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Analyticity Implies Path Independen}e

If f1s an analytic function in a simply connected
domain D, then jcf (z) dz is independent of the path
€.

. J
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Example 1

Evaluate IC B

where C 1s shown 1n Fig 18.20.
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Example1 (2)

[ )
- O

Solution
Since f(z) = 2z 1s entire, we choose the path C, to

replace C (see Fig 18.20). C, 1s a straight line segment x
=—1,0<y<1.Thus z=—1+1iy dz = idy.

[pate= e

=2 ydy-2i[ dy=-1-2i
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® DEFINITION 18.3 ® T T A
EEIZIED  vervave

Suppose fis continuous in a domain D. If there exists
a function F such that F’(z) = f(z) for each z in D, then
_Fis called an antiderivative of f.

J/
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® THEOREM18.7 @
_Fundamentals Theorem for Contour\

Integrals

Suppose f1s continuous in a domain D and F is an
antiderivative of fin D. Then for any contour C in D
with initial point z, and terminal point z,,

[.f(2)dz="F(z)-F(z)) (4)
" <

Ch18_39



THEOREM 18.7

Proof
With F'(z) = f(z) for each z in D, we have

[ f(2de = fz) 0)dr = [ F'(z(@)z ()t

= I bi F(z(t))dt « ChainRule
adt
b

A
= F(z(b)) - F(z(a)) = F(z,) - F(z,)

= F(z(1))
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Example 2

In Example 1, the contour 1s from —1 to —1 + i. The
function f(z) = 2z is entire and F(z) = z? such that F’(z) =
2z = f(z). Thus

i —1+1i
_1+2zdz=z2 , =—1-2i
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Example 3

Evaluate .[CCOS zdz
where C 1s any contour froz =0toz=2 + 1.

Solution

2+1
0

=sin(2+1)=1.4031-0.4891i

2+i i
Iccos zdz = _[0 COS zdz =sIn z
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Some Conclusions from Theorem 18.7

=351 (L]
o "8 A

“If C is closed then z, = z,, then

$ f(2)dz=0 -

*In other words:
If a continuous function f has an antiderivative F
in D, then J'C f(z) dz is independent of the path. (6)
* Sufficient condition for the existence of an
antiderivative:
If fis continuous and _[C f(2) dz is independent of the
path in a domain D, then f has an antiderivative
everywhere in D. (7)
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® THEOREM 188 @ . R D

If f1s analytic in a simply connected domain D, then f
has an antiderivative in D; that is, there existence a
kfunction F such that F°(z) = f(z) for all z 1n D.
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Example 4
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Example 4 (2)

Solution
Suppose that D i1s the simply connected domain defined
by x > 0, y > 0. In this case Ln z 1s an antiderivative of

1/z. Hence

i 21

2%:an I:Ln2i—Ln3
3, 3

. T .

Ln 21=10g€2+§z, In3=1log,3
21'%zlogﬁ,g+£.i

3 7 3 2
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18.4 Cauchy Integral Formulas

® THEOREM 189 @
_Cauchy’s Integral Formula 2

Let ' be analytic 1n a simply connected domain D, and
let C be a simple closed contour lying entirely within D.

If z, 1s any point within C, then
74
Fa =y 479 a: o

3 27Tl )
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THEOREM 18.9

Proof
Let C, be a circle centered at z, with radius small
enough that it is interior to C. Then we have

§7D gz § 1O

Z—Zg Clz—2z (2)
For the right side of (2)
i) f(Z) _ﬁ‘) J(zy)— f(Zo)"‘f(Z)
Y22 Z— 2 )
f(z)— f(z)
_f(zo)(jgzz & % T~Z A
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THEOREM 18.9 proof

=351 (L]
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From (4) of Sec. 18.2, we know
dz .
§> = 2T

CE—gy

Thus (3) becomes
§. 7@ iz amifiey 4 LR g

Gz —2, =%y (4)
However from the ML-1nequality and the fact that the
length of C, 1s small enough, the second term of the

right side 1n (4) 1s zero. We complete the proot.

§1D=IG) L 8 2”(5] -
S g o/2 2
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“* A more practical restatement of Theorem 18.9 is :

If f is analytic at all points within and on a simple
closed contour C, and z, is any point interior to C,

then
f (Z)
=

(3)
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Example 1

2
Evaluate ¢ ° _4Z+4dz

C z4+1i

where C 1s the circle Izl = 2.

