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1 Definition
Let Xn with n ∈ N0 denote random variables on a discrete space E. The sequence
X = (Xn : n ∈ N0) is called a stochastic chain. If P is a probability measure X
such that

P (Xn+1 = j|X0 = i0, . . . , Xn = in) = P (Xn+1 = j|Xn = in) (1)

for all i0, . . . , in, j ∈ E and n ∈ N0, then the sequence X shall be called a Markov
chain on E. The probability measure P is called the distribution of X , and E is
called the state space of X .

If the conditional probabilities P (Xn+1 = j|Xn = in) are independent of the
time index n ∈ N0, then we call the Markov chain X homogeneous and denote

pij := P (Xn+1 = j|Xn = i)

for all i, j ∈ E. The probability pij is called transition probability from state i to
state j. The matrix P := (pij)i,j∈E shall be called transition matrix of the chain
X . Condition (1) is referred to as the Markov property.

Example 1 If (Xn : n ∈ N0) are random variables on a discrete space E, which
are stochastically independent and identically distributed (shortly: iid), then the
chain X = (Xn : n ∈ N0) is a homogeneous Markov chain.

Example 2 Discrete Random Walk
Set E := Z and let (Sn : n ∈ N) be a sequence of iid random variables with values
in Z and distribution π. Define X0 := 0 and Xn :=

∑n
k=1 Sk for all n ∈ N. Then

the chain X = (Xn : n ∈ N0) is a homogeneous Markov chain with transition
probabilities pij = πj−i. This chain is called discrete random walk.
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Example 3 Bernoulli process
Set E := N0 and choose any parameter 0 < p < 1. The definitions X0 := 0 as
well as

pij :=

{

p, j = i + 1

1 − p, j = i

for i ∈ N0 determine a homogeneous Markov chain X = (Xn : n ∈ N0). It is
called Bernoulli process with parameter p.

So far, al examples have been chosen as to be homogeneous. The following
theorem shows that there is a good reason for this:

Theorem 1 Be X = (Xn : n ∈ N0) a Markov chain on a discrete state space
E. Then there is a homogeneous Markov chain X ′ = (X ′

n : n ∈ N0) on the state
space E × N0 such that Xn = pr1(X

′
n) for all n ∈ N0, with pr1 denoting the

projection to the first dimension.

Proof: Let X be a Markov chain with transition probabilities

pn;ij := P(Xn+1 = j|Xn = i)

which may depend on the time instant n. Define the two–dimensional random
variables X ′

n := (Xn, n) for all n ∈ N0 and denote the resulting distribution of
the chain X ′ = (X ′

n : n ∈ N0) by P
′. By definition we obtain Xn = pr1(X

′
n) for

all n ∈ N0.
Further P

′(X ′
0 = (i, k)) = δk0·P(X0 = i) holds for all i ∈ E, and all transition

probabilities

p′(i,k),(j,l) = P
′(X ′

k+1 = (j, l)|X ′
k = (i, k)) = δl,k+1 · pk;ij

can be expressed without a time index. Hence the Markov chain X ′ is homoge-
neous.
�

Because of this result, we will from now on treat only homogeneous Markov
chains and omit the adjective "homogeneous".

Let P denote the transition matrix of a Markov chain on E. Then as an im-
mediate consequence of its definition we obtain pij ∈ [0, 1] for all i, j ∈ E and
∑

j∈E pij = 1 for all i ∈ E. A matrix P with these properties is called a stochastic
matrix on E. In the following we shall demonstrate that, given an initial distri-
bution, a Markov chain is uniquely determined by its transition matrix. Thus any
stochastic matrix defines a family of Markov chains.
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Theorem 2 Let X denote a homogeneous Markov chain on E with transition
matrix P . Then the relation

P (Xn+1 = j1, . . . , Xn+m = jm|Xn = i) = pi,j1 · . . . · pjm−1,jm

holds for all n ∈ N0, m ∈ N, and i, j1, . . . , jm ∈ E.

Proof: This is easily shown by induction on m. For m = 1 the statement holds
by definition of P . For m > 1 we can write

P(Xn+1 =j1, . . . , Xn+m = jm|Xn = i)

=
P (Xn+1 = j1, . . . , Xn+m = jm, Xn = i)

P (Xn = i)

=
P (Xn+1 = j1, . . . , Xn+m = jm, Xn = i)

P (Xn+1 = j1, . . . , Xn+m−1 = jm−1, Xn = i)

×
P (Xn+1 = j1, . . . , Xn+m−1 = jm−1, Xn = i)

P (Xn = i)

= P (Xn+m = jm|Xn = i, Xn+1 = j1, . . . , Xn+m−1 = jm−1)

× pi,j1 · . . . · pjm−2,jm−1

= pjm−1,jm
· pi,j1 · . . . · pjm−2,jm−1

because of the induction hypothesis and the Markov property.
�

Let π be a probability distribution on E with P(X0 = i) = πi for all i ∈ E.
Then theorem 2 immediately yields

P (X0 = j0, X1 = j1, . . . , Xm = jm) = πj0 · pj0,j1 . . . pjm−1,jm
(2)

for all m ∈ N and j0, . . . , jm ∈ E. The chain with this distribution P is denoted
by X π and called the π–version of X . The probability measure π is called initial
distribution for X .

Theorem 2 and the extension theorem by Tulcea (see appendix 6) show that
a Markov chain is uniquely determined by its transition matrix and its initial dis-
tribution. Whenever the initial distribution π is not important or understood from
the context, we will simply write X instead of X π. However, in an exact manner
the notation X denotes the family of all the versions X π of X , indexed by their
initial distribution π.
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Theorem 3 Let X denote a homogeneous Markov chain with transition matrix
P . Then the relation

P(Xn+m = j|Xn = i) = P m(i, j)

holds for all m, n ∈ N0 and i, j ∈ E, with P m(i, j) denoting the (i, j)th entry of
the mth power of the matrix P . In particular, P 0 equals the identity matrix.

