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Bacteriophages (or ‘phages’) can be potent biocontrol agents

but their potential has not been fully realized due to inherent

limitations of natural phages. By leveraging new tools in

synthetic biology, natural phages can be engineered to

overcome these limitations to markedly improve their efficacy

and programmability. Engineered phages can be used for

targeted detection and removal of pathogens, in situ

microbiome editing, gene delivery and programmable control

of phage-bacterial interactions. In this mini review we examine

different ways natural phages can be engineered as effective

biocontrol agents through a design-build-test-learn platform

and identify novel applications of engineered phages in food

biotechnology.
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Introduction
Foodborne infections caused by bacterial pathogens are a

serious threat to human health with hundreds of thousands

of deaths every year globally [1]. Healthcare costs associ-

ated with foodborne illness are estimated at a

taggering $75 billion/year in the United States [2], with

cascading economic losses from discarded food, culled farm

animals, and food recalls. Traditional biocontrol of bacterial

pathogens has relied on broad-spectrum approaches such as

antibiotics or pasteurization that vary in effectiveness,

impact natural microflora of food, and can negatively affect

food quality [3,4]. Bacteriophages, or ‘phages’, are viruses

thatkill bacteriaandare a promisingalternative forbacterial

biocontrol. They are ubiquitous natural predators of bacte-

ria that are cheap to produce and can precisely target and

kill pathogens without affecting food quality [5,6].
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Although products based on natural phages have been in

the market for decades, their adoption by industry is low

and their game-changing potential remains unfulfilled [7].

Key factors impeding broader use of natural phages are poor

efficacy compared to traditional biocontrol methods and

poor scalability for high-volume production due to the

narrow specificity profile of phages. However, synthetic

biology offers exciting new tools to build engineered

phages through a variety of recombineering approaches

and in vitro genome assembly [8]. Engineering phages

without natural limitations could lead to a design-build-

test-learn platform to rapidly prototype new phages with

user-defined properties. In this mini review, we will exam-

ine different ways natural phages can be engineered as

more effective biocontrol agents and identify novel appli-

cations for engineered phages in food biotechnology.

Engineering phages for higher efficacy
A major hurdle in the use of natural phages for biocontrol

is their low efficacy. Although initial application of natural

phages logarithmically reduces target bacterial levels, the

residual bacterial load remains high. Even this limited

efficacy is achieved with high phage to bacteria ratios

which may not be feasible in applications outside a

laboratory setting [9–14]. Bacteria often continue to grow

or quickly recover after phage application indicating low

phage susceptibility and/or swift emergence of bacterial

resistance, though propensity for resistance may be dif-

ferent in the wild [9–11,13–16]. In this section, we evalu-

ate factors that can limit the efficacy of natural phages and

examine how engineering approaches can overcome

these shortcomings (Figure 1).

Overcoming evolutionary equilibrium in natural phages

Limited efficacy of natural phages is not surprising from an

evolutionary perspective because a phage that fully elim-

inates its bacterial host will itself perish too. Therefore, as

predators, phages must co-exist in equilibrium with their

bacterial prey. In fact, evolutionary models show that

natural selection favors mediocre killers over highly effi-

cient phages [17]. Cocktails of several natural phages can be

more efficacious but still face this evolutionary pressure to

equilibrate with the bacterial host. To achieve a high

pathogen clearance, we need to engineer phages which

are not subject to evolutionary constraints imposed on

natural phages. Every stage of a phage life cycle can be

engineered to counteract various modes of resistance. For

instance, phages with mutated tail fibers outcompete nat-

ural phages against Pseudomonas aeruginosa [18], anda single

point mutation can confer a 1000-fold increase in efficacy
www.sciencedirect.com
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Strategies for engineering phages and their applications.

The confluence of synthetic biology, genome engineering, viral metagenomics and deep sequencing has provided tools for rapid, evolution-guided

and rational design of phages with tailored properties. Engineering approaches and applications in food biotechnology have been graphically

summarized.
for phages of Mycobacterium abscessus [19��]. Phage genome

editing can remove built-in mechanisms in phages that

reduce phage efficacy such as self-inhibition when their

bacterial host experiences starvation [20,21]. Self-

inhibition is beneficial for natural phages because it gives

bacterial populations time to recover before phages prey

again, but is undesirable for biocontrol. Engineered phages

devoid of starvation-induced regulatory genes continued to
www.sciencedirect.com 
grow on bacteria in starvation conditions [22]. Lytic capa-

bilities of engineered phages have also been enhanced by

overexpressing genes such as phage holins, which are

proteins that permeabilize cell membranes [23]. Bacterial

resistance can be overcome by incorporating new genes

into the engineered phage genome based on specific

mechanisms of bacterial resistance, for example phage

defense mechanisms such as anti-CRISPR genes for
Current Opinion in Biotechnology 2020, 61:116–121



118 Food biotechnology
bacteria that contain CRISPR or additional genes lethal to

the target bacteria [24,25��,26].

