

Android Programming: The Big Nerd Ranch Guide
by Bill Phillips, Chris Stewart, Brian Hardy and Kristin Marsicano

Copyright © 2015 Big Nerd Ranch, LLC.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, contact

Big Nerd Ranch, LLC.
200 Arizona Ave NE
Atlanta, GA 30307
(770) 817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com

The 10-gallon hat with propeller logo is a trademark of Big Nerd Ranch, Inc.

Exclusive worldwide distribution of the English edition of this book by

Pearson Technology Group
800 East 96th Street
Indianapolis, IN 46240 USA
http://www.informit.com

The authors and publisher have taken care in writing and printing this book but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental
or consequential damages in connection with or arising out of the use of the information or programs contained
herein.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the
designations have been printed with initial capital letters or in all capitals.

ISBN-10 0134171497
ISBN-13 978-0134171494

Second edition, first printing, August 2015
Release D.2.1.1

iii

Dedication

To God, or to whatever it is that you personally have faith in. Reader,
I hope that you find the many explanations in this book useful. Please
don't ask me how they got here, though. I once thought that I was
responsible. Fortunately for you, I was wrong.

— B.P.

To my dad, David, for teaching me the value of hard work. To my mom,
Lisa, for pushing me to always do the right thing.

— C.S.

For Donovan. May he live a life filled with activities and know when to
use fragments.

— B.H.

To my dad, Dave Vadas, for inspiring and encouraging me to pursue a
career in computing. And to my mom, Joan Vadas, for cheering me on
through all the ups and downs (and for reminding me that watching an
episode of The Golden Girls always makes things better).

— K.M.

v

Acknowledgments
We feel a bit sheepish having our names on the cover of this book. The truth is that without an army of
collaborators, this book could never have happened. We owe them all a debt of gratitude.

• Our co-instructors and members of our Android development team, Andrew Lunsford, Bolot
Kerimbaev, Brian Gardner, David Greenhalgh, Jason Atwood, Josh Skeen, Kurt Nelson, Matt
Compton, Paul Turner, and Sean Farrell. We thank them for their patience in teaching work-
in-progress material, as well as their suggestions and corrections. If we could give ourselves
additional brains to do with as we pleased, we would not. We would just put the new brains in a
big pile, and share them with our colleagues. We trust them at least as much as we trust our own
selves.

• Special thanks to Sean Farrell for graciously updating many screen shots as Android Studio
evolved, and to Matt Compton for publishing all of our sample apps to the Google Play Store.

• Kar Loong Wong and Zack Simon, members of Big Nerd Ranch's amazing design team. Kar
made BeatBox look intimidating and polished, and provided advice and imagery for the material
design chapter. Zack took time out of his schedule to design MockWalker for us. Kar and Zack's
design abilities seem like unknowable superpowers to us. We thank them, and bid them fond
returns to their home planet.

• Our technical reviewers, Frank Robles and Roy Kravitz, who helped us find and fix flaws.

• Thanks to Aaron Hillegass. Aaron’s faith in people is one of the great and terrifying forces of
nature. Without it, we would never have had the opportunity to write this book, nor would we ever
have completed it. (He also gave us money, which was very friendly of him.)

• Our editor, Elizabeth Holaday, who many times saved us from going down rabbit holes. She kept
our writing focused on what our readers actually care about and spared you all from confusing,
boring, and irrelevant detours. Thank you, Liz, for being organized and patient, and for being a
constant supportive presence, even though you live many miles away.

• Ellie Volckhausen, who designed our cover.

• Simone Payment, our copy-editor, who found and smoothed rough spots.

• Chris Loper at IntelligentEnglish.com, who designed and produced the print book and the EPUB
and Kindle versions. His DocBook toolchain made life much easier, too.

Finally, thanks to our students. We wish that we had room to thank every single student who gave us a
correction or opinion on the book as it was shaping up. It is your curiosity we have worked to satisfy,
your confusions we have worked to clarify. Thank you.

vii

Table of Contents
Learning Android .. xvii

Prerequisites ... xvii
What's New in the Second Edition? .. xvii
How to Use This Book .. xviii
How This Book is Organized .. xviii

Challenges ... xix
Are you more curious? .. xix

Code Style ... xix
Typographical Conventions .. xx
Android Versions ... xx

The Necessary Tools ... xxi
Downloading and Installing Android Studio .. xxi
Downloading Earlier SDK Versions ... xxi
An Alternative Emulator ... xxii
A Hardware Device .. xxii

1. Your First Android Application .. 1
App Basics ... 2
Creating an Android Project .. 2
Navigating in Android Studio .. 8
Laying Out the User Interface ... 9

The view hierarchy .. 13
Widget attributes ... 14
Creating string resources ... 15
Previewing the layout ... 15

From Layout XML to View Objects ... 16
Resources and resource IDs ... 18

Wiring Up Widgets .. 20
Getting references to widgets ... 21
Setting listeners ... 22

Making Toasts ... 23
Using code completion ... 25

Running on the Emulator .. 26
For the More Curious: Android Build Process .. 29

Android build tools .. 31
2. Android and Model-View-Controller ... 33

Creating a New Class ... 34
Generating getters and setters .. 34

Model-View-Controller and Android ... 37
Benefits of MVC ... 38

Updating the View Layer .. 39
Updating the Controller Layer ... 41
Running on a Device ... 46

Connecting your device .. 46
Configuring your device for development .. 47

Adding an Icon ... 48

Android Programming

viii

Adding resources to a project .. 49
Referencing resources in XML .. 52

Challenges .. 53
Challenge: Add a Listener to the TextView .. 53
Challenge: Add a Previous Button .. 54
Challenge: From Button to ImageButton .. 55

3. The Activity Lifecycle .. 57
Logging the Activity Lifecycle .. 58

Making log messages ... 58
Using LogCat ... 60

Rotation and the Activity Lifecycle .. 63
Device configurations and alternative resources ... 64

Saving Data Across Rotation ... 68
Overriding onSaveInstanceState(Bundle) .. 69

The Activity Lifecycle, Revisited ... 70
For the More Curious: Testing onSaveInstanceState(Bundle) ... 72
For the More Curious: Logging Levels and Methods .. 73

4. Debugging Android Apps .. 75
Exceptions and Stack Traces ... 76

Diagnosing misbehaviors .. 77
Logging stack traces .. 78
Setting breakpoints .. 79
Using exception breakpoints .. 82

Android-Specific Debugging .. 84
Using Android Lint .. 84
Issues with the R class ... 85

5. Your Second Activity ... 87
Setting Up a Second Activity .. 88

Creating a new activity ... 89
A new activity subclass .. 92
Declaring activities in the manifest ... 92
Adding a Cheat! button to QuizActivity ... 93

Starting an Activity .. 95
Communicating with intents .. 96

Passing Data Between Activities .. 97
Using intent extras ... 98
Getting a result back from a child activity .. 101

How Android Sees Your Activities .. 106
Challenge ... 109

6. Android SDK Versions and Compatibility ... 111
Android SDK Versions ... 111
Compatibility and Android Programming ... 112

A sane minimum ... 112
Minimum SDK version ... 114
Target SDK version .. 114
Compile SDK version ... 114
Adding code from later APIs safely .. 114

Using the Android Developer Documentation ... 117

Android Programming

ix

Challenge: Reporting the Build Version ... 119
7. UI Fragments and the Fragment Manager ... 121

The Need for UI Flexibility ... 122
Introducing Fragments .. 123
Starting CriminalIntent .. 124

Creating a new project .. 126
Fragments and the support library ... 128
Adding dependencies in Android Studio .. 129
Creating the Crime class ... 132

Hosting a UI Fragment ... 133
The fragment lifecycle .. 133
Two approaches to hosting .. 134
Defining a container view ... 135

Creating a UI Fragment .. 136
Defining CrimeFragment’s layout ... 136
Creating the CrimeFragment class ... 138

Adding a UI Fragment to the FragmentManager .. 142
Fragment transactions ... 143
The FragmentManager and the fragment lifecycle .. 145

Application Architecture with Fragments ... 146
The reason all our activities will use fragments ... 147

For the More Curious: Why Support Fragments are Superior ... 148
For the More Curious: Using Built-In Fragments ... 148

8. Creating User Interfaces with Layouts and Widgets .. 149
Upgrading Crime ... 149
Updating the Layout ... 150
Wiring Widgets ... 153
More on XML Layout Attributes .. 154

Styles, themes, and theme attributes .. 154
Screen pixel densities and dp and sp ... 155
Android’s design guidelines ... 156
Layout parameters .. 157
Margins vs. padding ... 157

Using the Graphical Layout Tool .. 158
Creating a landscape layout ... 160
Adding a new widget ... 161
Editing attributes in properties view .. 161
Reorganizing widgets in the component tree ... 162
Updating child layout parameters .. 163
How android:layout_weight works .. 164
The graphical layout tool and you ... 165
Widget IDs and multiple layouts .. 166

Challenge: Formatting the Date .. 166
9. Displaying Lists with RecyclerView .. 167

Updating CriminalIntent’s Model Layer ... 168
Singletons and centralized data storage .. 168

An Abstract Activity for Hosting a Fragment .. 171
A generic fragment-hosting layout .. 171

Android Programming

x

An abstract Activity class .. 172
RecyclerView, Adapter, and ViewHolder .. 176

ViewHolders and Adapters .. 177
Using a RecyclerView .. 180
Implementing an Adapter and ViewHolder ... 182

Customizing List Items ... 185
Creating the list item layout ... 185
Using a custom item view ... 188

Responding to Presses .. 190
For the More Curious: ListView and GridView ... 191
For the More Curious: Singletons ... 192

10. Using Fragment Arguments .. 193
Starting an Activity from a Fragment .. 193

Putting an extra ... 194
Retrieving an extra ... 195
Updating CrimeFragment’s view with Crime data .. 196
The downside to direct retrieval .. 197

Fragment Arguments .. 197
Attaching arguments to a fragment .. 198
Retrieving arguments .. 199

Reloading the List .. 200
Getting Results with Fragments .. 202
Challenge: Efficient RecyclerView Reloading ... 203
For the More Curious: Why Use Fragment Arguments? .. 204

11. Using ViewPager .. 205
Creating CrimePagerActivity .. 206

ViewPager and PagerAdapter ... 207
Integrating CrimePagerActivity ... 208

FragmentStatePagerAdapter vs. FragmentPagerAdapter .. 211
For the More Curious: How ViewPager Really Works .. 212
For the More Curious: Laying Out Views in Code ... 213

12. Dialogs ... 215
The AppCompat Library ... 216
Creating a DialogFragment .. 217

Showing a DialogFragment .. 220
Setting a dialog’s contents ... 221

Passing Data Between Two Fragments ... 224
Passing data to DatePickerFragment .. 225
Returning data to CrimeFragment ... 226

Challenge: More Dialogs ... 233
Challenge: A Responsive DialogFragment .. 233

13. The Toolbar ... 235
AppCompat ... 235

Using the AppCompat library .. 236
Menus .. 238

Defining a menu in XML .. 239
Creating the menu .. 244
Responding to menu selections ... 246

Android Programming

xi

Enabling Hierarchical Navigation ... 248
How hierarchical navigation works ... 249

An Alternative Action Item ... 249
Toggling the action item title ... 251
“Just one more thing...” ... 252

For the More Curious: Toolbar vs Action Bar ... 254
Challenge: Deleting Crimes ... 255
Challenge: Plural String Resources ... 255
Challenge: An Empty View for the RecyclerView .. 255

14. SQLite Databases ... 257
Defining a Schema ... 257
Building Your Initial Database ... 258

Debugging database issues .. 261
Gutting CrimeLab .. 262
Writing to the Database .. 263

Using ContentValues .. 263
Inserting and updating rows ... 264

Reading from the Database .. 266
Using a CursorWrapper .. 267
Converting to model objects .. 269

For the More Curious: More Databases ... 271
For the More Curious: The Application Context .. 272
Challenge: Deleting Crimes ... 272

15. Implicit Intents ... 273
Adding Buttons ... 274
Adding a Suspect to the Model Layer ... 276
Using a Format String .. 278
Using Implicit Intents ... 279

Parts of an implicit intent .. 280
Sending a crime report .. 281
Asking Android for a contact ... 283
Checking for responding activities .. 287

Challenge: ShareCompat ... 289
Challenge: Another Implicit Intent .. 289

16. Taking Pictures with Intents ... 291
A Place for Your Photo ... 291

Including layout files .. 292
External Storage .. 294

Designating a picture location .. 296
Using a Camera Intent .. 297

External storage permission ... 298
Firing the intent ... 299

Scaling and Displaying Bitmaps ... 301
Declaring Features ... 304
For the More Curious: Using Includes ... 304
Challenge: Detail Display .. 305
Challenge: Efficient Thumbnail Load .. 305

17. Two-Pane Master-Detail Interfaces ... 307

Android Programming

xii

Adding Layout Flexibility ... 308
Modifying SingleFragmentActivity ... 309
Creating a layout with two fragment containers ... 309
Using an alias resource ... 311
Creating tablet alternatives ... 312

Activity: Fragment Boss .. 314
Fragment callback interfaces .. 314

For the More Curious: More on Determining Device Size ... 323
18. Assets ... 325

Why Assets, Not Resources ... 326
Creating BeatBox ... 326
Importing Assets .. 329
Getting at Assets ... 331
Wiring Up Assets for Use ... 333
Accessing Assets ... 336
For the More Curious: Non-Assets? .. 337

19. Audio Playback with SoundPool ... 339
Creating a SoundPool ... 339
Loading Sounds ... 340
Playing Sounds .. 341
Unloading Sounds .. 343
Rotation and Object Continuity .. 344

Retaining a fragment .. 345
Rotation and retained fragments ... 346

For the More Curious: Whether to Retain .. 348
For the More Curious: More on Rotation Handling .. 349

20. Styles and Themes .. 353
Color Resources .. 353
Styles ... 354

Style inheritance .. 355
Themes .. 357

Modifying the theme .. 357
Adding Theme Colors .. 359
Overriding Theme Attributes .. 360

Theme spelunking .. 361
Modifying Button Attributes .. 365
For the More Curious: More on Style Inheritance .. 367
For the More Curious: Accessing Theme Attributes ... 368
Challenge: An Appropriate Base Theme .. 368

21. XML Drawables ... 369
Making Uniform Buttons .. 369
Shape Drawables ... 371
State List Drawables ... 372
Layer List Drawables ... 374
For the More Curious: Why Bother with XML Drawables? ... 376
For the More Curious: 9-Patch Images .. 376
For the More Curious: Mipmap Images ... 381

22. More About Intents and Tasks .. 383

Android Programming

xiii

Setting Up NerdLauncher .. 384
Resolving an Implicit Intent ... 386
Creating Explicit Intents at Runtime .. 391
Tasks and the Back Stack .. 393

Switching between tasks ... 393
Starting a new task ... 395

Using NerdLauncher as a Home Screen ... 397
Challenge: Icons .. 398
For the More Curious: Processes vs. Tasks ... 398
For the More Curious: Concurrent Documents .. 401

23. HTTP & Background Tasks .. 405
Creating PhotoGallery .. 406
Networking Basics ... 409

Asking permission to network .. 411
Using AsyncTask to Run on a Background Thread .. 411
You and Your Main Thread ... 413

Beyond the main thread .. 414
Fetching JSON from Flickr ... 415

Parsing JSON text .. 419
From AsyncTask Back to the Main Thread ... 422
Cleaning Up AsyncTasks .. 425
For the More Curious: More on AsyncTask .. 426
For the More Curious: Alternatives to AsyncTask .. 427
Challenge: Gson .. 428
Challenge: Paging .. 428
Challenge: Dynamically Adjusting the Number of Columns .. 428

24. Loopers, Handlers, and HandlerThread ... 429
Preparing RecyclerView to Display Images .. 429
Downloading Lots of Small Things ... 432
Communicating with the Main Thread ... 432
Assembling a Background Thread .. 433
Messages and Message Handlers .. 435

Message anatomy ... 435
Handler anatomy .. 436
Using handlers .. 437
Passing handlers .. 441

For the More Curious: AsyncTask vs. Threads .. 447
Challenge: Preloading and Caching ... 447
For the More Curious: Solving the Image Downloading Problem 448

25. Search .. 449
Searching Flickr .. 449
Using SearchView .. 455

Responding to SearchView user interactions ... 458
Simple Persistence with Shared Preferences .. 460
Polishing Your App .. 464
Challenge: Polishing Your App Some More .. 465

26. Background Services ... 467
Creating an IntentService .. 467

Android Programming

xiv

What Services are For .. 469
Safe background networking .. 470

Looking for New Results .. 471
Delayed Execution with AlarmManager ... 473

Being a good citizen: using alarms the right way ... 475
PendingIntent .. 477
Managing alarms with PendingIntent ... 477

Controlling Your Alarm .. 478
Notifications .. 481
Challenge: Notifications on Android Wear .. 483
For the More Curious: Service Details ... 483

What a service does (and does not) do ... 483
A service’s lifecycle ... 484
Non-sticky services .. 484
Sticky services ... 484
Bound services .. 485

For the More Curious: JobScheduler and JobServices ... 486
For the More Curious: Sync Adapters ... 488
Challenge: Using JobService on Lollipop ... 490

27. Broadcast Intents .. 491
Regular Intents vs. Broadcast Intents ... 491
Receiving a System Broadcast: Waking Up on Boot ... 492

Creating and registering a standalone receiver ... 492
Using receivers .. 495

Filtering Foreground Notifications .. 496
Sending broadcast intents .. 497
Creating and registering a dynamic receiver .. 497
Limiting broadcasts to your app using private permissions 500
Passing and receiving data with ordered broadcasts .. 502

Receivers and Long-Running Tasks ... 507
For the More Curious: Local Events .. 507

Using EventBus ... 507
Using RxJava .. 508

For the More Curious: Detecting the Visibility of Your Fragment 509
28. Browsing the Web and WebView ... 511

One Last Bit of Flickr Data ... 511
The Easy Way: Implicit Intents .. 514
The Harder Way: WebView ... 516

Using WebChromeClient to spruce things up .. 520
Proper Rotation with WebView .. 522

Dangers of handling configuration changes ... 523
For the More Curious: Injecting JavaScript Objects .. 523
For the More Curious: KitKat’s WebView Overhaul ... 524
Challenge: Using the Back Button for Browser History .. 524
Challenge: Supporting Non-HTTP Links .. 525

29. Custom Views and Touch Events ... 527
Setting Up the DragAndDraw Project .. 527

Setting up DragAndDrawActivity ... 528

Android Programming

xv

Setting up DragAndDrawFragment ... 528
Creating a Custom View ... 530

Creating BoxDrawingView .. 530
Handling Touch Events ... 532

Tracking across motion events .. 534
Rendering Inside onDraw(…) .. 536
Challenge: Saving State .. 538
Challenge: Rotating Boxes .. 538

30. Property Animation ... 539
Building the Scene ... 539
Simple Property Animation ... 542

View transformation properties ... 544
Using different interpolators .. 546
Color evaluation .. 546

Playing Animators Together ... 548
For the More Curious: Other Animation APIs ... 550

Legacy animation tools ... 550
Transitions .. 550

Challenges .. 550
31. Locations and Play Services ... 551

Locations and Libraries ... 551
Google Play Services .. 552

Creating Locatr .. 552
Play Services and Location Testing on Emulators .. 553

Mock location data ... 554
Building out Locatr .. 556
Setting Up Google Play Services .. 559

Location permissions .. 560
Using Google Play Services ... 561
Flickr Geosearch .. 563
Getting a Location Fix .. 564
Find and Display an Image .. 566
Challenge: Progress .. 569

32. Maps .. 571
Importing Play Services Maps .. 571
Mapping on Android .. 571
Maps API Setup .. 572

Getting a Maps API Key ... 572
Setting Up Your Map ... 574
Getting More Location Data .. 576
Working with Your Map ... 579

Drawing on the map ... 582
For the More Curious: Teams and API Keys ... 584

33. Material Design .. 587
Material Surfaces ... 587

Elevation and Z values .. 589
State list animators ... 590

Animation Tools .. 591

Android Programming

xvi

Circular reveal ... 591
Shared element transitions ... 593

View Components .. 597
Cards ... 597
Floating action buttons .. 598
Snackbars ... 600

More on Material Design .. 601
34. Afterword .. 603

The Final Challenge ... 603
Shameless Plugs .. 603
Thank You .. 604

Index ... 605

xvii

Learning Android
As a beginning Android programmer, you face a steep learning curve. Learning Android is like moving
to a foreign city. Even if you speak the language, it will not feel like home at first. Everyone around
you seems to understand things that you are missing. Things you already knew turn out to be dead
wrong in this new context.

Android has a culture. That culture speaks Java, but knowing Java is not enough. Getting your head
around Android requires learning many new ideas and techniques. It helps to have a guide through
unfamiliar territory.

That’s where we come in. At Big Nerd Ranch, we believe that to be an Android programmer, you
must:

• write Android applications

• understand what you are writing

This guide will help you do both. We have trained hundreds of professional Android programmers
using it. We lead you through writing several Android applications, introducing concepts and
techniques as needed. When there are rough spots, when some things are tricky or obscure, you will
face them head on, and we will do our best to explain why things are the way they are.

This approach allows you to put what you have learned into practice in a working app right away rather
than learning a lot of theory and then having to figure out how to apply it all later. You will come away
with the experience and understanding you need to get going as an Android developer.

Prerequisites
To use this book, you need to be familiar with Java, including classes and objects, interfaces, listeners,
packages, inner classes, anonymous inner classes, and generic classes.

If these ideas do not ring a bell, you will be in the weeds by page 2. Start instead with an introductory
Java book and return to this book afterward. There are many excellent introductory books available, so
you can choose one based on your programming experience and learning style.

If you are comfortable with object-oriented programming concepts, but your Java is a little rusty, you
will probably be OK. We will provide some brief reminders about Java specifics (like interfaces and
anonymous inner classes). Keep a Java reference handy in case you need more support as you go
through the book.

What's New in the Second Edition?
This second edition shows how to use the Android Studio integrated development environment to write
practical applications for Android 5.1 (Lollipop) that are backwards-compatible through Android 4.1
(Jelly Bean). It includes updated coverage of the fundamentals of Android programming as well as new
Lollipop tools like the toolbar and material design. It also covers new tools from the support libraries,
like RecyclerView and Google Play Services, plus some key standard library tools, like SoundPool,
animations, and assets.

Learning Android

xviii

How to Use This Book
This book is not a reference book. Its goal is to get you over the initial hump to where you can get
the most out of the reference and recipe books available. It is based on our five-day class at Big Nerd
Ranch. As such, it is meant to be worked through from the beginning. Chapters build on each other and
skipping around is unproductive.

In our classes, students work through these materials, but they also benefit from the right environment
– a dedicated classroom, good food and comfortable board, a group of motivated peers, and an
instructor to answer questions.

As a reader, you want your environment to be similar. That means getting a good night’s rest and
finding a quiet place to work. These things can help, too:

• Start a reading group with your friends or coworkers.

• Arrange to have blocks of focused time to work on chapters.

• Participate in the forum for this book at http://forums.bignerdranch.com.

• Find someone who knows Android to help you out.

How This Book is Organized
As you work through this book, you will write eight Android apps. A couple are very simple and take
only a chapter to create. Others are more complex. The longest app spans 11 chapters. All are designed
to teach you important concepts and techniques and give you direct experience using them.

GeoQuiz In your first app, you will explore the fundamentals of Android projects,
activities, layouts, and explicit intents.

CriminalIntent The largest app in the book, CriminalIntent lets you keep a record of your
colleagues’ lapses around the office. You will learn to use fragments, master-
detail interfaces, list-backed interfaces, menus, the camera, implicit intents,
and more.

BeatBox Intimidate your foes with this app while you learn more about fragments,
media playback, themes, and drawables.

NerdLauncher Building this custom launcher will give you insight into the intent system and
tasks.

PhotoGallery A Flickr client that downloads and displays photos from Flickr’s public
feed, this app will take you through services, multithreading, accessing web
services, and more.

Challenges

xix

DragAndDraw In this simple drawing app, you will learn about handling touch events and
creating custom views.

Sunset In this toy app, you will create a beautiful representation of a sunset over open
water while learning about animations.

Locatr This app lets you query Flickr for pictures around your current location and
display them on a map. In it, you will learn how to use location services and
maps.

Challenges
Most chapters have a section at the end with exercises for you to work through. This is your
opportunity to use what you have learned, explore the documentation, and do some problem solving on
your own.

We strongly recommend that you do the challenges. Going off the beaten path and finding your way
will solidify your learning and give you confidence with your own projects.

If you get lost, you can always visit http://forums.bignerdranch.com for some assistance.

Are you more curious?
There are also sections at the ends of chapters labeled “For the More Curious.” These sections offer
deeper explanations or additional information about topics presented in the chapter. The information in
these sections is not absolutely essential, but we hope you will find it interesting and useful.

Code Style
There are two areas where our choices differ from what you might see elsewhere in the Android
community:

We use anonymous inner classes for listeners.

This is mostly a matter of opinion. We find it makes for cleaner code in the applications in this
book because it puts the listener’s method implementations right where you want to see them. In
high-performance contexts or large applications, anonymous inner classes may cause problems,
but for most circumstances they work fine.

After we introduce fragments in Chapter 7, we use them for all user interfaces.

Fragments are not an absolutely necessary tool but we find that, when used correctly, they are a
valuable tool in any Android developer’s toolkit. Once you get comfortable with fragments, they
are not that difficult to work with. Fragments have clear advantages over activities that make
them worth the effort, including flexibility in building and presenting your user interfaces.

Learning Android

xx

Typographical Conventions
To make this book easier to read, certain items appear in certain fonts. Variables, constants, and types
appear in a fixed-width font. Class names, interface names, and method names appear in a bold, fixed-
width font.

All code and XML listings are in a fixed-width font. Code or XML that you need to type in is always
bold. Code or XML that should be deleted is struck through. For example, in the following method
implementation, you are deleting the call to makeText(…) and adding the call to checkAnswer(true).

@Override
public void onClick(View v) {
 Toast.makeText(QuizActivity.this, R.string.incorrect_toast,
 Toast.LENGTH_SHORT).show();
 checkAnswer(true);
}

Android Versions
This book teaches Android development for all widely used versions of Android. As of this writing,
that is Android 4.1 (Jelly Bean) - Android 5.1 (Lollipop). While there is a small amount of market-
share on older versions of Android, we find that for most developers the amount of effort required to
support those versions is not worth the reward. For more info on the support of versions of Android
earlier than 4.1 (in particular, Android 2.2 and Android 2.3), see the first edition of this book.

As Android releases new versions, the techniques you learn in this book will continue to work thanks
to Android’s backwards compatibility support (see Chapter 6 for details). We will keep track of
changes at http://forums.bignerdranch.com and offer notes on using this book with the latest
version.

xxi

The Necessary Tools
To get started with this book, you will need Android Studio. Android Studio is an integrated
development environment used for Android development that is based off of the popular IntelliJ IDEA.

An install of Android Studio includes:

Android SDK

the latest version of the Android SDK

Android SDK tools and platform-tools

tools for debugging and testing your apps

A system image for the Android emulator

lets you create and test your apps on different virtual devices

As of this writing, Android Studio is under active development and is frequently updated. Be aware
that you may find differences between your version of Android Studio and what you see in this book.
Visit http://forums.bignerdranch.com for help with these differences.

Downloading and Installing Android Studio
Android Studio is available from Android’s developer site at https://developer.android.com/sdk/.

If you do not already have it installed, you will need to install the Java Development Kit (JDK7), which
you can download from http://www.oracle.com.

If you are still having problems, return to https://developer.android.com/sdk/ for more
information.

Downloading Earlier SDK Versions
Android Studio provides the SDK and the emulator system image from the latest platform. However,
you may want to test your apps on earlier versions of Android.

You can get components for each platform using the Android SDK Manager. In Android Studio, select
Tools → Android → SDK Manager. (You will only see the Tools menu if you have a project open. If
you have not created a project yet, you can instead access the SDK Manager from the Android Setup
Wizard screen. Under the Quick Start section, select Configure → SDK Manager, as shown in Figure 1.)

The Necessary Tools

xxii

Figure 1 Android SDK Manager

Select and install each version of Android that you want to test with. Note that downloading these
components may take a while.

The Android SDK Manager is also how to get Android’s latest releases, like a new platform or an
update of the tools.

An Alternative Emulator
The speed of the Android emulator has improved significantly over time and it is a reasonable way to
run the code that you write in this book.

As an alternative, Genymotion is a popular, third-party Android emulator. You will occasionally see
references to the Genymotion emulator in this book. For more information on Genymotion, visit
http://genymotion.com/.

A Hardware Device
The emulator and Genymotion are useful for testing apps. However, they are no substitute for an actual
Android device when measuring performance. If you have a hardware device, we recommend using
that device at times when working through this book.

1

1
Your First Android Application

This first chapter is full of new concepts and moving parts required to build an Android application. It
is OK if you do not understand everything by the end of this chapter. You will be revisiting these ideas
again and in greater detail as you proceed through the book.

The application you are going to create is called GeoQuiz. GeoQuiz tests the user’s knowledge of
geography. The user presses True or False to answer the question on screen, and GeoQuiz provides
instant feedback.

Figure 1.1 shows the result of a user pressing the False button:

Figure 1.1 (It’s Istanbul, not Constantinople)

Chapter 1 Your First Android Application

2

App Basics
Your GeoQuiz application will consist of an activity and a layout:

• An activity is an instance of Activity, a class in the Android SDK. An activity is responsible for
managing user interaction with a screen of information.

You write subclasses of Activity to implement the functionality that your app requires. A simple
application may need only one subclass; a complex application can have many.

GeoQuiz is a simple app, so it will have a single Activity subclass named QuizActivity.
QuizActivity will manage the user interface shown in Figure 1.1.

• A layout defines a set of user interface objects and their position on the screen. A layout is made
up of definitions written in XML. Each definition is used to create an object that appears on
screen, like a button or some text.

GeoQuiz will include a layout file named activity_quiz.xml. The XML in this file will define
the user interface shown in Figure 1.1.

The relationship between QuizActivity and activity_quiz.xml is diagrammed in Figure 1.2.

Figure 1.2 QuizActivity manages what activity_quiz.xml defines

With those ideas in mind, let’s build an app.

Creating an Android Project
The first step is to create an Android project. An Android project contains the files that make up an
application. To create a new project, first open Android Studio.

Creating an Android Project

3

If this is your first time running Android Studio, you will see the Welcome dialog, as in Figure 1.3.

Figure 1.3 Welcome to Android Studio

From the dialog, choose Start a new Android Studio project. If you do not see the dialog, you may have
created projects before. In this case, choose File → New Project....

You should see the new project wizard. In the first screen of the wizard, enter GeoQuiz as the
application name (Figure 1.4). For the Company Domain, enter android.bignerdranch.com. As you
do this, you will see the generated Package name change to com.bignerdranch.android.geoquiz. For
the Project location, you can use any location on your filesystem that you want.

Chapter 1 Your First Android Application

4

Figure 1.4 Creating a new application

Notice that the package name uses a “reverse DNS” convention in which the domain name of your
organization is reversed and suffixed with further identifiers. This convention keeps package names
unique and distinguishes applications from each other on a device and on Google Play.

Click Next. The next screen allows you to specify details about which devices you want to support.
GeoQuiz will only support phones, so just check Phone and Tablet. Select a Minimum SDK version of
API 16: Android 4.1 (Jelly Bean) (Figure 1.5). You will learn about the different versions of Android in
Chapter 6.

Creating an Android Project

5

Figure 1.5 Specifying device support

(Android Studio updates regularly, so your wizard may look slightly different from what we are
showing you. This is usually not a problem; the choices should be similar. If your wizard looks very
different, then the tools have changed more drastically. Do not panic. Head to this book’s forum at
forums.bignerdranch.com and we will help you navigate the latest version.)

Click Next.

Chapter 1 Your First Android Application

6

In the next screen, you are prompted to choose a template for the first screen of GeoQuiz (Figure 1.6).
Choose Blank Activity and click Next.

Figure 1.6 Choosing a type of Activity

Creating an Android Project

7

In the final dialog of this wizard, name the activity subclass QuizActivity (Figure 1.7). Notice the
Activity suffix on the class name. This is not required, but it is an excellent convention to follow.

Figure 1.7 Configuring the new activity

The layout name will automatically update to activity_quiz to reflect the activity’s new name. The
layout name reverses the order of the activity name, is all lowercase, and has underscores between
words. This naming style is recommended for layouts as well as other resources that you will learn
about later.

For the Title, enter GeoQuiz to match the name of the app. Leave the Menu Resource Name as is and
click Finish. Android Studio will create and open your new project.

Chapter 1 Your First Android Application

8

Navigating in Android Studio
Android Studio opens your project in a window, as shown in Figure 1.8.

The different panes of the project window are called Tool Windows.

The lefthand view is the project tool window. From here, you can view and manage the files associated
with your project.

The middle view is the editor. To get you started, Android Studio has opened activity_quiz.xml
in the editor. (If you see an image in the editor, click the Text tab at the bottom.) You can also see a
preview of that file on the righthand side.

Figure 1.8 A fresh project window

You can toggle the visibility of the various tool windows by clicking on their names in the strip of tool
buttons on the left, right, or bottom of the screen. There are keyboard shortcuts for many of these as
well. If you do not see the tool button strips, click the gray square button in the lower left corner of the
main window or choose View → Tool Buttons.

Laying Out the User Interface

9

Laying Out the User Interface
Currently, activity_quiz.xml defines the default activity layout. The defaults change frequently, but
the XML will look something like Listing 1.1.

Listing 1.1 Default activity layout (activity_quiz.xml)

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".QuizActivity">

 <TextView
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</RelativeLayout>

The default activity layout defines two widgets: a RelativeLayout and a TextView.

Widgets are the building blocks you use to compose a user interface. A widget can show text or
graphics, interact with the user, or arrange other widgets on the screen. Buttons, text input controls, and
checkboxes are all types of widgets.

The Android SDK includes many widgets that you can configure to get the appearance and behavior
you want. Every widget is an instance of the View class or one of its subclasses (such as TextView or
Button).

Figure 1.9 shows how the RelativeLayout and TextView defined in Listing 1.1 would appear on
screen.

Chapter 1 Your First Android Application

10

Figure 1.9 Default widgets as seen on screen

But these are not the widgets you are looking for. The interface for QuizActivity requires five
widgets:

• a vertical LinearLayout

• a TextView

• a horizontal LinearLayout

• two Buttons

Figure 1.10 shows how these widgets compose QuizActivity’s interface.

Laying Out the User Interface

11

Figure 1.10 Planned widgets as seen on screen

Now you need to define these widgets in activity_quiz.xml.

In activity_quiz.xml, make the changes shown in Listing 1.2. The XML that you need to delete
is struck through, and the XML that you need to add is in a bold font. This is the pattern we will use
throughout the book.

Do not worry about understanding what you are typing; you will learn how it works next. However, do
be careful. Layout XML is not validated, and typos will cause problems sooner or later.

Depending on your version of the tools, you might get errors on the three lines that start with
android:text. Ignore these errors for now; you will fix them soon.

Chapter 1 Your First Android Application

12

Listing 1.2 Defining widgets in XML (activity_quiz.xml)
<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:paddingLeft="@dimen/activity_horizontal_margin"
 android:paddingRight="@dimen/activity_horizontal_margin"
 android:paddingTop="@dimen/activity_vertical_margin"
 android:paddingBottom="@dimen/activity_vertical_margin"
 tools:context=".QuizActivity">

 <TextView
 android:text="@string/hello_world"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content" />

</RelativeLayout>

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical" >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/question_text" />

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal" >

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/true_button" />

 <Button
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/false_button" />

 </LinearLayout>

</LinearLayout>

Compare your XML with the user interface shown in Figure 1.10. Every widget has a corresponding
XML element. The name of the element is the type of the widget.

Each element has a set of XML attributes. Each attribute is an instruction about how the widget should
be configured.

To understand how the elements and attributes work, it helps to look at the layout from a hierarchical
perspective.

The view hierarchy

13

The view hierarchy
Your widgets exist in a hierarchy of View objects called the view hierarchy. Figure 1.11 shows the view
hierarchy that corresponds to the XML in Listing 1.2.

Figure 1.11 Hierarchical layout of widgets and attributes

The root element of this layout’s view hierarchy is a LinearLayout. As the root element, the
LinearLayout must specify the Android resource XML namespace at http://schemas.android.com/
apk/res/android.

LinearLayout inherits from a subclass of View named ViewGroup. A ViewGroup is a widget that
contains and arranges other widgets. You use a LinearLayout when you want widgets arranged
in a single column or row. Other ViewGroup subclasses are FrameLayout, TableLayout, and
RelativeLayout.

When a widget is contained by a ViewGroup, that widget is said to be a child of the ViewGroup. The
root LinearLayout has two children: a TextView and another LinearLayout. The child LinearLayout
has two Button children of its own.

Chapter 1 Your First Android Application

14

Widget attributes
Let’s go over some of the attributes that you have used to configure your widgets.

android:layout_width and android:layout_height
The android:layout_width and android:layout_height attributes are required for almost every type
of widget. They are typically set to either match_parent or wrap_content:

match_parent view will be as big as its parent

wrap_content view will be as big as its contents require

(You may see fill_parent in some places. This deprecated value is equivalent to match_parent.)

For the root LinearLayout, the value of both the height and width attributes is match_parent. The
LinearLayout is the root element, but it still has a parent – the view that Android provides for your
app’s view hierarchy to live in.

The other widgets in your layout have their widths and heights set to wrap_content. You can see in
Figure 1.10 how this determines their sizes.

The TextView is slightly larger than the text it contains due to its android:padding="24dp" attribute.
This attribute tells the widget to add the specified amount of space to its contents when determining its
size. You are using it to get a little breathing room between the question and the buttons. (Wondering
about the dp units? These are density-independent pixels that you will learn about in Chapter 8.)

android:orientation
The android:orientation attribute on the two LinearLayout widgets determines whether
their children will appear vertically or horizontally. The root LinearLayout is vertical; its child
LinearLayout is horizontal.

The order in which children are defined determines the order in which they appear on screen. In a
vertical LinearLayout, the first child defined will appear topmost. In a horizontal LinearLayout, the
first child defined will be leftmost. (Unless the language of the device is a language that runs right-to-
left, such as Arabic or Hebrew. In that case, the first child will be rightmost.)

android:text
The TextView and Button widgets have android:text attributes. This attribute tells the widget what
text to display.

Notice that the values of these attributes are not literal strings. They are references to string resources.

A string resource is a string that lives in a separate XML file called a strings file. You can give a widget
a hard-coded string, like android:text="True", but it is usually not a good idea. Placing strings into a
separate file and then referencing them is better because it makes localization easy.

The string resources you are referencing in activity_quiz.xml do not exist yet. Let’s fix that.

Creating string resources

15

Creating string resources
Every project includes a default strings file named strings.xml.

In the Project tool window, find the app/res/values directory, reveal its contents, and open
strings.xml.

The template has already added a few string resources for you. Remove the unused string named
hello_world and add the three new strings that your layout requires.

Listing 1.3 Adding string resources (strings.xml)

<resources>
 <string name="app_name">GeoQuiz</string>

 <string name="hello_world">Hello world!</string>
 <string name="question_text">
 Constantinople is the largest city in Turkey.
 </string>
 <string name="true_button">True</string>
 <string name="false_button">False</string>
 <string name="action_settings">Settings</string>
</resources>

(Do not delete the action_settings string. Your project came with a menu already prepared. Deleting
action_settings will cause cascading errors in other files related to the menu.)

Now, whenever you refer to @string/false_button in any XML file in the GeoQuiz project, you will
get the literal string “False” at runtime.

Save strings.xml. If you had errors in activity_quiz.xml about the missing string resources, they
should now be gone. (If you still have errors, check both files for typos.)

Although the default strings file is named strings.xml, you can name a strings file anything you want.
You can also have multiple strings files in a project. As long as the file is located in res/values/, has
a resources root element, and contains child string elements, your strings will be found and used
appropriately.

Previewing the layout
Your layout is now complete, and you can preview the layout in the graphical layout tool (Figure 1.12).
First, make sure that your files are saved and error free. Then return to activity_quiz.xml and open
the Preview tool window (if it is not already open) using the tab to the right of the editor.

Chapter 1 Your First Android Application

16

Figure 1.12 Preview in graphical layout tool (activity_quiz.xml)

From Layout XML to View Objects
How do XML elements in activity_quiz.xml become View objects? The answer starts in the
QuizActivity class.

When you created the GeoQuiz project, a subclass of Activity named QuizActivity was created for
you. The class file for QuizActivity is in the app/java directory of your project. The java directory is
where the Java code for your project lives.

In the Project tool window, reveal the contents of the app/java directory and then the contents of the
com.bignerdranch.android.geoquiz package. Open the QuizActivity.java file and take a look at
its contents (Listing 1.4).

From Layout XML to View Objects

17

Listing 1.4 Default class file for QuizActivity (QuizActivity.java)
package com.bignerdranch.android.geoquiz;

import android.support.v7.app.AppCompatActivity;
import android.os.Bundle;
import android.view.Menu;
import android.view.MenuItem;

public class QuizActivity extends AppCompatActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.quiz, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 int id = item.getItemId();
 if (id == R.id.action_settings) {
 return true;
 }
 return super.onOptionsItemSelected(item);
 }
}

(Wondering what AppCompatActivity is? It is a subclass of Android’s Activity class that
provides compatibility support for older versions of Android. You will learn much more about
AppCompatActivity in Chapter 13.)

If you are not seeing all of the import statements, click the symbol to the left of the first import
statement to reveal the others.

This file has three Activity methods: onCreate(Bundle), onCreateOptionsMenu(Menu), and
onOptionsItemSelected(MenuItem).

Ignore onCreateOptionsMenu(Menu) and onOptionsItemSelected(MenuItem) for now. You will
return to menus in detail in Chapter 13.

The onCreate(Bundle) method is called when an instance of the activity subclass is created. When an
activity is created, it needs a user interface to manage. To get the activity its user interface, you call the
following Activity method:

 public void setContentView(int layoutResID)

This method inflates a layout and puts it on screen. When a layout is inflated, each widget in the layout
file is instantiated as defined by its attributes. You specify which layout to inflate by passing in the
layout’s resource ID.

Chapter 1 Your First Android Application

18

Resources and resource IDs
A layout is a resource. A resource is a piece of your application that is not code – things like image
files, audio files, and XML files.

Resources for your project live in a subdirectory of the app/res directory. In the Project tool window,
you can see that activity_quiz.xml lives in res/layout/. Your strings file, which contains string
resources, lives in res/values/.

To access a resource in code, you use its resource ID. The resource ID for your layout is
R.layout.activity_quiz.

To see the current resource IDs for GeoQuiz, you must first change your project view. By default,
Android Studio uses the Android project view (Figure 1.13). This view hides away the true directory
structure of your Android project so that you can focus on the files and folders that you need most
often.

Figure 1.13 Changing the project view

Locate the dropdown at the top of the Project tool window and change from the Android project view
to the Project view. The Project view will show you the files and folders in your project as they actually
are.

To see the resources for GeoQuiz, reveal the contents of the app/build/generated/source/r/debug
directory. In this directory, find your project’s package name and open R.java within that package.
Because this file is generated by the Android build process, you should not change it, as you are subtly
warned at the top of the file.

After making a change to your resources, you may not see this file instantly update. Android Studio
maintains a hidden R.java that your code builds against. The R.java file that you are looking at here
is the one that is generated for your app just before it is installed on a device or emulator. You will see
this file update when you run your app.

Resources and resource IDs

19

Listing 1.5 Current GeoQuiz resource IDs (R.java)
/* AUTO-GENERATED FILE. DO NOT MODIFY.
 *
 * This class was automatically generated by the
 * aapt tool from the resource data it found. It
 * should not be modified by hand.
 */

package com.bignerdranch.android.geoquiz;

public final class R {
 public static final class anim {
 ...
 }

 ...

 public static final class id {
 ...
 }
 public static final class layout {
 ...
 public static final int activity_quiz=0x7f030017;
 }
 public static final class mipmap {
 public static final int ic_launcher=0x7f030000;
 }
 public static final class string {
 ...
 public static final int app_name=0x7f0a0010;
 public static final int correct_toast=0x7f0a0011;
 public static final int false_button=0x7f0a0012;
 public static final int incorrect_toast=0x7f0a0013;
 public static final int question_text=0x7f0a0014;
 public static final int true_button=0x7f0a0015;
 }
}

The R.java file can be large and much of this file is omitted from Listing 1.5.

This is where the R.layout.activity_quiz comes from – it is an integer constant named
activity_quiz within the layout inner class of R.

Your strings also have resource IDs. You have not yet referred to a string in code, but if you did, it
would look like this:

 setTitle(R.string.app_name);

Android generated a resource ID for the entire layout and for each string, but it did not generate IDs for
the individual widgets in activity_quiz.xml. Not every widget needs a resource ID. In this chapter,
you will only interact with the two buttons in code, so only they need resource IDs.

Before generating the resource IDs, switch back to the Android project view. Throughout this book, the
Android project view will be used – but feel free to use the Project version if you prefer.

To generate a resource ID for a widget, you include an android:id attribute in the widget’s definition.
In activity_quiz.xml, add an android:id attribute to each button.

Chapter 1 Your First Android Application

20

Listing 1.6 Adding IDs to Buttons (activity_quiz.xml)

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
... >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/question_text" />

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:orientation="horizontal">

 <Button
 android:id="@+id/true_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/true_button" />

 <Button
 android:id="@+id/false_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/false_button" />

 </LinearLayout>

</LinearLayout>

Notice that there is a + sign in the values for android:id but not in the values for android:text. This
is because you are creating the IDs and only referencing the strings.

Wiring Up Widgets
Now that the buttons have resource IDs, you can access them in QuizActivity. The first step is to add
two member variables.

Type the following code into QuizActivity.java. (Do not use code completion; type it in yourself.)
After you save the file, it will report two errors.

Listing 1.7 Adding member variables (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private Button mTrueButton;
 private Button mFalseButton;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);
 }

...
}

Getting references to widgets

21

You will fix the errors in just a second. First, notice the m prefix on the two member (instance) variable
names. This prefix is an Android naming convention that we will follow throughout this book.

Now mouse over the red error indicators. They report the same problem: Cannot resolve symbol
'Button'.

These errors are telling you that you need to import the android.widget.Button class into
QuizActivity.java. You could type the following import statement at the top of the file:

 import android.widget.Button;

Or you can do it the easy way and let Android Studio do it for you. Just press Option+Return (or Alt
+Enter) to let the IntelliJ magic under the hood amaze you. The new import statement now appears
with the others at the top of the file. This shortcut is generally useful when something is not correct
with your code. Try it often!

This should get rid of the errors. (If you still have errors, check for typos in your code and XML.)

Now you can wire up your button widgets. This is a two-step process:

• get references to the inflated View objects

• set listeners on those objects to respond to user actions

Getting references to widgets
In an activity, you can get a reference to an inflated widget by calling the following Activity method:

 public View findViewById(int id)

This method accepts a resource ID of a widget and returns a View object.

In QuizActivity.java, use the resource IDs of your buttons to retrieve the inflated objects and assign
them to your member variables. Note that you must cast the returned View to Button before assigning
it.

Listing 1.8 Getting references to widgets (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private Button mTrueButton;
 private Button mFalseButton;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);

 mTrueButton = (Button) findViewById(R.id.true_button);
 mFalseButton = (Button) findViewById(R.id.false_button);
 }

...
}

Chapter 1 Your First Android Application

22

Setting listeners
Android applications are typically event driven. Unlike command-line programs or scripts, event-
driven applications start and then wait for an event, such as the user pressing a button. (Events can also
be initiated by the OS or another application, but user-initiated events are the most obvious.)

When your application is waiting for a specific event, we say that it is “listening for” that event. The
object that you create to respond to an event is called a listener, and the listener implements a listener
interface for that event.

The Android SDK comes with listener interfaces for various events, so you do not have to write your
own. In this case, the event you want to listen for is a button being pressed (or “clicked”), so your
listener will implement the View.OnClickListener interface.

Start with the True button. In QuizActivity.java, add the following code to onCreate(…) just after
the variable assignment.

Listing 1.9 Set listener for True button (QuizActivity.java)
 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);

 mTrueButton = (Button) findViewById(R.id.true_button);
 mTrueButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Does nothing yet, but soon!
 }
 });

 mFalseButton = (Button) findViewById(R.id.false_button);
 }
}

(If you have a View cannot be resolved to a type error, try using Option+Return (Alt+Enter) to import
the View class.)

In Listing 1.9, you set a listener to inform you when the Button known as mTrueButton has been
pressed. The setOnClickListener(OnClickListener) method takes a listener as its argument. In
particular, it takes an object that implements OnClickListener.

Using anonymous inner classes
This listener is implemented as an anonymous inner class. The syntax is a little tricky, but
it helps to remember that everything within the outermost set of parentheses is passed into
setOnClickListener(OnClickListener). Within these parentheses, you create a new, nameless class
and pass its entire implementation.

 mTrueButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Does nothing yet, but soon!
 }
 });

Making Toasts

23

All of the listeners in this book will be implemented as anonymous inner classes. Doing so puts the
implementations of the listeners’ methods right where you want to see them. And there is no need for
the overhead of a named class because the class will be used in one place only.

Because your anonymous class implements OnClickListener, it must implement that interface’s sole
method, onClick(View). You have left the implementation of onClick(View) empty for now, and the
compiler is OK with that. A listener interface requires you to implement onClick(View), but it makes
no rules about how to implement it.

(If your knowledge of anonymous inner classes, listeners, or interfaces is rusty, you may want to
review some Java before continuing or at least keep a reference nearby.)

Set a similar listener for the False button.

Listing 1.10 Set listener for False button (QuizActivity.java)

 ...

 mTrueButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Does nothing yet, but soon!
 }
 });

 mFalseButton = (Button) findViewById(R.id.false_button);
 mFalseButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Does nothing yet, but soon!
 }
 });
 }

Making Toasts
Now to make the buttons fully armed and operational. You are going to have a press of each button
trigger a pop-up message called a toast. A toast is a short message that informs the user of something
but does not require any input or action. You are going to make toasts that announce whether the user
answered correctly or incorrectly (Figure 1.14).

Chapter 1 Your First Android Application

24

Figure 1.14 A toast providing feedback

First, return to strings.xml and add the string resources that your toasts will display.

Listing 1.11 Adding toast strings (strings.xml)
<resources>
 <string name="app_name">GeoQuiz</string>

 <string name="question_text">Constantinople is the largest city in Turkey.</string>
 <string name="true_button">True</string>
 <string name="false_button">False</string>
 <string name="correct_toast">Correct!</string>
 <string name="incorrect_toast">Incorrect!</string>
 <string name="action_settings">Settings</string>
</resources>

To create a toast, you call the following method from the Toast class:

 public static Toast makeText(Context context, int resId, int duration)

The Context parameter is typically an instance of Activity (Activity is a subclass of Context). The
second parameter is the resource ID of the string that the toast should display. The Context is needed
by the Toast class to be able to find and use the string’s resource ID. The third parameter is one of two
Toast constants that specify how long the toast should be visible.

After you have created a toast, you call Toast.show() on it to get it on screen.

In QuizActivity, you are going to call makeText(…) in each button’s listener (Listing 1.12). Instead of
typing everything in, try using Android Studio’s code completion feature to add these calls.

Using code completion

25

Using code completion
Code completion can save you a lot of time, so it is good to become familiar with it early.

Start typing the code addition shown in Listing 1.12. When you get to the period after the Toast class,
a pop-up window will appear with a list of suggested methods and constants from the Toast class.

To choose one of the suggestions, use the up and down arrow keys to select it. (If you wanted to ignore
code completion, you could just keep typing. It will not complete anything for you if you do not press
the Tab key, press the Return/Enter key, or click on the pop-up window.)

From the list of suggestions, select makeText(Context context, int resID, int duration). Code
completion will add the complete method call for you.

Fill in the parameters for the makeText method until you have added the code shown in Listing 1.12.

Listing 1.12 Making toasts (QuizActivity.java)
 ...
 mTrueButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,
 R.string.incorrect_toast,
 Toast.LENGTH_SHORT).show();
 // Does nothing yet, but soon!
 }
 });

 mFalseButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,
 R.string.correct_toast,
 Toast.LENGTH_SHORT).show();
 // Does nothing yet, but soon!
 }
 });

In makeText(…), you pass the instance of QuizActivity as the Context argument. However, you
cannot simply pass the variable this as you might expect. At this point in the code, you are defining
the anonymous class where this refers to the View.OnClickListener.

Because you used code completion, you do not have to do anything to import the Toast class. When
you accept a code completion suggestion, the necessary classes are imported automatically.

Save your work, and let’s see your new app in action.

Chapter 1 Your First Android Application

26

Running on the Emulator
To run an Android application, you need a device – either a hardware device or a virtual device. Virtual
devices are powered by the Android emulator, which ships with the developer tools.

To create an Android virtual device (AVD), choose Tools → Android → AVD Manager. When the AVD
Manager appears, click the Create Virtual Device... button on the lefthand side of the window.

In the dialog that appears, you are offered many options for configuring a virtual device. For your first
AVD, choose to emulate a Nexus 5, as shown in Figure 1.15. Click Next.

Figure 1.15 Choosing a virtual device

Running on the Emulator

27

On the next screen, choose a system image that your emulator is based on. For this emulator, select an
x86 Lollipop emulator and select Next (Figure 1.16).

Figure 1.16 Choosing a system image

Finally, you can review and tweak properties of the emulator. You can also edit the properties of an
existing emulator later on. For now, name your emulator something that will help you to identify it
later on and click Finish (Figure 1.17).

Chapter 1 Your First Android Application

28

Figure 1.17 Updating emulator properties

Once you have an AVD, you can run GeoQuiz on it. From the Android Studio toolbar, click the Run
button (it looks like a green “play” symbol) or press Control+R. Android Studio will find the virtual
device you created, start it, install the application package on it, and run the app.

Starting up the emulator can take a while, but eventually your GeoQuiz app will launch on the AVD
that you created. Press buttons and admire your toasts. (Note that if the app launches and you are not
around, you may have to unlock the AVD when you come back. The AVD works like a real device, and
it will lock itself after a time.)

If GeoQuiz crashes when launching or when you press a button, useful information will appear in the
LogCat view in the Android DDMS tool window. (If LogCat did not open automatically when you ran
GeoQuiz, you can open it by clicking the Android button at the bottom of the Android Studio window.)
Look for exceptions in the log; they will be an eye-catching red color, as shown in Figure 1.18.

Figure 1.18 An example NullPointerException at line 21

Compare your code with the code in the book to try to find the cause of the problem. Then try running
again. (You will learn more about LogCat and debugging in the next two chapters.)

For the More Curious: Android Build Process

29

Keep the emulator running; you do not want to wait for it to launch on every run. You can stop the app
by pressing the Back button (the arrow that is making a U-turn). Then re-run the app from Android
Studio to test changes.

The emulator is useful, but testing on a real device gives more accurate results. In Chapter 2, you will
run GeoQuiz on a hardware device. You will also give GeoQuiz more geography questions with which
to test the user.

For the More Curious: Android Build Process
By now, you probably have some burning questions about how the Android build process works.
You have already seen that Android Studio builds your project automatically as you modify it rather
than on command. During the build process, the Android tools take your resources, code, and the
AndroidManifest.xml file (which contains meta-data about the application) and turn them into
an .apk file. This file is then signed with a debug key, which allows it to run on the emulator. (To
distribute your .apk to the masses, you have to sign it with a release key. There is more information
about this process in the Android developer documentation at http://developer.android.com/
tools/publishing/preparing.html.)

Figure 1.19 shows the complete build process.

Chapter 1 Your First Android Application

30

Figure 1.19 Building GeoQuiz

How do the contents of activity_quiz.xml turn into View objects in an application? As part of the
build process, aapt (Android Asset Packaging Tool) compiles layout file resources into a more compact
format. These compiled resources are packaged into the .apk file. Then, when setContentView(…) is
called in the QuizActivity’s onCreate(…) method, the QuizActivity uses the LayoutInflater class
to instantiate each of the View objects as defined in the layout file (Figure 1.20).

Android build tools

31

Figure 1.20 Inflating activity_quiz.xml

(You can also create your view classes programmatically in the activity instead of defining them in
XML. But there are benefits to separating your presentation from the logic of the application. The main
one is taking advantage of configuration changes built into the SDK, which you will learn more about
in Chapter 3.)

For more details on how the different XML attributes work and how views display themselves on the
screen, see Chapter 8.

Android build tools
All of the builds you have seen so far have been executed from within Android Studio. This build is
integrated into the IDE – it invokes standard Android build tools like aapt, but the build process itself
is managed by Android Studio.

You may, for your own reasons, want to perform builds from outside of Android Studio. The easiest
way to do this is to use a command-line build tool. The modern Android build system uses a tool called
Gradle.

(You will know if this section applies to you. If it does not, feel free to read along but do not be
concerned if you are not sure of why you might want to do this or if the commands below do not seem
to work. Coverage of the ins and outs of using the command line is beyond the scope of this book.)

Chapter 1 Your First Android Application

32

To use Gradle from the command line, navigate to your project’s directory and run the following
command:

$./gradlew tasks

On Windows, your command will look a little different:

> gradlew.bat tasks

This will show you a list of available tasks you can execute. The one you want is called “installDebug”.
Make it so with a command like this:

$./gradlew installDebug

Or, on Windows:

> gradlew.bat installDebug

This will install your app on whatever device is connected. However, it will not run the app. For that,
you will need to pull up the launcher and launch the app by hand.

33

2
Android and Model-View-

Controller

In this chapter, you are going to upgrade GeoQuiz to present more than one question, as shown in
Figure 2.1.

Figure 2.1 More questions!

To make this happen, you are going to add a class named Question to the GeoQuiz project. An
instance of this class will encapsulate a single true-false question.

Then, you will create an array of Question objects for QuizActivity to manage.

