Persamaan Diferensial Parsial Pertemuan XI

Nikenasih Binatari

Jurusan Pendidikan Matematika FMIPA UNY nikenasih@uny.ac.id

April 28, 2019

Overview

Bentuk Kanonik

PDP Orde Dua

Sesuai namanya, PDP Orde Dua paling tinggi memuat turunan tingkat dua dalam persamaan. Pada materi ini, hanya akan dikaji mengenai PDP Orde Dua Linear untuk dua variabel.

$$a(x,y)u_{xx} + b(x,y)u_{xy} + c(x,y)u_{yy} = d(x,y,u,u_x,u_y)$$
 (1)

PD dalam koordinat baru sebagai berikut :

$$\bar{A}(\xi,\eta)u_{\xi\xi} + \bar{B}(\xi,\eta)u_{\xi\eta} + \bar{C}(\xi,\eta)u_{\eta\eta} = \bar{E}(\xi,\eta,u,u_{\eta},u_{\xi})$$
 (2)

dengan

$$\bar{A}(\xi,\eta) = A(\xi_{x})^{2} + B\xi_{x}\xi_{y} + C(\xi_{y})^{2}
\bar{B}(\xi,\eta) = 2A\xi_{x}\eta_{x} + B(\xi_{x}\eta_{y} + \xi_{y}\eta_{x}) + 2C\xi_{y}\eta_{y}
\bar{C}(\xi,\eta) = A(\eta_{x})^{2} + B\eta_{x}\eta_{y} + C(\eta_{y})^{2}$$
(3)

Lebih lanjut lagi, perhatikan bahwa determinan dari PD dalam koordinat yang baru adalah

$$\bar{B}^2 - 4\bar{A}\bar{C} = (B^2 - 4AC)(\eta_x \xi_y - \eta_y \xi_x)^2.$$
 (4)

Bentuk Kanonik PD Parabolik,D = 0

Karena diskriminan bernilai 0, maka hanya terdapat satu persamaan karakteristik yaitu

$$\frac{dy}{dx} = -\lambda$$

Jika f(x,y)=c adalah solusi dari persamaan diferensial karakteristiknya maka dipilih koordinat yang baru adalah $\eta=x$ dan $\xi=f(x,y)$. Darisini diperoleh bahwa

$$\eta_x = 1, \ \eta_y = 0, \ \mathsf{dan} \ \xi_x = \lambda \xi_y \tag{5}$$

Substitusikan 5 pada persamaan 3 maka diperoleh bahwa A=0. Kemudian karena A=0 dan diskriminan dari PD 1 bernilai nol, maka dari Persamaan 4 diperoleh B=0. Jadi, bentuk kanonik dari PD parabolik adalah

$$u_{\eta\eta}=\hat{d}(\eta,\xi,u,u_{\eta},u_{\xi})$$

Ringkasan

Langkah-langkah mencari solusi PDP Linear Orde 2 Parabolik adalah

Tentukan persamaan kuadrat yang bersesuaian

$$A\lambda^2 + B\lambda + C = 0.$$

Misalkan solusinya adalah λ

Tentukan solusi dari Persamaan Karakteristik

$$\frac{dy}{dx} = -\lambda.$$

Misalkan solusinya adalah f(x, y) = c.

- **3** Pilih koordinat baru $\xi = f(x, y)$ dan $\eta = x$.
- **1** Transformasi PDP dalam koordinat (x, y) menjadi koordinat (ξ, η) . Bentuk PDP baru adalah

$$u_{\eta,\eta} = \hat{E}(\eta,\xi,u,u_{\eta},u_{\xi})$$

Selesaikan.

Contoh I

Example

Tentukan solusi umum dari PDP berikut :

$$u_{xx} + 2u_{xy} + u_{yy} = 0, \quad u = u(x, y).$$

Penyelesaian:

Persamaan kuadrat yang bersesuaian adalah

$$\lambda^2 + 2\lambda + 1 = 0.$$

Jadi solusinya adalah $\lambda = -1$.

Persamaan karakteristiknya adalah

$$\frac{dy}{dx} = 1$$

Jadi, solusi karakteristiknya adalah $y-x=c_{n}$

Contoh II

3 Dipilih transformasi koordinat $\xi = y - x$ dan $\eta = x$.

$$\xi_x = -1, \quad \eta_x = 1$$

 $\xi_y = 1, \quad \eta_y = 0.$

• Transformasi PDP dalam (x, y) menjadi (ξ, η) .

$$\begin{split} u_{x} &= -u_{\xi} + u_{\eta} \\ u_{xx} &= u_{\xi\xi} - 2u_{\xi\eta} + u_{\eta\eta} \\ u_{xy} &= -u_{\xi\xi} + u_{\xi\eta} \\ u_{yy} &= u_{\xi\xi}. \end{split}$$

Substitusikan pada PDP maka diperoleh

$$u_{\eta\eta} = 0 \quad \rightarrow \quad u_{\eta} = F(\xi) \quad \rightarrow \quad u = \eta F(\xi) + G(\xi)$$

Jadi, solusi umum dari PDP adalah u(x, y) = xF(y - x) + G(y - x).

Latihan

Tentukan solusi umum dari PD berikut :

$$u_{xx} + 4u_{xy} + 4u_{yy} = 0, \quad u = u(x, y).$$

Tentukan solusi umum dari Persamaan panas berikut :

$$u_t = ku_{xx}, \quad u = u(x, t).$$

Bentuk Kanonik PD Eliptik,D = 0

Pada PD eliptik, diskriminan bernilai negatif. Oleh karena itu diperoleh dua persamaan diferensial karakteristik berlainan tetapi bernilai kompleks. Meskipun demikian, karena solusi akar persamaan kuadratnya berlainan maka langkah-langkah mencari solusi PD eliptik dapat menggunakan langkah-langkah menyelesaikan PD hiperbolik.

PD eliptik bentuk kanonik real dapat diperoleh dengan mentransformasi kedalam koordinat yang baru dengan transformasi

$$\eta = \frac{1}{2}(f_1 + f_2) \operatorname{dan} \xi = \frac{1}{2i}(f_1 + f_2) \tag{6}$$

Dengan transformasi ini maka akan diperoleh PD baru dalam koordinat η dan ξ sebagai berikut:

$$u_{\eta\eta} + u_{\xi\xi} = \hat{d}(\eta, \xi, u, u_{\eta}, u_{\xi})$$

The End