
I M P L E M E N TAT I O N

data model describes the data that flow through the business processes in an
organization. During the analysis phase, the data model presents the logical

organization of data without indicating how the data are stored, created, or manipulated
so that analysts can focus on the business without being distracted by technical details.
Later, during the design phase, the data model is changed to reflect exactly how the data
will be stored in databases and files. This chapter describes entity relationship diagram-
ming, one of the most common data modeling techniques used in industry.

OBJECTIVES

■ Explain the rules and style guidelines for creating entity relationship diagrams.
■ Create an entity relationship diagram.
■ Describe the use of a data dictionary and metadata.
■ Explain how to balance entity relationship diagrams and data flow diagrams.
■ Describe the process of normalization.

CHAPTER OUTLINE

C H A P T E R 6

A

DATA
MODELING

Introduction
The Entity Relationship Diagram

Reading an Entity Relationship
Diagram

Elements of an Entity Relationship
Diagram

The Data Dictionary and Metadata
Creating an Entity Relationship Diagram

Building Entity Relationship
Diagrams

Advanced Syntax
Applying the Concepts at Tune Source

Validating an ERD
Design Guidelines
Normalization
Balancing Entity Relationship

Diagrams with Data Flow Diagrams
Summary
Appendix 6A: Normalizing the Data

Model

c06DataModeling.qxd 9/30/11 11:04 AM Page 223

INTRODUCTION

During the analysis phase, analysts create process models to represent how the
business system will operate. At the same time, analysts need to understand the
information that is used and created by the business system (e.g., customer infor-
mation, order information). In this chapter, we discuss how the data that flow
through the processes are organized and presented.

A data model is a formal way of representing the data that are used and cre-
ated by a business system; it illustrates people, places, or things about which infor-
mation is captured and how they are related to each other. The data model is drawn
by an iterative process in which the model becomes more detailed and less con-
ceptual over time. During analysis, analysts draw a logical data model, which shows
the logical organization of data without indicating how data are stored, created, or
manipulated. Because this model is free of any implementation or technical details,
the analysts can focus more easily on matching the diagram to the real business
requirements of the system.

In the design phase, analysts draw a physical data model to reflect how the
data will physically be stored in databases and files. At this point, the analysts inves-
tigate ways to store the data efficiently and to make the data easy to retrieve. The
physical data model and performance tuning are discussed in Chapter 11.

Project teams usually use CASE tools to draw data models. Some of the CASE
tools are data modeling packages, such as ERwin by Platinum Technology, that help
analysts create and maintain logical and physical data models; they have a wide array
of capabilities to aid modelers, and they can automatically generate many different
kinds of databases from the models that are created. Other CASE tools (e.g., Oracle
Designer) come bundled with database management systems (e.g., Oracle), and they
are particularly good for modeling databases that will be built in their companion
database products. A final option is to use a full-service CASE tool, such as Visible
Analyst Workbench, in which data modeling is one of many capabilities, and the tool
can be used with many different databases. A benefit of the full-service CASE tool is
that it integrates the data model information with other relevant parts of the project.

In this chapter, we focus on creating a logical data model. Although there are
several ways to model data, we will present one of the most commonly used tech-
niques: entity relationship diagramming, a graphic drawing technique developed by
Peter Chen1 that shows all the data components of a business system. We will first
describe how to create an entity relationship diagram (ERD) and discuss some style
guidelines. Then, we will present a technique called normalization that helps ana-
lysts validate the data models that they draw. The chapter ends with a discussion of
how data models balance, or interrelate, with the process models that you learned
about in Chapter 5.

THE ENTITY RELATIONSHIP DIAGRAM

An entity relationship diagram (ERD) is a picture which shows the information that
is created, stored, and used by a business system. An analyst can read an ERD to
discover the individual pieces of information in a system and how they are organized

224 Chapter 6 Data Modeling

1 P. Chen, “The Entity-Relationship Model—Toward a Unified View of Data,” ACM Transactions on Database
Systems, 1976, 1:9–36.

c06DataModeling.qxd 9/30/11 11:04 AM Page 224

and related to each other. On an ERD, similar kinds of information are listed
together and placed inside boxes called entities. Lines are drawn between entities to
represent relationships among the data, and special symbols are added to the dia-
gram to communicate high-level business rules that need to be supported by the
system. The ERD implies no order, although entities that are related to each other
are usually placed close together.

For example, consider the Lawn Chemical Request system that was described
in Chapter 5. Although this system is just a small part of the information system for
a lawn care business, we will use it for our discussion on how to read an entity rela-
tionship diagram. First, go back and look at the sample DFD for the chemical
request process in Figure 5-1. Although we understand how the system works from
studying the data flow diagram, we have very little detailed understanding of the
information itself that flows through the system. What exactly is a “new chemical
request”? What pieces of data are captured in a “chemical pick-up authorization”?

Reading an Entity Relationship Diagram

The analyst can answer these questions and more by using an entity relationship
diagram. We have included a partial ERD for the chemical request scenario in
Figure 6-1. First, we have organized the data into three main categories: Lawn
Chemical Applicator, Chemical Request, and Chemical. The Lawn Chemical
Applicator data describe the employees who apply the lawn chemicals. The
Chemical Request data capture information about every chemical request event,
and the chemical data describe the chemicals used for lawn care.

We can also see the specific facts that describe each of the three categories.
For example, a chemical is described by its ID number, name, description, approval
status, and unit of measure. We can also see what can be used to uniquely identify
a chemical, a chemical request, and an LCA, by looking for the asterisks next to the
data elements. A unique ID has been created to identify every LCA and every
chemical. A chemical request is uniquely identified by a combination of the LCA
ID, the chemical ID, and the request date.

The lines connecting the three categories of information communicate the
relationships that the categories share. By reading the relationship lines, the analyst
understands that an LCA makes chemicals requests and chemical requests involve
chemicals.

The Entity Relationship Diagram 225

FIGURE 6-1
Chemical Request ERD

*LCA_ID
 LCA_Name
 LCA_HireDate
 LCA_Qualification
 LCA_CellPhone

LAWN CHEMICAL
APPLICATOR

CHEMICAL REQUEST

*CHM_ID
 CHM_Name
 CHM_Description
 CHM_ApprovalStatus
 CHM_Unit

CHEMICAL

makes

is made by

involves

involved in

*LCA_ID
*CHM_ID
*RequestDate
 RequestQuantity

c06DataModeling.qxd 9/30/11 11:04 AM Page 225

The ERD also communicates high-level business rules. Business rules are con-
straints or guidelines that are followed during the operation of the system; they are
rules such as “A payment can be cash, check, debit card, credit card, coupon(s), or food
stamps,” “A sale is paid for by one or more payments,” or “A customer may place many
orders.” Over the course of a workday, people are constantly applying business rules
to do their jobs, and they know the rules through training or knowing where to look
them up. If a situation arises where the rules are not known, workers may have to refer
to a policy guide or written procedure to determine the proper business rules.

On a data model, business rules are communicated by the kinds of relation-
ships that the entities share. From the ERD, for example, we know from the “crow’s
foot” placed on the line closest to the Chemical Request that an LCA may make
many Chemical Requests. We can see by the two bars placed on the line closest to
the LCA that a Chemical Request is made by exactly one LCA. Ultimately, the new
system should support the business rules we just described, and it should ensure
that users don’t violate the rules when performing the processes of the system.
Therefore, in our example, the system should not permit a chemical request to be
made that does not involve an LCA. Similarly, the system should not allow a chem-
ical request to involve more than one LCA.

Now that you’ve seen an ERD, let’s step back and learn the ERD basics. In
the following sections, we will first describe the syntax of the ERD, using the dia-
gram in Figure 6-1. Then we will teach you how to create an ERD by using an
example from Tune Source.

Elements of an Entity Relationship Diagram

There are three basic elements in the data modeling language (entities, attributes,
and relationships), each of which is represented by a different graphic symbol.
There are many different sets of symbols that can be used on an ERD. No one set
of symbols dominates industry use, and none is necessarily better than another. We
will use crow’s foot in this book. Figure 6-2 summarizes the three basic elements
of ERDs and the symbols we will use.

Entity The entity is the basic building block for a data model. It is a person, place,
event, or thing about which data is collected—for example, an employee, an order,
or a product. An entity is depicted by a rectangle, and it is described by a singular
noun spelled in capital letters. All entities have a name, a short description that
explains what they are, and an identifier that is the way to locate information in the
entity (which is discussed later). In Figure 6-1, the entities are Lawn Chemical
Applicator, Chemical Request, and Chemical.

Entities represent something for which there exist multiple instances, or
occurrences. For example, John Smith and Susan Jones could be instances of the
customer entity (Figure 6-3). We would expect the customer entity to stand for all
of the people with whom we have done business, and each of them would be an
instance in the customer entity. If there is just one instance, or occurrence, of a per-
son, place, event, or thing, then it should not be included as an entity in the data
model. For example, think a little more broadly about the lawn care business’s
information system. Figure 6-1 focuses on just a small part of that information sys-
tem. We assumed that the company consisted of more than one Lawn Chemical
Applicator, because we included an LCA entity to capture specific facts about each.
If the company was owned and operated by a single person, however, there would

226 Chapter 6 Data Modeling

c06DataModeling.qxd 9/30/11 11:04 AM Page 226

be no need to set up an LCA entity in the overall data model. There is no need to
capture data in the system about something having just a single instance.