Proof: This follows by induction on m. For m = 1 the statement holds by
definition of P . For m > 1 we can write

P(Xn+m = j|Xn = i) =
P (Xn+m = j, Xn = i)

P (Xn = i)

=
∑

k∈E

P (Xn+m = j, Xn+m−1 = k, Xn = i)

P (Xn+m−1 = k, Xn = i)

×
P (Xn+m−1 = k, Xn = i)

P (Xn = i)

=
∑

k∈E

P (Xn+m = j|Xn+m−1 = k, Xn = i) · P m−1(i, k)

=
∑

k∈E

pkj · P
m−1(i, k) = P m(i, j)

because of the induction hypothesis and the Markov property.
�

Thus the probabilities for transitions in m steps are given by the mth power
of the transition matrix P . The rule P m+n = P mP n for the multiplication of
matrices and theorem 3 lead to the decompositions

P(Xm+n = j|X0 = i) =
∑

k∈E

P(Xm = k|X0 = i) · P(Xn = j|X0 = k)

which are known as the Chapman–Kolmogorov equations.
For later purposes we will need a relation closely related to the Markov prop-

erty, which is called the strong Markov property. Let τ denote a random variable
with values in N0 ∪ {∞}, such that the condition

P(τ ≤ n|X ) = P(τ ≤ n|X0, . . . , Xn) (3)

holds for all n ∈ N0. Such a random variable is called a (discrete) stopping
time for X . The defining condition means that the probability for the event {τ ≤
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n} depends only on the evolution of the chain until time n. In other words, the
determination of a stopping time does not require any knowledge of the future.
Now the strong Markov property is stated in

Theorem 4 Let X denote a Markov chain and τ a stopping time for X with P(τ <
∞) = 1. Then the relation

P(Xτ+m = j|X0 = i0, . . . , Xτ = iτ ) = P(Xm = j|X0 = iτ )

holds for all m ∈ N and i0, . . . , iτ , j ∈ E.

Proof: The fact that the stopping time τ is finite and may assume only countably
many values can be exploited in the transformation

P(Xτ+m = j|X0 = i0, . . . , Xτ = iτ )

=

∞
∑

n=0

P(τ = n, Xτ+m = j|X0 = i0, . . . , Xτ = iτ )

=

∞
∑

n=0

P(Xτ+m = j|τ = n, X0 = i0, . . . , Xτ = iτ )

× P(τ = n|X0 = i0, . . . , Xτ = iτ )

=

∞
∑

n=0

P(Xn+m = j|Xn = iτ ) · P(τ = n|X )

=

∞
∑

n=0

P(τ = n|X ) · P(Xm = j|X0 = iτ )

which yields the statement, as τ is finite with probability one.
�

2 Classification of States
Let X denote a Markov chain with state space E and transition matrix P . We
call a state j ∈ E accessible from a state i ∈ E if there is a number m ∈ N0

with P (Xm = j|X0 = i) > 0. This relation shall be denoted by i → j. If for
two states i, j ∈ E, the relations i → j and j → i hold, then i and j are said to
communicate, in notation i ↔ j.
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Theorem 5 The relation ↔ of communication between states is an equivalence
relation.

Proof: Because of P 0 = I , communication is reflexive. Symmetry holds by
definition. Thus it remains to show transitivity. For this, assume i ↔ j and j ↔ k
for three states i, j, k ∈ E. This means that there are numbers m, n ∈ N0 with
P m(i, j) > 0 and P n(j, k) > 0. Hence, by the Chapman–Kolmogorov equation,
we obtain

P(Xm+n = k|X0 = i) =
∑

h∈E

P(Xm = h|X0 = i) · P(Xn = k|X0 = h)

≥ P(Xm = j|X0 = i) · P(Xn = k|X0 = j) > 0

which proves i → k. The remaining proof of k → i is completely analogous.
�

Because of this result and the countability, we can divide the state space E
of a Markov chain into a partition of countably many equivalence classes with
respect to the communication of states. Any such equivalence class shall be called
communication class. A communication class C ⊂ E that does not allow access
to states outside itself, i.e. for which the implication

i → j, i ∈ C ⇒ j ∈ C

holds, is called closed. If a closed equivalence class consists only of one state,
then this state shall be called absorbing. If a Markov chain has only one com-
munication class, i.e. if all states are communicating, then it is called irreducible.
Otherwise it is called reducible.

Example 4 Let X denote a discrete random walk (see example 2) with the spec-
ification π1 = p and π−1 = 1 − p for some parameter 0 < p < 1. Then X is
irreducible.

Example 5 The Bernoulli process (see example 3) with non–trivial parameter
0 < p < 1 is to the highest degree reducible. Every state x ∈ N0 forms an own
communication class. None of these is closed, thus there are no absorbing states.

Theorem 6 Be X a Markov chain with state space E and transition matrix P .
Let C = {cn : n ∈ I} ⊂ E with I ⊂ N be a closed communication class. Define
the matrix P ′ by its entries p′ij := pci,cj

for all i, j ∈ I . Then P ′ is stochastic.
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Proof: By definition, p′
ij ∈ [0, 1] for all i, j ∈ I . Since C is closed, pci,k = 0 for

all i ∈ I and k /∈ C. This implies
∑

j∈I

p′ij =
∑

j∈I

pci,cj
= 1 −

∑

k/∈C

pci,k = 1

for all i ∈ I , as P is stochastic.
�

Thus the restriction of a Markov chain X with state space E to the states of
one of its closed communication classes C defines a new Markov chain with state
space C. If the states are relabeled according to their affiliation to a communi-
cation class, the transition matrix of X can be displayed in a block matrix form
as

P =















Q Q1 Q2 Q3 Q4 . . .
0 P1 0 0 0 . . .
0 0 P2 0 0 . . .
0 0 0 P3 0 . . .
... ... . . . . . . . . .















(4)

with Pn being stochastic matrices on the closed communication classes Cn. The
first row contains the transition probabilities starting from communication classes
that are not closed.

Let X denote a Markov chain with state space E. In the rest of this section we
shall investigate distribution and expectation of the following random variables:
Define τj as the stopping time of the first visit to the state j ∈ E, i.e.

τj := min{n ∈ N : Xn = j}

Denote the distribution of τj by

Fk(i, j) := P(τj = k|X0 = i)

for all i, j ∈ E and k ∈ N.

