

People Innovation Excellence Knowledge Data Discovery TOPIC 9 - Classification: Advanced Methods (2)

Antoni Wibowo

COURSE OUTLINE

- 1. SUPPORT VECTOR MACHINES (SVM)
- 2. MODEL EVALUATION AND SELECTION
- 3. IMPROVING CLASSIFICATION ACCURACY
- 4. ISSUES ON CLASSIFICATION

Note:

People Innovation Excellence

This slides are based on the additional material provided with the textbook that we use: J. Han, M. Kamber and J. Pei, "Data Mining: Concepts and Techniques" and P. Tan, M. Steinbach, and V. Kumar "Introduction to Data Mining".

Support Vector Machines (SVM)

Classification: A Mathematical Mapping

- Classification: predicts categorical class labels
 - E.g., Personal homepage classification
 - $x_i = (x_1, x_2, x_3, ...), y_i = +1 \text{ or } -1$
 - x₁ : # of word "homepage"
 - x₂ : # of word "welcome"
- Mathematically, $x \in X = \Re^n$, $y \in Y = \{+1, -1\}$,
 - We want to derive a function f: X \rightarrow Y
- Linear Classification
- People Innovation Excellence
- Binary Classification problem
- Data above the red line belongs to class 'x'
- Data below red line belongs to class 'o'
- Examples: SVM, Perceptron, Probabilistic Classifiers

Discriminative Classifiers

- Advantages
 - Prediction accuracy is generally high
 - As compared to Bayesian methods in general
 - Robust, works when training examples contain errors
 - Fast evaluation of the learned target function
 - Bayesian networks are normally slow
 - Criticism
 - Long training time
 - Difficult to understand the learned function (weights)
 - Bayesian networks can be used easily for pattern discovery
 - Not easy to incorporate domain knowledge
 - Easy in the form of priors on the data or distributions

SVM—Support Vector Machines

- A relatively new classification method for both <u>linear and</u> <u>nonlinear</u> data
- It uses a <u>nonlinear mapping</u> to transform the original training data into a higher dimension
- With the new dimension, it searches for the linear optimal separating hyperplane (i.e., "decision boundary")

- With an appropriate nonlinear mapping to a sufficiently high dimension, data from two classes can always be separated by a hyperplane
- SVM finds this hyperplane using support vectors ("essential" training tuples) and margins (defined by the support vectors)

SVM—History and Applications

- Vapnik and colleagues (1992)—groundwork from Vapnik & Chervonenkis' statistical learning theory in 1960s
- <u>Features</u>: training can be slow but accuracy is high owing to their ability to model complex nonlinear decision boundaries (margin maximization)
- <u>Used for</u>: classification and numeric prediction

- <u>Applications</u>:
 - handwritten digit recognition, object recognition, speaker
 identification, benchmarking time-series prediction tests

Support Vector Machines

• Find a linear hyperplane (decision boundary) that will separate the data

One Possible Solution •

People

People Innovation Excellence

Support Vector Machines

• Another possible solution

BINUS

ONLINE

UNIVERSITY

LEARNING

• Other possible solutions

- Which one is better? B1 or B2?
- How do you define better?

• Find hyperplane maximizes the margin => B1 is better than B2

Support Vector Machines

We want to maximize:

$$Margin = \frac{2}{\|\vec{w}\|^2}$$

- Which is equivalent to minimizing:

$$L(w) = \frac{\|\vec{w}\|^2}{2}$$

- But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 \end{cases}$$

- This is a constrained optimization problem
 - Numerical approaches to solve it (e.g., quadratic programming)

Support Vectors

Let data D be (X_1, y_1) , ..., $(X_{|D|}, y_{|D|})$, where X_i is the set of training tuples associated with the class labels y_i

People Innovation Excellence

There are infinite lines (<u>hyperplanes</u>) separating the two classes but we want to <u>find the best one</u> (the one that minimizes classification error on unseen data)

SVM searches for the hyperplane with the largest margin, i.e., **maximum marginal hyperplane** (MMH)

SVM—Linearly Separable

BINUS UNIVERSITY ONLINE LEARNING

A separating hyperplane can be written as

 $\mathbf{W} \bullet \mathbf{X} + \mathbf{b} = \mathbf{0}$

where $\mathbf{W} = \{w_1, w_2, ..., w_n\}$ is a weight vector and b a scalar (bias) For 2-D it can be written as