Attribute An attribute is some type of information that is captured about an entity.
For example, last name, home address, and e-mail address are all attributes of a cus-
tomer. It is easy to come up with hundreds of attributes for an entity (e.g., a customer
has an eye color, a favorite hobby, a religious affiliation), but only those that actually
will be used by a business process should be included in the model.

Attributes are nouns that are listed within an entity. Usually, some form of
the entity name is appended to the beginning of each attribute to make it clear as

The Entity Relationship Diagram 227

IDEF1X Chen
Crow's

Foot

An ENTITY
 is a person, place, or thing.
 has a singular name
 spelled in all capital letters.
 has an identifier.
 should contain more than
 one instance of data.

An ATTRIBUTE
 is a property of an entity.
 should be used by at least
 one business process.
 is broken down to its most
 useful level of detail.

A RELATIONSHIP
 shows the association
 between two entities.
 has a parent entity and a
 child entity.
 is described with a verb
 phrase.
 has cardinality (1 : 1, 1 : N,
 or M : N).
 has modality (null, not
 null).
 is dependent or
 independent.

Relationship-name Relationship-name

ENTITY-NAME ENTITY-NAME ENTITY-NAME

*Identifier

ENTITY-NAME ENTITY-NAME

Attribute-name
Attribute-name
Attribute-name

Identifier

Attribute-name
Attribute-name
Attribute-name

Attribute-name

Relationship-
name

FIGURE 6-2
Data Modeling Symbol Sets

Customer
John Smith
Susan Jones
Peter Todd
Dale Turner
Pat Turner

Entity Example Instances

FIGURE 6-3
Entities and Instances

c06DataModeling.qxd 9/30/11 11:04 AM Page 227

to what entity it belongs (e.g., CUS_lastname, CUS_address). Without doing this,
you can get confused by multiple entities that have the same attributes—for
example, a customer and an employee both can have an attribute called “last-
name.” CUS_lastname and EMP_lastname are much clearer ways to name attrib-
utes on the data model.

One or more attributes can serve as the identifier—the attribute(s) that can
uniquely identify one instance of an entity—and the attributes that serve as the
identifier are noted by an asterisk next to the attribute name. If there are no cus-
tomers with the same last name, then last name can be used as the identifier of the
customer entity. In this case, if we need to locate John Brown, the name Brown
would be sufficient to identify the one instance of the Brown last name.

Suppose that we add a customer named Sarah Brown. Now we have a prob-
lem: Using the name Brown would not uniquely lead to one instance—it would
lead to two (i.e., John Brown and Sarah Brown). You have three choices at this
point, and all are acceptable solutions. First, you can use a combination of multi-
ple fields to serve as the identifier (last name and first name). This is called a con-
catenated identifier because several fields are combined, or concatenated, to
uniquely identify an instance. Second, you can find a field that is unique for each
instance, like the customer ID number. Third, you can wait to assign an identifier
(like a randomly generated number that the system will create) until the design
phase of the SDLC (Figure 6-4). Many data modelers don’t believe that randomly
generated identifiers belong on a logical data model, because they do not logically
exist in the business process.

Relationship Relationships are associations between entities, and they are shown
by lines that connect the entities together. Every relationship has a parent entity and
a child entity, the parent being the first entity in the relationship, and the child being
the second.

Relationships should be clearly labeled with active verbs so that the connec-
tions between entities can be understood. If one verb is given to each relationship, it
is read in two directions. For example, we could write the verb makes alongside the
relationship for the LCA and Chemical Request entities, and this would be read as
“an LCA makes a chemical request” and “a chemical request is made by an LCA.”
In Figure 6.1, we have included words for both directions of the relationship line; the
top words are read from parent to child, and the bottom words are read from child to
parent. Notice that the LCA entity is the parent entity in the LCA-Chemical Request
relationship. In addition, some CASE tools require that every relationship name be
unique on the ERD, so we select unique descriptive verbs for each relationship.

228 Chapter 6 Data Modeling

CUSTOMER CUSTOMER CUSTOMER

Concatenated
Identifier

Single
Identifier

Identifier to Be
Added Later

*CUS_lastname
*CUS_firstname

*CUS_IDnumber CUS_lastname
CUS_firstnameCUS_lastname

CUS_firstnameFIGURE 6-4
Choices for Identifiers

c06DataModeling.qxd 9/30/11 11:04 AM Page 228

Cardinality Relationships have two properties. First, a relationship has cardinality,
which is the ratio of parent instances to child instances. To determine the cardinality
for a relationship, we ask ourselves: “How many instances of one entity are associated
with an instance of the other?” (Remember that an instance is one occurrence of an
entity, such as LCA John Brown or Chemical Orthene™.) For example, an LCA
makes how many chemical requests? The cardinality for binary relationships (i.e., rela-
tionships between two entities) is 1:1, 1:N, or M:N, and we will discuss each in turn.

The 1:1 (read as “one to one”) relationship means that one instance of the par-
ent entity is associated with one instance of the child entity. There are no examples
of 1:1 relationships in Figure 6-1. So, imagine for a moment that, as a reward, a com-
pany assigns a specific reserved parking place to every employee who is honored as
an “employee of the month.” One reserved parking place is assigned to each honored
employee, and each honored employee is assigned one reserved parking place. If we
were to draw these two entities, we would place a bar next to the Employee entity
and a bar next to the Reserved Parking Place entity. The cardinality is clearly 1:1 in
this case, because each honored employee is assigned exactly one reserved parking
place, and a reserved parking place is assigned to exactly one employee.

More often, relationships are 1:N (read as “one to many”). In this kind of rela-
tionship, a single instance of a parent entity is associated with many instances of a
child entity; however, the child entity instance is related to only one instance of the
parent. For example, an LCA (parent entity) can make many Chemical Requests
(child entity), but a particular Chemical Request is made by only one LCA, suggest-
ing a 1:N relationship between LCA and Chemical Request. A character resembling
a crow’s foot is placed closest to the Chemical Request entity to show the “many” end
of the relationship. The parent entity is always on the “1” side of the relationship;
hence, a bar is placed next to the LCA entity. Can you identify other 1:N relationships
in Figure 6-1? Identify the parent and child entities for each relationship.

A third kind of relationship is the M:N (read as “many to many”) relationship.
In this case, many instances of a parent entity can relate to many instances of a child
entity. There are no M:N relationships shown in Figure 6-1, but take a look at
Figure 6-5. This figure shows an early draft version of the Chemical Request ERD.
In this version, an M:N relationship does exist between LCA and Chemical. As we
can see, one LCA (parent entity) can request many Chemicals (e.g., Orthene™,
Roundup™, and 2, 4-D.), and a Chemical (child entity) can be requested by many
LCAs. M:N relationships are depicted on an ERD by having crow’s feet at both
ends of the relationship line. As we will learn later, there are advantages to elimi-
nating M:N relationships from an ERD, so that is why it was removed from Figure
6-1 by creating the Chemical Request entity between LCA and Chemical. The
process of “resolving” an M:N relationship will be explained later in the chapter.

The Entity Relationship Diagram 229

FIGURE 6-5
M:N Relationship

*LCA_ID
 LCA_Name
 LCA_HireDate
 LCA_Qualification
 LCA_CellPhone

requests

is requested by

LAWN CHEMICAL
APPLICATOR

CHEMICAL

*CHM_ID
 CHM_Name
 CHM_Description
 CHM_ApprovalStatus
 CHM_Unit

c06DataModeling.qxd 11/3/11 12:01 PM Page 229

Modality Second, relationships have a modality of null or not null, which refers to
whether or not an instance of a child entity can exist without a related instance in
the parent entity. Basically, the modality of a relationship indicates whether the
child-entity instance is required to participate in the relationship. It forces you to
ask questions like, Can you have a Chemical Request without a Chemical? and Can
you have a Chemical without a Chemical Request? Modality is depicted by placing
a zero on the relationship line next to the parent entity if nulls are allowed. A bar is
placed on the relationship line next to the parent entity if nulls are not allowed.

In the two questions we just asked, the first answer is no: you need a chemical
to have a chemical request. You can, however, have a chemical without having a
chemical request for that chemical. The modality is “not null,” or “required,” for the
first relationship in Figure 6-1. Notice, however, that a zero has been placed on the
relationship line between Chemical and Chemical Request next to the Chemical
Request entity. This means that chemicals can exist in our system without requiring
that a chemical request exists. Said another way, instances of chemical requests are
optional for a chemical. The modality is “null.”

The Data Dictionary and Metadata

As we described earlier, a CASE tool is used to help build ERDs. Every CASE tool
has something called a data dictionary, which quite literally is where the analyst
goes to define or look up information about the entities, attributes, and relationships
on the ERD. Even Visio 2010, primarily known as a drawing tool, has some ele-
mentary data dictionary capabilities. Figures 6-6, 6-7, and 6-8 illustrate common
data dictionary entries for an entity, an attribute, and a relationship; notice the kinds
of information the data dictionary captures about each element.

The information you see in the data dictionary is called metadata, which,
quite simply, is data about data. Metadata is anything that describes an entity, attrib-
ute, or relationship, such as entity names, attribute descriptions, and relationship

230 Chapter 6 Data Modeling

A wealthy businessman owns a large
number of paintings that he loans to museums all over the
world. He is interested in setting up a system that records
what he loans to whom so that he doesn’t lose track of
his investments. He would like to keep information about
the paintings that he owns as well as the artists who
painted them. He also wants to track the various muse-
ums that reserve his art, along with the actual reserva-
tions. Obviously, artists are associated with paintings,
paintings are associated with reservations, and reserva-
tions are associated with museums.