Lemma 1 The conditional distribution of the first visit to the state j ∈ E, given
an initial state X0 = i, can be determined iteratively by

Fk(i, j) =

{

pij, k = 1
∑

h6=j pihFk−1(h, j), k ≥ 2

for all i, j ∈ E.
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Proof: For k = 1, the definition yields

F1(i, j) = P(τj = 1|X0 = i) = P(X1 = j|X0 = i) = pij

for all i, j ∈ E. For k ≥ 2, conditioning upon X1 yields

Fk(i, j) = P(X1 6= j, . . . , Xk−1 6= j, Xk = j|X0 = i)

=
∑

h6=j

P(X1 = h|X0 = i)

× P(X2 6= j, . . . , Xk−1 6= j, Xk = j|X0 = i, X1 = h)

=
∑

h6=j

pih · P(X1 6= j, . . . , Xk−2 6= j, Xk−1 = j|X0 = h)

due to the Markov property.
�

Now define

fij := P(τj < ∞|X0 = i) =

∞
∑

k=1

Fk(i, j) (5)

for all i, j ∈ E, which represents the probability of ever visiting state j after
beginning in state i. Summing up over all k ∈ N in the formula of Lemma 1 leads
to

fij = pij +
∑

h6=j

pihfhj (6)

for all i, j ∈ E. The proof is left as an exercise.
Define Nj as the random variable of the total number of visits to the state

j ∈ E. Expression (6) is useful for computing the distribution of Nj:

Theorem 7 Let X denote a Markov chain with state space E. The total number
of visits to a state j ∈ E under the condition that the chain starts in state i is given
by

P(Nj = m|X0 = j) = fm−1
jj (1 − fjj)

and for i 6= j

P(Nj = m|X0 = i) =

{

1 − fij, m = 0

fijf
m−1
jj (1 − fjj), m ≥ 1

Thus the distribution of Nj is modified geometric.
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Proof: Define τ
(1)
j := τj and τ

(k+1)
j := min{n > τ

(k)
j : Xn = j} for all k ∈ N,

with the convention that min ∅ = ∞. Note that τ
(k)
j = ∞ implies τ

(l)
j = ∞ for all

l > k.
Then the sequence (τ

(k)
j : k ∈ N) is a sequence of stopping times. The

event {Nj = m} is the same as the intersection of the events {τ
(k)
j < ∞} for

k = 1, . . . , M and {τ
(M+1)
j = ∞}, with M = m if i 6= j and M = m − 1 if

i = j. Now this event can be further described by the intersection of the events
{τ

(k+1)
j − τ

(k)
j < ∞} for k = 0, . . . , M − 1 and {τ

(M+1)
j − τ

(M)
j = ∞}, with M

as above and the convention τ
(0)
j := 0.

The subevent {τ (k+1)
j − τ

(k)
j < ∞} has probability fij for k = 0 and because

of the strong Markov property (see theorem 4) probability fjj for k > 0. The
probability for {τ (M+1)

j − τ
(M)
j = ∞} is 1 − fij for M = 0 and 1 − fjj for

M > 0. Once more the strong Markov property is the reason for independence of
the subevents. Now multiplication of the probabilities leads to the formulae in the
statement.
�

Summing over all m in the above theorem leads to

Corollary 1 For all j ∈ E, the zero–one law

P(Nj < ∞|X0 = j) =

{

1, fjj < 1

0, fjj = 1

holds, i.e. depending on fjj there are almost certainly infinitely many visits to a
state j ∈ E.

This result gives rise to the following definitions: A state j ∈ E is called
recurrent if fjj = 1 and transient otherwise. Let us further define the potential
matrix R = (rij)i,j∈E of the Markov chain by its entries

rij := E(Nj|X0 = i)

for all i, j ∈ E. Thus an entry rij gives the expected number of visits to the state
j ∈ E under the condition that the chain starts in state i ∈ E. As such, rij can be
computed by

rij =

∞
∑

n=0

P n(i, j) (7)

for all i, j ∈ E. The results in theorem 7 and corollary 1 yield
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Corollary 2 For all i, j ∈ E the relations

rjj = (1 − fjj)
−1 and rij = fijrjj

hold, with the conventions 0−1 := ∞ and 0 · ∞ := 0 included. In particular, the
expected number rjj of visits to the state j ∈ E is finite if j is transient and infinite
if j is recurrent.

Theorem 8 Recurrence and transience of states are class properties with re-
spect to the relation ↔. Furthermore, a recurrent communication class is always
closed.

Proof: Assume that i ∈ E is transient and i ↔ j. Then there are numbers
m, n ∈ N with 0 < P m(i, j) ≤ 1 and 0 < P n(j, i) ≤ 1. The inequalities

∞
∑

k=0

P k(i, i) ≥
∞
∑

h=0

P m+h+n(i, i) ≥ P m(i, j)P n(j, i)
∞
∑

k=0

P k(j, j)

now imply rjj < ∞ because of representation (7). According to corollary 2 this
means that j is transient, too.

If j is recurrent, then the same inequalities lead to

rii ≥ P m(i, j)P n(j, i)rjj = ∞

which signifies that i is recurrent, too. Since the above arguments are symmetric
in i and j, the proof of the first statement is complete.

For the second statement assume that i ∈ E belongs to a communication class
C ⊂ E and pij > 0 for some state j ∈ E \ C. Then

fii = pii +
∑

h6=i

pihfhi ≤ 1 − pij < 1

according to formula (6), since fji = 0 (otherwise i ↔ j). Thus i is transient,
which proves the second statement.
�

Theorem 9 If the state j ∈ E is transient, then limn→∞ P n(i, j) = 0, regardless
of the initial state i ∈ E.

Proof: If the state j is transient, then the first equation in corollary 2 yields rjj <
∞. The second equation in the same corollary now implies rij < ∞, which by
the representation (7) completes the proof.
�
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3 Stationary Distributions
Let X denote a Markov chain with state space E and π a measure on E. If
P(Xn = i) = P(X0 = i) = πi for all n ∈ N and i ∈ E, then X π is called
stationary, and π is called a stationary measure for X . If furthermore π is a
probability measure, then it is called stationary distribution for X .

Theorem 10 Let X denote a Markov chain with state space E and transition
matrix P . Further, let π denote a probability distribution on E with πP = π, i.e.

πi =
∑

j∈E

πjpji and
∑

j∈E

πj = 1

for all i ∈ E. Then π is a stationary distribution for X . If π is a stationary
distribution for X , then πP = π holds.

