WORKSHEET FUNGSI PERIODIK

Tujuan:

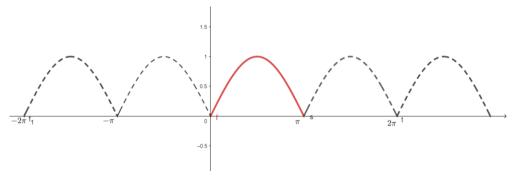
1. Mahasiswa mampu mengekspansi fungsi menjadi fungsi periodik.

D.3 FUNGSI PERIODIK

Perhatikan grafik fungsi sinus berikut :

Gambar 4.10

Tentukan nilai dari fungsi sinus pada titik-titik berikut :


X 1	f(x)	X2	f(x)
0_0		180^{0}	
30°		210^{0}	
450		2250	
600		2400	
900		2700	
1200		3000	
1350		3150	
150°		330^{0}	

Perhatikan bahwa nilai fungsi di $x = x_1$ sama dengan nilai fungsi di $x = x_2$, sementara $x_2 = x_1 + 180^{\circ}$. Secara umum untuk setiap titik, pada fungsi sinus berlaku

$$f(x+180^{0}) = f(x)$$
.

Darisini dapat kita katakan bahwa fungsi sinus merupakan fungsi periodik dengan periode 180°. Selanjutnya, jika diketahui suatu fungsi pada domain [0,L], bagaimana memperluas fungsi tersebut agar diperoleh fungsi periodik dengan periode L?

Sebagai gambaran perhatikan contoh fungsi berikut :

Gambar 4.11

Grafik kurva pada Gambar 4.11 merupakan grafik kurva perluasan fungsi yang dinyatakan pada kurva berwarna merah dengan periode π .

Secara umum, jika diberikan suatu fungsi f(x) yang terdefinisi pada domain [0,L], maka perluasan fungsi periodik dengan periode L dari fungsi tersebut dinyatakan sebagai fungsi g berikut

$$g(x) = \begin{cases} f(x), 0 < x \le L \\ f(x+L), x \text{ yang lain} \end{cases}$$

Latihan 4.3

Untuk lebih memahami perluasan fungsi menjadi fungsi periodik dengan periode sesuai domain awal, tentukan perluasan dari fungsi-fungsi yang diberikan pada Latihan 4.1 dan gambarkan ilustrasinya. Kalian dapat menggunakan *dynamic worksheet* yang telah disediakan.