

■ THEOREM 18.6 ■

Analyticity Implies Path Independence

If f is an analytic function in a simply connected domain D, then $\int_C f(z) dz$ is independent of the path C.

Evaluate $\int_C 2z \, dz$

where *C* is shown in Fig 18.20.

Example 1 (2)

Solution

Since f(z) = 2z is entire, we choose the path C_1 to replace C (see Fig 18.20). C_1 is a straight line segment x = -1, $0 \le y \le 1$. Thus z = -1 + iy, dz = idy.

$$\int_{C} 2z dz = \int_{C_{1}} 2z dz$$

$$= -2 \int_{0}^{1} y dy - 2i \int_{0}^{1} dy = -1 - 2i$$

DEFINITION 18.3

Antiderivative

Suppose f is continuous in a domain D. If there exists a function F such that F'(z) = f(z) for each z in D, then F is called an **antiderivative** of f.

THEOREM 18.7

Fundamentals Theorem for Contour Integrals

Suppose f is continuous in a domain D and F is an antiderivative of f in D. Then for any contour C in D with initial point z_0 and terminal point z_1 ,

$$\int_{C} f(z) dz = F(z_{1}) - F(z_{0}) \tag{4}$$

THEOREM 18.7

Proof

With F'(z) = f(z) for each z in D, we have

$$\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt = \int_{a}^{b} F'(z(t))z'(t)dt$$

$$= \int_{a}^{b} \frac{d}{dt} F(z(t))dt \qquad \leftarrow \text{Chain Rule}$$

$$= F(z(t)) \begin{vmatrix} b \\ a \end{vmatrix}$$

$$= F(z(b)) - F(z(a)) = F(z_{1}) - F(z_{0})$$

In Example 1, the contour is from -1 to -1 + i. The function f(z) = 2z is entire and $F(z) = z^2$ such that F'(z) = 2z = f(z). Thus

$$\int_{-1}^{-1+i} 2z dz = z^2 \begin{vmatrix} -1+i \\ -1 \end{vmatrix} = -1-2i$$

Evaluate $\int_C \cos z dz$ where *C* is any contour fro z = 0 to z = 2 + i.

Solution

$$\int_C \cos z dz = \int_0^{2+i} \cos z dz = \sin z \begin{vmatrix} 2+i \\ 0 \end{vmatrix}$$
$$= \sin(2+i) = 1.4031 - 0.4891i$$

Some Conclusions from Theorem 18.7

•• If C is closed then $z_0 = z_2$, then

$$\oint_C f(z) \, dz = 0 \tag{5}$$

- In other words:
 - If a continuous function f has an antiderivative F in D, then $\int_C f(z) dz$ is independent of the path. (6)
- Sufficient condition for the existence of an antiderivative:

If f is continuous and $\int_C f(z) dz$ is independent of the path in a domain D, then f has an antiderivative everywhere in D. (7)

■ THEOREM 18.8

Existence of a Antiderivative

If f is analytic in a simply connected domain D, then f has an antiderivative in D; that is, there existence a function F such that F'(z) = f(z) for all z in D.

Evaluate $\int_C \frac{dz}{z}$

where *C* is shown in Fig 18.22.

Example 4 (2)

Solution

Suppose that D is the simply connected domain defined by x > 0, y > 0. In this case Ln z is an antiderivative of 1/z. Hence

$$\int_3^{2i} \frac{dz}{z} = \operatorname{Ln} z \Big|_3^{2i} = \operatorname{Ln} 2i - \operatorname{Ln} 3$$

Ln
$$2i = \log_e 2 + \frac{\pi}{2}i$$
, Ln $3 = \log_e 3$

$$\int_{3}^{2i} \frac{dz}{z} = \log_{e} \frac{2}{3} + \frac{\pi}{2}i$$

18.4 Cauchy Integral Formulas

■ THEOREM 18.9

Cauchy's Integral Formula

Let f be analytic in a simply connected domain D, and let C be a simple closed contour lying entirely within D If z_0 is any point within C, then

