ALGORITMA PEMBAGIAN

Jika diberikan 2 bilangan 3 dan 13, maka terdapat bilangan 4 dan 1 sedemikian sehingga 13 = 3 +.....

Jika diberikan 2 bilangan 3 dan -13, maka terdapat bilangan -5 dan 2 sedemikian sehingga -13 = (-5)3+2.

Motivasi

Jika diberikan 2 bilangan -3 dan 13, maka terdapat bilangan -4 dan 1 sedemikian sehingga 13 = (-4)(-3) +1.

Jika diberikan 2 bilangan -3 dan -13, maka terdapat bilangan 5 dan 2 sedemikian sehingga -13 = 5(-3) + 2

Motivasi

Jika diberikan 2 bilangan 0 dan 4, maka tidak terdapat bilangan bulat q dan r sehingga 4 = q(0) + r, dengan r < 0

Motivasi

Jika $a \neq 0$ dan b sebarang bilangan bulat, maka terdapat dengan tunggal bilangan bulat q dan r, dengan $0 \le r < |a|$ sedemikian sehingga berlaku b = qa + r. Selanjutnya, q dinamakan hasil bagi dan r dinamakan sisa pembagian.

Teorema 3.1 (Algoritma Pembagian)

Diperhatikan barisan

...,
$$b$$
-2 a , b - a , b , b + a , b +2 a , ...

Misalkan r bilangan bulat non negatif terkecil dalam barisan di atas, maka terdapat bilangan bulat q yang memenuhi r = b - qa.

Bukti Teorema 3.1

Karena b - qa - |a| berada dalam barisan dan b - qa bilangan bulat non negatif terkecil dalam barisan tersebut, maka b-qa-|a|<0. Akibatnya r<|a|. Karena juga berlaku $r \ge 0$, maka $0 \le r < |a|$. Terbukti keberadaan bilangan bulat q dan r.

Lanjutan Bukti Teorema 3.1

Selanjutnya, akan dibuktikan ketunggalan q dan r. Andaikan q dan r tidak tunggal, yaitu terdapat q_1 , q_2 , r_1 dan r_2 yang memenuhi $b = q_1 a + r_1$ dan $b = q_2 a + r_2$. Oleh karena itu, diperoleh

$$(q_1 - q_2) a + (r_1 - r_2) = 0$$

Lanjutan Bukti Teorema 3.1

Dari sini diperoleh bahwa r_1 - $r_2 = ka$, untuk suatu bilangan bulat k. Di lain pihak berlaku $r_1 - r_2 \in (-|a|, |a|)$. Oleh karena itu, haruslah berlaku $r_1 - r_2 = 0$ atau $r_1 = r_2$. Akibatnya $q_1 - q_2 = 0$ atau $q_1 = q_2$ Kontradiksi. Jadi seharusnya keberadaan q dan r tunggal adanya. ♦

Lanjutan Bukti Teorema 3.1

Himpunan semua bilangan bulat \mathbb{Z} , terpartisi menjadi n himpunan bagian, sesuai dengan sisa atas pembagian oleh suatu bilangan bulat positif n.

Akibat Algoritma Pembagian

$$\mathbb{Z} = A \cup B$$
, dengan

$$A = \{ ..., -4, -2, 0, 2, 4, ... \} = 2\mathbb{Z}$$

 $B = \{ ..., -5, -3, -1, 1, 3, ... \} = 2\mathbb{Z} + 1$

Contoh Akibat Algoritma Pembagian

Misalkan bilangan-bilangan 1059, 1417 dan 2312 dibagi oleh d > 1 memberikan sisa yang sama, namakan r. Tentukan dari d - r!

Contoh 3.1

Petunjuk: Berdasarkan yang diketahui, terdapat q_1 , q_2 dan q_3 , yang memenuhi $1059 = q_1 d + r$; $1417 = q_2 d + r$ dan $2312 = q_3 d + r$.

Jawaban: 15

Penyelesaian

Referensi

Santos, David A., 2007, *Number Theory Book for Mathematical Contest*, GNU Free Documentation Licence.

TERIMA KASIH