Fotosintesis

Novri Youla Kandowangko

Internal Factor

- Kandungan pigmen daun (mis. Klorofil)
- Protoplasmik
- Enzim fotosintesis
- Tahanan daun
- <u>Kebutuhan fotosintat</u>
- <u>Hormon</u>
- Pengendalian genetik
- Umur daun

Kandungan klorofil daun

Plasma

Fotosintesis secara umum

Reaksi terang fotosintesis

Reaksi Gelap fotosintesis

Tahanan daun

Control of Stomatal Opening and Closing

Guard cells take up potassium ions (K⁺) by **active transport** (which requires ATP). This causes water to enter the cell by **osmosis**.

Stoma opening

Guard cell walls are unevenly thickened and have **radially** oriented cellulose microfibrils.

This causes the cells to bow as they becomes turgid. The stomate opens.

Stoma closing

When K⁺ ions are pumped out of the cell, water follows by osmosis and the stomate closes.

Hormon

Pengendalian genetik C₃ Leaf

bundle sheath cell

Novri Youla Kandowangko

C₄ Leaf

mesophyll

Yang penting untuk fotosintesis Stomata, guard cell (sel penjaga), sel mesofil dan vein

Umur daun

Faktor eksternal

- <u>CO2 lingkungan</u>
- <u>Cahaya: intensitas cahaya, panjang</u> <u>gelombang, fotoperiodisitas</u>
- <u>Suhu</u>
- <u>Air</u>
- Oksigen
- <u>Nutrisi</u>

bakterioklorofil a; kurva 2, klorofil a; kurva 3, klorofil b; kurva 4, phycoerythrobilin; kurva 5, β -karoten (Lincoln Taiz, 2006)

Urutan warna ditentukan oleh panjang gelombang cahaya. Cahaya yang dapat terlihat merupakan sebahagian kecil **spektrum elektromagnetik**. Semakin panjang gelombang maka warnanya semakin merah. Sehingga yang terpendek adalah jinga/violet. Yang memiliki panjang gelombang lebih panjang dari merah disebut dengan Infra Merah, sedangkan yang lebih pendek dari jinga/unggu disebut ultraviolet

Intensitas cahaya (Tipe C3)

Intensitas cahaya (Tipe C4)

Kenapa belajar fotosintesis ?

Karena fotosintesis merupakan reaksi biokimia (C,H,O --> reaksi hidup) penting ---yang menghasilkan "makanan" (selulosa, karbohidrat dll)

Dipelajari PENTING karena "harus meningkatkan efisiensi fotosintesis"-contoh pada tanaman jagung dari energi yang diterima hanya sekitar 1-2% energi matahari tsb yang dirubah menjadi "produk (karbohidrat, selulosa dll)", pada tanaman yang tidak dibudidayakan hanya sekitar 0.2%, tanaman tebu yang termasuk paling efisienpun hanya mampu merubah 8% dari total energi yang dia terima menjadi makanan

Suhu: aktivitas enzim fotosintesis

Novri Youla Kandowangko

Air

Novri Youla Kandowangko

Nutrisi

Control of Stomatal Opening and Closing

Guard cell walls are unevenly thickened and have radially oriented cellulose microfibrils. This causes the cells to bow as they becomes turgid. The stomate opens.

Stoma closing

When K⁺ ions are pumped out of the cell, water follows by osmosis and the stomate closes.

Chlorophyll a

up potassium

ions (K+) by

ringkasan:

 $3 \text{ CO}_2 + 3 \text{ H}_2\text{O} + 3 \text{ RuBP} + 9 \text{ ATP} + 6 \text{ NADPH} \longrightarrow$ 1 3-PGald + 6 NADP+ + 9 ADP + 9 Pi

Gambar 11.2 Rangkuman daur Calvin, ditekankan pada fase karboksilasi, reduksi, dan regenerasi