 $w_0 + w_1 x_1 + w_2 x_2 = 0$

The hyperplane defining the sides of the margin:

 $H_1: w_0 + w_1 x_1 + w_2 x_2 \ge 1$ for $y_i = +1$, and

H₂: w₀ + w₁ x₁ + w₂ x₂ ≤ -1 for y_i = -1

- Any training tuples that fall on hyperplanes H₁ or H₂ (i.e., the sides defining the margin) are support vectors
- This becomes a constrained (convex) quadratic optimization problem: Quadratic objective function and linear constraints → *Quadratic Programming (QP)* → Lagrangian multipliers

Why Is SVM Effective on High Dimensional Data?

- The complexity of trained classifier is characterized by the <u># of</u> <u>support vectors</u> rather than the dimensionality of the data
- The support vectors are the essential or critical training examples they lie closest to the decision boundary (MMH)
- If all other training examples are removed and the training is repeated, the same separating hyperplane would be found

- The number of support vectors found can be used to compute an (upper) bound on the expected error rate of the SVM classifier, which is independent of the data dimensionality
- Thus, an SVM with a small number of support vectors can have good generalization, even when the dimensionality of the data is high

SVM—Linearly Inseparable

 Transform the original input data into a higher dimensional space

Example 6.8 Nonlinear transformation of original input data into a higher dimensional space. Consider the following example. A 3D input vector $\mathbf{X} = (x_1, x_2, x_3)$ is mapped into a 6D space Z using the mappings $\phi_1(X) = x_1, \phi_2(X) = x_2, \phi_3(X) = x_3, \phi_4(X) = (x_1)^2, \phi_5(X) = x_1x_2$, and $\phi_6(X) = x_1x_3$. A decision hyperplane in the new space is $d(\mathbf{Z}) = \mathbf{WZ} + b$, where W and Z are vectors. This is linear. We solve for W and b and then substitute back so that we see that the linear decision hyperplane in the new (Z) space corresponds to a nonlinear second order polynomial in the original 3-D input space,

$$d(Z) = w_1 x_1 + w_2 x_2 + w_3 x_3 + w_4 (x_1)^2 + w_5 x_1 x_2 + w_6 x_1 x_3 + b$$

= $w_1 z_1 + w_2 z_2 + w_3 z_3 + w_4 z_4 + w_5 z_5 + w_6 z_6 + b$

Search for a linear separating hyperplane in the new space

Support Vector Machines

What if the problem is not linearly separable? ullet

Nonlinear Support Vector Machines

Transform data into higher dimensional space

Support Vector Machines

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:
 - Subject to:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

People Innovation Excellence

 $f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 + \xi_i \end{cases}$

Excellence

Kernel functions for Nonlinear Classification

- Instead of computing the dot product on the transformed data, it is math. equivalent to applying a kernel function K(X_i, X_j) to the original data, i.e., K(X_i, X_j) = Φ(X_i) Φ(X_j)
 - Typical Kernel Functions

Polynomial kernel of degree $h : K(X_i, X_j) = (X_i \cdot X_j + 1)^h$

Gaussian radial basis function kernel : $K(X_i, X_j) = e^{-\|X_i - X_j\|^2/2\sigma^2}$

Sigmoid kernel : $K(X_i, X_j) = \tanh(\kappa X_i \cdot X_j - \delta)$

 SVM can also be used for classifying multiple (> 2) classes and for regression analysis (with additional parameters)

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

Scaling SVM by Hierarchical Micro-Clustering

- SVM is not scalable to the number of data objects in terms of training time and memory usage
- H. Yu, J. Yang, and J. Han, "<u>Classifying Large Data Sets Using SVM with</u> <u>Hierarchical Clusters</u>", KDD'03)
- CB-SVM (Clustering-Based SVM)
 - Given limited amount of system resources (e.g., memory), maximize the SVM performance in terms of accuracy and the training speed

- Use micro-clustering to effectively reduce the number of points to be considered
- At deriving support vectors, de-cluster micro-clusters near "candidate vector" to ensure high classification accuracy

- Read the data set once, construct a statistical summary of the data (i.e., hierarchical clusters) given a limited amount of memory
- Micro-clustering: Hierarchical indexing structure
 - provide finer samples closer to the boundary and coarser samples farther from the boundary

