$$\int_{C} f(z) dz + \int_{-C_{1}} f(z) dz = 0$$
 (2)

Thus

$$\int_{C} f(z) \, dz = \int_{-C_{1}} f(z) \, dz \tag{3}$$