Chapter 2 Android and Model-View-Controller

34

Creating a New Class
In the Project tool window, right-click the com.bignerdranch.android.geoquiz package and select
New → Java Class. Name the class Question and click OK (Figure 2.2).

Figure 2.2 Creating the Question class

In Question.java, add two member variables and a constructor.

Listing 2.1 Adding to Question class (Question.java)

public class Question {

 private int mTextResId;
 private boolean mAnswerTrue;

 public Question(int textResId, boolean answerTrue) {
 mTextResId = textResId;
 mAnswerTrue = answerTrue;
 }
}

The Question class holds two pieces of data: the question text and the question answer (true or false).

Why is mTextResId an int and not a String? The mTextResId variable will hold the resource ID
(always an int) of a string resource for the question. You will create the question string resources in a
later section.

These variables need getter and setter methods. Rather than typing them in yourself, you can have
Android Studio generate the implementations for you.

Generating getters and setters
The first step is to configure Android Studio to recognize the m prefix for member variables.

Open Android Studio’s preferences (from the Android Studio menu on Mac and from File → Settings
on Windows). Expand Editor and then expand Code Style. Select Java, then choose the Code
Generation tab.

In the Naming table, select the Field row (Figure 2.3) and add m as the Name prefix for fields. Then add
s as the Name prefix for static fields. (You will not be using the s prefix in the GeoQuiz project, but it
will be useful in later projects.)

Generating getters and setters

35

Figure 2.3 Setting Java code style preferences

Click OK.

What is the point of setting these prefixes? Now, when you ask Android Studio to generate a getter for
mTextResId, it will create getTextResId() rather than getMTextResId() and isAnswerTrue() rather
than isMAnswerTrue().

Back in Question.java, right-click after the constructor and select Generate... and then Getter and
Setter. Select mTextResId and mAnswerTrue and click OK to create a getter and setter for each variable.

Chapter 2 Android and Model-View-Controller

36

Listing 2.2 Generated getters and setters (Question.java)
public class Question {

 private int mTextResId;
 private boolean mAnswerTrue;

 ...

 public int getTextResId() {
 return mTextResId;
 }

 public void setTextResId(int textResId) {
 mTextResId = textResId;
 }

 public boolean isAnswerTrue() {
 return mAnswerTrue;
 }

 public void setAnswerTrue(boolean answerTrue) {
 mAnswerTrue = answerTrue;
 }

}

Your Question class is now complete. In a moment, you will modify QuizActivity to work with
Question. First, let’s take a look at how the pieces of GeoQuiz will work together. You are going to
have QuizActivity create an array of Question objects. It will then interact with the TextView and the
three Buttons to display questions and provide feedback. Figure 2.4 diagrams these relationships.

Figure 2.4 Object diagram for GeoQuiz

Model-View-Controller and Android

37

Model-View-Controller and Android
Notice that the objects in Figure 2.4 are separated into three sections labeled Model, Controller, and
View. Android applications are designed around an architecture called Model-View-Controller, or
MVC for short. In MVC, all objects in your application must be a model object, a view object, or a
controller object.

• A model object holds the application’s data and “business logic.” Model classes are typically
designed to model the things your app is concerned with, such as a user, a product in a store, a
photo on a server, or a television show. Or a true-false question. Model objects have no knowledge
of the user interface; their sole purpose is holding and managing data.

In Android applications, model classes are generally custom classes you create. All of the model
objects in your application compose its model layer.

GeoQuiz’s model layer consists of the Question class.

• View objects know how to draw themselves on the screen and how to respond to user input, like
touches. A simple rule of thumb is that if you can see it on screen, then it is a view.

Android provides a wealth of configurable view classes. You can also create custom view classes.
An application’s view objects make up its view layer.

GeoQuiz’s view layer consists of the widgets that are inflated from activity_quiz.xml.

• Controller objects tie the view and model objects together. They contain “application logic.”
Controllers are designed to respond to various events triggered by view objects and to manage the
flow of data to and from model objects and the view layer.

In Android, a controller is typically a subclass of Activity, Fragment, or Service. (You will
learn about fragments in Chapter 7 and services in Chapter 26.)

GeoQuiz’s controller layer, at present, consists solely of QuizActivity.

Figure 2.5 shows the flow of control between objects in response to a user event, like a press of a
button. Notice that model and view objects do not talk to each other directly; controllers sit squarely in
the middle of everything, receiving messages from some objects and dispatching instructions to others.

Chapter 2 Android and Model-View-Controller

38

Figure 2.5 MVC flow with user input

Benefits of MVC
An application can accumulate features until it is too complicated to understand. Separating code into
classes helps you design and understand the application as a whole; you can think in terms of classes
instead of individual variables and methods.

Similarly, separating classes into model, view, and controller layers helps you design and understand
an application; you can think in terms of layers instead of individual classes.

Although GeoQuiz is not a complicated app, you can still see the benefits of keeping layers separate. In
a moment, you are going to update GeoQuiz’s view layer to include a Next button. When you do that,
you will not need to remember a single thing about the Question class you just created.

MVC also makes classes easier to reuse. A class with restricted responsibilities is more reusable than
one with its fingers in every pie.

For instance, your model class, Question, knows nothing about the widgets used to display a true-false
question. This makes it easy to use Question throughout your app for different purposes. For example,
if you wanted to display a list of all the questions at once, you could use the same object that you use
here to display just one question at a time.

Updating the View Layer

39

Updating the View Layer
Now that you have been introduced to MVC, you are going to update GeoQuiz’s view layer to include
a Next button.

In Android, objects in the view layer are typically inflated from XML within a layout file. The sole
layout in GeoQuiz is defined in activity_quiz.xml. This layout needs to be updated as shown in
Figure 2.6. (Note that to save space we are not showing the attributes of unchanged widgets.)

Figure 2.6 New button!

So the changes you need to make to the view layer are:

• Remove the android:text attribute from the TextView. You no longer want a hard-coded
question to be part of its definition.

• Give the TextView an android:id attribute. This widget will need a resource ID so that you can
set its text in QuizActivity’s code.

• Add the new Button widget as a child of the root LinearLayout.

Return to activity_quiz.xml and make it happen.

Chapter 2 Android and Model-View-Controller

40

Listing 2.3 New button... and changes to the text view (activity_quiz.xml)

<LinearLayout
 ... >

 <TextView
 android:id="@+id/question_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/question_text"
 />

 <LinearLayout
 ... >

 ...

 </LinearLayout>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button" />

</LinearLayout>

Save activity_quiz.xml, and you may see a familiar error pop up to alert you about a missing string
resource.

Return to res/values/strings.xml. Remove the question string and add a string for the new button.

Listing 2.4 Updating strings (strings.xml)

...

 <string name="app_name">GeoQuiz</string>
 <string name="question_text">Constantinople is the largest city in Turkey.</string>
 <string name="true_button">True</string>
 <string name="false_button">False</string>
 <string name="next_button">Next</string>
 <string name="correct_toast">Correct!</string>

 ...

While you have strings.xml open, go ahead and add the strings for the set of geography questions
that will be shown to the user.

Updating the Controller Layer

41

Listing 2.5 Adding question strings in advance (strings.xml)
...

 <string name="incorrect_toast">Incorrect!</string>
 <string name="action_settings">Settings</string>
 <string name="question_oceans">The Pacific Ocean is larger than
 the Atlantic Ocean.</string>
 <string name="question_mideast">The Suez Canal connects the Red Sea
 and the Indian Ocean.</string>
 <string name="question_africa">The source of the Nile River is in Egypt.</string>
 <string name="question_americas">The Amazon River is the longest river
 in the Americas.</string>
 <string name="question_asia">Lake Baikal is the world\'s oldest and deepest
 freshwater lake.</string>
 ...

Notice that you use the escape sequence \' in the last value to get an apostrophe in your string. You
can use all the usual escape sequences in your string resources, such as \n for a new line.

Save your files. Then return to activity_quiz.xml and preview your layout changes in the graphical
layout tool.

That is all for now for GeoQuiz’s view layer. Time to wire everything up in your controller class,
QuizActivity.

Updating the Controller Layer
In the previous chapter, there was not much happening in GeoQuiz’s one controller, QuizActivity. It
displayed the layout defined in activity_quiz.xml. It set listeners on two buttons and wired them to
make toasts.

Now that you have multiple questions to retrieve and display, QuizActivity will have to work harder
to tie GeoQuiz’s model and view layers together.

Open QuizActivity.java. Add variables for the TextView and the new Button. Also, create an array
of Question objects and an index for the array.

Listing 2.6 Adding variables and a Question array (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private Button mTrueButton;
 private Button mFalseButton;
 private Button mNextButton;
 private TextView mQuestionTextView;

 private Question[] mQuestionBank = new Question[] {
 new Question(R.string.question_oceans, true),
 new Question(R.string.question_mideast, false),
 new Question(R.string.question_africa, false),
 new Question(R.string.question_americas, true),
 new Question(R.string.question_asia, true),
 };

 private int mCurrentIndex = 0;
 ...

Chapter 2 Android and Model-View-Controller

42

Here you call the Question constructor several times and create an array of Question objects.

(In a more complex project, this array would be created and stored elsewhere. In later apps, you will
see better options for storing model data. For now, we are keeping it simple and just creating the array
within your controller.)

You are going to use mQuestionBank, mCurrentIndex, and the accessor methods in Question to get a
parade of questions on screen.

First, get a reference for the TextView and set its text to the question at the current index.

Listing 2.7 Wiring up the TextView (QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);

 mQuestionTextView = (TextView) findViewById(R.id.question_text_view);
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);

 mTrueButton = (Button) findViewById(R.id.true_button);
 ...
 }
}

Save your files and check for any errors. Then run GeoQuiz. You should see the first question in the
array appear in the TextView.

Now let’s see about the Next button. First, get a reference to the button. Then set a
View.OnClickListener on it. This listener will increment the index and update the TextView’s text.

Updating the Controller Layer

43

Listing 2.8 Wiring up the new button (QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);

 mQuestionTextView = (TextView) findViewById(R.id.question_text_view);
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);

 ...

 mFalseButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,
 R.string.correct_toast,
 Toast.LENGTH_SHORT).show();
 }
 });

 mNextButton = (Button) findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }
 });
 ...
 }
}

You now have code in two separate places that updates the mQuestionTextView variable. Take a
moment to put this code into a private method instead, as shown in Listing 2.9. Then call that method
in the mNextButton’s listener and at the end of onCreate(Bundle) to initially set the text in the
activity’s view.

Chapter 2 Android and Model-View-Controller

44

Listing 2.9 Encapsulating with updateQuestion() (QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

 ...

 private void updateQuestion() {
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...

 mQuestionTextView = (TextView) findViewById(R.id.question_text_view);
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);

 ...

 mNextButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 updateQuestion();
 }
 });

 updateQuestion();
 ...
 }
}

Run GeoQuiz and test your new Next button.

Now that you have the questions behaving appropriately, it is time to turn to the answers. At the
moment, GeoQuiz thinks that the answer to every question is “False.” Let’s rectify that. Here again,
you will implement a private method to encapsulate code rather than writing similar code in two
places.

The method that you are going to add to QuizActivity is:

 private void checkAnswer(boolean userPressedTrue)

This method will accept a boolean variable that identifies whether the user pressed True or False.
Then, it will check the user’s answer against the answer in the current Question object. Finally, after
determining whether the user answered correctly, it will make a Toast that displays the appropriate
message to the user.

In QuizActivity.java, add the implementation of checkAnswer(boolean) shown in Listing 2.10.

Updating the Controller Layer

45

Listing 2.10 Adding checkAnswer(boolean) (QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

 ...

 private void updateQuestion() {
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }

 private void checkAnswer(boolean userPressedTrue) {
 boolean answerIsTrue = mQuestionBank[mCurrentIndex].isAnswerTrue();

 int messageResId = 0;

 if (userPressedTrue == answerIsTrue) {
 messageResId = R.string.correct_toast;
 } else {
 messageResId = R.string.incorrect_toast;
 }

 Toast.makeText(this, messageResId, Toast.LENGTH_SHORT)
 .show();
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...

 }
}

Within the button’s listeners, call checkAnswer(boolean), as shown in Listing 2.11.

Chapter 2 Android and Model-View-Controller

46

Listing 2.11 Calling checkAnswer(boolean) (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...

 mTrueButton = (Button) findViewById(R.id.true_button);
 mTrueButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,
 R.string.incorrect_toast,
 Toast.LENGTH_SHORT).show();
 checkAnswer(true);
 }
 });

 mFalseButton = (Button) findViewById(R.id.false_button);
 mFalseButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 Toast.makeText(QuizActivity.this,
 R.string.correct_toast,
 Toast.LENGTH_SHORT).show();
 checkAnswer(false);
 }
 });

 mNextButton = (Button) findViewById(R.id.next_button);
 ...

 }
}

GeoQuiz is ready to run again. Let’s get it running on a real device.

Running on a Device
In this section, you will set up your system, device, and application to get GeoQuiz running on your
hardware device.

Connecting your device
First, plug the device into your system. If you are developing on a Mac, your system should recognize
the device right away. On Windows, you may need to install the adb (Android Debug Bridge) driver. If
Windows cannot find the adb driver, then download one from the device manufacturer’s website.

Configuring your device for development

47

Configuring your device for development
To test apps on your device, you need to enable USB debugging on the device.

• On devices running Android 4.2 or later, Developer options is not visible by default. To enable
it, go to Settings → About Tablet/Phone and press Build Number 7 times. Then you can return to
Settings, see Developer options, and enable USB debugging.

• On devices running Android 4.0 or 4.1, go to Settings → Developer options instead.

• On devices running versions of Android earlier than 4.0, go to Settings → Applications →
Development and find the option to enable USB debugging.

As you can see, the options vary considerably across devices. If you are having problems enabling your
device, visit http://developer.android.com/tools/device.html for more help.

You can confirm that your device is recognized by opening the Devices view. The quickest way to the
Devices view is to select the Android tool window near the bottom of Android Studio. Inside of this
window, you will see a drop-down list of connected devices (Figure 2.7). You should see your AVD
and your hardware device listed.

Figure 2.7 Viewing connected devices

If you are having trouble getting your device recognized, verify that your device is turned on and the
developer options are enabled.

If you are still unable to see your device in the Devices view, you can find more help on the Android
developers’ site. Start at http://developer.android.com/tools/device.html. Or visit this book’s
forum at forums.bignerdranch.com for more troubleshooting help.

Run GeoQuiz as before. Android Studio will offer a choice between running on the virtual device or
the hardware device plugged into your system. Select the hardware device and continue. GeoQuiz will
launch on your device.

If Android Studio defaults to your emulator without offering a choice of device to run the app
on, recheck the steps above and make sure your device is plugged in. Next, ensure that your run
configuration is correct. To modify the run configuration, select the app drop-down list near the top of
the window, as shown in Figure 2.8.

Chapter 2 Android and Model-View-Controller

48

Figure 2.8 Run configurations

Choose Edit Configurations and you will be presented with a new window with details about your run
configuration (Figure 2.9). Select app in the left pane and verify that your Target Device is set to Show
chooser dialog. Select OK and re-run the app. You will now be presented with a choice of device to
launch the app on.

Figure 2.9 Run configuration properties

Adding an Icon
GeoQuiz is now up and running, but the user interface would be spiffier if the Next button also
displayed a right-pointing arrow icon.

You can find such an arrow in the solutions file for this book. The solutions file is a collection of
Android Studio projects for each chapter of this book. The solutions are hosted here:

 https://www.bignerdranch.com/solutions/AndroidProgramming2e.zip

https://www.bignerdranch.com/solutions/AndroidProgramming2e.zip

Adding resources to a project

49

Download this file and open the 02_MVC/GeoQuiz/app/src/main/res directory. Within this directory,
locate the drawable-hdpi, res/drawable-mdpi, drawable-xhdpi, and drawable-xxhdpi directories.

The suffixes on these directory names refer to the screen pixel density of a device:

mdpi medium-density screens (~160dpi)

hdpi high-density screens (~240dpi)

xhdpi extra-high-density screens (~320dpi)

xxhdpi extra-extra-high-density screens (~480dpi)

(There are a few other density categories that are omitted from the solutions, including ldpi and
xxxhdpi.)

Within each directory, you will find two image files – arrow_right.png and arrow_left.png. These
files have been customized for the screen pixel density specified in the directory’s name.

You are going to include all the image files from the solutions in GeoQuiz. When it runs, the OS will
choose the best image file for the specific device running the app. Note that by duplicating the images
multiple times, you increase the size of your application. In this case, this is not a problem because
GeoQuiz is a simple app.

If an app runs on a device that has a screen density not included in any of the application’s screen
density qualifiers, Android will automatically scale the available image to the appropriate size for the
device. Thanks to this feature, it is not necessary to provide images for all of the pixel density buckets.
To reduce the size of your application, you can focus on one or a few of the higher resolution buckets
and selectively optimize for lower resolutions when Android’s automatic scaling provides an image
with artifacts on those lower resolution devices.

(For alternatives to duplicating images at different densities and an explanation of your mipmap
directory, see Chapter 21.)

Adding resources to a project
The next step is to add the image files to GeoQuiz’s resources.

First, confirm that you have the necessary drawable folders. Make sure the project tools window is
displaying the Project view (select Project from the dropdown at the top of the project tools window, as
shown in Figure 1.13 in Chapter 1). Expand the contents of GeoQuiz/app/src/main/res. You should
see folders named drawable-hdpi, drawable-mdpi, drawable-xhdpi, and drawable-xxhdpi, as shown
in Figure 2.10. (You will likely see other folders as well. Ignore those for now.)

Chapter 2 Android and Model-View-Controller

50

Figure 2.10 Verifying existence of drawable directories

If you are missing any of the drawable folders listed above, you will need to add them before you
can add the image resources. Right-click on your res directory and select New → Directory. Give
your directory the name of whichever directory is missing, such as drawable-mdpi and click OK
(Figure 2.11).

Figure 2.11 Creating a drawable directory

After creating the drawable-mdpi directory, you should see it appear in the Project view in the project
tools window. (If you do not see the new directory, you are probably still using the Android view.
Switch to the Project view, as suggested earlier.)

Repeat the process to create the drawable-hdpi, drawable-xhdpi, and drawable-xxhdpi directories.

Once you have all of the drawable directories, for each of the drawable directories in the solutions file,
copy the arrow_left.png and arrow_right.png files and paste them into your project’s corresponding
drawable directory.

After copying all of the images, you will see the new arrow_left.png and arrow_right.png files in
the project tool window (as shown in Figure 2.12).

Adding resources to a project

51

Figure 2.12 Arrow icons in GeoQuiz drawable directories

If you switch the project tools window back to the Android view, you will see the newly added
drawable files summarized (as shown in Figure 2.13).

Figure 2.13 Summary of arrow icons in GeoQuiz drawable directories

Including images in your app is as simple as that. Any .png, .jpg, or .gif file you add to a res/
drawable folder will be automatically assigned a resource ID. (Note that filenames must be lowercase
and not have any spaces.)

Chapter 2 Android and Model-View-Controller

52

These resource IDs are not qualified by screen density. So you do not need to determine the device’s
screen density at runtime. All you have to do is use this resource ID in your code. When the app is run,
the OS will determine the appropriate image to display on that particular device.

You will learn more about how the Android resource system works starting in Chapter 3. For now, let’s
put that right arrow to work.

Referencing resources in XML
You use resource IDs to reference resources in code. But you want to configure the Next button to
display the arrow in the layout definition. How do you reference a resource from XML?

With a slightly different syntax. Open activity_quiz.xml and add two attributes to the Button widget
definition.

Listing 2.12 Adding an icon to the Next button (activity_quiz.xml)

<LinearLayout
 ... >

 ...

 <LinearLayout
 ... >

 ...

 </LinearLayout>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp"
 />

</LinearLayout>

In an XML resource, you refer to another resource by its resource type and name. A reference to a
string resource begins with @string/. A reference to a drawable resource begins with @drawable/.

You will learn more about naming resources and working in the res directory structure starting in
Chapter 3.

Save and run GeoQuiz. Admire your button’s new appearance. Then test it to make sure it still works
as before.

Challenges

53

GeoQuiz does, however, have a bug. While GeoQuiz is running, press the Next button to show another
question. Then rotate the device. (If you are running on the emulator, press Fn+Control+F12/Ctrl+F12
to rotate.)

After you rotate, you will be looking at the first question again. How did this happen, and how can you
fix it?

The answers to those questions have to do with the activity lifecycle, which is the topic of Chapter 3.

Challenges
Challenges are exercises at the end of the chapter for you to do on your own. Some are easy and
provide practice doing the same thing you have done in the chapter. Other challenges are harder and
require more problem solving.

We cannot encourage you enough to take on these challenges. Tackling them cements what you
have learned, builds confidence in your skills, and bridges the gap between us teaching you Android
programming and you being able to do Android programming on your own.

If you get stuck while working on a challenge, take a break and come back and try again fresh. If that
does not help, check out the forum for this book at forums.bignerdranch.com. In the forum, you
can review questions and solutions that other readers have posted as well as ask questions and post
solutions of your own.

To protect the integrity of your current project, we recommend you make a copy and work on
challenges in the new copy.

In your computer’s file explorer, navigate to the root directory of your project. Copy the GeoQuiz
folder and Paste a new copy next to the original (on OS X, use the Duplicate feature). Rename the new
folder GeoQuiz Challenge. Back in Android Studio, select File → Import Project.... Inside the import
window, navigate to GeoQuiz Challenge and select OK. The copied project will then appear in a new
window ready for work.

Challenge: Add a Listener to the TextView
Your Next button is nice, but you could also make it so that a user could press the TextView itself to see
the next question.

Hint: You can use the View.OnClickListener listener for the TextView that you have used with the
Buttons, because TextView also inherits from View.

Chapter 2 Android and Model-View-Controller

54

Challenge: Add a Previous Button
Add a button that the user can press to go back one question. The UI should look something like
Figure 2.14.

Figure 2.14 Now with a previous button!

This is a great challenge. It requires you to retrace many of the steps in these two chapters.

Challenge: From Button to ImageButton

55

Challenge: From Button to ImageButton
Perhaps the user interface would look even better if the next and previous buttons showed only icons,
as in Figure 2.15.

Figure 2.15 Icon-only buttons

To accomplish this challenge, these two widgets must become ImageButtons instead of regular
Buttons.

ImageButton is a widget that inherits from ImageView. Button, on the other hand, inherits from
TextView. Figure 2.16 shows their different inheritance hierarchies.

Figure 2.16 Inheritance diagram for ImageButton and Button

Chapter 2 Android and Model-View-Controller

56

You can replace the text and drawable attributes on the Next button with a single ImageView attribute:

 <Button ImageButton
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp"
 android:src="@drawable/arrow_right"
 />

Of course, you will need to modify QuizActivity to work with ImageButton.

After you have changed these buttons to ImageButtons, Android Studio will warn you about a missing
android:contentDescription attribute. This attribute supports accessibility for low-vision readers.
You set the value to a string, and then that string is read aloud when users have the appropriate settings
applied.

Finally, add an android:contentDescription attribute to each ImageButton.

57

3
The Activity Lifecycle

Every instance of Activity has a lifecycle. During this lifecycle, an activity transitions between three
states: running, paused, and stopped. For each transition, there is an Activity method that notifies the
activity of the change in its state. Figure 3.1 shows the activity lifecycle, states, and methods.

Figure 3.1 Activity state diagram

Subclasses of Activity can take advantage of the methods named in Figure 3.1 to get work done at
critical transitions in the activity’s lifecycle.

Chapter 3 The Activity Lifecycle

58

You are already acquainted with one of these methods – onCreate(Bundle). The OS calls this method
after the activity instance is created but before it is put on screen.

Typically, an activity overrides onCreate(…) to prepare the specifics of its user interface:

• inflating widgets and putting them on screen (in the call to (setContentView(int))

• getting references to inflated widgets

• setting listeners on widgets to handle user interaction

• connecting to external model data

It is important to understand that you never call onCreate(…) or any of the other Activity lifecycle
methods yourself. You override them in your activity subclasses, and Android calls them at the
appropriate time.

Logging the Activity Lifecycle
In this section, you are going to override lifecycle methods to eavesdrop on QuizActivity’s lifecycle.
Each implementation will simply log a message informing you that the method has been called.

Making log messages
In Android, the android.util.Log class sends log messages to a shared system-level log. Log has
several methods for logging messages. Here is the one that you will use most often in this book:

 public static int d(String tag, String msg)

The d stands for “debug” and refers to the level of the log message. (There is more about the Log levels
in the final section of this chapter.) The first parameter identifies the source of the message, and the
second is the contents of the message.

The first string is typically a TAG constant with the class name as its value. This makes it easy to
determine the source of a particular message.

In QuizActivity.java, add a TAG constant to QuizActivity:

Listing 3.1 Adding TAG constant (QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

 private static final String TAG = "QuizActivity";

 ...

}

Next, in onCreate(…), call Log.d(…) to log a message.

Making log messages

59

Listing 3.2 Adding log statement to onCreate(…) (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate(Bundle) called");
 setContentView(R.layout.activity_quiz);

 ...
 }
}

Now override five more methods in QuizActivity by adding the following after onCreate(Bundle)
and before onCreateOptionsMenu(Menu):

Listing 3.3 Overriding more lifecycle methods (QuizActivity.java)
 @Override
 public void onStart() {
 super.onStart();
 Log.d(TAG, "onStart() called");
 }

 @Override
 public void onPause() {
 super.onPause();
 Log.d(TAG, "onPause() called");
 }

 @Override
 public void onResume() {
 super.onResume();
 Log.d(TAG, "onResume() called");
 }

 @Override
 public void onStop() {
 super.onStop();
 Log.d(TAG, "onStop() called");
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 Log.d(TAG, "onDestroy() called");
 }

 ...
}

Notice that you call the superclass implementations before you log your messages. These superclass
calls are required. Calling the superclass implementation before you do anything else is critical in
onCreate(…); the order is less important in the other methods.

Chapter 3 The Activity Lifecycle

60

You may have been wondering about the @Override annotation. This asks the compiler to ensure that
the class actually has the method that you are attempting to override. For example, the compiler would
be able to alert you to the following misspelled method name:

public class QuizActivity extends AppCompatActivity {

 @Override
 public void onCreat(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_quiz);
 }

 ...

The Activity class does not have an onCreat(Bundle) method, so the compiler will complain. Then
you can fix the typo rather than accidentally implementing QuizActivity.onCreat(Bundle).

Using LogCat
To access the log while the application is running, you can use LogCat, a log viewer included in the
Android SDK tools.

When you run GeoQuiz, you should see LogCat appear at the bottom of Android Studio, as shown in
Figure 3.2. If LogCat is not visible, select the Android tool window near the bottom of the screen and
ensure that the Devices | logcat tab is selected.

Figure 3.2 Android Studio with LogCat

Using LogCat

61

Run GeoQuiz and messages will start materializing in LogCat. By default, log statements that are
generated with your app’s package name are shown. You will see your own messages along with some
system output.

To make your messages easier to find, you can filter the output using the TAG constant. In LogCat, click
the filter drop-down box in the top right of the LogCat pane. Notice the existing filter, which is set up
to show messages from only your app. Selecting No Filters will show log messages generated from all
over the system.

In the filter dropdown, select Edit Filter Configuration. Use the + button to create a brand-new filter.
Name the filter QuizActivity and enter QuizActivity in the by Log Tag: field (Figure 3.3).

Figure 3.3 Creating a filter in LogCat

Click OK, and only messages tagged QuizActivity will be visible (Figure 3.4).

Three lifecycle methods were called after GeoQuiz was launched and the initial instance of
QuizActivity was created.

Figure 3.4 Launching GeoQuiz creates, starts, and resumes an activity

(If you are not seeing the filtered list, select the QuizActivity filter from LogCat’s filter dropdown.)

Now let’s have some fun. Press the Back button on the device and then check LogCat. Your activity
received calls to onPause(), onStop(), and onDestroy() (Figure 3.5).

Chapter 3 The Activity Lifecycle

62

Figure 3.5 Pressing the Back button destroys the activity

When you pressed the Back button, you told Android, “I’m done with this activity, and I won’t need
it anymore.” Android then destroyed your activity. This is Android’s way of being frugal with your
device’s limited resources.

Relaunch GeoQuiz. Press the Home button and then check LogCat. Your activity received calls to
onPause() and onStop(), but not onDestroy() (Figure 3.6).

Figure 3.6 Pressing the Home button stops the activity

On the device, pull up the task manager: On newer devices, press the Recents button next to the Home
button (Figure 3.7). On devices without a Recents button, long-press the Home button.

Rotation and the Activity Lifecycle

63

Figure 3.7 Home, Back, and Recents buttons

In the task manager, press GeoQuiz and then check LogCat. The activity was started and resumed, but
it did not need to be created.

Pressing the Home button tells Android, “I’m going to go look at something else, but I might come
back.” Android pauses and stops your activity but tries not to destroy it in case you come back.

However, a stopped activity’s survival is not guaranteed. When the system needs to reclaim memory, it
will destroy stopped activities.

Another situation that pauses an activity is when it is obscured from the user, such as by a pop-up
window. Even if the window only partially covers the activity, the activity is paused and cannot be
interacted with. The activity resumes when the pop-up window is dismissed.

As you continue through the book, you will override the different activity lifecycle methods to do real
things for your application. When you do, you will learn more about the uses of each method.

Rotation and the Activity Lifecycle
Let’s get back to the bug you found at the end of Chapter 2. Run GeoQuiz, press the Next button to
reveal the second question, and then rotate the device. (On the emulator, press Fn+Control+F12/Ctrl
+F12 to rotate.)

After rotating, GeoQuiz will display the first question again. Check LogCat to see what has happened.
Your output should look like Figure 3.8.

Chapter 3 The Activity Lifecycle

64

Figure 3.8 QuizActivity is dead. Long live QuizActivity!

When you rotated the device, the instance of QuizActivity that you were looking at was destroyed,
and a new one was created. Rotate the device again to witness another round of destruction and rebirth.

This is the source of your bug. Each time a new QuizActivity is created, mCurrentIndex is initialized
to 0, and the user starts over at the first question. You will fix this bug in a moment. First, let’s take a
closer look at why this happens.

Device configurations and alternative resources
Rotating the device changes the device configuration. The device configuration is a set of
characteristics that describe the current state of an individual device. The characteristics that make up
the configuration include screen orientation, screen density, screen size, keyboard type, dock mode,
language, and more.

Typically, applications provide alternative resources to match different device configurations. You saw
an example of this when you added multiple arrow icons to your project for different screen densities.

Screen density is a fixed component of the device configuration; it cannot change at runtime. On the
other hand, some components, like screen orientation, can change at runtime.

When a runtime configuration change occurs, there may be resources that are a better match for the
new configuration. To see this in action, let’s create an alternative resource for Android to find and use
when the device’s screen orientation changes to landscape.

Creating a landscape layout

In the Project tool window, right-click the res directory and select New → Android resource directory.
You should see a window similar to Figure 3.9 that lists the resource types and qualifiers for those
types. Select layout in the Resource type drop-down box. Leave the Source set option set to main.
Next, you will choose how the layout resources will be qualified. Select Orientation in the Available
qualifiers list and click the >> button to move Orientation to the Chosen qualifiers section.

Device configurations and alternative resources

65

Figure 3.9 Creating a new resource directory

Finally, ensure that Landscape is selected in the Screen Orientation dropdown, as shown in
Figure 3.10. Verify that the Directory name now indicates that your directory is called layout-land.
While this window looks fancy, its purpose is just to set the name of your directory. Click OK and
Android Studio will create the res/layout-land/ folder.

Figure 3.10 Creating res/layout-land

Chapter 3 The Activity Lifecycle

66

The -land suffix is another example of a configuration qualifier. Configuration qualifiers on res
subdirectories are how Android identifies which resources best match the current device configuration.
You can find the list of configuration qualifiers that Android recognizes and the pieces of the device
configuration that they refer to at http://developer.android.com/guide/topics/resources/
providing-resources.html.

When the device is in landscape orientation, Android will find and use resources in the res/
layout-land directory. Otherwise, it will stick with the default in res/layout/. However, at the
moment there are no resources in the res/layout-land directory. Let’s fix that.

Copy the activity_quiz.xml file from res/layout/ to res/layout-land/. You now have a landscape
layout and a default layout. Keep the filename the same. The two layout files must have the same
filename so that they can be referenced with the same resource ID.

Now make some changes to the landscape layout so that it is different from the default. Figure 3.11
shows the changes that you are going to make.

Figure 3.11 An alternative landscape layout

The FrameLayout will replace the LinearLayout. FrameLayout is the simplest ViewGroup and does not
arrange its children in any particular manner. In this layout, child views will be arranged according to
their android:layout_gravity attributes.

The TextView, LinearLayout, and Button children of the FrameLayout need
android:layout_gravity attributes. The Button children of the LinearLayout will stay exactly the
same.

Open layout-land/activity_quiz.xml and make the necessary changes using Figure 3.11. You can
use Listing 3.4 to check your work.

Device configurations and alternative resources

67

Listing 3.4 Tweaking the landscape layout (layout-land/activity_quiz.xml)

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical" >

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent" >

 <TextView
 android:id="@+id/question_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_horizontal"
 android:padding="24dp" />

 <LinearLayout
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="center_vertical|center_horizontal"
 android:orientation="horizontal" >

 ...

 </LinearLayout>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|right"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp"
 />

</LinearLayout>
</FrameLayout>

Run GeoQuiz again. Rotate the device to landscape to see the new layout (Figure 3.12). Of course, this
is not just a new layout – it is a new QuizActivity as well.

Chapter 3 The Activity Lifecycle

68

Figure 3.12 QuizActivity in landscape orientation

Rotate back to portrait to see the default layout and yet another new QuizActivity.

Android does the work of determining the best resource for you, but it has to create a
new activity from scratch to do it. For a QuizActivity to display a different layout,
setContentView(R.layout.activity_quiz) must be called again. And this will not happen unless
QuizActivity.onCreate(…) is called again. Thus, Android destroys the current QuizActivity on
rotation and starts fresh to ensure that it has the resources that best match the new configuration.

Note that Android destroys the current activity and creates a new one whenever any runtime
configuration change occurs. A change in keyboard availability or language could also occur at
runtime, but a change in screen orientation is the runtime change that occurs most frequently.

Saving Data Across Rotation
Android does a great job of providing alternative resources at the right time. However, destroying and
re-creating activities on rotation can cause headaches, too, like GeoQuiz’s bug of reverting back to the
first question when the device is rotated.

To fix this bug, the post-rotation QuizActivity needs to know the old value of mCurrentIndex. You
need a way to save this data across a runtime configuration change, like rotation. One way to do this is
to override the Activity method:

 protected void onSaveInstanceState(Bundle outState)

This method is normally called by the system before onPause(), onStop(), and onDestroy().

The default implementation of onSaveInstanceState(…) directs all of the activity’s views to save their
state as data in the Bundle object. A Bundle is a structure that maps string keys to values of certain
limited types.

Overriding onSaveInstanceState(Bundle)

69

You have seen this Bundle before. It is passed into onCreate(Bundle):

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
}

When you override onCreate(…), you call onCreate(…) on the activity’s superclass and pass in the
bundle you just received. In the superclass implementation, the saved state of the views is retrieved and
used to re-create the activity’s view hierarchy.

Overriding onSaveInstanceState(Bundle)
You can override onSaveInstanceState(…) to save additional data to the bundle and then read that
data back in onCreate(…). This is how you are going to save the value of mCurrentIndex across
rotation.

First, in QuizActivity.java, add a constant that will be the key for the key-value pair that will be
stored in the bundle.

Listing 3.5 Adding a key for the value (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 private static final String TAG = "QuizActivity";
 private static final String KEY_INDEX = "index";

 private Button mTrueButton;
 ...

Next, override onSaveInstanceState(…) to write the value of mCurrentIndex to the bundle with the
constant as its key.

Listing 3.6 Overriding onSaveInstanceState(…) (QuizActivity.java)
 mNextButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 updateQuestion();
 }
 });

 updateQuestion();
 }

 @Override
 public void onSaveInstanceState(Bundle savedInstanceState) {
 super.onSaveInstanceState(savedInstanceState);
 Log.i(TAG, "onSaveInstanceState");
 savedInstanceState.putInt(KEY_INDEX, mCurrentIndex);
 }

Chapter 3 The Activity Lifecycle

70

Finally, in onCreate(…), check for this value. If it exists, assign it to mCurrentIndex.

Listing 3.7 Checking bundle in onCreate(…) (QuizActivity.java)

 ...

 if (savedInstanceState != null) {
 mCurrentIndex = savedInstanceState.getInt(KEY_INDEX, 0);
 }

 updateQuestion();
 }

Run GeoQuiz and press Next. No matter how many device rotations you perform, the newly minted
QuizActivity will “remember” what question you were on.

Note that the types that you can save to and restore from a Bundle are primitive types and classes that
implement the Serializable or Parcelable interfaces. It is usually a bad practice to put objects of
custom types into a Bundle, however, because the data might be stale when you get it back out. It is
a better choice to use some other kind of storage for the data and put a primitive identifier into the
Bundle instead.

Testing the implementation of onSaveInstanceState(…) is a good idea – especially if you are saving
and restoring objects. Rotation is easy to test; testing low-memory situations is harder. There is
information at the end of this chapter about how to simulate your activity being destroyed by Android
to reclaim memory.

The Activity Lifecycle, Revisited
Overriding onSaveInstanceState(Bundle) is not just for handling rotation. An activity can also be
destroyed if the user navigates away for a while and Android needs to reclaim memory.

Android will never destroy a running activity to reclaim memory – the activity must be in the paused
or stopped state to be destroyed. If an activity is paused or stopped, then its onSaveInstanceState(…)
method has been called.

When onSaveInstanceState(…) is called, the data is saved to the Bundle object. That Bundle object is
then stuffed into your activity’s activity record by the OS.

To understand the activity record, let’s add a stashed state to the activity lifecycle (Figure 3.13).

The Activity Lifecycle, Revisited

71

Figure 3.13 The complete activity lifecycle

When your activity is stashed, an Activity object does not exist, but the activity record object lives on
in the OS. The OS can reanimate the activity using the activity record when it needs to.

Note that your activity can pass into the stashed state without onDestroy() being called. However,
you can always rely on onPause() and onSaveInstanceState(…) to be called. Typically, you override
onSaveInstanceState(…) to stash small, transient states that belong to the current activity in your
Bundle and onPause() for anything else that needs to be done.

Under some situations, Android will not only kill your activity but also completely shut down your
application’s process. This will only happen if the user is not currently looking at your application, but
it can (and does) happen. Even in this case, the activity record will live on and enable a quick restart of
your activity if the user returns.

So when does the activity record get snuffed? When the user presses the Back button, your activity
really gets destroyed, once and for all. At that point, your activity record is discarded. Activity records
are also typically discarded on reboot and may also be discarded if they are not used for a long time.

Chapter 3 The Activity Lifecycle

72

For the More Curious: Testing
onSaveInstanceState(Bundle)
If you are overriding onSaveInstanceState(Bundle), you should test that your state is being saved
and restored as expected. This is easy to do on the emulator.

Start up a virtual device. Within the list of applications on the device, find the Settings app
(Figure 3.14). This app is included with most system images used on the emulator.

Figure 3.14 Finding the Settings app

Launch Settings and select Developer options. Here you will see many possible settings. Turn on the
setting labeled Don’t keep activities, as shown in Figure 3.15.

For the More Curious: Logging Levels and Methods

73

Figure 3.15 Don’t keep activities selected

Now run your app and press the Home button. Pressing Home causes the activity to be paused and
stopped. Then the stopped activity will be destroyed just as if the Android OS had reclaimed it for its
memory. Then you can restore the app to see if your state was saved as you expected. Be sure to turn
this setting off when you are done testing, as it will cause a performance decrease and some apps will
perform poorly.

Pressing the Back button instead of the Home button will always destroy the activity, regardless of
whether you have this development setting on. Pressing the Back button tells the OS that the user is
done with the activity.

To run the same test on a hardware device, you must install Dev Tools on the device. For more
information, visit http://developer.android.com/tools/debugging/debugging-devtools.html.

For the More Curious: Logging Levels and Methods
When you use the android.util.Log class to send log messages, you control not only the content of a
message, but also a level that specifies how important the message is. Android supports five log levels,
shown in Figure 3.16. Each level has a corresponding method in the Log class. Sending output to the
log is as simple as calling the corresponding Log method.

Chapter 3 The Activity Lifecycle

74

Figure 3.16 Log levels and methods

In addition, each of the logging methods has two signatures: one which takes a tag string and a
message string and a second that takes those two arguments plus an instance of Throwable, which
makes it easy to log information about a particular exception that your application might throw. Listing
3.8 shows some sample log method signatures. Use regular Java string concatenation to assemble your
message string, or String.format if you have fancier needs.

Listing 3.8 Different ways of logging in Android
// Log a message at "debug" log level
Log.d(TAG, "Current question index: " + mCurrentIndex);

Question question;
try {
 question = mQuestionBank[mCurrentIndex];
} catch (ArrayIndexOutOfBoundsException ex) {
 // Log a message at "error" log level, along with an exception stack trace
 Log.e(TAG, "Index was out of bounds", ex);
}

75

4
Debugging Android Apps

In this chapter, you will find out what to do when apps get buggy. You will learn how to use LogCat,
Android Lint, and the debugger that comes with Android Studio.

To practice debugging, the first step is to break something. In QuizActivity.java, comment out the
code in onCreate(Bundle) where you pull out mQuestionTextView.

Listing 4.1 Comment out a crucial line (QuizActivity.java)

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate() called");
 setContentView(R.layout.activity_quiz);

 mQuestionTextView = (TextView)findViewById(R.id.question_text_view);
 // mQuestionTextView = (TextView)findViewById(R.id.question_text_view);

 mTrueButton = (Button)findViewById(R.id.true_button);
 mTrueButton.setOnClickListener(new View.OnClickListener() {
 ...
 });

 ...
}

Run GeoQuiz and see what happens. Figure 4.1 shows the message that appears when your app crashes
and burns. Different versions of Android will have slightly different messages, but they all mean the
same thing.

Chapter 4 Debugging Android Apps

76

Figure 4.1 GeoQuiz is about to E.X.P.L.O.D.E.

Of course, you know what is wrong with your app, but if you did not, it might help to look at your app
from a new perspective.

Exceptions and Stack Traces
Expand the Android DDMS tool window so that you can see what has happened. If you scroll up
and down in LogCat, you should eventually find an expanse of red, as shown in Figure 4.2. This is a
standard AndroidRuntime exception report. If you are unable to see this exception in LogCat, you may
need to tweak LogCat’s filters. Select the No Filters option in the filter dropdown. You can also adjust
the Log Level to Error, which will show only the most severe log messages.

Diagnosing misbehaviors

77

Figure 4.2 Exception and stack trace in LogCat

The report tells you the top-level exception and its stack trace, then the exception that caused that
exception and its stack trace, and so on and so forth until it finds an exception with no cause.

In most of the code you will write, that last exception with no cause is the interesting one. Here the
exception without a cause is a java.lang.NullPointerException. The line just below this exception
is the first line in its stack trace. This line tells you the class and method where the exception occurred
as well as what file and line number the exception occurred on. Click the blue link, and Android Studio
will take you to that line in your source code.

The line to which you are taken is the first use of the mQuestionTextView variable, inside
updateQuestion(). The name NullPointerException gives you a hint to the problem: this variable
was not initialized.

Uncomment the line initializing mQuestionTextView to fix the bug.

When you encounter runtime exceptions, remember to look for the last exception in LogCat and the
first line in its stack trace that refers to code that you have written. That is where the problem occurs,
and it is the best place to start looking for answers.

If a crash occurs while a device is not plugged in, all is not lost. The device will store the latest lines
written to the log. The length and expiration of the stored log depends on the device, but you can
usually count on retrieving log results within 10 minutes. Just plug in the device and select your device
in the Devices view. LogCat will fill itself with the stored log.

Diagnosing misbehaviors
Problems with your apps will not always be crashes. In some cases, they will be misbehaviors. For
example, suppose that every time you pressed the Next button, nothing happened. That would be a
noncrashing, misbehaving bug.

Chapter 4 Debugging Android Apps

78

In QuizActivity.java, make a change to the mNextButton listener to comment out the code that
increments mCurrentIndex.

Listing 4.2 Forget a critical line of code (QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 ...

 mNextButton = (Button)findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 // mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 updateQuestion();
 }
 });

 ...
}

Run GeoQuiz and press the Next button. You should see no effect.

This bug is trickier than the last bug. It is not throwing an exception, so fixing the bug is not a simple
matter of making the exception go away. On top of that, this misbehavior could be caused in two
different ways: the index might not be changed, or updateQuestion() might not be called.

If you had no idea what was causing the problem, you would need to track down the culprit. In the
next few sections, you will see two ways to do this: diagnostic logging of a stack trace and using the
debugger to set a breakpoint.

Logging stack traces
In QuizActivity, add a log statement to updateQuestion().

Listing 4.3 Exception for fun and profit (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {
 ...

 private void updateQuestion() {
 Log.d(TAG, "Updating question text for question #" + mCurrentIndex,
 new Exception());
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }

The Log.d(String, String, Throwable) version of Log.d logs the entire stack trace just like
with the AndroidRuntime exception you saw earlier. The stack trace will tell you where the call to
updateQuestion() was made.

Setting breakpoints

79

The exception that you pass to Log.d(…) does not have to be a thrown exception that you caught. You
can create a brand new Exception and pass it to the method without ever throwing it, and you will get
a report of where the exception was created.

Run GeoQuiz, press the Next button, and then check the output in LogCat (Figure 4.3).

Figure 4.3 The results

The top line in the stack trace is the line where you logged out the Exception. Two lines after that you
can see where updateQuestion() was called from within your onClick(…) implementation. Click
the link on this line, and you will be taken to where you commented out the line to increment your
question index. But do not get rid of the bug; you are going to use the debugger to find it again in a
moment.

Logging out stack traces is a powerful tool, but it is also a verbose one. Leave a bunch of these hanging
around, and soon LogCat will be an unmanageable mess. Also, a competitor might steal your ideas by
reading your stack traces to understand what your code is doing.

On the other hand, sometimes a stack trace showing what your code does is exactly what you need. If
you are seeking help with a problem at http://stackoverflow.com or forums.bignerdranch.com, it
often helps to include a stack trace. You can copy and paste lines directly from LogCat.

Before continuing, delete the log statement in QuizActivity.java.

Listing 4.4 Farewell, old friend (QuizActivity.java)
public class QuizActivity extends AppCompatActivity {

 ...

 private void updateQuestion() {
 Log.d(TAG, "Updating question text for question #" + mCurrentIndex,
 new Exception());
 int question = mQuestionBank[mCurrentIndex].getTextResId();
 mQuestionTextView.setText(question);
 }

Setting breakpoints
Now you will use the debugger that comes with Android Studio to track down the same bug. You will
set a breakpoint on updateQuestion() to see whether it was called. A breakpoint pauses execution
before the line executes and allows you to examine line by line what happens next.

Chapter 4 Debugging Android Apps

80

In QuizActivity.java, return to the updateQuestion() method. In the first line of this method, click
the gray bar in the lefthand margin. You should now see a red circle in the gray bar like the one shown
in Figure 4.4. This is a breakpoint.

Figure 4.4 A breakpoint

To engage the debugger and trigger your breakpoint, you need to debug your app instead of running
it. To debug your app, click the debug button (represented by a green bug), next to the run button.
Alternatively, you can navigate to Run → Debug 'app' in the menu bar. Your device will report that it is
waiting for the debugger to attach, and then it will proceed normally.

Once your app is up and running with the debugger attached, it will pause. Firing up GeoQuiz called
QuizActivity.onCreate(Bundle), which called updateQuestion(), which hit your breakpoint.

In Figure 4.5, you can see that this editor has opened QuizActivity.java and highlighted the line with
the breakpoint where execution has paused.

Figure 4.5 Stop right there!

The Debug tool window at the bottom of the screen is now visible and contains the Frames and
Variables views (Figure 4.6).

Setting breakpoints

81

Figure 4.6 The Debug tool window

You can use the arrow buttons at the top of the view to step through your program. You can see from
the stack trace that updateQuestion() has been called from inside onCreate(Bundle). But you are
interested in investigating the Next button’s behavior, so click the Resume Program button to continue
execution. Then press the Next button in GeoQuiz to see if your breakpoint is hit and execution is
stopped (it should be).

Now that you are stopped at an interesting point of execution, you can take a look around. The
Variables view allows you to examine the values of the objects in your program. You should see
the variables that you have created in QuizActivity as well as an additional value: this (the
QuizActivity instance itself).

You could expand the this variable to see all the variables declared in QuizActivity’s superclass,
Activity, in Activity’s superclass, in its super-superclass, and so on. But for now, focus on the
variables that you created.

You are only interested in one value: mCurrentIndex. Scroll down in the variables view until you see
mCurrentIndex. Sure enough, it still has a value of 0.

This code looks perfectly fine. To continue your investigation, you need to step out of this method.
Click the Step Out button.

Check the editor view. It has now jumped you over to your mNextButton’s OnClickListener, right
after updateQuestion() was called. Pretty nifty.

You will want to fix this implementation, but before you make any changes to code, you should stop
debugging your app. You can do this in two ways: you can either stop the program, or you can simply
disconnect the debugger. To stop the program, click the Stop button shown in Figure 4.6. Usually it is
easier to simply disconnect the debugger. To do that, click the Close button also labeled in Figure 4.6.

Chapter 4 Debugging Android Apps

82

Now return your OnClickListener to its former glory.

Listing 4.5 Returning to normalcy (QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...

 mNextButton = (Button)findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 updateQuestion();
 }
 });

 ...
}

You have tried out two ways of tracking down a misbehaving line of code: stack trace logging and
setting a breakpoint in the debugger. Which is better? Each has its uses, and one or the other will
probably end up being your favorite.

Logging out stack traces has the advantage that you can see stack traces from multiple places in
one log. The downside is that to learn something new you have to add new log statements, rebuild,
deploy, and navigate through your app to see what happened. The debugger is more convenient. If you
run your app with the debugger attached, then you can set a breakpoint while the application is still
running and poke around to get information about multiple issues.

Using exception breakpoints
As if that were not enough choices, you can also use the debugger to catch exceptions. Return to
QuizActivity’s onCreate method and comment out a line of code that will cause the app to crash.

Listing 4.6 Making GeoQuiz crash again (QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
 ...

 mNextButton = (Button) findViewById(R.id.next_button);
 // mNextButton = (Button) findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View view) {
 mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 updateQuestion();
 }
 });

 ...
}

Using exception breakpoints

83

Now select Run → View Breakpoints... to pull up the breakpoints dialog, as shown in Figure 4.7.

Figure 4.7 Setting an exception breakpoint

This dialog shows all of your currently set breakpoints. Remove the breakpoint you added earlier by
highlighting it and clicking the Remove button (shaped like a minus sign).

The breakpoints dialog also allows you to set a breakpoint that is triggered when an exception is
thrown, wherever it might happen. You can limit it to only uncaught exceptions, or apply it to both
caught and uncaught exceptions.

Click the Add button (shaped like a plus sign) to add a new breakpoint. Choose Java Exception
Breakpoints in the drop-down list. You can now select the type of exception that you want to
catch. Type in RuntimeException and choose RuntimeException (java.lang) from the suggestions.
RuntimeException is the superclass of NullPointerException, ClassCastException, and other
runtime problems, so it makes a nice catch-all.

Click Done and launch GeoQuiz with the debugger attached. This time, your debugger will jump right
to the line where the exception was thrown as soon as it happens. Exquisite.

Now, this is a fairly big hammer. If you leave this breakpoint on while debugging, you can expect
it to stop on some framework code or in other places you do not expect. So you may want to turn it
off when you are not using it. Go ahead and remove the breakpoint now by returning to Run → View
Breakpoints....

Undo the change from Listing 4.6 to get GeoQuiz back to a good state.

Chapter 4 Debugging Android Apps

84

Android-Specific Debugging
Most Android debugging is just like Java debugging. However, you will run into issues with Android-
specific parts, such as resources, that the Java compiler knows nothing about.

Using Android Lint
This is where Android Lint comes in. Android Lint is a static analyzer for Android code. A static
analyzer is a program that examines your code to find defects without running it. Android Lint uses
its knowledge of the Android frameworks to look deeper into your code and find problems that the
compiler cannot. In most cases, Android Lint’s advice is worth taking.

In Chapter 6, you will see Android Lint warn you about compatibility problems. Android Lint can also
perform type-checking for objects that are defined in XML. Make the following casting mistake in
QuizActivity:

Listing 4.7 A simple mix-up (QuizActivity.java)

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate() called");
 setContentView(R.layout.activity_quiz);

 mQuestionTextView = (TextView)findViewById(R.id.question_text_view);

 mTrueButton = (Button)findViewById(R.id.true_button);
 mTrueButton = (Button)findViewById(R.id.question_text_view);

 ...
}

Because you used the wrong resource ID, this code will attempt to cast a TextView as a Button at
runtime. This will cause an improper cast exception. The Java compiler sees no problem with this
code, but Android Lint will catch this error. You should see Lint immediately highlight this line of code
indicating that there is a problem.

You can manually run Lint to see all of the potential issues in your project, including those that are not
as serious as the one above. Select Analyze → Inspect Code... from the menu bar. You will be asked
which parts of your project you would like to inspect. Choose Whole project. Android Studio will now
run Lint as well as a few other static analyzers on your code.

Once the scan is complete, you will see a few categories of potential issues. Expand the Android Lint
category to see Lint’s information about your project (Figure 4.8).

Issues with the R class

85

Figure 4.8 Lint warnings

You can select an issue in this list to see more detailed information and its location in your project.

The Mismatched view type warning is the one that you created above. Go ahead and correct the cast in
onCreate(Bundle).

Listing 4.8 Fixing that simple mix-up (QuizActivity.java)
@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 Log.d(TAG, "onCreate() called");
 setContentView(R.layout.activity_quiz);

 mQuestionTextView = (TextView)findViewById(R.id.question_text_view);

 mTrueButton = (Button)findViewById(R.id.question_text_view);
 mTrueButton = (Button)findViewById(R.id.true_button);

 ...
}

Run GeoQuiz once more and confirm that the app is back to normal.

Issues with the R class
You are familiar with build errors that occur when you reference resources before adding them or
delete resources that other files refer to. Usually, resaving the files once the resource is added or the
references are removed will cause Android Studio to rebuild without any fuss.

Sometimes, however, these build errors will persist or appear seemingly out of nowhere. If this happens
to you, here are some things you can try:

Chapter 4 Debugging Android Apps

86

Recheck the validity of the XML in your resource files

If your R.java file was not generated for the last build, you will see errors in your project
wherever you reference a resource. Often, this is caused by an XML typo in one of your XML
files. Layout XML is not always validated, so typos in these files may not be pointedly brought
to your attention. Finding the typo and resaving the file should cause R.java to regenerate.

Clean your project

Select Build → Clean Project. Android Studio will rebuild the project from scratch, which often
results in an error-free build. We can all use a deep clean every now and then.

Sync your project with Gradle

If you make changes to your build.gradle file, you will need to sync those changes to update
your project’s build settings. Select Tools → Android → Sync Project with Gradle Files. Android
Studio will rebuild the project from scratch with the correct project settings, which can help to
resolve issues after changing your Gradle configuration.

Run Android Lint

Pay close attention to the warnings from Android Lint. You will often discover unexpected
issues with this tool.

If you are still having problems with resources (or having different problems), give the error messages
and your layout files a fresh look. It is easy to miss mistakes in the heat of the moment. Check out any
Android Lint errors and warnings as well. A cool-headed reconsideration of the error messages may
turn up a bug or typo.

Finally, if you are stuck or having other issues with Android Studio, check the archives at http://
stackoverflow.com or visit the forum for this book at http://forums.bignerdranch.com.

87

5
Your Second Activity

In this chapter, you will add a second activity to GeoQuiz. An activity controls a screen of information,
and this activity will add a second screen that offers users a chance to see the answer to the current
question. Figure 5.1 shows the new activity.

Figure 5.1 CheatActivity offers the chance to peek at the answer

If the user chooses to view the answer and then returns to the QuizActivity and answers the question,
he or she will get a new message, shown in Figure 5.2.

Chapter 5 Your Second Activity

88

Figure 5.2 QuizActivity knows if you’ve been cheating

Why is this a good Android programming exercise? You will learn how to:

• Create a new activity and a new layout for it.

• Start an activity from another activity. Starting an activity means asking the OS to create an
activity instance and call its onCreate(Bundle) method.

• Pass data between the parent (starting) activity and the child (started) activity.

Setting Up a Second Activity
There is a lot to do in this chapter. Fortunately, some of the grunt work can be done for you by Android
Studio’s New Activity wizard.

But before you invoke the magic, open strings.xml and add all the strings you will need for this
chapter.

Creating a new activity

89

Listing 5.1 Adding strings (strings.xml)
<?xml version="1.0" encoding="utf-8"?>
<resources>

 ...
 <string name="question_asia">Lake Baikal is the world\'s oldest and deepest
 freshwater lake.</string>
 <string name="warning_text">Are you sure you want to do this?</string>
 <string name="show_answer_button">Show Answer</string>
 <string name="cheat_button">Cheat!</string>
 <string name="judgment_toast">Cheating is wrong.</string>

</resources>

Creating a new activity
Creating an activity typically involves touching at least three files: the Java class file, an XML layout,
and the application manifest. If you touch those files in the wrong ways, Android can get mad. To
ensure that you do it right, you should use Android Studio’s New Activity wizard.

Launch the New Activity wizard by right-clicking on your com.bignerdranch.android.geoquiz
package in the Project Tool Window. Choose New → Activity → Blank Activity as shown in Figure 5.3.

Figure 5.3 The New Activity Wizard menu

You should then see a dialog like Figure 5.4. Set Activity Name to CheatActivity. This is the name of
your Activity subclass. Layout Name should be automatically set to activity_cheat. This will be the
base name of the layout file the wizard creates. Title will be set to “CheatActivity” for you, but since
this is a string the user will see, change it to simply “Cheat”.