Selective Declustering: Ensure High Accuracy

- CF tree is a suitable base structure for selective declustering
- De-cluster only the cluster E_i such that
 - $D_i R_i < D_s$, where D_i is the distance from the boundary to the center point of E_i and R_i is the radius of E_i
 - Decluster only the cluster whose subclusters have possibilities to be the support cluster of the boundary
 - "Support cluster": The cluster whose centroid is a support vector

CB-SVM Algorithm: Outline

- Construct two CF-trees from positive and negative data sets independently
 - Need one scan of the data set
- Train an SVM from the centroids of the root entries
- De-cluster the entries near the boundary into the next level
 - The children entries de-clustered from the parent entries are accumulated into the training set with the nondeclustered parent entries

- Train an SVM again from the centroids of the entries in the training set
- Repeat until nothing is accumulated

Accuracy and Scalability on Synthetic Dataset

People Innovation Excellence

Figure 6: Synthetic data set in a two-dimensional space. '[]: positive data; '--': negative data

 Experiments on large synthetic data sets shows better accuracy than random sampling approaches and far more scalable than the original SVM algorithm

SVM vs. Neural Network

- Neural Network
 - Nondeterministic algorithm
 - Generalizes well but doesn't have strong mathematical foundation
 - Can easily be learned in incremental fashion
 - To learn complex
 functions—use
 multilayer perceptron
 (nontrivial) 34

- SVM
 - Deterministic algorithm
 - Nice generalization properties
 - Hard to learn learned in batch mode using quadratic programming techniques
 - Using kernels can learn very complex functions

SVM Related Links

- SVM Website: <u>http://www.kernel-machines.org/</u>
- Representative implementations
 - LIBSVM: an efficient implementation of SVM, multi-class classifications, nu-SVM, one-class SVM, including also various interfaces with java, python, etc.

- SVM-light: simpler but performance is not better than
 LIBSVM, support only binary classification and only in C
- SVM-torch: another recent implementation also written in C

Model Evaluation and Selection

Model Evaluation and Selection

- Evaluation metrics: How can we measure accuracy? Other metrics to consider?
- Use validation test set of class-labeled tuples instead of training set when assessing accuracy
- Methods for estimating a classifier's accuracy:
 - Holdout method, random subsampling
 - Cross-validation
 - Bootstrap
- Comparing classifiers:
 - Confidence intervals
 - Cost-benefit analysis and ROC Curves

Classifier Evaluation Metrics: Confusion Matrix

Confusion Matrix:

People Innovatio Excellen

Actual class\Predicted class	C ₁	¬ C ₁
C ₁	True Positives (TP)	False Negatives (FN)
¬ C ₁	False Positives (FP)	True Negatives (TN)

Example of Confusion Matrix:

	Actual class\Predicted class	buy_computer = yes	buy_computer = no	Total
1	buy_computer = yes	6954	46	7000
'n	buy_computer = no	412	2588	3000
e	Total	7366	2634	10000

- Given *m* classes, an entry, *CM*_{i,j} in a confusion matrix indicates # of tuples in class *i* that were labeled by the classifier as class *j*
- May have extra rows/columns to provide totals

- People Innovation Excellence
- **Classifier Accuracy,** or recognition rate: percentage of test set tuples that are correctly classified

Ρ

Ν

Accuracy = (TP + TN)/All

Error rate: *1 – accuracy,* or Error rate = (FP + FN)/All

Classifier Evaluation Metrics: Accuracy, Error Rate, Sensitivity and Specificity

- **Class Imbalance Problem:**
 - One class may be *rare*, e.g. fraud, or HIV-positive
 - Significant *majority of the negative class* and minority of the positive class
 - Sensitivity: True Positive recognition rate
 - Sensitivity = TP/P
 - **Specificity**: True Negative recognition rate
 - Specificity = TN/N

Classifier Evaluation Metrics: Precision and Recall, and Fmeasures

- **Precision**: exactness what % of tuples that the classifier labeled as positive are actually positive $precision = \frac{TP}{TP + FP}$
- Recall: completeness what % of positive tuples did the classifier label as positive?
- Perfect score is 1.0

$$recall = \frac{TP}{TP + FN}$$

 $2 \times precision \times recall$

precision + recall

- Inverse relationship between precision & recall
- **F measure (F**₁ or **F-score)**: harmonic mean of precision and recall,