Proof: Let P(X0 = i) = πi for all i ∈ E. Then P(Xn = i) = P(X0 = i) for all
n ∈ N and i ∈ E follows by induction on n. The case n = 1 holds by assumption,
and the induction step follows by induction hypothesis and the Markov property.
The last statement is obvious.
�

The following examples show some features of stationary distributions:

Example 6 Let the transition matrix of a Markov chain X be given by

P =









0.8 0.2 0 0
0.2 0.8 0 0
0 0 0.4 0.6
0 0 0.6 0.4









Then π = (0.5, 0.5, 0, 0), π′ = (0, 0, 0.5, 0.5) as well as any linear combination of
them are stationary distributions for X . This shows that a stationary distribution
does not need to be unique.

Example 7 Bernoulli process (see example 1)
The transition matrix of a Bernoulli process has the structure

P =













1 − p p 0 0 . . .

0 1 − p p 0
. . .

0 0 1 − p p
. . .

... . . . . . . . . . . . .
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Hence πP = π implies first

π0 · (1 − p) = π0 ⇒ π0 = 0

since 0 < p < 1. Assume that πn = 0 for any n ∈ N0. This and the condition
πP = π further imply for πn+1

πn · p + πn+1 · (1 − p) = πn+1 ⇒ πn+1 = 0

which completes an induction argument proving πn = 0 for all n ∈ N0. Hence
the Bernoulli process does not have a stationary distribution.

Example 8 The solution of πP = π and
∑

j∈E πj = 1 is unique for

P =

(

1 − p p
p 1 − p

)

with 0 < p < 1. Thus there are transition matrices which have exactly one
stationary distribution.

The question of existence and uniqueness of a stationary distribution is one of
the most important problems in the theory of Markov chains. A simple answer
can be given in the transient case (cf. example 7):

Theorem 11 A transient Markov chain (i.e. a Markov chain with transient states
only) has no stationary distribution.

Proof: Assume that πP = π holds for some distribution π and take any enumer-
ation E = (sn : n ∈ N) of the state space E. Choose any index m ∈ N with
πsm

> 0. Since
∑∞

n=1 πsn
= 1 is bounded, there is an index M > m such that

∑∞
n=M πsn

< πsm
. Set ε := πsm

−
∑∞

n=M πsn
. According to theorem 9, there is

an index N ∈ N such that P n(si, sm) < ε for all i ≤ M and n ≥ N . Then the
stationarity of π implies

πsm
=

∞
∑

i=1

πsi
P N(si, sm) =

M−1
∑

i=1

πsi
P N(si, sm) +

∞
∑

i=M

πsi
P N(si, sm)

< ε +
∞
∑

i=M

πsi
= πsm
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which is a contradiction.
�

For the recurrent case, a finer distinction will be necessary. While the expected
total number rjj of visits to a recurrent state j ∈ E is always infinite (see corollary
2), there are differences in the rate of visits to a recurrent state. In order to describe
these, define Ni(n) as the number of visits to state i until time n. Further define
for a recurrent state i ∈ E the mean time

mi := E(τi|X0 = i)

until the first visit to i (after time zero) under the condition that the chain starts in
i. By definition mi > 0 for all i ∈ E. The elementary renewal theorem (which
will be proven later) states that

lim
n→∞

E(Ni(n)|X0 = j)

n
=

1

mi
(8)

for all recurrent i ∈ E and independently of j ∈ E provided j ↔ i, with the
convention of 1/∞ := 0. Thus the asymptotic rate of visits to a recurrent state
is determined by the mean recurrence time of this state. This gives reason to the
following definition: A recurrent state i ∈ E with mi = E(τi|X0 = i) < ∞ will
be called positive recurrent, otherwise i is called null recurrent. The distinction
between positive and null recurrence is supported by the equivalence relation ↔,
as shown in

Theorem 12 Positive recurrence and null recurrence are class properties with
respect to the relation of communication between states.

Proof: Assume that i ↔ j for two states i, j ∈ E and i is null recurrent. Thus
there are numbers m, n ∈ N with P n(i, j) > 0 and P m(j, i) > 0. Because of the
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representation E(Ni(k)|X0 = i) =
∑k

l=0 P l(i, i), we obtain

0 = lim
k→∞

∑k
l=0 P l(i, i)

k

≥ lim
k→∞

∑k−m−n
l=0 P l(j, j)

k
· P n(i, j)P m(j, i)

= lim
k→∞

k − m − n

k
·

∑k−m−n
l=0 P l(j, j)

k − m − n
· P n(i, j)P m(j, i)

= lim
k→∞

∑k
l=0 P l(j, j)

k
· P n(i, j)P m(j, i)

=
P n(i, j)P m(j, i)

mj

and thus mj = ∞, which signifies the null recurrence of j.
�

Thus we can call a communication class positive recurrent or null recurrent.
In the former case, a construction of a stationary distribution is given in

Theorem 13 Let i ∈ E be positive recurrent and define the mean first visit time
mi := E(τi|X0 = i). Then a stationary distribution π is given by

πj := m−1
i ·

∞
∑

n=0

P(Xn = j, τi > n|X0 = i)

for all j ∈ E. In particular, πi = m−1
i and πk = 0 for all states k outside of the

communication class belonging to i.

Proof: First of all, π is a probability measure since

∑

j∈E

∞
∑

n=0

P(Xn = j, τi > n|X0 = i) =

∞
∑

n=0

∑

j∈E

P(Xn = j, τi > n|X0 = i)

=

∞
∑

n=0

P(τi > n|X0 = i) = mi
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The particular statements in the theorem are obvious from theorem 8 and the def-
inition of π. The stationarity of π is shown as follows. First we obtain

πj = m−1
i ·

∞
∑

n=0

P(Xn = j, τi > n|X0 = i)

= m−1
i ·

∞
∑

n=1

P(Xn = j, τi ≥ n|X0 = i)

= m−1
i ·

∞
∑

n=1

P(Xn = j, τi > n − 1|X0 = i)

since X0 = Xτi
= i in the conditioning set {X0 = i}. Because of

P(Xn = j, τi > n − 1|X0 = i)

=
P(Xn = j, τi > n − 1, X0 = i)

P(X0 = i)

=
∑

k∈E

P(Xn = j, Xn−1 = k, τi > n − 1, X0 = i)

P(X0 = i)

=
∑

k∈E

P(Xn = j, Xn−1 = k, τi > n − 1, X0 = i)

P(Xn−1 = k, τi > n − 1, X0 = i)

×
P(Xn−1 = k, τi > n − 1, X0 = i)

P(X0 = i)

=
∑

k∈E

pkjP(Xn−1 = k, τi > n − 1|X0 = i)

we can transform further

πj = m−1
i ·

∞
∑

n=1

∑

k∈E

pkjP(Xn−1 = k, τi > n − 1|X0 = i)

=
∑

k∈E

pkj · m
−1
i

∞
∑

n=0

P(Xn = k, τi > n|X0 = i) =
∑

k∈E

πkpkj

which completes the proof.
�
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Theorem 14 Let X denote an irreducible, positive recurrent Markov chain. Then
X has a unique stationary distribution.