A broad strategy to identify and overcome bacterial

resistance is to employ genome-scale screens such as

CRISPR interference or transposon insertion combined

with phage replication to reveal mechanisms of resistance

[27,28]. These screens are powerful tools that identify all

host genes related to phage infection including genes

responsible for bacterial resistance and genes utilized by

the phage during infection. These screening tools can

guide efforts to overcome evolutionary equilibrium.

Expanding these screens to a larger set of bacteria could

lead to understanding common resistance patterns and

establishing engineering targets for phages.

Engineering lysogenic to lytic conversion

Because of their high abundance, lysogenic phages repre-

sent a treasure trove of natural phages that can be used for

biocontrol applications. During their lifecycle, lysogenic

phages become dormant after integrating into the host

genome, only to become activated later to kill the cell.

Therefore, unlike lytic phages, lysogenic phages are not

considered suitable for biocontrol and therapeutic applica-

tions due to limited efficacy and the risk of horizontal gene

transfer. Natural phages must be thoroughly screened for

lysogeny-related functions, significantly increasing time,

cost, and uncertainty in product development cycles. To

tap the vast natural phage reservoir, lysogenic phages could

be converted to obligate lytic phages by removing factors

that allow for lysogeny such as recombinases and repressors

[29]. These converted phages have increased lethality and

host range [25��,30], as evidenced by those used to treat

M. abscessus showing a 10 000-fold increase in efficacy after

removing lysogeny genes [19��]. New bioinformatics tools

tailored to identify these lysogenic phages and the factors

that make them lysogenic can quickly screen for candidate

phages and genes for this conversion [31,32]. Lysogenic to

lytic conversion greatly enhances the diversity and effec-

tiveness of phages for biocontrol applications.

Programming host specificity

The bacterial host range of different natural phages vary

significantly and finding the right combination of natural

phages can be arduous. Engineering phages to reprogram

host range removes this constraint. Specificity can be

tailored by swapping or complementing host-binding

proteins [33,34,35�], or by removal of lysogeny genes or

other genes that dictate specificity [30,36]. Programmable

engineered phages would provide a platform for phage

treatments for any of a set of closely related bacteria.

Programming narrow host ranges is ideal for food reliant

on specific microbiota compositions like cheeses where

contaminating bacteria need to be removed without dis-

turbing other microflora [37], whereas a programmable

broad host range is more ideal for phages designed for

biocontrol.
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Engineering stable phages

Phage stability is essential for biocontrol as phages are

exposed to harsh environments including continual UV

irradiation, low pH, and high temperature [9,38,39]. For

example, pH and temperature in the gastrointestinal

(GI) tract can vary between 2.5–5.7 and 38�C–42�C,
respectively [40�]. Phages can degrade under these con-

ditions, which can affect their proliferation and efficacy.

Engineered phages with protective surface phospholip-

ids have increased survival in the hostile GI tract envi-

ronment [40�]. Some natural phages have also exhibited

stability under harsh environmental conditions [41].

Genes responsible for these attributes can be identified

and integrated into engineered phages to improve sta-

bility. Alternatively, approaches such as computational

protein design, which has met with remarkable success

in improving protein stability, could be employed to

stabilize phage coat proteins without losing the flexibil-

ity required for function [42]. Stable phages could be

used for crop protection and can also act as biocontrol

‘sentinels’ that can protect against bacterial contamina-

tion in the future.

Degrading biofilms using engineered phages

Bacteria that form biofilms are an enormous challenge in

food safety, as the biofilm provides a protective cover

against traditional biocontrol agents including phages

[43,44]. Phage enzymes that can degrade biofilms have

been characterized [45] and phages engineered to

include biofilm degrading peptides and enzymes have

effectively dispersed biofilm [46��,47]. Phages targeting

biofilm-creating organisms such as Listeria monocytogenes,
Staphylococcus aureus, and Escherichia coli could be

enhanced with these genes, establishing a unique advan-

tage over traditional methods of biocontrol for these

challenging pathogens.