- F_{β} : weighted measure of precision and recall
 - assigns ß times as much weight to recall as to precision

$$F_{\beta} = \frac{(1+\beta^2) \times precision \times recall}{\beta^2 \times precision + recall}$$

Classifier Evaluation Metrics: Example

Actual Class\ Predicted class	cancer = yes	cancer = no	Total	Recognition(%)
cancer = yes	90	210	300	30.00 (sensitivity
cancer = no	140	9560	9700	98.56 (specificity)
Total	230	9770	10000	96.40 (<i>accuracy</i>)

People Innovation Excellence

Precision = 90/230 = 39.13%

Recall = 90/300 = 30.00%

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

- Holdout method
 - Given data is randomly partitioned into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets, each approximately equal size
 - At *i*-th iteration, use D_i as test set and others as training set
 - <u>Leave-one-out</u>: k folds where k = # of tuples, for small sized data
 - <u>*Stratified cross-validation</u>^{*}: folds are stratified so that class dist. in each fold is approx. the same as that in the initial data

Evaluating Classifier Accuracy: Bootstrap

- Bootstrap
 - Works well with small data sets
 - Samples the given training tuples uniformly with replacement
 - i.e., each time a tuple is selected, it is equally likely to be selected again and re-added to the training set
- Several bootstrap methods, and a common one is .632 boostrap
 - A data set with *d* tuples is sampled *d* times, with replacement, resulting in a training set of *d* samples. The data tuples that did not make it into the training set end up forming the test set. About 63.2% of the original data end up in the bootstrap, and the remaining 36.8% form the test set (since (1 − 1/d)^d ≈ e⁻¹ = 0.368)
 - Repeat the sampling procedure k times, overall accuracy of the model: $Acc(M) = \frac{1}{k} \sum_{i=1}^{k} (0.632 \times Acc(M_i)_{test_set} + 0.368 \times Acc(M_i)_{train_set})$

Estimating Confidence Intervals: Classifier Models M₁ vs. M₂

- Suppose we have 2 classifiers, M₁ and M₂, which one is better?
- Use 10-fold cross-validation to obtain $\overline{err}(M_1)$ and $\overline{err}(M_2)$
- These mean error rates are just *estimates* of error on the true population of *future* data cases
- What if the difference between the 2 error rates is just attributed to *chance*?

- Use a test of statistical significance
 - Obtain confidence limits for our error estimates

Estimating Confidence Intervals: Null Hypothesis

- Perform 10-fold cross-validation
- Assume samples follow a t distribution with k-1 degrees of freedom (here, k=10)
- Use t-test (or Student's t-test)
- Null Hypothesis: M₁ & M₂ are the same
- People Innovation Excellence
- If we can **reject** null hypothesis, then
 - we conclude that the difference between M₁ & M₂ is statistically significant
 - Chose model with lower error rate

Estimating Confidence Intervals: t-test

- If only 1 test set available: pairwise comparison
 - For ith round of 10-fold cross-validation, the same cross partitioning is used to obtain $err(M_1)_i$ and $err(M_2)_i = \overline{err}(M_1)$ and $\overline{err}(M_2)$
 - Average over 10 rounds to get
 - t-test computes t-statistic with k-1 degrees of freedom:

$$t = \frac{\overline{err}(M_1) - \overline{err}(M_2)}{\sqrt{var(M_1 - M_2)/k}} \quad \text{where}$$
$$var(M_1 - M_2) = \frac{1}{k} \sum_{i=1}^k \left[err(M_1)_i - err(M_2)_i - (\overline{err}(M_1) - \overline{err}(M_2)) \right]^2$$

People Innovation Excellence

• If two test sets available: use **non-paired t-test**

where

$$var(M_1 - M_2) = \sqrt{\frac{var(M_1)}{k_1} + \frac{var(M_2)}{k_2}},$$

where $k_1 \& k_2$ are # of cross-validation samples used for $M_1 \& M_{2r}$ resp.