Solution

First f = z>—4z + 4 is analytic and z, = —i is within C.
Thus

{) P —4z+4
C

——dz=2xif(—i)=2mi(3+4i) =27n(—4+3i)
Z+1
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Example 2

Evaluate < d
Z
Cz2 +9
where C 1s the circle Iz — 21 | = 4.

Solution
See Fig 18.25. Only z = 3i 1s within C, and

Z
£ &t
72+9 z-3i
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Fig 18.25

B ,,“___._.- |
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Example 2 (2)

Z 70 3i .
dz = 23 d7 =27if(3i) = 27i— = 7i
‘f%zzw (}g Cz-3i Lo 6i
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Example 3

The complex function f(z)=k/(z—z1)

where k = a + ib and z; are complex numbers, gives rise
to a flow in the domain z # z;. If C 1s a simple closed
contour containing z = z, 1n its interior, then we have

§rcde=q

a—ib

% -421

dz =2ri(a—1b)
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Example 3 (2)

=351 (L]
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The circulation around C 1s 2ntb and the net flux across
C 1s 2rna. If z; were 1n the exterior of C both of them
would be zero. Note that when £ 1s real, the circulation
around C 1s zero but the net flux across C 1s 2rwk. The
complex number z, 1s called a source when k£ > 0 and 15
a sink when & < 0.

See Fig 18.26.
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Fig 18.26
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(a) Source: k>0 (b) Sink: k<0
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® THEOREM 18.10 @
_Cauchy’s Integral Formula \

For Derivative
Let f be analytic 1n a simply connected domain D, and

let C be a simple closed contour lying entirely within D.
It z, 1s any point within C, then

f(n)(zg)_ 27”(fc f(Z) dz (6)

(Z_ ZU)H+1
- 4
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THEOREM 18.10

Partial Proof

Prove only for n = 1. From the definition of the
derivative and (1): f(z)=k/(z—z1)

f(zg+Az)— f(2)

f(zy) = iiﬂlo Ar
him g SO g S
A0 2tiAZ | 7€ 7 —(Zy + Az) Cz—z
~ lim /() dz

202701 ¥ (g — 2, —AZNZ—Z,)

dz

—
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THEOREM 18.10 Partial Proof

From the ML-inequality and
§ 1D 4. g f&
- Clg— gy~ AZ)Z — Zy)

(2—2y)°

R PE TS IR
Clz—725) (2— 2 —1AZ) o

Thus

f (Z(]) - hm f(z{} +AZ) f(Zg) 1 f(z) dz

Az—0 Az 273'1 C(Z ZO)
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Example 4

Evaluate z+1 d

Cz'+47°
where C is the circle Izl = 1.

Solution
This integrand is not analytic at z=0, —4 but only z =0
lies within C. Since z+1
z+1 44
A A 3
We getz,=0,n=2,f{z) =+ DI(z+4),f"(z) =—6/(z
+4)°. By (6):

z+1 27Tl
e ———z
ﬁ?z +4z f( ) 32
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Example 5

3
Evaluate T3 i
o\ 2
Cz(z—1) |
where C is shown in Fig 18.27. > .
2
X

C
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Solution
Though C 1s not simple, we can think of it 1s as the

union of two simple closed contours C, and C, in Fig
18.27.
3

== - 3 22 +3 743
= d d
ﬁ Z % s da+ 5 aZ

Cz(z—1)” z(z—1) C2z(z—1)
2" +3 243
z(z—!)
=— dz+ L dz
i)?i i%z z(z —1)
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Example 5 (3)

Forl,:z,=0, f(z) (22 +3)(z—1i)*:
7> +3

I, = 3?3: | ey dz = 27if(0) = —67ri

%
Forl,:zp=i,n=1, ()= +3)z, () =27 -3)/z*
2> +3
L= % dz @ F(i) = —27i(3+ 2i) = 272(=2 + 3i)
2 C; (Z—i)z
We get

3
§ = Y3 =l + I, = 67i + 2m(=2 + 3i) = dm(=1+3i)
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Liouville’s Theorem

< If we take the contour C to be the circle Iz — z,| = r,
from (6) and ML-inequality that

| f(2)
a5 | Clet dz
| !
<M 1 [27r = ] (7)
27{ rﬂ+ rn

where If(z)| < M for all points on C. The result in (7)
is called Cauchy’s inequality.
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® THEOREM 18.11 @ B . i
_Llouwlle’s Theorem

\,

The only bounded entire functions are constants.

Proof

Forn =1, (7) gives If ’(z,)| £ M/r. By taking r arbitrarily
large, we can make |f ’(z,)| as small as we wish. That 1s,
If ’(zy)l = 0, fis a constant function.

Ch18_66