Proof: Existence has been shown in theorem 13. Uniqueness of the stationary
distribution can be seen as follows. Let π denote the stationary distribution as
constructed in theorem 13 and i the positive recurrent state that served as recur-
rence point for π. Further, let ν denote any stationary distribution for X . Then
there is a state j ∈ E with νj > 0 and a number m ∈ N with P m(j, i) > 0, since
X is irreducible. Consequently we obtain

νi =
∑

k∈E

νkP
m(k, i) ≥ νjP

m(j, i) > 0

Hence we can multiply ν by a skalar factor c such that c · νi = πi = 1/mi. Denote
ν̃ := c · ν.

Let P̃ denote the transition matrix P without the ith column, i.e. we define
the (j, k)th entry of P̃ by p̃jk = pjk if k 6= i and zero otherwise. Denote further
the Dirac measure on i by δi, i.e. δi

j = 1 if i = j and zero otherwise. Then the
stationary distribution π can be represented by π = m−1

i · δi
∑∞

n=0 P̃ n.
We first claim that miν̃ = δi + miν̃P̃ . This is clear for the entry ν̃i and easily

seen for ν̃j with j 6= i because in this case (ν̃ P̃ )j = c · (νP )j = ν̃j . Now we can
proceed with the same argument to see that

miν̃ = δi + (δi + miν̃P̃ )P̃ = δi + δiP̃ + miν̃P̃ 2 = . . .

= δi

∞
∑

n=0

P̃ n = miπ

Hence ν̃ already is a probability measure and the skalar factor must be c = 1. This
yields ν = ν̃ = π and thus the statement.
�

Remark 1 At a closer look the assumption of irreducibility may be relaxed to
some extend. For example, if there is exactly one closed positive recurrent com-
munication class and a set of transient and inaccessible states (i.e. states j for
which there is no state i with i → j), then the above statement still holds although
X is not irreducible.

A first consequence of the uniqueness is the following simpler representation
of the stationary distribution:
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Theorem 15 Let X denote an irreducible, positive recurrent Markov chain. Then
the stationary distribution π of X is given by

πj = m−1
j =

1

E(τj |X0 = j)

for all j ∈ E.

Proof: Since all states in E are positive recurrent, the construction in theorem 13
can be pursued for any inital state j. This yields πj = m−1

j for all j ∈ E. The
statement now follows from the uniqueness of the stationary distribution.
�

Corollary 3 For an irreducible, positive recurrent Markov chain, the stationary
probability πj of a state j coincides with its asymptotic rate of recurrence, i.e.

lim
n→∞

E(Nj(n)|X0 = i)

n
= πj

for all j ∈ E and independently of i ∈ E. Further, if an asymptotic distribution
p = limn→∞ P(Xn = .) does exist, then it coincides with the stationary distribu-
tion. In particular, it is independent of the initial distribution of X .

Proof: The first statement immediately follows from equation (8). For the sec-
ond statement, it suffices to employ E(Nj(n)|X0 = i) =

∑n
l=0 P l(i, j). If an

asymptotic distribution p does exist, then for any initial distribution ν we obtain

pj = lim
n→∞

(νP n)j =
∑

i∈E

νi lim
n→∞

P n(i, j)

=
∑

i∈E

νi lim
n→∞

∑n
l=0 P l(i, j)

n
=
∑

i∈E

νiπj

= πj

independently of ν.
�

4 Restricted Markov Chains
Now let F ⊂ E denote any subset of the state space E. Define τF (k) to be the
stopping time of the kth visit of X to the set F , i.e.

τF (k + 1) := min{n > τF (k) : Xn ∈ F}
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with τF (0) := 0. If X is recurrent, then the strong Markov property (theorem 4)
ensures that the chain X F = (XF

n : n ∈ N) with XF
n := XτF (n) is a recurrent

Markov chain, too. It is called the Markov chain restricted to F . In case of positive
recurrence, we can obtain the stationary distribution of X F from the stationary
distribution of X in a simple manner:

Theorem 16 If the Markov chain X is positive recurrent, then the stationary dis-
tribution of X F is given by

πF
j =

πj
∑

k∈F πk

for all j ∈ F .

Proof: Choose any state i ∈ F and recall from theorem 13 the expression

πj := m−1
i ·

∞
∑

n=0

P(Xn = j, τi > n|X0 = i)

which holds for all j ∈ F . For πF
j we can perform the same construction with

respect to the chain X F . By the definition of X F it is clear that the number of
visits to the state j between two consecutive visits to i is the same for the chains
X and X F . Hence the sum expression for πF

j , which is the expectation of that
number of visits, remains the same as for πj. The other factor m−1

i in the formula
above is independent of j and serves only as a normalization constant, i.e. in order
to secure that

∑

j∈E πj = 1. Hence for a construction of πF
j with respect to X F

this needs to be replaced by (mi ·
∑

k∈F πk)
−1, which then yields the statement.