BINUS

ONLINE

UNIVERSITY

LEARNING

Symmetric

population

= sig/2

Significance level,

e.g., *sig = 0.05* or

are *significantly*

• Confidence limit, z

5% means $M_1 \& M_2$

different for 95% of

People Innovation Excellence

Estimating Confidence Intervals: Table for t-distribution

TABLE B: #-DISTRIBUTION CRITICAL VALUES

. Tail probability p														
ďť	.25	.20	.15	.10	.05	.025	.02	.01	.005	.0025	.001	.0005		
1	1.000	1.376	1.963	3.078	6.314	12.71	15.89	31.82	63.66	127.3	318.3	636.6		
2	,816	1.061	1.386	1.886	2.920	4.303	4.849	6.965	9.925	14.09	22.33	31.60		
3	.765	.978	1.250	1.638	2.353	3,182	3.482	4.541	5.841	7.453	10.21	12.92		
4	.741	.941	1.190	1.533	2.132	2.776	2.999	3.747	4.604	5.598	7.173	8.610		
5	.727	.920	1.156	1.476	2.015	2.571	2.757	3.365	4.032	4.773	5.893	6.869		
6	.718	.906	1.134	1.440	1.943	2.447	2.612	3.143	3,707	4.317	5.208	5.959		
7	.711	.896	1.119	1.415	1.895	2.365	2.517	2.998	3,499	4.029	4.785	5.408		
8	.706	.889	1.108	1.397	1.860	2.306	2.449	2.896	3.355	3.833	4.501	5:041		
9	.703	.883	1.100	1.383	1.833	2.262	2.398	2.821	3.250	3.690	4.297	4.781		
10	.700	.879	1.093	1.372	1.812	2.228	2.359	2.764	3.169	3.581	4.144	4.587		
11	.697	.876	1.088	1.363	1.796	2.201	2.328	2.718	3.106	3.497	4.025	4.437		
12	.695	.873	1.083	1.356	1.782	2.179	2.303	2.681	3.055	3,428	3,930	4.318		
13	.694	.870	1.079	1.350	1.771	2.160	2.282	2.650	3.012	3.372	3.852	4.221		
14	.692	.868	1.076	1.345	1.761	2.145	2.264	2.624	2.977	3,326	3.787	-4.140		
15	.691	.866	1.074	1.341	1.753	2.131	2.249	2.602	2.947	3.286	3.733	4 073		
16	.690	.865	1.071	1.337	1.746	2.120	2.235	2.583	2.921	3.252	3.686	4.015		
17	.689	.863	1.069	1.333	1.740	2.110	2.224	2.567	2.898	3.222	3.646	3.965		
18	.688	.862	1.067	1.330	1.734	2.101	2.214	2.552	2.878	3.197	3.611	3.922		
19	.688	.861	1.066	1.328	1.729	2.093	2.205	2.539	2.861	3.174	3.579	3.883		
20	.687	.860	1.064	1.325	1.725	2.086	2.197	2.528	2.845	3.153	3.552	3.850		
21	.686	.859	1.063	1.323	1.721	2.080	2.189	2.518	2.831	3.135	3.527	3,819		
22	.686	.858	1.061	1.321	1.717	2.074	2.183	2.508	2.819	3.119	3.505	3 792		
23	.685	.858	1.060	1.319	1.714	2.069	2.177	2.500	2.807	3.104	3.485	3.768		
24	685	.857	1.059	1.318	1.711	2.064	2.172	2.492	2.797	3.091	3.467	3.745		
25	.684	.856	1.058	1.316	1.708	2.060	2.167	2.485	2.787	3.078	3,450	3.725		
26	.684	.856	1.058	1.315	1.706	2.056	2.162	2.479	2.779	3.067	3.435	3,707		
27	.684	.855	1.057	1.314	1.703	2.052	2.158	2.473	2.771	3.057	3.421	3 690		
28	.683	.855	1.056	1.313	1,701	2.048	2.154	2 467	2.763	3 047	3.408	3 674		
29	.683	.854	1.055	1.311	1.699	2.045	2.150	2.462	2,756	3.038	3 396	3.659		
30	.683	854	1.055	1.310	1.697	2.042	2.147	2.457	2 750	3 030	3 385	3.646		
40	.681	.851	1.050	1.303	1.684	2.021	2.123	2.423	2.704	2 971	3 307	3 551		
50	.679	849	1.047	1,200	1.676	2.009	2 109	2.403	2 678	2 037	3 261	3 406		
60	.679	848	1.045	1.296	1.671	2.000	2.099	2 390	2 660	2 915	3 232	3.450		
80	678	846	1.043	1 202	1 664	1 000	2 088	2 374	2 630	2.913	3 105	3,400		
100	.677	845	1.042	1.290	1.660	1 984	2 081	2 364	2 626	2 871	3 174	3 300		
1000	675	842	1.037	1 282	1 646	1 962	2.056	2 330	2 491	2.812	3,009	3 300		
80	.674	.841	1.036	1.282	1.645	1.960	2.054	2.326	2.576	2.807	3.091	3.291		
	50%	60%	70%	80%	90%	95%	96%	98%	99%	99.5%	99.8%	99.9%		