QUESTIONS:
1. Draw the four entities that belong on this data model.

2. Provide some basic attributes for each entity, and
select an identifier, if possible.

3. Draw the appropriate relationships between the enti-
ties and label them.

4. What is the cardinality for each relationship? Depict
this on your drawing.

5. What is the modality for each relationship? Depict this
on your drawing.

6. List two business rules that are communicated by your
ERD.

6-1 UNDERSTANDING THE ELEMENTS OF AN ERDY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 230

cardinality, and it is captured to help designers better understand the system that
they are building and to help users better understand the system that they will use.
Figure 6-9 lists typical metadata that are found in the data dictionary. Notice that
the metadata can describe an ERD element (like entity name) and also information
that is helpful to the project team (like the user contact, the analyst contact, and
special notes).

Metadata are stored in the data dictionary so that they can be shared and
accessed by developers and users throughout the SDLC. The data dictionary allows
you to record the standard pieces of information about your elements in one place,
and it makes that information accessible to many parts of a project. For example,
the data attributes in a data model also appear on the process models as elements
of data stores and data flows, and on the user interface as fields on an input screen.

The Entity Relationship Diagram 231

FIGURE 6-6
Data Dictionary Entry for Chemical Entity
(in Visio 2010)

FIGURE 6-7
Data Dictionary Entry for Chemical
Attributes (in Visio 2010)

c06DataModeling.qxd 9/30/11 11:04 AM Page 231

232 Chapter 6 Data Modeling

FIGURE 6-8
Data Dictionary Entry for a
Relationship (in Visio 2010)

Entity Name Item

Definition Represents any item carried in inventory in the supermarket

Special notes Includes produce, bakery, and deli items

User contact Nancy Keller (x6755) heads up the item coding department

Analyst contact John Michaels is the analyst assigned to this entity

Attribute Name Item_UPC

Definition The standard Universal Product Code for the item based on Global Trade Item
Numbers developed by GS1

Alias Item Bar Code

Sample values 036000291452; 034000126453

Acceptable values Any 12-digit set of numerals

Format 12 digit, numerals only

Type Stored as alphanumeric values

Special notes Values with the first digit of 2 are assigned locally, representing items packed in the
store, such as meat, bakery, produce, or deli items. See Nancy Keller for more
information.

Relationship Verb phrase Included in

Parent entity Item

Child entity Sold item

Definition An item is included in zero or more sold items. A sold item includes one and only one item.

Cardinality 1:N

Modality Null

Special notes

ERD Element Kinds of Metadata Example

FIGURE 6-9
Types of Metadata Captured by the Data Dictionary

c06DataModeling.qxd 9/30/11 11:04 AM Page 232

When you make a change in the data dictionary, the change ripples to the relevant
parts of the project that are affected.

When metadata are complete, clear, and shareable, the information can be
used to integrate the different pieces of the analysis phase and ultimately lead to a
much better design. It becomes much more detailed as the project evolves through
the SDLC.

CREATING AN ENTITY RELATIONSHIP DIAGRAM

Drawing an ERD is an iterative process of trial and revision. It usually takes con-
siderable practice. ERDs can become quite complex—in fact, there are systems that
have ERDs containing hundreds or thousands of entities. The basic steps in build-
ing an ERD are these: (1) Identify the entities, (2) add the appropriate attributes to
each entity, and then (3) draw relationships among entities to show how they are
associated with one another. First, we will describe the three steps in creating
ERDs, using the data model example from Figure 6-1. We will then discuss several
advanced concepts of ERD’s. Finally, we will present an ERD for Tune Source.

Building Entity Relationship Diagrams

Step 1: Identify the Entities As we explained, the most popular way to start an
ERD is to first identify the entities for the model, and their attributes. The entities
should represent the major categories of information that you need to store in your
system. If you begin your data model by using a use case, look at the major inputs
to the use case, the major outputs, and the information used for the use case steps.
If the process models (e.g., DFDs) have been prepared, the easiest way to start is
with them: The data stores on the DFDs, the external entities, and the data flows
indicate the kinds of information that are captured and flow through the system.

The Chemical Request plays a key role in our chemical request system exam-
ple, and so is included as a data entity. In addition, the Chemicals themselves will
need to be described with data, and so will also be included as a data entity. Finally,
we will need to capture information about the lawn care applicators (LCAs), since
these individuals are the key actors in the system.

Step 2: Add Attributes and Assign Identifiers The information that describes each
entity becomes its attributes. It is likely that you identified a few attributes if you
read the chemical request system use cases and paid attention to the information
flows on their DFDs. For example, an LCA has a name, and a chemical has a name

Creating an Entity Relationship Diagram 233

Examine the CASE tool that you will
be using for your project, or find a CASE tool on the Web
that you are interested in learning about. What kind of

metadata does its data dictionary capture? Does the
CASE tool integrate data model information with other
parts of a project? How?

6-2 EVALUATE YOUR CASE TOOLY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 233

and description. Unfortunately, much of the information from the process models
and use cases does not include enough detail to identify the exact attributes that should
exist in each of our entities.

On a real project, there are a number of places you can go to figure out what
attributes belong in your entity. For one, you can check in the CASE tool—often,
an analyst will describe a process model data flow in detail when he or she enters
the data flow into the CASE repository. For example, an analyst may create an entry
for the chemical request information data flow like the one shown in Figure 6-10,
which lists four data elements that make up the chemical request information. The
elements of the data flow should be added to the ERD as attributes in your entities.
A second approach is to check the requirements definition. Often, there is a section
under functional requirements called data requirements. This section describes the
data needs for the system that were identified while requirements were gathered. A
final approach to identifying attributes is to use requirements elicitatior techniques.
The most effective techniques would be interviews (e.g., asking people who create
and use reports about their data needs) or document analysis (e.g., examining
existing forms, reports, or input screens).

Once the attributes are identified, one or more of them will become the
entity’s identifier. The identifier must be an attribute(s) that is able to uniquely iden-
tify a single instance of the entity. Look at Figure 6-1 and notice the identifiers that
were selected for each entity.

Step 3: Identify Relationships The last step in creating ERDs is to determine how
the entities are related to each other. Lines are drawn between entities that have rela-
tionships, each relationship is labeled, and cardinality and modality is assigned. The
easiest approach is to begin with one entity and determine all the entities with
which it shares relationships. In our example in Figure 6-1, we can see that an LCA
makes chemical requests, and a chemical is included in a chemical request.

When you find a relationship to include on the model, you need to determine
its cardinality and modality. For cardinality, ask how many instances of each entity
participate in the relationship. You know that an LCA can make many chemical
requests, but a specific chemical request is made by only one LCA. Therefore, we
place a crow’s foot next to the chemical request entity and a single bar closest to the
LCA entity. This suggests that there is a 1:N relationship in which the LCA is the
parent entity (the “1”) and the chemical request is the child entity (the “many”).

Next, we examine the relationship’s modality. Can an LCA exist without an
associated chemical request? In our example, the answer is “yes,” so the modality
is “null” or not required. A zero is placed next to the crow’s foot near the chemical
request. Now, can a chemical request exist without an associated LCA? This answer
is “no,” so the modality is “not null”: or required, and we place a single bar next to
the LCA entity

The same type of thinking applies to determining the cardinality and modality
of the relationship between chemical and chemical request. A chemical (the parent)
may be included on many chemical requests (the child), so the relationship is 1:N.
A chemical can exist without a chemical request, so the modality is “null”;

234 Chapter 6 Data Modeling

Data flow name: New Chemical Request

Data elements: LCA ID � Chemical ID � Date of Request � Quantity

FIGURE 6-10
Elements of the New Chemical Request
Data Flow

c06DataModeling.qxd 11/3/11 11:58 AM Page 234

however, a chemical request requires the existence of a chemical, so the modality
is “not null.”

Again, remember that data modeling is an iterative process. Often, the
assumptions you make and the decisions you make change as you learn more about
the business requirements and as changes are made to the use cases and process
models. But you have to start somewhere—so do the best you can with the three
steps we just described and keep iterating until you have a model that works. Later
in this chapter, we will show you a few ways to validate the ERDs that you draw.

Advanced Syntax

Now that we have created a data model according to the basic syntax that was
presented earlier, we can move to several advanced concepts. We will explain
three special types of entities and show how they can be used in our Chemical
Request system.

Independent Entity An independent entity is an entity that can exist without the
help of another entity, such as Lawn Chemical Applicator and Chemical. These
entities all have identifiers that were created from their own attributes. Attributes
from other entities were not needed to uniquely identify instances of these entities.
Independent entities are drawn as rectangles with a single border line.

When a relationship includes an independent child entity, it is called a non-
identifying relationship. This name is derived from the fact that parent entity attrib-
utes are not needed as part of the child entity’s identifier.

Dependent Entity There are situations when a child entity does require attributes
from the parent entity to uniquely identify an instance. In these cases, the child
entity is called a dependent entity, and its identifier consists of at least one attribute
from the parent entity.