Chapter 5 Your Second Activity

90

The defaults for the remaining fields should be fine, but take care to ensure that the package name is
what you expect. This determines where CheatActivity.java will live on the filesystem. Click the
Finish button to make the magic happen.

Figure 5.4 The New Blank Activity wizard

Now it is time to make the user interface look good. The screenshot at the beginning of the chapter
shows you what CheatActivity’s view should look like. Figure 5.5 shows the widget definitions.

Figure 5.5 Diagram of layout for CheatActivity

Creating a new activity

91

After the wizard completes its work, it should open activity_cheat.xml in the layout directory. If it
did not, go ahead and open it now, and switch to the Text (XML) view.

Try creating the XML for the layout using Figure 5.5 as a guide. Replace the sample layout with a
new LinearLayout and so on down the tree. After Chapter 8, we will only show layout diagrams like
Figure 5.5 instead of long passages of XML, so it is a good idea to start using them now to create your
layout XML. You can check your work against Listing 5.2.

Listing 5.2 Filling out the second activity’s layout (activity_cheat.xml)

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:gravity="center"
 android:orientation="vertical"
 tools:context="com.bignerdranch.android.geoquiz.CheatActivity">

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 android:text="@string/warning_text"/>

 <TextView
 android:id="@+id/answer_text_view"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:padding="24dp"
 tools:text="Answer"/>

 <Button
 android:id="@+id/show_answer_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/show_answer_button"/>

</LinearLayout>

Notice the special XML namespace for tools and the tools:text attribute on the TextView widget
where the answer will appear. This namespace allows you to override any attribute on a widget for the
purpose of displaying it differently in the Android Studio preview. Since TextView has a text attribute,
you can provide a literal dummy value for it to help you know what it will look like at runtime. The
value “Answer” will never show up in the real app. Handy!

You will not be creating a landscape alternative for activity_cheat.xml, but there is a way to preview
how the default layout will appear in landscape.

In the Preview tool window, find the button in the toolbar above the preview pane that looks like a
device with a curved arrow. Click this button to change the orientation of the preview (Figure 5.6).

Chapter 5 Your Second Activity

92

Figure 5.6 Previewing activity_cheat.xml in landscape

The default layout works well enough in both orientations, so let’s move on to fleshing out the activity
subclass.

A new activity subclass
In the Project tool window, find the com.bignerdranch.android.geoquiz Java package and open the
CheatActivity class, which is in the CheatActivity.java file.

This class already includes a basic implementation of onCreate(…) that passes the resource ID of the
layout defined in activity_cheat.xml to setContentView(…).

CheatActivity will eventually do more in its onCreate(…) method. For now, let’s take a look at
another thing the New Activity wizard did for you: declaring CheatActivity in the application’s
manifest.

Declaring activities in the manifest
The manifest is an XML file containing metadata that describes your application to the Android OS.
The file is always named AndroidManifest.xml, and it lives in the app/manifests directory of your
project.

In the Project tool window, find and open AndroidManifest.xml. You can also use Android Studio’s
Quick Open dialog by pressing Command+Shift+O (Ctrl+Shift+N) and starting to type the filename.
Once it has guessed the right file, press Return (Enter) to open it.

Every activity in an application must be declared in the manifest so that the OS can access it.

When you used the New Application wizard to create QuizActivity, the wizard declared the activity
for you. Likewise, the New Activity wizard declared CheatActivity by adding the XML highlighted
in Listing 5.3.

Adding a Cheat! button to QuizActivity

93

Listing 5.3 Declaring CheatActivity in the manifest (AndroidManifest.xml)

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.geoquiz" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity
 android:name=".QuizActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />

 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".CheatActivity"
 android:label="@string/title_activity_cheat" >
 </activity>
 </application>

</manifest>

The android:name attribute is required, and the dot at the start of this attribute’s value tells the OS that
this activity’s class is in the package specified in the package attribute in the manifest element at the
top of the file.

You will sometimes see a fully qualified android:name attribute:
android:name="com.bignerdranch.android.geoquiz.CheatActivity". The long-form notation is
identical to the version in Listing 5.3.

There are many interesting things in the manifest, but for now, let’s stay focused on getting
CheatActivity up and running. You will learn about the different parts of the manifest in later
chapters.

Adding a Cheat! button to QuizActivity
The plan is for the user to press a button in QuizActivity to get an instance of CheatActivity
on screen. So you need new buttons in layout/activity_quiz.xml and layout-land/
activity_quiz.xml.

In the default layout, add the new button as a direct child of the root LinearLayout. Its definition
should come right before the Next button.

Chapter 5 Your Second Activity

94

Listing 5.4 Adding a Cheat! button to the default layout (layout/
activity_quiz.xml)

 ...
 </LinearLayout>

 <Button
 android:id="@+id/cheat_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/cheat_button"/>

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp"/>

</LinearLayout>

In the landscape layout, have the new button appear at the bottom and center of the root FrameLayout.

Listing 5.5 Adding a Cheat! button to the landscape layout (layout-land/
activity_quiz.xml)

 ...
 </LinearLayout>

 <Button
 android:id="@+id/cheat_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|center"
 android:text="@string/cheat_button" />

 <Button
 android:id="@+id/next_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|right"
 android:text="@string/next_button"
 android:drawableRight="@drawable/arrow_right"
 android:drawablePadding="4dp" />

</FrameLayout>

Save your layout files and reopen QuizActivity.java. Add a variable, get a reference, and set a
View.OnClickListener stub for the Cheat! button.

Starting an Activity

95

Listing 5.6 Wiring up the Cheat! button (QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

 ...

 private Button mNextButton;
 private Button mCheatButton;

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 ...

 mCheatButton = (Button)findViewById(R.id.cheat_button);
 mCheatButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Start CheatActivity
 }
 });

 if (savedInstanceState != null) {
 mCurrentIndex = savedInstanceState.getInt(KEY_INDEX, 0);
 }

 updateQuestion();
 }

 ...

}

Now you can get to the business of starting CheatActivity.

Starting an Activity
The simplest way one activity can start another is with the Activity method:

 public void startActivity(Intent intent)

You might guess that startActivity(…) is a static method that you call on the Activity subclass that
you want to start. But it is not. When an activity calls startActivity(…), this call is sent to the OS.

In particular, it is sent to a part of the OS called the ActivityManager. The ActivityManager then
creates the Activity instance and calls its onCreate(…) method, as shown in Figure 5.7.

Chapter 5 Your Second Activity

96

Figure 5.7 Starting an activity

How does the ActivityManager know which Activity to start? That information is in the Intent
parameter.

Communicating with intents
An intent is an object that a component can use to communicate with the OS. The only components
you have seen so far are activities, but there are also services, broadcast receivers, and content
providers.

Intents are multi-purpose communication tools, and the Intent class provides different constructors
depending on what you are using the intent to do.

In this case, you are using an intent to tell the ActivityManager which activity to start, so you will use
this constructor:

 public Intent(Context packageContext, Class<?> cls)

The Class argument specifies the activity class that the ActivityManager should start. The Context
argument tells the ActivityManager which application package the activity class can be found in
(Figure 5.8).

Figure 5.8 The intent: telling ActivityManager what to do

Within mCheatButton’s listener, create an Intent that includes the CheatActivity class. Then pass the
intent into startActivity(Intent) (Listing 5.7).

Passing Data Between Activities

97

Listing 5.7 Starting CheatActivity (QuizActivity.java)
 ...

 mCheatButton = (Button)findViewById(R.id.cheat_button);
 mCheatButton.setOnClickListener(new View.OnClickListener() {

 @Override
 public void onClick(View v) {
 // Start CheatActivity
 Intent i = new Intent(QuizActivity.this, CheatActivity.class);
 startActivity(i);
 }
 });

 ...

Before starting the activity, the ActivityManager checks the package’s manifest for a declaration with
the same name as the specified Class. If it finds a declaration, it starts the activity, and all is well. If it
does not, you get a nasty ActivityNotFoundException, which can crash your app. This is why all of
your activities must be declared in the manifest.

Run GeoQuiz. Press the Cheat! button, and an instance of your new activity will appear on screen.
Now press the Back button. This will destroy the CheatActivity and return you to the QuizActivity.

Explicit and implicit intents
When you create an Intent with a Context and a Class object, you are creating an explicit intent. You
use explicit intents to start activities within your application.

It may seem strange that two activities within your application must communicate via the
ActivityManager, which is outside of your application. However, this pattern makes it easy for an
activity in one application to work with an activity in another application.

When an activity in your application wants to start an activity in another application, you create an
implicit intent. You will use implicit intents in Chapter 15.

Passing Data Between Activities
Now that you have a QuizActivity and a CheatActivity, you can think about passing data between
them. Figure 5.9 shows what data you will pass between the two activities.

Figure 5.9 The conversation between QuizActivity and CheatActivity

Chapter 5 Your Second Activity

98

The QuizActivity will inform the CheatActivity of the answer to the current question when the
CheatActivity is started.

When the user presses the Back button to return to the QuizActivity, the CheatActivity will be
destroyed. In its last gasp, it will send data to the QuizActivity about whether the user cheated.

You will start with passing data from QuizActivity to CheatActivity.

Using intent extras
To inform the CheatActivity of the answer to the current question, you will pass it the value of

 mQuestionBank[mCurrentIndex].isAnswerTrue()

You will send this value as an extra on the Intent that is passed into startActivity(Intent).

Extras are arbitrary data that the calling activity can include with an intent. You can think of them like
constructor arguments, even though you cannot use a custom constructor with an activity subclass
(Android creates activity instances and is responsible for their lifecycle). The OS forwards the intent to
the recipient activity, which can then access the extras and retrieve the data, as shown in Figure 5.10.

Figure 5.10 Intent extras: communicating with other activities

An extra is structured as a key-value pair, like the one you used to save out the value of mCurrentIndex
in QuizActivity.onSaveInstanceState(Bundle).

To add an extra to an intent, you use Intent.putExtra(…). In particular, you will be calling

 public Intent putExtra(String name, boolean value)

Intent.putExtra(…) comes in many flavors, but it always has two arguments. The first argument is
always a String key, and the second argument is the value, whose type will vary. It returns the Intent
itself, so you can chain multiple calls if you need to.

In CheatActivity.java, add a key for the extra.

Listing 5.8 Adding extra constant (CheatActivity.java)
public class CheatActivity extends AppCompatActivity {

 private static final String EXTRA_ANSWER_IS_TRUE =
 "com.bignerdranch.android.geoquiz.answer_is_true";

 ...

Using intent extras

99

An activity may be started from several different places, so you should define keys for extras on the
activities that retrieve and use them. Using your package name as a qualifier for your extra, as shown in
Listing 5.8, prevents name collisions with extras from other apps.

Now you could return to QuizActivity and put the extra on the intent, but there is a better approach.
There is no reason for QuizActivity, or any other code in your app, to know the implementation
details of what CheatActivity expects as extras on its Intent. Instead, you can encapsulate that work
into a newIntent(…) method.

Create this method in CheatActivity now:

Listing 5.9 A newIntent(…) method for CheatActivity
(CheatActivity.java)

public class CheatActivity extends AppCompatActivity {

 private static final String EXTRA_ANSWER_IS_TRUE =
 "com.bignerdranch.android.geoquiz.answer_is_true";

 public static Intent newIntent(Context packageContext, boolean answerIsTrue) {
 Intent i = new Intent(packageContext, CheatActivity.class);
 i.putExtra(EXTRA_ANSWER_IS_TRUE, answerIsTrue);
 return i;
 }

 ...

This static method allows us to create an Intent properly configured with the extras CheatActivity
will need. The answerIsTrue argument, a boolean, is put into the intent with a private name using
the EXTRA_ANSWER_IS_TRUE constant. You will extract this value momentarily. Using a newIntent(…)
method like this for your activity subclasses will make it easy for other code to properly configure their
launching intents.

Speaking of other code, use this new method in CheatActivity’s cheat button listener now.

Listing 5.10 Launching CheatActivity with an extra (QuizActivity.java)

 ...
 mCheatButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 // Start CheatActivity
 Intent i = new Intent(QuizActivity.this, CheatActivity.class);
 boolean answerIsTrue = mQuestionBank[mCurrentIndex].isAnswerTrue();
 Intent i = CheatActivity.newIntent(QuizActivity.this, answerIsTrue);
 startActivity(i);
 }
 });

 updateQuestion();
 }

Chapter 5 Your Second Activity

100

You only need one extra, but you can put multiple extras on an Intent if you need to. If you do, add
more arguments to your newIntent(…) method to stay consistent with the pattern.

To retrieve the value from the extra, you will use:

 public boolean getBooleanExtra(String name, boolean defaultValue)

The first argument is the name of the extra. The second argument of getBooleanExtra(…) is a default
answer if the key is not found.

In CheatActivity, retrieve the value from the extra in onCreate(Bundle) and store it in a member
variable.

Listing 5.11 Using an extra (CheatActivity.java)

public class CheatActivity extends AppCompatActivity {

 private static final String EXTRA_ANSWER_IS_TRUE =
 "com.bignerdranch.android.geoquiz.answer_is_true";

 private boolean mAnswerIsTrue;

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_cheat);

 mAnswerIsTrue = getIntent().getBooleanExtra(EXTRA_ANSWER_IS_TRUE, false);
 }

 ...
}

Note that Activity.getIntent() always returns the Intent that started the activity. This is what you
sent when calling startActivity(Intent).

Finally, wire up the answer TextView and the Show Answer button to use the retrieved value.

Getting a result back from a child activity

101

Listing 5.12 Enabling cheating (CheatActivity.java)
public class CheatActivity extends AppCompatActivity {

 ...

 private boolean mAnswerIsTrue;

 private TextView mAnswerTextView;
 private Button mShowAnswer;

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_cheat);

 mAnswerIsTrue = getIntent().getBooleanExtra(EXTRA_ANSWER_IS_TRUE, false);

 mAnswerTextView = (TextView) findViewById(R.id.answer_text_view);

 mShowAnswer = (Button) findViewById(R.id.show_answer_button);
 mShowAnswer.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (mAnswerIsTrue) {
 mAnswerTextView.setText(R.string.true_button);
 } else {
 mAnswerTextView.setText(R.string.false_button);
 }
 }
 });
 }

}

This code is pretty straightforward. You set the TextView’s text using TextView.setText(int).
TextView.setText(…) has many variations, and here you use the one that accepts the resource ID of a
string resource.

Run GeoQuiz. Press Cheat! to get to CheatActivity. Then press Show Answer to reveal the answer to
the current question.

Getting a result back from a child activity
At this point, the user can cheat with impunity. Let’s fix that by having the CheatActivity tell the
QuizActivity whether the user chose to view the answer.

When you want to hear back from the child activity, you call the following Activity method:

 public void startActivityForResult(Intent intent, int requestCode)

The first parameter is the same intent as before. The second parameter is the request code. The request
code is a user-defined integer that is sent to the child activity and then received back by the parent. It
is used when an activity starts more than one type of child activity and needs to know who is reporting

Chapter 5 Your Second Activity

102

back. QuizActivity will only ever start one type of child activity, but using a constant for the request
code is a best practice that will set you up well for future changes.

In QuizActivity, modify mCheatButton’s listener to call startActivityForResult(Intent, int).

Listing 5.13 Calling startActivityForResult(…) (QuizActivity.java)

public class QuizActivity extends AppCompatActivity {
 private static final String TAG = "QuizActivity";
 private static final String KEY_INDEX = "index";
 private static final int REQUEST_CODE_CHEAT = 0;

 @Override
 protected void onCreate(Bundle savedInstanceState) {

 ...

 mCheatButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 boolean answerIsTrue = mQuestionBank[mCurrentIndex].isAnswerTrue();
 Intent i = CheatActivity.newIntent(QuizActivity.this, answerIsTrue);
 startActivity(i);
 startActivityForResult(i, REQUEST_CODE_CHEAT);
 }
 });

 ...

Setting a result
There are two methods you can call in the child activity to send data back to the parent:

 public final void setResult(int resultCode)
 public final void setResult(int resultCode, Intent data)

Typically, the result code is one of two predefined constants: Activity.RESULT_OK or
Activity.RESULT_CANCELED. (You can use another constant, RESULT_FIRST_USER, as an offset when
defining your own result codes.)

Setting result codes is useful when the parent needs to take different action depending on how the child
activity finished.

For example, if a child activity had an OK button and a Cancel button, the child activity would set
a different result code depending on which button was pressed. Then the parent activity would take
different action depending on the result code.

Calling setResult(…) is not required of the child activity. If you do not need to distinguish
between results or receive arbitrary data on an intent, then you can let the OS send a default
result code. A result code is always returned to the parent if the child activity was started with
startActivityForResult(…). If setResult(…) is not called, then when the user presses the Back
button the parent will receive Activity.RESULT_CANCELED.

Getting a result back from a child activity

103

Sending back an intent
In this implementation, you are interested in passing some specific data back to QuizActivity. So you
are going to create an Intent, put an extra on it, and then call Activity.setResult(int, Intent) to
get that data into QuizActivity’s hands.

In CheatActivity, add a constant for the extra’s key and a private method that does this work. Then
call this method in the Show Answer button’s listener.

Listing 5.14 Setting a result (CheatActivity.java)
public class CheatActivity extends AppCompatActivity {

 private static final String EXTRA_ANSWER_IS_TRUE =
 "com.bignerdranch.android.geoquiz.answer_is_true";
 private static final String EXTRA_ANSWER_SHOWN =
 "com.bignerdranch.android.geoquiz.answer_shown";

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...

 mShowAnswer.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (mAnswerIsTrue) {
 mAnswerTextView.setText(R.string.true_button);
 } else {
 mAnswerTextView.setText(R.string.false_button);
 }
 setAnswerShownResult(true);
 }
 });
 }

 private void setAnswerShownResult(boolean isAnswerShown) {
 Intent data = new Intent();
 data.putExtra(EXTRA_ANSWER_SHOWN, isAnswerShown);
 setResult(RESULT_OK, data);
 }

}

When the user presses the Show Answer button, the CheatActivity packages up the result code and
the intent in the call to setResult(int, Intent).

Then, when the user presses the Back button to return to the QuizActivity, the ActivityManager calls
the following method on the parent activity:

 protected void onActivityResult(int requestCode, int resultCode, Intent data)

The parameters are the original request code from QuizActivity and the result code and intent passed
into setResult(…).

Chapter 5 Your Second Activity

104

Figure 5.11 shows this sequence of interactions.

Figure 5.11 Sequence diagram for GeoQuiz

The final step is to override onActivityResult(int, int, Intent) in QuizActivity to handle
the result. However, because the contents of the result Intent are also an implementation detail of
CheatActivity, add another method to help decode the extra into something QuizActivity can use.

Listing 5.15 Decoding the result intent (CheatActivity.java)
public static Intent newIntent(Context packageContext, boolean answerIsTrue) {
 Intent i = new Intent(packageContext, CheatActivity.class);
 i.putExtra(EXTRA_ANSWER_IS_TRUE, answerIsTrue);
 return i;
}

public static boolean wasAnswerShown(Intent result) {
 return result.getBooleanExtra(EXTRA_ANSWER_SHOWN, false);
}

@Override
protected void onCreate(Bundle savedInstanceState) {
 ...
}

Getting a result back from a child activity

105

Handling a result

In QuizActivity.java, add a new member variable to hold the value that CheatActivity is passing
back. Then override onActivityResult(…) to retrieve it, checking the request code and result code to
be sure they are what you expect. This, again, is a best practice to make future maintenance easier.

Listing 5.16 Implementing onActivityResult(…) (QuizActivity.java)

public class QuizActivity extends AppCompatActivity {

 ...

 private int mCurrentIndex = 0;
 private boolean mIsCheater;

 ...

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 }

 @Override
 protected void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_CODE_CHEAT) {
 if (data == null) {
 return;
 }
 mIsCheater = CheatActivity.wasAnswerShown(data);
 }
 }

 ...
}

Finally, modify the checkAnswer(boolean) method in QuizActivity to check whether the user
cheated and to respond appropriately.

Chapter 5 Your Second Activity

106

Listing 5.17 Changing toast message based on value of mIsCheater
(QuizActivity.java)

 private void checkAnswer(boolean userPressedTrue) {
 boolean answerIsTrue = mQuestionBank[mCurrentIndex].isAnswerTrue();

 int messageResId = 0;

 if (mIsCheater) {
 messageResId = R.string.judgment_toast;
 } else {
 if (userPressedTrue == answerIsTrue) {
 messageResId = R.string.correct_toast;
 } else {
 messageResId = R.string.incorrect_toast;
 }
 }

 Toast.makeText(this, messageResId, Toast.LENGTH_SHORT)
 .show();
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...

 mNextButton = (Button)findViewById(R.id.next_button);
 mNextButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 mCurrentIndex = (mCurrentIndex + 1) % mQuestionBank.length;
 mIsCheater = false;
 updateQuestion();
 }
 });

 ...
 }

Run GeoQuiz. Cheat and see what happens.

How Android Sees Your Activities
Let’s look at what is going on OS-wise as you move between activities. First, when you click on
the GeoQuiz app in the launcher, the OS does not start the application; it starts an activity in the
application. More specifically, it starts the application’s launcher activity. For GeoQuiz, QuizActivity
is the launcher activity.

When the New Application wizard created the GeoQuiz application and QuizActivity, it made
QuizActivity the launcher activity by default. Launcher activity status is specified in the manifest by
the intent-filter element in QuizActivity’s declaration (Listing 5.18).

How Android Sees Your Activities

107

Listing 5.18 QuizActivity declared as launcher activity
(AndroidManifest.xml)
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 ... >

 ...

 <application
 ... >
 <activity
 android:name="com.bignerdranch.android.geoquiz.QuizActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity
 android:name=".CheatActivity"
 android:label="@string/app_name" />
 </application>

</manifest>

After the instance of QuizActivity is on screen, the user can press the Cheat! button. When this
happens, an instance of CheatActivity is started – on top of the QuizActivity. These activities exist
in a stack (Figure 5.12).

Pressing the Back button in CheatActivity pops this instance off the stack, and the QuizActivity
resumes its position at the top, as shown in Figure 5.12.

Figure 5.12 GeoQuiz’s back stack

A call to Activity.finish() in CheatActivity would also pop the CheatActivity off the stack.

Chapter 5 Your Second Activity

108

If you run GeoQuiz and press Back from the QuizActivity, the QuizActivity will be popped off the
stack and you will return to the last screen you were viewing before running GeoQuiz (Figure 5.13).

Figure 5.13 Looking at Home screen

If you started GeoQuiz from the launcher application, pressing the Back button from QuizActivity
will return you to the launcher (Figure 5.14).

Figure 5.14 Running GeoQuiz from launcher

Pressing the Back button from the launcher will return you to the screen you were looking at before
you opened the launcher.

What you are seeing here is that the ActivityManager maintains a back stack and that this back stack
is not just for your application’s activities. Activities for all applications share the back stack, which is

Challenge

109

one reason the ActivityManager is involved in starting your activities and lives with the OS and not
your application. The stack represents the use of the OS and device as a whole rather than the use of a
single application.

(Wondering about the “Up” button? We will discuss how to implement and configure this button in
Chapter 13.)

Challenge
Cheaters never win. Unless, of course, they persistently circumvent your anticheating measures. Which
they probably will. Because they are cheaters.

GeoQuiz has a few major loopholes. For this challenge, you will busy yourself with closing them. Here
are the loopholes in ascending order, from easiest to hardest to close:

• Users can rotate CheatActivity after they cheat to clear out the cheating result.

• Once they get back, users can rotate QuizActivity to clear out mIsCheater.

• Users can press Next until the question they cheated on comes back around.

Good luck!

111

6
Android SDK Versions and

Compatibility

Now that you have gotten your feet wet with GeoQuiz, let’s review some background material about
the different versions of Android. The information in this chapter is important to have under your belt
as you continue with the book and develop more complex and realistic apps.

Android SDK Versions
Table 6.1 shows the SDK versions, the associated versions of the Android firmware, and the percentage
of devices running them as of June 2015.

Table 6.1 Android API levels, firmware versions, and percent of devices in use
API level Codename Device firmware version % of devices in use

22 5.1 0.8

21
Lollipop

5.0 11.6

19 KitKat 4.4 39.2

18 4.3 5.2

17 4.2 17.5

16

Jelly Bean

4.1 14.7

15 Ice Cream Sandwich (ICS) 4.0.3, 4.0.4 5.1

10 Gingerbread 2.3.3 - 2.3.7 5.6

8 Froyo 2.2 0.3

Note that versions of Android with less than 0.1% distribution are omitted from this table.

Each “codenamed” release is followed by incremental releases. For instance, Ice Cream Sandwich was
initially released as Android 4.0 (API level 14). It was almost immediately replaced with incremental
releases culminating in Android 4.0.3 and 4.0.4 (API level 15).

The percentage of devices using each version changes constantly, of course, but the figures do reveal
an important trend: Android devices running older versions are not immediately upgraded or replaced
when a newer version is available. As of June 2015, more than 10% of devices are still running Ice
Cream Sandwich or Gingerbread. Android 4.0.4 (the last ICS update) was released in March 2012.

Chapter 6 Android SDK Versions and Compatibility

112

(If you are curious, the data in Table 6.1 is kept current at http://developer.android.com/about/
dashboards/index.html.)

Why do so many devices still run older versions of Android? Most of it has to do with heavy
competition among Android device manufacturers and US carriers. Carriers want features and phones
that no other network has. Device manufacturers feel this pressure, too – all of their phones are based
on the same OS, but they want to stand out from the competition. The combination of pressures from
the market and the carriers means that there is a bewildering array of devices with proprietary, one-off
modifications of Android.

A device with a proprietary version of Android is not able to run a new version of Android released
by Google. Instead, it must wait for a compatible proprietary upgrade. That upgrade might not be
available until months after Google releases its version, if it is ever available at all. Manufacturers often
choose to spend resources on newer devices rather than keeping older ones up to date.

Compatibility and Android Programming
The delay in upgrades combined with regular new releases makes compatibility an important issue in
Android programming. To reach a broad market, Android developers must create apps that perform
well on devices running Jelly Bean, KitKat, Lollipop, and any more recent versions of Android, as well
as on different device form factors.

Targeting different sizes of devices is easier than you might think. Phone screens are a variety of sizes,
but the Android layout system does a good job at adapting. Tablets require more work, but in that
case you can use configuration qualifiers to do the job (as you will see in Chapter 17). However, for
Android TV and Android Wear devices (both of which also run Android) the differences in UI are
large enough that you need to rethink the user interaction patterns and design of your app.

A sane minimum
The oldest version of Android that the exercises in this book support is API level 16 (Jelly Bean).
There are references to legacy versions of Android, but the focus is on what we consider to be modern
versions (API level 16+). With the distribution of Froyo, Gingerbread, and Ice Cream Sandwich
dropping month by month, the amount of work required to support those older versions eclipses the
value they can provide.

Incremental releases cause little problem with backward compatibility. Major versions are a different
story. The work required to support only 4.x devices is not terribly significant. If you also need to
support 2.x devices, you will have to spend time working through the differences in those versions.
(For detailed information about support for 2.x versions of Android, check out the first edition of this
very book.) Some effort is required to support Android 5.0 (Lollipop) along with 4.x versions, but
Google has provided libraries to ease the pain. You will learn about these libraries in later chapters.

Why is there so much effort required to support 2.x devices? The release of Honeycomb, Android
3.0, was a major shift that introduced a new UI and new architectural components. Honeycomb was
released only for tablets, so it was not until Ice Cream Sandwich that these new developments were
widely available. Since then, new releases have been more incremental.

Android has provided help for maintaining backward compatibility. There are also third-party libraries
that can help. But maintaining compatibility does complicate learning Android programming.

A sane minimum

113

When you created the GeoQuiz project, you set a minimum SDK version within the New Application
wizard, as shown in Figure 6.1. (Note that Android uses the terms “SDK version” and “API level”
interchangeably.)

Figure 6.1 Remember me?

In addition to the minimum supported version, you can also set the target version and the build version.
Let’s explain the default choices and see how to change them.

All of these properties are set in the build.gradle file in your app module. The build version lives
exclusively in this file. The minimum SDK version and target SDK version are set in the build.gradle
file, but are used to overwrite or set values in your AndroidManifest.xml.

Open the build.gradle file that exists in your app module. Notice the values for compileSdkVersion,
minSdkVersion, and targetSdkVersion.

Listing 6.1 Examining the build configuration (app/build.gradle)
...

compileSdkVersion 22
buildToolsVersion "23.0.0"

defaultConfig {
 applicationId "com.bignerdranch.android.geoquiz"
 minSdkVersion 16
 targetSdkVersion 22
 ...
}

...

Chapter 6 Android SDK Versions and Compatibility

114

Minimum SDK version
The minSdkVersion value is a hard floor below which the OS should refuse to install the app.

By setting this version to API level 16 (Jelly Bean), you give Android permission to install GeoQuiz on
devices running Jelly Bean or higher. Android will refuse to install GeoQuiz on a device running, say,
Froyo.

Looking again at Table 6.1, you can see why API 16 is a good choice for a minimum SDK version: it
allows your app to be installed on over 88% of devices in use.

Target SDK version
The targetSdkVersion value tells Android which API level your app was designed to run on. Most
often this will be the latest Android release.

When would you lower the target SDK? New SDK releases can change how your app appears on
a device or even how the OS behaves behind the scenes. If you have already designed an app, you
should confirm that it works as expected on new releases. Check the documentation at http://
developer.android.com/reference/android/os/Build.VERSION_CODES.html to see where
problems might arise. Then you can modify your app to work with the new behavior or lower the target
SDK. Not increasing the target SDK when a new version of Android is released ensures that your app
will still run with the appearance and behavior of the targeted version on which it worked well. This
option exists for compatibility with newer versions of Android, as changes in subsequent releases are
ignored until the targetSdkVersion is increased.

Compile SDK version
The last SDK setting is labeled compileSdkVersion in Listing 6.1. This setting is not used to update the
AndroidManifest.xml file. Whereas the minimum and target SDK versions are placed in the manifest
when you build your app, in order to advertise those values to the OS, the compile SDK version is
private information between you and the compiler.

Android’s features are exposed through the classes and methods in the SDK. The compile SDK
version, or build target, specifies which version to use when building your own code. When Android
Studio is looking to find the classes and methods you refer to in your imports, the build target
determines which SDK version it checks against.

The best choice for a build target is the latest API level (currently 21, Lollipop). However, you can
change the build target of an existing application if you need to. For instance, you might want to update
the build target when yet another version of Android is released so that you can make use of the new
methods and classes introduced in that version of Android.

You can modify the minimum SDK version, target SDK version, and compile SDK version in your
build.gradle file, but note that modification of this file requires that you sync your project with the
gradle changes before they will be reflected. You can select Tools → Android → Sync Project with
Gradle Files. This will trigger a fresh build of your project with the updated values.

Adding code from later APIs safely
The difference between GeoQuiz’s minimum SDK version and build SDK version leaves you with a
compatibility gap to manage. For example, in GeoQuiz, what happens if you call code from an SDK

Adding code from later APIs safely

115

version that is later than the minimum SDK of Jelly Bean (API level 16)? When your app is installed
and run on a Jelly Bean device, it will crash.

This used to be a testing nightmare. However, thanks to improvements in Android Lint, potential
problems caused by calling newer code on older devices can be caught at compile time. If you use code
from a higher version than your minimum SDK, Android Lint will report build errors.

Right now, all of GeoQuiz’s simple code was introduced in API level 16 or earlier. Let’s add some code
from API level 21 (Lollipop) and see what happens.

Open CheatActivity.java. In the OnClickListener for the Show Answer button, add the following
code to present a fancy circular animation while hiding the button:

Listing 6.2 Adding activity animation code (CheatActivity.java)
mShowAnswer.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (mAnswerIsTrue) {
 mAnswerTextView.setText(R.string.true_button);
 } else {
 mAnswerTextView.setText(R.string.false_button);
 }
 setAnswerShownResult(true);

 int cx = mShowAnswer.getWidth() / 2;
 int cy = mShowAnswer.getHeight() / 2;
 float radius = mShowAnswer.getWidth();
 Animator anim = ViewAnimationUtils
 .createCircularReveal(mShowAnswer, cx, cy, radius, 0);
 anim.addListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 super.onAnimationEnd(animation);
 mAnswerTextView.setVisibility(View.VISIBLE);
 mShowAnswer.setVisibility(View.INVISIBLE);
 }
 });
 anim.start();
 }
});

The createCircularReveal method creates an Animator from a few parameters. First, you specify the
View that will be hidden or shown based on the animation. Next, a center position for the animation as
well as the start radius and end radius of the animation. You are hiding the Show Answer button, so the
radius moves from the width of the button to 0.

Before the newly created animation is started, you set a listener which allows you to know when the
animation is complete. Once complete, you will show the answer and hide the button.

Finally, the animation is started and the circular reveal animation will begin. You will learn much more
about animation in Chapter 30.

The ViewAnimationUtils and its createCircularReveal method were both added to the Android
SDK in API level 21, so this code would crash on a device running a lower version than that.

Chapter 6 Android SDK Versions and Compatibility

116

After you enter the code in Listing 6.2, Android Lint should immediately present you with a warning
that the code is not safe on your minimum SDK version. If you do not see a warning, you can manually
trigger Lint by selecting Analyze → Inspect Code.... Because your build SDK version is API level 21,
the compiler itself has no problem with this code. Android Lint, on the other hand, knows about your
minimum SDK version and will complain loudly.

The error messages read something like Call requires API level 21 (Current min is 16). You can still run
the code with this warning, but Lint knows it is not safe.

How do you get rid of these errors? One option is to raise the minimum SDK version to 21. However,
raising the minimum SDK version is not really dealing with this compatibility problem as much as
ducking it. If your app cannot be installed on API level 16 and older devices, then you no longer have a
compatibility problem.

A better option is to wrap the higher API code in a conditional statement that checks the device’s
version of Android.

Listing 6.3 Checking the device’s build version first

mShowAnswer.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 if (mAnswerIsTrue) {
 mAnswerTextView.setText(R.string.true_button);
 } else {
 mAnswerTextView.setText(R.string.false_button);
 }
 setAnswerShownResult(true);

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 int cx = mShowAnswer.getWidth() / 2;
 int cy = mShowAnswer.getHeight() / 2;
 float radius = mShowAnswer.getWidth();
 Animator anim = ViewAnimationUtils
 .createCircularReveal(mShowAnswer, cx, cy, radius, 0);
 anim.addListener(new AnimatorListenerAdapter() {
 @Override
 public void onAnimationEnd(Animator animation) {
 super.onAnimationEnd(animation);
 mAnswerTextView.setVisibility(View.VISIBLE);
 mShowAnswer.setVisibility(View.INVISIBLE);
 }
 });
 anim.start();
 } else {
 mAnswerTextView.setVisibility(View.VISIBLE);
 mShowAnswer.setVisibility(View.INVISIBLE);
 }
 }
});

The Build.VERSION.SDK_INT constant is the device’s version of Android. You then compare that
version with the constant that stands for the Lollipop release. (Version codes are listed at http://
developer.android.com/reference/android/os/Build.VERSION_CODES.html.)

Using the Android Developer Documentation

117

Now your circular reveal code will only be called when the app is running on a device with API level
21 or higher. You have made your code safe for API level 16, and Android Lint should now be content.

Run GeoQuiz on a Lollipop or higher device and check out your new animation when starting the
CheatActivity.

You can also run GeoQuiz on a Jelly Bean or KitKat device (virtual or otherwise). It will not have the
circular animation, but you can confirm that the app still runs safely.

Using the Android Developer Documentation
Android Lint errors will tell you what API level your incompatible code is from. But you can also find
out which API level particular classes and methods belong to in Android’s developer documentation.

It is a good idea to get comfortable using the developer documentation right away. There is far too
much in the Android SDKs to keep in your head, and, with new versions appearing regularly, you will
need to learn what is new and how to use it.

The Android developer documentation is an excellent and voluminous source of information. The main
page of the documentation is http://developer.android.com/. It is split into three parts: Design,
Develop, and Distribute. The Design section of the documentation includes patterns and principles for
the UI design of your apps. The Develop section contains documentation and training. The Distribute
section shows you how to prepare and publish your apps on Google Play or through open distribution.
It is all worth perusing when you get a chance.

The Develop section is further divided into six areas:

Training Beginning and advanced developer training modules, including
downloadable sample code

API Guides Topic-based descriptions of app components, features, and best practices

Reference Searchable, linked documentation of every class, method, interface,
attribute constant, etc. in the SDK

Tools Descriptions and links to developer tools

Google Services Information about Google’s proprietary APIs, including Google Maps and
Google Cloud Messaging

Samples Sample code demonstrating some examples of how to use the APIs

You do not have to be online to have access to the documentation. If you navigate on your filesystem
to where you have downloaded the SDKs, there is a docs directory that contains the complete
documentation.

To determine what API level ViewAnimationUtils belongs to, search for this class using the search bar
at the top-right of the browser. You will see results from a few different categories. Make sure that you
select a result that is from the reference section (there is a filter on the left).

Select the first result, and you will be sent to the ViewAnimationUtils class reference page shown in
Figure 6.2. At the top of this page are links to its different sections.

Chapter 6 Android SDK Versions and Compatibility

118

Figure 6.2 ViewAnimationUtils reference page

Scroll down, find the createCircularReveal(…) method, and click on the method name to see a
description. To the right of the method signature, you can see that createCircularReveal(…) was
introduced in API level 21.

If you want to see which ViewAnimationUtils methods are available in, say, API level 16, you can
filter the reference by API level. On the lefthand side of the page where the classes are indexed by
package, find where it says API level: 21. Click the adjacent control and select 16 from the list. In
most cases, everything that Android has introduced after API level 16 will be grayed-out. In this case,
ViewAnimationUtils was introduced in API level 21, so you will see a warning indicating that this
entire class is not available at all on API level 16.

The API level filter is much more useful for a class that is available at the API level that you are using.
Search for the reference page on the Activity class in the documentation. Change the API level filter
back down to API level 16 and notice that many methods have been added since API 16, such as
onEnterAnimationComplete, which is an addition to the SDK in Lollipop that allows you to provide
interesting transitions between activities.

As you continue through this book, be sure to visit the developer documentation often. You will
certainly need the documentation to tackle the challenge exercises, but also consider exploring it
whenever you get curious about particular classes, methods, or other topics. Android is constantly
updating and improving the documentation, so there is always something new to learn.

Challenge: Reporting the Build Version

119

Challenge: Reporting the Build Version
Add a TextView widget to the GeoQuiz layout that reports to the user what API level the device is
running. Figure 6.3 shows what the final result should look like.

Figure 6.3 Finished challenge

You cannot set this TextView’s text in the layout because you will not know the device’s build
version until runtime. Find the TextView method for setting text in the TextView reference page in
Android’s documentation. You are looking for a method that accepts a single argument – a string (or a
CharSequence).

Use other XML attributes listed in the TextView reference to adjust the size or typeface of the text.

121

7
UI Fragments and the Fragment

Manager

In this chapter, you will start building an application named CriminalIntent. CriminalIntent records the
details of “office crimes” – things like leaving dirty dishes in the breakroom sink or walking away from
an empty shared printer after documents have printed.

With CriminalIntent, you can make a record of a crime including a title, a date, and a photo. You
can also identify a suspect from your contacts and lodge a complaint via email, Twitter, Facebook,
or another app. After documenting and reporting a crime, you can proceed with your work free of
resentment and ready to focus on the business at hand.

CriminalIntent is a complex app that will take thirteen chapters to complete. It will have a list-detail
interface: The main screen will display a list of recorded crimes. Users will be able to add new crimes
or select an existing crime to view and edit its details (Figure 7.1).

Chapter 7 UI Fragments and the Fragment Manager

122

Figure 7.1 CriminalIntent, a list-detail app

The Need for UI Flexibility
You might imagine that a list-detail application consists of two activities: one managing the list and the
other managing the detail view. Clicking a crime in the list would start an instance of the detail activity.
Pressing the Back button would destroy the detail activity and return you to the list where you could
select another crime.

That would work, but what if you wanted more sophisticated presentation and navigation between
screens?

• Imagine that your user is running CriminalIntent on a tablet. Tablets and some larger phones have
screens large enough to show the list and detail at the same time – at least in landscape orientation
(Figure 7.2).

Introducing Fragments

123

Figure 7.2 Ideal list-detail interface for phone and tablet

• Imagine the user is viewing a crime on a phone and wants to see the next crime in the list. It
would be better if the user could swipe to see the next crime without having to return to the list.
Each swipe should update the detail view with information for the next crime.

What these scenarios have in common is UI flexibility: the ability to compose and recompose an
activity’s view at runtime depending on what the user or the device requires.

Activities were not built to provide this flexibility. An activity’s views may change at runtime, but the
code to control those views must live inside the activity. As a result, activities are tightly coupled to a
particular screen used by the user.

Introducing Fragments
You can get around the letter of the Android law by moving the app’s UI management from the activity
to one or more fragments.

A fragment is a controller object that an activity can deputize to perform tasks. Most commonly, the
task is managing a user interface. The user interface can be an entire screen or just one part of the
screen.

A fragment managing a user interface is known as a UI fragment. A UI fragment has a view of its own
that is inflated from a layout file. The fragment’s view contains the interesting UI elements that the
user wants to see and interact with.

The activity’s view contains a spot where the fragment’s view will be inserted. Or it might have several
spots for the views of several fragments.

You can use the fragment(s) associated with the activity to compose and re-compose the screen as your
app and users require. The activity’s view technically stays the same throughout its lifetime, and no
laws of Android are violated.

Let’s see how this would work in a list-detail application to display the list and detail together. You
would compose the activity’s view from a list fragment and a detail fragment. The detail view would
show the details of the selected list item.

Selecting another item should display a new detail view. This is easy with fragments; the activity will
replace the detail fragment with another detail fragment (Figure 7.3). No activities need to die for this
major view change to happen.

Chapter 7 UI Fragments and the Fragment Manager

124

Figure 7.3 Detail fragment is swapped out

Using UI fragments separates the UI of your app into building blocks, which is useful for more than
just list-detail applications. Working with individual blocks, it is easy to build tab interfaces, tack on
animated sidebars, and more.

Achieving this UI flexibility comes at a cost: more complexity, more moving parts, and more code.
You will reap the benefits of using fragments in Chapter 11 and Chapter 17. The complexity, however,
starts now.

Starting CriminalIntent
In this chapter, you are going to start on the detail part of CriminalIntent. Figure 7.4 shows you what
CriminalIntent will look like at the end of this chapter.

It may not seem like a very exciting goal to shoot for. Just keep in mind that this chapter is about laying
the foundation for the bigger things that are coming.

Figure 7.4 CriminalIntent at the end of this chapter

Starting CriminalIntent

125

The screen shown in Figure 7.4 will be managed by a UI fragment named CrimeFragment. An instance
of CrimeFragment will be hosted by an activity named CrimeActivity.

For now, think of hosting as the activity providing a spot in its view hierarchy where the fragment can
place its view (Figure 7.5). A fragment is incapable of getting a view on screen itself. Only when it is
placed in an activity’s hierarchy will its view appear.

Figure 7.5 CrimeActivity hosting a CrimeFragment

CriminalIntent will be a large project, and one way to keep your head wrapped around a project is with
an object diagram. Figure 7.6 gives you the big picture of CriminalIntent. You do not have to memorize
these objects and their relationships, but it is good to have an idea of where you are heading before you
start.

You can see that CrimeFragment will do the sort of work that your activities did in GeoQuiz: create and
manage the user interface and interact with the model objects.

Chapter 7 UI Fragments and the Fragment Manager

126

Figure 7.6 Object diagram for CriminalIntent (for this chapter)

Three of the classes shown in Figure 7.6 are classes that you will write: Crime, CrimeFragment, and
CrimeActivity.

An instance of Crime will represent a single office crime. In this chapter, a crime will have only a title
and an ID. The title is a descriptive name, like “Toxic sink dump” or “Someone stole my yogurt!” The
ID will uniquely identify an instance of Crime.

For this chapter, you will keep things very simple and use a single instance of Crime. CrimeFragment
will have a member variable (mCrime) to hold this isolated incident.

CrimeActivity’s view will consist of a FrameLayout that defines the spot where the CrimeFragment’s
view will appear.

CrimeFragment’s view will consist of a LinearLayout and an EditText. CrimeFragment will have a
member variable for the EditText (mTitleField) and will set a listener on it to update the model layer
when the text changes.

Creating a new project
Enough talk; time to build a new app. Create a new Android application (File → New Project...). Name
the application CriminalIntent and name the package com.bignerdranch.android.criminalintent,
as shown in Figure 7.7.

Creating a new project

127

Figure 7.7 Creating the CriminalIntent application

Click Next and specify a minimum SDK of API 16: Android 4.1. Also ensure that only the Phone and
Tablet application type is checked.

Click Next again to select the type of Activity to add. Choose Blank Activity and continue along in the
wizard.

In the final step of the New Project wizard, name the activity CrimeActivity and click Finish
(Figure 7.8).

Chapter 7 UI Fragments and the Fragment Manager

128

Figure 7.8 Configuring CrimeActivity

Fragments and the support library
Fragments were introduced in API level 11 along with the first Android tablets and the sudden need
for UI flexibility. In the old days of Android development, which you can see in the first edition of this
book, many developers supported devices running API level 8 and newer. Luckily, those developers
were still able to use fragments because of Android’s support library.

The support library includes a complete implementation of fragments that work all the way back
to API level 4. In this book, we will use the support implementation of fragments rather than the
implementation built into the Android OS. This is a good idea because the support library is quickly
updated when new features are added to the fragments API. To use those new features, you can update
your project with the latest version of the support library. Detailed reasoning for this decision is laid
out at the end of the chapter in the section called “For the More Curious: Why Support Fragments are
Superior”.

Note that when you use a support library class, it is not just used on older versions where no native
class is available; it is also used on newer versions instead of the native class.

There are two key classes that we will use from the support library: the Fragment
class (android.support.v4.app.Fragment) and the FragmentActivity class
(android.support.v4.app.FragmentActivity). Using fragments requires activities that know how
to manage fragments. The FragmentActivity class knows how to manage the support version of
fragments.

Adding dependencies in Android Studio

129

Figure 7.9 shows you the name of each of these classes and where they live. Since the support library
(and android.support.v4.app.Fragment) lives with your application, it is safe to use no matter where
your app is running.

Figure 7.9 Where the different fragment classes live

Adding dependencies in Android Studio
To use the support library, your project must list it as a dependency. Open the build.gradle file
located in your app module. Your project will come with two build.gradle files, one for the project as
a whole and one for your app module. We will edit the one located at app/build.gradle.

Listing 7.1 Gradle dependencies (app/build.gradle)
apply plugin: 'com.android.application'

android {
 ...
}

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
}

In the current dependencies section of your build.gradle file, you should see something similar to
Listing 7.1 that specifies that the project depends on all of the jar files in the project’s libs directory.

Gradle also allows for the specification of dependencies that you have not copied into your project.
When your app is compiled, Gradle will find, download, and include the dependencies for you. All you
have to do is specify an exact string incantation and Gradle will do the rest.

Chapter 7 UI Fragments and the Fragment Manager

130

Nobody can remember these incantations, though, so Android Studio maintains a list of common
libraries for you. Navigate to the project structure for your project (File → Project Structure...).

Select the app module on the left and the Dependencies tab in the app module. The dependencies for
the app module are listed here. (You may have other dependencies already specified here, such as the
AppCompat dependency shown in Figure 7.10. If you have other dependencies, do not remove them.
You will learn about the AppCompat library in Chapter 13.)

Figure 7.10 App dependencies

You may have additional dependencies specified here, such as the AppCompat dependency. If you have
other dependencies, do not remove them. You will learn about the AppCompat library in Chapter 13.

Use the + button and choose Library dependency to add a new dependency (Figure 7.11). Choose the
support-v4 library from the list and click OK.

Adding dependencies in Android Studio

131

Figure 7.11 A collection of dependencies

Navigate back to the editor window showing app/build.gradle and you should see a new addition, as
shown in Listing 7.2.

Listing 7.2 Updated Gradle dependencies (app/build.gradle)
...

dependencies {
 compile fileTree(dir: 'libs', include: ['*.jar'])
 compile 'com.android.support:support-v4:22.1.1'
}

(If you modify this file manually, outside of the project structure window, you will need to sync your
project with the Gradle file for your project to reflect any updates that you have made. This sync asks
Gradle to update the build based on your changes by either downloading or removing dependencies.
Changes within the project structure window will trigger this sync automatically. To manually perform
this sync, navigate to Tools → Android → Sync Project with Gradle Files.)

The shaded dependency string in Listing 7.2 uses the following Maven coordinates format:
groupId:artifactId:version. (Maven is a dependency management tool. You can learn more about
Maven at https://maven.apache.org/.)

The groupId is the unique identifier for a set of libraries available on the Maven repository. Often the
library’s base package name is used as the groupId, which is com.android.support in this case.

The artifactId is the name of a specific library within the package. In this case, the name
of the library you are referring to is support-v4. There are different libraries available within
com.android.support, such as support-v13, appcompat-v7, and gridlayout-v7. Google uses the
naming convention basename-vX for their support libraries, where -vX represents the minimum API
level the library supports. So, for example, appcompat-v7 is Google’s compatibility library that works
on devices running Android API version 7 and higher.

Last but not least, the version represents which revision number of the library. CriminalIntent depends
on the 22.1.1 version of the support-v4 library. Version 22.1.1 is the latest version as of this writing,
but any version newer than that should work for this project. In fact, it is a good idea to use the latest
version of the support library so that you can use newer APIs and receive the latest bug fixes. If
Android Studio added a newer version of the library for you, do not roll it back to the version shown
above.

Chapter 7 UI Fragments and the Fragment Manager

132

Now that the support library is a dependency in the project, it is time to use it. In the package explorer,
find and open CrimeActivity.java. Change CrimeActivity’s superclass to FragmentActivity.
While you are there, remove the template’s implementation of onCreateOptionsMenu(Menu) and
onOptionsItemSelected(MenuItem). (You will be creating an options menu for CriminalIntent from
scratch in Chapter 13.)

Listing 7.3 Tweaking template code (CrimeActivity.java)
public class CrimeActivity extends AppCompatActivity FragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime);
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 getMenuInflater().inflate(R.menu.crime, menu);
 return true;
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 int id = item.getItemId();
 if (id == R.id.action_settings) {
 return true;
 }
 return super.onOptionsItemSelected(item);
 }
}

Before proceeding further with CrimeActivity, let’s create the model layer for CriminalIntent by
writing the Crime class.

Creating the Crime class
In the project tool window, right-click the com.bignerdranch.android.criminalintent package and
select New → Java Class. Name the class Crime and click OK.

In Crime.java, add the following code:

Listing 7.4 Adding to Crime class (Crime.java)
public class Crime {

 private UUID mId;
 private String mTitle;

 public Crime() {
 // Generate unique identifier
 mId = UUID.randomUUID();
 }
}

Hosting a UI Fragment

133

Next, you want to generate only a getter for the read-only mId and both a getter and setter for mTitle.
Right-click after the constructor and select Generate... → Getter and select the mId variable. Then,
generate the getter and setter for mTitle by repeating the process, but selecting Getter and Setter in the
Generate... menu.

Listing 7.5 Generated getters and setter (Crime.java)

public class Crime {
 private UUID mId;

 private String mTitle;

 public Crime() {
 mId = UUID.randomUUID();
 }

 public UUID getId() {
 return mId;
 }

 public String getTitle() {
 return mTitle;
 }

 public void setTitle(String title) {
 mTitle = title;
 }
}

That is all you need for the Crime class and for CriminalIntent’s model layer in this chapter.

At this point, you have created the model layer and an activity that is capable of hosting a support
fragment. Now you will get into the details of how the activity performs its duties as host.

Hosting a UI Fragment
To host a UI fragment, an activity must:

• define a spot in its layout for the fragment’s view

• manage the lifecycle of the fragment instance

The fragment lifecycle
Figure 7.12 shows the fragment lifecycle. It is similar to the activity lifecycle: it has stopped, paused,
and running states, and it has methods you can override to get things done at critical points – many of
which correspond to activity lifecycle methods.

Chapter 7 UI Fragments and the Fragment Manager

134

Figure 7.12 Fragment lifecycle diagram

The correspondence is important. Because a fragment works on behalf of an activity, its state should
reflect the activity’s state. Thus, it needs corresponding lifecycle methods to handle the activity’s work.

One critical difference between the fragment lifecycle and the activity lifecycle is that fragment
lifecycle methods are called by the hosting activity, not the OS. The OS knows nothing about the
fragments that an activity is using to manage things. Fragments are the activity’s internal business.

You will see more of the fragment lifecycle methods as you continue building CriminalIntent.

Two approaches to hosting
You have two options when it comes to hosting a UI fragment in an activity:

• add the fragment to the activity’s layout

• add the fragment in the activity’s code

The first approach is known as using a layout fragment. It is simple but inflexible. If you add the
fragment to the activity’s layout, you hardwire the fragment and its view to the activity’s view and
cannot swap out that fragment during the activity’s lifetime.

The second approach, adding the fragment to the activity’s code, is more complex. But it is the only
way to have control at runtime over your fragments. You determine when the fragment is added to the
activity and what happens to it after that. You can remove the fragment, replace it with another, and
then add the first fragment back again.

Defining a container view

135

Thus, to achieve real UI flexibility you must add your fragment in code. This is the approach you will
use for CrimeActivity’s hosting of a CrimeFragment. The code details will come later in the chapter.
First, you are going to define CrimeActivity’s layout.

Defining a container view
You will be adding a UI fragment in the hosting activity’s code, but you still need to make a spot for
the fragment’s view in the activity’s view hierarchy. In CrimeActivity’s layout, this spot will be the
FrameLayout shown in Figure 7.13.

Figure 7.13 Fragment-hosting layout for CrimeActivity

This FrameLayout will be the container view for a CrimeFragment. Notice that the container view is
completely generic; it does not name the CrimeFragment class. You can and will use this same layout
to host other fragments.

Locate CrimeActivity’s layout at res/layout/activity_crime.xml. Open this file and replace the
default layout with the FrameLayout diagrammed in Figure 7.13. Your XML should match that in
Listing 7.6.

Listing 7.6 Create fragment container layout (activity_crime.xml)

<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

Note that while activity_crime.xml consists solely of a container view for a single fragment, an
activity’s layout can be more complex and define multiple container views as well as widgets of its
own.

You can preview your layout file or run CriminalIntent to check your code. You will only see an empty
FrameLayout because the CrimeActivity is not yet hosting a fragment (Figure 7.14).

Chapter 7 UI Fragments and the Fragment Manager

136

Figure 7.14 An empty FrameLayout

Later, you will write code that puts a fragment’s view inside this FrameLayout. But first you need to
create a fragment.

Creating a UI Fragment
The steps to creating a UI fragment are the same as those you followed to create an activity:

• compose a user interface by defining widgets in a layout file

• create the class and set its view to be the layout that you defined

• wire up the widgets inflated from the layout in code

Defining CrimeFragment’s layout
CrimeFragment’s view will display the information contained within an instance of Crime. Eventually,
the Crime class and CrimeFragment’s view will include many interesting pieces, but for this chapter
you just need a text field to contain the crime’s title.

Figure 7.15 shows the layout for CrimeFragment’s view. It consists of a vertical LinearLayout that
contains an EditText. EditText is a widget that presents an area where the user can add or edit text.

Defining CrimeFragment’s layout

137

Figure 7.15 Initial layout for CrimeFragment

To create a layout file, right-click the res/layout folder in the project tool window and select New →
Layout resource file. Name this file fragment_crime.xml and enter LinearLayout as the root element.
Click OK and Android Studio will generate the file for you.

When the file opens, navigate to the XML. The wizard has added the LinearLayout for you. Using
Figure 7.15 as a guide, make the necessary changes to fragment_crime.xml. You can use Listing 7.7
to check your work.

Listing 7.7 Layout file for fragment’s view (fragment_crime.xml)
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 >
 <EditText android:id="@+id/crime_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:hint="@string/crime_title_hint"
 />
</LinearLayout>

Open res/values/strings.xml and add a crime_title_hint string resource.

Listing 7.8 Adding a string (res/values/strings.xml)
<?xml version="1.0" encoding="utf-8"?>
<resources>
 <string name="app_name">CriminalIntent</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 <string name="crime_title_hint">Enter a title for the crime.</string>
</resources>

Save your files. Navigate back to fragment_crime.xml to see a preview of your fragment’s view.

Chapter 7 UI Fragments and the Fragment Manager

138

Creating the CrimeFragment class
Right-click the com.bignerdranch.android.criminalintent package and select New → Java Class.
Name the class CrimeFragment and click OK to generate the class.

Now, turn this class into a fragment. Update CrimeFragment to subclass the Fragment class.

Listing 7.9 Subclass the Fragment class (CrimeFragment.java)
public class CrimeFragment extends Fragment {

}

As you subclass the Fragment class, you will notice that Android Studio finds two classes with the
Fragment name. You will see Fragment (android.app) and Fragment (android.support.v4.app).
The android.app Fragment is the version of fragments that are built into the Android OS. We will use
the support library version, so be sure to select the android.support.v4.app version of the Fragment
class when you see the dialog, as shown in Figure 7.16.

Figure 7.16 Choosing the support library’s Fragment class

Your code should match Listing 7.10.

Listing 7.10 Support Fragment import (CrimeFragment.java)
package com.bignerdranch.android.criminalintent;

import android.support.v4.app.Fragment;

public class CrimeFragment extends Fragment {

}

If you do not see this dialog or the wrong fragment class was imported, you can manually import the
correct class. If you have an import for android.app.Fragment, remove that line of code. Import the
correct Fragment class with the Option+Return (or Alt+Enter) shortcut. Be sure to select the support
version of the Fragment class.

Creating the CrimeFragment class

139

Implementing fragment lifecycle methods
CrimeFragment is a controller that interacts with model and view objects. Its job is to present the
details of a specific crime and update those details as the user changes them.