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz \tag{1}$$

THEOREM 18.9

Proof

Let C_1 be a circle centered at z_0 with radius small enough that it is interior to C. Then we have

$$\oint_C \frac{f(z)}{z - z_0} dz = \oint_{C_1} \frac{f(z)}{z - z_0} dz \tag{2}$$

For the right side of (2)

$$\oint_{C_1} \frac{f(z)}{z - z_0} dz = \oint_{C_1} \frac{f(z_0) - f(z_0) + f(z)}{z - z_0} dz$$

$$= f(z_0) \oint_{C_1} \frac{dz}{z - z_0} + \oint_{C_1} \frac{f(z) - f(z_0)}{z - z_0} dz$$
(3)

THEOREM 18.9 proof

From (4) of Sec. 18.2, we know

$$\oint_C \frac{dz}{z - z_0} = 2\pi i$$

Thus (3) becomes

$$\oint_{C_1} \frac{f(z)}{z - z_0} dz = 2\pi i f(z_0) + \oint_{C_1} \frac{f(z) - f(z_0)}{z - z_0} dz \tag{4}$$

However from the ML-inequality and the fact that the length of C_1 is small enough, the second term of the right side in (4) is zero. We complete the proof.

$$\left| \oint_{C_1} \frac{f(z) - f(z_0)}{z - z_0} \, dz \right| \le \frac{\delta}{\delta/2} \, 2\pi \left(\frac{\delta}{2} \right) = 2\pi \varepsilon$$

*A more practical restatement of Theorem 18.9 is:

If f is analytic at all points within and on a simple closed contour C, and z_0 is any point interior to C, then

1 f(z)

$$f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz$$
 (5)

Evaluate
$$\oint_C \frac{z^2 - 4z + 4}{z + i} dz$$

where C is the circle |z| = 2.

Solution

First $f = z^2 - 4z + 4$ is analytic and $z_0 = -i$ is within C. Thus

$$\oint_C \frac{z^2 - 4z + 4}{z + i} dz = 2\pi i f(-i) = 2\pi i (3 + 4i) = 2\pi (-4 + 3i)$$

Evaluate
$$\oint_C \frac{z}{z^2 + 9} dz$$

where C is the circle |z - 2i| = 4.

Solution

See Fig 18.25. Only z = 3i is within C, and

$$\frac{z}{z^2+9} = \frac{z}{z+3i}$$

Fig 18.25

Example 2 (2)

Let
$$f(z) = \frac{z}{z+3i}$$
, then

$$\oint_C \frac{z}{z^2 + 9} dz = \oint_C \frac{\overline{z + 3i}}{z - 3i} dz = 2\pi i f(3i) = 2\pi i \frac{3i}{6i} = \pi i$$

The complex function $f(z) = k/(z-z_1)$ where k = a + ib and z_1 are complex numbers, gives rise to a flow in the domain $z \neq z_1$. If C is a simple closed contour containing $z = z_1$ in its interior, then we have

$$\oint_C \overline{f(z)} \, dz = \oint_C \frac{a - ib}{z - z_1} \, dz = 2\pi i (a - ib)$$

Example 3 (2)

The circulation around C is $2\pi b$ and the net flux across C is $2\pi a$. If z_1 were in the exterior of C both of them would be zero. Note that when k is real, the circulation around C is zero but the net flux across C is $2\pi k$. The complex number z_1 is called a source when k > 0 and is a sink when k < 0. See Fig 18.26.