Estimating Confidence Intervals: Statistical Significance

- Are M₁ & M₂ significantly different?
 - Compute t. Select significance level (e.g. sig = 5%)
 - Consult table for t-distribution: Find *t value* corresponding to *k-1* degrees of freedom (here, 9)
 - − t-distribution is symmetric: typically upper % points of distribution shown \rightarrow look up value for **confidence limit** *z=sig/2* (here, 0.025)
 - If t > z or t < -z, then t value lies in rejection region:</p>
 - Reject null hypothesis that mean error rates of M₁ & M₂ are same
 - Conclude: <u>statistically significant</u> difference between M₁ & M₂
 - Otherwise, conclude that any difference is chance

Model Selection: ROC Curves

BINUS UNIVERSITY ONLINE LEARNING

People

Innovation

Excellence

- ROC (Receiver Operating Characteristics) curves: for visual comparison of classification models
- Originated from signal detection theory
- Shows the trade-off between the true positive rate and the false positive rate
- The area under the ROC curve is a measure of the accuracy of the model
- Rank the test tuples in decreasing order: the one that is most likely to belong to the positive class appears at the top of the list
- The closer to the diagonal line (i.e., the closer the area is to 0.5), the less accurate is the model

- Vertical axis represents the true positive rate
- Horizontal axis rep. the false positive rate
- The plot also shows a diagonal line
- A model with perfect accuracy will have an area of 1.0

Issues Affecting Model Selection

- Accuracy
 - classifier accuracy: predicting class label
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

People Innovation Excellence

Techniques to Improve Classification Accuracy: Ensemble Methods

Ensemble Methods

Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

BINUS

ONLINE

UNIVERSITY

- Ensemble methods
 - Use a combination of models to increase accuracy
 - Combine a series of k learned models, M₁, M₂, ..., M_k, with the aim of creating an improved model M*
- Popular ensemble methods
 - **Bagging**: averaging the prediction over a collection of classifiers
 - **Boosting**: weighted vote with a collection of classifiers
 - Ensemble: combining a set of heterogeneous classifiers

Bagging: Boostrap Aggregation

- Analogy: Diagnosis based on multiple doctors' majority vote
- Training
 - Given a set D of *d* tuples, at each iteration *i*, a training set D_i of *d* tuples is sampled with replacement from D (i.e., bootstrap)
 - A classifier model M_i is learned for each training set D_i
- Classification: classify an unknown sample X
 - Each classifier M_i returns its class prediction
 - The bagged classifier M* counts the votes and assigns the class with the most votes to X

- Prediction: can be applied to the prediction of continuous values by taking the average value of each prediction for a given test tuple
- Accuracy
 - Often significantly better than a single classifier derived from D
 - For noise data: not considerably worse, more robust
 - Proved improved accuracy in prediction

Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

- People Innovation Excellence
- Build classifier on each bootstrap sample
- Each sample has probability (1 1/n)ⁿ of being selected

Boosting

- Analogy: Consult several doctors, based on a combination of weighted diagnoses—weight assigned based on the previous diagnosis accuracy
- How boosting works?
 - Weights are assigned to each training tuple
 - A series of k classifiers is iteratively learned
 - After a classifier M_i is learned, the weights are updated to allow the subsequent classifier, M_{i+1}, to pay more attention to the training tuples that were misclassified by M_i
 - The final M* combines the votes of each individual classifier, where the weight of each classifier's vote is a function of its accuracy
- Boosting algorithm can be extended for numeric prediction
- Comparing with bagging: Boosting tends to have greater accuracy, but it also risks overfitting the model to misclassified data

Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

Original Data	1	2	3	4	5	6	7	8	9	10
Boosting (Round 1)	7	3	2	8	7	9	4	10	6	3
Boosting (Round 2)	5	4	9	4	2	5	1	7	4	2
Boosting (Round 3)	4	4	8	10	4	5	4	6	3	4

- Example 4 is hard to classify
- Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds

