PERTEMUAN 8

UJI HETEROSKEDASTISITAS

A. CAPAIAN PEMBELAJARAN

Pada materi ini dijelaskan uji akan tentang heteroskedastisitas. Setelah menyelesaikan perkuliahan ini, diharapkan mahasiswa mampu memahami konsep uji heteroskedastisitas dan pengaplikasian uji heteroskedastisitas pada program SPSS, guna mempermudah tugas akhir mahasiswa.

B. URAIAN MATERI

1. Uji Heteroskedastisitas

Uji heterokedastisitas merupakan alat uji model regresi untuk mengetahui ketidaksamaan variance dari residual satu pengamatan ke pengamatan yang lainnya. Jika variance dari residual satu ke pengamatan lain tetap, maka disebut pengamatan Homokedastisitas dan jika berbeda disebut Heterokedastisitas. Model regresi yang baik adalah yang homokedastisitas atau tidak terjadi masalah heterokedastisitas. Menurut Ghozali (2013) "Uji heteroskedastisitas bertujuan untuk mengetahui apakah dalam model regresi terjadi ketidaksamaan varian dari suatu residual pengamatan ke pengamatan lain". Kebanyakan data cross section mengandung situasi heteroskesdatisitas karena data ini menghimpun data yang mewakili berbagai ukuran (kecil, sedang, dan besar).

- 2. Konsekuensi Heteroskedastisitas
 - a. Akibat tidak konstannya varians menyebabkan varians hasil estimasi menjadi besar.
 - b. Besarnya varians estimasi akan berpengaruh pada uji hipotesis yang dilakukan (uji t dan uji F) karena kedua uji tersebut menggunakan besaran varians estimasi. Akibatnya, kedua uji hipotesis tersebut menjadi tidak akurat.
 - c. Lebih besarnya varians estimasi akan mengakibatkan *standard error* juga lebih besar sehingga interval kepercayaan menjadi lebar.

- d. Akibat dari beberapa dampak tersebut menyebabkan kesimpulan yang diambil dari persamaan regresi yang dihasilkan dapat menyesatkan.
- 3. Cara Uji Heteroskedastisitas

Beberapa metode pengujian yang bisa digunakan diantaranya yaitu Uji Park, Uji Glesjer, Grafik Plot (Scatter Plot), dan uji koefisien korelasi Spearman.

a) Uji Park

Metode uji Park yaitu dengan meregresikan nilai logaritma natural dari residual kuadrat (Lne^2) dengan variabel independen (X_1 dan X_2).

Kriteria pengujian adalah sebagai berikut:

- 1. Jika nilai Signifikansi > 0,05 berarti tidak terdapat gejala heteroskedastisitas
- 2. Jika nilai Signifikansi < 0,05 yang berarti terdapat gejala heteroskedastisitas.
- b) Uji Glejser

Uji Glejser dilakukan dengan cara meregresikan antara variabel independen dengan nilai absolut residualnya (ABS_RES). Dasar pengambilan keputusan menggunakan uji Glejser sebagai berikut:

- 1. Jika nilai Signifikasi (Sig.) > 0,05, maka tidak terjadi gejala heteroskedastisitas dalam model regresi
- 2. Jika nilai Signifikansi (Sig.) < 0,05, maka terjadi gejala heteroskedastisitas

Langkah-langkah analisis pada SPSS sebagai berikut:

*Untitl	ed1 [DataS	et0] - IE	M SPSS Statis	tics Data I	Editor					Catter and a	
<u>File</u>	dit <u>V</u> iew	Data	Transform	Analyze	Direct <u>M</u> arketing	Graph	s <u>U</u>	tilities	Add- <u>o</u> ns	Window	<u>H</u> elp
1.V			I 🗠	Rej D <u>e</u> :	ports scriptive Statistics	۲ ۲	L	h		ible: 2 of 2	
1.1		X1	X2	Ta <u>t</u> Co <u>i</u> Gei Gei	oles mpare Means neral Linear Model neralized Linear Model	tels t	(ar		var	var	
4				<u>C</u> ol <u>R</u> e	ed Models rrelate gression	р 		Auton	natic Linea	r Modeling	
6 7 8 9				L <u>oc</u> Nei Cla	glinear ural Net <u>w</u> orks issify	р р р		Linea Curve Partia	r Estimation I Lea <u>s</u> t Sqi	n uares	
10 11 12 13				<u>D</u> in Sc <u>a</u> Noi For	nension Reduction ale nparametric Tests ecas <u>t</u> ing	* * * *	R	Binar, <u>M</u> ultin Or <u>d</u> in	/ Logistic omial Logi al	stic	
14 15 16				Sur Mul Mis Mul	vivai Itiple Response sing Value Analysis Itiple Imputation	, , ,		<u>N</u> onlii Weigt	near nt Estimatio	on	
18				Col	mp <u>l</u> ex Samples		Pails	<u>O</u> ptim	al Scaling	(CATREG)	