Fig 18.26

THEOREM 18.10 •

Cauchy's Integral Formula For Derivative

Let f be analytic in a simply connected domain D, and let C be a simple closed contour lying entirely within D If z_0 is any point within C, then

$$f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^{n+1}} dz$$
 (6)

THEOREM 18.10

Partial Proof

Prove only for n = 1. From the definition of the derivative and (1): $f(z) = k/(\overline{z} - \overline{z_1})$

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z}$$

$$= \lim_{\Delta z \to 0} \frac{1}{2\pi i \Delta z} \left[\oint_C \frac{f(z)}{z - (z_0 + \Delta z)} dz - \oint_C \frac{f(z)}{z - z_0} dz \right]$$

$$= \lim_{\Delta z \to 0} \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0 - \Delta z)(z - z_0)} dz$$

THEOREM 18.10 Partial Proof

From the ML-inequality and

$$\left| \oint_C \frac{f(z)}{(z - z_0)^2} dz - \oint_C \frac{f(z)}{(z - z_0 - \Delta z)(z - z_0)} dz \right|$$

$$= \left| \oint_C \frac{-\Delta z f(z)}{(z - z_0)^2 (z - z_0 - \Delta z)} dz \right| \le \frac{2ML |\Delta z|}{\delta^3} \to 0 \text{ as } \Delta z \to 0$$

Thus

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz$$

Evaluate
$$\oint_C \frac{z+1}{z^4+4z^3} dz$$

where C is the circle |z| = 1.

Solution

This integrand is not analytic at z = 0, -4 but only z = 0 lies within C. Since z + 1

$$\frac{z+1}{z^4+4z^3} = \frac{z+4}{z^3}$$

We get $z_0 = 0$, n = 2, f(z) = (z + 1)/(z + 4), $f''(z) = -6/(z + 4)^3$. By (6):

$$\oint_C \frac{z+1}{z^4+4z^3} dz = \frac{2\pi i}{2!} f''(0) = -\frac{3\pi}{32} i$$

Evaluate
$$\oint_C \frac{z^3 + 3}{z(z - i)^2} dz$$

where C is shown in Fig 18.27.

Example 5 (2)

Solution

Though C is not simple, we can think of it is as the union of two simple closed contours C_1 and C_2 in Fig 18.27.

$$\oint_C \frac{z^3 + 3}{z(z - i)^2} dz = \oint_{C_1} \frac{z^3 + 3}{z(z - i)^2} dz + \oint_{C_2} \frac{z + 3}{z(z - i)^2} dz$$

$$= -\oint_{C_1} \frac{\frac{z^3 + 3}{z(z - i)^2}}{z} dz + \oint_{C_2} \frac{\frac{z^3 + 3}{z(z - i)^2}}{z} dz$$

$$= -I_1 + I_2$$

Example 5 (3)

For
$$I_1: z_0 = 0$$
, $f(z) = (z^3 + 3)/(z - i)^2$:

$$I_1 = \oint_{C_1} \frac{z^3 + 3}{z(z - i)^2} dz = 2\pi i f(0) = -6\pi i$$

For
$$I_2: z_0 = i$$
, $n = 1$, $f(z) = (z^3 + 3)/z$, $f'(z) = (2z^3 - 3)/z^2$:

$$I_2 = \oint_{C_2} \frac{z}{(z-i)^2} dz = \frac{2\pi i}{1!} f'(i) = -2\pi i (3+2i) = 2\pi (-2+3i)$$

We get

$$\oint_C \frac{z^3 + 3}{z(z - i)^2} dz = -I_1 + I_2 = 6\pi i + 2\pi (-2 + 3i) = 4\pi (-1 + 3i)$$

Liouville's Theorem

If we take the contour C to be the circle $|z - z_0| = r$, from (6) and ML-inequality that

$$\begin{aligned}
&|f^{(n)}(z_0)| = \frac{n!}{2\pi} \left| \int_C \frac{f(z)}{(z - z_0)^{n+1}} \, dz \right| \\
&\leq \frac{n!}{2\pi} M \frac{1}{r^{n+1}} 2\pi r = \frac{n!M}{r^n}
\end{aligned} (7)$$

where $|f(z)| \le M$ for all points on C. The result in (7) is called Cauchy's inequality.

THEOREM 18.11

Liouville's Theorem

The only bounded entire functions are constants.

Proof

For n = 1, (7) gives $|f'(z_0)| \le M/r$. By taking r arbitrarily large, we can make $|f'(z_0)|$ as small as we wish. That is, $|f'(z_0)| = 0$, f is a constant function.