PERTEMUAN 7 UJI MULTIKOLINIERITAS

A. CAPAIAN PEMBELAJARAN

Pada materi ini akan dijelaskan tentang uji multikolinieritas. Setelah menyelesaikan perkuliahan ini, mahasiswa diharapkan mampu memahami konsep uji multikolinieritas dan pengaplikasian uji multikolinieritas pada program SPSS dengan tujuan memudahkan mahasiswa dalam tugas akhir.

B. URAIAN MATERI

1. Uji Multikolinieritas

Istilah ini multikoliniearitas itu sendiri pertama kali diperkenalkan oleh Ragner Frisch tahun 1934. Menurut Frisch, suatu model regresi dikatakan terkena multikoliniearitas bila terjadi hubungan linier yang sempurna (*perfect*) atau pasti (*exact*) di antara beberapa atau semua variabel bebas dari suatu model regresi. Akibatnya akan kesulitan untuk dapat melihat pengaruh variabel penjelas terhadap variabel yang dijelaskan (Maddala,1992: 269-270). Artinya bahwa masalah Multikoliniearitas tidak akan terjadi dalam model regresi yang bentuk fungsinya berbentuk non-linier, tetapi masalah Multikoliniearitas akan muncul dalam model regresi yang bentuk fungsinya berbentuk linier di antara variabel-variabel bebas.

Multikolinearitas atau kolinearitas ganda pertama kali dikemukakan oleh Ragnan Frisch dalam bukunya yang berjudul

"Statistical Conflurnce Analysis by Means Complete Regression Systems" pada tahun 1934. Variabel ekonomi memiliki kecenderungan bergerak secara bersama-sama sepanjang waktu. Kecenderungan faktor-faktor dalam deret waktu dapat menjadi penyebab terjadinya multikolinearitas. Menurut Gujarati (2003), multikolinearitas adalah adanya hubungan linear yang sempurna di antara beberapa atau semua variabel bebas dalam model regresi.

Uji Multikoliniearitas ini bertujuan menguji apakah pada model regresi ditemukan adanya korelasi antar variabel independen. Menurut Ghozali (2011:103), berpendapat bahwa "Uji multikolinearitas bertujuan untuk menguji apakah pada model regresi ditemukan adanya korelasi antar variabel bebas (independen)". Model regresi yang baik seharusnya tidak terjadi korelasi diantara variable independen. Menurut Singgih Santoso (2015:234) "Jika terbukti ada multikolinieritas, sebaiknya salah satu dari variabel independen yang ada dikeluarkan dari model, lalu pembuatan model regresi diulang kembali".

Berkaitan dengan masalah multikoliniearitas, Sumodiningrat (1994:281-182) mengemukakan bahwa ada 3 hal yang perlu dibahas terlebih dahulu:

Multikoliniearitas pada hakekatnya adalah fenomena sampel.
 Dalam model fungsi regresi populasi (*Population Regression Function = PRF*) diasumsikan bahwa seluruh variabel bebas

yang termasuk dalam model mempunyai pengaruh secara individual terhadap variabel tak bebas Y, tetapi mungkin terjadi bahwa dalam sampel tertentu.

2. Multikoliniearitas adalah persoalan derajat (*degree*) dan bukan persoalan jenis (*kind*).

Artinya bahwa masalah Multikoliniearitas bukanlah masalah mengenai apakah korelasi di antara variabel-variabel bebas negatif atau positif, tetapi merupakan persoalan mengenai adanya korelasi di antara variabelvariabel bebas.

 Masalah Multikoliniearitas hanya berkaitan dengan adanya hubungan linier di antara variabel-variabel bebas

Artinya bahwa masalah Multikoliniearitas tidak akan terjadi dalam model regresi yang bentuk fungsinya berbentuk non-linier, tetapi masalah Multikoliniearitas akan muncul dalam model regresi yang bentuk fungsinya berbentuk linier di antara variabel-variabel bebas.

Uji multikolinearitas dapat dilakukan dengan uji regresi, dengan nilai patokan VIF (Variance Inflation Factor) dan nilai Tolerance. Rumus VIF (Singgih Santoso, 2015:234) sebagai berikut:

$$VIF = \frac{1}{1 - R_1^2}$$

Untuk mendeteksi hal tersebut pedomannya adalah sebagai berikut:

- Jika nilai Tolerance > 0,10 dan nilai VIF < 10, maka dapat disimpulkan bahwa tidak ada multikolinieritas antar variabel independen dalam model regresi.
- Jika nilai Tolerance < 0,10 dan nilai VIF > 10, maka dapat disimpulkan bahwa ada multikolinieritas antar variabel independen dalam model regresi.