1. Analyze > Regression > Linear

2. Masukkan variabel Y ke Dependent dan X ke Independent. Kemudian klik **Save**

 Pada kotak dialog "Linear Regressions : Save" beri tanda centang (∨) pada Unstandardized, kemudian klik Continue > OK

4. Pada **Data View** akan muncul variabel baru dengan nama **RES_1**

le	Edit	View	Data	Transform	Analyze	Direct Mark	ceting Gr	raphs	Utilities	Add-ons	Window	Hel
2) I						in =11	4	A1	*		
RE	IS_1			AL.						Visit	ele: 4 of 4 V	ariabl
			(1	X2		Y	RES_	1	- V-		var	va
	1							<u></u>		-		
	2											
	3											
	4											
	5				_							
	6	_										
	1	_										
	8	-		-								
	9	-										
	10	-										
	12				-							
	19	-										
-	14	-										
1	15											
1	16											
	17	1										
	18											
1	19											
1	20											
4	2.1											
3	22											
1	23											
	20											
ate	View	Variabl	e View	i								

5. Variabel baru **RES_1** akan di gunakan untuk membuat variabel **Abs_RES.** Klik **Transform > Compute Variable**

 Pada kotak "Compute Variable", berikan nama pada "Target Variabel" ketik "Abs_RES" dan pada kotak "Numeric Expression" ketik "ABS(RES_1)" klik OK

Tripet House	 Aurobio grave Autoritic COS Microsoft COF Convestor Caral Oxford Caral	S Japparauks ≥ 14,85 Tas Esan ⇒ 17 ⇒ 18 ⇒	HING(Cosson Korea, 1 & a a	Fundas grade All All minist COF Anonatta COF Convestor C
Coperando cano de la compañía de la	 	iptoral case selection	Constant CK. Parls Back) Cartar (Hop	1

7. Pada **Data View** akan muncul variabel baru dengan nama **Abs_RES**

le j	Edit	⊻iew	Data	Transform	Analyze	Direct 1	Aarketing	Graphs	Utilities	Add-ons	Window	Help
2					-34	1	*	ч П.	1 <i>8</i> 13	*		4
Abs_	RES									VISI	ble: 5 of 5 V	ariable
		×	1	X2		Y	RE	S_1	Abs	RES	-	
1												
2												
З												
4												
5												
6												
7												
8												
9												
10):											
- 11												
12	2											
13	3											
14	6											
15	5 (
16	5											
17	1											
18	3											
19	9											
20)											
21												
22	2											
23	3											
		8	_									

8. Variabel baru **Abs_RES** akan di gunakan untuk Uji Glejser. **Analyze > Regression > Linear**

9. Masukkan variabel **Abs_RES** ke Dependent dan variabel **X** ke Independent. Kemudian klik **Save**

*Unti	tled1 (DataSe	et0] - IB	M SPS	S Statis	tics Data	Editor	_						• ×
<u>File</u>	Edit	View	Data	Tran	sform	Analyze	Dire	ct <u>M</u> arketin	ig <u>G</u> raj	phs <u>I</u>	Utilities	Add-on:	s <u>W</u> indo	w <u>H</u> elp
	H				5	2	14			ч	ana a	*5		
1 Abs_	RES					10.						Vis	sible: 5 of 5	5 Variables
			X1		X2		Y		RES_1		Abs	_RES	var	
1				1										
2		(ta	Linear	Reares	ssion			-		-				×
3			Linoal	riogro	solon					-				
4								Depende	nt:		V		Statistics	
5			💫 X1				-	🚲 Abs_	RES				Ploto	
6			× X2			1	Block 1	l of 1					11013	
. 7				standa	rdized F	Res	Prev	ious			Next		Save	
8			. On.	Janua	1012001		Cancer.	Indepen	dent(e):		<u>I d</u> osti		Options	
9	۱ <u> </u>							A X1	ident(5).	(Bootstrap.	
10								A X2						
11								TT				_		
12														
13							_		Method	Ent	ler	· ·		
14								Selection	Variable					
15							+				RU	le		
16								Case Lat	els:					
17							*							
18								WLS Wei	ght:					
19						1	*							
20	k j				1	OK	Past	e Ress	at Car	Icel	Help			
21					1	UK :	Last	e litese	Car		ristp			
22		-	-		-		-		-	-			10	
23		240												-
-	1		10 10120				-	***		_		_	_	
Data V	/iew	Variat	ole View	1										