�

Theorem 17 Let X = (Xn : n ∈ N0) denote an irreducible and positive recur-
rent Markov chain with discrete state space E. Further let F ⊂ E denote any
subset of E, and X F the Markov chain restricted to F . Denote

τF := min{n ∈ N : Xn ∈ F}

Then a measure ν on E is stationary for X if and only if ν ′ = (νi : i ∈ F ) is
stationary for X F and

νj =
∑

k∈F

νk

∞
∑

n=0

P(Xn = j, τF > n|X0 = k) (9)

for all j ∈ E \ F .
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Proof: Due to theorem 16 it suffices to prove equation (9) for j ∈ E \ F . Choose
any state i ∈ F and define

τi := min{n ∈ N : Xn = i}

According to theorem 13 the stationary measure v for X is given by

νj = νi ·
∞
∑

n=0

P(Xn = j, τi > n|X0 = i) = νi · Ei

(

τi−1
∑

n=0

1Xn=j

)

for j ∈ E \F , where Ei denotes the conditional expectation given X0 = i. Define
further

τF
i := min{n ∈ N : XF

n = i}

Because of the strong Markov property we can proceed as

νj = νi · Ei





τF
i −1
∑

n=0

EXF
n

τF−1
∑

m=0

1Xm=j





= νi ·
∑

k∈F

Ei





τF
i −1
∑

n=0

1XF
n =k



 · Ek

(

τF−1
∑

m=0

1Xm=j

)

Regarding the restricted Markov chain X F , theorem 13 states that

Ei





τF
i −1
∑

n=0

1XF
n =k



 =
∞
∑

n=0

P(XF
n = k, τF

i > n|XF
0 = i) =

νk

νi

for all k ∈ F . Hence we obtain

νj =
∑

k∈F

νk

∞
∑

n=0

P(Xn = j, τF > n|X0 = k)

which was to be proven.
�

5 Conditions for Positive Recurrence
In the third part of this course we will need some results on the behaviour of a
Markov chain on a finite subset of its state space. As a first fundamental result we
state
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Theorem 18 An irreducible Markov chain with finite state space F is positive
recurrent.

Proof: For all n ∈ N and i ∈ F we have
∑

j∈E P n(i, j) = 1. Hence it is not
possible that limn→∞ P n(i, j) = 0 for all j ∈ F . Thus there is one state h ∈ F
such that rhh =

∑∞
n=0 P n(h, h) = ∞, which means by corollary 2 that h is

recurrent and by irreducibility that the chain is recurrent.
If the chain were null recurrent, then according to the relation in (8)

lim
n→∞

1

n

n
∑

k=1

P k(i, j) = 0

would hold for all j ∈ F , independently of i because of irreducibility. But this
would imply that limn→∞ P n(i, j) = 0 for all j ∈ F , which contradicts our first
observation in this proof. Hence the chain must be positive recurrent.
�

For irreducible Markov chains the condition E(τi|X0 = i) < ∞ implies posi-
tive recurrence of state i and hence positive recurrence of the whole chain. Writ-
ing τF for the time of the first visit to the set F , we now can state the following
generalization of this condition:

Theorem 19 Let X denote an irreducible Markov chain with state space E and
be F ⊂ E a finite subset of E. The chain X is positive recurrent if and only if
E(τF |X0 = i) < ∞ for all i ∈ F .

Proof: If X is positive recurrent, then E(τF |X0 = i) ≤ E(τi|X0 = i) < ∞ for all
i ∈ F , by the definition of positive recurrence.

Now assume that E(τF |X0 = i) < ∞ for all i ∈ F . Define the stopping times
σ(i) := min{k ∈ N : XF

k = i} and random variables Yk := τF (k) − τF (k −
1). Since F is finite, m := maxj∈F E(τF |X0 = j) < ∞. We shall denote the
conditional expectation given X0 = i by Ei. For i ∈ F we now obtain

E(τi|X0 = i) = Ei





σ(i)
∑

k=1

Yk



 =

∞
∑

k=1

Ei

(

E(Yk|XτF (k−1)) · 1k≤σ(i)

)

≤ m ·
∞
∑

k=1

P(σ(i) ≥ k|X0 = i) = m · E(σ(i)|X0 = i)

Since F is finite, X F is positive recurrent by theorem 18. Hence we know that
E(σ(i)|X0 = i) < ∞, and thus E(τi|X0 = i) < ∞ which shows that X is positive
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recurrent.
�

An often difficult problem is to determine whether a given Markov chain is
positive recurrent or not. Concerning this, we now introduce one of the most
important criteria for the existence of stationary distributions of Markov chains
occuring in queueing theory. It is known as Foster’s criterion.

Theorem 20 Let X denote an irreducible Markov chain with countable state
space E and transition matrix P . Further let F denote a finite subset of E. If
there is a function h : E → R with inf{h(i) : i ∈ E} > −∞, such that the
conditions

∑

k∈E

pikh(k) < ∞ and
∑

k∈E

pjkh(k) ≤ h(j) − ε

hold for some ε > 0 and all i ∈ F and j ∈ E \ F , then X is positive recurrent.

Proof: Without loss of generality we can assume h(i) ≥ 0 for all i ∈ E, since
otherwise we only need to increase h by a suitable constant. Define the stopping
time τF := min{n ∈ N0 : Xn ∈ F}. First we observe that

E(h(Xn+1) · 1τF >n+1|X0, . . . , Xn) ≤ E(h(Xn+1) · 1τF >n|X0, . . . , Xn)

= 1τF >n ·
∑

k∈E

pXn,kh(k)

≤ 1τF >n · (h(Xn) − ε)

= h(Xn) · 1τF >n − ε · 1τF >n

holds for all n ∈ N0, where the first equality is due to (13). We now proceed with

0 ≤ E(h(Xn+1) · 1τF >n+1|X0 = i)

= E(E(h(Xn+1) · 1τF >n+1|X0, . . . , Xn)|X0 = i)

≤ E(h(Xn) · 1τF >n|X0 = i) − εP(τF > n|X0 = i)

≤ . . .

≤ E(h(X0) · 1τF >0|X0 = i) − ε
n
∑

k=0

·P(τF > k|X0 = i)

which holds for all i ∈ E \ F and n ∈ N0. For n → ∞ this implies

E(τF |X0 = i) =
∞
∑

k=0

P(τF > k|X0 = i) ≤ h(i)/ε < ∞
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for i ∈ E \ F . Now the mean return time to the state set F is bounded by

E(τF |X0 = i) =
∑

j∈F

pij +
∑

j∈E\F

pijE(τF + 1|X0 = j)

≤ 1 + ε−1
∑

j∈E

pijh(j) < ∞

for all i ∈ F , which completes the proof.
�

Notes
Markov chains originate from a series of papers written by A. Markov at the begin-
ning of the 20th century. His first application is given here as exercise 3. However,
methods and terminology at that time were very different from today’s presenta-
tions.

The literature on Markov chains is perhaps the most extensive in the field of
stochastic processes. This is not surprising, as Markov chains form a simple and
useful starting point for the introduction of other processes.