2. Dampak multikolinearitas (Montgomery, 2006)

Menurut Montgomery (2006) dampak multikolinearitas dapat mengakibatkan koefisien regresi yang dihasilkan oleh analisis regresi berganda menjadi sangat lemah atau tidak dapat memberikan hasil analisis yang mewakili sifat atau pengaruh dari variabel bebas yang bersangkutan.

Dalam banyak hal masalah multikolinearitas dapat menyebabkan uji T menjadi tidak signifikan padahal jika masing-masing variabel bebas diregresikan secara terpisah dengan variabel tak bebas (*simple regression*).

3. Cata Mengatasi Multikolinearitas

Masalah multikolinearitas dapat dihilangkan dengan menempuh beberapa cara (Montgomery, 2006), diantara sebagai berikut:

1) Menambahkan data yang baru

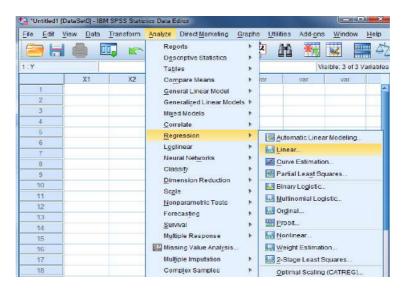
Penambahan sampel baru dapat digunakan untuk mengatasi multikolinearitas. Oleh karena adanya kolinearitas merupakan gambaran sampel, ada kemungkinan bahwa untuk sampel lainnya yang mencakup variabel-variabel yang sama, persoalan multikolinearitas mungkin tidak seserius seperti sampel sebelumnya.

2) Menghilangkan satu atau beberapa variabel bebas

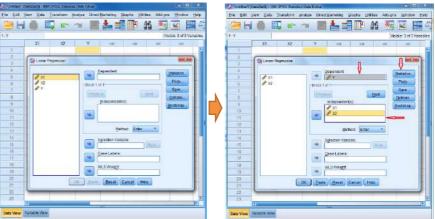
Pada permasalahan multikolinearitas yang serius, salah satu hal yang mudah untuk dilakukan ialah mengeluarkan salah satu variabel yang berkorelasi tinggi dengan variabel lainnya.

3) Estimasi Regresi Ridge

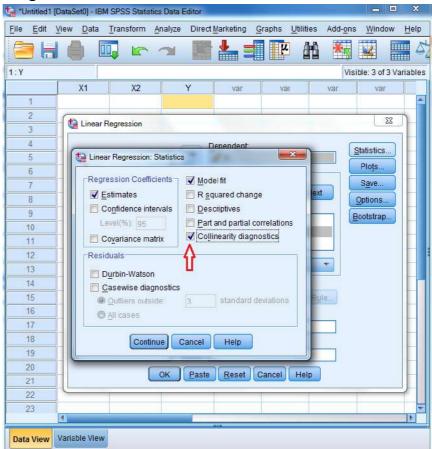
Estimasi Ridge untuk koefisien regresi dapat diperoleh dengan menyelesaikan suatu bentuk dari persamaan normal regresi. Asumsikan bahwa bentuk standar dari model regresi linear ganda adalah sebagai berikut:


$$Y_i = \beta 0 + \beta 1X_i 1 + \Box 2X_i 2 + \beta 3X_i 3 + \beta k X_i k + \varepsilon i$$

Parameter penting yang membedakan regresi ridge dari metode kuadrat terkecil adalah c. Tetapan bias c yang relatif kecil ditambahkan pada diagonal utama matriks X'X, sehingga koefisien estimator regresi ridge dipenuhi dengan besarnya tetapan bias c. (Hoerl dan Kennard, 1970).


- 4) Melakukan transformasi data seperti menjadi Logaritma Natural (Ln)
- 5) Melalukan Outlier terhadap data ekstrim

4. Tahapan analisis uji multikolinieritas menggunakan SPSS


1. Pilih menu **Analyze** -> **Regression** -> **Linear**.

2. Masukkan variable Y ke Dependent dan X1 dan X2 ke Independent.

3. Klik Statistics lalu beri tanda centang (V) pada Colinearity Diagnostics, kemudian Klik Continue > OK

4. Hasil Output:

Coefficients^a

	Collinearity Statistics					
Model	Tolerance	VIF				
X1	.255	3.221				
X2	.378	1.878				

a. Dependen Variabel : Y

Berdasarkan hasil ouput uji multikolinieritas maka diperoleh nilai *VIF* adalah sebagai berikut *tolerance value* > 0.1 dan *VIF* < 10, maka dapat disimpulkan tidak terjadi gejala multikolinearitas antar variabel independent.