10. Pada kotak dialog "Linear Regressions : Save" Hilangkan tanda centang (∨) pada Unstandardized, kemudian klik Continue > OK

1: Abs_RES	Linear Regression: Save Predicted Values Unstandardized Standardized Adjusted S.E. of mean predictions Distances Mahaianobis Cook's Leverage values Prediction Intervals	Residuals Unstandardized Standardized Studentized Studentized Studentized deleted Studentized deleted Studentized deleted Influence Statistics DfBeta(s) Standardized DfBeta(s) DfFit Standardized DfFit	of 5 Variable.
12 13 14 16 16 17 18 19 20 21 22 23	Mean Individual Confidence Interval: 95 % Coefficient statistics Create coefficient statistics Create a new dataaet Dataset name: Write a new data file File. Export model information to XML file Include the covariance matrix	Browse	

11. Hasil Output SPSS

	Coefficients ^a										
Model		Sig.									
1	(Constant)										
	X1	.157									
	λZ	.067									
		.056									

a. Dependent Variabel : Abs_RES

Pada tabel **Coefficients** kolom Sig. dapat dilihat bahwa nilai sig. X1 sebesar 0,067 dan Sig. X2 sebesar 0,56 dimana kedua variabel nilai sig > 0,05 maka **tidak terjadi gejala heteroskedastisitas**

c) Grafik Plot (ScatterPlot)

Uji heteroskedastisitas dapat dilihat dengan grafik plot (scatterplot) dimana penyebaran titik-titik yang di timbulkan terbentuk secara acak, tidak membentuk sebuah pola tertentu serta arah penyebarannya berada di atas maupun di bawah angka 0 pada sumbu Y. Dasar pengambilan keputusan menggunakan gambar scatterplots sebagai berikut:

- 1. Jika pada grafik *scatter plot* terlihat titik-titik yang membentuk pola tertentu, yang teratur (misal bergelombang, melebar kemudian menyempit), maka dapat disimpulkan telah terjadi masalah Heteroskedastisitas.
- 2. Jika pada grafif *scatter plot*, titik-titik menyebar di atas dan di bawah angka nol pada sumbu Y serta tidak membentuk pola tertentu yang teratur (misal bergelombang, melebar kemudian menyempit), maka dapat disimpulkan tidak terjadi masalah heteroskedastisitas (*variance* sama/Homoskedastisitas)

Langkah-langkah analisis pada SPSS sebagai berikut:

1. Pilih menu Analyze -> Regression -> Linear.

2. Masukkan variabel **Y** ke Dependent dan variabel **X** ke Independent. Kemudian klik Plot

3. Pada kotak **Linear Regression :Plots** masukkan **SRESID** ke Y dan **ZPRED** ke X.

Untitled1 [[DataSet0] - IBM SPSS Statistics Data Editor	
<u>File Edit </u>	/iew Data Transform Analyze Direct Marketing Graphs Utilities /	Add- <u>o</u> ns <u>W</u> indow <u>H</u> e
	🍓 🛄 🗠 🛥 📑 🏪 🚍 🎼	
1 : X1		Visible: 5 of 5 Variat
1	Linear Regression	
2	Linear Regression: Plots	Statistics
3		Dista
4	DEPENDNT Scatter 1 of 1	
5	*ZPRED Previous Next	Save
6	*DRESID	Options
7		Bootstrap
8	*SRESID	
9		
10	ZPRED	
11	Standardized Residual Plots	
12	Histogram	
13	Normal probability plot	
14		
15	Continue Cancel Help	
16		
17		
18	OK Paste Reset Cancel Help	
19		
20		
21		
22		
23		
		, r
Data View	Variable View	