In GeoQuiz, your activities did most of their controller work in activity lifecycle methods. In
CriminalIntent this work will be done by fragments in fragment lifecycle methods. Many of these
methods correspond to the Activity methods you already know, such as onCreate(Bundle).

In CrimeFragment.java, add a member variable for the Crime instance and an implementation of
Fragment.onCreate(Bundle).

Listing 7.11 Overriding Fragment.onCreate(Bundle)
(CrimeFragment.java)
public class CrimeFragment extends Fragment {
 private Crime mCrime;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mCrime = new Crime();
 }

}

There are a couple of things to notice in this implementation. First, Fragment.onCreate(Bundle) is a
public method whereas Activity.onCreate(Bundle) is protected. Fragment.onCreate(…) and other
Fragment lifecycle methods must be public because they will be called by whatever activity is hosting
the fragment.

Second, similar to an activity, a fragment has a bundle to which it saves and retrieves its state.
You can override Fragment.onSaveInstanceState(Bundle) for your own purposes just like with
Activity.onSaveInstanceState(Bundle).

Also, note what does not happen in Fragment.onCreate(…): you do not inflate the fragment’s view.
You configure the fragment instance in Fragment.onCreate(…), but you create and configure the
fragment’s view in another fragment lifecycle method:

 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState)

This method is where you inflate the layout for the fragment’s view and return the inflated View to the
hosting activity. The LayoutInflater and ViewGroup parameters are necessary to inflate the layout.
The Bundle will contain data that this method can use to recreate the view from a saved state.

Chapter 7 UI Fragments and the Fragment Manager

140

In CrimeFragment.java, add an implementation of onCreateView(…) that inflates
fragment_crime.xml.

Listing 7.12 Overriding onCreateView(…) (CrimeFragment.java)

public class CrimeFragment extends Fragment {
 private Crime mCrime;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mCrime = new Crime();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_crime, container, false);
 return v;
 }

}

Within onCreateView(…), you explicitly inflate the fragment’s view by calling
LayoutInflater.inflate(…) and passing in the layout resource ID. The second parameter is your
view’s parent, which is usually needed to configure the widgets properly. The third parameter tells the
layout inflater whether to add the inflated view to the view’s parent. You pass in false because you
will add the view in the activity’s code.

Wiring widgets in a fragment

The onCreateView(…) method is also the place to wire up the EditText to respond to user input. After
the view is inflated, get a reference to the EditText and add a listener.

Creating the CrimeFragment class

141

Listing 7.13 Wiring up the EditText widget (CrimeFragment.java)

public class CrimeFragment extends Fragment {
 private Crime mCrime;
 private EditText mTitleField;

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_crime, container, false);

 mTitleField = (EditText)v.findViewById(R.id.crime_title);
 mTitleField.addTextChangedListener(new TextWatcher() {
 @Override
 public void beforeTextChanged(
 CharSequence s, int start, int count, int after) {
 // This space intentionally left blank
 }

 @Override
 public void onTextChanged(
 CharSequence s, int start, int before, int count) {
 mCrime.setTitle(s.toString());
 }

 @Override
 public void afterTextChanged(Editable s) {
 // This one too
 }
 });

 return v;
 }
}

Getting references in Fragment.onCreateView(…) works nearly the same as in
Activity.onCreate(…). The only difference is that you call View.findViewById(int) on the
fragment’s view. The Activity.findViewById(int) method that you used before is a convenience
method that calls View.findViewById(int) behind the scenes. The Fragment class does not have a
corresponding convenience method, so you have to call the real thing.

Setting listeners in a fragment works exactly the same as in an activity. In Listing 7.13, you create an
anonymous class that implements the TextWatcher listener interface. TextWatcher has three methods,
but you only care about one: onTextChanged(…).

In onTextChanged(…), you call toString() on the CharSequence that is the user’s input. This method
returns a string, which you then use to set the Crime’s title.

Your code for CrimeFragment is now complete. It would be great if you could run CriminalIntent now
and play with the code you have written. But you cannot. Fragments cannot put their views on screen.
To realize your efforts, you first have to add a CrimeFragment to CrimeActivity.

Chapter 7 UI Fragments and the Fragment Manager

142

Adding a UI Fragment to the FragmentManager
When the Fragment class was introduced in Honeycomb, the Activity class was changed to include a
piece called the FragmentManager. The FragmentManager is responsible for managing your fragments
and adding their views to the activity’s view hierarchy (Figure 7.17).

The FragmentManager handles two things: a list of fragments and a back stack of fragment transactions
(which you will learn about shortly).

Figure 7.17 The FragmentManager

For CriminalIntent, you will only be concerned with the FragmentManager’s list of fragments.

To add a fragment to an activity in code, you make explicit calls to the activity’s FragmentManager.
The first step is to get the FragmentManager itself. In CrimeActivity.java, add the following code to
onCreate(…).

Listing 7.14 Getting the FragmentManager (CrimeActivity.java)
public class CrimeActivity extends FragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime);

 FragmentManager fm = getSupportFragmentManager();
 }
}

If you see an error after adding this line of code, check the import statements to make sure that the
support version of the FragmentManager class was imported.

You call getSupportFragmentManager() because you are using the support library and the
FragmentActivity class. If you were not interested in using the support library, then you would
subclass Activity and call getFragmentManager().

Fragment transactions

143

Fragment transactions
Now that you have the FragmentManager, add the following code to give it a fragment to manage. (We
will step through this code afterward. Just get it in for now.)

Listing 7.15 Adding a CrimeFragment (CrimeActivity.java)
public class CrimeActivity extends FragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime);

 FragmentManager fm = getSupportFragmentManager();
 Fragment fragment = fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit();
 }
 }
}

The best place to start understanding the code that you added in Listing 7.15 is not at the beginning.
Instead, find the add(…) operation and the code around it. This code creates and commits a fragment
transaction.

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit();

Fragment transactions are used to add, remove, attach, detach, or replace fragments in the fragment
list. They are the heart of how you use fragments to compose and recompose screens at runtime. The
FragmentManager maintains a back stack of fragment transactions that you can navigate.

The FragmentManager.beginTransaction() method creates and returns an instance of
FragmentTransaction. The FragmentTransaction class uses a fluent interface - methods that
configure FragmentTransaction return a FragmentTransaction instead of void, which allows you to
chain them together. So the code highlighted above says, “Create a new fragment transaction, include
one add operation in it, and then commit it.”

The add(…) method is the meat of the transaction. It has two parameters: a container view ID and the
newly created CrimeFragment. The container view ID should look familiar. It is the resource ID of the
FrameLayout that you defined in activity_crime.xml.

Chapter 7 UI Fragments and the Fragment Manager

144

A container view ID serves two purposes:

• It tells the FragmentManager where in the activity’s view the fragment’s view should appear.

• It is used as a unique identifier for a fragment in the FragmentManager’s list.

When you need to retrieve the CrimeFragment from the FragmentManager, you ask for it by container
view ID:

 FragmentManager fm = getSupportFragmentManager();
 Fragment fragment = fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit();
 }

It may seem odd that the FragmentManager identifies the CrimeFragment using the resource ID of a
FrameLayout. But identifying a UI fragment by the resource ID of its container view is built into how
the FragmentManager operates. If you are adding multiple fragments to an activity, you would typically
create separate containers with separate IDs for each of those fragments.

Now we can summarize the code you added in Listing 7.15 from start to finish.

First, you ask the FragmentManager for the fragment with a container view ID of
R.id.fragment_container. If this fragment is already in the list, the FragmentManager will return it.

Why would a fragment already be in the list? The call to CrimeActivity.onCreate(…) could be in
response to CrimeActivity being re-created after being destroyed on rotation or to reclaim memory.
When an activity is destroyed, its FragmentManager saves out its list of fragments. When the activity
is re-created, the new FragmentManager retrieves the list and re-creates the listed fragments to make
everything as it was before.

On the other hand, if there is no fragment with the given container view ID, then fragment will be null.
In this case, you create a new CrimeFragment and a new fragment transaction that adds the fragment to
the list.

CrimeActivity is now hosting a CrimeFragment. Run CriminalIntent to prove it. You should see the
view defined in fragment_crime.xml, as shown in Figure 7.18.

The FragmentManager and the fragment lifecycle

145

Figure 7.18 CrimeFragment’s view hosted by CrimeActivity

A single widget on screen may not seem like much of a reward for all the work you have done in this
chapter. But you have laid down a solid foundation to do greater things with CriminalIntent in the
chapters ahead.

The FragmentManager and the fragment lifecycle
Now that you know about the FragmentManager, let’s take another look at the fragment lifecycle
(Figure 7.19).

Chapter 7 UI Fragments and the Fragment Manager

146

Figure 7.19 The fragment lifecycle, again

The FragmentManager of an activity is responsible for calling the lifecycle methods of the fragments in
its list. The onAttach(Activity), onCreate(Bundle), and onCreateView(…) methods are called when
you add the fragment to the FragmentManager.

The onActivityCreated(…) method is called after the hosting activity’s onCreate(…) method has
executed. You are adding the CrimeFragment in CrimeActivity.onCreate(…), so this method will be
called after the fragment has been added.

What happens if you add a fragment while the activity is already running? In that case, the
FragmentManager immediately walks the fragment through whatever steps are necessary to get it
caught up to the activity’s state. For example, as a fragment is added to an activity that is already
running, that fragment gets calls to onAttach(Activity), onCreate(Bundle), onCreateView(…),
onActivityCreated(Bundle), onStart(), and then onResume().

Once the fragment’s state is caught up to the activity’s state, the hosting activity’s FragmentManager
will call further lifecycle methods around the same time it receives the corresponding calls from the OS
to keep the fragment’s state aligned with that of the activity.

Application Architecture with Fragments
Designing your app with fragments the right way is supremely important. Many developers, after first
learning about fragments, try to use them for every reusable component in their application. This is the
wrong way to use fragments.

Fragments are intended to encapsulate major components in a reusable way. A major component in
this case would be on the level of an entire screen of your application. If you have a significant number

The reason all our activities will use fragments

147

of fragments on screen at once, your code will be littered with fragment transactions and unclear
responsibility. A better architectural solution for reuse with smaller components is to extract them into
a custom view (a class that subclasses View or one of its subclasses).

Use fragments responsibly. A good rule of thumb is to have no more than two or three fragments on the
screen at a time (Figure 7.20).

Figure 7.20 Less is more

The reason all our activities will use fragments
From here on, all of the apps in this book will use fragments – no matter how simple. This may seem
like overkill. Many of the examples you will see in following chapters could be written without
fragments. The user interfaces could be created and managed from activities, and doing so might even
be less code.

However, we believe it is better for you to become comfortable with the pattern you will most likely
use in real life.

You might think it would be better to begin a simple app without fragments and add them later, when
(or if) necessary. There is an idea in Extreme Programming methodology called YAGNI. YAGNI
stands for “You Aren’t Gonna Need It,” and it urges you not to write code if you think you might need
it later. Why? Because YAGNI. It is tempting to say “YAGNI” to fragments.

Unfortunately, adding fragments later can be a minefield. Changing an activity to an activity hosting
a UI fragment is not difficult, but there are swarms of annoying gotchas. Keeping some interfaces
managed by activities and having others managed by fragments only makes things worse because you
have to keep track of this meaningless distinction. It is far easier to write your code using fragments
from the beginning and not worry about the pain and annoyance of reworking it later, or having to
remember which style of controller you are using in each part of your application.

Therefore, when it comes to fragments, we have a different principle: AUF, or “Always Use
Fragments.” You can kill a lot of brain cells deciding whether to use a fragment or an activity, and it is
just not worth it. AUF!

Chapter 7 UI Fragments and the Fragment Manager

148

For the More Curious: Why Support Fragments are
Superior
This book uses the support library implementation of fragments over the implementation built into the
Android OS, which may seem like an unusual choice. After all, the support library implementation of
fragments was initially created so that developers could use fragments on old versions of Android that
do not support the API. Today, most developers can exclusively work with versions of Android that do
include support for fragments.

We still prefer support fragments. Why? Support fragments are superior because you can update the
version of the support library in your application and ship a new version of your app at any time. New
releases of the support library come out multiple times a year. When a new feature is added to the
fragment API, that feature is also added to the support library fragment API along with any available
bug fixes. To use this new goodness, just update the version of the support library in your application.

As an example, official support for fragment nesting (hosting a fragment in a fragment) was added in
Android 4.2. If you are using the Android OS implementation of fragments and supporting Android 4.0
and newer, you cannot use this API on all devices that your app supports. If you are using the support
library, you can update the version of the library in your app and nest fragments until you run out of
memory on the device.

There are no significant downsides to using the support library’s fragments. The implementation of
fragments is nearly identical in the support library as it is in the OS. The only real downside is that you
have to include the support library in your project and it has a nonzero size. However, it is currently
under a megabyte – and you will likely use the support library for some of its other features as well.

We take a practical approach in this book and in our own application development. The support library
is king.

For the More Curious: Using Built-In Fragments
If you are strong-willed and do not believe in the advice above, you can use the fragment
implementation built into the Android OS.

To use standard library fragments, you would make three changes to the project:

• Subclass the standard library Activity class (android.app.Activity) instead of
FragmentActivity. Activities have support for fragments out of the box on API level 11 or
higher.

• Subclass android.app.Fragment instead of android.support.v4.app.Fragment.

• To get the FragmentManager, call getFragmentManager() instead of
getSupportFragmentManager().

149

8
Creating User Interfaces with

Layouts and Widgets

In this chapter, you will learn more about layouts and widgets while adding a crime’s date and status to
CriminalIntent.

Upgrading Crime
Open Crime.java and add two new fields. The Date field represents the date a crime occurred. The
boolean field represents whether the crime has been solved.

Listing 8.1 Adding more fields to Crime (Crime.java)

public class Crime {
 private UUID mId;
 private String mTitle;
 private Date mDate;
 private boolean mSolved;

 public Crime() {
 mId = UUID.randomUUID();
 mDate = new Date();
 }

 ...
}

Android Studio may find two classes with the name Date. Use the Option+Return (or Alt+Enter)
shortcut to manually import the class. When asked which version of the Date class to import, choose
the java.util.Date version.

Initializing the Date variable using the default Date constructor sets mDate to the current date. This will
be the default date for a crime.

Next, generate getters and setters for your new fields (right-click in the file and choose Generate...,
then Getter and Setter).

Chapter 8 Creating User Interfaces with Layouts and Widgets

150

Listing 8.2 Generated getters and setters (Crime.java)

public class Crime {
 ...

 public void setTitle(String title) {
 mTitle = title;
 }

 public Date getDate() {
 return mDate;
 }
 public void setDate(Date date) {
 mDate = date;
 }

 public boolean isSolved() {
 return mSolved;
 }
 public void setSolved(boolean solved) {
 mSolved = solved;
 }
}

Your next steps will be updating the layout in fragment_crime.xml with new widgets and wiring up
those widgets in CrimeFragment.java.

Updating the Layout
Figure 8.1 shows what CrimeFragment’s view will look like by the end of this chapter.

Updating the Layout

151

Figure 8.1 CriminalIntent, episode 2

To get this on screen, you are going to add four widgets to CrimeFragment’s layout: two TextView
widgets, a Button, and a CheckBox.

Open fragment_crime.xml and make the changes shown in Listing 8.3. You may get errors from
missing string resources; you will create them in a moment.

Chapter 8 Creating User Interfaces with Layouts and Widgets

152

Listing 8.3 Adding new widgets (fragment_crime.xml)

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:orientation="vertical"
 >
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_title_label"
 style="?android:listSeparatorTextViewStyle"
 />
 <EditText android:id="@+id/crime_title"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 android:hint="@string/crime_title_hint"
 />
 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_details_label"
 style="?android:listSeparatorTextViewStyle"
 />
 <Button android:id="@+id/crime_date"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 />
 <CheckBox android:id="@+id/crime_solved"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 android:text="@string/crime_solved_label"
 />
</LinearLayout>

Notice that you did not give the Button an android:text attribute. This button will display the date of
the Crime being displayed, and its text will be set in code.

Why display the date on a Button? You are preparing for the future. For now, a crime’s date defaults
to the current date and cannot be changed. In Chapter 12, you will wire up the button so that a press
presents a DatePicker widget from which the user can set the date.

There are some new things in this layout to discuss, such as the style attribute and the margin
attributes. But first let’s get CriminalIntent up and running with the new widgets.

Open res/values/strings.xml and add the necessary string resources.

Wiring Widgets

153

Listing 8.4 Adding string resources (strings.xml)
<resources>
 <string name="app_name">CriminalIntent</string>
 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 <string name="crime_title_hint">Enter a title for the crime.</string>
 <string name="crime_title_label">Title</string>
 <string name="crime_details_label">Details</string>
 <string name="crime_solved_label">Solved</string>
</resources>

Check for typos and save your files.

Wiring Widgets
Next, you are going to make the CheckBox display whether a Crime has been solved. You also need to
update the Crime’s mSolved field when a user toggles the CheckBox.

For now, all the new Button needs to do is display the date in the Crime’s mDate field.

In CrimeFragment.java, add two new instance variables.

Listing 8.5 Adding widget instance variables (CrimeFragment.java)
public class CrimeFragment extends Fragment {
 private Crime mCrime;
 private EditText mTitleField;
 private Button mDateButton;
 private CheckBox mSolvedCheckBox;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...

Next, in onCreateView(…), get a reference to the new button, set its text as the date of the crime, and
disable it for now.

Listing 8.6 Setting Button text (CrimeFragment.java)
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_crime, parent, false);

 ...

 mTitleField.addTextChangedListener(new TextWatcher() {
 ...
 });

 mDateButton = (Button)v.findViewById(R.id.crime_date);
 mDateButton.setText(mCrime.getDate().toString());
 mDateButton.setEnabled(false);

 return v;
}

Chapter 8 Creating User Interfaces with Layouts and Widgets

154

Disabling the button ensures that it will not respond in any way to the user pressing it. It also changes
its appearance to advertise its disabled state. In Chapter 12, you will enable the button when you set its
listener.

Moving on to the CheckBox, get a reference and set a listener that will update the mSolved field of the
Crime.

Listing 8.7 Listening for CheckBox changes (CrimeFragment.java)
 ...
 mDateButton = (Button)v.findViewById(R.id.crime_date);
 mDateButton.setText(mCrime.getDate().toString());
 mDateButton.setEnabled(false);

 mSolvedCheckBox = (CheckBox)v.findViewById(R.id.crime_solved);
 mSolvedCheckBox.setOnCheckedChangeListener(new OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 // Set the crime's solved property
 mCrime.setSolved(isChecked);
 }
 });

 return v;
}

When creating the OnCheckedChangeListener, you will see two import options. Be sure to choose the
android.widget.CompoundButton version.

Run CriminalIntent. Toggle the new CheckBox and admire your disabled Button that displays the date.

More on XML Layout Attributes
Let’s go back over some of the attributes you added in fragment_crime.xml and answer some
lingering questions you might have about widgets and attributes.

Styles, themes, and theme attributes
A style is an XML resource that contains attributes that describe how a widget should look and behave.
For example, the following is a style resource that configures a widget with a larger-than-normal text
size.

 <style name="BigTextStyle">
 <item name="android:textSize">20sp</item>
 <item name="android:padding">3dp</item>
 </style>

You can create your own styles (and you will in Chapter 20). You add them to a styles file in res/
values/ and refer to them in layouts like this: @style/my_own_style.

Take another look at the TextView widgets in fragment_crime.xml; each has a style attribute that
refers to a style created by Android. This particular style makes the TextViews look like list separators

Screen pixel densities and dp and sp

155

and comes from the app’s theme. A theme is a collection of styles. Structurally, a theme is itself a style
resource whose attributes point to other style resources.

Android provides platform themes that your apps can use. When you created CriminalIntent, the
wizard set up a theme for the app that is referenced on the application tag in the manifest.

You can apply a style from the app’s theme to a widget using a theme attribute
reference. This is what you are doing in fragment_crime.xml when you use the value
?android:listSeparatorTextViewStyle.

In a theme attribute reference, you tell Android’s runtime resource manager, “Go to the app’s theme
and find the attribute named listSeparatorTextViewStyle. This attribute points to another style
resource. Put the value of that resource here.”

Every Android theme will include an attribute named listSeparatorTextViewStyle, but its definition
will be different depending on the overall look and feel of the particular theme. Using a theme attribute
reference ensures that the TextViews will have the correct look and feel for your app.

You will learn more about how styles and themes work in Chapter 20.

Screen pixel densities and dp and sp
In fragment_crime.xml, you specify the margin attribute values in terms of dp units. You have seen
these units in layouts before; now it is time to learn what they are.

Sometimes you need to specify values for view attributes in terms of specific sizes (usually in pixels
but sometimes points, millimeters, or inches). You see this most commonly with attributes for text size,
margins, and padding. Text size is the pixel height of the text on the device’s screen. Margins specify
the distances between views, and padding specifies the distance between a view’s outside edges and its
content.

As you saw in the section called “Adding an Icon” in Chapter 2, Android automatically scales images
to different screen pixel densities using density qualified drawable folders (such as drawable-xhdpi).
But what happens when your images scale, but your margins do not? Or what happens when the user
configures a larger-than-default text size?

To solve these problems, Android provides density-independent dimension units that you can use to
get the same size on different screen densities. Android translates these units into pixels at runtime, so
there is no tricky math for you to do (Figure 8.2).

Chapter 8 Creating User Interfaces with Layouts and Widgets

156

Figure 8.2 Dimension units in action on TextView (left: MDPI; middle: HDPI; right:
HDPI with large text)

dp (or dip) Short for density-independent pixel and usually pronounced “dip.” You typically
use this for margins, padding, or anything else for which you would otherwise
specify size with a pixel value. When your display is a higher density, density-
independent pixels will expand to fill a larger number of screen pixels. One dp is
always 1/160th of an inch on a device’s screen. You get the same size regardless
of screen density.

sp Short for scale-independent pixel. Scale-independent pixels are density-
independent pixels that also take into account the user’s font size preference. You
will almost always use sp to set display text size.

pt, mm, in These are scaled units like dp that allow you to specify interface sizes in points
(1/72 of an inch), millimeters, or inches. However, we do not recommend using
them: not all devices are correctly configured for these units to scale correctly.

In practice and in this book, you will use dp and sp almost exclusively. Android will translate these
values into pixels at runtime.

Android’s design guidelines
Notice that for your margins, you use a 16dp value in Listing 8.3. This value follows Android’s
material design guideline. You can find all of the Android design guidelines at http://
developer.android.com/design/index.html.

Modern Android apps should follow these guidelines as closely as possible. The guidelines rely
heavily on newer Android SDK functionality that is not always available or easy to achieve on older
devices. Many of the design recommendations can be followed using the AppCompat library, which
you can read about in Chapter 13.

Layout parameters

157

Layout parameters
By now, you have probably noticed that some attribute names begin with layout_
(android:layout_marginLeft) and others do not (android:text).

Attributes whose names do not begin with layout_ are directions to the widget. When it is inflated, the
widget calls a method to configure itself based on each of these attributes and their values.

When an attribute’s name begins with layout_, that attribute is a direction to that widget’s parent.
These attributes are known as layout parameters, and they tell the parent layout how to arrange the
child element within the parent.

Even when a layout object like LinearLayout is the root element of a layout, it is still a widget with a
parent and has layout parameters. When you defined the LinearLayout in fragment_crime.xml, you
gave it attributes for android:layout_width and android:layout_height. These attributes will be
used by the LinearLayout’s parent layout when it is inflated. In this case, the LinearLayout’s layout
parameters will be used by the FrameLayout in CrimeActivity’s content view.

Margins vs. padding
In fragment_crime.xml, you have given widgets margin and padding attributes. Beginning developers
sometimes get confused between these attributes. Now that you understand what a layout parameter is,
the difference is easier to explain. Margin attributes are layout parameters. They determine the distance
between widgets. Given that a widget can only know about itself, margins must be the responsibility of
the widget’s parent.

Padding, on the other hand, is not a layout parameter. The android:padding attribute tells the widget
how much bigger than its contents it should draw itself. For example, say you wanted the date button to
be spectacularly large without changing its text size (Figure 8.3). You could add the following attribute
to the Button, save your layout, and run again.

Listing 8.8 Padding in action (fragment_crime.xml)

<Button android:id="@+id/crime_date"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp"
 android:padding="80dp"
 />

Chapter 8 Creating User Interfaces with Layouts and Widgets

158

Figure 8.3 I like big buttons and I cannot lie...

Alas, you should probably remove this attribute before continuing.

Using the Graphical Layout Tool
So far, you have created layouts by typing XML. In this section, you will use the graphical layout tool.
In particular, you are going to make an alternative landscape layout for CrimeFragment.

Most built-in layout classes, like LinearLayout, will automatically stretch and resize themselves and
their children on rotation. Sometimes, however, the default resizing does not make the best use of the
available space.

Run CriminalIntent and rotate the device to see the CrimeFragment layout in landscape orientation
(Figure 8.4).

Using the Graphical Layout Tool

159

Figure 8.4 CrimeFragment in landscape mode

The date button becomes oddly long; it would be better if the landscape layout had the button and
checkbox side by side.

To make these changes, switch to the graphical layout tool. Open fragment_crime.xml and select the
Design tab at the bottom of the file.

In the middle of the graphical layout tool is the preview you have already seen. On the lefthand side is
the palette. This view contains all the widgets you could wish for, organized by category (Figure 8.5).

Figure 8.5 Views in the graphical layout tool

The component tree is to the right of the preview. The tree shows how the widgets are organized in the
layout.

Beneath the component tree is the properties view. In this view, you can view and edit the attributes of
the widget selected in the component tree.

Chapter 8 Creating User Interfaces with Layouts and Widgets

160

Creating a landscape layout
The graphical layout editor can generate the landscape version of a layout file for you. Locate the
button that looks like a piece of paper with an Android in the bottom right, as shown in Figure 8.6.
Click that button and select Create Landscape Variation.

Figure 8.6 Creating an alternative layout in the graphical layout editor

A new layout appears. Behind the scenes, the res/layout-land directory was created for you and the
existing fragment_crime.xml layout file was copied to that new directory.

Now let’s consider what changes to make to this landscape layout. Take a look at Figure 8.7.

Figure 8.7 Landscape layout for CrimeFragment

The changes can be broken into four parts:

• add a new LinearLayout widget to the layout

• edit the attributes of the LinearLayout

Adding a new widget

161

• make the Button and CheckBox widgets children of the LinearLayout

• update the layout parameters of the Button and CheckBox

Adding a new widget
You can add a widget by selecting it in the palette and then dragging to the component tree. Click
the Layouts category in the palette if it is not already expanded. Select LinearLayout (Horizontal) and
drag it to the component tree. Drop this LinearLayout just above the date button. Ensure that the new
LinearLayout is a child of the root LinearLayout, as shown in Figure 8.8.

Figure 8.8 LinearLayout added to fragment_crime.xml

You can add widgets by dragging from the palette to the preview, too. However, layout widgets are
often empty or obscured by other views, so it can be hard to see exactly where to drop a widget in the
preview to get the hierarchy you want. Dragging to the component tree makes this much easier.

Editing attributes in properties view
Select the new LinearLayout in the component tree to display its attributes in the properties view.
Examine the layout:width and layout:height attributes.

Modify the layout:width attribute to match_parent and the layout:height attribute to wrap_content, as
shown in Figure 8.9. Now, the LinearLayout will fill the available width and take up as much height as
it needs to display the CheckBox and Button.

Figure 8.9 Changing LinearLayout’s width and height

Chapter 8 Creating User Interfaces with Layouts and Widgets

162

You also want to update the LinearLayout’s margins to match your other widgets. Expand the
layout:margin attribute. Select the field next to Left and type 16dp. Do the same for the right margin
(Figure 8.10).

Figure 8.10 Margins set in properties view

Save your layout file and switch to the XML by selecting the text tab at the bottom of the preview. You
should see a LinearLayout element with the size and margin attributes you just added.

Reorganizing widgets in the component tree
The next step is to make the Button and CheckBox children of the new LinearLayout. Return to
the graphical layout tool, and, in the component tree, select the Button and drag it on top of the
LinearLayout.

The component tree should reflect that the Button is now a child of the new LinearLayout
(Figure 8.11). Do the same for the CheckBox.

Figure 8.11 Button and CheckBox are now children of the new LinearLayout

Updating child layout parameters

163

If widget children are out of order, you can reorder them in the component tree by dragging. You can
also delete widgets from the layout in the component tree, but be careful: deleting a widget also deletes
its children.

Back in the preview, the CheckBox seems to be missing. The Button is obscuring it. The LinearLayout
considered the width (match_parent) of its first child (the Button) and gave the first child all of the
space, leaving nothing for the CheckBox (Figure 8.12).

Figure 8.12 The first-defined Button child obscures the CheckBox

You can introduce some equity in the LinearLayout’s parenting by adjusting the layout parameters of
its children.

Updating child layout parameters
First, select the date button in the component tree. In the properties view, click on the current
layout:width value and change it to wrap_content.

Next, delete both of the button’s 16dp margin values. The button will not need these margins now that
it is inside the LinearLayout.

Finally, find the layout:weight field and set its value to 1. This field corresponds to the
android:layout_weight attribute shown in Figure 8.7.

Chapter 8 Creating User Interfaces with Layouts and Widgets

164

Select the CheckBox in the component tree and make the same attribute changes: layout:width should be
wrap_content, the margins should be empty, and layout:weight should be 1.

Check the preview to confirm that both widgets are now visible. Then save your file and return to the
XML to confirm your changes. Listing 8.9 shows the relevant XML.

Listing 8.9 XML for the graphically created layout (layout-land/
fragment_crime.xml)
 ...

 <TextView
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:text="@string/crime_details_label"
 style="?android:listSeparatorTextViewStyle"
 />
 <LinearLayout
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_marginLeft="16dp"
 android:layout_marginRight="16dp" >
 <Button
 android:id="@+id/crime_date"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1" />
 <CheckBox
 android:id="@+id/crime_solved"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_weight="1"
 android:text="@string/crime_solved_label" />
 </LinearLayout>
</LinearLayout>

Run CriminalIntent, rotate to landscape, and pat yourself on the back for optimizing the layout for a
new configuration of the device.

How android:layout_weight works
The android:layout_weight attribute tells the LinearLayout how to distribute its children. You have
given both widgets the same value, but that does not necessarily make them the same width on screen.
To determine the width of its child views, LinearLayout uses a mixture of the layout_width and
layout_weight parameters.

LinearLayout makes two passes to set the width of a view. In the first pass, LinearLayout looks at
layout_width (or layout_height, for vertical orientation). The value for layout_width for both the
Button and CheckBox is now wrap_content, so each view will get only enough space to draw itself
(Figure 8.13).

(It is hard to see how layout weights work in the preview because your button’s contents are not part
of the layout itself. The following figures show what the LinearLayout would look like if the button
already had its contents.)

The graphical layout tool and you

165

Figure 8.13 Pass 1: space given out based on layout_width

In the next pass, LinearLayout allocates any extra space based on the values for layout_weight
(Figure 8.14).

Figure 8.14 Pass 2: extra space given out based on 1:1 layout_weight

In your layout, the Button and CheckBox have the same value for layout_weight, so they split the
extra space 50/50. If you set the weight for your Button to 2, then it would receive 2/3 of the extra
space, leaving 1/3 for the CheckBox (Figure 8.15).

Figure 8.15 Extra space divided unevenly based on 2:1 layout_weight

Any floating point number can be a valid weight. Programmers have different conventions for the
kinds of weights they use. In fragment_crime.xml, you are using a “cocktail recipe” style weighting.
Another common convention is to have weights add up to 1.0 or 100, which would make the weight for
the button in the last example 0.66 or 66, respectively.

What if you want the LinearLayout to allocate exactly 50% of its width to each view? You simply skip
the first pass by setting the layout_width of each widget to 0dp instead of wrap_content. This leaves
layout_weight the sole component in the LinearLayout’s decision making (Figure 8.16).

Figure 8.16 When layout_width="0dp", only layout_weight values matter

The graphical layout tool and you
The graphical layout tool is useful, and it is improving with every Android Studio release. However, it
can be buggy at times and may be hard to use with complex layouts. You can switch between making
changes in the graphical layout tool and in the XML directly at any time.

Chapter 8 Creating User Interfaces with Layouts and Widgets

166

Feel free to use the graphical layout tool to create layouts in this book. From now on, we will show you
a diagram like Figure 8.7 when you need to create a layout. You can decide how to create it – XML,
graphical layout tool, or some of each.

Widget IDs and multiple layouts
The two layouts that you have created for CriminalIntent do not vary significantly, but there may be
times when your layouts will. When this is the case, you should ensure that widgets actually exist
before you access them in code.

If you have a widget in one layout and not another, use null-checking in the code to determine if the
widget is present in the current orientation before calling methods on it:

Button landscapeOnlyButton = (Button)v.findViewById(R.id.landscapeOnlyButton);
if (landscapeOnlyButton != null) {
 // Set it up
}

Finally, remember that a widget must have the same android:id attribute in every layout in which it
appears so that your code can find it.

Challenge: Formatting the Date
The Date object is more of a timestamp than a conventional date. A timestamp is what you see when
you call toString() on a Date, so that is what you have on your button. While timestamps make for
good documentation, it might be nicer if the button just displayed the date as humans think of it – like
“Jul 22, 2015.” You can do this with an instance of the android.text.format.DateFormat class. The
place to start is the reference page for this class in the Android documentation.

You can use methods in the DateFormat class to get a common format. Or you can prepare your own
format string. For a more advanced challenge, create a format string that will display the day of the
week as well – for example, “Wednesday, Jul 22, 2015.”

167

9
Displaying Lists with

RecyclerView

CriminalIntent’s model layer currently consists of a single instance of Crime. In this chapter, you will
update CriminalIntent to work with a list of crimes. The list will display each Crime’s title and date and
whether the case has been solved, as shown in Figure 9.1.

Figure 9.1 A list of crimes

Figure 9.2 shows the overall plan for CriminalIntent in this chapter.

Chapter 9 Displaying Lists with RecyclerView

168

Figure 9.2 CriminalIntent with a list of crimes

In the model layer, you have a new object, CrimeLab, that will be a centralized data stash for Crime
objects.

Displaying a list of crimes requires a new activity and a new fragment in CriminalIntent’s controller
layer: CrimeListActivity and CrimeListFragment.

(Where are CrimeActivity and CrimeFragment in Figure 9.2? They are part of the detail view,
so we are not showing them here. In Chapter 10, you will connect the list and the detail parts of
CriminalIntent.)

In Figure 9.2, you can also see the view objects associated with CrimeListActivity and
CrimeListFragment. The activity’s view will consist of a fragment-containing FrameLayout. The
fragment’s view will consist of a RecyclerView. You will learn more about the RecyclerView class
later in the chapter.

Updating CriminalIntent’s Model Layer
The first step is to upgrade CriminalIntent’s model layer from a single Crime object to a List of Crime
objects.

Singletons and centralized data storage
You are going to store the List of crimes in a singleton. A singleton is a class that allows only one
instance of itself to be created.

A singleton exists as long as the application stays in memory, so storing the list in a singleton will
keep the crime data available throughout any lifecycle changes in your activities and fragments. Be

Singletons and centralized data storage

169

careful with singleton classes, as they will be destroyed when Android removes your application from
memory. The CrimeLab singleton is not a solution for long-term storage of data, but it does allow the
app to have one owner of the crime data and provides a way to easily pass that data between controller
classes.

(See the For the More Curious section at the end of this chapter for more about singleton classes.)

To create a singleton, you create a class with a private constructor and a get() method. If the instance
already exists, then get() simply returns the instance. If the instance does not exist yet, then get() will
call the constructor to create it.

Right-click the com.bignerdranch.android.criminalintent package and choose New → Java
Class. Name this class CrimeLab and click Finish.

In CrimeLab.java, implement CrimeLab as a singleton with a private constructor and a get() method.

Listing 9.1 Setting up the singleton (CrimeLab.java)

public class CrimeLab {
 private static CrimeLab sCrimeLab;

 public static CrimeLab get(Context context) {
 if (sCrimeLab == null) {
 sCrimeLab = new CrimeLab(context);
 }
 return sCrimeLab;
 }

 private CrimeLab(Context context) {

 }
}

There are a few interesting things in this CrimeLab implementation. First, notice the s prefix on the
sCrimeLab variable. You are using this Android convention to make it clear that sCrimeLab is a static
variable.

Also, notice the private constructor on the CrimeLab. Other classes will not be able to create a
CrimeLab, bypassing the get() method.

Finally, in the get() method on CrimeLab, you pass in a Context object. You are not currently using
this Context object but you will make use of it in Chapter 14.

Let’s give CrimeLab some Crime objects to store. In CrimeLab’s constructor, create an empty List of
Crimes. Also add two methods: a getCrimes() method that returns the List and a getCrime(UUID)
that returns the Crime with the given ID.

Chapter 9 Displaying Lists with RecyclerView

170

Listing 9.2 Setting up the List of Crime objects (CrimeLab.java)

public class CrimeLab {
 private static CrimeLab sCrimeLab;

 private List<Crime> mCrimes;

 public static CrimeLab get(Context context) {
 ...
 }

 private CrimeLab(Context context) {
 mCrimes = new ArrayList<>();
 }

 public List<Crime> getCrimes() {
 return mCrimes;
 }

 public Crime getCrime(UUID id) {
 for (Crime crime : mCrimes) {
 if (crime.getId().equals(id)) {
 return crime;
 }
 }
 return null;
 }
}

List<E> is an interface that supports an ordered list of objects of a given type. It defines methods for
retrieving, adding, and deleting elements. A commonly used implementation of List is ArrayList,
which uses a regular Java array to store the list elements.

Since mCrimes holds an ArrayList, and ArrayList is also a List, both ArrayList and List are valid
types for mCrimes. In situations like this, we recommend using the interface type for the variable
declaration: List. That way, if you ever need to use a different kind of List implementation – like
LinkedList, for example – you can do so easily.

The mCrimes instantiation line uses diamond notation, <>, which was introduced in Java 7. This
shorthand notation tells the compiler to infer the type of items the List will contain based on the
generic argument passed in the variable declaration. Here, the compiler will infer that the ArrayList
contains Crimes because the variable declaration, private List<Crime> mCrimes;, specifies Crime
for the generic argument. (The more verbose equivalent, which developers were required to use prior to
Java 7, is mCrimes = new ArrayList<Crime>();.)

Eventually, the List will contain user-created Crimes that can be saved and reloaded. For now,
populate the List with 100 boring Crime objects.

An Abstract Activity for Hosting a Fragment

171

Listing 9.3 Generating crimes (CrimeLab.java)

 private CrimeLab(Context context) {
 mCrimes = new ArrayList<>();
 for (int i = 0; i < 100; i++) {
 Crime crime = new Crime();
 crime.setTitle("Crime #" + i);
 crime.setSolved(i % 2 == 0); // Every other one
 mCrimes.add(crime);
 }
 }

Now you have a fully loaded model layer with 100 crimes.

An Abstract Activity for Hosting a Fragment
In a moment, you will create the CrimeListActivity class that is designed to host a
CrimeListFragment. First, you are going to set up a view for CrimeListActivity.

A generic fragment-hosting layout
For CrimeListActivity, you can simply reuse the layout defined in activity_crime.xml (Listing
9.4). This layout provides a FrameLayout as a container view for a fragment, which is then named in
the activity’s code.

Listing 9.4 activity_crime.xml is already generic

<?xml version="1.0" encoding="utf-8"?>
<FrameLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/fragment_container"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

Because activity_crime.xml does not name a particular fragment, you can use it for any activity
hosting a single fragment. Rename it activity_fragment.xml to reflect its larger scope.

In the Project tool window, right-click res/layout/activity_crime.xml. (Be sure to right-click
activity_crime.xml and not fragment_crime.xml.)

From the context menu, select Refactor → Rename.... Rename this layout activity_fragment.xml.
When you rename a resource, the references to it are updated automatically.

Android Studio should automatically update the references to the new activity_fragment.xml
file. If you see an error in CrimeActivity.java, then you need to manually update the reference in
CrimeActivity, as shown in Listing 9.5.

Chapter 9 Displaying Lists with RecyclerView

172

Listing 9.5 Update layout file for CrimeActivity (CrimeActivity.java)

public class CrimeActivity extends FragmentActivity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime);
 setContentView(R.layout.activity_fragment);

 FragmentManager fm = getSupportFragmentManager();
 Fragment fragment = fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit();
 }
 }
}

An abstract Activity class
To create the CrimeListActivity class, you could reuse CrimeActivity’s code. Look back at the
code you wrote for CrimeActivity (Listing 9.5). It is simple and almost generic. In fact, the only
nongeneric code is the instantiation of the CrimeFragment before it is added to the FragmentManager.

Listing 9.6 CrimeActivity is almost generic (CrimeActivity.java)

public class CrimeActivity extends FragmentActivity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment);

 FragmentManager fm = getSupportFragmentManager();
 Fragment fragment = fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit();
 }
 }
}

Nearly every activity you will create in this book will require the same code. To avoid typing it again
and again, you are going to stash it in an abstract class.

Create a new class named SingleFragmentActivity in CriminalIntent’s package. Make this class a
subclass of FragmentActivity and make the class an abstract class.

An abstract Activity class

173

Listing 9.7 Creating an abstract Activity (SingleFragmentActivity.java)

public abstract class SingleFragmentActivity extends FragmentActivity {

}

Now, add the following code to SingleFragmentActivity.java. Except for the highlighted portions, it
is identical to your old CrimeActivity code.

Listing 9.8 Add a generic superclass (SingleFragmentActivity.java)

public abstract class SingleFragmentActivity extends FragmentActivity {

 protected abstract Fragment createFragment();

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment);

 FragmentManager fm = getSupportFragmentManager();
 Fragment fragment = fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = createFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit();
 }
 }
}

In this code, you set the activity’s view to be inflated from activity_fragment.xml. Then you look for
the fragment in the FragmentManager in that container, creating and adding it if it does not exist.

The only difference between the code in Listing 9.8 and the code in CrimeActivity is an
abstract method named createFragment() that you use to instantiate the fragment. Subclasses of
SingleFragmentActivity will implement this method to return an instance of the fragment that the
activity is hosting.

Using an abstract class

Try it out with CrimeActivity. Change CrimeActivity’s superclass to SingleFragmentActivity,
remove the implementation of onCreate(Bundle), and implement the createFragment() method as
shown in Listing 9.9.

Chapter 9 Displaying Lists with RecyclerView

174

Listing 9.9 Clean up CrimeActivity (CrimeActivity.java)

public class CrimeActivity extends FragmentActivity SingleFragmentActivity {
 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment);
 FragmentManager fm = getSupportFragmentManager();
 Fragment fragment = fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = new CrimeFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit();
 }
 }

 @Override
 protected Fragment createFragment() {
 return new CrimeFragment();
 }
}

Creating the new controllers

Now, you will create the two new controller classes: CrimeListActivity and CrimeListFragment.

Right-click on the com.bignerdranch.android.criminalintent package, select New → Java Class,
and name the class CrimeListActivity.

Modify the new CrimeListActivity class to also subclass SingleFragmentActivity and implement
the createFragment() method.

Listing 9.10 Implement CrimeListActivity (CrimeListActivity.java)

public class CrimeListActivity extends SingleFragmentActivity {

 @Override
 protected Fragment createFragment() {
 return new CrimeListFragment();
 }

}

If you have other methods in your CrimeListActivity, such as onCreate, remove them. Let
SingleFragmentActivity do its job and keep CrimeListActivity simple.

The CrimeListFragment class has not yet been created. Let’s remedy that.

Right-click on the com.bignerdranch.android.criminalintent package again, select New → Java
Class, and name the class CrimeListFragment.

An abstract Activity class

175

Listing 9.11 Implement CrimeListFragment (CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 // Nothing yet

}

For now, CrimeListFragment will be an empty shell of a fragment. You will work with this fragment
later in the chapter.

SingleFragmentActivity will save you a lot of typing and time as you proceed through the book. And
now your activity code is nice and tidy.

Declaring CrimeListActivity
Now that you have created CrimeListActivity, you must declare it in the manifest. In addition, you
want the list of crimes to be the first screen that the user sees when CriminalIntent is launched, so
CrimeListActivity should be the launcher activity.

In the manifest, declare CrimeListActivity and move the launcher intent filter from CrimeActivity’s
declaration to CrimeListActivity’s.

Listing 9.12 Declaring CrimeListActivity as the launcher activity
(AndroidManifest.xml)
 ...

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <activity android:name=".CrimeListActivity">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 <activity android:name=".CrimeActivity"
 android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>

 </application>

</manifest>

CrimeListActivity is now the launcher activity. Run CriminalIntent, and you will see
CrimeListActivity’s FrameLayout hosting an empty CrimeListFragment, as shown in Figure 9.3.

Chapter 9 Displaying Lists with RecyclerView

176

Figure 9.3 Blank CrimeListActivity screen

RecyclerView, Adapter, and ViewHolder
Now, you want CrimeListFragment to display a list of crimes to the user. To do this, you will use a
RecyclerView.

RecyclerView is a subclass of ViewGroup. It displays a list of child View objects, one for each item in
your list of items. Depending on the complexity of what you need to display, these child Views can be
complex or very simple.

Your first implementation of providing list items for display will be simple: a list item will only display
the title of a Crime, and the View object will be a simple TextView, as shown in Figure 9.4.

ViewHolders and Adapters

177

Figure 9.4 A RecyclerView with child TextViews

Figure 9.4 shows 12 TextViews. Later you will be able to run CriminalIntent and swipe to scroll
through 100 TextViews to see all of your Crimes. Does that mean that you have 100 TextViews?
Thanks to your RecyclerView, no.

Creating a TextView for every item in the list could easily become unworkable. As you can imagine,
a list can have far more than 100 items, and TextViews can be much more involved than your simple
implementation here. Also, a Crime only needs a View when it is on the screen, so there is no need to
have 100 Views ready and waiting. It would make far more sense to create view objects only as you
need them.

RecyclerView does just that. Instead of creating 100 Views, it creates 12 – enough to fill the screen.
When a view is scrolled off the screen, RecyclerView reuses it rather than throwing it away. In short, it
lives up to its name: it recycles views over and over.

ViewHolders and Adapters
The RecyclerView’s only responsibilities are recycling TextViews and positioning them on the screen.
To get the TextViews in the first place, it works with two classes that you will build in a moment: an
Adapter subclass and a ViewHolder subclass.

The ViewHolder’s job is small, so let’s talk about it first. The ViewHolder does one thing: it holds on to
a View (Figure 9.5).

Chapter 9 Displaying Lists with RecyclerView

178

Figure 9.5 The lowly ViewHolder

A small job, but that is what ViewHolders do. A typical ViewHolder subclass looks like this:

Listing 9.13 A typical ViewHolder subclass
public class ListRow extends RecyclerView.ViewHolder {
 public ImageView mThumbnail;

 public ListRow(View view) {
 super(view);

 mThumbnail = (ImageView) view.findViewById(R.id.thumbnail);
 }
}

You can then create a ListRow and access both mThumbnail, which you created yourself, and
itemView, a field which your superclass RecyclerView.ViewHolder assigns for you. The itemView
field is your ViewHolder’s reason for existing: it holds a reference to the entire View you passed in to
super(view).

Listing 9.14 Typical usage of a ViewHolder
 ListRow row = new ListRow(inflater.inflate(R.layout.list_row, parent, false));
 View view = row.itemView;
 ImageView thumbnailView = row.mThumbnail;

A RecyclerView never creates Views by themselves. It always creates ViewHolders, which bring their
itemViews along for the ride (Figure 9.6).

Figure 9.6 A RecyclerView with its ViewHolders

ViewHolders and Adapters

179

When the View is simple, ViewHolder has few responsibilities. For more complicated Views, the
ViewHolder makes wiring up the different parts of itemView to a Crime simpler and more efficient.
You will see how this works later on in this chapter, when you build a complex View yourself.

Adapters
Figure 9.6 is somewhat simplified. RecyclerView does not create ViewHolders itself. Instead, it asks
an adapter. An adapter is a controller object that sits between the RecyclerView and the data set that
the RecyclerView should display.

The adapter is responsible for

• creating the necessary ViewHolders

• binding ViewHolders to data from the model layer

To build an adapter, you first define a subclass of RecyclerView.Adapter. Your adapter subclass will
wrap the list of crimes you get from CrimeLab.

When the RecyclerView needs a view object to display, it will have a conversation with its adapter.
Figure 9.7 shows an example of a conversation that a RecyclerView might initiate.

Figure 9.7 A scintillating RecyclerView-Adapter conversation

First, the RecyclerView asks how many objects are in the list by calling the adapter’s getItemCount()
method.

Chapter 9 Displaying Lists with RecyclerView

180

Then the RecyclerView calls the adapter’s createViewHolder(ViewGroup, int) method to create a
new ViewHolder, along with its juicy payload: a View to display.

Finally, the RecyclerView calls onBindViewHolder(ViewHolder, int). The RecyclerView will pass a
ViewHolder into this method along with the position. The adapter will look up the model data for that
position and bind it to the ViewHolder’s View. To bind it, the adapter fills in the View to reflect the data
in the model object.

After this process is complete, RecyclerView will place a list item on the screen.
Note that createViewHolder(ViewGroup, int) will happen a lot less often than
onBindViewHolder(ViewHolder, int). Once a sufficient number of ViewHolders have been created,
RecyclerView stops calling createViewHolder(…). Instead, it saves time and memory by recycling old
ViewHolders.

Using a RecyclerView
Enough talk; time for the implementation. The RecyclerView class lives in one of Google’s many
support libraries. The first step to using a RecyclerView is to add the RecyclerView library as a
dependency.

Navigate to your project structure window with File → Project Structure.... Select the app module
on the left, then the Dependencies tab. Use the + button and choose Library dependency to add a
dependency.

Find and select the recyclerview-v7 library and click OK to add the library as a dependency, as shown in
Figure 9.8.

Figure 9.8 Adding the RecyclerView dependency

Your RecyclerView will live in CrimeListFragment’s layout file. First, you must create the layout
file. Right-click on the res/layout directory and select New → Layout resource file. Name the file
fragment_crime_list and click OK to create the file.

Open the new fragment_crime_list file and modify the root view to be a RecyclerView and to give it
an ID attribute.

Using a RecyclerView

181

Listing 9.15 Adding RecyclerView to a layout file
(fragment_crime_list.xml)

<android.support.v7.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/crime_recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"/>

Now that CrimeListFragment’s view is set up, hook up the view to the fragment. Modify
CrimeListFragment to use this layout file and to find the RecyclerView in the layout file, as shown in
Listing 9.16.

Listing 9.16 Setting up the view for CrimeListFragment
(CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 private RecyclerView mCrimeRecyclerView;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_crime_list, container, false);

 mCrimeRecyclerView = (RecyclerView) view
 .findViewById(R.id.crime_recycler_view);
 mCrimeRecyclerView.setLayoutManager(new LinearLayoutManager(getActivity()));

 return view;
 }

}

Note that as soon as you create your RecyclerView, you give it another object called a LayoutManager.
RecyclerView requires a LayoutManager to work. If you forget to give it one, it will crash.

We said earlier that RecyclerView’s only responsibilities are recycling TextViews and positioning
them on the screen. But RecyclerView does not do the job of positioning items on the screen itself. It
delegates that out to the LayoutManager. The LayoutManager handles the positioning of items and also
defines the scrolling behavior. So if the LayoutManager is not there, RecyclerView will just fall over
and die when it tries to do those things. This may change in the future, but that is the case for now.

There are a few built-in LayoutManagers to choose from, and you can find more as third-party libraries.
You will use the LinearLayoutManager, which will position the items in the list vertically. Later on in
this book, you will use GridLayoutManager to arrange items in a grid instead.

Run the app and you should again see a blank screen, but now you are looking at an empty
RecyclerView. You will not see any Crimes represented on the screen until the Adapter and
ViewHolder implementations are defined.

Chapter 9 Displaying Lists with RecyclerView

182

Implementing an Adapter and ViewHolder
Start by defining the ViewHolder as an inner class in CrimeListFragment.

Listing 9.17 A simple ViewHolder (CrimeListFragment.java)

public class CrimeListFragment extends Fragment {
 ...

 private class CrimeHolder extends RecyclerView.ViewHolder {

 public TextView mTitleTextView;

 public CrimeHolder(View itemView) {
 super(itemView);

 mTitleTextView = (TextView) itemView;
 }
 }
}

As it is now, this ViewHolder maintains a reference to a single view: the title TextView. This code
expects for the itemView to be a TextView, and will crash if it is not. Later in the chapter, CrimeHolder
will be given more responsibilities.

With the ViewHolder defined, create the adapter.

Listing 9.18 The beginnings of an adapter (CrimeListFragment.java)

public class CrimeListFragment extends Fragment {
 ...

 private class CrimeAdapter extends RecyclerView.Adapter<CrimeHolder> {

 private List<Crime> mCrimes;

 public CrimeAdapter(List<Crime> crimes) {
 mCrimes = crimes;
 }
 }
}

(The code in Listing 9.18 will not compile. You will fix this in a moment.)

The RecyclerView will communicate with this adapter when a ViewHolder needs to be created or
connected with a Crime object. The RecyclerView itself will not know anything about the Crime
object, but the Adapter will know all of Crime’s intimate and personal details.

Next, implement three methods in CrimeAdapter.

Implementing an Adapter and ViewHolder

183

Listing 9.19 CrimeAdapter filled out (CrimeListFragment.java)

 private class CrimeAdapter extends RecyclerView.Adapter<CrimeHolder> {

 ...

 @Override
 public CrimeHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 LayoutInflater layoutInflater = LayoutInflater.from(getActivity());
 View view = layoutInflater
 .inflate(android.R.layout.simple_list_item_1, parent, false);
 return new CrimeHolder(view);
 }

 @Override
 public void onBindViewHolder(CrimeHolder holder, int position) {
 Crime crime = mCrimes.get(position);
 holder.mTitleTextView.setText(crime.getTitle());
 }

 @Override
 public int getItemCount() {
 return mCrimes.size();
 }
 }

There are a few things to unpack with this code. Let’s start with the onCreateViewHolder
implementation.

onCreateViewHolder is called by the RecyclerView when it needs a new View to display an item. In
this method, you create the View and wrap it in a ViewHolder. The RecyclerView does not expect that
you will hook it up to any data yet.

For the View, you inflate a layout from the Android standard library called simple_list_item_1. This
layout contains a single TextView, styled to look nice in a list. Later in the chapter, you will make a
more advanced View for the list items.

Next, onBindViewHolder: This method will bind a ViewHolder’s View to your model object. It receives
the ViewHolder and a position in your data set. To bind your View, you use that position to find the
right model data. Then you update the View to reflect that model data.

In your implementation, that position is the index of the Crime in your array. Once you pull it out, you
bind that Crime to your View by sending its title to your ViewHolder’s TextView.

Now that you have an Adapter, your final step is to connect it to your RecyclerView. Implement a
method called updateUI that sets up CrimeListFragment’s user interface. For now it will create a
CrimeAdapter and set it on the RecyclerView.

Chapter 9 Displaying Lists with RecyclerView

184

Listing 9.20 Setting an Adapter (CrimeListFragment.java)

public class CrimeListFragment extends Fragment {

 private RecyclerView mCrimeRecyclerView;
 private CrimeAdapter mAdapter;

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_crime_list, container, false);

 mCrimeRecyclerView = (RecyclerView) view
 .findViewById(R.id.crime_recycler_view);
 mCrimeRecyclerView.setLayoutManager(new LinearLayoutManager(getActivity()));

 updateUI();

 return view;
 }

 private void updateUI() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 List<Crime> crimes = crimeLab.getCrimes();

 mAdapter = new CrimeAdapter(crimes);
 mCrimeRecyclerView.setAdapter(mAdapter);
 }

 ...
}

In later chapters, you will add more to updateUI() as configuring your user interface gets more
involved.

Run CriminalIntent and scroll through your new RecyclerView, which should look like Figure 9.9.

Customizing List Items

185

Figure 9.9 A beautiful list of Crimes

Customizing List Items
So far, each of your list items only displays the title of a Crime using a simple TextView.

What do you do when you want to display more information in each list item? What if you want to
customize the design of each list item? Moving your item view to a separate layout file will allow you
to do both of these things while also cleaning up the code.

Creating the list item layout
For CriminalIntent, a list item’s layout should include the crime’s title, its date, and whether the case
has been solved (Figure 9.10). This layout calls for two TextViews and a CheckBox.

Chapter 9 Displaying Lists with RecyclerView

186

Figure 9.10 A handful of custom list items

You create a new layout for a list item view the same way you do for the view of an activity or a
fragment. In the Project tool window, right-click the res/layout directory and choose New → Layout
resource file. In the dialog that appears, name the file list_item_crime. Set the Root element to
RelativeLayout and click OK.

In a RelativeLayout, you use layout parameters to arrange child views relative to the root layout
and to each other. You are going to have the CheckBox align itself to the right-hand side of the
RelativeLayout. The two TextViews will align themselves relative to the CheckBox.

Figure 9.11 shows the widgets for the custom list item layout. The CheckBox child should be defined
first even though it will appear on the right-hand side of the layout. This is because the TextViews will
use the ID of the CheckBox as an attribute value. For the same reason, the title TextView is defined
before the date TextView. In a layout file, an ID must be defined with an @+id before other widgets can
use that ID in their own definitions with @id.

Creating the list item layout

187

Figure 9.11 Custom list item layout (list_item_crime.xml)

Notice that when you use a widget’s ID in another widget’s definition, you do not include the +. The +
sign is used to create the ID when it first appears in a layout file – typically in an android:id attribute.
You can use + to create the ID in another place if necessary, but layout files are usually easier to read
when you include the IDs in the widget’s android:id attribute.

Chapter 9 Displaying Lists with RecyclerView

188

Your custom list item layout is complete, and you can turn to the next step – updating your adapter.

Using a custom item view
Now, update the CrimeAdapter to use the new list_item_crime layout file.

Listing 9.21 Inflating a custom layout (CrimeListFragment.java)
 private class CrimeAdapter extends RecyclerView.Adapter<CrimeHolder> {

 ...