Textbook presentations are given in Feller [3], Breiman [1], Karlin and Taylor
[5], or Çinlar [2], to name but a few. The treatment in Ross [7] contains the useful
concept of time–reversible Markov chains. An exhaustive introduction to Markov
chains on general state spaces and conditions for their positive recurrence is given
in Meyn and Tweedie [6].

Exercise 1 Let (Xn : n ∈ N0) be a family of iid random variables with discrete
state space. Show that X = (Xn : n ∈ N0) is a homogeneous Markov chain.

Exercise 2 Let (Xn : n ∈ N0) be iid random variables on N0 with probabilities
ai := P(Xn = i) for all n, i ∈ N0. The event Xn > max(X0, . . . , Xn−1) for
n ≥ 1 is called a record at time n. Define Ti as the time of the ith record, i.e.
T0 := 0 and Ti+1 := min{n ∈ N : Xn > XTi

} for all i ∈ N0. Denote the ith
record value by Ri := XTi

. Show that (Ri : i ∈ N0) and ((Ri, Ti) : i ∈ N0) are
Markov chains by determining their transition probabilities.

Exercise 3 Diffusion model by Bernoulli and Laplace
The following is a stochastic model for the flow of two incompressible fluids
between two containers: Two boxes contain m balls each. Of these 2m balls, b
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are black and the others are white. The system is said to be in state i if the first box
contains i black balls. A state transition is performed by choosing one ball out of
each box at random (meaning here that each ball is chosen with equal probability)
and then interchanging the two. Derive a Markov chain model for the system and
determine the transition probabilities.

Exercise 4 Let X denote a Markov chain with m < ∞ states. Show that if state
j is accessible from state i, then it is accessible in at most m − 1 transitions.

Exercise 5 Let p = (pn : n ∈ N0) be a discrete probability distribution and define

P =













p0 p1 p2 . . .

p0 p1
. . .

p0
. . .
. . .













with all non–specified entries being zero. Let X denote a Markov chain with
state space N0 and transition matrix P . Derive an expression (in terms of discrete
convolutions) for the transition probabilities P(Xn+m = j|Xn = i) with n, m ∈
N0 and i, j ∈ N0. Apply the result to the special case of a Bernoulli process (see
example 3).

Exercise 6 Prove equation (6).

Exercise 7 Prove the equation P n(i, j) =
∑n

k=1 Fk(i, j)P
n−k(j, j) for all n ∈ N

and i, j ∈ E.

Exercise 8 Let X denote a Markov chain with state space E = {1, . . . , 10} and
transition matrix

P =

































1/2 0 1/2 0 0 0 0 0 0 0
0 1/3 0 0 0 0 2/3 0 0 0
1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 1/3 1/3 0 0 0 1/3 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1/4 0 3/4 0
0 0 1/4 1/4 0 0 0 1/4 0 1/4
0 1 0 0 0 0 0 0 0 0
0 1/3 0 0 1/3 0 0 0 0 1/3
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Reorder the states according to their communication classes and determine the
resulting form of the transition matrix as in representation (4). Determine further
a transition graph, in which

��
��

i -

��
��

j

means that fij > 0.

Exercise 9 Prove equation (7).
Hint: Derive a representation of Nj in terms of the random variables

An :=

{

1, Xn = j

0, Xn 6= j

Exercise 10 Prove corollary 2.

Exercise 11 Prove remark 1.

Exercise 12 A server’s up time is k time units with probability pk = 2−k, k ∈ N.
After failure the server is immediately replaced by an identical new one. The up
time of the new server is of course independent of the behaviour of all preceding
servers.
Let Xn denote the remaining up time of the server at time n ∈ N0. Determine the
transition probabilities for the Markov chain X = (Xn : n ∈ N0) and determine
the stationary distribution of X .

Exercise 13 Let P denote the transition matrix of an irreducible Markov chain
X with discrete state space E = F ∪ F c, where F c = E \ F . Write P in block
notation as

P =

(

PFF PFF c

PF cF PF cF c

)

Show that the Markov chain X F restricted to the state space F has transition
matrix

P F = PFF + PFF c(I − PF cF c)−1PF cF

with I denoting the identity matrix on F c.
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Exercise 14 Let X denote a Markov chain with state space E = {0, . . . , m} and
transition matrix

P =















p00 p01

p10 p11 p12

p21 p22 p23

. . . . . . . . .
pm,m−1 pmm















where pij > 0 for |i − j| = 1. Show that the stationary distribution π of X is
uniquely determined by

πn = π0 ·
n
∏

i=1

pi−1,i

pi,i−1
and π0 =

(

m
∑

j=0

j
∏

i=1

pi−1,i

pi,i−1

)−1

for all n = 1, . . . , m.
Use this result to determine the stationary distribution of the Bernoulli–Laplace
diffusion model with b = m (see exercise 3).

Exercise 15 Show that the second condition in theorem 20 can be substituted by
the condition

∑

j∈E

pijh(j) ≤ h(i) − 1 for all i ∈ E \ F .

Exercise 16 Show the following complement to theorem 20: Let P denote the
transition matrix of a positive recurrent Markov chain with discrete state space E.
Then there is a function h : E → R and a finite subset F ⊂ E such that

∑

j∈E

pijh(j) < ∞ for all i ∈ F , and

∑

j∈E

pijh(j) ≤ h(i) − 1 for all i ∈ E \ F .

Hint: Consider the conditional expectation of the remaining time until returning
to a fixed set F of states.

Exercise 17 For the discrete, non–negative random walk with transition matrix

P =











p00 p01

p10 0 p12

p10 0 p12

. . . . . . . . .
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determine the criterion of positive recurrence according to theorem 20.

6 Extension Theorems
Throughout this book, our basic stochastic tools are either sequences of random
variables (such as Markov chains or Markov renewal chains) or even uncount-
able families of random variables (such as Markov processes, renewal processes,
or semi–regenerative processes). It is essential for our models that these random
variables are dependent, and in fact we define them in terms of conditional prob-
abilities, i.e. via their dependence structure.

It is then an immediate question whether a probability measure P exists that
satisfies all the postulates in the definition of a stochastic sequence or process.
This question is vital as it concerns the very existence of the tools we are using.