A good example of a dependent entity is the Chemical Request entity shown
in Figure 6-1. A Chemical Request is made by a specific LCA and includes a
specific chemical. We include the LCA_ID and the Chemical_ID plus the request
date to fully identify each Chemical Request, Chemical Request is considered a
dependent entity and is shown as a rectangle with a double border line.

When relationships have a dependent child entity, they are called identifying
relationships. This name is derived from the fact that parent entity attributes are
needed as part of the child entity’s identifier.

Intersection Entity A third kind of entity is the intersection entity. It exists in order to
capture some information about the relationship between two other entities. Typically,
intersection entities are added to a data model to store information about two entities
sharing an M:N relationship. These entities are also called Associative Entities. Think
back to the M:N relationship between LCA and Chemical shown in Figure 6-5. In
that figure, one instance of an LCA could request many Chemicals, and a Chemical
can be requested by many LCAs. A difficulty arises if we want to capture the date on
which a particular chemical was requested by a specific LCA. We cannot put the date
in the Chemical entity, because the Chemical is requested by many LCAs. We also
cannot put the date in the LCA entity, because there are many Chemicals requested
by the LCA. Therefore, we need another entity that enables us to associate a specific
chemical with a specific LCA on a specific date.

Creating an Entity Relationship Diagram 235

c06DataModeling.qxd 9/30/11 11:04 AM Page 235

The process of adding an intersection entity is called “resolving an M:N rela-
tionship” because it eliminates the M:N relationship and its associated problems
from the data model. There are three steps involved in adding an intersection entity.
Step 1: Remove the M:N relationship line and insert a new entity in between the two
existing ones. Step 2: Add two 1:N relationships to the model. The two original enti-
ties should serve as the parent entities for each 1:N, and the new intersection entity
becomes the child entity in both relationships. Step 3: Name the intersection entity.
Intersection entities are often named by a concatenation of the two entities that cre-
ated it (e.g., Chemical Request), making its meaning clear. Alternatively, the entity
can be given another appropriate name. Figure 6-11 shows the M:N LCA-Chemical
relationship and how it was resolved with the use of an intersection entity.

Are intersection entities dependent or independent? Actually, it depends.
Sometimes an intersection entity has a logical identifier that can uniquely identify
its instances. For example, an intersection entity between a student and a course (a
student may take many courses and a course is taken by many students) may be
called a transcript. If transcripts have unique transcript numbers, then the entity
would be considered independent. In contrast, the Chemical Request intersection
entity in Figure 6-11 requires the identifiers from both LCA and Chemical for an
instance to be uniquely identified. Thus, Chemical Request is a dependent entity.

Applying the Concepts at Tune Source

Let’s go through one more example of creating a data model by using the context
of Tune Source. For now, review the use cases that were presented in Figure 4-14
and the final level 0 process model presented in Figure 5-17.

236 Chapter 6 Data Modeling

FIGURE 6-11
Resolving an M:N Relationship

*LCA_ID
 LCA_Name
 LCA_HireDate
 LCA_Qualification
 LCA_CellPhone

LAWN CHEMICAL
APPLICATOR

*LCA_ID
 LCA_Name
 LCA_HireDate
 LCA_Qualification
 LCA_CellPhone

LAWN CHEMICAL
APPLICATOR

*CHM_ID
 CHM_Name
 CHM_Description
 CHM_ApprovalStatus
 CHM_Unit

requests

is requested by

makes

is made by

CHEMICAL

CHEMICAL REQUEST

*LCA_ID
*CHM_ID
*RequestDate
 RequestQuantity

*CHM_ID
 CHM_Name
 CHM_Description
 CHM_ApprovalStatus
 CHM_Unit

involves

involved in

CHEMICAL

c06DataModeling.qxd 9/30/11 11:04 AM Page 236

Identify the Entities When you examine the Tune Source level 0 DFD, you see that
there are six data stores: customer, sale, available tunes, customer interests, cus-
tomer favorites, and targeted promotions. Each of these unique types of data likely
will be represented by entities on a data model.

As a next step, you should examine the external entities and ask yourself,
“Will the system need to capture information about any of these entities?” You may
be tempted to include marketing managers, but there really is no need to track infor-
mation about these in our system. Later, we may want to track system users, pass-
words, and data access privileges, but this information has to do with the use of the
new system and would not be added until the physical data model is created in the
design phase.

It is good practice to also look at the data flows on your process model and
make sure that all of the information that flows through the system has been covered
by your ERD. It appears that the main entities for Tune Source have been identified
after an examination of the data stores and external entities. See Figure 6-12 for
the beginning of our data model.

Identify the Attributes The next step is to select which attributes should be used
to describe each entity. It is likely that you identified a handful of attributes if you
read the Tune Source use cases and examined the DFDs. For example, an available
tune has an artist, title, genre, and length, and some attributes of customer are name
and contact information, which likely includes address, phone number, and e-mail
address.

The two entities customer favorite and customer interest might seem similar
at first glance, but they are used to capture different types of information about the
customer’s music preferences. A customer favorite is a tune that the customer
specifically adds to his/her Favorites list in order to monitor tunes as the Web site is
searched and browsed. In a sense, it’s like a future shopping list, so we just record
the customer’s ID, the tune’s ID, and the date the tune was added to the list. The cus-
tomer’s Favorites are available each time the customer revisits the site to help in
recalling tunes previously discovered and to (hopefully) purchase them. On the
other hand, the customer interest is created automatically as the customer investi-
gates tunes and listens to samples. Customer interests are used by the marketing
department to help design promotions for the customer that will be tailored to the
types of music the customer has explored. Slightly different attributes are associated
with these two entities because of their different purposes in the system.

Targeted promotions are special offers that will be created for a customer
on the basis of his or her interests and with regard to sales patterns. A promotion
will include a sale price for a specific tune if it is purchased within a specific

Creating an Entity Relationship Diagram 237

AVAILABLE TUNE SALE CUSTOMER INTEREST

CUSTOMER FAVORITE CUSTOMER TARGETED PROMOTIONFIGURE 6-12
Entities for Tune Source ERD

c06DataModeling.qxd 9/30/11 11:04 AM Page 237

time frame. Attributes for the targeted promotions are listed in Figure 6-13.
Finally, we also see that several attributes associated with a tune sale have been
listed in the ERD.

To determine the entity identifiers, we consider the attribute or attributes that will
uniquely identify each entity. We will establish a customer number for each customer
in the system. Each available tune that we have will be assigned a unique tune ID. Each
targeted promotion will be given a unique promotion code, and each sale will be given
a unique sale number. Finally, each customer favorite and each customer interest can
be uniquely identified by the customer number, tune ID, and the date created.

The customer, sale, available tune, and targeted promotion entities are inde-
pendent entities; attributes from other entities are not needed to uniquely identify
instances. The identifiers for customer interests and customer favorites, however, do
rely on attributes from their parent entities: customer and available tune. This is
because a customer favorite (or a customer interest) is uniquely identified by the
customer who created it, the tune involved, and the date it was created. Therefore,
since these two entities draw part of their primary keys from their parent entities,
they are considered dependent entities.

Identify the Relationships The last step in creating ERDs is to determine how
the entities are related to each other. Lines are drawn between entities that have
relationships, and each relationship is labeled and assigned a cardinality and
modality. A shown in Figure 6-14, a customer may make many sales, but a sale
is made by one customer. A sale is not required for a particular customer
instance, but a customer is required for a sale. A customer may be targeted by
many targeted promotions, but a targeted promotion is for one customer. A tar-
geted promotion is not required for a customer, but a customer is required for a
targeted promotion. A customer creates many favorites, but a favorite is created
by only one customer. A favorite is not required for a customer, but a customer
is required for a favorite. An available tune may be included in many customers’
favorites, but a favorite includes only one tune. A favorite is not required for an

238 Chapter 6 Data Modeling

CUSTOMER

*CUS_number
CUS_lastname
CUS_firstname
CUS_address
CUS_city
CUS_state
CUS_zipcode
CUS_phone
CUS_email
CUS_username
CUS_password

AVAILABLE TUNE

* TUN_ID
TUN_title
TUN_artist
TUN_genre
TUN_length
TUN_price
TUN_mp3short
TUN_mp3full

TARGETED PROMOTION

* PRO_code
CUS_number
TUN_ID
PRO_price
PRO_term

SALE

*SAL_number
SAL_date
CUS_username

one or more occurrences of:
 TUN_ID

*TUN_ID
*FAV_dateadded

CUSTOMER FAVORITE

*CUS_number

*TUN_ID
*INT_datecreated

CUSTOMER INTEREST

*CUS_number

FIGURE 6-13
Attributes and Identifiers for Tune Source ERD

c06DataModeling.qxd 9/30/11 11:04 AM Page 238

available tune, but a tune is required for a favorite. (The same relationships apply
to customer–interest–available tune). We can also see that an available tune may
be promoted by many targeted promotions, but a targeted promotion promotes
only one tune. An available tune is not required to have a targeted promotion, but
a targeted promotion must be associated with an available tune. Finally, we see
that customers may place many sales, but a sale is not required for a customer.
A sale belongs to one and only one customer. A sale may include many tunes,
and a tune may be included on many sales. A tune is required on a sale, but a
sale is not required for a tune.

The customer–customer favorite, customer favorite–available tune, customer–
customer interest, and customer interest–available tune relationships are identifying
relationships. All other relationships are nonidentifying relationships.

As a final step in the creation of the Tune Source ERD, we should resolve any
M:N relationships in the data model. A look at Figure 6-14 shows one such rela-
tionship, between sale and available tune. See Your Turn 6-6 and resolve this rela-
tionship on your own.