 @Override
 public CrimeHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 LayoutInflater layoutInflater = LayoutInflater.from(getActivity());
 View view = layoutInflater
 .inflate(android.R.layout.simple_list_item_1
 R.layout.list_item_crime, parent, false);
 return new CrimeHolder(view);
 }

 ...
 }

Next, it is finally time to give CrimeHolder more responsibility. Modify CrimeHolder to find the title
TextView, date TextView, and solved CheckBox.

Listing 9.22 Finding views in the CrimeHolder (CrimeListFragment.java)
 private class CrimeHolder extends RecyclerView.ViewHolder {

 public TextView mTitleTextView;
 private TextView mTitleTextView;
 private TextView mDateTextView;
 private CheckBox mSolvedCheckBox;

 public CrimeHolder(View itemView) {
 super(itemView);

 mTitleTextView = (TextView) itemView;
 mTitleTextView = (TextView)
 itemView.findViewById(R.id.list_item_crime_title_text_view);
 mDateTextView = (TextView)
 itemView.findViewById(R.id.list_item_crime_date_text_view);
 mSolvedCheckBox = (CheckBox)
 itemView.findViewById(R.id.list_item_crime_solved_check_box);
 }
 }

This is where your ViewHolder starts to flourish. Calls to findViewById(int) are often expensive.
They go door to door throughout your entire itemView looking for your View: “Hey, are you
list_item_crime_title_text_view? No? Oh, sorry for troubling you.” This takes time to do, and you
have to walk all over your memory neighborhood to do it.

Using a custom item view

189

ViewHolder can relieve a lot of this pain. By stashing the results of these findViewById(int) calls,
you only have to spend that time in createViewHolder(…). When onBindViewHolder(…) is called, the
work is already done. Which is nice, because onBindViewHolder(…) is called much more often than
onCreateViewHolder(…).

However, that binding process is a little more complicated now. Add a bindCrime(Crime) method to
CrimeHolder to clean things up a bit.

Listing 9.23 Binding views in the CrimeHolder (CrimeListFragment.java)

 private class CrimeHolder extends RecyclerView.ViewHolder {

 private Crime mCrime;

 ...

 public void bindCrime(Crime crime) {
 mCrime = crime;
 mTitleTextView.setText(mCrime.getTitle());
 mDateTextView.setText(mCrime.getDate().toString());
 mSolvedCheckBox.setChecked(mCrime.isSolved());
 }
 }

When given a Crime, CrimeHolder will now update the title TextView, date TextView, and solved
CheckBox to reflect the state of the Crime.

The CrimeHolder has everything it needs to do its job. The CrimeAdapter just needs to use the new
bindCrime method.

Listing 9.24 Connecting the CrimeAdapter to the CrimeHolder
(CrimeListFragment.java)

 private class CrimeAdapter extends RecyclerView.Adapter<CrimeHolder> {

 ...

 @Override
 public void onBindViewHolder(CrimeHolder holder, int position) {
 Crime crime = mCrimes.get(position);
 holder.mTitleTextView.setText(crime.getTitle());
 holder.bindCrime(crime);
 }

 ...
 }

Run CriminalIntent to see the new list_item_crime layout file in action (Figure 9.12).

Chapter 9 Displaying Lists with RecyclerView

190

Figure 9.12 Now with custom list items!

Responding to Presses
As icing on the RecyclerView cake, CriminalIntent should also respond to a press on these list items.
In Chapter 10, you will launch the detail view for a Crime when the user presses on that Crime in the
list. For now, show a Toast when the user takes action on a Crime.

As you may have noticed, RecyclerView, while powerful and capable, has precious few real
responsibilities. (May it be an example to us all.) The same goes here: handling touch events is mostly
up to you. If you need them, RecyclerView can forward along raw touch events. Most of the time,
though, this is not necessary.

Instead, you can handle them like you normally do: by setting an OnClickListener. Since each View
has an associated ViewHolder, you can make your ViewHolder the OnClickListener for its View.

Modify the CrimeHolder to handle presses for the entire row.

For the More Curious: ListView and GridView

191

Listing 9.25 Detecting presses in CrimeHolder (CrimeListFragment.java)
 private class CrimeHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {

 ...
 public CrimeHolder(View itemView) {
 super(itemView);
 itemView.setOnClickListener(this);

 ...
 }

 ...

 @Override
 public void onClick(View v) {
 Toast.makeText(getActivity(),
 mCrime.getTitle() + " clicked!", Toast.LENGTH_SHORT)
 .show();
 }
 }

In Listing 9.25, the CrimeHolder itself is implementing the OnClickListener interface. On the
itemView, which is the View for the entire row, the CrimeHolder is set as the receiver of click events.

Run CriminalIntent and press on an item in the list. You should see a Toast indicating that the item
was clicked.

For the More Curious: ListView and GridView
The core Android OS includes ListView, GridView, and Adapter classes. Until the release of Android
5.0, these were the preferred ways to create lists or grids of items.

The API for these components is very similar to that of a RecyclerView. The ListView or GridView
class is responsible for scrolling a collection of items, but does not know much about each of those
items. The Adapter is responsible for creating each of the Views in the list. However, ListView and
GridView do not enforce that you use the ViewHolder pattern (though you can – and should – use it).

These old implementations are replaced by the RecyclerView implementation because of the
complexity required to alter the behavior of a ListView or GridView.

Creating a horizontally scrolling ListView, for example, is not included in the ListView API and
requires a lot of work. Creating custom layout and scrolling behavior with a RecyclerView is still a lot
of work, but RecyclerView was built to be extended, so it is not quite so bad.

Another key feature of RecyclerView is the animation of items in the list. Animating the addition
or removal of items in a ListView or GridView is a complex and error-prone task. RecyclerView
makes this much easier, includes a few built-in animations, and allows for easy customization of these
animations.

For example, if you found out that the crime at position 0 moved to position 5, you could animate that
change like so:

mRecyclerView.getAdapter().notifyItemMoved(0, 5);

Chapter 9 Displaying Lists with RecyclerView

192

For the More Curious: Singletons
The singleton pattern, as used in the CrimeLab, is very common on Android. Singletons get a bad rap
because they can be misused in a way that makes an app hard to maintain.

Singletons are often used in Android because they outlive a single fragment or activity. A singleton
will still exist across rotation and will exist as you move between activities and fragments in your
application.

Singletons make a convenient owner of your model objects. Imagine a more complex CriminalIntent
application that had many activities and fragments modifying crimes. When one controller modifies
a crime, how would you make sure that updated crime was sent over to the other controllers? If
the CrimeLab is the owner of crimes and all modifications to crimes pass through the CrimeLab,
propagating changes is much easier. As you transition between controllers, you can pass the crime
ID as an identifier for a particular crime and have each controller pull the full crime object from the
CrimeLab using that ID.

However, singletons do have a few downsides. For example, while they allow for an easy place to stash
data with a longer lifetime than a controller, singletons do have a lifetime. Singletons will be destroyed,
along with all of their instance variables, as Android reclaims memory at some point after you switch
out of an application. Singletons are not a long-term storage solution. (Writing the files to disk or
sending them to a web server is.)

Singletons can also make your code hard to unit test. There is not a great way to replace the CrimeLab
instance in this chapter with a mock version of itself because the code is calling a static method
directly on the CrimeLab object. In practice, Android developers usually solve this problem using a tool
called a dependency injector. This tool allows for objects to be shared as singletons, while still making
it possible to replace them when needed.

Singletons also have the potential to be misused. The temptation is to use singletons for everything,
since they are convenient – you can get to them wherever you are, and store whatever information you
need to get at later. But when you do that, you are avoiding answering important questions: Where is
this data used? Where is this method important?

A singleton does not answer those questions. So whoever comes after you will open up your singleton
and find something that looks like somebody’s disorganized junk drawer: batteries, zip ties, old
photographs? What is all this here for? Make sure that anything in your singleton is truly global and
has a strong reason for being there.

On balance, however, singletons are a key component of a well-architected Android app – when used
correctly.

193

10
Using Fragment Arguments

In this chapter, you will get the list and the detail parts of CriminalIntent working together. When a
user presses an item in the list of crimes, a new CrimeActivity hosting a CrimeFragment will appear
and display the details for a particular instance of Crime (Figure 10.1).

Figure 10.1 Starting CrimeActivity from CrimeListActivity

In GeoQuiz, you had one activity (QuizActivity) start another activity (CheatActivity). In
CriminalIntent, you are going to start the CrimeActivity from a fragment. In particular, you will have
CrimeListFragment start an instance of CrimeActivity.

Starting an Activity from a Fragment
Starting an activity from a fragment works nearly the same as starting an activity from another activity.
You call the Fragment.startActivity(Intent) method, which calls the corresponding Activity
method behind the scenes.

In CrimeListFragment’s CrimeHolder, replace the toast with code that starts an instance of
CrimeActivity.

Listing 10.1 Starting CrimeActivity (CrimeListFragment.java)
private class CrimeHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {
 ...

 @Override
 public void onClick(View v) {
 Toast.makeText(getActivity(),
 mCrime.getTitle() + " clicked!", Toast.LENGTH_SHORT)
 .show();

 Intent intent = new Intent(getActivity(), CrimeActivity.class);
 startActivity(intent);
 }
}

Chapter 10 Using Fragment Arguments

194

Here CrimeListFragment creates an explicit intent that names the CrimeActivity class.
CrimeListFragment uses the getActivity() method to pass its hosting activity as the Context object
that the Intent constructor requires.

Run CriminalIntent. Press any list item, and you will see a new CrimeActivity hosting a
CrimeFragment (Figure 10.2).

Figure 10.2 A blank CrimeFragment

The CrimeFragment does not yet display the data for a specific Crime because you have not told it
which Crime to display.

Putting an extra
You can tell CrimeFragment which Crime to display by passing the crime ID as an Intent extra when
CrimeActivity is started.

Start by creating a newIntent method in CrimeActivity.

Retrieving an extra

195

Listing 10.2 Creating a newIntent method (CrimeActivity.java)

public class CrimeActivity extends SingleFragmentActivity {

 public static final String EXTRA_CRIME_ID =
 "com.bignerdranch.android.criminalintent.crime_id";

 public static Intent newIntent(Context packageContext, UUID crimeId) {
 Intent intent = new Intent(packageContext, CrimeActivity.class);
 intent.putExtra(EXTRA_CRIME_ID, crimeId);
 return intent;
 }

 ...

}

After creating an explicit intent, you call putExtra(…) and pass in a string key and the value the key
maps to (the crimeId). In this case, you are calling putExtra(String, Serializable) because UUID
is a Serializable object.

Now, update the CrimeHolder to use the newIntent method while passing in the crime ID.

Listing 10.3 Stashing and passing a Crime (CrimeListFragment.java)

private class CrimeHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {

 ...

 @Override
 public void onClick(View v) {
 Intent intent = new Intent(getActivity(), CrimeActivity.class);
 Intent intent = CrimeActivity.newIntent(getActivity(), mCrime.getId());
 startActivity(intent);
 }
}

Retrieving an extra
The crime ID is now safely stashed in the intent that belongs to CrimeActivity. However, it is the
CrimeFragment class that needs to retrieve and use that data.

There are two ways a fragment can access data in its activity’s intent: an easy, direct shortcut and a
complex, flexible implementation. First, you are going to try out the shortcut. Then you will implement
the complex and flexible solution that involves fragment arguments.

In the shortcut, CrimeFragment will simply use the getActivity() method to access the
CrimeActivity’s intent directly. Return to CrimeFragment and retrieve the extra from
CrimeActivity’s intent and use it to fetch the Crime.

Chapter 10 Using Fragment Arguments

196

Listing 10.4 Retrieving the extra and fetching the Crime (CrimeFragment.java)
public class CrimeFragment extends Fragment {

 ...

 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mCrime = new Crime();
 UUID crimeId = (UUID) getActivity().getIntent()
 .getSerializableExtra(CrimeActivity.EXTRA_CRIME_ID);
 mCrime = CrimeLab.get(getActivity()).getCrime(crimeId);
 }

 ...
}

In Listing 10.4, other than the call to getActivity(), the code is the same as if you were retrieving
the extra from the activity’s code. The getIntent() method returns the Intent that was used to start
CrimeActivity. You call getSerializableExtra(String) on the Intent to pull the UUID out into a
variable.

After you have retrieved the ID, you use it to fetch the Crime from CrimeLab.

Updating CrimeFragment’s view with Crime data
Now that CrimeFragment fetches a Crime, its view can display that Crime’s data. Update
onCreateView(…) to display the Crime’s title and solved status. (The code for displaying the date is
already in place.)

Listing 10.5 Updating view objects (CrimeFragment.java)
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 ...

 mTitleField = (EditText)v.findViewById(R.id.crime_title);
 mTitleField.setText(mCrime.getTitle());
 mTitleField.addTextChangedListener(new TextWatcher() {
 ...
 });

 ...

 mSolvedCheckBox = (CheckBox)v.findViewById(R.id.crime_solved);
 mSolvedCheckBox.setChecked(mCrime.isSolved());
 mSolvedCheckBox.setOnCheckedChangeListener(new OnCheckedChangeListener() {
 ...
 });

 ...

 return v;
}

Run CriminalIntent. Select Crime #4 and watch a CrimeFragment instance with the correct crime data
appear (Figure 10.3).

The downside to direct retrieval

197

Figure 10.3 The crime that you wanted to see

The downside to direct retrieval
Having the fragment access the intent that belongs to the hosting activity makes for simple code.
However, it costs you the encapsulation of your fragment. CrimeFragment is no longer a reusable
building block because it expects that it will always be hosted by an activity whose Intent defines an
extra named com.bignerdranch.android.criminalintent.crime_id.

This may be a reasonable expectation on CrimeFragment’s part, but it means that CrimeFragment, as
currently written, cannot be used with just any activity.

A better solution is to stash the crime ID someplace that belongs to CrimeFragment rather than keeping
it in CrimeActivity’s personal space. The CrimeFragment could then retrieve this data without relying
on the presence of a particular extra in the activity’s intent. The “someplace” that belongs to a fragment
is known as its arguments bundle.

Fragment Arguments
Every fragment instance can have a Bundle object attached to it. This bundle contains key-value pairs
that work just like the intent extras of an Activity. Each pair is known as an argument.

Chapter 10 Using Fragment Arguments

198

To create fragment arguments, you first create a Bundle object. Next, you use type-specific “put”
methods of Bundle (similar to those of Intent) to add arguments to the bundle:

 Bundle args = new Bundle();
 args.putSerializable(EXTRA_MY_OBJECT, myObject);
 args.putInt(EXTRA_MY_INT, myInt);
 args.putCharSequence(EXTRA_MY_STRING, myString);

Attaching arguments to a fragment
To attach the arguments bundle to a fragment, you call Fragment.setArguments(Bundle). Attaching
arguments to a fragment must be done after the fragment is created but before it is added to an activity.

To hit this window, Android programmers follow a convention of adding a static method named
newInstance() to the Fragment class. This method creates the fragment instance and bundles up and
sets its arguments.

When the hosting activity needs an instance of that fragment, you have it call the newInstance()
method rather than calling the constructor directly. The activity can pass in any required parameters to
newInstance(…) that the fragment needs to create its arguments.

In CrimeFragment, write a newInstance(UUID) method that accepts a UUID, creates an arguments
bundle, creates a fragment instance, and then attaches the arguments to the fragment.

Listing 10.6 Writing a newInstance(UUID) method (CrimeFragment.java)
public class CrimeFragment extends Fragment {

 private static final String ARG_CRIME_ID = "crime_id";

 private Crime mCrime;
 private EditText mTitleField;
 private Button mDateButton;
 private CheckBox mSolvedCheckbox;

 public static CrimeFragment newInstance(UUID crimeId) {
 Bundle args = new Bundle();
 args.putSerializable(ARG_CRIME_ID, crimeId);

 CrimeFragment fragment = new CrimeFragment();
 fragment.setArguments(args);
 return fragment;
 }

 ...
}

Now CrimeActivity should call CrimeFragment.newInstance(UUID) when it needs to create
a CrimeFragment. It will pass in the UUID it retrieved from its extra. Return to CrimeActivity
and, in createFragment(), retrieve the extra from CrimeActivity’s intent and pass it into
CrimeFragment.newInstance(UUID).

You can now also make EXTRA_CRIME_ID private since no other class will access that extra. (Note that
while we have struck through and replaced the complete line for clarity, in reality you only have to
replace “public” with “private” for the first change shown.)

Retrieving arguments

199

Listing 10.7 Using newInstance(UUID) (CrimeActivity.java)
public class CrimeActivity extends SingleFragmentActivity {

 public static final String EXTRA_CRIME_ID =
 "com.bignerdranch.android.criminalintent.crime_id";

 private static final String EXTRA_CRIME_ID =
 "com.bignerdranch.android.criminalintent.crime_id";

 ...

 @Override
 protected Fragment createFragment() {
 return new CrimeFragment();
 UUID crimeId = (UUID) getIntent()
 .getSerializableExtra(EXTRA_CRIME_ID);
 return CrimeFragment.newInstance(crimeId);
 }

}

Notice that the need for independence does not go both ways. CrimeActivity has to know plenty
about CrimeFragment, including that it has a newInstance(UUID) method. This is fine. Hosting
activities should know the specifics of how to host their fragments, but fragments should not have to
know specifics about their activities. At least, not if you want to maintain the flexibility of independent
fragments.

Retrieving arguments
When a fragment needs to access its arguments, it calls the Fragment method getArguments() and
then one of the type-specific “get” methods of Bundle.

Back in CrimeFragment.onCreate(…), replace your shortcut code with retrieving the UUID from the
fragment arguments.

Listing 10.8 Getting crime ID from the arguments (CrimeFragment.java)
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 UUID crimeId = (UUID) getActivity().getIntent()
 .getSerializableExtra(CrimeActivity.EXTRA_CRIME_ID);
 UUID crimeId = (UUID) getArguments().getSerializable(ARG_CRIME_ID);

 mCrime = CrimeLab.get(getActivity()).getCrime(crimeId);

}

Run CriminalIntent. The app will behave the same, but you should feel all warm and fuzzy inside for
maintaining CrimeFragment’s independence. You are also well prepared for the next chapter, where
you will implement more sophisticated navigation in CriminalIntent.

Chapter 10 Using Fragment Arguments

200

Reloading the List
There is one more detail to take care of. Run CriminalIntent, press a list item, and then modify
that Crime’s details. These changes are saved to the model, but when you return to the list, the
RecyclerView is unchanged.

The RecyclerView’s Adapter needs to be informed that the data has changed (or may have changed) so
that it can refetch the data and reload the list. You can work with the ActivityManager’s back stack to
reload the list at the right moment.

When CrimeListFragment starts an instance of CrimeActivity, the CrimeActivity is put on top of
the stack. This pauses and stops the instance of CrimeListActivity that was initially on top.

When the user presses the Back button to return to the list, the CrimeActivity is popped off the stack
and destroyed. At that point, the CrimeListActivity is started and resumed (Figure 10.4).

Figure 10.4 CriminalIntent’s back stack

When the CrimeListActivity is resumed, it receives a call to onResume() from the OS. When
CrimeListActivity receives this call, its FragmentManager calls onResume() on the fragments that the
activity is currently hosting. In this case, the only fragment is CrimeListFragment.

In CrimeListFragment, override onResume() and trigger a call to updateUI() to reload the list.
Modify the updateUI() method to call notifyDataSetChanged() if the CrimeAdapter is already set
up.

Reloading the List

201

Listing 10.9 Reloading the list in onResume() (CrimeListFragment.java)

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
}

@Override
public void onResume() {
 super.onResume();
 updateUI();
}

private void updateUI() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 List<Crime> crimes = crimeLab.getCrimes();

 if (mAdapter == null) {
 mAdapter = new CrimeAdapter(crimes);
 mCrimeRecyclerView.setAdapter(mAdapter);
 } else {
 mAdapter.notifyDataSetChanged();
 }
}

Why override onResume() to update the RecyclerView and not onStart()? You cannot assume that
your activity will be stopped when another activity is in front of it. If the other activity is transparent,
your activity may just be paused. If your activity is paused and your update code is in onStart(),
then the list will not be reloaded. In general, onResume() is the safest place to take action to update a
fragment’s view.

Run CriminalIntent. Select a crime and change its details. When you return to the list, you will
immediately see your changes.

You have made progress with CriminalIntent in the last two chapters. Let’s take a look at an updated
object diagram (Figure 10.5).

Chapter 10 Using Fragment Arguments

202

Figure 10.5 Updated object diagram for CriminalIntent

Getting Results with Fragments
In this chapter, you did not need a result back from the started activity. What if you did? Your code
would look a lot like it did in GeoQuiz. Instead of using the Activity’s startActivityForResult(…)
method, you would use Fragment.startActivityForResult(…). Instead of overriding
Activity.onActivityResult(…), you would override Fragment.onActivityResult(…):

Challenge: Efficient RecyclerView Reloading

203

public class CrimeListFragment extends Fragment {

 private static final int REQUEST_CRIME = 1;

 ...

 private class CrimeHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {

 ...

 @Override
 public void onClick(View v) {
 Intent intent = CrimeActivity.newIntent(getActivity(), mCrime.getId());
 startActivityForResult(intent, REQUEST_CRIME);
 }
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (requestCode == REQUEST_CRIME) {
 // Handle result
 }
 }

 ...
}

Fragment.startActivityForResult(Intent, int) is similar to the Activity method with the same
name. It includes some additional code to route the result to your fragment from its host activity.

Returning results from a fragment is a bit different. A fragment can receive a result from an activity,
but it cannot have its own result. Only activities have results. So while Fragment has its own
startActivityForResult(…) and onActivityResult(…) methods, it does not have any setResult(…)
methods.

Instead, you tell the host activity to return a value. Like this:

public class CrimeFragment extends Fragment {
 ...

 public void returnResult() {
 getActivity().setResult(Activity.RESULT_OK, null);
 }
}

Challenge: Efficient RecyclerView Reloading
The notifyDataSetChanged method on your Adapter is a handy way to ask the RecyclerView to
reload all of the items that are currently visible.

The use of this method in CriminalIntent is wildly inefficient because at most one Crime will have
changed when returning to the CrimeListFragment.

Use the RecyclerView.Adapter’s notifyItemChanged(int) method to reload a single item in the
list. Modifying the code to call that method is easy. The challenge is discovering which position has
changed and reloading the correct item.

Chapter 10 Using Fragment Arguments

204

For the More Curious: Why Use Fragment Arguments?
This all seems so complicated. Why not just set an instance variable on the CrimeFragment when it is
created?

Because it would not always work. When the OS re-creates your fragment, either across a
configuration change or when the user has switched out of your app and the OS reclaims memory,
all of your instance variables will be lost. Also, remember that there is no way to cheat low-memory
death, no matter how hard you try.

If you want something that works in all cases, you have to persist your arguments.

One option is to use the saved instance state mechanism. You can store the crime ID as a normal
instance variable, save the crime ID in onSaveInstanceState(Bundle), and snag it from the Bundle in
onCreate(Bundle). This will work in all situations.

However, that solution is hard to maintain. If you revisit this fragment in a few years and add another
argument, you may not remember to save the argument in onSaveInstanceState(Bundle). Going this
route is less explicit.

Android developers prefer the fragment arguments solution because it is very explicit and clear in its
intentions. In a few years, you will come back and know that the crime ID is an argument and is safely
shuttled along to new instances of this fragment. If you add another argument, you will know to stash it
in the arguments bundle.

205

11
Using ViewPager

In this chapter, you will create a new activity to host CrimeFragment. This activity’s layout will consist
of an instance of ViewPager. Adding a ViewPager to your UI lets users navigate between list items by
swiping across the screen to “page” forward or backward through the crimes (Figure 11.1).

Figure 11.1 Swiping to page through crimes

Figure 11.2 shows an updated diagram for CriminalIntent. The new activity will be named
CrimePagerActivity and will take the place of CrimeActivity. Its layout will consist of a ViewPager.

Chapter 11 Using ViewPager

206

Figure 11.2 Object diagram for CrimePagerActivity

The only new objects you need to create are within the dashed rectangle in the diagram above. Nothing
else in CriminalIntent needs to change to implement paging between detail views. In particular, you
will not have to touch the CrimeFragment class thanks to the work you did in Chapter 10 to ensure
CrimeFragment’s independence.

Here are the tasks ahead in this chapter:

• create the CrimePagerActivity class

• define a view hierarchy that consists of a ViewPager

• wire up the ViewPager and its adapter in CrimePagerActivity

• modify CrimeHolder.onClick(…) to start CrimePagerActivity instead of CrimeActivity

Creating CrimePagerActivity
CrimePagerActivity will be a subclass of FragmentActivity. It will create and manage the
ViewPager.

Create a new class named CrimePagerActivity. Make its superclass FragmentActivity and set up the
view for the activity.

ViewPager and PagerAdapter

207

Listing 11.1 Set up ViewPager (CrimePagerActivity.java)

public class CrimePagerActivity extends FragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime_pager);
 }
}

The layout file does not yet exist. Create a new layout file in res/layout/ and name
it activity_crime_pager. Make its root view a ViewPager and give it the attributes
shown in Figure 11.3. Notice that you must use ViewPager's full package name
(android.support.v4.view.ViewPager).

Figure 11.3 CrimePagerActivity’s ViewPager
(activity_crime_pager.xml)

You use ViewPager's full package name when adding it to the layout file because the ViewPager class
is from the support library. Unlike Fragment, ViewPager is only available in the support library; there
is not a “standard” ViewPager class in a later SDK.

ViewPager and PagerAdapter
A ViewPager is like a RecyclerView in some ways. A RecyclerView requires an Adapter to provide
views. A ViewPager requires a PagerAdapter.

However, the conversation between ViewPager and PagerAdapter is much more involved than the
conversation between RecyclerView and Adapter. Luckily, you can use FragmentStatePagerAdapter,
a subclass of PagerAdapter, to take care of many of the details.

FragmentStatePagerAdapter will boil down the conversation to two simple methods: getCount() and
getItem(int). When your getItem(int) method is called for a position in your array of crimes, it
will return a CrimeFragment configured to display the crime at that position.

In CrimePagerActivity, set the ViewPager’s pager adapter and implement its getCount() and
getItem(int) methods.

Chapter 11 Using ViewPager

208

Listing 11.2 Setting up pager adapter (CrimePagerActivity.java)
public class CrimePagerActivity extends FragmentActivity {

 private ViewPager mViewPager;
 private List<Crime> mCrimes;

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime_pager);

 mViewPager = (ViewPager) findViewById(R.id.activity_crime_pager_view_pager);

 mCrimes = CrimeLab.get(this).getCrimes();
 FragmentManager fragmentManager = getSupportFragmentManager();
 mViewPager.setAdapter(new FragmentStatePagerAdapter(fragmentManager) {

 @Override
 public Fragment getItem(int position) {
 Crime crime = mCrimes.get(position);
 return CrimeFragment.newInstance(crime.getId());
 }

 @Override
 public int getCount() {
 return mCrimes.size();
 }
 });
 }
}

Let’s go through this code. After finding the ViewPager in the activity’s view, you get your data set
from CrimeLab – the List of crimes. Next, you get the activity’s instance of FragmentManager.

Then you set the adapter to be an unnamed instance of FragmentStatePagerAdapter.
Creating the FragmentStatePagerAdapter requires the FragmentManager. Remember that
FragmentStatePagerAdapter is your agent managing the conversation with ViewPager. For your agent
to do its job with the fragments that getItem(int) returns, it needs to be able to add them to your
activity. That is why it needs your FragmentManager.

(What exactly is your agent doing? The short story is that it is adding the fragments you return to your
activity and helping ViewPager identify the fragments’ views so that they can be placed correctly. More
details are in the For the More Curious section at the end of the chapter.)

The pager adapter’s two methods are straightforward. The getCount() method returns the number of
items in the array list. The getItem(int) method is where the magic happens. It fetches the Crime
instance for the given position in the dataset. It then uses that Crime’s ID to create and return a properly
configured CrimeFragment.

Integrating CrimePagerActivity
Now you can begin the process of decommissioning CrimeActivity and putting CrimePagerActivity
in its place.

First add a newIntent method to CrimePagerActivity along with an extra for the crime ID.

Integrating CrimePagerActivity

209

Listing 11.3 Creating newIntent (CrimePagerActivity.java)

public class CrimePagerActivity extends FragmentActivity {
 private static final String EXTRA_CRIME_ID =
 "com.bignerdranch.android.criminalintent.crime_id";

 private ViewPager mViewPager;
 private List<Crime> mCrimes;

 public static Intent newIntent(Context packageContext, UUID crimeId) {
 Intent intent = new Intent(packageContext, CrimePagerActivity.class);
 intent.putExtra(EXTRA_CRIME_ID, crimeId);
 return intent;
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_crime_pager);

 UUID crimeId = (UUID) getIntent()
 .getSerializableExtra(EXTRA_CRIME_ID);
 ...
 }
}

Now, you want pressing a list item in CrimeListFragment to start an instance of CrimePagerActivity
instead of CrimeActivity.

Return to CrimeListFragment.java and modify CrimeHolder.onClick(…) to start a
CrimePagerActivity.

Listing 11.4 Firing it up (CrimeListFragment.java)

private class CrimeHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {

 ...

 @Override
 public void onClick(View v) {
 Intent intent = CrimeActivity.newIntent(getActivity(), mCrime.getId());
 Intent intent = CrimePagerActivity.newIntent(getActivity(), mCrime.getId());
 startActivity(intent);
 }
}

You also need to add CrimePagerActivity to the manifest so that the OS can start it. While you are
in the manifest, remove CrimeActivity’s declaration. To accomplish this, you can just rename the
CrimeActivity to CrimePagerActivity in the manifest.

Chapter 11 Using ViewPager

210

Listing 11.5 Adding CrimePagerActivity to manifest
(AndroidManifest.xml)
<?xml version="1.0" encoding="utf-8"?>
<manifest ...>
 ...
 <application ...>
 ...

 <activity
 android:name=".CrimeActivity"
 android:name=".CrimePagerActivity"
 android:label="@string/app_name" >
 </activity>

 ...
 </application>

</manifest>

Finally, to keep your project tidy, delete CrimeActivity.java from the project tool window.

Run CriminalIntent. Press Crime #0 to view its details. Then swipe left and right to browse more
crimes. Notice that the paging is smooth and there is no delay in loading. By default, ViewPager
loads the item currently on screen plus one neighboring page in each direction so that the response
to a swipe is immediate. You can tweak how many neighboring pages are loaded by calling
setOffscreenPageLimit(int).

But all is not yet perfect with your ViewPager. Press Back to return to the list of crimes and press a
different item. You will see the first crime displayed again instead of the crime that you asked for.

By default, the ViewPager shows the first item in its PagerAdapter. You can have it show the crime
that was selected by setting the ViewPager’s current item to the index of the selected crime.

At the end of CrimePagerActivity.onCreate(…), find the index of the crime to display by looping
through and checking each crime’s ID. When you find the Crime instance whose mId matches the
crimeId in the intent extra, set the current item to the index of that Crime.

Listing 11.6 Setting initial pager item (CrimePagerActivity.java)
public class CrimePagerActivity extends FragmentActivity {
 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...

 FragmentManager fragmentManager = getSupportFragmentManager();
 mViewPager.setAdapter(new FragmentStatePagerAdapter(fragmentManager) {
 ...
 });

 for (int i = 0; i < mCrimes.size(); i++) {
 if (mCrimes.get(i).getId().equals(crimeId)) {
 mViewPager.setCurrentItem(i);
 break;
 }
 }
 }
}

FragmentStatePagerAdapter vs. FragmentPagerAdapter

211

Run CriminalIntent. Selecting any list item should display the details of the correct Crime. And that is
it. Your ViewPager is now fully armed and operational.

FragmentStatePagerAdapter vs.
FragmentPagerAdapter
There is another PagerAdapter type that you can use called FragmentPagerAdapter.
FragmentPagerAdapter is used exactly like FragmentStatePagerAdapter. It only differs in how it
unloads your fragments when they are no longer needed (Figure 11.4).

Figure 11.4 FragmentStatePagerAdapter’s fragment management

With FragmentStatePagerAdapter, your unneeded fragment is destroyed. A transaction is
committed to completely remove the fragment from your activity’s FragmentManager. The “state” in
FragmentStatePagerAdapter comes from the fact that it will save out your fragment’s Bundle from
onSaveInstanceState(Bundle) when it is destroyed. When the user navigates back, the new fragment
will be restored using that instance state.

FragmentPagerAdapter handles things differently. When your fragment is no longer needed,
FragmentPagerAdapter calls detach(Fragment) on the transaction, instead of remove(Fragment).
This destroys the fragment’s view, but leaves the fragment instance alive in the FragmentManager. So
the fragments created by FragmentPagerAdapter are never destroyed (Figure 11.5).

Chapter 11 Using ViewPager

212

Figure 11.5 FragmentPagerAdapter’s fragment management

Which kind of adapter you want to use depends on your application. In general,
FragmentStatePagerAdapter is more frugal with memory. CriminalIntent is displaying what could be
a long list of crimes, each of which will eventually include a photo. You do not want to keep all that
information in memory, so you use FragmentStatePagerAdapter.

On the other hand, if your interface has a small, fixed number of fragments, FragmentPagerAdapter
is safe and appropriate. The most common example of this scenario is a tabbed interface. Some detail
views have enough details to require two screens, so the details are split across multiple tabs. Adding
a swipeable ViewPager to this interface makes the app tactile. Keeping these fragments in memory can
make your controller code easier to manage, and because this style of interface usually has only two or
three fragments per activity there is little danger of running low on memory.

For the More Curious: How ViewPager Really Works
The ViewPager and PagerAdapter classes handle many things for you behind the scenes. This section
will supply more details about what is going on back there.

A caveat before we get into this discussion: you do not need to understand the nitty-gritty details in
most cases.

But if you need to implement the PagerAdapter interface yourself, you will need to know how the
ViewPager-PagerAdapter relationship differs from an ordinary RecyclerView-Adapter relationship.

When would you need to implement the PagerAdapter interface yourself? When you want ViewPager
to host something other than Fragments. If you want to host normal View objects in a ViewPager, like a
few images, you implement the raw PagerAdapter interface.

For the More Curious: Laying Out Views in Code

213

So why is ViewPager not a RecyclerView?

Using a RecyclerView in this case would be a lot of work because you could not use your existing
Fragment. An Adapter expects you to provide a View instantly. However, your FragmentManager
determines when your fragment’s view is created, not you. So when RecyclerView comes knocking at
your Adapter’s door for your fragment’s view, you will not be able to create the fragment and provide
its view immediately.

This is the reason ViewPager exists. Instead of an Adapter, it uses a class called PagerAdapter.
PagerAdapter is more complicated than Adapter because it does more of the work of managing views
than Adapter does. Here are the basics.

Instead of an onBindViewHolder(…) method that returns a view holder and its corresponding view,
PagerAdapter has the following methods:

 public Object instantiateItem(ViewGroup container, int position)
 public void destroyItem(ViewGroup container, int position, Object object)
 public abstract boolean isViewFromObject(View view, Object object)

PagerAdapter.instantiateItem(ViewGroup, int) tells the pager adapter to create an item view for a
given position and add it to a container ViewGroup, and destroyItem(ViewGroup, int, Object) tells
it to destroy that item. Note that instantiateItem(ViewGroup, int) does not say to create the view
right now. The PagerAdapter could create the view at any time after that.

Once the view has been created, ViewPager will notice it at some point. To figure out which
item’s view it is, it calls isViewFromObject(View, Object). The Object parameter is an
object received from a call to instantiateItem(ViewGroup, int). So if ViewPager calls
instantiateItem(ViewGroup, 5) and receives object A, isViewFromObject(View, A) should return
true if the View passed in is for item 5, and false otherwise.

This is a complicated process for the ViewPager, but it is less complicated for the PagerAdapter,
which only needs to be able to create views, destroy views, and identify which object a view comes
from. This loose requirement gives a PagerAdapter implementation enough wiggle room to create and
add a new fragment inside instantiateItem(ViewGroup, int) and return the fragment as the Object
to keep track of. Then isViewFromObject(View, Object) looks like this:

 @Override
 public boolean isViewFromObject(View view, Object object) {
 return ((Fragment)object).getView() == view;
 }

Implementing all those PagerAdapter overrides would be a pain to do every time you needed to use
ViewPager. Thank goodness for FragmentPagerAdapter and FragmentStatePagerAdapter.

For the More Curious: Laying Out Views in Code
Throughout the book, you have been creating your views in layout files. It is also possible to create
your views in code.

Chapter 11 Using ViewPager

214

In fact, you could have defined your ViewPager in code without a layout file at all.

@Override
protected void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ViewPager viewPager = new ViewPager(this);
 setContentView(viewPager);

 ...
}

No magic is necessary to create a view: just call its constructor, passing in a Context as the parameter.
You can programmatically create an entire view hierarchy instead of using layout files.

However, creating views in code should be avoided, because layout files provide a few benefits.

One benefit of layout files is that they help to provide a clear separation between your controller
and view objects in your app. The view exists in XML and the controller exists in Java code. This
separation makes your code easier to maintain by limiting the amount of changes in your controller
when you change your view and vice versa.

Another benefit to views defined in XML is that you can use Android’s resource qualification system
to automatically choose the appropriate version of that XML file based on the properties of the device.

As you saw in Chapter 3, this system makes it easy to change your layout file depending on the
orientation of the device (as well as other configurations).

So what are the downsides to using layout files? Well, you do have to go to the trouble of creating an
XML file and inflating it. If you are creating a single view, sometimes you may not want to go to the
trouble.

Otherwise, though, there are no downsides worth speaking of – the Android team has never
recommended constructing view hierarchies programmatically, even back in the old days when
developers had to be even more conscious of performance than they are now. Even if you need
something as small as an ID on your view (which is often necessary, even with a programmatically
created view), it is simpler to have a layout file.

215

12
Dialogs

Dialogs demand attention and input from the user. They are useful for presenting a choice or important
information. In this chapter, you will add a dialog in which users can change the date of a crime.
Pressing the date button in CrimeFragment will present this dialog on Lollipop (Figure 12.1).

Figure 12.1 A dialog for picking the date of a crime

The dialog in Figure 12.1 is an instance of AlertDialog, a subclass of Dialog. AlertDialog is the all-
purpose Dialog subclass that you will use most often.

When Lollipop was released, dialogs were given a visual makeover. AlertDialogs on Lollipop
automatically use this new style. On earlier versions of Android, AlertDialog will fall back to the
older style as seen on the left in Figure 12.2.

Chapter 12 Dialogs

216

Figure 12.2 Old vs new

Rather than displaying the crusty old dialog style, it would be nice to always show the new dialog
style, no matter which version of Android the user’s device is on. You can do this with the AppCompat
library.

The AppCompat library is a compatibility library provided by Google that back ports some features
of recent versions of Android to older devices. In this chapter, you will use the AppCompat library to
create a consistent dialog experience on all of your supported versions of Android. In Chapter 13 and
Chapter 20, you will use some of the other features of the AppCompat library.

The AppCompat Library
To use the AppCompat library, you must first add it as a dependency. Depending on how your project
was created, you may already have the AppCompat dependency.

Open the Project Structure window (File → Project Structure...), then select the app module and click
on the Dependencies tab. If you do not see the AppCompat library listed, add it by clicking the +
button and selecting the appcompat-v7 dependency from the list, as shown in Figure 12.3.

Creating a DialogFragment

217

Figure 12.3 Selecting the AppCompat dependency

The AppCompat library includes its own AlertDialog class that you will use. This version
of AlertDialog is very similar to the one included in the Android OS. The trick to using the
right one is to make sure that you import the correct version of AlertDialog. You will use
android.support.v7.app.AlertDialog.

Creating a DialogFragment
When using an AlertDialog, it is a good idea to wrap it in an instance of DialogFragment, a subclass
of Fragment. It is possible to display an AlertDialog without a DialogFragment, but it is not
recommended. Having the dialog managed by the FragmentManager gives you more options for
presenting the dialog.

In addition, a bare AlertDialog will vanish if the device is rotated. On the other hand, if the
AlertDialog is wrapped in a fragment, then the dialog will be re-created and put on screen after
rotation.

For CriminalIntent, you are going to create a DialogFragment subclass named DatePickerFragment.
Within DatePickerFragment, you will create and configure an instance of AlertDialog that displays a
DatePicker widget. DatePickerFragment will be hosted by CrimePagerActivity.

Figure 12.4 shows you an overview of these relationships.

Chapter 12 Dialogs

218

Figure 12.4 Object diagram for two fragments hosted by CrimePagerActivity

Your first tasks are:

• creating the DatePickerFragment class

• building an AlertDialog

• getting the dialog on screen via the FragmentManager

Later in the chapter, you will wire up the DatePicker and pass the necessary data between
CrimeFragment and DatePickerFragment.

Before you get started, add the string resource shown in Listing 12.1.

Listing 12.1 Adding string for dialog title (values/strings.xml)
<resources>

 ...
 <string name="crime_solved_label">Solved</string>
 <string name="date_picker_title">Date of crime:</string>

</resources>

Creating a DialogFragment

219

Create a new class named DatePickerFragment and make its superclass DialogFragment. Be sure to
choose the support library’s version of DialogFragment: android.support.v4.app.DialogFragment.

DialogFragment includes the following method:

 public Dialog onCreateDialog(Bundle savedInstanceState)

The FragmentManager of the hosting activity calls this method as part of putting the DialogFragment
on screen.

In DatePickerFragment.java, add an implementation of onCreateDialog(…) that builds an
AlertDialog with a title and one OK button. (You will add the DatePicker widget later.)

Be sure that the version of AlertDialog that you import is the AppCompat version:
android.support.v7.app.AlertDialog.

Listing 12.2 Creating a DialogFragment (DatePickerFragment.java)
public class DatePickerFragment extends DialogFragment {
 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 return new AlertDialog.Builder(getActivity())
 .setTitle(R.string.date_picker_title)
 .setPositiveButton(android.R.string.ok, null)
 .create();
 }
}

In this implementation, you use the AlertDialog.Builder class that provides a fluent interface for
constructing an AlertDialog instance.

First, you pass a Context into the AlertDialog.Builder constructor, which returns an instance of
AlertDialog.Builder.

Next, you call two AlertDialog.Builder methods to configure your dialog:

 public AlertDialog.Builder setTitle(int titleId)
 public AlertDialog.Builder setPositiveButton(int textId,
 DialogInterface.OnClickListener listener)

This setPositiveButton(…) method accepts a string resource and an object that implements
DialogInterface.OnClickListener. In Listing 12.2, you pass in an Android constant for OK and
null for the listener parameter. You will implement a listener later in the chapter.

(A positive button is what the user should press to accept what the dialog presents or to take the
dialog’s primary action. There are two other buttons that you can add to an AlertDialog: a negative
button and a neutral button. These designations determine the positions of the buttons in the dialog.)

Finally, you finish building the dialog with a call to AlertDialog.Builder.create(), which returns
the configured AlertDialog instance.

There is more that you can do with AlertDialog and AlertDialog.Builder, and the details are well
covered in the developer documentation. For now, let’s move on to the mechanics of getting your
dialog on screen.

Chapter 12 Dialogs

220

Showing a DialogFragment
Like all fragments, instances of DialogFragment are managed by the FragmentManager of the hosting
activity.

To get a DialogFragment added to the FragmentManager and put on screen, you can call the following
methods on the fragment instance:

 public void show(FragmentManager manager, String tag)
 public void show(FragmentTransaction transaction, String tag)

The string parameter uniquely identifies the DialogFragment in the FragmentManager’s list. Whether
you use the FragmentManager or FragmentTransaction version is up to you. If you pass in a
FragmentTransaction, you are responsible for creating and committing that transaction. If you pass in
a FragmentManager, a transaction will automatically be created and committed for you.

Here, you will pass in a FragmentManager.

In CrimeFragment, add a constant for the DatePickerFragment’s tag. Then, in onCreateView(…),
remove the code that disables the date button and set a View.OnClickListener that shows a
DatePickerFragment when the date button is pressed.

Listing 12.3 Showing your DialogFragment (CrimeFragment.java)
public class CrimeFragment extends Fragment {

 private static final String ARG_CRIME_ID = "crime_id";
 private static final String DIALOG_DATE = "DialogDate";

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...

 mDateButton = (Button) v.findViewById(R.id.crime_date);
 mDateButton.setText(mCrime.getDate().toString());
 mDateButton.setEnabled(false);
 mDateButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 FragmentManager manager = getFragmentManager();
 DatePickerFragment dialog = new DatePickerFragment();
 dialog.show(manager, DIALOG_DATE);
 }
 });

 mSolvedCheckBox = (CheckBox) v.findViewById(R.id.crime_solved);
 ...

 return v;
 }

 ...
}

Run CriminalIntent and press the date button to see the dialog (Figure 12.5).

Setting a dialog’s contents

221

Figure 12.5 An AlertDialog with a title and a button

Setting a dialog’s contents
Next, you are going to add a DatePicker widget to your AlertDialog using the following
AlertDialog.Builder method:

 public AlertDialog.Builder setView(View view)

This method configures the dialog to display the passed-in View object between the dialog’s title and its
button(s).

In the Project tool window, create a new layout resource file named dialog_date.xml and make its
root element DatePicker. This layout will consist of a single View object – a DatePicker – that you
will inflate and pass into setView(…).

Configure the DatePicker as shown in Figure 12.6.

Figure 12.6 DatePicker layout (layout/dialog_date.xml)

Chapter 12 Dialogs

222

In DatePickerFragment.onCreateDialog(…), inflate this view and then set it on the dialog.

Listing 12.4 Adding DatePicker to AlertDialog
(DatePickerFragment.java)
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
 View v = LayoutInflater.from(getActivity())
 .inflate(R.layout.dialog_date, null);

 return new AlertDialog.Builder(getActivity())
 .setView(v)
 .setTitle(R.string.date_picker_title)
 .setPositiveButton(android.R.string.ok, null)
 .create();
}

Run CriminalIntent. Press the date button to confirm that the dialog now presents a DatePicker. If you
are running Lollipop, you will see a calendar picker (Figure 12.7).

Figure 12.7 Lollipop DatePicker

The calendar picker in Figure 12.7 was introduced along with Material design. This version of the
DatePicker widget ignores the calendarViewShown attribute you set in your layout. If you are running
a previous version of Android, however, you will see the old spinner-based DatePicker version which
respects that attribute (Figure 12.8).

Setting a dialog’s contents

223

Figure 12.8 An AlertDialog with a DatePicker

Either version works fine. The newer one sure is pretty, though.

You may be wondering why you went to the trouble of defining and inflating a layout when you could
have created the DatePicker object in code, like this:

@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
 DatePicker datePicker = new DatePicker(getActivity());

 return new AlertDialog.Builder(getActivity())
 .setView(datePicker)
 ...
 .create();
}

Using a layout makes modifications easy if you change your mind about what the dialog should
present. For instance, what if you wanted a TimePicker next to the DatePicker in this dialog? If you
are already inflating a layout, you can simply update the layout file, and the new view will appear.

Also, notice that the selected date in the DatePicker is automatically preserved across rotation. (With
the dialog open, select a date other than the default and press Fn+Control+F12/Ctrl+F1 to see this in
action.) How does this happen? Remember that Views can save state across configuration changes,
but only if they have an ID attribute. When you created the DatePicker in dialog_date.xml you also
asked the build tools to generate a unique ID value for that DatePicker.

If you created the DatePicker in code, you would have to programmatically set an ID on the
DatePicker for its state saving to work.

Chapter 12 Dialogs

224

Your dialog is on screen and looks good. In the next section, you will wire it up to present the Crime’s
date and allow the user to change it.

Passing Data Between Two Fragments
You have passed data between two activities, and you have passed data between two fragment-based
activities. Now you need to pass data between two fragments that are hosted by the same activity –
CrimeFragment and DatePickerFragment (Figure 12.9).

Figure 12.9 Conversation between CrimeFragment and DatePickerFragment

To get the Crime’s date to DatePickerFragment, you are going to write a newInstance(Date) method
and make the Date an argument on the fragment.

To get the new date back to the CrimeFragment so that it can update the model layer and its own
view, you will package up the date as an extra on an Intent and pass this Intent in a call to
CrimeFragment.onActivityResult(…), as shown in Figure 12.10.

Figure 12.10 Sequence of events between CrimeFragment and
DatePickerFragment

It may seem strange to call Fragment.onActivityResult(…), given that the hosting activity receives
no call to Activity.onActivityResult(…) in this interaction. However, using onActivityResult(…)
to pass data back from one fragment to another not only works, but it also offers some flexibility in
how you present a dialog fragment, as you will see later in the chapter.

Passing data to DatePickerFragment

225

Passing data to DatePickerFragment
To get data into your DatePickerFragment, you are going to stash the date in DatePickerFragment’s
arguments bundle, where the DatePickerFragment can access it.

Creating and setting fragment arguments is typically done in a newInstance() method that replaces the
fragment constructor. In DatePickerFragment.java, add a newInstance(Date) method.

Listing 12.5 Adding a newInstance(Date) method
(DatePickerFragment.java)
public class DatePickerFragment extends DialogFragment {

 private static final String ARG_DATE = "date";

 private DatePicker mDatePicker;

 public static DatePickerFragment newInstance(Date date) {
 Bundle args = new Bundle();
 args.putSerializable(ARG_DATE, date);

 DatePickerFragment fragment = new DatePickerFragment();
 fragment.setArguments(args);
 return fragment;
 }

 ...
}

In CrimeFragment, remove the call to the DatePickerFragment constructor and replace it with a call to
DatePickerFragment.newInstance(Date).

Listing 12.6 Adding call to newInstance() (CrimeFragment.java)
@Override
public View onCreateView(LayoutInflater inflater,
 ViewGroup parent, Bundle savedInstanceState) {
 ...

 mDateButton = (Button)v.findViewById(R.id.crime_date);
 mDateButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 FragmentManager manager = getActivity()
 .getSupportFragmentManager();
 DatePickerFragment dialog = new DatePickerFragment();
 DatePickerFragment dialog = DatePickerFragment
 .newInstance(mCrime.getDate());
 dialog.show(manager, DIALOG_DATE);
 }
 });

 return v;
}

Chapter 12 Dialogs

226

DatePickerFragment needs to initialize the DatePicker using the information held in the Date.
However, initializing the DatePicker requires integers for the month, day, and year. Date is more of a
timestamp and cannot provide integers like this directly.

To get the integers you need, you must create a Calendar object and use the Date to configure the
Calendar. Then you can retrieve the required information from the Calendar.

In onCreateDialog(…), get the Date from the arguments and use it and a Calendar to initialize the
DatePicker.

Listing 12.7 Extracting the date and initializing DatePicker
(DatePickerFragment.java)
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
 Date date = (Date) getArguments().getSerializable(ARG_DATE);

 Calendar calendar = Calendar.getInstance();
 calendar.setTime(date);
 int year = calendar.get(Calendar.YEAR);
 int month = calendar.get(Calendar.MONTH);
 int day = calendar.get(Calendar.DAY_OF_MONTH);

 View v = LayoutInflater.from(getActivity())
 .inflate(R.layout.dialog_date, null);

 mDatePicker = (DatePicker) v.findViewById(R.id.dialog_date_date_picker);
 mDatePicker.init(year, month, day, null);

 return new AlertDialog.Builder(getActivity())
 .setView(v)
 .setTitle(R.string.date_picker_title)
 .setPositiveButton(android.R.string.ok, null)
 .create();
}

Now CrimeFragment is successfully telling DatePickerFragment what date to show. You can run
CriminalIntent and make sure that everything works as before.

Returning data to CrimeFragment
To have CrimeFragment receive the date back from DatePickerFragment, you need a way to keep
track of the relationship between the two fragments.

With activities, you call startActivityForResult(…), and the ActivityManager keeps track of the
parent-child activity relationship. When the child activity dies, the ActivityManager knows which
activity should receive the result.

Setting a target fragment
You can create a similar connection by making CrimeFragment the target fragment of
DatePickerFragment. This connection is automatically reestablished after both CrimeFragment and

Returning data to CrimeFragment

227

DatePickerFragment are destroyed and re-created by the OS. To create this relationship, you call the
following Fragment method:

 public void setTargetFragment(Fragment fragment, int requestCode)

This method accepts the fragment that will be the target and a request code just like the one you send
in startActivityForResult(…). The target fragment can use the request code later to identify which
fragment is reporting back.

The FragmentManager keeps track of the target fragment and request code. You can retrieve them by
calling getTargetFragment() and getTargetRequestCode() on the fragment that has set the target.

In CrimeFragment.java, create a constant for the request code and then make CrimeFragment the
target fragment of the DatePickerFragment instance.

Listing 12.8 Setting target fragment (CrimeFragment.java)
public class CrimeFragment extends Fragment {

 private static final String ARG_CRIME_ID = "crime_id";
 private static final String DIALOG_DATE = "DialogDate";

 private static final int REQUEST_DATE = 0;

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup parent,
 Bundle savedInstanceState) {
 ...

 mDateButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 FragmentManager manager = getFragmentManager();
 DatePickerFragment dialog = DatePickerFragment
 .newInstance(mCrime.getDate());
 dialog.setTargetFragment(CrimeFragment.this, REQUEST_DATE);
 dialog.show(manager, DIALOG_DATE);
 }
 });

 return v;
 }

 ...
}

Sending data to the target fragment
Now that you have a connection between CrimeFragment and DatePickerFragment, you need to send
the date back to CrimeFragment. You are going to put the date on an Intent as an extra.

What method will you use to send this intent to the target fragment? Oddly enough, you will have
DatePickerFragment pass it into CrimeFragment.onActivityResult(int, int, Intent).

Activity.onActivityResult(…) is the method that the ActivityManager calls on the
parent activity after the child activity dies. When dealing with activities, you do not call

Chapter 12 Dialogs

228

Activity.onActivityResult(…) yourself; that is the ActivityManager’s job. After the activity has
received the call, the activity’s FragmentManager then calls Fragment.onActivityResult(…) on the
appropriate fragment.

When dealing with two fragments hosted by the same activity, you can borrow
Fragment.onActivityResult(…) and call it directly on the target fragment to pass back data. It has
exactly what you need:

• a request code that matches the code passed into setTargetFragment(…) to tell the target what is
returning the result

• a result code to determine what action to take

• an Intent that can have extra data

In DatePickerFragment, create a private method that creates an intent, puts the date on it as an extra,
and then calls CrimeFragment.onActivityResult(…).

Listing 12.9 Calling back to your target (DatePickerFragment.java)

public class DatePickerFragment extends DialogFragment {

 public static final String EXTRA_DATE =
 "com.bignerdranch.android.criminalintent.date";

 private static final String ARG_DATE = "date";

 ...

 @Override
 public Dialog onCreateDialog(Bundle savedInstanceState) {
 ...
 }

 private void sendResult(int resultCode, Date date) {
 if (getTargetFragment() == null) {
 return;
 }

 Intent intent = new Intent();
 intent.putExtra(EXTRA_DATE, date);

 getTargetFragment()
 .onActivityResult(getTargetRequestCode(), resultCode, intent);
 }
}

Now it is time to make use of this new sendResult method. When the user presses the positive
button in the dialog, you want to retrieve the date from the DatePicker and send the result back to
CrimeFragment. In onCreateDialog(…), replace the null parameter of setPositiveButton(…) with
an implementation of DialogInterface.OnClickListener that retrieves the selected date and calls
sendResult.

Returning data to CrimeFragment

229

Listing 12.10 Are you OK? (DatePickerFragment.java)
@Override
public Dialog onCreateDialog(Bundle savedInstanceState) {
 ...

 return new AlertDialog.Builder(getActivity())
 .setView(v)
 .setTitle(R.string.date_picker_title)
 .setPositiveButton(android.R.string.ok, null);
 .setPositiveButton(android.R.string.ok,
 new DialogInterface.OnClickListener() {
 @Override
 public void onClick(DialogInterface dialog, int which) {
 int year = mDatePicker.getYear();
 int month = mDatePicker.getMonth();
 int day = mDatePicker.getDayOfMonth();
 Date date = new GregorianCalendar(year, month, day).getTime();
 sendResult(Activity.RESULT_OK, date);
 }
 })
 .create();
}

In CrimeFragment, override onActivityResult(…) to retrieve the extra, set the date on the Crime, and
refresh the text of the date button.

Listing 12.11 Responding to the dialog (CrimeFragment.java)
public class CrimeFragment extends Fragment {

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 Date date = (Date) data
 .getSerializableExtra(DatePickerFragment.EXTRA_DATE);
 mCrime.setDate(date);
 mDateButton.setText(mCrime.getDate().toString());
 }
 }
}

The code that sets the button’s text is identical to code you call in onCreateView(…). To avoid setting
the text in two places, encapsulate this code in a private updateDate() method and then call it in
onCreateView(…) and onActivityResult(…).

Chapter 12 Dialogs

230

You could do this by hand or you can have Android Studio do it for you. Highlight the entire
line of code that sets mDateButton’s text. Right-click and select Refactor → Extract → Method...
(Figure 12.11).

Figure 12.11 Extracting a method with Android Studio

Make the method private and name it updateDate. Click OK and Android Studio will tell you that
it has found one other place where this line of code was used. Click Yes to allow Android Studio to
update the other reference, then verify that your code is now extracted to a single updateDate method
as shown in Listing 12.12.

Returning data to CrimeFragment

231

Listing 12.12 Cleaning up with updateDate() (CrimeFragment.java)

public class CrimeFragment extends Fragment {

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_crime, container, false);

 ...

 mDateButton = (Button) v.findViewById(R.id.crime_date);
 updateDate();
 ...
 }

 @Override
 public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 Date date = (Date) data
 .getSerializableExtra(DatePickerFragment.EXTRA_DATE);
 mCrime.setDate(date);
 updateDate();
 }
 }

 private void updateDate() {
 mDateButton.setText(mCrime.getDate().toString());
 }
}

Now the circle is complete. The dates must flow. He who controls the dates controls time itself.
Run CriminalIntent to ensure that you can, in fact, control the dates. Change the date of a Crime and
confirm that the new date appears in CrimeFragment’s view. Then return to the list of crimes and check
the Crime’s date to ensure that the model layer was updated.