Example: Adaboost

- Proposed by Freund and Schapire, 1997
- Given a set of *d* class-labeled tuples, (X₁, y₁), ..., (X_d, y_d)
- Initially, all the weights of tuples are set the same (1/d)
- Generate k classifiers in k rounds. At round i,
 - Tuples from D are sampled (with replacement) to form a training set
 D_i of the same size
 - Each tuple's chance of being selected is based on its weight
 - A classification model M_i is derived from D_i
 - Its error rate is calculated using D_i as a test set
 - If a tuple is misclassified, its weight is increased, o.w. it is decreased
- Error rate: err(**X**_j) is the misclassification error of tuple **X**_j. Classifier M_i error rate is the sum of the weights of the misclassified tuples:

$$error(M_i) = \sum_{j}^{a} w_j \times err(\mathbf{X_j})$$

• The weight of classifier M_i's vote is

$$og \frac{1 - error(M_i)}{error(M_i)}$$
59

BINUS UNIVERSITY ONLINE LEARNING

Example: AdaBoost

- Base classifiers: C₁, C₂, ..., C_T
- Error rate:

$$\varepsilon_i = \frac{1}{N} \sum_{j=1}^N w_j \delta \left(C_i(x_j) \neq y_j \right)$$

- People Innovation Excellence
- Importance of a classifier:

$$\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \varepsilon_i}{\varepsilon_i} \right)$$

Random Forest (Breiman 2001)

- Random Forest:
 - Each classifier in the ensemble is a *decision tree* classifier and is generated using a random selection of attributes at each node to determine the split
 - During classification, each tree votes and the most popular class is returned
- Two Methods to construct Random Forest:
 - Forest-RI (*random input selection*): Randomly select, at each node, F attributes as candidates for the split at the node. The CART methodology is used to grow the trees to maximum size
 - Forest-RC (*random linear combinations*): Creates new attributes (or features) that are a linear combination of the existing attributes (reduces the correlation between individual classifiers)
- Comparable in accuracy to Adaboost, but more robust to errors and outliers
- Insensitive to the number of attributes selected for consideration at each split, and faster than bagging or boosting

Classification of Class-Imbalanced Data Sets

- Class-imbalance problem: Rare positive example but numerous negative ones, e.g., medical diagnosis, fraud, oil-spill, fault, etc.
- Traditional methods assume a balanced distribution of classes and equal error costs: not suitable for class-imbalanced data
- Typical methods for imbalance data in 2-class classification:
 - Oversampling: re-sampling of data from positive class
 - Under-sampling: randomly eliminate tuples from negative class
 - Threshold-moving: moves the decision threshold, t, so that the rare class tuples are easier to classify, and hence, less chance of costly false negative errors

- Ensemble techniques: Ensemble multiple classifiers introduced above
- Still difficult for class imbalance problem on multiclass tasks

Additional Topics on Classification

Multiclass Classification

- Classification involving more than two classes (i.e., > 2 Classes)
- Method 1. One-vs.-all (OVA): Learn a classifier one at a time
 - Given m classes, train m classifiers: one for each class
 - Classifier j: treat tuples in class j as *positive* & all others as *negative*
 - To classify a tuple **X**, the set of classifiers vote as an ensemble
- Method 2. All-vs.-all (AVA): Learn a classifier for each pair of classes
 - Given m classes, construct m(m-1)/2 binary classifiers
 - A classifier is trained using tuples of the two classes
- People Innovation Excellence
- To classify a tuple X, each classifier votes. X is assigned to the class with maximal vote
- Comparison
 - All-vs.-all tends to be superior to one-vs.-all
 - Problem: Binary classifier is sensitive to errors, and errors affect vote count

Error-Correcting Codes for Multiclass Classification

- Originally designed to correct errors during data transmission for communication tasks by exploring data redundancy
- Class Error-Corr. Codeword C_1 1 1 1 1 C_2 0 0 0 0 C_3 0 0 1 0 1 1 0 C₄ 0 0 0 0 1

- Example
 - A 7-bit codeword associated with classes 1-4
 - Given a unknown tuple **X**, the 7-trained classifiers output: 0001010
 - Hamming distance: # of different bits between two codewords
 - H(**X**, C₁) = 5, by checking # of bits between [1111111] & [0001010]