- 4. Klik Continue lalu OK.
- 5. Hasil Output SPSS :

Dari gambar grafik scatterplot diatas tampak bahwa titik-titik menyebar dan tidak membentuk pola tertentu. Dengan demikian dapat disimpulkan bahwa tidak terjadi heterokedastisitas. d) Uji koefisien korelasi spearman / rank spearman

Prinsip korelasi rank spearman adalah mengkorelasikan variable independen dengan nilai residual unstandardized. Pengujian yang dipakai menggunakan tingkat signifikansi sebesar 0.05 dengan uji dua arah. Dasar pengambilan keputusan menggunakan uji Rannk Spearman sebagai berikut:

- 1. Jika nilai Signifikasi (Sig.) > 0,05, maka tidak terjadi gejala heteroskedastisitas dalam model regresi
- 2. Jika nilai Signifikansi (Sig.) < 0,05, maka terjadi gejala heteroskedastisitas

Langkah-langkah analisis pada SPSS sebagai berikut:

- 🚰 "Untitled1 [DataSet0] IBM SPSS Statistics Data Editor Elle Edit View Data Transform Analyze Direct Marketing Graphs Utilities Add-ons Window Help ; 🖻 🏘 🔣 🖬 🖾 Reports 😑 🗄 🥚 🛄 🗠 Descriptive Statistics Visible: 3 of 3 Variables 1:Y Tables X2 X1 Compare Means . var General Linear Model Generalized Linear Models ▶ Mixed Models <u>C</u>orrelate
 Regression

 Loglinear

 Neural Networks

 Classify
 📕 Automatic Linear Modeling.. 6 Linear... Curve Estimation... Reartial Least Squares. Dimension Reduction 10 11 Binary Logistic.. Scale . Multinomial Logistic... Nonparametric Tests * Grdinal... . Forecasting Probit... . 14 Survival Nonlinear.. Multiple Response Missing Value Analysis... Weight Estimation. 16 Optimal Scaling (CATREG). Complex Samples
- 1. Analyze > Regression > Linear

2. Masukkan variabel Y ke Dependent dan X ke Independent. Kemudian klik **Save**

 Pada kotak dialog "Linear Regressions : Save" beri tanda centang (V) Unstandardized pada residuals, kemudian klik Continue > OK

4. Pada **Data View** akan muncul variabel baru dengan nama **RES_1**

le <u>E</u> dit	<u>View</u> <u>D</u> ata	Transform	Analyze	Direct Marketing	Graphs	Utilities	Add-ons	Window	Help
े k	; 🔴 [-		<u>با</u>	1 AMA	*5		
RES_1							VISID	le: 4 of 4 V	ariable
	X1	X2		Y F	RES_1	Ve		var	va
1			78.16						
2									
3									
4									
5									
6									
7			-						
8									
9									
10									
311									
12									
13									
14									
15							-	-	
16									
17									
18									
19									
20									
21									
22									
31	1.0								-

5. Variabel baru **RES_1** akan di gunakan untuk Uji Rank Spearmans.

Analyze > Correlate > Bivariate

 Pada kolom Bivariate Correlations masukkan semua variabel independent (X) dan Unstandardized Residual ke kolom Variables, hilangkan tanda centang pada bagian Pearson dan berikan tanda centang pada Spearman > OK

7. Hasil Output SPSS

Correlation

			X1	X2	Unstandardized Residual
Spearman's rho	X1	Correlation Coefficient	1,000	,757**	,025
		<u>Sig (2-</u>		,000	,865
		tailed)	20	20	20
		Ν			
	X2	Correlation	,757**	1,000	,245
		Coefficient			
		Sig (2-	,000		,544
		tailed)	20	20	20

		N				
Unsta	ndardized	Correla	tion	,025	,245	1,000
Resid	ual	Coeffici	ent			
		Sig.	(2-	,865	,544	
		tailed)		20	20	20
		Ν				

**. Correlation is significant at the 0,01 level (2-tailed)

Pada tabel **Correlations** kolom Sig. (2-tailed) > **Unstandardized Residul** sebesar 0,865 dan 0,544 > 0,05 maka tidak terdapat gejala heteroskedastisitas

Cara Mengatasi gejala Heteroskedastisitas

- 1. Menggunakan alternatif uji lain dalam menguji Heteroskedastisitas seperti Uji Park, Grafik Scatterplots, Uji rank spearman dan uji white.
- 2. Melakukan tranformasi data penelitian menjadi Logaritma natural (Ln) atau yang lainnya
- 3. Melakukan outlier data penelitian
- 4. Mengurangi atau menambah data penelitian

C. SOAL LATIHAN

Ujilah data berikut apakah lolos uji heteroskedastisitas? Analisis dengan tajam!