More flexibility in presenting a DialogFragment

Using onActivityResult(…) to send data back to a target fragment is especially nice when you are
writing an app that needs lots of input from the user and more room to ask for it – and you want the
app working well on phones and tablets.

On a phone, you do not have much screen real estate, so you would likely use an activity with a full-
screen fragment to ask the user for input. This child activity would be started by a fragment of the
parent activity calling startActivityForResult(…). On the death of the child activity, the parent
activity would receive a call to onActivityResult(…), which would be forwarded to the fragment that
started the child activity (Figure 12.12).

Chapter 12 Dialogs

232

Figure 12.12 Inter-activity communication on phones

On a tablet, where you have plenty of room, it is often better to present a DialogFragment to the user
to get the same input. In this case, you set the target fragment and call show(…) on the dialog fragment.
When dismissed, the dialog fragment calls onActivityResult(…) on its target (Figure 12.13).

Challenge: More Dialogs

233

Figure 12.13 Inter-fragment communication on tablets

The fragment’s onActivityResult(…) will always be called, whether the fragment started an activity
or showed a dialog. So you can use the same code for different presentations.

When setting things up to use the same code for a full-screen fragment or a dialog fragment, you
can override DialogFragment.onCreateView(…) instead of onCreateDialog(…) to prepare for both
presentations.

Challenge: More Dialogs
Write another dialog fragment named TimePickerFragment that allows the user to select what time
of day the crime occurred using a TimePicker widget. Add another button to CrimeFragment that will
display a TimePickerFragment.

Challenge: A Responsive DialogFragment
For a more involved challenge, modify the presentation of the DatePickerFragment.

The first stage of this challenge is to supply the DatePickerFragment’s view by overriding
onCreateView instead of onCreateDialog. When setting up a DialogFragment in this way, your dialog

Chapter 12 Dialogs

234

will not be presented with the built-in title area and button area on the top and bottom of the dialog.
You will need to create your own OK button in dialog_date.xml.

Once DatePickerFragment’s view is created in onCreateView, you can present DatePickerFragment
as a dialog or embedded in an activity. For the second stage of this challenge, create a new subclass of
SingleFragmentActivity and host DatePickerFragment in that activity.

When presenting DatePickerFragment in this way, you will use the startActivityForResult
mechanism to pass the date back to CrimeFragment. In DatePickerFragment, if the target fragment
does not exist, use the setResult(int, intent) method on the hosting activity to send the date back
to the fragment.

For the final step of this challenge, modify CriminalIntent to present the DatePickerFragment
as a full-screen activity when running on a phone. When running on a tablet, present the
DatePickerFragment as a dialog. You may need to read ahead in Chapter 17 for details on how to
optimize your app for multiple screen sizes.

235

13
The Toolbar

A key component of any well-designed Android app is the toolbar. The toolbar includes actions that
the user can take, a new mechanism for navigation, and also provides design consistency and branding.

In this chapter, you will create a menu for CriminalIntent that will be displayed in the toolbar. This
menu will have an action item that lets users add a new crime. You will also enable the Up button in the
toolbar (Figure 13.1).

Figure 13.1 CriminalIntent’s toolbar

AppCompat
The toolbar component is a new addition to Android as of Android 5.0 (Lollipop). Prior to Lollipop,
the action bar was the recommended component for navigation and actions within an app.

The action bar and toolbar are very similar components. The toolbar builds on top of the action bar. It
has a tweaked user interface and is more flexible in the ways that you can use it.

Chapter 13 The Toolbar

236

CriminalIntent supports API 16+, which means that you cannot use the native toolbar on all supported
versions of Android. Luckily, the toolbar has been back-ported to the AppCompat library. The
AppCompat library allows you to provide a Lollipop’d toolbar on any version of Android back to API
7 (Android 2.1).

Using the AppCompat library
In Chapter 12 you added the AppCompat dependency to Criminal Intent. There are a few additional
steps to fully integrate with the AppCompat library. Some of these steps may already be complete
depending on how your project was created.

The following adjustments are required to use the AppCompat library:

• add the AppCompat dependency

• use one of the AppCompat themes

• ensure that all activities are a subclass of AppCompatActivity

Updating the theme
Since you already have the AppCompat dependency, the next step is to ensure that you are using one of
AppCompat’s themes. The AppCompat library comes with three themes:

• Theme.AppCompat – a dark theme

• Theme.AppCompat.Light – a light theme

• Theme.AppCompat.Light.DarkActionBar – a light theme with a dark toolbar

The theme for your application is specified at the application level and optionally per activity in your
AndroidManifest.xml. Open AndroidManifest.xml and look at the application tag. Notice the
android:theme attribute. You should see something similar to Listing 13.1.

Listing 13.1 The stock manifest (AndroidManifest.xml)

...

<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >

...

The AppTheme is defined in res/values/styles.xml. Depending on how your initial project was
created, you may have multiple versions of AppTheme in multiple styles.xml files. These files are
resource-qualified for different versions of Android. When using the AppCompat library, there is

Using the AppCompat library

237

no need to switch themes based on the version of Android, because you will provide a consistent
experience on all platforms.

If you have multiple versions of the styles.xml file, delete the extra files. You should have a single
styles.xml file that is located at res/values/styles.xml (Figure 13.2).

Figure 13.2 An extra styles.xml

After cleaning up any extra files, open res/values/styles.xml and ensure that the parent theme of
your AppTheme matches the shaded portion below.

Listing 13.2 Using an AppCompat theme (res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 </style>

</resources>

You will learn much more about styles and themes in Chapter 20.

Using AppCompatActivity
The final step in your AppCompat conversion is to change all of the activities in CriminalIntent to be
subclasses of AppCompatActivity. Up until this point, all of your activities have been a subclass of
FragmentActivity, which allows you to use the support library’s fragment implementation.

AppCompatActivity itself is a subclass of FragmentActivity. This means that you can still use
support fragments in AppCompatActivity, which makes this a simple change in CriminalIntent.

Update SingleFragmentActivity and CrimePagerActivity to be subclasses of AppCompatActivity.

(Why not CrimeListActivity? Because it is a subclass of SingleFragmentActivity.)

Listing 13.3 Converting to AppCompatActivity
(SingleFragmentActivity.java)
public abstract class SingleFragmentActivity extends FragmentActivity {
public abstract class SingleFragmentActivity extends AppCompatActivity {
 ...
}

Listing 13.4 Converting to AppCompatActivity (CrimePagerActivity.java)
public class CrimePagerActivity extends FragmentActivity AppCompatActivity {
 ...
}

Chapter 13 The Toolbar

238

Run CriminalIntent and ensure that the app does not crash. You should see something similar to
Figure 13.3.

Figure 13.3 The new Toolbar

Now that CriminalIntent uses the AppCompat toolbar, you can add actions to the toolbar.

Menus
The top-right area of the toolbar is reserved for the toolbar’s menu. The menu consists of action items
(sometimes also referred to as menu items), which can perform an action on the current screen or to the
app as a whole. You will add an action item to allow the user to create a new crime.

Your menu will require a few string resources. Add them to strings.xml (Listing 13.5) now. These
strings may seem mysterious at this point, but it is good to get them taken care of. When you need
them later, they will already be in place, and you will not have to stop what you are doing to add them.

Listing 13.5 Adding strings for menus (res/values/strings.xml)
<resources>
 ...
 <string name="date_picker_title">Date of crime:</string>
 <string name="new_crime">New Crime</string>
 <string name="show_subtitle">Show Subtitle</string>
 <string name="hide_subtitle">Hide Subtitle</string>
 <string name="subtitle_format">%1$s crimes</string>
</resources>

Defining a menu in XML

239

Defining a menu in XML
Menus are a type of resource similar to layouts. You create an XML description of a menu and place
the file in the res/menu directory of your project. Android generates a resource ID for the menu file
that you then use to inflate the menu in code.

In the project tool window, right-click on the res directory and select New → Android resource file.
Change the Resource type to Menu, name the menu resource fragment_crime_list, and click OK.
Android Studio will generate res/menu/fragment_crime_list.xml (Figure 13.4).

Figure 13.4 Creating a menu file

In the new fragment_crime_list.xml file, add an item element as shown in Listing 13.6.

Listing 13.6 Creating a menu resource for CrimeListFragment
(fragment_crime_list.xml)
<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/menu_item_new_crime"
 android:icon="@android:drawable/ic_menu_add"
 android:title="@string/new_crime"
 app:showAsAction="ifRoom|withText"/>
</menu>

The showAsAction attribute refers to whether the item will appear in the toolbar itself or in the
overflow menu. You have piped together two values, ifRoom and withText, so the item’s icon and text

Chapter 13 The Toolbar

240

will appear in the toolbar if there is room. If there is room for the icon but not the text, then only the
icon will be visible. If there is no room for either, then the item will be relegated to the overflow menu.

The overflow menu is accessed by the three dots on the far-right side of the toolbar, as shown in
Figure 13.5.

Figure 13.5 Overflow menu in the toolbar

Other options for showAsAction include always and never. Using always is not recommended; it is
better to use ifRoom and let the OS decide. Using never is a good choice for less-common actions.
In general, you should only put action items that users will use frequently in the toolbar to avoid
cluttering the screen.

The app namespace
Notice that fragment_crime_list.xml uses the xmlns tag to define a new namespace, app, which is
separate from the usual android namespace declaration. This app namespace is then used to specify
the showAsAction attribute.

This unusual namespace declaration exists for legacy reasons with the AppCompat library. The
action bar APIs were first added in Android 3.0. Originally, the AppCompat library was created to
bundle a compatibility version of the action bar into apps supporting earlier versions of Android, so
that the action bar would exist on any device, even those that did not support the native action bar.
On devices running Android 2.3 or older, menus and their corresponding XML did exist, but the
android:showAsAction attribute was only added with the release of the action bar.

Defining a menu in XML

241

The AppCompat library defines its own custom showAsAction attribute and does not look for the
native showAsAction attribute.

Using Android Asset Studio

In the android:icon attribute, the value @android:drawable/ic_menu_add references a system icon. A
system icon is one that is found on the device rather than in your project’s resources.

In a prototype, referencing a system icon works fine. However, in an app that will be released, it is
better to be sure of what your user will see instead of leaving it up to each device. System icons can
change drastically across devices and OS versions, and some devices might have system icons that do
not fit with the rest of your app’s design.

One alternative is to create your own icons from scratch. You will need to prepare versions for each
screen density and possibly for other device configurations. For more information, visit Android’s Icon
Design Guidelines at http://developer.android.com/design/style/iconography.html.

A second alternative is to find system icons that meet your app’s needs and copy them directly into
your project’s drawable resources.

System icons can be found in your Android SDK directory. On a Mac, this is typically /Users/user/
Library/Android/sdk. On Windows, the default location is \Users\user\sdk. You can also verify
your SDK location by opening the Project Structure window and selecting the SDK Location option.

In your SDK directory, you will find Android’s resources, including ic_menu_add. These resources are
found in /platforms/android-21/data/res where 21 represents the API level of the Android version.

The third and easiest alternative is to use the Android Asset Studio, which is included in Android
Studio. The Asset Studio allows you to create and customize an image to use in the Toolbar.

Right-click on your drawable directory in the Project Tool window and select New → Image Asset to
bring up the Asset Studio (Figure 13.6).

Chapter 13 The Toolbar

242

Figure 13.6 Asset Studio

Here, you can generate a few types of icons. In the Asset Type: field, choose Action Bar and Tab Icons.
Next, change the Foreground option to Clipart and select Choose to pick your clipart.

In the clipart window, choose the image that looks like a plus sign (Figure 13.7).

Figure 13.7 Clipart options – Where is that plus sign?

Defining a menu in XML

243

Finally, name your asset: ic_menu_add and select next (Figure 13.8).

Figure 13.8 Asset Studio’s generated files

Next, the Asset Studio will ask you which module and directory to add the image to. Stick to the
defaults to add this image to your app module. This window also provides a preview of the work that
Asset Studio will do. Notice that an mdpi, hdpi, xhdpi, and xxhdpi icon will be created for you. Jim-
dandy.

Select Finish to generate the images. Then, in your layout file, modify your icon attribute to reference
the new resource in your own project.

Listing 13.7 Referencing a local resource (menu/fragment_crime_list.xml)
<item
 android:id="@+id/menu_item_new_crime"
 android:icon="@android:drawable/ic_menu_add"
 android:icon="@drawable/ic_menu_add"
 android:title="@string/new_crime"
 app:showAsAction="ifRoom|withText"/>

Chapter 13 The Toolbar

244

Creating the menu
In code, menus are managed by callbacks from the Activity class. When the menu is needed, Android
calls the Activity method onCreateOptionsMenu(Menu).

However, your design calls for code to be implemented in a fragment, not an activity. Fragment comes
with its own set of menu callbacks, which you will implement in CrimeListFragment. The methods for
creating the menu and responding to the selection of an action item are:

 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater)
 public boolean onOptionsItemSelected(MenuItem item)

In CrimeListFragment.java, override onCreateOptionsMenu(Menu, MenuInflater) to inflate the
menu defined in fragment_crime_list.xml.

Listing 13.8 Inflating a menu resource (CrimeListFragment.java)

@Override
public void onResume() {
 super.onResume();
 updateUI();
}

@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_crime_list, menu);
}

Within this method, you call MenuInflater.inflate(int, Menu) and pass in the resource ID of your
menu file. This populates the Menu instance with the items defined in your file.

Notice that you call through to the superclass implementation of onCreateOptionsMenu(…). This
is not required, but we recommend calling through as a matter of convention. That way, any menu
functionality defined by the superclass will still work. However, it is only a convention – the base
Fragment implementation of this method does nothing.

The FragmentManager is responsible for calling Fragment.onCreateOptionsMenu(Menu,
MenuInflater) when the activity receives its onCreateOptionsMenu(…) callback from the
OS. You must explicitly tell the FragmentManager that your fragment should receive a call to
onCreateOptionsMenu(…). You do this by calling the following method:

 public void setHasOptionsMenu(boolean hasMenu)

Define CrimeListFragment.onCreate(…) and let the FragmentManager know that
CrimeListFragment needs to receive menu callbacks.

Creating the menu

245

Listing 13.9 Receiving menu callbacks (CrimeListFragment.java)

...

private RecyclerView mCrimeRecyclerView;
private CrimeAdapter mAdapter;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);
}

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
...

You can run CriminalIntent now to see your menu (Figure 13.9).

Figure 13.9 Icon for the add crime action item directly in the toolbar

Where is the action item’s text? Most phones have enough room only for the icon in portrait
orientation. You can long-press an icon in the toolbar to reveal its title (Figure 13.10).

Chapter 13 The Toolbar

246

Figure 13.10 Long-pressing an icon in the toolbar shows the title

In landscape orientation, there is room in the toolbar for the icon and the text (Figure 13.11).

Figure 13.11 Icon and text in the toolbar

Responding to menu selections
To respond to the user pressing the New Crime action item, you need a way to add a new Crime to your
list of crimes. In CrimeLab.java, add the following method that adds a Crime to the list.

Responding to menu selections

247

Listing 13.10 Adding a new crime (CrimeLab.java)

 ...

 public void addCrime(Crime c) {
 mCrimes.add(c);
 }

 public List<Crime> getCrimes() {
 return mCrimes;
 }

 ...

In this brave new world where you will be able to add crimes yourself, the 100 programmatically
generated crimes are no longer necessary. Remove the code that generates these crimes from
CrimeLab.java.

Listing 13.11 Goodbye, random crimes! (CrimeLab.java)

private CrimeLab(Context context) {
 mCrimes = new ArrayList<>();
 for (int i = 0; i < 100; i++) {
 Crime crime = new Crime();
 crime.setTitle("Crime #" + i);
 crime.setSolved(i % 2 == 0);
 mCrimes.add(crime);
 }
}

When the user presses an action item, your fragment receives a callback to the method
onOptionsItemSelected(MenuItem). This method receives an instance of MenuItem that describes the
user’s selection.

Although your menu only contains one action item, menus often have more than one. You can
determine which action item has been selected by checking the ID of the MenuItem and then respond
appropriately. This ID corresponds to the ID you assigned to the MenuItem in your menu file.

In CrimeListFragment.java, implement onOptionsItemSelected(MenuItem) to respond to selection
of the MenuItem. You will create a new Crime, add it to CrimeLab, and then start an instance of
CrimePagerActivity to edit the new Crime.

Chapter 13 The Toolbar

248

Listing 13.12 Responding to menu selection (CrimeListFragment.java)
@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_crime_list, menu);
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_new_crime:
 Crime crime = new Crime();
 CrimeLab.get(getActivity()).addCrime(crime);
 Intent intent = CrimePagerActivity
 .newIntent(getActivity(), crime.getId());
 startActivity(intent);
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Notice that this method returns a boolean value. Once you have handled the MenuItem, you should
return true to indicate that no further processing is necessary. The default case calls the superclass
implementation if the item ID is not in your implementation.

Run CriminalIntent and try out your new menu. Add a few crimes and edit them afterward. (The empty
list that you see before you add any crimes can be disconcerting. At the end of this chapter there is a
challenge to present a helpful clue when the list is empty.)

Enabling Hierarchical Navigation
So far, CriminalIntent relies heavily on the Back button to navigate around the app. Using the Back
button is temporal navigation. It takes you to where you were last. Hierarchical navigation, on the
other hand, takes you up the app hierarchy. (It is sometimes called ancestral navigation.)

In hierarchical navigation, the user navigates up by pressing the Up button on the left side of the
toolbar. Prior to Jelly Bean (API level 16), developers had to manually show the Up button and
manually handle presses on the Up button. As of Jelly Bean, there is a much easier way to add this
functionality.

Enable hierarchical navigation in CriminalIntent by adding a parentActivityName attribute in the
AndroidManifest.xml file.

Listing 13.13 Turn on the Up button (AndroidManifest.xml)

...
<activity
 android:name=".CrimePagerActivity"
 android:label="@string/app_name"
 android:parentActivityName=".CrimeListActivity">
</activity>
...

How hierarchical navigation works

249

Run the app and create a new crime. Notice the Up button, as shown in Figure 13.12. Pressing the Up
button will take you up one level in CriminalIntent’s hierarchy to CrimeListActivity.

Figure 13.12 CrimePagerActivity’s Up button

How hierarchical navigation works
In CriminalIntent, navigating with the Back button and navigating with the Up button perform the
same task. Pressing either of those from within the CrimePagerActivity will take the user back to the
CrimeListActivity. Even though they accomplish the same result, behind the scenes they are doing
very different things. This is important because, depending on the application, navigating up may pop
the user back multiple activities in the back stack.

When the user navigates up from CrimeActivity, an intent like the following is created:

 Intent intent = new Intent(this, CrimeListActivity.class);
 intent.addFlags(Intent.FLAG_ACTIVITY_CLEAR_TOP);
 startActivity(intent);
 finish();

FLAG_ACTIVITY_CLEAR_TOP tells Android to look for an existing instance of the activity in the stack,
and if there is one, pop every other activity off the stack so that the activity being started will be top-
most (Figure 13.13).

Figure 13.13 FLAG_ACTIVITY_CLEAR_TOP at work

An Alternative Action Item
In this section, you will use what you have learned about menu resources to add an action item that lets
users show and hide the subtitle of CrimeListActivity’s toolbar.

In res/menu/fragment_crime_list.xml, add an action item that will read Show Subtitle and will
appear in the toolbar if there is room.

Chapter 13 The Toolbar

250

Listing 13.14 Adding Show Subtitle action item (res/menu/
fragment_crime_list.xml)

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">
 <item
 android:id="@+id/menu_item_new_crime"
 android:icon="@android:drawable/ic_menu_add"
 android:title="@string/new_crime"
 app:showAsAction="ifRoom|withText"/>

 <item
 android:id="@+id/menu_item_show_subtitle"
 android:title="@string/show_subtitle"
 app:showAsAction="ifRoom"/>
</menu>

The subtitle will display the number of crimes in CriminalIntent. Create a new method,
updateSubtitle(), that will set the subtitle of the toolbar.

Listing 13.15 Setting the toolbar’s subtitle (CrimeListFragment.java)

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 ...
}

private void updateSubtitle() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 int crimeCount = crimeLab.getCrimes().size();
 String subtitle = getString(R.string.subtitle_format, crimeCount);

 AppCompatActivity activity = (AppCompatActivity) getActivity();
 activity.getSupportActionBar().setSubtitle(subtitle);
}

updateSubtitle first generates the subtitle string using the getString(int resId, Object…
formatArgs) method, which accepts replacement values for the placeholders in the string resource.

Next, the activity that is hosting the CrimeListFragment is cast to an AppCompatActivity.
CriminalIntent uses the AppCompat library, so all activities will be a subclass of AppCompatActivity,
which allows you to access the toolbar. For legacy reasons, the toolbar is still referred to as “action
bar” in many places within the AppCompat library.

Now that updateSubtitle is defined, call the method when the user presses on the new action item.

Toggling the action item title

251

Listing 13.16 Responding to Show Subtitle action item
(CrimeListFragment.java)

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_new_crime:
 ...
 case R.id.menu_item_show_subtitle:
 updateSubtitle();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Run CriminalIntent, press the Show Subtitle item, and confirm that you can see the number of crimes
in the subtitle.

Toggling the action item title
Now the subtitle is visible, but the action item still reads Show Subtitle. It would be better if the action
item toggled its title and function to show or hide the subtitle.

When onOptionsItemSelected(MenuItem) is called, you are given the MenuItem that the user pressed
as a parameter. You could update the text of the Show Subtitle item in this method, but the subtitle
change would be lost as you rotate the device and the toolbar is re-created.

A better solution is to update the Show Subtitle MenuItem in onCreateOptionsMenu(…) and trigger a
re-creation of the toolbar when the user presses on the subtitle item. This allows you to share the code
for updating the action item in the case that the user selects an action item or the toolbar is re-created.

First, add a member variable to keep track of the subtitle visibility.

Listing 13.17 Keeping subtitle visibility state (CrimeListFragment.java)

public class CrimeListFragment extends Fragment {

 private RecyclerView mCrimeRecyclerView;
 private CrimeAdapter mAdapter;
 private boolean mSubtitleVisible;

 ...

Next, modify the subtitle in onCreateOptionsMenu(…) and trigger a re-creation of the action items
when the user presses on the Show Subtitle action item.

Chapter 13 The Toolbar

252

Listing 13.18 Updating a MenuItem (CrimeListFragment.java)
@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_crime_list, menu);

 MenuItem subtitleItem = menu.findItem(R.id.menu_item_show_subtitle);
 if (mSubtitleVisible) {
 subtitleItem.setTitle(R.string.hide_subtitle);
 } else {
 subtitleItem.setTitle(R.string.show_subtitle);
 }
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_new_crime:
 ...
 case R.id.menu_item_show_subtitle:
 mSubtitleVisible = !mSubtitleVisible;
 getActivity().invalidateOptionsMenu();
 updateSubtitle();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Finally, respect the mSubtitleVisible member variable when showing or hiding the subtitle in the
toolbar.

Listing 13.19 Showing or hiding the subtitle (CrimeListFragment.java)
private void updateSubtitle() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 int crimeCount = crimeLab.getCrimes().size();
 String subtitle = getString(R.string.subtitle_format, crimeCount);

 if (!mSubtitleVisible) {
 subtitle = null;
 }

 AppCompatActivity activity = (AppCompatActivity) getActivity();
 activity.getSupportActionBar().setSubtitle(subtitle);
}

Run CriminalIntent and modify the subtitle visibility in the toolbar. Notice that the action item text
reflects the existence of the subtitle.

“Just one more thing...”
Programming in Android is often like being questioned by the TV detective Columbo. You think you
have the angles covered and are home free. But Android always turns at the door and says, “Just one
more thing...”

“Just one more thing...”

253

Here, there are actually two more things. First, when creating a new crime and then returning to
CrimeListActivity with the Back button, the number of crimes in the subtitle will not update to
reflect the new number of crimes. Second, the visibility of the subtitle is lost across rotation.

Tackle the update issue first. The solution to this problem is to update the subtitle text when returning
to CrimeListActivity. Trigger a call to updateSubtitle in onResume. Your updateUI method is
already called in onResume and onCreate. Add a call to updateSubtitle to the updateUI method.

Listing 13.20 Showing the most recent state (CrimeListFragment.java)

private void updateUI() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 List<Crime> crimes = crimeLab.getCrimes();

 if (mAdapter == null) {
 mAdapter = new CrimeAdapter(crimes);
 mCrimeRecyclerView.setAdapter(mAdapter);
 } else {
 mAdapter.notifyDataSetChanged();
 }

 updateSubtitle();
}

Run CriminalIntent, show the subtitle, create a new crime, and press the Back button on the device to
return to CrimeListActivity. The number of crimes in the toolbar will be correct.

Now repeat these steps, but instead of using the Back button use the Up button. The visibility of the
subtitle will be reset. Why does this happen?

An unfortunate side effect of the way hierarchical navigation is implemented in Android is that the
activity that you navigate up to will be completely re-created from scratch. This means that any
instance variables will be lost and it also means that any saved instance state will be lost as well. This
parent activity is seen as a completely new activity.

There is not an easy way to ensure that the subtitle stays visible when navigating up. One option
is to override the mechanism that navigates up. In CriminalIntent, you could call finish on the
CrimePagerActivity to pop back to the previous activity. This would work perfectly well in
CriminalIntent but would not work in apps with a more realistic hierarchy, as this would only pop back
one activity.

Another option is to pass information about the subtitle visibility as an extra to CrimePagerActivity
when it is started. Then, override the getParentActivityIntent() method in CrimePagerActivity
to add an extra to the intent that is used to re-create the CrimeListActivity. This solution requires
CrimePagerActivity to know the details of how its parent works.

Both of these solutions are less than ideal, and there is not a great alternative.

Now that the subtitle always displays the correct number of crimes, solve the rotation issue. To fix this
problem, save the mSubtitleVisible instance variable across rotation with the saved instance state
mechanism.

Chapter 13 The Toolbar

254

Listing 13.21 Saving subtitle visibility (CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 private static final String SAVED_SUBTITLE_VISIBLE = "subtitle";

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...

 if (savedInstanceState != null) {
 mSubtitleVisible = savedInstanceState.getBoolean(SAVED_SUBTITLE_VISIBLE);
 }

 updateUI();

 return view;
 }

 @Override
 public void onResume() {
 ...
 }

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putBoolean(SAVED_SUBTITLE_VISIBLE, mSubtitleVisible);
 }
}

Run CriminalIntent. Show the subtitle and then rotate. The subtitle should appear as expected in the re-
created view.

For the More Curious: Toolbar vs Action Bar
What is the difference between the toolbar and the action bar?

The most obvious difference between the two is the updated visual design of the toolbar. The toolbar
no longer includes an icon on the left side and decreases some of the spacing between the action items
on the right side. Another major visual change is the Up button. In the action bar, this button was much
more subtle and was just an accessory next to the icon in the action bar.

Aside from the visual differences, the main goal of the toolbar is to be more flexible than the action
bar. The action bar has many constraints. It will always appear at the top of the screen. There can only
be one action bar. The size of the action bar is fixed and should not be changed. The toolbar does not
have these constraints.

In this chapter, you used a toolbar that was provided by one of the AppCompat themes. Alternatively,
you can manually include a toolbar as a normal view in your activity or fragment’s layout file. You
can place this toolbar anywhere you like and you can even include multiple toolbars on the screen at
the same time. This flexibility allows for interesting designs; for example, imagine if each fragment
that you use maintains its own toolbar. When you host multiple fragments on the screen at the same

Challenge: Deleting Crimes

255

time, each of them can bring along their own toolbar instead of sharing a single toolbar at the top of the
screen.

Another interesting addition with the toolbar is the ability to place Views inside of the toolbar and to
also adjust the height of the toolbar. This allows for much more flexibility in the way that your app
works.

Challenge: Deleting Crimes
Once a crime has been created in CriminalIntent, there is no way to erase that crime from the official
record. For this challenge, add a new action item to the CrimeFragment that allows the user to delete
the current crime. Once the user presses the new delete action item, be sure to pop the user back to the
previous activity with a call to the finish method on the CrimeFragment’s hosting activity.

Challenge: Plural String Resources
The subtitle is not grammatically correct when there is a single crime. “1 crimes” just does not show
the right amount of attention to detail for your taste. For this challenge, correct this subtitle text.

You could have two different strings and determine which one to use in code, but this will quickly
fall apart when you localize your app for different languages. A better option is to use plural string
resources (sometimes also called quantity strings).

First, define a plural string in your strings.xml file.

<plurals name="subtitle_plural">
 <item quantity="one">%1$s crime</item>
 <item quantity="other">%1$s crimes</item>
</plurals>

Then, use the getQuantityString method to correctly pluralize the string.

int crimeSize = crimeLab.getCrimes().size();
String subtitle = getResources()
 .getQuantityString(R.plurals.subtitle_plural, crimeSize, crimeSize);

Challenge: An Empty View for the RecyclerView
Currently, when CriminalIntent launches it displays an empty RecyclerView – a big white void. You
should give users something to interact with when there are no items in the list.

For this challenge, display a message like, “There are no crimes” and add a button to the view that will
trigger the creation of a new crime.

Use the setVisibility method that exists on any View class to show and hide this new placeholder
view when appropriate.

257

14
SQLite Databases

Almost every application needs a place to save data for the long term, longer than
savedInstanceState will keep it around. Android provides a place to do this for you: a local
filesystem on your phone or tablet’s flash memory storage.

Each application on an Android device has a directory in its sandbox. Keeping files in the sandbox
protects them from being accessed by other applications or even the prying eyes of users (unless the
device has been “rooted,” in which case the user can get to whatever he or she likes).

Each application’s sandbox directory is a child of the device’s /data/data directory named after
the application package. For CriminalIntent, the full path to the sandbox directory is /data/data/
com.bignerdranch.android.criminalintent.

However, most application data is not stored in plain old files. Here is why: say that you had a file with
all of your Crimes written out. To change the title on a Crime at the beginning of the file, you would
have to read in the entire file and write out a whole new version. With a lot of Crimes, that would take a
long time.

This is where SQLite comes in. SQLite is an open source relational database, like MySQL or
Postgresql. Unlike other databases, though, SQLite stores its data in simple files, which you can read
and write using the SQLite library. Android includes this SQLite library in its standard library, along
with some additional Java helper classes.

This chapter will not cover everything SQLite. For that, you will want to visit http://
www.sqlite.org, which has complete documentation of SQLite itself. Here you will see how
Android’s basic SQLite helper classes work. These will let you open, read, and write to SQLite
databases in your application sandbox, without necessarily knowing where that is.

Defining a Schema
Before you create a database, you have to decide what will be in that database. CriminalIntent stores a
single list of crimes, so you will define one table named crimes (Figure 14.1).

Figure 14.1 The crimes table

Chapter 14 SQLite Databases

258

People do this kind of thing in a lot of different ways in the programming world. They are all trying
to achieve the same thing: to DRY up their code. DRY means “Don’t Repeat Yourself,” and refers to a
rule of thumb when writing a program: if you write something down, write it down in one authoritative
place. That way, instead of repeating yourself all over the place, you are always referring to the one
authoritative place for that information.

Doing this with databases can be involved. There are even complex tools called object-relational
mappers (or ORMs for short) that let you use your model objects (like Crime) as your One True
Definition. In this chapter, you will take the simpler route of defining a simplified database schema in
Java code that says what your table is named and what its columns are.

Start by creating a class to put your schema in. You will call this class CrimeDbSchema, but in the New
Class dialog, enter database.CrimeDbSchema. This will put the CrimeDbSchema.java file in its own
database package, which you will use to organize all your database-related code.

Inside CrimeDbSchema, define an inner class called CrimeTable to describe your table.

Listing 14.1 Defining CrimeTable (CrimeDbSchema.java)
public class CrimeDbSchema {
 public static final class CrimeTable {
 public static final String NAME = "crimes";
 }
}

The CrimeTable class only exists to define the String constants needed to describe the moving pieces
of your table definition. The first piece of that definition is the name of the table in your database,
CrimeTable.NAME.

Next, describe the columns.

Listing 14.2 Defining your table columns (CrimeDbSchema.java)
public class CrimeDbSchema {
 public static final class CrimeTable {
 public static final String NAME = "crimes";

 public static final class Cols {
 public static final String UUID = "uuid";
 public static final String TITLE = "title";
 public static final String DATE = "date";
 public static final String SOLVED = "solved";
 }
 }
}

With that, you will be able to refer to the column named “title” in a Java-safe way:
CrimeTable.Cols.TITLE. That makes it much safer to change your program if you ever need to change
the name of that column or add additional data to the table.

Building Your Initial Database
With your schema defined, you are ready to create the database itself. Android provides some
low-level methods on Context to open a database file into an instance of SQLiteDatabase:
openOrCreateDatabase(…) and databaseList().

Building Your Initial Database

259

However, in practice you will always need to follow a few basic steps:

1. Check to see if the database already exists.

2. If it does not, create it and create the tables and initial data it needs.

3. If it does, open it up and see what version of your CrimeDbSchema it has. (You may want to add or
remove things in future versions of CriminalIntent.)

4. If it is an old version, run code to upgrade it to a newer version.

Android provides the SQLiteOpenHelper class to handle all of this for you. Create a class called
CrimeBaseHelper in your database package.

Listing 14.3 Creating CrimeBaseHelper (CrimeBaseHelper.java)
public class CrimeBaseHelper extends SQLiteOpenHelper {
 private static final int VERSION = 1;
 private static final String DATABASE_NAME = "crimeBase.db";

 public CrimeBaseHelper(Context context) {
 super(context, DATABASE_NAME, null, VERSION);
 }

 @Override
 public void onCreate(SQLiteDatabase db) {

 }

 @Override
 public void onUpgrade(SQLiteDatabase db, int oldVersion, int newVersion) {

 }
}

A SQLiteOpenHelper is a class designed to get rid of the grunt work of opening a SQLiteDatabase.
Use it inside of CrimeLab to create your crime database.

Listing 14.4 Opening a SQLiteDatabase (CrimeLab.java)
public class CrimeLab {
 private static CrimeLab sCrimeLab;

 private List<Crime> mCrimes;
 private Context mContext;
 private SQLiteDatabase mDatabase;

 ...

 private CrimeLab(Context context) {
 mContext = context.getApplicationContext();
 mDatabase = new CrimeBaseHelper(mContext)
 .getWritableDatabase();
 mCrimes = new ArrayList<>();
 }

 ...

Chapter 14 SQLite Databases

260

(Wondering why the context is stored in an instance variable? CrimeLab will make use of it in
Chapter 16.)

When you call getWritableDatabase() here, CrimeBaseHelper will do the following:

1. Open up /data/data/com.bignerdranch.android.criminalintent/databases/crimeBase.db,
creating a new database file if it does not already exist.

2. If this is the first time the database has been created, call onCreate(SQLiteDatabase), then save
out the latest version number.

3. If this is not the first time, check the version number in the database. If the version number in
CrimeOpenHelper is higher, call onUpgrade(SQLiteDatabase, int, int).

The upshot is this: you put your code to create the initial database in onCreate(SQLiteDatabase),
your code to handle any upgrades in onUpgrade(SQLiteDatabase, int, int), and it just works.

For now, CriminalIntent will only have one version, so you can ignore onUpgrade(…). You only need to
create your database tables in onCreate(…). To do that, you will refer to the CrimeTable inner class of
CrimeDbSchema.

The import is a two-step process. First, write the initial part of your SQL creation code, as shown here:

Listing 14.5 Writing first part of onCreate(…) (CrimeBaseHelper.java)
@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("create table " + CrimeDbSchema.CrimeTable.NAME);
}

Put your cursor on the word CrimeTable and key in Option+Return (Alt+Enter). Then select the first
item, Add import for 'com.bignerdranch.android.criminalintent.database.CrimeDbSchema.CrimeTable'
as shown in Figure 14.2.

Figure 14.2 Adding a CrimeTable import

Android Studio will generate an import like this for you:

...

import com.bignerdranch.android.criminalintent.database.CrimeDbSchema.CrimeTable;

public class CrimeBaseHelper extends SQLiteOpenHelper {
 ...

Debugging database issues

261

That will let you refer to the String constants in CrimeDbSchema.CrimeTable
by typing in CrimeTable.Cols.UUID, rather than typing out the entirety of
CrimeDbSchema.CrimeTable.Cols.UUID. Use that to finish filling out your table definition code.

Listing 14.6 Creating crime table (CrimeBaseHelper.java)

@Override
public void onCreate(SQLiteDatabase db) {
 db.execSQL("create table " + CrimeTable.NAME + "(" +
 " _id integer primary key autoincrement, " +
 CrimeTable.Cols.UUID + ", " +
 CrimeTable.Cols.TITLE + ", " +
 CrimeTable.Cols.DATE + ", " +
 CrimeTable.Cols.SOLVED +
 ")"
);
}

Creating a table in SQLite requires less ceremony than in other databases: you do not have to specify
the type of a column at creation time. It is a good idea to do that, but here you will save a bit of labor
by doing without it.

Run CriminalIntent, and your database will be created (Figure 14.3). If you are running on an emulator
or a rooted device, you can look at it directly. (Not on a real device, though – it is saved in private
storage, which is secret.) Just pull up Tools → Android → Android Device Monitor, and look in /data/
data/com.bignerdranch.android.criminalintent/databases/.

Figure 14.3 Your database

Debugging database issues
When writing code dealing with a SQLite database, you will sometimes need to tweak the layout of
the database. For example, in an upcoming chapter you will add a suspect for each crime. This will
require an additional column on the crime table. The “right” way to do this is to write code in your
SQLiteOpenHelper to bump the version number, and then update the tables inside onUpgrade(…).

Chapter 14 SQLite Databases

262

Well, the “right” way involves a fair amount of code – code that is ridiculous to write when you are
only trying to get version 1 or 2 of the database right. In practice, the best thing to do is destroy the
database and start over, so that SQLiteOpenHelper.onCreate(…) is called again.

The easiest way to destroy your database is to delete the app off your device. And the easiest way to
delete the app on stock Android is to go to the application browser and drag CriminalIntent’s icon up to
where it says Uninstall at the top of screen. (The process may be different if your version of Android is
different from stock Android.) Then you will see a screen similar to the one shown in Figure 14.4.

Figure 14.4 Deleting an app

Remember this trick if you run into any issues with your database tables in this chapter.

Gutting CrimeLab
Now that you have a database, your next step is to change a lot of code inside of CrimeLab, swapping it
to use mDatabase for storage instead of mCrimes.

Start out by doing some demolition. Strip out all the code related to mCrimes in CrimeLab.

Writing to the Database

263

Listing 14.7 Tearing down some walls (CrimeLab.java)
public class CrimeLab {
 private static CrimeLab sCrimeLab;

 private List<Crime> mCrimes;
 private Context mContext;
 private SQLiteDatabase mDatabase;

 public static CrimeLab get(Context context) {
 ...
 }

 private CrimeLab(Context context) {
 mContext = context.getApplicationContext();
 mDatabase = new CrimeBaseHelper(mContext)
 .getWritableDatabase();
 mCrimes = new ArrayList<>();
 }

 public void addCrime(Crime c) {
 mCrimes.add(c);
 }

 public List<Crime> getCrimes() {
 return mCrimes;
 return new ArrayList<>();
 }

 public Crime getCrime(UUID id) {
 for (Crime crime : mCrimes) {
 if (crime.getId().equals(id)) {
 return crime;
 }
 }
 return null;
 }
}

This will leave CriminalIntent in a state where it is not really working; you can see an empty list of
crimes, but if you add a crime it will show an empty CrimePagerActivity. This is irritating, but fine
for now.

Writing to the Database
The first step in using your SQLiteDatabase is to write data to it. You will need to insert new rows into
the crime table as well as update rows that are already there when Crimes are changed.

Using ContentValues
Writes and updates to databases are done with the assistance of a class called ContentValues.
ContentValues is a key-value store class, like Java’s HashMap or the Bundles you have been using so
far. However, unlike HashMap or Bundle it is specifically designed to store the kinds of data SQLite can
hold.

You will be creating ContentValues instances from Crimes a few times in CrimeLab. Add
a private method to take care of shuttling a Crime into a ContentValues. (Remember to

Chapter 14 SQLite Databases

264

use the same two-step trick from above to add an import of CrimeTable: when you get
to CrimeTable.Cols.UUID, type Option+Return (Alt+Enter) and choose Add import for
'com.bignerdranch.android.criminalintent.database.CrimeDbSchema.CrimeTable'.)

Listing 14.8 Creating a ContentValues (CrimeLab.java)
 public getCrime(UUID id) {
 return null;
 }

 private static ContentValues getContentValues(Crime crime) {
 ContentValues values = new ContentValues();
 values.put(CrimeTable.Cols.UUID, crime.getId().toString());
 values.put(CrimeTable.Cols.TITLE, crime.getTitle());
 values.put(CrimeTable.Cols.DATE, crime.getDate().getTime());
 values.put(CrimeTable.Cols.SOLVED, crime.isSolved() ? 1 : 0);

 return values;
 }
}

For the keys, you use your column names. These are not arbitrary names; they specify the columns that
you want to insert or update. If they are misspelled or typo’d compared to what is in the database, your
insert or update will fail. Every column is specified here except for _id, which is automatically created
for you as a unique row ID.

Inserting and updating rows
Now that you have a ContentValues, time to add rows to the database. Fill out addCrime(Crime) with
a new implementation.

Listing 14.9 Inserting a row (CrimeLab.java)
public void addCrime(Crime c) {
 ContentValues values = getContentValues(c);

 mDatabase.insert(CrimeTable.NAME, null, values);
}

The insert(String, String, ContentValues) method has two important arguments, and one that is
rarely used. The first argument is the table you want to insert into – here, CrimeTable.NAME. The last
argument is the data you want to put in.

And the second argument? The second argument is called nullColumnHack. And what does it do?

Well, say that you decided to call insert(…) with an empty ContentValues. SQLite does not allow
this, so your insert(…) call would fail.

If you passed in a value of uuid for nullColumnHack, though, it would ignore that empty
ContentValues. Instead, it would pass in a ContentValues with uuid set to null. This would allow
your insert(…) to succeed and create a new row.

Handy? Perhaps someday. Not today, though. Now you know about it, at least.

Continue applying ContentValues by writing a method to update rows in the database.

Inserting and updating rows

265

Listing 14.10 Updating a Crime (CrimeLab.java)
public Crime getCrime(UUID id) {
 return null;
}

public void updateCrime(Crime crime) {
 String uuidString = crime.getId().toString();
 ContentValues values = getContentValues(crime);

 mDatabase.update(CrimeTable.NAME, values,
 CrimeTable.Cols.UUID + " = ?",
 new String[] { uuidString });
}

private static ContentValues getContentValues(Crime crime) {
 ContentValues values = new ContentValues();
 values.put(CrimeTable.Cols.UUID, crime.getId().toString());
 ...

The update(String, ContentValues, String, String[]) method starts off similarly to insert(…)
– you pass in the table name you want to update and the ContentValues you want to assign to each
row you update. However, the last bit is different, because now you have to specify which rows get
updated. You do that by building a where clause (the third argument), and then specifying values for
the arguments in the where clause (the final String[] array).

You may be wondering why you are not putting uuidString directly into the where clause. That would
be a bit simpler than using ? and passing it in as a String[], after all.

The answer is that in some cases your String might itself contain SQL code. If you put that String
directly in your query, that code could change the meaning of your query, or even alter your database.
This is called a SQL injection attack, and it is a bad thing indeed.

If you use ?, though, your code will do what you intended: treat it as a String value, not code. So it is
best to be safe and use ? as a matter of habit, which will always do what you intend no matter what the
String contains.

Crime instances get modified in CrimeFragment, and will need to be written out when CrimeFragment
is done. So add an override to CrimeFragment.onPause() that updates CrimeLab’s copy of your Crime.

Listing 14.11 Pushing updates (CrimeFragment.java)
@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 UUID crimeId = (UUID) getArguments().getSerializable(ARG_CRIME_ID);
 mCrime = CrimeLab.get(getActivity()).getCrime(crimeId);
}

@Override
public void onPause() {
 super.onPause();

 CrimeLab.get(getActivity())
 .updateCrime(mCrime);
}

Chapter 14 SQLite Databases

266

Sadly, you have no way of verifying that this code works. That will need to wait until you can read in
the crimes you updated. To make sure that everything compiles correctly, run CriminalIntent one more
time before moving on to the next section. You should see a blank list.

Reading from the Database
Reading in data from SQLite is done using the query(…) method. SQLiteDatabase.query(…) has quite
a lot going on. There are a few different overloads of this method. The one you will be using looks like
this:

public Cursor query(
 String table,
 String[] columns,
 String where,
 String[] whereArgs,
 String groupBy,
 String having,
 String orderBy,
 String limit)

If you have dealt with SQL before, then most of these will be familiar to you as arguments of the
select statement. If you have not, then you only need to worry about the ones you will be using:

public Cursor query(
 String table,
 String[] columns,
 String where,
 String[] whereArgs,
 String groupBy,
 String having,
 String orderBy,
 String limit)

The table argument is the table to query. The columns argument names which columns you want
values for and what order you want to receive them in. And then where and whereArgs do the same
thing they do in update(…).

Use query(…) in a convenience method to call this on your CrimeTable.

Using a CursorWrapper

267

Listing 14.12 Querying for Crimes (CrimeLab.java)
 ...
 values.put(CrimeTable.Cols.DATE, crime.getDate().getTime());
 values.put(CrimeTable.Cols.SOLVED, crime.isSolved() ? 1 : 0);

 return values;
}

private Cursor queryCrimes(String whereClause, String[] whereArgs) {
 Cursor cursor = mDatabase.query(
 CrimeTable.NAME,
 null, // Columns - null selects all columns
 whereClause,
 whereArgs,
 null, // groupBy
 null, // having
 null // orderBy
);

 return cursor;
}

Using a CursorWrapper
A Cursor leaves a lot to be desired as a way to look at a table. All it does is give you raw column
values. Pulling data out of a Cursor looks like this:

String uuidString = cursor.getString(
 cursor.getColumnIndex(CrimeTable.Cols.UUID));
String title = cursor.getString(
 cursor.getColumnIndex(CrimeTable.Cols.TITLE));
long date = cursor.getLong(
 cursor.getColumnIndex(CrimeTable.Cols.DATE));
int isSolved = cursor.getInt(
 cursor.getColumnIndex(CrimeTable.Cols.SOLVED));

Every time you pull a Crime out of a cursor, you need to write this code one more time. (And that does
not include the code to create a Crime instance with those values!)

Remember the DRY rule of thumb: Don’t Repeat Yourself. Instead of writing this code each time you
need to read data from a Cursor, you can create your own Cursor subclass that takes care of this in one
place. The easiest way to write a Cursor subclass is to use CursorWrapper. A CursorWrapper lets you
wrap a Cursor you received from another place and add new methods on top of it.

Create a new class in the database package called CrimeCursorWrapper.

Listing 14.13 Creating CrimeCursorWrapper (CrimeCursorWrapper.java)
public class CrimeCursorWrapper extends CursorWrapper {
 public CrimeCursorWrapper(Cursor cursor) {
 super(cursor);
 }
}

That creates a thin wrapper around a Cursor. It has all the same methods as the Cursor it wraps, and
calling those methods does the exact same thing. This would be pointless, except that it makes it
possible to add new methods that operate on the underlying Cursor.

Chapter 14 SQLite Databases

268

Add a getCrime() method that pulls out relevant column data. (Remember to use the two-step import
trick for CrimeTable here, as you did earlier.)

Listing 14.14 Adding getCrime() method (CrimeCursorWrapper.java)
public class CrimeCursorWrapper extends CursorWrapper {
 public CrimeCursorWrapper(Cursor cursor) {
 super(cursor);
 }

 public Crime getCrime() {
 String uuidString = getString(getColumnIndex(CrimeTable.Cols.UUID));
 String title = getString(getColumnIndex(CrimeTable.Cols.TITLE));
 long date = getLong(getColumnIndex(CrimeTable.Cols.DATE));
 int isSolved = getInt(getColumnIndex(CrimeTable.Cols.SOLVED));

 return null;
 }
}

You will need to return a Crime with an appropriate UUID from this method. Add another constructor to
Crime to do this.

Listing 14.15 Adding Crime constructor (Crime.java)
public Crime() {
 this(UUID.randomUUID());
 mId = UUID.randomUUID();
 mDate = new Date();
}

public Crime(UUID id) {
 mId = id;
 mDate = new Date();
}

And then finish up getCrime().

Listing 14.16 Finishing up getCrime() (CrimeCursorWrapper.java)
public Crime getCrime() {
 String uuidString = getString(getColumnIndex(CrimeTable.Cols.UUID));
 String title = getString(getColumnIndex(CrimeTable.Cols.TITLE));
 long date = getLong(getColumnIndex(CrimeTable.Cols.DATE));
 int isSolved = getInt(getColumnIndex(CrimeTable.Cols.SOLVED));

 Crime crime = new Crime(UUID.fromString(uuidString));
 crime.setTitle(title);
 crime.setDate(new Date(date));
 crime.setSolved(isSolved != 0);

 return crime;
 return null;
}

(Android Studio will ask you to choose between java.util.Date and java.sql.Date. Even though
you are dealing with databases, java.util.Date is the right choice here.)

Converting to model objects

269

Converting to model objects
With CrimeCursorWrapper, vending out a List<Crime> from CrimeLab will be straightforward. You
need to wrap the cursor you get back from your query in a CrimeCursorWrapper, then iterate over it
calling getCrime() to pull out its Crimes.

For the first part, queryCrimes(…) to use CrimeCursorWrapper.

Listing 14.17 Vending cursor wrapper (CrimeLab.java)
private Cursor queryCrimes(String whereClause, String[] whereArgs) {
private CrimeCursorWrapper queryCrimes(String whereClause, String[] whereArgs) {
 Cursor cursor = mDatabase.query(
 CrimeTable.NAME,
 null, // Columns - null selects all columns
 whereClause,
 whereArgs,
 null, // groupBy
 null, // having
 null // orderBy
);

 return cursor;
 return new CrimeCursorWrapper(cursor);
}

Then get getCrimes() into shape. Add code to query for all crimes, walk the cursor, and populate a
Crime list.

Listing 14.18 Returning crime list (CrimeLab.java)
public List<Crime> getCrimes() {
 return new ArrayList<>();
 List<Crime> crimes = new ArrayList<>();

 CrimeCursorWrapper cursor = queryCrimes(null, null);

 try {
 cursor.moveToFirst();
 while (!cursor.isAfterLast()) {
 crimes.add(cursor.getCrime());
 cursor.moveToNext();
 }
 } finally {
 cursor.close();
 }

 return crimes;
}

Database cursors are called cursors because they always have their finger on a particular place in a
query. So to pull the data out of a cursor, you move it to the first element by calling moveToFirst(),
and then reading in row data. Each time you want to advance to a new row, you call moveToNext(),
until finally isAfterLast() tells you that your pointer is off the end of the dataset.

The last important thing to do is to call close() on your Cursor. This bit of housekeeping is important.
If you do not do it, your Android device will spit out nasty error logs to berate you. Even worse, if you

Chapter 14 SQLite Databases

270

make a habit out of it, you will eventually run out of open file handles and crash your app. So: close
your cursors.

CrimeLab.getCrime(UUID) will look similar to getCrimes(), except it will only need to pull the first
item, if it is there.

Listing 14.19 Rewriting getCrime(UUID) (CrimeLab.java)
public Crime getCrime(UUID id) {
 return null;
 CrimeCursorWrapper cursor = queryCrimes(
 CrimeTable.Cols.UUID + " = ?",
 new String[] { id.toString() }
);

 try {
 if (cursor.getCount() == 0) {
 return null;
 }

 cursor.moveToFirst();
 return cursor.getCrime();
 } finally {
 cursor.close();
 }
}

That completes a few moving pieces:

• You can insert crimes, so the code that adds Crime to CrimeLab when you press the New Crime
action item now works.

• You can successfully query the database, so CrimePagerActivity can see all the Crimes in
CrimeLab, too.

• CrimeLab.getCrime(UUID) works, too, so each CrimeFragment displayed in
CrimePagerActivity is showing the real Crime.

Now you should be able to press New Crime and see the new Crime displayed in CrimePagerActivity.
Run CriminalIntent and verify that you can do this. If you cannot, double-check your implementations
from this chapter so far.

Refreshing model data
You are not quite done. Your crimes are persistently stored to the database, but the persistent data is
not read back in. So if you press the Back button after editing your new Crime, it will not show up in
CrimeListActivity.

This is because CrimeLab now works a little differently. Before, there was only one List<Crime>,
and one object for each Crime: the one in the List<Crime>. That was because mCrimes was the only
authority for which Crimes your app knew about.

Things have changed now. mCrimes is gone. So the List<Crime> returned by getCrimes() is a
snapshot of the Crimes at one point in time. To refresh CrimeListActivity, you need to update that
snapshot.

For the More Curious: More Databases

271

Most of the moving pieces to do this are already in place. CrimeListActivity already calls
updateUI() to refresh other parts of its interface. All you need to do is have it refresh its view of
CrimeLab, too.

First, add a setCrimes(List<Crime>) method to CrimeAdapter to swap out the crimes it displays.

Listing 14.20 Adding setCrimes(List<Crime>) (CrimeListFragment.java)
private class CrimeAdapter extends RecyclerView.Adapter<CrimeHolder> {
 ...

 @Override
 public int getItemCount() {
 return mCrimes.size();
 }

 public void setCrimes(List<Crime> crimes) {
 mCrimes = crimes;
 }
}

Then call setCrimes(List<Crime>) in updateUI().

Listing 14.21 Calling setCrimes(List<>) (CrimeListFragment.java)
private void updateUI() {
 CrimeLab crimeLab = CrimeLab.get(getActivity());
 List<Crime> crimes = crimeLab.getCrimes();

 if (mAdapter == null) {
 mAdapter = new CrimeAdapter(crimes);
 mCrimeRecyclerView.setAdapter(mAdapter);
 } else {
 mAdapter.setCrimes(crimes);
 mAdapter.notifyDataSetChanged();
 }

 updateSubtitle();
}

Now everything should work correctly. Run CriminalIntent and verify that you can add a crime, press
the Back button, and see that crime in CrimeListActivity.

This is also a good time to test that calls to updateCrime(Crime) in CrimeFragment work, too. Press a
Crime and edit its title inside CrimePagerActivity. Press the Back button and make sure that the new
title is reflected in the list.

For the More Curious: More Databases
For the sake of space and simplicity, we do not go into all the details you might see in a professional
app’s application database here. There is a reason people resort to tools like ORMs: this stuff can get
complicated.

For a more substantial application you will want to look into adding the following to your database and
your description of it:

Chapter 14 SQLite Databases

272

• Data types on columns. Technically, SQLite does not have typed columns, so you can get by
without them. Giving SQLite hints is kinder, though.

• Indexes. Queries against columns with appropriate indexes are much faster than columns without
them.

• Foreign keys. Your database here only has one table, but associated data would need foreign key
constraints, too.

There are also deeper performance considerations to dive into. Your app creates a new list of all-new
Crime objects every time you query the database. A high-performance app would optimize this by
recycling instances of Crime or by treating them like an in-memory object store (like you did before
this chapter). That ends up being quite a bit more code, so this is another problem ORMs often try to
solve.

For the More Curious: The Application Context
Earlier in this chapter, you used the Application Context in the constructor of the CrimeLab.

private CrimeLab(Context context) {
 mContext = context.getApplicationContext();
 ...
}

What makes the Application Context special? When should you use the application context over an
activity as a context?

It’s important to think about the lifetime of each of these objects. If any of your activities exist,
Android will have also created an Application object. Activities come and go as the user navigates
through your application but the application object will still exist. It has a much longer lifetime than
any one activity.

The CrimeLab is a singleton, which means that once it is created, it will not be destroyed until your
entire application process is destroyed. The CrimeLab maintains a reference to its mContext object.
If you store an activity as the mContext object, that activity will never be cleaned up by the garbage
collector because the CrimeLab has a reference to it. Even if the user has navigated away from that
activity, it will never be cleaned up.

To avoid this wasteful situation, you use the application context so that your activities can come and
go and the CrimeLab can maintain a reference to a Context object. Always think about the lifetime of
your activities as you keep a reference to them.

Challenge: Deleting Crimes
If you added a Delete Crime action item earlier, this challenge builds off of that by adding the ability to
delete crimes from your database by calling a deleteCrime(Crime) method on CrimeLab, which will
call mDatabase.delete(…) to finish the job.

And if you do not have a Delete Crime? Well, go ahead and add it! Add an action item to
CrimeFragment’s toolbar that calls CrimeLab.deleteCrime(Crime) and finish()es its Activity.

273

15
Implicit Intents

In Android, you can start an activity in another application on the device using an implicit intent. In an
explicit intent, you specify the class of the activity to start, and the OS will start it. In an implicit intent,
you describe the job that you need done, and the OS will start an activity in an appropriate application
for you.

In CriminalIntent, you will use implicit intents to enable picking a suspect for a Crime from the
user’s list of contacts and sending a text-based report of a crime. The user will choose a suspect from
whatever contacts app is installed on the device and will be offered a choice of apps to send the crime
report (Figure 15.1).

Figure 15.1 Opening contacts app and a text-sending app

Using implicit intents to harness other applications is far easier than writing your own implementations
for common tasks. Users also appreciate being able to use apps they already know and like in
conjunction with your app.

Chapter 15 Implicit Intents

274

Before you can create these implicit intents, there is some setup to do in CriminalIntent:

• add Choose Suspect and Send Crime Report buttons to CrimeFragment’s layouts

• add an mSuspect field to the Crime class that will hold the name of a suspect

• create a crime report using a set of format resource strings

Adding Buttons
You are going to start by updating CrimeFragment’s layouts to include new buttons for accusation
and tattling: namely, a suspect button and a report button. First, add the strings that these buttons will
display.