Creating an Entity Relationship Diagram 239

AVAILABLE TUNE

* TUN_ID
TUN_title
TUN_artist
TUN_genre
TUN_length
TUN_price
TUN_mp3short
TUN_mp3full

CUSTOMER

*CUS_number
CUS_lastname
CUS_firstname
CUS_address
CUS_city
CUS_state
CUS_zipcode
CUS_phone
CUS_e-mail
CUS_username
CUS_password

SALE

*SAL_number
 SAL_date
CUS_username

one or more occurrences of:
 TUN_ID

*TUN_ID
*FAV_dateadded

CUSTOMER FAVORITE

*CUS_number

*TUN_ID
*INT_datecreated

CUSTOMER INTEREST

*CUS_number

is targeted by

targets

adds

is added by

is listed in

lists

involves

is involved in

creates

is created by

is included in

includes

promotes

is promoted by

makes

is made by
TARGETED PROMOTION

* PRO_code
CUS_number
TUN_ID
PRO_price
PRO_term

FIGURE 6-14
Relationships for Tune Source ERD

c06DataModeling.qxd 9/30/11 11:04 AM Page 239

VALIDATING AN ERD

As you probably guessed from the previous section, creating ERDs is pretty tough.
It takes a lot of experience to draw ERDs well, and there are not many black-and-
white rules to help guide you. Luckily, there are some general design guidelines that
you can keep in mind as you build ERDs, and once the ERDs are drawn, you can
use a technique called normalization to validate that your models are well formed.
Another technique is to check your ERD against your process models to make sure
that both models balance each other.

Design Guidelines

Design guidelines are not rules that must be followed; rather, they are “best prac-
tices” that often lead to better quality diagrams. For example, labels and naming
conventions are important for creating clear ERDs. Names should not be ambigu-
ous (e.g., name, number); instead, they should clearly communicate what the model
component represents. These names should be consistent across the model and
reflect the terminology used by the business. If Tune Source refers to people who
order music as customers, the data model should include an entity called customer,
not client or stakeholder.

There are no rules covering the layout of ERD components. They can be
placed anywhere you like on the page, although most systems analysts try to put the

240 Chapter 6 Data Modeling

I have two very different stories
regarding data models. First, when I worked with First
American Corporation, the head of Marketing kept a
data model for the marketing systems hanging on a wall
in her office. I thought this was a little unusual for a high-
level executive, but she explained to me that data was
critical for most of the initiatives that she puts in place.
Before she can approve a marketing campaign or new
strategy, she likes to confirm that the data exists in the sys-
tems and that it’s accessible to her analysts. She has
become very good at understanding ERDs over the years
because they had been such an important communica-
tions tool for her to use with her own people and with IT.

On a very different note, here is a story I received
from a friend of mine who heads up an IT department:

“We were working on a business critical, time
dependent development effort, and VERY senior man-
agement decided that the way to ensure success was to
have the various teams do technical design walkthroughs
to senior management on a weekly basis. My team was
responsible for the data architecture and database
design. How could senior management, none of whom

probably had ever designed an Oracle architecture,
evaluate the soundness of our work?

So, I had my staff prepare the following for the one
(and only) design walkthrough our group was asked to
do. First, we merged several existing data models and
then duplicated each one . . . that is, every entity and
relationship printed twice (imitating, if asked, the redun-
dant architecture). Then we intricately color coded the
model and printed the model out on a plotter and printed
one copy of every inch of model documentation we had.
On the day of the review, I simply wheeled in the docu-
mentation and stretched the plotted model across the
executive boardroom table. ‘Any questions,’ I asked?
‘Very impressive,’ they replied. That was it! My designs
were never questioned again.” Barbara Wixom

QUESTIONS:
1. From these two stories, what do you think is the user’s

role in data modeling?
2. When is it appropriate to involve users in the ERD cre-

ation process?
3. How can users help analysts create better ERDs?

6-A THE USER’S ROLE IN DATA MODELING

IN ACTION

CONCEPTS

c06DataModeling.qxd 9/30/11 11:04 AM Page 240

entities together that are related to each other. If the model becomes too complex or
busy (some companies have hundreds of entities on a data model), the model can
be broken down into subject areas. Each subject area would contain related entities
and relationships, and the analyst can work with one group of entities at a time to
make the modeling process less confusing.

In general, data modeling can be quite tricky, mainly because the data model
is heavily based on interpretation; therefore, when business rules change, the rela-
tionships or other data model components will have to be altered. Assumptions are
an important part of data modeling. It is important that we verify all assumptions
about business rules so that our data model is correct.

Validating an Erd 241

Consider the accompanying system,
which was described in Chapter 4. Use the use cases
and process models that you created in Chapters 4 and 5
to help you answer the questions that follow.

The Campus Housing Service helps students find
apartments. Owners of apartments fill in information
forms about the rental units they have available (e.g.,
location, number of bedrooms, monthly rent). Students
who register with the service can search the rental infor-
mation to find apartments that meet their needs (e.g., a
two-bedroom apartment for $800 or less per month within
1/2 mile of campus). They then contact the apartment

owners directly to see the apartment and, possibly, rent it.
Apartment owners call the service to delete their listing
when they have rented their apartment(s).

QUESTIONS:
1. What entities would you include on a data model?
2. What attributes would you list for each entity? Select

an identifier for each entity, if possible.
3. What relationships exist between the entities that

you identified? Label the relationships appropriately,
and denote the cardinality and modality of each
relationship.

6-3 CAMPUS HOUSING SYSTEMY O U R

T U R N

Locate the independent entities on
Figure 6-14. How do you know which of the entities are
independent? Locate the nonidentifying relationships.

How did you find them? Can you create a rule that
describes the association between independent entities
and nonidentifying relationships?

6-4 INDEPENDENT ENTITIESY O U R

T U R N

Locate the dependent entities on Fig-
ure 6-14. Locate the identifying relationships. How did
you find them? Can you create a rule that describes the

association between dependent entities and identifying
relationships?

6-5 DEPENDENT ENTITIESY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 241

Therefore, when you model data, don’t panic or become overwhelmed by
details. Rather, add components to the diagram slowly, knowing that they will be
changed and rearranged many times. Make assumptions along the way and then
confirm these assumptions with the business users. Work iteratively and constantly
challenge the data model with business rules and exceptions to see whether the dia-
gram is communicating the business system appropriately. Figure 6-15 summarizes
the guidelines presented in this chapter to help you evaluate your data model.

242 Chapter 6 Data Modeling

*COU_name

COUNTRY

UNIVERSITY

*UNI_name

UNI_datefounded

UNI_enrollment

UNI_firstpresident

UNI_founder

*TEA_IDnumber

TEA_startdate

TEA_name

*name

SUBJECT

area

description

TEACHER
hires

specializes

contains

1. Country has only one
instance (i.e., Mexico). This
entity is not needed.

3. Why are all of these attributes
being captured about the university? Will
it be necessary to store the founder
and first president of each university?
If not, these attributes should be
removed from the ERD.

5. The name attribute really should be
broken down into last name and first
name—otherwise, there would be no way
to manipulate names in the system. For
example, there would be no way to sort
by last name if it were combined with
the first name.

4. The attributes in the subject entity
are poorly labeled. For one, we have no
way of knowing to which entity they
belong if they stood alone—it would
be helpful to begin each attribute with
SUB_. Also, what is “area”? A term like
“department” or “field of research” would
be more descriptive.

6. This model assumes that a teacher
can only work for one university—what
about those with joint appointments? An
assumption should be stated on the
model or in the documentation so that
this business rule can be confirmed.

2. If teachers are called “Professors,”
then the ERD should contain an entity
called “Professor,” to remain consistent.

FIGURE 6-15
Data Modeling Guidelines Summary

Resolve the M:N relationship between
the sale and available tune that is shown in Figure 6-14.
What kinds of information could you capture about this
relationship? What would the new ERD look like? Would
the intersection entity be considered dependent or inde-
pendent?

Can you think of other kinds of M:N relationships
that exist in the real world? How would you resolve these
M:N relationships if you were to include them on an
ERD?

6-6 INTERSECTION ENTITIESY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 242

Normalization

Once you have created your ERD, there is a technique called normalization that can
help analysts validate the models that they have drawn. It is a process whereby a
series of rules are applied to a logical data model or a file to determine how well
formed it is. Normalization rules help analysts identify entities that are not repre-
sented correctly in a logical data model, or entities that can be broken out from a
file. The result of the normalization process is that the data attributes are arranged
to form stable, yet flexible, relations for the data model. In Appendix 6A, we
describe three normalization rules that are applied regularly in practice.

Balancing Entity Relationship Diagrams
with Data Flow Diagrams

All the analysis activities of the systems analyst are interrelated. For example, the
requirements analysis techniques are used to determine how to draw both the

Validating an Erd 243

A large direct health and insurance
medical provider needed an enterprise information man-
agement (EIM) system to enable enterprisewide informa-
tion management and to support the effective use of data
for critical cross-functional decision making. In addition,
the company needed to resolve issues related to data
redundancy, inconsistency, and unnecessary expendi-
ture. The company faced several information challenges:
The company data resided in multiple locations, the data
were developed for department-specific use, and there
was limited enterprise access. In addition, data definitions

were created by individual departments and were not
standardized, and data were being managed by multiple
departments within the company.