C. LATIHAN SOAL
Jika diketahui data sebagai berikut : Ujilah apakah data mampu lolos

uji multikolinieritas? Asumsikan analisis anda secara tajam!

Tahun	Kode	Perusahaan	GCG	CSR	U. KAP	Return Saham
2010	ANTM 10	PT A TBK	86.15	0.6813	1.00	0.11
2011	ANTM 11	PT A TBK	86.55	0.6813	1.00	-0.34
2012	ANTM 12	PT A TBK	88.71	0.6813	1.00	-0.21
2013	ANTM 13	PT A TBK	88.92	0.5055	1.00	-0.15
2014	ANTM 14	PT A TBK	89.12	0.4835	1.00	-0.02
2010	BMRI 10	РТ В ТВК	91.81	0.065934	1.00	0.38
2011	BMRI 11	РТ В ТВК	91.91	0.065934	1.00	0.04
2012	BMRI 12	РТ В ТВК	91.88	0.065934	1.00	0.2
2013	BMRI 13	РТ В ТВК	92.36	0.186813	1.00	-0.03
2014	BMRI 14	РТ В ТВК	92.88	0.362637	1.00	0.37
2010	BBNI 10	PT C TBK	85.35	0.252747	1.00	0.96
2011	BBNI 11	PT C TBK	85.75	0.307692	1.00	-0.02
2012	BBNI 12	PT C TBK	86.07	0.538462	1.00	-0.03
2013	BBNI 13	PT C TBK	87.19	0.21978	1.00	0.07
2014	BBNI 14	PT C TBK	87.46	0.263736	1.00	0.54
2010	BBTN 10	PT C TBK	85.70	0.208791	1.00	-0.31
2011	BBTN 11	PT C TBK	85.90	0.186813	1.00	-0.26
2012	BBTN 12	PT C TBK	85.42	0.263736	1.00	0.2
2013	BBTN 13	PT C TBK	84.94	0.263736	1.00	-0.4
2014	BBTN 14	PT C TBK	85.75	0.263736	1.00	0.39
2010	PTBA 10	PT D TBK	84.33	0.494505	1.00	0.33
2011	PTBA 11	PT D TBK	82.55	0.43956	1.00	-0.24
2012	PTBA 12	PT D TBK	83.80	0.43956	1.00	-0.13
2013	PTBA 13	PT D TBK	84.09	0.527473	1.00	-0.32

2014	PTBA 14	PT D TBK	85.25	0.417582	1.00	0.23
2010	PTJSM 10	PT D TBK	83.41	0.252747	0.00	0.89
2011	PTJSM 11	PT D TBK	83.65	0.252747	0.00	0.23
2012	PTJSM 12	PT D TBK	84.52	0.89011	0.00	0.3
2013	PTJSM 13	PT D TBK	85.16	0.89011	0.00	-0.13
2014	PTJSM 14	PT D TBK	85.47	0.252747	0.00	0.49
2010	TIMAH 10	PT E TBK	70.73	0.901099	1.00	0.37
2011	TIMAH 11	PT E TBK	75.68	0.901099	1.00	-0.39
2012	TIMAH 12	PT E TBK	77.81	0.901099	1.00	-0.08
2013	TIMAH 13	PT E TBK	80.10	0.901099	1.00	0.04
2014	TIMAH 14	PT E TBK	81.70	0.901099	1.00	-0.23

D. DAFTAR PUSTAKA

- Maddala, G.S (1992). *Introduction to Econometric, 2nd Edition*, Mac-Millan Publishing Company, New York.
- Sumodiningrat, Gunawan. 2001. Ekonometrika Pengantar. Yogyakarta: PFEYogyakarta.
- Gujarati, Damodar N. (2003). Basic Econometric Forth Edition. New York: Mc Graw-Hill.
- Montgomery, Douglas C., Elizabeth A. Peck, G. Geoffrey Vining. (2006). Introduction to Linear Regression Analysis Fourth Edition. New York: John Willey and Sons.