Listing 15.1 Adding button strings (strings.xml)
...
 <string name="subtitle_format">%1$s crimes</string>
 <string name="crime_suspect_text">Choose Suspect</string>
 <string name="crime_report_text">Send Crime Report</string>
</resources>

In layout/fragment_crime.xml, add two button widgets, as shown in Figure 15.2. Notice that in this
diagram we are not showing the first LinearLayout and all of its children so that you can focus on the
new and interesting parts of the diagram on the right.

Figure 15.2 Adding suspect and crime report buttons (layout/
fragment_crime.xml)

Adding Buttons

275

In the landscape layout, you are going to make these new buttons children of a new horizontal
LinearLayout below the one that contains the date button and the checkbox. Figure 15.3 shows the
new layout.

Figure 15.3 New landscape layout

In layout-land/fragment_crime.xml, add the LinearLayout and two button widgets, as shown in
Figure 15.4.

Figure 15.4 Adding suspect and crime report buttons (layout-land/
fragment_crime.xml)

Chapter 15 Implicit Intents

276

At this point, you can preview the layouts or run CriminalIntent to confirm that your new buttons are in
place.

Adding a Suspect to the Model Layer
Next, open Crime.java and add a new member variable to give Crime a field that will hold the name of
a suspect.

Listing 15.2 Adding suspect field (Crime.java)
public class Crime {

 ...
 private boolean mSolved;
 private String mSuspect;

 public Crime() {
 this(UUID.randomUUID());
 }

 ...

 public void setSolved(boolean solved) {
 mSolved = solved;
 }

 public String getSuspect() {
 return mSuspect;
 }

 public void setSuspect(String suspect) {
 mSuspect = suspect;
 }
}

Now you need to add an additional field to your crime database. First, add a suspect column to
CrimeDbSchema.

Listing 15.3 Adding suspect column (CrimeDbSchema.java)
public class CrimeDbSchema {
 public static final class CrimeTable {
 public static final String NAME = "crimes";

 public static final class Cols {
 public static final String UUID = "uuid";
 public static final String TITLE = "title";
 public static final String DATE = "date";
 public static final String SOLVED = "solved";
 public static final String SUSPECT = "suspect";
 }
 }
}

Add the column in CrimeBaseHelper, also. (Notice that the new code begins with a comma after
CrimeTable.Cols.SOLVED.)

Adding a Suspect to the Model Layer

277

Listing 15.4 Adding suspect column again (CrimeBaseHelper.java)
@Override
public void onCreate(SQLiteDatabase db) {

 db.execSQL("create table " + CrimeTable.NAME + "(" +
 " _id integer primary key autoincrement, " +
 CrimeTable.Cols.UUID + ", " +
 CrimeTable.Cols.TITLE + ", " +
 CrimeTable.Cols.DATE + ", " +
 CrimeTable.Cols.SOLVED + ", " +
 CrimeTable.Cols.SUSPECT +
 ")"
);
}

Next, write to the new column in CrimeLab.getContentValues(Crime).

Listing 15.5 Writing to suspect column (CrimeLab.java)
...
private static ContentValues getContentValues(Crime crime) {
 ContentValues values = new ContentValues();
 values.put(CrimeTable.Cols.UUID, crime.getId().toString());
 values.put(CrimeTable.Cols.TITLE, crime.getTitle());
 values.put(CrimeTable.Cols.DATE, crime.getDate().getTime());
 values.put(CrimeTable.Cols.SOLVED, crime.isSolved() ? 1 : 0);
 values.put(CrimeTable.Cols.SUSPECT, crime.getSuspect());

 return values;
}
...

Now read from it in CrimeCursorWrapper.

Listing 15.6 Reading from suspect column (CrimeCursorWrapper.java)
 ...
 public Crime getCrime() {
 String uuidString = getString(getColumnIndex(CrimeTable.Cols.UUID));
 String title = getString(getColumnIndex(CrimeTable.Cols.TITLE));
 long date = getLong(getColumnIndex(CrimeTable.Cols.DATE));
 int isSolved = getInt(getColumnIndex(CrimeTable.Cols.SOLVED));
 String suspect = getString(getColumnIndex(CrimeTable.Cols.SUSPECT));

 Crime crime = new Crime(UUID.fromString(uuidString));
 crime.setTitle(title);
 crime.setDate(new Date(date));
 crime.setSolved(isSolved != 0);
 crime.setSuspect(suspect);

 return crime;
 }
}

Chapter 15 Implicit Intents

278

If CriminalIntent is already installed on your device, your existing database will not have the suspect
column, and your new onCreate(SQLiteDatabase) will not be run to add the new column, either.
The easiest solution is to wipe out your old database in favor of a new one. (This happens a lot in app
development.)

First, uninstall the CriminalIntent app by opening the app launcher screen and dragging the
CriminalIntent icon to the top of the screen. All your sandbox storage will get blown away, along
with the out-of-date database schema, as part of the uninstall process. Next, run CriminalIntent from
Android Studio. A new database will be created with the new column as part of the app installation
process.

Using a Format String
The last preliminary is to create a template crime report that can be configured with the specific
crime’s details. Because you will not know a crime’s details until runtime, you must use a format string
with placeholders that can be replaced at runtime. Here is the format string you will use:

<string name="crime_report">%1$s! The crime was discovered on %2$s. %3$s, and %4$s

The %1$s, %2$s, etc. are placeholders that expect string arguments. In code, you will call getString(…)
and pass in the format string and four other strings in the order in which they should replace the
placeholders.

First, in strings.xml, add the strings shown in Listing 15.7.

Listing 15.7 Adding string resources (strings.xml)

 <string name="crime_suspect_text">Choose Suspect</string>
 <string name="crime_report_text">Send Crime Report</string>
 <string name="crime_report">%1$s!
 The crime was discovered on %2$s. %3$s, and %4$s
 </string>
 <string name="crime_report_solved">The case is solved</string>
 <string name="crime_report_unsolved">The case is not solved</string>
 <string name="crime_report_no_suspect">there is no suspect.</string>
 <string name="crime_report_suspect">the suspect is %s.</string>
 <string name="crime_report_subject">CriminalIntent Crime Report</string>
 <string name="send_report">Send crime report via</string>

</resources>

In CrimeFragment.java, add a method that creates four strings and then pieces them together and
returns a complete report.

Using Implicit Intents

279

Listing 15.8 Adding getCrimeReport() method (CrimeFragment.java)
...
private void updateDate() {
 mDateButton.setText(mCrime.getDate().toString());
}

private String getCrimeReport() {
 String solvedString = null;
 if (mCrime.isSolved()) {
 solvedString = getString(R.string.crime_report_solved);
 } else {
 solvedString = getString(R.string.crime_report_unsolved);
 }

 String dateFormat = "EEE, MMM dd";
 String dateString = DateFormat.format(dateFormat, mCrime.getDate()).toString();

 String suspect = mCrime.getSuspect();
 if (suspect == null) {
 suspect = getString(R.string.crime_report_no_suspect);
 } else {
 suspect = getString(R.string.crime_report_suspect, suspect);
 }

 String report = getString(R.string.crime_report,
 mCrime.getTitle(), dateString, solvedString, suspect);

 return report;
}

(Note that there are two DateFormat classes: android.text.format.DateFormat, and
java.text.DateFormat. Use android.text.format.DateFormat.)

Now the preliminaries are complete, and you can turn to implicit intents.

Using Implicit Intents
An Intent is an object that describes to the OS something that you want it to do. With the explicit
intents that you have created thus far, you explicitly name the activity that you want the OS to start.

Intent intent = new Intent(getActivity(), CrimePagerActivity.class);
intent.putExtra(EXTRA_CRIME_ID, crimeId);
startActivity(intent);

With an implicit intent, you describe to the OS the job that you want done. The OS then starts the
activity that has advertised itself as capable of doing that job. If the OS finds more than one capable
activity, then the user is offered a choice.

Chapter 15 Implicit Intents

280

Parts of an implicit intent
Here are the critical parts of an intent that you can use to define the job you want done:

the action that you are trying to perform

These are typically constants from the Intent class. If you want to view a URL, you can use
Intent.ACTION_VIEW for your action. To send something, you use Intent.ACTION_SEND.

the location of any data

This can be something outside the device, like the URL of a web page, but it can also be a URI
to a file or a content URI pointing to a record in a ContentProvider.

the type of data that the action is for

This is a MIME type, like text/html or audio/mpeg3. If an intent includes a location for data,
then the type can usually be inferred from that data.

optional categories

If the action is used to describe what to do, the category usually describes
where, when, or how you are trying to use an activity. Android uses the category
android.intent.category.LAUNCHER to indicate that an activity should be displayed in the top-
level app launcher. The android.intent.category.INFO category, on the other hand, indicates
an activity that shows information about a package to the user but should not show up in the
launcher.

A simple implicit intent for viewing a website would include an action of Intent.ACTION_VIEW and a
data Uri that is the URL of a website.

Based on this information, the OS will launch the appropriate activity of an appropriate application. (If
it finds more than one candidate, the user gets a choice.)

An activity would advertise itself as an appropriate activity for ACTION_VIEW via an intent filter in the
manifest. If you wanted to write a browser app, for instance, you would include the following intent
filter in the declaration of the activity that should respond to ACTION_VIEW:

<activity
 android:name=".BrowserActivity"
 android:label="@string/app_name" >
 <intent-filter>
 <action android:name="android.intent.action.VIEW" />
 <category android:name="android.intent.category.DEFAULT" />
 <data android:scheme="http" android:host="www.bignerdranch.com" />
 </intent-filter>
</activity>

To respond to implicit intents, a DEFAULT category must be set explicitly in an intent filter. The action
element in the intent filter tells the OS that the activity is capable of performing the job, and the
DEFAULT category tells the OS that this activity should be considered for the job when the OS is asking

Sending a crime report

281

for volunteers. This DEFAULT category is implicitly added to every implicit intent. (In Chapter 22, you
will see that this is not the case when Android is not asking for a volunteer.)

Implicit intents can also include extras just like explicit intents. Any extras on an implicit intent,
however, are not used by the OS to find an appropriate activity.

Note that the action and data parts of an intent can also be used in conjunction with an explicit intent.
That would be the equivalent of telling a particular activity to do something specific.

Sending a crime report
Let’s see how this works by creating an implicit intent to send a crime report in CriminalIntent. The
job you want done is sending plain text; the crime report is a string. So the implicit intent’s action will
be ACTION_SEND. It will not point to any data or have any categories, but it will specify a type of text/
plain.

In CrimeFragment.onCreateView(…), get a reference to the Send Crime Report button and set
a listener on it. Within the listener’s implementation, create an implicit intent and pass it into
startActivity(Intent).

Listing 15.9 Sending a crime report (CrimeFragment.java)
private Crime mCrime;
private EditText mTitleField;
private Button mDateButton;
private CheckBox mSolvedCheckbox;
private Button mReportButton;

...

public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...

 mReportButton = (Button) v.findViewById(R.id.crime_report);
 mReportButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 Intent i = new Intent(Intent.ACTION_SEND);
 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_TEXT, getCrimeReport());
 i.putExtra(Intent.EXTRA_SUBJECT,
 getString(R.string.crime_report_subject));
 startActivity(i);
 }
 });

 return v;
}

Here you use the Intent constructor that accepts a string that is a constant defining the action. There
are other constructors that you can use depending on what kind of implicit intent you need to create.
You can find them all on the Intent reference page in the documentation. There is no constructor that
accepts a type, so you set it explicitly.

Chapter 15 Implicit Intents

282

You include the text of the report and the string for the subject of the report as extras. Note that these
extras use constants defined in the Intent class. Any activity responding to this intent will know these
constants and what to do with the associated values.

Run CriminalIntent and press the Send Crime Report button. Because this intent will likely match
many activities on the device, you will probably see a list of activities presented in a chooser
(Figure 15.5).

Figure 15.5 Activities volunteering to send your crime report

If you are offered a choice, make a selection. You will see your crime report loaded into the app that
you chose. All you have to do is address and send it.

If, on the other hand, you do not see a chooser, that means one of two things. Either you have already
set a default app for an identical implicit intent, or your device has only a single activity that can
respond to this intent.

Often, it is best to go with the user’s default app for an action. In CriminalIntent, however, you always
want the user to have a choice for ACTION_SEND. Today a user might want to be discreet and email the
crime report, but tomorrow he or she may prefer public shaming via Twitter.

You can create a chooser to be shown every time an implicit intent is used to start an activity. After
you create your implicit intent as before, you call the following Intent method and pass in the implicit
intent and a string for the chooser’s title:

 public static Intent createChooser(Intent target, String title)

Then you pass the intent returned from createChooser(…) into startActivity(…).

In CrimeFragment.java, create a chooser to display the activities that respond to your implicit intent.

Asking Android for a contact

283

Listing 15.10 Using a chooser (CrimeFragment.java)
 public void onClick(View v) {
 Intent i = new Intent(Intent.ACTION_SEND);
 i.setType("text/plain");
 i.putExtra(Intent.EXTRA_TEXT, getCrimeReport());
 i.putExtra(Intent.EXTRA_SUBJECT,
 getString(R.string.crime_report_subject));
 i = Intent.createChooser(i, getString(R.string.send_report));
 startActivity(i);
 }

Run CriminalIntent and press the Send Crime Report button. As long as you have more than one
activity that can handle your intent, you will be offered a list to choose from (Figure 15.6).

Figure 15.6 Sending text with a chooser

Asking Android for a contact
Now you are going to create another implicit intent that enables users to choose a suspect
from their contacts. This implicit intent will have an action and a location where the relevant
data can be found. The action will be Intent.ACTION_PICK. The data for contacts is at
ContactsContract.Contacts.CONTENT_URI. In short, you are asking Android to help pick an item in
the contacts database.

You expect a result back from the started activity, so you will pass the intent via
startActivityForResult(…) along with a request code. In CrimeFragment.java, add a constant for
the request code and a member variable for the button.

Chapter 15 Implicit Intents

284

Listing 15.11 Adding field for suspect button (CrimeFragment.java)

...
private static final int REQUEST_DATE = 0;
private static final int REQUEST_CONTACT = 1;

...

private CheckBox mSolvedCheckbox;
private Button mSuspectButton;

...

At the end of onCreateView(…), get a reference to the button and set a listener on it. Within the
listener’s implementation, create the implicit intent and pass it into startActivityForResult(…).
Also, once a suspect is assigned show the name on the suspect button.

Listing 15.12 Sending an implicit intent (CrimeFragment.java)

public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...

 final Intent pickContact = new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 mSuspectButton = (Button) v.findViewById(R.id.crime_suspect);
 mSuspectButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 startActivityForResult(pickContact, REQUEST_CONTACT);
 }
 });

 if (mCrime.getSuspect() != null) {
 mSuspectButton.setText(mCrime.getSuspect());
 }

 return v;
}

You will be using pickContact one more time in a bit, which is why you put it outside
mSuspectButton’s OnClickListener.

Run CriminalIntent and press the Choose Suspect button. You should see a list of contacts
(Figure 15.7).

Asking Android for a contact

285

Figure 15.7 A list of possible suspects

If you have a different contacts app installed, your screen will look different. Again, this is one of the
benefits of implicit intents. You do not have to know the name of the contacts application to use it from
your app. Users can install whatever app they like best, and the OS will find and launch it.

Getting the data from the contact list

Now you need to get a result back from the contacts application. Contacts information is shared
by many applications, so Android provides an in-depth API for working with contacts information
through a ContentProvider. Instances of this class wrap databases and make it available to other
applications. You can access a ContentProvider through a ContentResolver.

Because you started the activity for a result with ACTION_PICK, you will receive an intent via
onActivityResult(…). This intent includes a data URI. The URI is a locator that points at the single
contact the user picked.

In CrimeFragment.java, add the following code to your onActivityResult(…) implementation in
CrimeFragment.

Chapter 15 Implicit Intents

286

Listing 15.13 Pulling contact name out (CrimeFragment.java)

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 ...
 updateDate();

 } else if (requestCode == REQUEST_CONTACT && data != null) {
 Uri contactUri = data.getData();
 // Specify which fields you want your query to return
 // values for.
 String[] queryFields = new String[] {
 ContactsContract.Contacts.DISPLAY_NAME
 };
 // Perform your query - the contactUri is like a "where"
 // clause here
 Cursor c = getActivity().getContentResolver()
 .query(contactUri, queryFields, null, null, null);

 try {
 // Double-check that you actually got results
 if (c.getCount() == 0) {
 return;
 }

 // Pull out the first column of the first row of data -
 // that is your suspect's name.
 c.moveToFirst();
 String suspect = c.getString(0);
 mCrime.setSuspect(suspect);
 mSuspectButton.setText(suspect);
 } finally {
 c.close();
 }
 }
}

In Listing 15.13, you create a query that asks for all the display names of the contacts in the returned
data. Then you query the contacts database and get a Cursor object to work with. Because you know
that the cursor only contains one item, you move to the first item and get it as a string. This string will
be the name of the suspect, and you use it to set the Crime’s suspect and the text of the Choose Suspect
button.

(The contacts database is a large topic in itself. We will not cover it here. If you would like to know
more, read the Contacts Provider API guide: http://developer.android.com/guide/topics/
providers/contacts-provider.html.)

Go ahead and run your app. Some devices may not have a contacts app for you to use. If that is the
case, use an emulator to test this code.

Checking for responding activities

287

Contacts permissions

How are you getting permission to read from the contacts database? The contacts app is extending
its permissions to you. The contacts app has full permissions to the contacts database. When
the contacts app returns a data URI in an Intent to the parent activity, it also adds the flag
Intent.FLAG_GRANT_READ_URI_PERMISSION. This flag signals to Android that the parent activity in
CriminalIntent should be allowed to use this data one time. This works well because you do not really
need access to the entire contacts database. You only need access to one contact inside that database.

Checking for responding activities
The first implicit intent you created in this chapter will always be responded to in some way – there
may be no way to send a report, but the chooser will still display properly. However, that is not the case
for the second example: some devices or users may not have a contacts app, and if the OS cannot find a
matching activity, then the app will crash.

The fix is to check with part of the OS called the PackageManager first. Do this in onCreateView(…).

Listing 15.14 Guarding against no contacts app (CrimeFragment.java)

public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...

 if (mCrime.getSuspect() != null) {
 mSuspectButton.setText(mCrime.getSuspect());
 }

 PackageManager packageManager = getActivity().getPackageManager();
 if (packageManager.resolveActivity(pickContact,
 PackageManager.MATCH_DEFAULT_ONLY) == null) {
 mSuspectButton.setEnabled(false);
 }

 return v;
}

PackageManager knows about all the components installed on your Android device, including
all of its activities. (You will run into the other components later on in this book.) By calling
resolveActivity(Intent, int), you ask it to find an activity that matches the Intent you gave it.
The MATCH_DEFAULT_ONLY flag restricts this search to activities with the CATEGORY_DEFAULT flag, just
like startActivity(Intent) does.

If this search is successful, it will return an instance of ResolveInfo telling you all about which
activity it found. On the other hand, if the search returns null, the game is up – no contacts app. So
you disable the useless suspect button.

If you would like to verify that your filter works, but do not have a device without a contacts
application, temporarily add an additional category to your intent. This category does nothing, but it
will prevent any contacts applications from matching your intent.

Chapter 15 Implicit Intents

288

Listing 15.15 Dummy code to verify filter (CrimeFragment.java)

 ...

 final Intent pickContact = new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 pickContact.addCategory(Intent.CATEGORY_HOME);
 mSuspectButton = (Button)v.findViewById(R.id.crime_suspect);
 mSuspectButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 startActivityForResult(pickContact, REQUEST_CONTACT);
 }
 });

 ...

Now you should see the suspect button disabled (Figure 15.8).

Figure 15.8 Disabled suspect button

Delete the dummy code once you are done verifying this behavior.

Challenge: ShareCompat

289

Listing 15.16 Deleting dummy code (CrimeFragment.java)
 ...

 final Intent pickContact = new Intent(Intent.ACTION_PICK,
 ContactsContract.Contacts.CONTENT_URI);
 pickContact.addCategory(Intent.CATEGORY_HOME);
 mSuspectButton = (Button)v.findViewById(R.id.crime_suspect);
 mSuspectButton.setOnClickListener(new View.OnClickListener() {
 public void onClick(View v) {
 startActivityForResult(pickContact, REQUEST_CONTACT);
 }
 });

 ...

Challenge: ShareCompat
Your first challenge is an easy one. Android’s support library provides a class called ShareCompat, with
an inner class called IntentBuilder. ShareCompat.IntentBuilder makes it a bit easier to build the
exact kind of Intent you used for your report button.

So your first challenge is this: in mReportButton’s OnClickListener, use
ShareCompat.IntentBuilder to build your Intent instead of doing it by hand.

Challenge: Another Implicit Intent
Instead of sending a crime report, an angry user may prefer a phone confrontation with the suspect.
Add a new button that calls the named suspect.

You will need the phone number out of the contacts database. This will require you to query another
table in the ContactsContract database called CommonDataKinds.Phone. Check out the documentation
for ContactsContract and ContactsContract.CommonDataKinds.Phone for more information on how
to query for this information.

A couple of tips: to query for additional data, you can use the android.permission.READ_CONTACTS
permission. With that permission in hand, you can read the ContactsContract.Contacts._ID to get
a contact ID on your original query. You can then use that ID to query the CommonDataKinds.Phone
table.

Once you have the phone number, you can create an implicit intent with a telephone URI:

Uri number = Uri.parse("tel:5551234");

The action can be Intent.ACTION_DIAL or Intent.ACTION_CALL. ACTION_CALL pulls up the phone app
and immediately calls the number sent in the intent; ACTION_DIAL just dials the number and waits for
the user to initiate the call.

We recommend using ACTION_DIAL. ACTION_CALL may be restricted and will definitely require a
permission. Your user may also appreciate the chance to cool down before pressing the Call button.

291

16
Taking Pictures with Intents

Now that you know how to work with implicit intents, you can document your crimes in even more
detail. With a picture of the crime, you can share the gory details with everyone.

Taking a picture will involve a couple of new tools, used in combination with a tool you recently
got to know: the implicit intent. An implicit intent can be used to start up the user’s favorite camera
application and receive a new picture from it.

An implicit intent can get you a picture, but where do you put it? And once the picture comes in, how
do you display it? In this chapter, you will answer both of those questions.

A Place for Your Photo
The first step is to build out a place for your photo to live. You will need two new View objects: an
ImageView to display the photo and a Button to press to take a new photo (Figure 16.1).

Figure 16.1 New user interface

Chapter 16 Taking Pictures with Intents

292

Dedicating an entire row to a thumbnail and a button would make your app look clunky and
unprofessional. You do not want that, so you will arrange things nicely.

Including layout files
Your arrangement will include a large section that is the same in both layout and landscape versions of
fragment_crime.xml. You can accomplish this by simply having this large section appear in both res/
layout/fragment_crime.xml and res/layout-land/fragment_crime.xml. This is usually the right
choice, but it is not the only choice. You can also use an include.

An include allows you to include one layout file in another. You are going to use one here for the
common elements. The first step is to make a layout file that displays only the section of the view
shown in Figure 16.2.

Figure 16.2 Camera and title

Now to make the layout file. Call it view_camera_and_title.xml. Build out the left-hand side first
(Figure 16.3).

Figure 16.3 Camera view layout (res/layout/view_camera_and_title.xml)

Including layout files

293

And then the right-hand side (Figure 16.4).

Figure 16.4 Title layout (res/layout/view_camera_and_title.xml)

Use the design view to verify that your layout file looks like Figure 16.2.

Now you can use include tags to include this layout in your other layout files. When using the
include tag, take note that the layout attribute does not use the normal android prefix.

Modify your main layout file first (Figure 16.5).

Figure 16.5 Including camera layout (portrait) (res/layout/
fragment_crime.xml)

And then your landscape layout (Figure 16.6).

Figure 16.6 Including camera layout (landscape) (res/layout-land/
fragment_crime.xml)

Chapter 16 Taking Pictures with Intents

294

Run CriminalIntent, and you should see your new user interface looking just like Figure 16.1.

Looks great, but to respond to presses on your ImageButton and to control the content of your
ImageView, you need instance variables referring to each of them. No special steps are required to find
views inside included layouts. Call findViewById(int) as usual on your inflated fragment_crime.xml
and you will find views from view_camera_and_title.xml, too.

Listing 16.1 Adding instance variables (CrimeFragment.java)
 ...
 private CheckBox mSolvedCheckbox;
 private Button mSuspectButton;
 private ImageButton mPhotoButton;
 private ImageView mPhotoView;

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...

 PackageManager packageManager = getActivity().getPackageManager();
 if (packageManager.resolveActivity(pickContact,
 PackageManager.MATCH_DEFAULT_ONLY) == null) {
 mSuspectButton.setEnabled(false);
 }

 mPhotoButton = (ImageButton) v.findViewById(R.id.crime_camera);
 mPhotoView = (ImageView) v.findViewById(R.id.crime_photo);

 return v;
 }

 ...

And with that, you are done with the user interface for the time being. (You will wire those buttons up
in a minute or two.)

External Storage
Your photo needs more than a place on the screen. Full-size pictures are too large to stick inside a
SQLite database, much less an Intent. They will need a place to live on your device’s filesystem.

Normally, you would put them in your private storage. Recall that you used your private storage
to save your SQLite database. With methods like Context.getFileStreamPath(String) and
Context.getFilesDir(), you can do the same thing with regular files, too (which will live in a
subfolder adjacent to the databases subfolder your SQLite database lives in).

External Storage

295

Table 16.1 Basic file and directory methods in Context
Method Purpose

File getFilesDir() Returns a handle to the directory for private application files.

FileInputStream
openFileInput(String name)

Opens an existing file for input (relative to the files directory).

FileOutputStream
openFileOutput(String name,
int mode)

Opens a file for output, possibly creating it (relative to the files
directory).

File getDir(String name, int
mode)

Gets (and possibly creates) a subdirectory within the files
directory.

String[] fileList() Gets a list of file names in the main files directory, such as for use
with openFileInput(String).

File getCacheDir() Returns a handle to a directory you can use specifically for
storing cache files. You should take care to keep this directory
tidy and use as little space as possible.

If you are storing files that only your current application needs to use, these methods are exactly what
you need.

On the other hand, if you need another application to write to those files, you are out of luck: while
there is a Context.MODE_WORLD_READABLE flag you can pass in to openFileOutput(String, int), it is
deprecated, and not completely reliable in its effects on newer devices. If you are storing files to share
with other apps or receiving files from other apps (files like stored pictures), you need to store them on
external storage instead.

There are two kinds of external storage: primary, and everything else. All Android devices have at
least one location for external storage: the primary location, which is located in the folder returned by
Environment.getExternalStorageDirectory(). This may be an SD card, but nowadays it is more
commonly integrated into the device itself. Some devices may have additional external storage. That
would fall under “everything else.”

Context provides quite a few methods for getting at external storage, too. These methods provide easy
ways to get at your primary external storage, and kinda-sorta-easy ways to get at everything else. All of
these methods store files in publicly available places, too, so be careful with them.

Chapter 16 Taking Pictures with Intents

296

Table 16.2 External file and directory methods in Context
Method Purpose

File getExternalCacheDir() Returns a handle to a cache folder in primary external storage.
Treat it like you do getCacheDir(), except a little more carefully.
Android is even less likely to clean up this folder than the private
storage one.

File[] getExternalCacheDirs() Returns cache folders for multiple external storage locations.

File
getExternalFilesDir(String)

Returns a handle to a folder on primary external storage in
which to store regular files. If you pass in a type String, you
can access a specific subfolder dedicated to a particular type
of content. Type constants are defined in Environment, where
they are prefixed with DIRECTORY_. For example, pictures go in
Environment.DIRECTORY_PICTURES.

File[]
getExternalFilesDirs(String)

Same as getExternalFilesDir(String), but returns all possible
file folders for the given type.

File[] getExternalMediaDirs() Returns handles to all the external folders Android
makes available for storing media – pictures, movies,
and music. What makes this different from calling
getExternalFilesDir(Environment.DIRECTORY_PICTURES) is
that the media scanner automatically scans this folder. The media
scanner makes files available to applications that play music, or
browse movies and photos, so anything that you put in a folder
returned by getExternalMediaDirs() will automatically appear
in those apps.

Technically, the external folders provided above may not be available, since some devices use a
removable SD card for external storage. In practice this is rarely an issue, because almost all modern
devices have nonremovable internal storage for their “external” storage. So it is not worth going to
extreme lengths to account for it. But we do recommended including simple code to guard against the
possibility, which you will do in a moment.

Designating a picture location
Time to give your pictures a place to live. First, add a method to Crime to get a well-known filename.

Using a Camera Intent

297

Listing 16.2 Adding filename-derived property (Crime.java)
 ...

 public void setSuspect(String suspect) {
 mSuspect = suspect;
 }

 public String getPhotoFilename() {
 return "IMG_" + getId().toString() + ".jpg";
 }
}

Crime.getPhotoFilename() will not know what folder the photo will be stored in. However, the
filename will be unique, since it is based on the Crime’s ID.

Next, find where the photos should live. CrimeLab is responsible for everything related to persisting
data in CriminalIntent, so it is a natural owner for this idea. Add a getPhotoFile(Crime) method to
CrimeLab that does this.

Listing 16.3 Finding photo file location (CrimeLab.java)
public class CrimeLab {
 ...

 public Crime getCrime(UUID id) {
 ...
 }

 public File getPhotoFile(Crime crime) {
 File externalFilesDir = mContext
 .getExternalFilesDir(Environment.DIRECTORY_PICTURES);

 if (externalFilesDir == null) {
 return null;
 }

 return new File(externalFilesDir, crime.getPhotoFilename());
 }

 ...

This code does not create any files on the filesystem. It only returns File objects that point to the right
locations. It does perform one check: it verifies that there is external storage to save them to. If there is
no external storage, getExternalFilesDir(String) will return null. And so will this method.

Using a Camera Intent
The next step is to actually take the picture. This is the easy part: you get to use an implicit intent
again.

Chapter 16 Taking Pictures with Intents

298

Start by stashing the location of the photo file. (You will use it a few more times, so this will save a bit
of work.)

Listing 16.4 Grabbing photo file location (CrimeFragment.java)
...

private Crime mCrime;
private File mPhotoFile;
private EditText mTitleField;
...

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 UUID crimeId = (UUID) getArguments().getSerializable(ARG_CRIME_ID);
 mCrime = CrimeLab.get(getActivity()).getCrime(crimeId);
 mPhotoFile = CrimeLab.get(getActivity()).getPhotoFile(mCrime);
}

...

Next you will hook up the camera button to actually take the picture. The camera intent is defined in
MediaStore, Android’s lord and master of all things media related. You will send an intent with an
action of MediaStore.ACTION_IMAGE_CAPTURE, and Android will fire up a camera activity and take a
picture for you.

But hold that thought for one minute.

External storage permission
In general, you need a permission to write or read from external storage. Permissions are well-known
string values you put in your manifest using the <uses-permission> tag. They tell Android that you
want to do something that Android wants you to ask permission for.

Here, Android expects you to ask permission because it wants to enforce some accountability. You tell
Android that you need to access external storage, and Android will then tell the user that this is one of
the things your application does when they try to install it. That way, nobody is surprised when you
start saving things to their SD card.

In Android 4.4, KitKat, they loosened this restriction. Since Context.getExternalFilesDir(String)
returns a folder that is specific to your app, it makes sense that you would want to be able to read and
write files that live there. So on Android 4.4 (API 19) and up, you do not need this permission for this
folder. (But you still need it for other kinds of external storage.)

Add a line to your manifest that requests the permission to read external storage, but only up to API 18.

Firing the intent

299

Listing 16.5 Requesting external storage permission (AndroidManifest.xml)

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.criminalintent" >

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"
 android:maxSdkVersion="18"
 />
 ...

The maxSdkVersion attribute makes it so that your app only asks for this permission on versions of
Android that are older than API 19, Android KitKat.

Note that you are only asking to read external storage. There is also a WRITE_EXTERNAL_STORAGE
permission, but you do not need it. You will not be writing anything to external storage: The camera
app will do that for you.

Firing the intent
Now you are ready to fire the camera intent. The action you want is called ACTION_CAPTURE_IMAGE,
and it is defined in the MediaStore class. MediaStore defines the public interfaces used in Android for
interacting with common media – images, videos, and music. This includes the image capture intent,
which fires up the camera.

By default, ACTION_CAPTURE_IMAGE will dutifully fire up the camera application and take a picture, but
it will not be a full-resolution picture. Instead, it will take a small resolution thumbnail picture, and
stick the whole thing inside the Intent object returned in onActivityResult(…).

For a full-resolution output, you need to tell it where to save the image on the filesystem. This can be
done by passing a Uri pointing to where you want to save the file in MediaStore.EXTRA_OUTPUT.

Write an implicit intent to ask for a new picture to be taken into the location saved in mPhotoFile. Add
code to ensure that the button is disabled if there is no camera app, or if there is no location at which to
save the photo. (To determine whether there is a camera app available, you will query PackageManager
for activities that respond to your camera implicit intent. Querying the PackageManager is discussed in
more detail in the section called “Checking for responding activities” in Chapter 15.)

Chapter 16 Taking Pictures with Intents

300

Listing 16.6 Firing a camera intent (CrimeFragment.java)

 ...

 private static final int REQUEST_DATE = 0;
 private static final int REQUEST_CONTACT = 1;
 private static final int REQUEST_PHOTO= 2;

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...

 mPhotoButton = (ImageButton) v.findViewById(R.id.crime_camera);
 final Intent captureImage = new Intent(MediaStore.ACTION_IMAGE_CAPTURE);

 boolean canTakePhoto = mPhotoFile != null &&
 captureImage.resolveActivity(packageManager) != null;
 mPhotoButton.setEnabled(canTakePhoto);

 if (canTakePhoto) {
 Uri uri = Uri.fromFile(mPhotoFile);
 captureImage.putExtra(MediaStore.EXTRA_OUTPUT, uri);
 }

 mPhotoButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startActivityForResult(captureImage, REQUEST_PHOTO);
 }
 });

 mPhotoView = (ImageView) v.findViewById(R.id.crime_photo);

 return v;
 }

Run CriminalIntent and press the camera button to run your camera app (Figure 16.7).

Scaling and Displaying Bitmaps

301

Figure 16.7 [Insert your camera app here]

Scaling and Displaying Bitmaps
With that, you are successfully taking pictures. Your image will be saved to a file on the filesystem for
you to use.

Your next step will be to take this file, load it up, and show it to the user. To do this, you need to load
it into a reasonably sized Bitmap object. To get a Bitmap from a file, all you need to do is use the
BitmapFactory class:

Bitmap bitmap = BitmapFactory.decodeFile(mPhotoFile.getPath());

There has to be a catch, though, right? Otherwise we would have put that in bold, you would have
typed it in, and you would be done.

Here is the catch: when we say “reasonably sized,” we mean it. A Bitmap is a simple object that stores
literal pixel data. That means that even if the original file was compressed, there is no compression
in the Bitmap itself. So a 16 megapixel 24-bit camera image which might only be a 5 Mb JPG would
blow up to 48 Mb loaded into a Bitmap object (!).

You can get around this, but it does mean that you will need to scale the bitmap down by hand. You can
do this by first scanning the file to see how big it is, next figuring out how much you need to scale it by
to fit it in a given area, and finally rereading the file to create a scaled-down Bitmap object.

Create a new class called PictureUtils.java for this new method, and add a static method to it called
getScaledBitmap(String, int, int).

Chapter 16 Taking Pictures with Intents

302

Listing 16.7 Creating getScaledBitmap(…) (PictureUtils.java)
public class PictureUtils {
 public static Bitmap getScaledBitmap(String path, int destWidth, int destHeight) {
 // Read in the dimensions of the image on disk
 BitmapFactory.Options options = new BitmapFactory.Options();
 options.inJustDecodeBounds = true;
 BitmapFactory.decodeFile(path, options);

 float srcWidth = options.outWidth;
 float srcHeight = options.outHeight;

 // Figure out how much to scale down by
 int inSampleSize = 1;
 if (srcHeight > destHeight || srcWidth > destWidth) {
 if (srcWidth > srcHeight) {
 inSampleSize = Math.round(srcHeight / destHeight);
 } else {
 inSampleSize = Math.round(srcWidth / destWidth);
 }
 }

 options = new BitmapFactory.Options();
 options.inSampleSize = inSampleSize;

 // Read in and create final bitmap
 return BitmapFactory.decodeFile(path, options);
 }
}

The key parameter above is inSampleSize. This determines how big each “sample” should be for each
pixel – a sample size of 1 has one final horizontal pixel for each horizontal pixel in the original file, and
a sample size of 2 has one horizontal pixel for every two horizontal pixels in the original file. So when
inSampleSize is 2, the image has a quarter of the number of pixels of the original.

One more bit of bad news: when your fragment initially starts up, you will not know how big
PhotoView is. Until a layout pass happens, views do not have dimensions on screen. The first layout
pass happens after onCreate(…), onStart(), and onResume() initially run, which is why PhotoView
does not know how big it is.

There are two solutions to this problem: either you can wait until a layout pass happens, or you can use
a conservative estimate. The conservative estimate approach is less efficient, but more straightforward.
Write another static method called getScaledBitmap(String, Activity) to scale a Bitmap for a
particular Activity’s size.

Listing 16.8 Writing conservative scale method (PictureUtils.java)
public class PictureUtils {
 public static Bitmap getScaledBitmap(String path, Activity activity) {
 Point size = new Point();
 activity.getWindowManager().getDefaultDisplay()
 .getSize(size);

 return getScaledBitmap(path, size.x, size.y);
 }

 ...

Scaling and Displaying Bitmaps

303

This method checks to see how big the screen is, and then scales the image down to that size. The
ImageView you load into will always be smaller than this size, so this is a very conservative estimate.

Next, to load this Bitmap into your ImageView add a method to CrimeFragment to update mPhotoView.

Listing 16.9 Updating mPhotoView (CrimeFragment.java)
 ...

 private String getCrimeReport() {
 ...
 }

 private void updatePhotoView() {
 if (mPhotoFile == null || !mPhotoFile.exists()) {
 mPhotoView.setImageDrawable(null);
 } else {
 Bitmap bitmap = PictureUtils.getScaledBitmap(
 mPhotoFile.getPath(), getActivity());
 mPhotoView.setImageBitmap(bitmap);
 }
 }
}

Then call that method from inside onCreateView(…) and onActivityResult(…).

Listing 16.10 Calling updatePhotoView() (CrimeFragment.java)
 mPhotoButton.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startActivityForResult(captureImage, REQUEST_PHOTO);
 }
 });

 mPhotoView = (ImageView) v.findViewById(R.id.crime_photo);
 updatePhotoView();

 return v;
}

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 if (resultCode != Activity.RESULT_OK) {
 return;
 }

 if (requestCode == REQUEST_DATE) {
 ...
 } else if (requestCode == REQUEST_CONTACT && data != null) {
 ...

 } else if (requestCode == REQUEST_PHOTO) {
 updatePhotoView();
 }
}

Chapter 16 Taking Pictures with Intents

304

Run again, and you should see your image displayed in the thumbnail view.

Declaring Features
Your camera implementation works great now. One more task remains: tell potential users about it.
When your app uses a feature like the camera, or NFC, or any other feature that may vary from device
to device, it is strongly recommended that you tell Android about it. This allows other apps (like the
Google Play store) to refuse to install your app if it uses a feature the device does not support.

To declare that you use the camera, add a <uses-feature> tag to your AndroidManifest.xml:

Listing 16.11 Adding uses-feature tag (AndroidManifest.xml)
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.criminalintent" >

 <uses-permission android:name="android.permission.READ_EXTERNAL_STORAGE"
 android:maxSdkVersion="18"
 />
 <uses-feature android:name="android.hardware.camera"
 android:required="false"
 />

 ...

You include the optional attribute android:required here. Why? By default, declaring that you use
a feature means that your app will not work correctly at all without that feature. This is not the case
for CriminalIntent. You call resolveActivity(…) to check for a working camera app, then gracefully
disable that button if you do not find one.

Passing in android:required="false" handles this situation correctly. You tell Android that your app
can work fine without the camera, but that some parts will be disabled as a result.

For the More Curious: Using Includes
In this chapter, you used an include so that you would not have to repeat a large portion of your layout
file across both landscape and portrait orientations. From that example, you can see how includes can
be handy: they reduce typing and they help you follow the Don’t Repeat Yourself principle. But that
does not mean that you should use them every time you have common layout items in landscape and
portrait.

First, a detail about how includes work. In this chapter, you used an include tag without any android
attributes. When you do that, the view you include gets all of the attributes it had in its original layout
file.

However, you do not have to limit yourself to this. You can also add additional attributes. If you do,
these attributes will be added directly to the root view you inflate. They will overwrite the original
values of those attributes, too. This means that if you want to change the value of layout_width, you
can.

The next thing we want to say about includes is cautionary. In this case, they have saved you some time
and complexity, which is nice. But includes are not a perfect tool.

Challenge: Detail Display

305

CriminalIntent’s views duplicate some Buttons as well. You might be wondering why you did not get
rid of that duplication with an include. The answer is: because this is not something we recommend.

One of the nice things about layout files is that they are authoritative: you can go to the layout file and
see exactly how the view is supposed to be structured. Include files break this. You have to look at the
layout file and all the files it includes to understand what is going on. This can quickly get irritating.

Visuals are often the part of an app that changes the most. When that is the case, perfectly following
the DRY principle can mean that you end up worrying more about preserving your DRYitude than
about actually building your interface. So try hard to be judicious, thoughtful, intentional, and
restrained in how you apply includes in your view layer.

Challenge: Detail Display
While you can certainly see the image you display here, you cannot see it very well.

For this first challenge, create a new DialogFragment that displays a zoomed-in version of your crime
scene photo. When you press on the thumbnail, it should pull up the zoomed-in DialogFragment.

Challenge: Efficient Thumbnail Load
In this chapter, you had to use a crude estimate of the size you should scale down to. This is not ideal,
but it works and is quick to implement.

With the out-of-the-box APIs you can use a tool called ViewTreeObserver. ViewTreeObserver is an
object that you can get from any view in your Activity’s hierarchy:

ViewTreeObserver observer = mImageView.getViewTreeObserver();

You can register a variety of listeners on a ViewTreeObserver, including OnGlobalLayoutListener.
This listener fires an event whenever a layout pass happens.

For this challenge, adjust your code so that it uses the dimensions of mPhotoView when they are valid,
and waits until a layout pass before initially calling updatePhotoView().

307

17
Two-Pane Master-Detail

Interfaces

In this chapter, you will create a tablet interface for CriminalIntent that allows users to see and interact
with the list of crimes and the details of an individual crime at the same time. Figure 17.1 shows this
list-detail interface, which is also commonly referred to as a master-detail interface.

Figure 17.1 Master and detail sharing the spotlight

You will need a tablet device or AVD for testing in this chapter. To create a tablet AVD, select Tools
→ Android → Android Virtual Device Manager. Click Create Virtual Device... and select the Tablet
category on the left. Select your favorite hardware profile, click Next, and choose an API level of at
least 21 (Figure 17.2).

Chapter 17 Two-Pane Master-Detail Interfaces

308

Figure 17.2 Device selections for a tablet AVD

Adding Layout Flexibility
On a phone, you want CrimeListActivity to inflate a single-pane layout, as it currently does. On a
tablet, you want it to inflate a two-pane layout that is capable of displaying the master and detail views
at the same time.

In the two-pane layout, CrimeListActivity will host both a CrimeListFragment and a
CrimeFragment, as shown in Figure 17.3.

Figure 17.3 Different types of layouts

Modifying SingleFragmentActivity

309

To make this happen, you are going to:

• modify SingleFragmentActivity so that the layout that gets inflated is not hardcoded

• create a new layout that consists of two fragment containers

• modify CrimeListActivity so that it will inflate a single-container layout on phones and a two-
container layout on tablets

Modifying SingleFragmentActivity
CrimeListActivity is a subclass of SingleFragmentActivity. Currently, SingleFragmentActivity
is set up to always inflate activity_fragment.xml. To make SingleFragmentActivity more flexible,
you are going to enable a subclass to provide its own resource ID for the layout instead.

In SingleFragmentActivity.java, add a protected method that returns the ID of the layout that the
activity will inflate.

Listing 17.1 Making SingleFragmentActivity flexible
(SingleFragmentActivity.java)
public abstract class SingleFragmentActivity extends AppCompatActivity {
 protected abstract Fragment createFragment();

 @LayoutRes
 protected int getLayoutResId() {
 return R.layout.activity_fragment;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.activity_fragment);
 setContentView(getLayoutResId());
 FragmentManager fm = getSupportFragmentManager();
 Fragment fragment = fm.findFragmentById(R.id.fragment_container);

 if (fragment == null) {
 fragment = createFragment();
 fm.beginTransaction()
 .add(R.id.fragment_container, fragment)
 .commit();
 }
 }
}

The default implementation of SingleFragmentActivity will work the same as before, but
now its subclasses can choose to override getLayoutResId() to return a layout other than
activity_fragment.xml. You annotate getLayoutResId() with @LayoutRes to tell Android Studio
that any implementation of this method should return a valid layout resource ID.

Creating a layout with two fragment containers
In the Project tool window, right-click res/layout/ and create a new Android XML file. Ensure that
the resource type is Layout, name the file activity_twopane.xml, and give it a LinearLayout root
element.

Chapter 17 Two-Pane Master-Detail Interfaces

310

Use Figure 17.4 to write the XML for the two-pane layout.

Figure 17.4 A layout with two fragment containers (layout/
activity_twopane.xml)

Note that the first FrameLayout has a fragment_container layout ID, so the code in
SingleFragmentActivity.onCreate(…) can work as before. When the activity is created, the fragment
that is returned in createFragment() will appear in the lefthand pane.

Test this layout in CrimeListActivity by overriding getLayoutResId() to return
R.layout.activity_twopane.

Listing 17.2 Changing to two-pane layout file (CrimeListActivity.java)

public class CrimeListActivity extends SingleFragmentActivity {

 @Override
 protected Fragment createFragment() {
 return new CrimeListFragment();
 }

 @Override
 protected int getLayoutResId() {
 return R.layout.activity_twopane;
 }
}

Run CriminalIntent on a tablet device and confirm that you have two panes (Figure 17.5). Note that
the larger detail pane is empty and that pressing a list item will not display the crime’s details. You will
hook up the detail container later in the chapter.

Using an alias resource

311

Figure 17.5 Two-pane layout on a tablet

As currently written, CrimeListActivity will also inflate the two-pane interface when running on a
phone. In the next section, you will fix that using an alias resource.

Using an alias resource
An alias resource is a resource that points to another resource. Alias resources live in res/values/
and, by convention, are defined in a refs.xml file.

Your next job will be to have CrimeListActivity show a different layout file depending on whether
it is on a tablet or a phone. You do this the same way you show a different layout for landscape and
portrait: by using a resource qualifier.

Doing that with files in res/layout works, but has some drawbacks. Each layout file has to contain
a complete copy of the layout you want to show. This can result in a lot of redundancy. If you wanted
an activity_masterdetail.xml layout file, you would have to copy all of activity_fragment.xml
into res/layout/activity_masterdetail.xml and all of activity_twopane.xml into res/layout-
sw600dp/activity_masterdetail.xml. (You will see what sw600dp does in a moment.)

Instead of doing that, you will use an alias resource. In this section, you will create an alias resource
that points to the activity_fragment.xml layout on phones and the activity_twopane.xml layout on
tablets.

In the Project tool window, right-click the res/values directory and create a new values resource file.
Name the file refs.xml and the directory values. It should have no qualifiers. Click Finish. Then add
the item shown in Listing 17.3.

Chapter 17 Two-Pane Master-Detail Interfaces

312

Listing 17.3 Creating a default alias resource value (res/values/refs.xml)

<resources>

 <item name="activity_masterdetail" type="layout">@layout/activity_fragment</item>

</resources>

This resource’s value is a reference to the single-pane layout. It also has a resource ID:
R.layout.activity_masterdetail. Note that the alias’s type attribute is what determines the inner
class of the ID. Even though the alias itself is in res/values/, its ID is in R.layout.

You can now use this resource ID in place of R.layout.activity_fragment. Make that change in
CrimeListActivity.

Listing 17.4 Switching layout again (CrimeListActivity.java)

@Override
protected int getLayoutResId() {
 return R.layout.activity_twopane;
 return R.layout.activity_masterdetail;
}

Run CriminalIntent to confirm that your alias is working properly. CrimeListActivity should inflate
the single-pane layout again.

Creating tablet alternatives
Because your alias is in res/values/, it is the default alias. So, by default, CrimeListActivity
inflates the single-pane layout.

Now you are going to create an alternative resource so that the activity_masterdetail alias will
point to activity_twopane.xml on larger devices.

In the Project tool window, right-click res/values/ and create a new values resource file. Name it
refs.xml and name its directory values again. But this time, select Smallest Screen Width under
Available qualifiers and click the >> button to move it over to the right (Figure 17.6).

Creating tablet alternatives

313

Figure 17.6 Adding a qualifier

This qualifier is a bit different. It asks you to specify a value for the smallest screen width. Type in 600
here, and click OK. Once it opens your new resource file, add the activity_masterdetail alias to this
file, too, pointing at a different layout file.

Listing 17.5 Alternative alias for larger devices (res/values-sw600dp/
refs.xml)
<resources>

 <item name="activity_masterdetail" type="layout">@layout/activity_twopane</item>

</resources>

Let’s explain what you are doing here. Your goal is to have logic that works like this:

• For devices that are under a specified size, use activity_fragment.xml.

• For devices that are over a specified size, use activity_twopane.xml.

Android does not provide a way to use a resource only when a device is under a particular size, but
it does provide the next best thing. The -sw600dp configuration qualifier lets you provide resources
only when a device is above a certain size. The sw stands for “smallest width,” but refers to the screen’s
smallest dimension, and thus is independent of the device’s current orientation.

With a -sw600dp qualifier, you are saying, “Use this resource on any device whose smallest dimension
is 600dp or greater.” This is a good rule of thumb for specifying a tablet-sized screen.

What about the other part, where you want to use activity_fragment.xml on smaller
devices? Smaller devices will not match your -sw600dp resource, so the default will be used:
activity_fragment.xml.

Run CriminalIntent on a phone and on a tablet. Confirm that the single- and two-pane layouts appear
where you expect them.

Chapter 17 Two-Pane Master-Detail Interfaces

314

Activity: Fragment Boss
Now that your layouts are behaving properly, you can turn to adding a CrimeFragment to the detail
fragment container when CrimeListActivity is sporting a two-pane layout.

You might think to simply write an alternative implementation of CrimeHolder.onClick(View)
for tablets. Instead of starting a new CrimePagerActivity, onClick(View) would get
CrimeListActivity’s FragmentManager and commit a fragment transaction that adds a
CrimeFragment to the detail fragment container.

The code in your CrimeListFragment.CrimeHolder would look like this:

public void onClick(View v) {
 // Stick a new CrimeFragment in the activity's layout
 Fragment fragment = CrimeFragment.newInstance(mCrime.getId());
 FragmentManager fm = getActivity().getSupportFragmentManager();
 fm.beginTransaction()
 .add(R.id.detail_fragment_container, fragment)
 .commit();
}

This works, but it is not how stylish Android programmers do things. Fragments are intended
to be standalone, composable units. If you write a fragment that adds fragments to the activity’s
FragmentManager, then that fragment is making assumptions about how the hosting activity works, and
your fragment is no longer a standalone, composable unit.

For example, in the code above CrimeListFragment adds a CrimeFragment to CrimeListActivity and
assumes that CrimeListActivity has a detail_fragment_container in its layout. This is business
that should be handled by CrimeListFragment’s hosting activity instead of CrimeListFragment.

To maintain the independence of your fragments, you will delegate work back to the hosting activity by
defining callback interfaces in your fragments. The hosting activities will implement these interfaces to
perform fragment-bossing duties and layout-dependent behavior.

Fragment callback interfaces
To delegate functionality back to the hosting activity, a fragment typically defines a callback interface
named Callbacks. This interface defines work that the fragment needs done by its boss, the hosting
activity. Any activity that will host the fragment must implement this interface.

With a callback interface, a fragment is able to call methods on its hosting activity without having to
know anything about which activity is hosting it.

Implementing CrimeListFragment.Callbacks
To implement a Callbacks interface, you first define a member variable that holds an object that
implements Callbacks. Then you cast the hosting activity to Callbacks and assign it to that variable.

You assign the activity in the Fragment lifecycle method:

 public void onAttach(Activity activity)

This method is called when a fragment is attached to an activity, whether it was retained or not.

Similarly, you will set the variable to null in the corresponding waning lifecycle method:

 public void onDetach()

Fragment callback interfaces

315

You set the variable to null here because afterward you cannot access the activity or count on the
activity continuing to exist.

In CrimeListFragment.java, add a Callbacks interface to CrimeListFragment. Also add an
mCallbacks variable and override onAttach(Activity) and onDetach() to set and unset it.

Listing 17.6 Adding callback interface (CrimeListFragment.java)
public class CrimeListFragment extends Fragment {

 ...
 private boolean mSubtitleVisible;
 private Callbacks mCallbacks;

 /**
 * Required interface for hosting activities.
 */
 public interface Callbacks {
 void onCrimeSelected(Crime crime);
 }

 @Override
 public void onAttach(Activity activity) {
 super.onAttach(activity);
 mCallbacks = (Callbacks) activity;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);
 }

 ...

 @Override
 public void onSaveInstanceState(Bundle outState) {
 super.onSaveInstanceState(outState);
 outState.putBoolean(SAVED_SUBTITLE_VISIBLE, mSubtitleVisible);
 }

 @Override
 public void onDetach() {
 super.onDetach();
 mCallbacks = null;
 }

Now CrimeListFragment has a way to call methods on its hosting activity. It does not matter which
activity is doing the hosting. As long as the activity implements CrimeListFragment.Callbacks,
everything in CrimeListFragment can work the same.

Note that CrimeListFragment performs an unchecked cast of its activity to
CrimeListFragment.Callbacks. This means that the hosting activity must implement
CrimeListFragment.Callbacks. That is not a bad dependency to have, but it is important to document
it.

Next, in CrimeListActivity, implement CrimeListFragment.Callbacks. Leave
onCrimeSelected(Crime) empty for now.

Chapter 17 Two-Pane Master-Detail Interfaces

316

Listing 17.7 Implementing callbacks (CrimeListActivity.java)
public class CrimeListActivity extends SingleFragmentActivity
 implements CrimeListFragment.Callbacks {

 @Override
 protected Fragment createFragment() {
 return new CrimeListFragment();
 }

 @Override
 protected int getLayoutResId() {
 return R.layout.activity_masterdetail;
 }

 @Override
 public void onCrimeSelected(Crime crime) {
 }
}

Eventually, CrimeListFragment will call this method in CrimeHolder.onClick(…)
and also when the user chooses to create a new crime. First, let’s figure out
CrimeListActivity.onCrimeSelected(Crime)’s implementation.

When onCrimeSelected(Crime) is called, CrimeListActivity needs to do one of two things:

• if using the phone interface, start a new CrimePagerActivity

• if using the tablet interface, put a CrimeFragment in detail_fragment_container

To determine which interface was inflated, you could check for a certain layout ID. But it is better to
check whether the layout has a detail_fragment_container. Checking a layout’s capabilities is a
more precise test of what you need. Filenames can change, and you do not really care what file the
layout was inflated from; you just need to know whether it has a detail_fragment_container to put
your CrimeFragment in.

If the layout does have a detail_fragment_container, then you are going to create a fragment
transaction that removes the existing CrimeFragment from detail_fragment_container (if there is
one in there) and adds the CrimeFragment that you want to see.

In CrimeListActivity.java, implement onCrimeSelected(Crime) to handle the selection of a crime
in either interface.

Listing 17.8 Conditional CrimeFragment startup (CrimeListActivity.java)
@Override
public void onCrimeSelected(Crime crime) {
 if (findViewById(R.id.detail_fragment_container) == null) {
 Intent intent = CrimePagerActivity.newIntent(this, crime.getId());
 startActivity(intent);
 } else {
 Fragment newDetail = CrimeFragment.newInstance(crime.getId());

 getSupportFragmentManager().beginTransaction()
 .replace(R.id.detail_fragment_container, newDetail)
 .commit();
 }
}

Fragment callback interfaces

317

Finally, in CrimeListFragment, you are going to call onCrimeSelected(Crime) in the places where
you currently start a new CrimePagerActivity.

In CrimeListFragment.java, modify CrimeHolder.onClick(View) and
onOptionsItemSelected(MenuItem) to call Callbacks.onCrimeSelected(Crime).

Listing 17.9 Calling all callbacks! (CrimeListFragment.java)

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_new_crime:
 Crime crime = new Crime();
 CrimeLab.get(getActivity()).addCrime(crime);
 Intent intent = CrimePagerActivity
 .newIntent(getActivity(), crime.getId());
 startActivity(intent);
 updateUI();
 mCallbacks.onCrimeSelected(crime);
 return true;
 case R.id.menu_item_show_subtitle:
 mSubtitleVisible = !mSubtitleVisible;
 getActivity().invalidateOptionsMenu();
 updateSubtitle();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

...

private class CrimeHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {

 ...

 @Override
 public void onClick(View v) {
 Intent intent = CrimePagerActivity.newIntent(getActivity(), mCrime.getId());
 startActivity(intent);
 mCallbacks.onCrimeSelected(mCrime);
 }
}

When you call back in onOptionsItemSelected(…), you also reload the list immediately upon adding
a new crime. This is necessary because, on tablets, the list will remain visible after adding a new crime.
Before, you were guaranteed that the detail screen would appear in front of it.

Run CriminalIntent on a tablet. Create a new crime, and a CrimeFragment will be added and shown in
the detail_fragment_container. Then view an old crime to see the CrimeFragment being swapped
out for a new one (Figure 17.7).

Chapter 17 Two-Pane Master-Detail Interfaces

318

Figure 17.7 Master and detail now wired up

Looks great! One small problem, though: If you make changes to a crime, the list will not update
to reflect them. Right now, you only reload the list immediately after adding a crime and in
CrimeListFragment.onResume(). But on a tablet, CrimeListFragment stays visible alongside the
CrimeFragment. The CrimeListFragment is not paused when the CrimeFragment appears, so it is
never resumed. Thus, the list is not reloaded.