Source: http://www.deloitte.com/dtt/case_study/o,1005,
sid%253D26562%2526cid%253D132760,00.html

QUESTIONS:
1. What solution would you propose for this company?
2. Discuss the role that data modeling would play in a

project to solve this problem.

6-B IMPLEMENTING AN EIM SYSTEM

IN ACTION

CONCEPTS

A charter company owns boats that
are used for charter trips to islands. The company has
created a computer system to track the boats it owns,
including each boat’s ID number, name, and seating
capacity. The company also tracks information about the
various islands, such as their names and populations.
Every time a boat is chartered, it is important to know the
date that the trip is to take place and the number of peo-
ple on the trip. The company also keeps information
about each captain, such as Social Security number,

name, birthdate, and contact information for next of kin.
Boats travel to only one island per visit.

QUESTIONS:
1. Create a data model. Include entities, attributes, iden-

tifiers, and relationships.
2. Which entities are dependent? Which are independent?
3. [Optional] Use the steps of normalization to put your

data model in 3NF. Describe how you know that it is
in 3NF.

6-7 BOAT CHARTER COMPANYY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 243

process models and data models, and the CASE repository is used to collect infor-
mation that is stored and updated throughout the entire analysis phase. Now we will
see how the process models and data models are interrelated.

Although the process model focuses on the processes of the business sys-
tem, it contains two data components—the data flow (which is composed of
data elements) and the data store. The purposes of these are to illustrate what
data are used and created by the processes and where those data are kept. These
components of the DFD need to balance with the ERD. In other words, the DFD
data components need to correspond with the ERD’s data stores (i.e., entities)
and the data elements that comprise the data flows (i.e., attributes) depicted on
the data model.

Many CASE tools offer the feature of identifying problems with balance
between DFDs and ERDs; however, it is a good idea to understand how to identify
problems on your own. This involves examining the data model you have created
and comparing it with the process models that have been created for the system.
Check your data model and see whether there are any entities you have created that
do not appear as data stores on your process models. If there are, you should add
them to your process models to reflect your decision to store information about that
entity in your system.

Similarly, the bits of information that are contained in the data flows (these are
usually defined in the CASE entry for the data flow) should match up to the attrib-
utes found in entities in the data models. For example, if the customer information
data flow that goes from the customer entity to the purchase tunes process were
defined as having customer name, e-mail address, and home address, then each of
these pieces of information should be recorded as attributes in the customer entity
on the data model. We must verify that all the data items included in the data stores
and data flows in the process model have been included somewhere as an entity
attribute in the data model. We want to ensure that the data model fully incorporates
all the data identified in the process model. If it does not, then the data model is
incomplete. In addition, all the data elements in the data model should appear as a
part of a data store and data flow(s) in the process model. If some data elements have
been omitted from the process model, then we need to investigate whether those data
items are truly needed in the processing of the system. If they are needed, they must
be added to the process model data stores and data flows; otherwise, they should be
deleted from the data model as extraneous data items.

A useful tool to clearly depict the interrelationship between process and data
models is the CRUD matrix. The CRUD (create, read, update, delete) matrix is a
table that depicts how the system’s processes use the data within the system. It is
helpful to develop the CRUD matrix on the basis of the logical process and data
models and then revise it later in the design phase. The matrix also provides impor-
tant information for program specifications, because it shows exactly how data are
created and used by the major processes in the system.

To create a CRUD matrix, a table is drawn listing all the system processes
along the top, and all the data entities (and entity attributes) along the left-hand
side of the table. Then, from the information presented in the process model, the
analyst fills in each cell with a C, R, U, D, (or nothing) to describe the process’s
interaction with each data entity (and its attributes). Figure 6-16 shows a portion
of a data flow diagram and the CRUD matrix that can be derived from it. As you
can see, if a process reads information from a data store, but does not update it,
there should be a data flow coming out of the data store only. When a process

244 Chapter 6 Data Modeling

c06DataModeling.qxd 9/30/11 11:04 AM Page 244

Vivine
Highlight

Vivine
Highlight

updates a data store in some way, there should be a data flow going from the
process to the data store.

Thinking carefully about the content of the data flows in the process models,
we can identify places where attributes may have been omitted from the data
stores/entities. In addition, we can verify that every attribute is created, read,
updated, and deleted somewhere in the process model. If it is not read by some
process, then the attribute is probably not needed. If it is not created or updated, the
attribute probably needs to be added to a data flow(s) in the process model.

SUMMARY

Basic Entity Relationship Diagram Syntax
The entity relationship diagram (ERD) is the most common technique for draw-
ing a data model, a formal way of representing the data that are used and created
by a business system. There are three basic elements in the data modeling lan-
guage, each of which is represented by a different graphic symbol. The entity is
the basic building block for a data model. It is a person, place, or thing about
which data are collected. An attribute is some type of information that is captured
about an entity.

The attribute that can uniquely identify one instance of an entity is called
the identifier. The third data model component is the relationship, which con-
veys the associations between entities. Relationships have cardinality (the ratio

Summary 245

FIGURE 6-16
Partial Process Model and CRUD Matrix

Process D

Process E

Data Store M

Data Store P

Process C Process D Process E

Data Entity M

Attribute M-1

Attribute M-2

Attribute M-3

Data Entity P

Attribute P-1
Attribute P-2

Attribute P-3

Attribute M-4

CRUD

CRUD

CRUD

CRUD

R R

R

R

R

R

R

C
C

C

External
Entity

X

External
Entity

Y
Process C

c06DataModeling.qxd 9/30/11 11:04 AM Page 245

of parent instances to child instances) and modality (a parent needs to exist if a
child exists). Information about all of the components is captured by metadata
in the data dictionary.

Creating an Entity Relationship Diagram
The basic steps in building an ERD are (1) identify the entities, (2) add the appro-
priate attributes to each entity, and (3) draw relationships among entities to show
how they are associated with one another. There are three special types of entities
that ERDs contain. Most entities are independent, because one (or more) attribute
can be used to uniquely identify an instance. Entities that rely on attributes from
other entities to identify an instance are dependent. An intersection entity is placed
between two entities to capture information about their relationship. In general,
data models are based on interpretation; therefore, it is important to clearly state
assumptions that reflect business rules.

Validating an Entity Relationship Diagram
Normalization, the process whereby a series of rules is applied to the logical data
model to determine how well formed it is, is described in the Chapter 6 Appendix.
A logical data model is in first normal form (1NF) if it does not contain repeating
attributes, which are attributes that capture multiple values for a single instance.
Second normal form (2NF) requires that all entities are in 1NF and contain only
attributes whose values are dependent on the whole identifier (i.e., no partial
dependency). Third normal form (3NF) occurs when a model is in both 1NF and
2NF and none of the resulting attributes is dependent on nonidentifier attributes
(i.e., no transitive dependency). With each violation, additional entities should be
created to remove the repeating attributes or improper dependencies from the
existing entities. Finally, ERDs should be balanced with the data flow diagrams
(DFDs)—which were presented in Chapter 5—by making sure that data model
entities and attributes correspond to data stores and data flows on the process
model. The CRUD matrix is a valuable tool to use when balancing process and
data models.

246 Chapter 6 Data Modeling

1:1 relationship
1:N relationship
Assumption
Attribute
Balance
Business rule
Cardinality
Child entity
Concatenated identifier
CRUD matrix
Data dictionary
Data model
Dependent
Dependent entity

Derived attribute
Entity
Entity relationship diagram (ERD)
First normal form (1NF)
IDEF1X
Identifier
Identifying relationship
Independent entity
Instance
Intersection entity
Logical data model
M:N relationship
Metadata
Modality

Nonidentifying relationship
Normalization
Parent entity
Partial dependency
Physical data model
Relationship
Repeating attributes
Repeating groups
Second normal form (2NF)
Subject area
Third normal form (3NF)
Transcript
Transitive dependency

KEY TERMS

c06DataModeling.qxd 9/30/11 11:04 AM Page 246

Exercises 247

1. Provide three different options that are available for
selecting an identifier for a student entity. What are
the pros and cons of each option?

2. What is the purpose of developing an identifier for
an entity?

3. What type of high-level business rule can be stated
by an ERD? Give two examples.

4. Define what is meant by an entity in a data model.
How should an entity be named? What information
about an entity should be stored in the CASE
repository?

5. Define what is meant by an attribute in a data
model. How should an attribute be named? What
information about an attribute should be stored in
the CASE repository?

6. Define what is meant by a relationship in a data
model. How should a relationship be named? What
information about a relationship should be stored in
the CASE repository?

7. A team of developers is considering including
“warehouse” as an entity in its data model. The
company for whom they are developing the system
has just one warehouse location. Should “ware-
house” be included? Why or why not?

8. What is meant by a concatenated identifier?
9. Describe, in terms a businessperson could under-

stand, what are meant by the cardinality and modal-
ity of a relationship between two entities.

10. What are metadata? Why are they important to sys-
tem developers?

11. What is an independent entity? What is a dependent
entity? How are the two types of entities differenti-
ated on the data model?

12. Explain the distinction between identifying and
nonidentifying relationships.

13. What is the purpose of an intersection entity? How
do you know whether one is needed in an ERD?

14. Describe the three-step process of creating an inter-
section entity.

15. Is an intersection entity dependent or independent?
Explain your answer.

16. What is the purpose of normalization?
17. Describe the analysis that is applied to a data

model in order to place it in first normal form
(1NF).