Other applications in food biotechnology
Using engineered phages as targeted delivery vectors

Currently, we lack tools to deliver genes to specific targets

in a mixed microbial community in situ. Engineered

phages are ideally suited as targeted delivery vectors

due to their tailored host specificity [35�]. Gene delivery

is useful to modulate the composition of a community by

enhancing or reducing the fitness of a target species. This

approach can also deliver enzymes or metabolic operons

to produce nutrients or signaling molecules. Engineered

phages have been used as delivery vectors to resensitize

bacteria to antibiotics by providing a drug-sensitizing

DNA cassette [48]. CRISPR-Cas systems engineered into

phages have also successfully disrupted virulence genes

in bacteria [34]. These powerful tools could be leveraged

to deliver and incorporate advantageous genes into the

genome, such as proteases needed for food flavoring or

acid production genes for fermentation.
www.sciencedirect.com
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Engineered phages can compete with undesirable

phages

Complex mixed communities of starter cultures used to make

cheese, yogurt, and other fermented milk products are highly

susceptible to phage infection. Economic losses from dis-

carded production batches and sanitizing equipment can be

significant. Current methods such as air flow control and strict

sanitary conditions for controlling phages are expensive and

not particularly effective [49]. Counterintuitively, phages

themselves may be the solution to this issue. Phages naturally

compete with other phages and have anti-phage genes that

can block expression of phage genes, prevent infection, or

compete for insertion sites in the bacterial genome [50].

Engineering lysogenic phages to encode these anti-phage

genes while removing their own ability to propagate could

protect starter cultures from unwanted phages.

Using engineered phages as rapid detection tools

Rapid, low-cost detection of bacterial pathogens is critical

for food safety. Methods such as antibody tagging are

effective but are not cost effective, and culture-based

mechanisms are laborious and time consuming. Engi-

neered phages can deliver a bioluminescent reporter

enzyme to readily detect pathogens [46��,51,52] as a rapid

andaccurate toolduring food processing or infinal products.

Using engineered phages for controlled lysis

Timely lysis of starter cultures can be beneficial. For exam-

ple, starter culture lysis is an important consideration in

cheese maturation [53]. Lysogenic phages could be engi-

neered to lyse the cell under an inducible condition such as
Figure 2
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access to a small molecule. Engineered lysogenic phages

with this ability would trigger controlled, reproducible, and

exponential lysis of the culture at an ideal time for cheese

maturation.

Platform for rapid phage engineering
When creating phage-based products, engineered phages

have several key advantages over natural phages. Natural

phage discovery is a serial, time consuming, and laborious

process. The physiology of newly discovered phages

is often poorly understood, which may lead to batch-

to-batch inconsistencies during manufacturing and

making mass production unsustainable. Natural phage

production pipelines can also be interrupted by a frequent

need to discover new natural phages to combat emerging

bacterial resistance or to create cocktails to cover strain

variations in pathogens.

Engineered phages could provide a flexible product

development platform and a scalable and customizable

workflow (Figure 2). We envision developing well-

characterized chassis phages against different key bacte-

rial clades and engineering them using natural and

synthetic parts to achieve the desired bacterial host range

and effect. Mixing and matching these chassis phages

may require minor adjustments but not a complete over-

haul of a production pipeline, minimizing batch-to-batch

variability and ensuring product quality.

Regulatory considerations also play a role in development of

phage-based products. Engineered phages and associated
rn
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build-learn approach.
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intellectual property can be patented and protected, but

regulations for the use of these engineered phages are

currently being developed by regulatory agencies [54]. Close

cooperation with regulatory agencies to ensure compliance

will be required to successfully develop engineered phage

products.

Conclusions
In this review we have outlined methods for improving

natural phages for use in many applications in food

biotechnology. Phages have enormous potential and are

diverse tools that we have barely begun to explore.

Phages are tractable and can be modified in many ways

to improve effectiveness with even minimal engineering,

and numerous methods now exist for modifying phage

genomes to produce engineered phages. We envision that

engineered phages will serve as a platform for developing

biocontrol and delivery mechanisms to a broad range of

bacteria to solve a variety of current problems in food

biotechnology.
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