Emergency and Critical Care

Acute and Septic Shock

Objectives

- Describe the different types of shock.
- Describe the management of the patient experiencing shock.
- Describe the management of the patient in multisystem organ failure
- Describe the management of the patient in sepsis

Review previous lectures

- Describe the different types of shock:
 - Hypovolemic
 - Cardiogenic
 - Septic
 - Neurogenic
 - Anaphylactic
- List one cause for each type of shock
- What is the mechanism of action and dosing for vasoactive drugs:
 - Dopamine
 - Dobutamine
 - Noradrenaline/adrenaline
 - GTN/Nitroglycerine

'momentary pause in the act of death'

If not treated & managed quickly and appropriately will be followed by the grim reality

John Collins Warren 1895

- Inadequate perfusion of tissues
- Tissue perfusion is inadequate to supply & nutrients to body cells
- imbalance between oxygen supply & demand results in functional impairment of cells, tissues, organs & eventually body systems

Classifications

- Hypovolaemic 'empty tank'
- Cardiogenic 'defective tank pump'
- Distributive 'wrong size tank'
 - Septic

000

- Neurogenic
- Anaphylactic

Signs and Symptoms of Shock

- pallor
- cool/cold, clammy skin good early sign
- weak, thready pulses
- tachycardia only 60% of patients
- tachypnoea good early sign
- hypotension late sign
- postural hypotension good early sign
- altered mental status

- 1. Initial
- 2. Compensatory
- 3. Progressive
- 4. Refractory

• \downarrow CO & tissue perfusion

- \downarrow O2 delivery & other nutrients
- altered cellular function
- no S & S yet

- Vascular response
 - -Begins immediately
 - -Peripheral vasoconstriction
 - -Arterioles constrict
 - -Body is attempting to increase blood pressure and improve venous return to the right atrium

- Chemoreceptor response
 - Occurs as a result of low levels of oxygen and high levels of carbon dioxide
 - Occurs with arterial blood pressure less than 80 mmHg
 - Result is vasoconstriction
 - Begins within seconds of changes in blood pressure

- Cerebral response
 - Goal is to maintain perfusion to brain, heart, and lungs
 - Brain and heart blood vessels autoregulate blood flow based on needs of the tissues
 - Blood pressures below 50 mmHg leads to cerebral ischemia

- Blood flow is decreased to the kidneys, which activates the release of renin.
- Vasoconstriction of arterioles and some veins
- Retention of water by kidneys
- Decreased urinary output

- Adrenal response
 - Increased release of catecholamines (epinephrine and norepinephrine)
 - Goal is to increase cardiac output and improve blood pressures
 - Causes vasoconstriction
 - Cortisol is released
 - Increased blood sugar and increased insulin resistance
 - Kidneys retain water and sodium

- Hepatic response
 - Glycogneolysis is activated by release of epinephrine, break glycogen down into glucose
 Hepatic vessels constrict

- Pulmonary response
 - Tachypnea
 - Attempt to correct metabolic acidosis
 - Maximize oxygen delivery to the aveoli

Progressive Stage

- compensatory mechanisms begin to fail
- loss of autoregulation
- ↓ BP
- \downarrow coronary artery perfusion
- ↑ myocardial O₂ consumption exceeds O₂ supply
- myocardial depression failure
- \downarrow cerebral blood flow LOC

Progressive Stage

- severe hypoperfusion of tissue/organs
- anaerobic metabolism acidosis
- ↓ renal blood flow ↓UO acute tubular necrosis
- increased capillary permeability
- spillage of cellular contents
- acute pulmonary oedema, respiratory failure, arrthymias
- cell death

Refractory Stage

- severe cell destruction
- multiple system failure

 – cardiac, renal, hepatic, pancreatic, intestinal, haematological, neurological

- non-responsive to conventional treatment
- severe hypoxaemia refractory to O2 therapy
- ultimately death