18. Describe the analysis that is applied to a data
model in order to place it in second normal form
(2NF).

19. Describe the analysis that is applied to a data
model in order to place it in third normal form
(3NF).

20. Describe how the data model and process model
should be balanced against each other.

21. What is a CRUD matrix? How does it relate to
process models and data models?

QUESTIONS

A. Draw data models for the following entities:
• Movie (title, producer, length, director, genre)
• Ticket (price, adult or child, showtime, movie)
• Patron (name, adult or child, age)

B. Draw a data model for the following entities, con-
sidering the entities as representing a system for a
patient billing system and including only the attrib-
utes that would be appropriate for this context:
• Patient (age, name, hobbies, blood type, occupation,

insurance carrier, address, phone)
• Insurance carrier (name, number of patients on

plan, address, contact name, phone)
• Doctor (specialty, provider identification number,

golf handicap, age, phone, name)
C. Draw the relationships that follow. Would the rela-

tionships be identifying or nonidentifying? Why?

• A patient must be assigned to only one doctor, and
a doctor can have many patients.

• An employee has one phone extension, and a
unique phone extension is assigned to an
employee.

• A movie theater shows many different movies, and
the same movie can be shown at different movie
theaters around town.

D. Draw an entity relationship diagram (ERD) for the
following situations:
1. Whenever new patients are seen for the first time,

they complete a patient information form that
asks their name, address, phone number, and
insurance carrier, all of which are stored in the
patient information file. Patients can be signed up
with only one carrier, but they must be signed up

EXERCISES

c06DataModeling.qxd 9/30/11 11:04 AM Page 247

248 Chapter 6 Data Modeling

*CIN_name
 CIN_address
 CIN_phone

CINEMA THEATER SHOWING

*THE_number
 THE_capacity

*SHO_time
 SHO_date
 SHO_attendance

*MOV_ID
 MOV_title
 MOV_director
 MOV_rating

is contained in

offers

is offered in

is shown at

shows

MOVIE

contains

to be seen by the doctor. Each time a patient vis-
its the doctor, an insurance claim is sent to the
carrier for payment. The claim must contain
information about the visit, such as the date, pur-
pose, and cost. It would be possible for a patient
to submit two claims on the same day.

2. The state of Georgia is interested in designing a
database that will track its researchers. Informa-
tion of interest includes researcher name, title,
position; university name, location, enrollment;
and research interests. Each researcher is as-
sociated with only one institution, and each
researcher has several research interests.

3. A department store has a bridal registry. This reg-
istry keeps information about the customer (usu-
ally the bride), the products that the store carries,
and the products for which each customer regis-
ters. Customers typically register for a large
number of products, and many customers register
for the same products.

4. Jim Smith’s dealership sells Fords, Hondas, and
Toyotas. The dealership keeps information about
each car manufacturer with whom it deals so that
employees can get in touch with manufacturers
easily. The dealership also keeps information
about the models of cars that it carries from each
manufacturer. It keeps such information as list
price, the price the dealership paid to obtain the
model, and the model name and series (e.g.,
Honda Civic LX). The dealership also keeps
information about all sales that it has made. (For
instance, employees will record the buyer’s
name, the car the buyer bought, and the amount
the buyer paid for the car.) To allow employees
to contact the buyers in the future, contact infor-
mation is also kept (e.g., address, phone number,
e-mail).

E. Examine the data models that you created for Exer-
cise D. How would the respective models change

(if at all) on the basis of these corresponding new
assumptions?
• Two patients have the same first and last names.
• Researchers can be associated with more than one

institution.
• The store would like to keep track of purchased items.
• Many buyers have purchased multiple cars from

Jim over time because he is such a good dealer.
F. Visit a Web site that allows customers to order a

product over the Web (e.g., Amazon.com). Create a
data model that the site needs to support its business
process. Include entities to show what types of infor-
mation the site needs. Include attributes to represent
the type of information the site uses and creates.
Finally, draw relationships, making assumptions
about how the entities are related.

G. Create metadata entries for the following data model
components and, if possible, input the entries into a
computer-aided software engineering (CASE) tool
of your choosing:
• Entity—product
• Attribute—product number
• Attribute—product type
• Relationship—company makes many products,

and any one product is made by only one company.
H. Describe the assumptions that are implied from the

data model shown at the top of this page.
I. Create a data model for one of the processes in the

end-of-chapter Exercises for Chapter 4. Explain how
you would balance the data model and process model.

J. Apply the steps of normalization to validate the
models you drew in Exercise D.

K. You have been given a file that contains fields relating
to CD information. Using the steps of normalization,
create a logical data model that represents this file in
third normal form. The fields include the following:
• Musical group name
• Musicians in group
• Date group was formed

c06DataModeling.qxd 9/30/11 11:04 AM Page 248

• Group’s agent
• CD title 1
• CD title 2
• CD title 3
• CD 1 length
• CD 2 length
• CD 3 length

The assumptions are as follows:
• Musicians in group contains a list of the members

of the people in the musical group.
• Musical groups can have more than one CD, so

both group name and CD title are needed to
uniquely identify a particular CD.

Minicases 249

1. West Star Marinas is a chain of 12 marinas that offer
lakeside service to boaters; service and repair of boats,
motors, and marine equipment; and sales of boats,
motors, and other marine accessories. The systems
development project team at West Star Marinas has
been hard at work on a project that eventually will link
all the marina’s facilities into one unified, networked
system.

The project team has developed a logical process
model of the current system. This model has been care-
fully checked for syntax errors. Last week, the team
invited a number of system users to role-play the vari-
ous data flow diagrams, and the diagrams were refined
to the users’ satisfaction. Right now, the project man-
ager feels confident that the as-is system has been ade-
quately represented in the process model.

The director of operations for West Star is the
sponsor of this project. He sat in on the role-playing of
the process model and was very pleased by the thor-
ough job the team had done in developing the model.
He made it clear to you, the project manager, that he
was anxious to see your team begin work on the
process model for the to-be system. He was a little
skeptical that it was necessary for your team to spend
any time modeling the current system in the first
place, but grudgingly admitted that the team really
seemed to understand the business after going through
that work.

The methodology that you are following, however,
specifies that the team should now turn its attention to
developing the logical data model for the as-is system.
When you stated this to the project sponsor, he seemed
confused and a little irritated. “You are going to spend
even more time looking at the current system? I
thought you were done with that! Why is this neces-
sary? I want to see some progress on the way things
will work in the future!”
a. What is your response to the director of operations?
b. Why do we perform data modeling?

c. Is there any benefit to developing a data model of
the current system at all?

d. How does the process model help us develop the
data model?

2. The system development team at the Wilcon Com-
pany is working on developing a new customer order
entry system. In the process of designing the new
system, the team has identified the following data
entity attributes:

Inventory Order
Order Number (identifier)
Order Date
Customer Name
Street Address
City
State
Zip
Customer Type
Initials
District Number
Region Number
1 to 22 occurrences of:

Item Name
Quantity Ordered
Item Unit
Quantity Shipped
Item Out
Quantity Received

a. State the rule that is applied to place an entity in first
normal form. Revise this data model so that it is in
first normal form.

b. State the rule that is applied to place an entity into
second normal form. Revise the data model (if nec-
essary) to place it in second normal form.

c. State the rule that is applied to place an entity into
third normal form. Revise the data model to place it
in third normal form.

d. What other guidelines and rules can you follow to
validate that your data model is in good form?

MINICASES

c06DataModeling.qxd 9/30/11 11:04 AM Page 249

250 Chapter 6 Data Modeling

In this Appendix, we describe the rules of normalization
that help analysts improve the quality of the data model.
These rules help identify entities that are not represented
correctly in the logical data model and entities that can
be broken out from a file. The result of the normalization
process is that the data attributes are arranged to form
stable yet flexible relations for the data model. Typically,
three rules of normalization are applied regularly in
practice. (See Figure 6A-1.) We describe these rules and
illustrate them with an example here.

First Normal Form A logical data model is in first nor-
mal form (1NF) if it does not contain attributes that
have repeating values for a single instance of an entity.

Often, this problem is called repeating attributes, or
repeating groups. Every attribute in an entity should
have only one value per instance for the model to “pass”
1NF.

Let’s pretend that the Tune Source project team
was given the layout for the CD purchase file that is
used by the existing CD sales system. The team mem-
bers are anxious to incorporate the data from this file
into their own system, and they decide to put the file
into third normal form to make the information easier to
understand and, ultimately, easier for them to add to the
data model for the new Digital Music Download system.
See Figure 6A-2 for the file layout that the project team
received.

APPENDIX 6A: NORMALIZING THE DATA MODEL

0 Normal Form

Yes: Remove the repeating attributes and repeating
 groups. Create an entity that describes the
 attributes. Usually, you will need to add a rela-
 tionship to connect the old and new entities.

Do any attributes have multiple
values for a single instance of
an entity?

Yes: Remove the partial dependency. Move the
 attributes to an entity in which their values
 are dependent on the entire identifier.
 Usually, you will need to create a new entitiy
 and add a relationship to connect the old and
 new entities.
 No: The data model is in 2NF.

Is the identifier composed of
more than one attribute? If so,
are any attribute values
dependent on just part of the
identifier?

No: The data model is in 1NF.