- $H(X, C_2) = 3$, $H(X, C_3) = 3$, $H(X, C_4) = 1$, thus C_4 as the label for X
- Error-correcting codes can correct up to (h 1)/2 1-bit error, where h is the minimum Hamming distance between any two codewords
- If we use 1-bit per class, it is equiv. to one-vs.-all approach, the code are insufficient to self-correct
- When selecting error-correcting codes, there should be good row-wise and colwise separation between the codewords

Semi-Supervised Classification

- Semi-supervised: Uses labeled and unlabeled data to build a classifier
- Self-training:
 - Build a classifier using the labeled data
 - Use it to label the unlabeled data, and those with the most confident label prediction are added to the set of labeled data
 - Repeat the above process
 - Adv: easy to understand; disadv: may reinforce errors
- Co-training: Use two or more classifiers to teach each other
 - Each learner uses a mutually independent set of features of each tuple to train a good classifier, say f₁
 - Then f_1 and f_2 are used to predict the class label for unlabeled data X
 - Teach each other: The tuple having the most confident prediction from f_1 is added to the set of labeled data for f_2 , & vice versa
- Other methods, e.g., joint probability distribution of features and labels

- Class labels are expensive to obtain
- Active learner: query human (oracle) for labels
- Pool-based approach: Uses a pool of unlabeled data
 - L: a small subset of D is labeled, U: a pool of unlabeled data in D
 - Use a query function to carefully select one or more tuples from U and request labels from an oracle (a human annotator)
 - The newly labeled samples are added to L, and learn a model
 - Goal: Achieve high accuracy using as few labeled data as possible
- Evaluated using *learning curves*: Accuracy as a function of the number of instances queried (# of tuples to be queried should be small)
- People Innovation Excellence
- Research issue: How to choose the data tuples to be queried?
 - Uncertainty sampling: choose the least certain ones
 - Reduce version space, the subset of hypotheses consistent w. the training data
 - Reduce expected entropy over U: Find the greatest reduction in the total number of incorrect predictions

Transfer Learning: Conceptual Framework

- Transfer learning: Extract knowledge from one or more source tasks and apply the knowledge to a target task
- Traditional learning: Build a new classifier for each new task
- Transfer learning: Build new classifier by applying existing knowledge learned from source tasks

Transfer Learning: Methods and Applications

- Applications: Especially useful when data is outdated or distribution changes, e.g., Web document classification, e-mail spam filtering
- Instance-based transfer learning: Reweight some of the data from source tasks and use it to learn the target task
- TrAdaBoost (Transfer AdaBoost)
 - Assume source and target data each described by the same set of attributes (features) & class labels, but rather diff. distributions
 - Require only labeling a small amount of target data
 - Use source data in training: When a source tuple is misclassified, reduce the weight of such tupels so that they will have less effect on the subsequent classifier
- Research issues

People

Innovation Excellence

- Negative transfer: When it performs worse than no transfer at all
- Heterogeneous transfer learning: Transfer knowledge from different feature space or multiple source domains
- Large-scale transfer learning

Summary

Summary (1)

- Effective and advanced classification methods
 - Backpropagation (Neural networks)
 - Support Vector Machine (SVM)
 - Other classification methods: lazy learners (KNN, case-based reasoning), genetic algorithms, rough set and fuzzy set approaches
- **Evaluation metrics** include: accuracy, sensitivity, specificity, precision, recall, *F* measure, and F_{β} measure.

People Innovation Excellence Stratified k-fold cross-validation is recommended for accuracy estimation. Bagging and boosting can be used to increase overall accuracy by learning and combining a series of individual models.

Summary (2)

- Significance tests and ROC curves are useful for model selection.
- There have been numerous comparisons of the different classification methods; the matter remains a research topic
- No single method has been found to be superior over all others for all data sets
- Issues such as accuracy, training time, robustness, scalability, and interpretability must be considered and can involve trade-offs, further complicating the quest for an overall superior method
- Additional Topics on Classification
 - Multiclass classification, Semi-supervised classification, Active learning, etc.

References

- 1. Han, J., Kamber, M., & Pei, Y. (2006). "Data Mining: Concepts and Technique". Edisi 3. Morgan Kaufman. San Francisco
- 2. Tan, P.N., Steinbach, M., & Kumar, V. (2006). "Introduction to Data Mining". Addison-Wesley. Michigan
- 3. Witten, I. H., & Frank, E. (2005). "Data Mining : Practical Machine Learning Tools and Techniques". Second edition. Morgan Kaufmann. San Francisco