					U.	Return
Tahun	Kode	Perusahaan	GCG	CSR	KAP	Saham
2010	ANTM 10	PT A TBK	86.15	0.6813	1.00	0.11
2011	ANTM 11	PT A TBK	86.55	0.6813	1.00	-0.34
2012	ANTM 12	PT A TBK	88.71	0.6813	1.00	-0.21
2013	ANTM 13	PT A TBK	88.92	0.5055	1.00	-0.15
2014	ANTM 14	PT A TBK	89.12	0.4835	1.00	-0.02
2010	BMRI 10	PT B TBK	91.81	0.065934	1.00	0.38
2011	BMRI 11	PT B TBK	91.91	0.065934	1.00	0.04
2012	BMRI 12	PT B TBK	91.88	0.065934	1.00	0.2

2013	BMRI 13	РТ В ТВК	92.36	0.186813	1.00	-0.03
2014	BMRI 14	PT B TBK	92.88	0.362637	1.00	0.37
2010	BBNI 10	PT C TBK	85.35	0.252747	1.00	0.96
2011	BBNI 11	PT C TBK	85.75	0.307692	1.00	-0.02
2012	BBNI 12	PT C TBK	86.07	0.538462	1.00	-0.03
2013	BBNI 13	PT C TBK	87.19	0.21978	1.00	0.07
2014	BBNI 14	PT C TBK	87.46	0.263736	1.00	0.54
2010	BBTN 10	PT C TBK	85.70	0.208791	1.00	-0.31
2011	BBTN 11	PT C TBK	85.90	0.186813	1.00	-0.26
2012	BBTN 12	PT C TBK	85.42	0.263736	1.00	0.2
2013	BBTN 13	PT C TBK	84.94	0.263736	1.00	-0.4
2014	BBTN 14	PT C TBK	85.75	0.263736	1.00	0.39
2010	PTBA 10	PT D TBK	84.33	0.494505	1.00	0.33
2011	PTBA 11	PT D TBK	82.55	0.43956	1.00	-0.24
2012	PTBA 12	PT D TBK	83.80	0.43956	1.00	-0.13
2013	PTBA 13	PT D TBK	84.09	0.527473	1.00	-0.32
2014	PTBA 14	PT D TBK	85.25	0.417582	1.00	0.23
2010	PTJSM 10	PT D TBK	83.41	0.252747	0.00	0.89
2011	PTJSM 11	PT D TBK	83.65	0.252747	0.00	0.23
2012	PTJSM 12	PT D TBK	84.52	0.89011	0.00	0.3
2013	PTJSM 13	PT D TBK	85.16	0.89011	0.00	-0.13
2014	PTJSM 14	PT D TBK	85.47	0.252747	0.00	0.49
2010	TIMAH 10	PT E TBK	70.73	0.901099	1.00	0.37

2011	TIMAH 11	PT E TBK	75.68	0.901099	1.00	-0.39
2012	TIMAH 12	PT E TBK	77.81	0.901099	1.00	-0.08
2013	TIMAH 13	PT E TBK	80.10	0.901099	1.00	0.04
2014	TIMAH 14	PT E TBK	81.70	0.901099	1.00	-0.23

D. DAFTAR PUSTAKA

- Ghozali, Imam. (2013). Aplikasi Analisis Multivariate dengan Program IBM SPSS 21 Update PLS Regresi. Semarang: Badan Penerbit Universitas Diponegoro.
- Gujarati, Damodar N. (2003). Basic Econometric Forth Edition. New York: Mc Graw-Hill.
- Maddala, G.S (1992). *Introduction to Econometric, 2nd Edition*, Mac-Millan Publishing Company, New York.