 1 Normal Form

Yes: Remove the transitive dependency or derived
 attribute. Move the attributes to an entity in
 which their values are dependent on the identifier.
 Usually, you will need to create a new entity and
 add a relationship to connect the old and new
 entities.
No: The data model is in 3NF.

Do any attribute values depend
on an attribute that is not the
entity’s identifier?

 2 Normal Form

 3 Normal Form

FIGURE 6A-1
Normalization Steps

c06DataModeling.qxd 9/30/11 11:04 AM Page 250

Appendix 6A: Normalizing the Data Model 251

If you examine the file carefully, you should
notice that there are two cases in which multiple values
are captured for one or more attributes. The most obvi-
ous example is the multiple occurrences of CDs that are
included in the purchase, a clear violation of 1NF. The
repeated group of attributes about each CD included in
the purchase should be removed by creating a new
entity called CD and placing all of the CD attributes
into it. The relationship between purchase and CD is
M:N, since a purchase can include many CDs and a CD
can be included in many purchases.

The second violation of 1NF may not be as readily
noticed. The music preferences attribute includes the
kinds of music the customer prefers (e.g., classical, rock,
jazz). The fact that the attribute name is plural is a clue
that many different preferences may be captured for each
instance of a sale and that music preferences is a repeat-
ing attribute. This can be resolved by creating a new
entity that contains preference information, and a rela-
tionship is added between CD purchase and preference.
The new relationship is M:N, because a CD purchase can
be associated with many music preferences and a music
preference can be found on many CD purchases. See
Figure 6A-3a for the current data model in 1NF.

Since we normally resolve M:N relationships as
the ERD develops, we have done so now in Figure 6A-3b.

Note that a new intersection entity was inserted between
CD Purchase and Preference to associate an instance of
CD Purchase with specific instances of preference.
Also, the intersection entity Purchased CD was inserted
between CD Purchase and CD. This intersection entity
associates a CD purchase instance with specific CD
instances. The attribute ship date was moved to Pur-
chased CD because the various CDs in a purchase may
ship at different dates; therefore, this attribute
describes a specific purchased CD, not the entire CD
purchase.

Second Normal Form Second normal form (2NF)
requires first that the data model is in 1NF and second that
the data model leads to entities containing attributes that
are dependent on the whole identifier. This means that the
value of all attributes that serve as identifier can determine
the value for all of the other attributes for an instance in an
entity. Sometimes, nonidentifier attributes are dependent
on only part of the identifier (i.e., partial dependency), and
these attributes belong in another entity.

Figure 6A-4 shows the CD purchase data model
placed in 2NF. Notice that originally, the CD purchase
entity had three attributes that were used as identi-
fiers: purchase date, customer last name, and cus-
tomer first name. The problem was that some of the

FIGURE 6A-2
Initial CD Sales System File

*Purchase date

CD Purchase

*Customer last name
*Customer first name
Phone
Address
E-mail
Birthdate
Music preferences
One or more occurrences of:
 CD UPC
 Title
 Artist
 Label
 Category
 Price
Total due
Sale authorization
Ship date
Payment number
Payment type
Payment account number
Payment authorization
Payment amount

c06DataModeling.qxd 11/3/11 11:58 AM Page 251

252 Chapter 6 Data Modeling

includes

lists

*Customer last name

*Customer first name

Phone

Address

E-mail

Birthdate

Total due

Sale authorization

Ship date

Payment number

Payment type

Payment account number

Payment authorization

Payment amount

*Purchase date

CD PURCHASE

*CD_UPC

CD

CD_title

CD_artist

CD_label

CD_category

CD_price

includes

PREFERENCE

*PRE_type

FIGURE 6A-3a
First Normal Form

includes

lists

*Customer last name

*Customer first name

Phone

Address

E-mail

Birthdate

Total due

Sale authorization

Payment number

Payment type

Payment account number

Payment authorization

Payment amount

*Purchase date

CD PURCHASE

*Purchase date

PURCHASED CD

*Customer last name

*Customer first name

*CD_UPC

Ship date

includes

PREFERRED MUSIC

*Purchase date
*Customer last name
*Customer first name
*PRE_type

includes

listed

*CD_UPC

CD

CD_title

CD_artist

CD_label

CD_category

CD_price

involves

PREFERENCE

*PRE_type

FIGURE 6A-3b
First Normal Form with M:N Relationships Resolved

attributes were dependent on the customer last name
and first name, but had no dependency on purchase
date. These attributes were those that describe a cus-
tomer: phone, address, e-mail, and birth date. To
resolve this problem, a new entity called customer
was created, and the customer attributes were moved

into the new entity. A 1:N relationship exists between
customer and CD purchase because a customer can
purchase many CDs, but a CD purchase is associated
with only one customer.

Remember that the customer last name and first
name are still used in the CD Purchase entity—we know

c06DataModeling.qxd 9/30/11 11:04 AM Page 252

Appendix 6A: Normalizing the Data Model 253

this because of the identifying 1:N relationship between
customer and CD purchase. The identifying relationship
implies that the customer identifier (i.e., last name and first
name) are used in CD Purchase as a part of its identifier.

Notice that we moved the relationship with Pre-
ferred Music to the new Customer entity. Logically, a
preference should be associated with a customer, not a
particular CD purchase.

Third Normal Form Third normal form (3NF) occurs
when a model is in both 1NF and 2NF and when, in the
resulting entities, none of the attributes is dependent on
a nonidentifier attribute (i.e., transitive dependency). A
violation of 3NF can be found in the CD Purchase entity
in Figure 6A-4.

The problem with the CD Purchase entity is that
there are attributes in the entity that depend on the pay-
ment number, not the CD purchase date and customer
first and last names. The payment type, account number,
authorization, and amount depend on the payment num-
ber, a nonidentifying attribute. Therefore, we create a
separate payment entity and move the payment attrib-
utes to it. The 1:1 relationship assumes that there is one

payment for every CD purchase, and every CD purchase
has one payment. Also, a payment is required for every
CD purchase, and every CD purchase requires a pay-
ment.

Third normal form also addresses issues of
derived, or calculated, attributes. By definition, derived
attributes can be calculated from other attributes and do
not need to be stored in the data model. As an example,
a person’s age would not be stored as an attribute if
birthdate were stored, because, by knowing the birthdate
and current date, we can always calculate the age. You
might legitimately question whether total due should be
stored as an attribute of CD purchase, since its value can
be calculated by summing the prices of all the CDs
included in the purchase. Like much of data modeling,
there is no hard-and-fast rule about this. Many times,
values such as total due are included to serve as a con-
trol value. In order to verify that no purchased CDs are
omitted from the entire purchase, the total due is stored
as an attribute of CD purchase, and the sum of the indi-
vidual CD prices is also computed to ensure that they
match. We will leave the total due in the data model and
show the final ERD in 3NF in Figure 6A-5.

*CUS_lastname

*CUS_firstname

Total due

Sale authorization

Payment number

Payment type

Payment account number

Payment authorization

Payment amount

*Purchase date

CD PURCHASE

*Purchase date

PURCHASED CD

*CUS_lastname

*CUS_firstname

*CD_UPC

Ship date

CUSTOMER

*CUS_lastname
*CUS_firstname
CUS_phone
CUS_address
CUS_e-mail
CUS_birthdate

specifies

makes

*CD_UPC

CD

CD_title

CD_artist

CD_label

CD_category

CD_price

involves

includes

PREFERENCE

*PRE_type

lists

includes

PREFERRED MUSIC

*CUS_lastname
*CUS_firstname
*PRE_type

FIGURE 6A-4
Second Normal Form

c06DataModeling.qxd 9/30/11 11:04 AM Page 253

254 Chapter 6 Data Modeling

*CUS_lastname

*CUS_firstname

Total due

Sale authorization

*Purchase date

CD PURCHASE

Purchase date

CUS_lastname

CUS_firstname

PMT_type

PMT_account number

PMT_authorization

PMT_amount

*PMT_number

PAYMENT

*Purchase date

PURCHASED CD

*CUS_lastname

*CUS_firstname

*CD_UPC

PCD_Shipdate

CUSTOMER

*CUS_lastname
*CUS_firstname
CUS_phone
CUS_address
CUS_e-mail
CUS_birthdate

specifies

makes

*CD_UPC

CD

CD_title

CD_artist

CD_label

CD_category

CD_price

includes

PREFERENCE

*PRE_type

lists

includes
pays

involves

PREFERRED MUSIC

*CUS_lastname
*CUS_firstname
*PRE_type

FIGURE 6A-5
Third Normal Form

Pretend that you have been asked to
build a system that tracks student involvement in activities
around campus. You have been given a file with infor-
mation that needs to be imported into the system, and the
file contains the following fields:

■ Student Social Security number (identifier)
■ Activity 1 code (identifier)
■ Activity 1 description
■ Activity 1 start date
■ Activity 1 years with activity
■ Activity 2 code
■ Activity 2 description
■ Activity 2 start date

■ Activity 3 code
■ Activity 3 description
■ Activity 3 start date
■ Activity 3 years with activity
■ Student last name
■ Student first name
■ Student birthdate
■ Student age
■ Student advisor name
■ Student advisor phone

Normalize the file. Show how the logical data
model would change as you move from 1NF to 2NF to
3NF.

6A-1 NORMALIZING A STUDENT ACTIVITY FILEY O U R

T U R N

c06DataModeling.qxd 9/30/11 11:04 AM Page 254