Enzim yang berperan dalam Reaksi yang terjadi dalam siklus Calvin

TABLE 8.1 Reactions of the Calvin cycle

Enzyme		Reaction	
1.	Ribulose-1,5-bisphosphate carboxylase/oxygenase	6 Ribulose-1,5-bisphosphate + 6 CO ₂ + 6 H ₂ O → 12 (3-phosphoglycerate) + 12 H ⁺	
2.	3-Phosphoglycerate kinase	12 (3-Phosphoglycerate) + 12 ATP → 12 (1,3-bisphosphoglycerate) + 12 ADP	
3.	NADP:glyceraldehyde-3-phosphate dehydrogenase	12 (1,3-Bisphosphoglycerate) + 12 NADPH + 12 H ⁺ → 12 glyceraldehye-3-phosphate + 12 NADP ⁺ + 12 P _i	
4.	Triose phosphate isomerase	5 Glyceraldehyde-3-phosphate → 5 dihydroxyacetone-3-phosphate	
5.	Aldolase	3 Glyceraldehyde-3-phosphate + 3 dihydroxyacetone- 3-phosphate → 3 fructose-1,6-bisphosphate	
6.	Fructose-1,6-bisphosphatase	3 Fructose-1,6-bisphosphate + 3 H ₂ O → 3 fructose- 6-phosphate + 3 P _i	
7.	Transketolase	2 Fructose-6-phosphate + 2 glyceraldehyde-3-phosphate → 2 erythrose-4-phosphate + 2 xylulose-5-phosphate	
8.	Aldolase	2 Frythrose-4-phosphate + 2 dihydroxyacetone-3-phosphate → 2 sedoheptulose-1,7-bisphosphate	
9.	Sedoheptulose-1,7,bisphosphatase	2 Sedoheptulose-1,7-bisphosphate + 2 $H_2O \rightarrow 2$ sedoheptulose- 7-phosphate + 2 P_i	
10.	Transketolase	2 Sedoheptulose-7-phosphate + 2 glyceraldehyde-3-phosphate → 2 ribose-5-phosphate + 2 xylulose-5-phosphate	
11a.	Ribulose-5-phosphate epimerase	4 Xylulose-5-phosphate \rightarrow 4 ribulose-5-phosphate	
11b.	Ribose-5-phosphate isomerase	2 Ribose-5-phosphate \rightarrow 2 ribulose-5-phosphate	
12.	Ribulose-5-phosphate kinase	6 Ribulose-5-phosphate + 6 ATP → 6 ribulose-1,5-bisphosphate + 6 ADP + 6 H ⁺	

Net: 6 OO_2 + 11 H₂O + 12 NADPH + 18 ATP \rightarrow Fructose-6-phosphate + 12 NADP⁺ + 6 H⁺ + 18 ADP + 17 P_i

Note: P_i stands for inorganic phosphate.

Gambar 1. Proses fotosintetik tumbuhan C4 yang melibatkan empat tahap dalam dua jenis sel yang berbeda: (1) Fiksasi CO₂ menjadi 4 atom C pada sel selubung didalam sel mesofil; (2) Pengangkutan 4 C dari sel mesofil ke sel selubung bundel; (3) Dekarboksilasi 4 asam Carbon, dan pembangkitan konsentrasi CO₂ tinggi dalam sel selubung pembuluh. CO, yang dikeluarkan diperbaiki oleh rubisco dan diubah menjadi karbohidrat oleh siklus Calvin. (4) Pengangkutan asam karbon tiga residu kembali ke sel mesofil, di mana akseptor CO₂ asli, diregenerasi.

Enzim yang berperan dalam reaksi fotosintesis tumbuhan C4

TABLE 8.3 Reactions of the C_4 photosynthetic carbon cycle

Enzyme	Reaction
1. Phosphoenolpyruvate (PEP) carboxylase	Phosphoenolpyruvate + $HOO_3^- \rightarrow oxaloacetate + P_i$
2. NADP:malate dehydrogenase	Oxaloacetate + NADPH + H ⁺ \rightarrow malate + NADP ⁺
3. Aspartate aminotransferase	Oxaloacetate + glutamate \rightarrow aspartate + α -ketoglutarate
4. NAD(P) malic enzyme	Malate + NAD(P) ⁺ \rightarrow pyruvate + CO ₂ + NAD(P)H + H ⁺
5. Phosphoenolpyruvate carboxykinase	Oxaloacetate + ATP \rightarrow phosphoenolpyruvate + OO ₂ + ADP
6. Alanine aminotransferase	Pyruvate + glutamate \Leftrightarrow alanine + α -ketoglutarate
7. Adenylate kinase	$AMP + ATP \rightarrow 2 ADP$
8. Pyruvate-orthophosphate dikinase	Pyruvate + P_i + ATP \rightarrow phosphoenolpyruvate + AMP + PP _i
9. Pyrophosphatase	$PP_i + H_2 O \rightarrow 2P_i$

Note: P_i and PP_i stand for inorganic phosphate and pyrophosphate, respectively.

The C4 photosynthetic pathway. The hydrolysis of two ATP drives the cycle in the direction of the arrows, thus pumping CO2 from the atmosphere to the Calvin cycle of the chloroplasts from bundle sheath cells.

Crassulacean acid metabolism (CAM). Temporal separation of CO uptake from photosynthetic reactions: CO uptake and fixation take place at night, and decar² boxylation and refixation of the internally² released CO occur during the day. The adap- tive advantage of CAM is the reduction of water loss by transpiration, achieved by the stomatal opening during the night.

31

Gambar 11.14 Rangkuman penambatan CO2 pada tumbuhan CAM