6.1 Stochastic chains
Let (S,B) denote a measurable space, µ a probability measure on (S,B), and Pn,
n ∈ N, stochastic kernels on (S,B). The latter means that for every n ∈ N,
Pn : S × B → [0, 1] is a function that satisfies
(K1) For every x ∈ S, Pn(x, .) is a probability measure on (S,B).
(K2) For every A ∈ B, the function Pn(., A) is B–measurable.

Define S∞ as the set of all sequences x = (xn : n ∈ N0) with xn ∈ S for all
n ∈ N0. A subset of S∞ having the form

Cn1,...,nk
(A) = {x ∈ S∞ : (xn1

, . . . , xnk
) ∈ A}

with k ∈ N, n1 < . . . < nk ∈ N0, and A ∈ Bk, is called cylinder (with coordi-
nates n1, . . . , nk and base A). The set C of all cylinders in S∞ forms an algebra
of sets. Define B∞ := σ(C) as the minimal σ–algebra containing C.

Now we can state the extension theorem for sequences of random variables,
which is proven in Gikhman and Skorokhod [4], section II.4.

Theorem 21 There is a probability measure P on (S∞,B∞) satisfying

P(C0,...,k(A0 × . . . × Ak)) =

∫

A0

dµ(x0)

∫

A1

P1(x0, dx1) . . .

. . .

∫

Ak−1

Pk−1(xk−2, dxk−1) Pk(xk−1, Ak) (10)
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for all k ∈ N0, A0, . . . , Ak ∈ B. The measure P is uniquely determined by the
system (10) of equations.

The first part of the theorem above justifies our definitions of Markov chains
and Markov renewal chains. The second part states in particular that a Markov
chain is uniquely determined by its initial distribution and its transition matrix.

Based on this result, we may define a stochastic chain with state space S as
a sequence (Xn : n ∈ N0) of S–valued random variables which are distributed
according to a probability measure P on (S∞,B∞).

7 Conditional Expectations and Probabilities
Let (Ω,A, P ) denote a probability space and (S,B) a measurable space. A ran-
dom variable is a measurable mapping X : Ω → S, which means that X−1(B) ∈
A for all B ∈ B. In other words, X is a random variable if and only if X−1(B) ⊂
A. In stochastic models, a random variable usually gives information on a certain
phenomenon, e.g. the number of users in a queue at some specific time.

Consider any real–valued random variable X : (Ω,A) → (R,B), B denoting
the Borel σ–algebra on R, which is integrable or non–negative. While the random
variable X itself yields the full information, a rather small piece of information
on X is given by its expectation

E(X) :=

∫

Ω

X dP

The conditional expectation is a concept that yields a degree of information which
lies between the full information X and its expectation E(X).

To motivate the definition, we first observe that the distribution P X = P ◦X−1

of X is a measure on the sub–σ–algebra X−1(B) of A, i.e. in order to compute

P (X ∈ B) = P X(B) =

∫

X−1(B)

dP

we need to evaluate the measure P on sets

A := X−1(B) ∈ X−1(B) ⊂ A

On the other hand, the expectation E(X) is an evaluation of P on the set Ω =
X−1(S) only. Thus we can say that the expectation employs P only on the trivial
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σ–algebra {∅, Ω}, while X itself employs P on the σ–algebra X−1(B) generated
by X .

Now we take any sub–σ–algebra C ⊂ A. According to the Radon–Nikodym
theorem there is a random variable X0 : Ω → S with X−1(B) = C and

∫

C

X0dP =

∫

C

XdP (11)

for all C ∈ C. This we call the conditional expectation of X under C and write

E(X|C) := X0

A conditional expectation is P–almost certainly uniquely determined by (11).
Typical special cases and examples are

Example 9 For C = {∅, Ω}, the conditional expectation equals the expectation,
i.e. E(X|C) = E(X). For any σ–algebra C with X−1(B) ⊂ C we obtain
E(X|C) = X .

Example 10 Let I denote any index set and (Yi : i ∈ I) a family of random
variables. For the σ–algebra C = σ(

⋃

i∈I Y −1
i (B)) generated by (Yi : i ∈ I), we

write
E(X|Yi : i ∈ I) := E(X|C)

By definition we obtain for a σ–algebra C ⊂ A, random variables X and Y ,
and real numbers α and β

E(αX + βY |C) = αE(X|C) + βE(Y |C)

For σ–algebras C1 ⊂ C2 ⊂ A we obtain

E(E(X|C2)|C1) = E(E(X|C1)|C2) = E(X|C1) (12)

Let C1 and C2 denote sub–σ–algebras of A, C := σ(C1 ∪ C2), and X an integrable
random variable. If σ(X−1(B) ∪ C1) and C2 are independent, then

E(X|C) = E(X|C1)

If X and Y are integrable random variables and X−1(B) ⊂ C, then

E(XY |C) = X · E(Y |C) (13)
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Conditional probabilities are special cases of conditional expectations. Define
the indicator function of a measurable set A ∈ A by

1A(x) :=

{

1, x ∈ A

0, x /∈ A

Such a function is a random variable, since

1−1
A (B) = {∅, A, Ac, Ω} ⊂ A

with Ac := Ω \ A denoting the complement of the set A. Let C denote a sub–σ–
algebra of A. The conditional expectation of 1A is called conditional probability
of A. We write

P (A|C) := E(1A|C)

Immediate properties of conditional probabilities are

0 ≤ P (A|C) ≤ 1, P (∅|C) = 0, P (Ω|C) = 1

A1 ⊂ A2 =⇒ P (A1|C) ≤ P (A2|C)

all of which hold P–almost certainly. For a sequence (An : n ∈ N) of disjoint
measurable sets, i.e. An ∈ A for all n ∈ N and Ai ∩ Aj = ∅ for i 6= j, we obtain

P

(

∞
⋃

n=1

An

∣

∣

∣

∣

∣

C

)

=

∞
∑

n=1

P (An|C)

P–almost certainly. Let X : (Ω,A) → (R,B) denote a non–negative or integrable
random variable and Y : (Ω,A) → (Ω′,A′) a random variable. Then there is a
measurable function g : (Ω′,A′) → (R,B) with

E(X|Y ) = g ◦ Y

This is P Y –almost certainly determined by
∫

A′

g dP Y =

∫

Y −1(A′)

X dP

for all A′ ∈ A′. Then we can define the conditional probability of X given Y = y
as g(y). We write

E(X|Y = y) := g(y)

for all y ∈ Ω′.
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