You can fix this problem with another callback interface – this one in CrimeFragment.

Implementing CrimeFragment.Callbacks
CrimeFragment will define the following interface:

 public interface Callbacks {
 void onCrimeUpdated(Crime crime);
 }

For CrimeFragment to push updates to a peer Fragment, it will need to do two things. First,
since CriminalIntent’s single source of truth is its SQLite database, it will need to save its Crime
to CrimeLab. Then CrimeFragment will call onCrimeUpdated(Crime) on its hosting activity.
CrimeListActivity will implement onCrimeUpdated(Crime) to reload CrimeListFragment’s list,
which will pull the latest data from the database and display it.

Before you start with CrimeFragment’s interface, change the visibility of
CrimeListFragment.updateUI() so that it can be called from CrimeListActivity.

Listing 17.10 Changing updateUI()’s visibility (CrimeListFragment.java)
private public void updateUI() {
 ...
}

Fragment callback interfaces

319

Then, in CrimeFragment.java, add the callback interface along with an mCallbacks variable and
implementations of onAttach(…) and onDetach().

Listing 17.11 Adding CrimeFragment callbacks (CrimeFragment.java)
...
private ImageButton mPhotoButton;
private ImageView mPhotoView;
private Callbacks mCallbacks;

/**
 * Required interface for hosting activities.
 */
public interface Callbacks {
 void onCrimeUpdated(Crime crime);
}

public static CrimeFragment newInstance(UUID crimeId) {
 ...
}

@Override
public void onAttach(Activity activity) {
 super.onAttach(activity);
 mCallbacks = (Callbacks)activity;
}

@Override
public void onCreate(Bundle savedInstanceState) {
 ...
}

@Override
public void onPause() {
 ...
}

@Override
public void onDetach() {
 super.onDetach();
 mCallbacks = null;
}

Now implement CrimeFragment.Callbacks in CrimeListActivity to reload the list in
onCrimeUpdated(Crime).

Listing 17.12 Refreshing crime list (CrimeListActivity.java)
public class CrimeListActivity extends SingleFragmentActivity
 implements CrimeListFragment.Callbacks, CrimeFragment.Callbacks {

 ...

 public void onCrimeUpdated(Crime crime) {
 CrimeListFragment listFragment = (CrimeListFragment)
 getSupportFragmentManager()
 .findFragmentById(R.id.fragment_container);
 listFragment.updateUI();
 }
}

Chapter 17 Two-Pane Master-Detail Interfaces

320

CrimeFragment.Callbacks must be implemented in all activities that host CrimeFragment. So provide
an empty implementation in CrimePagerActivity, too.

Listing 17.13 Providing empty callbacks implementation
(CrimePagerActivity.java)

public class CrimePagerActivity extends AppCompatActivity
 implements CrimeFragment.Callbacks {
 ...

 @Override
 public void onCrimeUpdated(Crime crime) {

 }
}

CrimeFragment will be doing a Time Warp two-step a lot internally: Jump to the left, save mCrime to
CrimeLab. Step to the right, call mCallbacks.onCrimeUpdated(Crime). Add a method to make it more
convenient to do this jig.

Listing 17.14 Adding updateCrime() method (CrimeFragment.java)

...

@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 ...
}

private void updateCrime() {
 CrimeLab.get(getActivity()).updateCrime(mCrime);
 mCallbacks.onCrimeUpdated(mCrime);
}

private void updateDate() {
 mDateButton.setText(mCrime.getDate().toString());
}

...

Then add calls in CrimeFragment.java to updateCrime() when a Crime’s title or solved status has
changed.

Fragment callback interfaces

321

Listing 17.15 Calling onCrimeUpdated(Crime) (CrimeFragment.java)

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mTitleField.addTextChangedListener(new TextWatcher() {
 ...

 @Override
 public void onTextChanged(CharSequence s, int start, int before, int count) {
 mCrime.setTitle(s.toString());
 updateCrime();
 }

 ...
 });

 ...
 mSolvedCheckbox.setOnCheckedChangeListener(new OnCheckedChangeListener() {
 @Override
 public void onCheckedChanged(CompoundButton buttonView, boolean isChecked) {
 mCrime.setSolved(isChecked);
 updateCrime();
 }
 });

 ...
}

You also need to call onCrimeUpdated(Crime) in onActivityResult(…), where the Crime’s date,
photo, and suspect can be changed. Currently, the photo and suspect do not appear in the list item’s
view, but CrimeFragment should still be neighborly and report those updates.

Chapter 17 Two-Pane Master-Detail Interfaces

322

Listing 17.16 Calling onCrimeUpdated(Crime) again (CrimeFragment.java)
@Override
public void onActivityResult(int requestCode, int resultCode, Intent data) {
 ...

 if (requestCode == REQUEST_DATE) {
 Date date = (Date) data
 .getSerializableExtra(DatePickerFragment.EXTRA_DATE);
 mCrime.setDate(date);
 updateCrime();
 updateDate();
 } else if (requestCode == REQUEST_CONTACT && data != null) {
 ...

 try {
 ...

 String suspect = c.getString(0);
 mCrime.setSuspect(suspect);
 updateCrime();
 mSuspectButton.setText(suspect);
 } finally {
 c.close();
 }
 } else if (requestCode == REQUEST_PHOTO) {
 updateCrime();
 updatePhotoView();
 }
}

Run CriminalIntent on a tablet and confirm that your RecyclerView updates when changes are made in
CrimeFragment (Figure 17.8). Then run it on a phone to confirm that the app works as before.

Figure 17.8 List reflects changes made in detail

For the More Curious: More on Determining Device Size

323

You have reached the end of your time with CriminalIntent. In 11 chapters, you created a complex
application that uses fragments, talks to other apps, takes pictures, and stores data. Why not celebrate
with a piece of cake?

Just be sure to clean up after yourself. You never know who might be watching.

For the More Curious: More on Determining Device
Size
Before Android 3.2, the screen size qualifier was used to provide alternative resources based the size
of a device. Screen size is a qualifier that groups different devices into four broad categories – small,
normal, large, and xlarge.

Table 17.1 shows the minimum screen sizes for each qualifier:

Table 17.1 Screen size qualifiers
Name Minimum screen size

small 320x426dp

normal 320x470dp

large 480x640dp

xlarge 720x960dp

Screen size qualifiers were deprecated in Android 3.2 in favor of qualifiers that allow you to test for the
dimensions of the device. Table 17.2 shows these new qualifiers.

Table 17.2 Discrete screen dimension qualifiers
Qualifier
format

description

wXXXdp Available width: width is greater than or equal to XXX dp

hXXXdp Available height: height greater than or equal to XXX dp

swXXXdp Smallest width: width or height (whichever is smaller) greater than or equal to XXX dp

Let’s say that you wanted to specify a layout that would only be used if the display were at least 300dp
wide. In that case, you could use an available width qualifier and put your layout file in res/layout-
w300dp (the “w” is for “width”). You can do the same thing for height by using an “h” (for “height”).

However, the height and width may swap depending on the orientation of the device. To detect a
particular size of screen, you can use sw, which stands for smallest width. This specifies the smallest
dimension of your screen. Depending on the device’s orientation, this can be either width or height. If
the screen is 1024x800, then sw is 800. If the screen is 800x1024, sw is still 800.

325

18
Assets

So far, you have dealt with the main way Android gives you to ship images, XML, and other such
non-Java things: the resources system. In this chapter, you will learn about another way of packaging
content to ship with your app: assets.

This chapter also starts a new application, BeatBox (Figure 18.1). BeatBox is not a box for musical
beats. It is a box that helps you beat people up. It does not help with the easy part, though: the part
where you wave your arms around dangerously, bruising and hurting another human being. It helps
with the hard part: yelling in a manner calculated to frighten your opponent into submission.

Figure 18.1 BeatBox at the end of this chapter

Chapter 18 Assets

326

Why Assets, Not Resources
Resources can store sounds. Just stash a file like 79_long_scream.wav in res/raw, and you can get
at it with the ID R.raw.79_long_scream. With sounds stored as resources, you can do all the usual
resource things, like having different sounds for different orientations, languages, versions of Android,
and so on.

However, BeatBox will have a lot of sounds: more than 20 different files. Dealing with them all one by
one in the resources system would be cumbersome. It would be nice to just ship them all out in one big
folder, but resources do not let you do this, nor do they allow you to give your resources anything other
than a totally flat structure.

This is exactly what the assets system is great for. Assets are like a little file system that ships with
your packaged application. With assets, you can use whatever folder structure you want. Since they
give you this kind of organizational ability, assets are commonly used for loading graphics and sound
in applications that have a lot of those things, like games.

Creating BeatBox
Time to get started. The first step is to create your BeatBox app. In Android Studio, select File
→ New Project... to create a new project. Call it BeatBox, and give it a company domain of
android.bignerdranch.com. Use API 16 for your minimum SDK, and start with one Blank Activity
called BeatBoxActivity. Leave the defaults as they are.

You will be using RecyclerView again, so open your project preferences and add the
com.android.support:recyclerview-v7 dependency.

Now, let’s build out the basics of the app. The main screen will show a grid of buttons, each of which
plays a sound. So, you will need two layout files: one for the grid and one for the buttons.

Create your layout file for the RecyclerView first. You will not need res/layout/
activity_beat_box.xml, so go ahead and rename it fragment_beat_box.xml. Then fill it up like so:

Listing 18.1 Create main layout file (res/layout/fragment_beat_box.xml)
<?xml version="1.0" encoding="utf-8"?>
<android.support.v7.widget.RecyclerView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:id="@+id/fragment_beat_box_recycler_view"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

Next, create the layout for the buttons, res/layout/list_item_sound.xml.

Listing 18.2 Create sound layout (res/layout/list_item_sound.xml)
<?xml version="1.0" encoding="utf-8"?>
<Button
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/list_item_sound_button"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 tools:text="Sound name"/>

Creating BeatBox

327

Now create a new Fragment called BeatBoxFragment in com.bignerdranch.android.beatbox, and
hook it up to the layout you just created.

Listing 18.3 Create BeatBoxFragment (BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {
 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_beat_box, container, false);

 RecyclerView recyclerView = (RecyclerView)view
 .findViewById(R.id.fragment_beat_box_recycler_view);
 recyclerView.setLayoutManager(new GridLayoutManager(getActivity(), 3));

 return view;
 }
}

Notice that you use a different implementation of LayoutManager here than you did in Chapter 9. This
LayoutManager lays out items in a grid, so that there are multiple items on each line. You passed in 3
here, to indicate that there are three columns in your grid.

Create a ViewHolder wired up to list_item_sound.xml.

Listing 18.4 Create SoundHolder (BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {
 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 private class SoundHolder extends RecyclerView.ViewHolder {
 private Button mButton;

 public SoundHolder(LayoutInflater inflater, ViewGroup container) {
 super(inflater.inflate(R.layout.list_item_sound, container, false));

 mButton = (Button)itemView.findViewById(R.id.list_item_sound_button);
 }
 }

}

Next, create an Adapter hooked up to SoundHolder. (If you put your cursor on RecyclerView.Adapter
before typing in any of the methods below and hit Option+Return (Alt+Enter), Android Studio will
enter most of this code for you.)

Chapter 18 Assets

328

Listing 18.5 Create SoundAdapter (BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {
 ...

 private class SoundHolder extends RecyclerView.ViewHolder {
 ...
 }

 private class SoundAdapter extends RecyclerView.Adapter<SoundHolder> {
 @Override
 public SoundHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 LayoutInflater inflater = LayoutInflater.from(getActivity());
 return new SoundHolder(inflater, parent);
 }

 @Override
 public void onBindViewHolder(SoundHolder soundHolder, int position) {

 }

 @Override
 public int getItemCount() {
 return 0;
 }
 }
}

Now wire up SoundAdapter in onCreateView(…).

Listing 18.6 Wiring up SoundAdapter (BeatBoxFragment.java)
@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_beat_box, container, false);

 RecyclerView recyclerView = (RecyclerView)view
 .findViewById(R.id.fragment_beat_box_recycler_view);
 recyclerView.setLayoutManager(new GridLayoutManager(getActivity(), 3));
 recyclerView.setAdapter(new SoundAdapter());

 return view;
}

Finally, hook up BeatBoxFragment in BeatBoxActivity. You will use the same
SingleFragmentActivity architecture you used in CriminalIntent.

First, copy SingleFragmentActivity.java from CriminalIntent into app/java/
com.bignerdranch.android.beatbox, and then copy activity_fragment.xml into app/src/res/
layout. (You can either pull these files out of your own CriminalIntent folder, or from the solutions.
For information on how to access the solutions files, refer back to the section called “Adding an Icon”
in Chapter 2.)

Next, delete everything in the body of BeatBoxActivity, change it to a subclass of
SingleFragmentActivity, and override createFragment(), like so:

Importing Assets

329

Listing 18.7 Filling out BeatBoxActivity (BeatBoxActivity.java)

public class BeatBoxActivity extends SingleFragmentActivity {
 @Override
 protected Fragment createFragment() {
 return BeatBoxFragment.newInstance();
 }
}

That should be enough to get your skeleton up and running. Your BeatBoxFragment implementation
does not display anything yet, but go ahead and run your app to make sure that everything is wired up
correctly (Figure 18.2).

Figure 18.2 Empty BeatBox

Importing Assets
Now to import your assets. Create an assets folder inside your project by right-clicking on your app
module and selecting New → Folder → Assets Folder (Figure 18.3). Leave the Change Folder Location
checkbox unchecked, and leave the Target Source Set set to main.

Chapter 18 Assets

330

Figure 18.3 Creating the assets folder

Click Finish to create your assets folder.

Next, right-click on assets to create a subfolder for your sounds by selecting New → Directory. Enter
sample_sounds for the directory name (Figure 18.4).

Figure 18.4 Create sample_sounds folder

Everything inside of the assets folder is deployed with your app. For the sake of convenience and
organization, you created a subfolder called sample_sounds. Unlike with resources, though, this is not
something you have to do.

Getting at Assets

331

So where can you find the sounds? You will be using a Creative Commons licensed sound set we
initially found provided by the user plagasul at http://www.freesound.org/people/plagasul/
packs/3/. We have put them up in one zip file for you at the following location:

 https://www.bignerdranch.com/solutions/sample_sounds.zip

Download the zip file and unzip its contents into assets/sample_sounds (Figure 18.5).

Figure 18.5 Imported assets

(Make sure only .wav files are in there, by the way – not the .zip file you got them from.)

Rebuild your app to make sure everything is hunky-dory. The next step will be to list out those assets
and show them to the user.

Getting at Assets
BeatBox will end up doing a lot of work related to asset management: finding assets, keeping track of
them, and eventually playing them as sounds. To manage all this, create a new class called BeatBox in
com.bignerdranch.android.beatbox. Go ahead and add a couple of constants: one for logging and
one to remember which folder you saved your wrestling grunts in.

Listing 18.8 New BeatBox class (BeatBox.java)

public class BeatBox {
 private static final String TAG = "BeatBox";

 private static final String SOUNDS_FOLDER = "sample_sounds";
}

http://www.freesound.org/people/plagasul/packs/3/
http://www.freesound.org/people/plagasul/packs/3/
https://www.bignerdranch.com/solutions/sample_sounds.zip

Chapter 18 Assets

332

Assets are accessed using the AssetManager class. You can get an AssetManager from any Context.
Since BeatBox will need one, give it a constructor that takes in a Context as a dependency, pulls out an
AssetManager, and stashes it away.

Listing 18.9 Stash an AssetManager for safekeeping (BeatBox.java)

public class BeatBox {
 private static final String TAG = "BeatBox";

 private static final String SOUNDS_FOLDER = "sample_sounds";

 private AssetManager mAssets;

 public BeatBox(Context context) {
 mAssets = context.getAssets();
 }
}

When getting at assets, in general you do not need to worry about which Context you are using. In
every situation you are likely to encounter in practice, every Context’s AssetManager will be wired up
to the same set of assets.

To get a listing of what you have in your assets, you can use the list(String) method. Write a
method called loadSounds() that looks in your assets with list(String).

Listing 18.10 Look at assets (BeatBox.java)

public BeatBox(Context context) {
 mAssets = context.getAssets();
 loadSounds();
}

private void loadSounds() {
 String[] soundNames;
 try {
 soundNames = mAssets.list(SOUNDS_FOLDER);
 Log.i(TAG, "Found " + soundNames.length + " sounds");
 } catch (IOException ioe) {
 Log.e(TAG, "Could not list assets", ioe);
 return;
 }
}

AssetManager.list(String) lists filenames contained in the folder path you pass in. So by passing in
your sounds folder, you should see every .wav file you put in there.

To verify that this is working correctly, create an instance of BeatBox in BeatBoxFragment.

Wiring Up Assets for Use

333

Listing 18.11 Create BeatBox instance (BeatBoxFragment.java)

public class BeatBoxFragment extends Fragment {

 private BeatBox mBeatBox;

 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mBeatBox = new BeatBox(getActivity());
 }

 ...
}

Run your app and you should see some log output telling you how many sound files were found. We
provided 22 .wav files, so if you used our files, you should see:

…1823-1823/com.bignerdranch.android.beatbox I/BeatBox: Found 22 sounds

Wiring Up Assets for Use
Now that you have your asset filenames, you should present them to the user. Eventually, you will want
the files to be played, so it makes sense to have an object responsible for keeping track of the filename,
the name the user should see, and any other information related to that sound.

Create a Sound class to hold all of this. (Remember to let Android Studio generate your getters.)

Listing 18.12 Create Sound object (Sound.java)
public class Sound {
 private String mAssetPath;
 private String mName;

 public Sound(String assetPath) {
 mAssetPath = assetPath;
 String[] components = assetPath.split("/");
 String filename = components[components.length - 1];
 mName = filename.replace(".wav", "");
 }

 public String getAssetPath() {
 return mAssetPath;
 }

 public String getName() {
 return mName;
 }
}

Chapter 18 Assets

334

In the constructor, you do a little work to make a presentable name for your sound. First,
you split off the filename using String.split(String). Once you have done that, you use
String.replace(String, String) to strip off the file extension, too.

Next, build up a list of Sounds in BeatBox.loadSounds().

Listing 18.13 Create Sounds (BeatBox.java)
public class BeatBox {
 ...

 private AssetManager mAssets;
 private List<Sound> mSounds = new ArrayList<>();

 public BeatBox(Context context) {
 ...
 }

 private void loadSounds() {
 String[] soundNames;
 try {
 ...
 } catch (IOException ioe) {
 ...
 }

 for (String filename : soundNames) {
 String assetPath = SOUNDS_FOLDER + "/" + filename;
 Sound sound = new Sound(assetPath);
 mSounds.add(sound);
 }
 }

 public List<Sound> getSounds() {
 return mSounds;
 }
}

Then, back in BeatBoxFragment, add code in SoundHolder to bind to a Sound.

Listing 18.14 Bind to Sound (BeatBoxFragment.java)
private class SoundHolder extends RecyclerView.ViewHolder {
 private Button mButton;
 private Sound mSound;

 public SoundHolder(LayoutInflater inflater, ViewGroup container) {
 ...
 }

 public void bindSound(Sound sound) {
 mSound = sound;
 mButton.setText(mSound.getName());
 }
}

Wire up SoundAdapter to a List of Sounds.

Wiring Up Assets for Use

335

Listing 18.15 Hook up to Sound list (BeatBoxFragment.java)

private class SoundAdapter extends RecyclerView.Adapter<SoundHolder> {
 private List<Sound> mSounds;

 public SoundAdapter(List<Sound> sounds) {
 mSounds = sounds;
 }

 ...

 @Override
 public void onBindViewHolder(SoundHolder soundHolder, int position) {
 Sound sound = mSounds.get(position);
 soundHolder.bindSound(sound);
 }

 @Override
 public int getItemCount() {
 return 0;
 return mSounds.size();
 }
}

And then pass in BeatBox’s sounds in onCreateView(…).

Listing 18.16 Pass in Sounds to adapter (BeatBoxFragment.java)

@Override
public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_beat_box, container, false);

 RecyclerView recyclerView = (RecyclerView)view
 .findViewById(R.id.fragment_beat_box_recycler_view);
 recyclerView.setLayoutManager(new GridLayoutManager(getActivity(), 3));
 recyclerView.setAdapter(new SoundAdapter());
 recyclerView.setAdapter(new SoundAdapter(mBeatBox.getSounds()));

 return view;
}

With that, you should see a grid of sound files when you run BeatBox (Figure 18.6).

Chapter 18 Assets

336

Figure 18.6 Finished BeatBox interface

Accessing Assets
You have finished all the work for this chapter. You will develop BeatBox to actually use the content of
your assets in the next chapter.

Before you do, though, let’s discuss a bit more about how assets work.

Your Sound object has an asset file path defined on it. Asset file paths will not work if you try to open
them with a File; you must use them with an AssetManager:

String assetPath = sound.getAssetPath();
InputStream soundData = mAssets.open(assetPath);

This gives you a standard InputStream for the data, which you can use like any other InputStream in
Java.

Some APIs require FileDescriptors instead. (This is what you will use with SoundPool in the next
chapter.) If you need that, you can call AssetManager.openFd(String) instead:

String assetPath = sound.getAssetPath();
// AssetFileDescriptors are different from FileDescriptors,
AssetFileDescriptor assetFd = mAssets.openFd(assetPath);
// but you get can a regular FileDescriptor easily if you need to.
FileDescriptor fd = assetFd.getFileDescriptor();

For the More Curious: Non-Assets?

337

For the More Curious: Non-Assets?
AssetManager has methods called openNonAssetFd(…). You might reasonably ask why a class
dedicated to assets would concern itself with non-assets. We might reasonably answer, “These
aren’t the droids you’re looking for,” so that you might go on believing that you never heard of
openNonAssetFd(…) in the first place.

There is no reason that we know of to ever use this method, so there is no real reason to learn about it.

You did buy our book, though. So we might as well throw this answer out there for fun:

Remember that earlier we said that Android has two systems, assets and resources? Well, the resources
system has a nice big lookup system. But some big resources are too big to fit inside that system. So
these big resources – images and raw sound files, usually – are actually stored in the assets system.
Under the hood, Android opens these things itself using the openNonAsset methods, not all of which
are publicly available.

When would you need to use these? As far as we know, never. And now you know, too.

339

19
Audio Playback with SoundPool

Now that you are ready to go with your assets, it is time to actually play all these .wav files. Android’s
audio APIs are fairly low level for the most part, but there is a tool practically tailor-made for the app
you are writing: SoundPool.

SoundPool can load a large set of sounds into memory and control the maximum number of sounds
that are playing back at any one time. So if your app’s user gets a bit too excited and mashes all the
buttons at the same time, it will not break your app or overtax your phone.

Ready? Time to get started.

Creating a SoundPool
The first step is to create a SoundPool object.

Listing 19.1 Creating a SoundPool (BeatBox.java)
public class BeatBox {
 private static final String TAG = "BeatBox";

 private static final String SOUNDS_FOLDER = "sample_sounds";
 private static final int MAX_SOUNDS = 5;

 private AssetManager mAssets;
 private List<Sound> mSounds;
 private SoundPool mSoundPool;

 public BeatBox(Context context) {
 mAssets = context.getAssets();
 // This old constructor is deprecated, but we need it for
 // compatibility.
 mSoundPool = new SoundPool(MAX_SOUNDS, AudioManager.STREAM_MUSIC, 0);
 loadSounds();
 }

 ...
}

Lollipop introduced a new way of creating a SoundPool using a SoundPool.Builder. However, since
SoundPool.Builder is not available on your minimum-supported API 16, you are using the older
SoundPool(int, int, int) constructor instead.

Chapter 19 Audio Playback with SoundPool

340

The first parameter specifies how many sounds can play at any given time. Here, you pass in 5. If five
sounds are playing and you try to play a sixth one, the SoundPool will stop playing the oldest one.

The second parameter determines the kind of audio stream your SoundPool will play on. Android has
a variety of different audio streams, each of which has its own independent volume settings. This is
why turning down the music does not also turn down your alarms. Check out the documentation for the
AUDIO_* constants in AudioManager to see the other options. STREAM_MUSIC will put you on the same
volume setting as music and games on the device.

And the last parameter? It specifies the quality for the sample rate converter. The documentation says it
is ignored, so you just pass in 0.

Loading Sounds
The next thing to do with your SoundPool is to load it up with sounds. The main benefit of using a
SoundPool over some other methods of playing audio is that SoundPool is responsive: when you tell it
to play a sound, it will play the sound immediately, with no lag.

The trade-off for that is that you have to load sounds into your SoundPool before you play them. Each
sound you load will get its own integer ID. So go ahead and add a mSoundId field to Sound and a
generated getter and setter to keep track of this.

Listing 19.2 Adding sound ID field (Sound.java)

public class Sound {
 private String mAssetPath;
 private String mName;
 private Integer mSoundId;

 ...

 public String getName() {
 return mName;
 }

 public Integer getSoundId() {
 return mSoundId;
 }

 public void setSoundId(Integer soundId) {
 mSoundId = soundId;
 }
}

By making mSoundId an Integer instead of an int, you make it possible to represent the state where a
Sound has no value for mSoundId by assigning it a null value.

Now to load your sounds in. Add a load(Sound) method to BeatBox to load a Sound into your
SoundPool.

Playing Sounds

341

Listing 19.3 Loading sounds into SoundPool (BeatBox.java)

 private void loadSounds() {
 ...
 }

 private void load(Sound sound) throws IOException {
 AssetFileDescriptor afd = mAssets.openFd(sound.getAssetPath());
 int soundId = mSoundPool.load(afd, 1);
 sound.setSoundId(soundId);
 }
}

Calling mSoundPool.load(AssetFileDescriptor, int) loads a file into your SoundPool for later
playback. To keep track of the sound and play it back again (or unload it), mSoundPool.load(…)
returns an int ID, which you stash in the mSoundId field you just defined. And since calling
openFd(String) throws IOException, load(Sound) throws IOException, too.

Now load up all your sounds by calling load(Sound) inside BeatBox.loadSounds().

Listing 19.4 Loading up all your sounds (BeatBox.java)

private void loadSounds() {
 ...

 mSounds = new ArrayList<Sound>();
 for (String filename : soundNames) {
 try {
 String assetPath = SOUNDS_FOLDER + "/" + filename;
 Sound sound = new Sound(assetPath);
 load(sound);
 mSounds.add(sound);
 } catch (IOException ioe) {
 Log.e(TAG, "Could not load sound " + filename, ioe);
 }
 }
}

Run BeatBox to make sure that all the sounds loaded correctly. If they did not, you will see red
exception logs in LogCat.

Playing Sounds
One last step: playing the sounds back. Add the play(Sound) method to BeatBox.

Chapter 19 Audio Playback with SoundPool

342

Listing 19.5 Playing sounds back (BeatBox.java)
 mSoundPool = new SoundPool(MAX_SOUNDS, AudioManager.STREAM_MUSIC, 0);
 loadSounds();
}

public void play(Sound sound) {
 Integer soundId = sound.getSoundId();
 if (soundId == null) {
 return;
 }
 mSoundPool.play(soundId, 1.0f, 1.0f, 1, 0, 1.0f);
}

public List<Sound> getSounds() {
 return mSounds;
}

Before playing your soundId, you check to make sure it is not null. This might happen if the Sound
failed to load.

Once you are sure you have a non-null value, play the sound by calling SoundPool.play(int,
float, float, int, int, float). Those parameters are, respectively: the sound ID, volume on the
left, volume on the right, priority (which is ignored), whether the audio should loop, and playback rate.
For full volume and normal playback rate, you pass in 1.0. Passing in 0 for the looping value says “do
not loop.” (You can pass in -1 if you want it to loop forever. We speculate that this would be incredibly
annoying.)

With that method written, you can play the sound each time one of the buttons is pressed.

Listing 19.6 Playing sound on button press (BeatBoxFragment.java)
private class SoundHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {
 private Button mButton;
 private Sound mSound;

 public SoundHolder(LayoutInflater inflater, ViewGroup container) {
 super(inflater.inflate(R.layout.list_item_sound, parent, false));

 mButton = (Button)itemView.findViewById(R.id.button);
 mButton.setOnClickListener(this);
 }

 public void bindSound(Sound sound) {
 mSound = sound;
 mButton.setText(mSound.getName());
 }

 @Override
 public void onClick(View v) {
 mBeatBox.play(mSound);
 }
}

Press a button, as shown in Figure 19.1, and you should hear a sound played.

Unloading Sounds

343

Figure 19.1 A functioning sound bank

Unloading Sounds
The app works, but you still have some cleanup to do. To be a good citizen, you should clean up
your SoundPool by calling SoundPool.release() when you are done with it. Add a matching
BeatBox.release() method.

Listing 19.7 Releasing your SoundPool (BeatBox.java)
public class BeatBox {
 ...

 public void play(Sound sound) {
 ...
 }

 public void release() {
 mSoundPool.release();
 }

 ...
}

Then, clean it up when you are done with it in BeatBoxFragment.

Chapter 19 Audio Playback with SoundPool

344

Listing 19.8 Releasing your BeatBox (BeatBoxFragment.java)
public class BeatBoxFragment extends Fragment {

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mBeatBox.release();
 }

 ...
}

Go ahead and run your app to make sure it works correctly with your new release() method.

Rotation and Object Continuity
Now you are a good citizen, which is nice. Unfortunately, your app no longer handles rotation
correctly. Try playing the 69_ohm-loko sound and rotating the screen: the sound will stop abruptly. (If
it does not, make sure you have built and run the app with your recent onDestroy() implementation.)

Here is the problem: on rotation, the BeatBoxActivity is destroyed. As this happens,
the FragmentManager destroys your BeatBoxFragment, too. In doing that, it calls
BeatBoxFragment’s waning lifecycle methods: onPause(), onStop(), and onDestroy(). In
BeatBoxFragment.onDestroy(), you call BeatBox.release(), which releases the SoundPool and
stops sound playback.

You have seen how Activity and Fragment instances die on rotation before, and you have solved these
issues using onSaveInstanceState(Bundle). However, that solution will not work this time, because it
relies on saving data out and restoring it using Parcelable data inside a Bundle.

Parcelable, like Serializable, is an API for saving an object out to a stream of bytes. Objects may
elect to implement the Parcelable interface if they are what we will call “stashable” here. Objects
are stashed in Java by putting them in a Bundle, or by marking them Serializable so that they can
be serialized, or by implementing the Parcelable interface. Whichever way you do it, the same idea
applies: you should not be using any of these tools unless your object is stashable.

To illustrate what we mean by “stashable,” imagine watching a television program with a friend. You
could write down the channel you are watching, the volume level, and even the TV you are watching
the program on. Once you do that, even if a fire alarm goes off and the power goes out, you can look at
what you wrote down and get back to watching TV just like you were before.

So the configuration of your TV watching time is stashable. The time you spend watching TV is not,
though: once the fire alarm goes off and the power goes out, that session is gone. You can return and
create a new session just like it, but you will experience an interruption no matter what you do. So the
session is not stashable.

Retaining a fragment

345

Some parts of BeatBox are stashable: everything contained in Sound is stashable, for example.
SoundPool is more like your TV watching session, though. Yes, you can create a new SoundPool that
has all the same sounds as an older one. You can even start playing again right where you left off. You
will always experience a brief interruption, though, no matter what you do. That means that SoundPool
is not stashable.

Non-stashability tends to be contagious. If a non-stashable object is critical to another object’s mission,
that other object is probably not stashable, either. Here, BeatBox has the same mission as SoundPool: to
play back sounds. Therefore, ipso facto, Q.E.D.: BeatBox is not stashable. (Sorry.)

The regular savedInstanceState mechanism preserves stashable data for you, but BeatBox is not
stashable. You need your BeatBox instance to be continuously available as your Activity is created
and destroyed.

What to do?

Retaining a fragment
Fortunately, fragments have a feature that you can use to keep the BeatBox instance alive across a
configuration change: retainInstance. Override BeatBoxFragment.onCreate(…) and set a property
of the fragment.

Listing 19.9 Calling setRetainInstance(true) (BeatBoxFragment.java)
 ...

 public static BeatBoxFragment newInstance() {
 return new BeatBoxFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);

 mBeatBox = new BeatBox(getActivity());
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...

By default, the retainInstance property of a fragment is false. This means it is not retained,
and it is destroyed and re-created on rotation along with the activity that hosts it. Calling
setRetainInstance(true) retains the fragment. When a fragment is retained, the fragment is not
destroyed with the activity. Instead, it is preserved and passed along intact to the new activity.

When you retain a fragment, you can count on all of its instance variables (like mBeatBox) to keep the
same values. When you reach for them, they are simply there.

Run BeatBox again. Play the 69_ohm-loko sound, rotate the device, and confirm that playback
continues unimpeded.

Chapter 19 Audio Playback with SoundPool

346

Rotation and retained fragments
Let’s take a closer look at how retained fragments work. Retained fragments take advantage of the fact
that a fragment’s view can be destroyed and re-created without having to destroy the fragment itself.

During a configuration change, the FragmentManager first destroys the views of the fragments in
its list. Fragment views always get destroyed and re-created on a configuration change for the same
reasons that activity views are destroyed and re-created: If you have a new configuration, then you
might need new resources. Just in case better matching resources are now available, you rebuild the
view from scratch.

Next, the FragmentManager checks the retainInstance property of each fragment. If it is false,
which it is by default, then the FragmentManager destroys the fragment instance. The fragment
and its view will be re-created by the new FragmentManager of the new activity “on the other side”
(Figure 19.2).

Figure 19.2 Default rotation with a UI fragment

On the other hand, if retainInstance is true, then the fragment’s view is destroyed but the fragment
itself is not. When the new activity is created, the new FragmentManager finds the retained fragment
and re-creates its view (Figure 19.3).

Rotation and retained fragments

347

Figure 19.3 Rotation with a retained UI fragment

A retained fragment is not destroyed, but it is detached from the dying activity. This puts the fragment
in a retained state. The fragment still exists, but it is not hosted by any activity (Figure 19.4).

Chapter 19 Audio Playback with SoundPool

348

Figure 19.4 Fragment lifecycle

The retained state is only entered into when two conditions are met:

• setRetainInstance(true) has been called on the fragment.

• The hosting activity is being destroyed for a configuration change (typically rotation).

A fragment is only in the retained state for an extremely brief interval – the time between being
detached from the old activity and being reattached to the new activity that is immediately created.

For the More Curious: Whether to Retain
Retained fragments: pretty nifty, right? Yes! They are indeed nifty. They appear to solve all the
problems that pop up from activities and fragments being destroyed on rotation. When the device
configuration changes, you get the most appropriate resources by creating a brand-new view, and you
have an easy way to retain data and objects.

You may wonder why you would not retain every fragment or why fragments are not retained by
default. In general, we do not recommend using this mechanism unless you absolutely need to, for a
couple of reasons.

For the More Curious: More on Rotation Handling

349

The first reason is simply that retained fragments are more complicated than unretained fragments.
When something goes wrong with them, it takes longer to get to the bottom of what went wrong.
Programs are always more complicated than you want them to be, so if you can get by without this
complication, you are better off.

The other reason is that fragments that handle rotation using saved instance state handle all lifecycle
situations, but retained fragments only handle the case when an activity is destroyed for a configuration
change. If your activity is destroyed because the OS needs to reclaim memory, then all your retained
fragments are destroyed, too, which may mean that you lose some data.

For the More Curious: More on Rotation Handling
The onSaveInstanceState(Bundle) is another tool you have used to handle rotation. In fact,
if your app does not have any problems with rotation, it is because the default behavior of
onSaveInstanceState(…) is working.

Your CriminalIntent app is a good example. CrimeFragment is not retained, but if you make changes
to the crime’s title or toggle the checkbox, the new states of these View objects are automatically saved
out and restored after rotation. This is what onSaveInstanceState(…) was designed to do – save out
and restore the UI state of your app.

The major difference between overriding Fragment.onSaveInstanceState(…) and retaining
the fragment is how long the preserved data lasts. If it only needs to last long enough to survive
configuration changes, then retaining the fragment is much less work. This is especially true when
preserving an object; you do not have to worry about whether the object implements Serializable.

However, if you need the data to last longer, retaining the fragment is no help. If an activity is
destroyed to reclaim memory after the user has been away for a while, then any retained fragments are
destroyed just like their unretained brethren.

To make this difference clearer, think back to your GeoQuiz app. The rotation problem you faced was
that the question index was being reset to zero on rotation. No matter what question the user was on,
rotating the device sent them back to the first question. You saved out the index data and then read it
back in to ensure the user would see the right question.

GeoQuiz did not use fragments, but imagine a redesigned GeoQuiz with a QuizFragment hosted by
QuizActivity. Should you override Fragment.onSaveInstanceState(…) to save out the index or
retain QuizFragment and keep the variable alive?

Figure 19.5 shows the three different lifetimes you have to work with: the life of the activity object
(and its unretained fragments), the life of a retained fragment, and the life of the activity record.

Chapter 19 Audio Playback with SoundPool

350

Figure 19.5 Three lifetimes

The lifetime of the activity object is too short. That is the source of the rotation problem. The index
definitely needs to outlive the activity object.

If you retain QuizFragment, then the index will exist for the lifetime of this retained fragment. When
GeoQuiz has only five questions, retaining QuizFragment is the easier choice and requires less code.
You would initialize the index as a member variable and then call setRetainInstance(true) in
QuizFragment.onCreate(…).

Listing 19.10 Retaining of hypothetical QuizFragment
public class QuizFragment extends Fragment {

 ...

 private int mCurrentIndex = 0;

 ...

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }

 ...
}

For the More Curious: More on Rotation Handling

351

By tying the index to the lifetime of the retained fragment, it survives the destruction of the
activity object and solves the problem of resetting the index on rotation. However, as you can see
in Figure 19.5, retaining QuizFragment does not preserve the value of the index across a process
shutdown, which may happen if the user leaves the app for a while and the activity and the retained
fragment are destroyed to reclaim memory.

For only five questions, having users start over may be an acceptable choice. But what if GeoQuiz had
100 questions? Users would rightly be irritated at returning to the app and having to start again at the
first question. You need the state of the index to survive for the lifetime of the activity record. To make
this happen, you would save out the index in onSaveInstanceState(…). Then, if users left the app for
a while, they would always be able to pick up where they left off.

Therefore, if you have something in your activity or fragment that should last a long time, then you
should tie it to the activity record’s lifetime by overriding onSaveInstanceState(Bundle) to save its
state so that you can restore it later.

353

20
Styles and Themes

Now that BeatBox sounds intimidating, it is time to make it look intimidating, too.

So far, BeatBox sticks with the default user interface styles. The buttons are stock. The colors are
stock. The app does not stand out. It does not have its own brand.

We can restyle it. We have the technology.

Figure 20.1 shows the better, stronger, faster – or at least more stylish – BeatBox.

Figure 20.1 A themed BeatBox

Color Resources
Begin by defining a few colors that you will use throughout the chapter. Create a colors.xml file in
res/values.

Chapter 20 Styles and Themes

354

Listing 20.1 Defining a few colors (res/values/colors.xml)
<resources>
 <color name="red">#F44336</color>
 <color name="dark_red">#C3352B</color>
 <color name="gray">#607D8B</color>
 <color name="soothing_blue">#0083BF</color>
 <color name="dark_blue">#005A8A</color>
</resources>

Color resources are a convenient way to specify color values in one place that you reference throughout
your application.

Styles
Now, update the buttons in BeatBox with a style. A style is a set of attributes that you can apply to a
widget.

Navigate to res/values/styles.xml and add a style named BeatBoxButton. (When you created
BeatBox, your new project should have come with a built-in styles.xml file. If your project did not,
create the file.)

Listing 20.2 Adding a style (res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 </style>

 <style name="BeatBoxButton">
 <item name="android:background">@color/dark_blue</item>
 </style>

</resources>

Here, you create a style called BeatBoxButton. This style defines a single attribute,
android:background, and sets it to a dark blue color. You can apply this style to as many widgets as
you like and then update the attributes of all of those widgets in this one place.

Now that the style is defined, apply BeatBoxStyle to your buttons in BeatBox.

Listing 20.3 Using a style (res/layout/list_item_sound.xml)
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 style="@style/BeatBoxButton"
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 tools:text="Sound name"/>

Run BeatBox and you will see that all of your buttons now have a dark blue background color
(Figure 20.2).

Style inheritance

355

Figure 20.2 BeatBox with button styles

You can create a style for any set of attributes that you want to reuse in your application. Pretty handy.

Style inheritance
Styles also support inheritance. A style can inherit and override attributes from some other style.

Create a new style called BeatBoxButton.Strong that inherits from BeatBoxButton but also bolds the
text.

Listing 20.4 Inheriting from BeatBoxButton (res/layout/styles.xml)
...

<style name="BeatBoxButton">
 <item name="android:background">@color/dark_blue</item>
</style>

<style name="BeatBoxButton.Strong">
 <item name="android:textStyle">bold</item>
</style>

...

(While you could have added the android:textStyle attribute to the BeatBoxButton style directly,
you created BeatBoxButton.Strong to demonstrate style inheritance.)

The naming convention here is a little strange. When you name your style BeatBoxButton.Strong, you
are saying that your theme inherits attributes from BeatBoxButton.

Chapter 20 Styles and Themes

356

There is also an alternative inheritance naming style. You can specify a parent when declaring the
style:

<style name="BeatBoxButton">
 <item name="android:background">@color/dark_blue</item>
</style>

<style name="StrongBeatBoxButton" parent="@style/BeatBoxButton">
 <item name="android:textStyle">bold</item>
</style>

Stick with the BeatBoxButton.Strong style in BeatBox.

Update list_item_sound.xml to use your newer, stronger style.

Listing 20.5 Using a bolder style (res/layout/list_item_sound.xml)
 <Button xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 style="@style/BeatBoxButton.Strong"
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 tools:text="Sound name"/>

Run BeatBox and verify that your button text is indeed bold, as in Figure 20.3.

Figure 20.3 A bolder BeatBox

Themes

357

Themes
Styles are cool. They allow you to define a set of attributes in one place and then apply them to as
many widgets as you want. The downside of styles is that you have to apply them to each and every
widget, one at a time. What if you had a more complex app with lots of buttons in lots of layouts?
Adding your BeatBoxButton style to them all could be a huge task.

That is where themes come in. Themes take styles a step further: they allow you to define a set of
attributes in one place, like a style – but then those attributes are automatically applied throughout your
app. Theme attributes can store a reference to concrete resources, such as colors, and they can also
store a reference to styles. In a theme, you can say, for example, “I want all buttons to use this style.”
And you do not then need to find every button widget and tell it to use the theme.

Modifying the theme
When you created BeatBox, it was given a default theme. Navigate to the AndroidManifest.xml and
look at the theme attribute on the application tag.

Listing 20.6 BeatBox’s theme (AndroidManifest.xml)
 <manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.beatbox" >

 <application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme">
 ...
 </application>

 </manifest>

The theme attribute is pointing to a theme called AppTheme. AppTheme was declared in the styles.xml
file that you modified earlier.

As you can see, a theme is also a style. But themes specify different attributes than a style does (as you
will see in a moment). Themes are also given superpowers by being declared in the manifest. This is
what causes the theme to be applied across the entire app automatically.

Navigate to the definition of the AppTheme theme by Command-clicking (or Ctrl-clicking on Windows)
on @style/AppTheme. Android Studio will take you to res/values/styles.xml.

Listing 20.7 BeatBox’s AppTheme (res/values/styles.xml)
 <resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

 </style>

 <style name="BeatBoxButton">
 <item name="android:background">@color/dark_blue</item>
 </style>

 ...

 </resources>

Chapter 20 Styles and Themes

358

(As of this writing, when new projects are created in Android Studio, they are given an AppCompat
theme. If you do not have an AppCompat theme in your solution, follow the instructions from
Chapter 13 to convert BeatBox to use the AppCompat library.)

AppTheme is inheriting attributes from Theme.AppCompat.Light.DarkActionBar. Within AppTheme,
you can add or override additional values from the parent theme.

The AppCompat library comes with three main themes:

• Theme.AppCompat – a dark theme

• Theme.AppCompat.Light – a light theme

• Theme.AppCompat.Light.DarkActionBar – a light theme with a dark toolbar

Change the parent theme to Theme.AppCompat to give BeatBox a dark theme as its base.

Listing 20.8 Changing to a dark theme (res/values/styles.xml)

 <resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">

 </style>

 ...

 </resources>

Run BeatBox to see your new dark theme (Figure 20.4).

Adding Theme Colors

359

Figure 20.4 A dark BeatBox

Adding Theme Colors
With the base theme squared away, it is time to customize the attributes of BeatBox’s AppTheme.

In the styles.xml file, define three attributes on your theme.

Listing 20.9 Setting theme attributes (res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat.Light.DarkActionBar">
 <item name="colorPrimary">@color/red</item>
 <item name="colorPrimaryDark">@color/dark_red</item>
 <item name="colorAccent">@color/gray</item>
 </style>

 ...

</resources>

Here, you define three theme attributes. These theme attributes look similar to the style attributes
that you set up earlier, but they specify different properties. Style attributes specify properties for an
individual widget, such as the textStyle that you used to bold the button text. Theme attributes have a
larger scope: they are properties that are set on the theme that any widget can access. For example, the
toolbar will look at the colorPrimary attribute on the theme to set its background color.

Chapter 20 Styles and Themes

360

These three attributes have a large impact. The colorPrimary attribute is the primary color for your
app’s brand. This color will be used as the toolbar’s background as well as in a few other places.

colorPrimaryDark is used to color the status bar, which shows up at the top of the screen. Typically
colorPrimaryDark will be a slightly darker version of your colorPrimary color. Status bar theming is
a feature that was added to Android in Lollipop. Keep in mind that the status bar will be black on older
devices (no matter what the theme specifies). Figure 20.5 shows the effect of these two theme attributes
on BeatBox.

Figure 20.5 BeatBox with AppCompat color attributes

Finally, you set colorAccent to a gray color. colorAccent should contrast with your colorPrimary
attribute; it is used to tint some widgets, such as an EditText.

You will not see the colorAccent attribute affect BeatBox because Buttons do not support tinting. You
still specify colorAccent because it is a good idea to think about these three color attributes together.
These colors should mesh and the default colorAccent attribute from your parent theme may clash
with the other colors that you specified. This sets you up well for any future additions.

Run BeatBox to see the new colors in action. Your app should look like Figure 20.5.

Overriding Theme Attributes
Now that the colors are worked out, it is time to dive in and see what theme attributes exist that you
can override. Be warned, theme spelunking is tough. There is little to no documentation about which
attributes exist, which ones you can override yourself, and even what the attributes do. You are going
off the map here. It is a good thing you brought along your guide (this book).

Your first goal is to change the background color of BeatBox by altering the theme. While you could
navigate to res/layout/fragment_beat_box.xml and manually set the android:background attribute
on your RecyclerView – and then repeat the process in every other fragment and activity layout file

Theme spelunking

361

that might exist – this would be wasteful. Wasteful of your time, obviously, but also wasteful of app
effort.

The theme is always setting a background color. By setting another color on top of that, you are doing
extra work. You are also writing code that is hard to maintain by duplicating the background attribute
throughout the app.

Theme spelunking
Instead, you want to override the background color attribute on your theme. To discover the name of
this attribute, take a look at how this attribute is set by your parent theme: Theme.AppCompat.

You might be thinking, “How will I know which attribute to override if I don’t know its name?” You
won’t. You will read the names of the attributes and you will think, “That sounds right.” Then you will
override that attribute, run the app, and hope that you chose wisely.

What you want to do is find the ultimate ancestor of your theme: your theme’s great-great-great …
well, who-knows-how-great grandparent. To do this, you will keep on navigating up to one parent after
another until you find a theme that is outside of the AppCompat library – maybe even a theme with no
parent at all.

Open your styles.xml file and Command-click (or Ctrl-click on Windows) on Theme.AppCompat.
Let’s see how deep the rabbit hole goes.

(If you are unable to navigate through your theme attributes directly in Android Studio, or you want
to do this outside of Android Studio, you can find Android’s theme sources in: your-SDK-directory/
platforms/android-21/data/res/values directory.)

At the time of this writing, you are brought to a very large file with a focus on this line:

 <style name="Theme.AppCompat" parent="Base.Theme.AppCompat" />

The theme, Theme.AppCompat inherits attributes from Base.Theme.AppCompat. Interestingly,
Theme.AppCompat does not override any attributes itself. It just points to its parent.

Command-click on Base.Theme.AppCompat. Android Studio will tell you that this theme is resource
qualified. There are a few different versions of this theme depending on the version of Android that
you are on.

Choose the values-v14/values.xml version and you will be brought to Base.Theme.AppCompat’s
definition (Figure 20.6).

Figure 20.6 Choosing the v14 parent

(You chose the v14 version because BeatBox supports API level 16 and higher. If you had chosen the
v21 version, you might have come across features that were added in API level 21. See the challenge at
the end of the chapter for more information about this.)

Chapter 20 Styles and Themes

362

<style name="Base.Theme.AppCompat" parent="Base.V14.Theme.AppCompat">
 <item name="android:actionModeCutDrawable">?actionModeCutDrawable</item>
 <item name="android:actionModeCopyDrawable">?actionModeCopyDrawable</item>
 <item name="android:actionModePasteDrawable">?actionModePasteDrawable</item>
 <item name="android:actionModeSelectAllDrawable">?actionModeSelectAllDrawable</item>
 <item name="android:actionModeShareDrawable">?actionModeShareDrawable</item>
</style>

There are a few attributes in this theme but nothing looks like it will meet your goal: changing the
background color. Navigate to Base.V14.Theme.AppCompat.

<style name="Base.V14.Theme.AppCompat" parent="Base.V11.Theme.AppCompat" />

Base.V14.Theme.AppCompat is another theme that exists only for its name and does not override any
attributes. Continue along to its parent theme: Base.V11.Theme.AppCompat.

 <style name="Base.V11.Theme.AppCompat" parent="Base.V7.Theme.AppCompat" />

Another empty theme. Move to its parent.

<style name="Base.V7.Theme.AppCompat" parent="Platform.AppCompat">
 <item name="windowActionBar">true</item>
 <item name="windowActionBarOverlay">false</item>

 ...
</style>

You are getting closer. Base.V7.Theme.AppCompat has many attributes, but it is still not quite what you
want. Once you break free of the AppCompat themes, you will find many more attributes. Navigate to
Platform.AppCompat. You will see that this is resource qualified. Choose the values-v11/values.xml
version.

<style name="Platform.AppCompat" parent="android:Theme.Holo">
 <item name="android:windowNoTitle">true</item>
 <item name="android:windowActionBar">false</item>
 <item name="buttonBarStyle">?android:attr/buttonBarStyle</item>
 <item name="buttonBarButtonStyle">?android:attr/buttonBarButtonStyle</item>
 <item name="selectableItemBackground">?android:attr/selectableItemBackground</item>
 ...
</style>

Finally, here you see that the parent of the Platform.AppCompat theme is android:Theme.Holo.

Notice that the Holo theme is not referenced just as Theme.Holo. Instead it has the android namespace
in front of it.

You can think of the AppCompat library as something that lives within your own app. When you
build your project, you include the AppCompat library and it brings along a bunch of Java and XML
files. Those files are just like the files that you wrote yourself. If you want to refer to something in the
AppCompat library, you do it directly. You would just write Theme.AppCompat, because those files
exist in your app.

Theme spelunking

363

Themes that exist in the Android OS, like Theme.Holo, have to be declared with the namespace that
points to their location. The AppCompat library uses android:Theme.Holo because the Holo theme
exists in the Android OS.

Navigate to android:Theme.Holo.

<style name="Theme.Holo">
 <item name="colorForeground">@color/bright_foreground_holo_dark</item>
 <item name="colorForegroundInverse">…</item>
 <item name="colorBackground">@color/background_holo_dark</item>
 <item name="colorBackgroundCacheHint">…</item>
 <item name="disabledAlpha">0.5</item>
 <item name="backgroundDimAmount">0.6</item>
 ...
</style>

You have finally arrived. Here you see all of the attributes that you can override in your theme. You can
of course navigate to Theme.Holo’s parent: Theme, but this is not necessary. The Holo theme overrides
all of the attributes that you will need to use.

Right at the top, colorBackground is declared. It sounds like this attribute is the background color for
the theme.

<style name="Theme.Holo">
 <item name="colorForeground">@color/bright_foreground_holo_dark</item>
 <item name="colorForegroundInverse">…</item>
 <item name="colorBackground">@color/background_holo_dark</item>

 ...
</style>

This is the attribute that you want to override in BeatBox. Navigate back to your styles.xml file and
override the colorBackground attribute.

Listing 20.10 Setting the window background (res/values/styles.xml)

<style name="AppTheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/red</item>
 <item name="colorPrimaryDark">@color/dark_red</item>
 <item name="colorAccent">@color/gray</item>

 <item name="android:colorBackground">@color/soothing_blue</item>
</style>

Notice that you must use the android namespace when overriding this attribute, because
colorBackground is declared in the Android OS.

Run BeatBox, scroll down to the bottom of your recycler view and verify that the background, where it
is not covered with a button, is a soothing blue, as in Figure 20.7.

Chapter 20 Styles and Themes

364

Figure 20.7 BeatBox with a themed background

The steps that you just went through to find the colorBackground attribute are the same steps that
every Android developer takes when modifying an app’s theme. You will not find much documentation
on these attributes. Most people go straight to the source to see what is available.

To recap, you navigated through the following themes:

• Theme.AppCompat

• Base.Theme.AppCompat

• Base.V14.Theme.AppCompat

• Base.V11.Theme.AppCompat

• Base.V7.Theme.AppCompat

• Platform.AppCompat

• android:Theme.Holo

You navigated through the theme hierarchy until you arrived at one of the Android OS’s themes
(outside of the AppCompat library). As you become more familiar with your theme options, you may
opt to skip ahead to the appropriate Android theme in the future. But it is nice to follow the hierarchy
so you can see your theme’s roots.

Be aware that this theme hierarchy may change over time. But the task of walking the hierarchy will
not. You follow your theme hierarchy until you find the attribute that you want to override.

Modifying Button Attributes

365

Modifying Button Attributes
Earlier you customized the buttons in BeatBox by manually setting a style attribute in the res/
layout/list_item_sound.xml file. If you have a more complex app, with buttons throughout many
fragments, setting a style attribute on each and every button does not scale well. You can take your
theme a step further by defining a style in your theme for every button in your app.

Before adding a button style to your theme, remove the style attribute from your res/layout/
list_item_sound.xml file.

Listing 20.11 Be gone! We have a better way (res/layout/
list_item_sound.xml)
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 style="@style/BeatBoxButton.Strong"
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 tools:text="Sound name"/>

Run BeatBox and verify that your buttons are back to the old, bland look.

Navigate back to the Theme.Holo definition and look for a group of button attributes.

<style name="Theme.Holo">
 ...

 <!-- Button styles -->
 <item name="buttonStyle">@style/Widget.Holo.Button</item>

 <item name="buttonStyleSmall">@style/Widget.Holo.Button.Small</item>
 <item name="buttonStyleInset">@style/Widget.Holo.Button.Inset</item>

 ...
</style>

Notice the attribute named buttonStyle. This is the style of any normal button within your app.

The buttonStyle attribute points to a style resource rather than a value. When you updated the
colorBackground attribute, you passed in a value: the color. In this case, buttonStyle should point to
a style. Navigate to Widget.Holo.Button to see the button style.

<style name="Widget.Holo.Button" parent="Widget.Button">
 <item name="background">@drawable/btn_default_holo_dark</item>
 <item name="textAppearance">?attr/textAppearanceMedium</item>
 <item name="textColor">@color/primary_text_holo_dark</item>
 <item name="minHeight">48dip</item>
 <item name="minWidth">64dip</item>
</style>

Every Button that you use in BeatBox is given these attributes.

Duplicate what happens in Android’s own theme in BeatBox. Change the parent of BeatBoxButton to
inherit from the existing button style. Also, remove your BeatBoxButton.Strong style from earlier.

Chapter 20 Styles and Themes

366

Listing 20.12 Creating a button style (res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat">dark_blue
 <item name="colorPrimary">@color/red</item>
 <item name="colorPrimaryDark">@color/dark_red</item>
 <item name="colorAccent">@color/gray</item>

 <item name="android:colorBackground">@color/soothing_blue</item>
 </style>

 <style name="BeatBoxButton" parent="android:style/Widget.Holo.Button">
 <item name="android:background">@color/dark_blue</item>
 </style>

 <style name="BeatBoxButton.Strong">
 <item name="android:textStyle">bold</item>
 </style>

</resources>

You specified a parent of android:style/Widget.Holo.Button. You want your button to inherit all of
the properties that a normal button would receive and then selectively modify attributes.

If you do not specify a parent theme for BeatBoxButton, you will notice that your buttons devolve into
something that does not look like a button at all. Properties you expect to see, such as the text centered
in the button, will be lost.

Now that you have fully defined BeatBoxButton, it is time to use it. Look back at the buttonStyle
attribute that you found earlier when digging through Android’s themes. Duplicate this attribute in your
own theme.

Listing 20.13 Using the BeatBoxButton style (res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat">
 <item name="colorPrimary">@color/red</item>
 <item name="colorPrimaryDark">@color/dark_red</item>
 <item name="colorAccent">@color/gray</item>

 <item name="android:colorBackground">@color/soothing_blue</item>
 <item name="android:buttonStyle">@style/BeatBoxButton</item>
 </style>

 <style name="BeatBoxButton" parent="android:style/Widget.Holo.Button">
 <item name="android:background">@color/dark_blue</item>
 </style>

</resources>

You are now overriding the buttonStyle attribute from Android’s themes and substituting your own
style: BeatBoxButton.

For the More Curious: More on Style Inheritance

367

Run BeatBox and notice that all of your buttons are dark blue (Figure 20.8). You changed the look
of every normal button in BeatBox without modifying any layout files directly. Behold the power of
theme attributes in Android!

Figure 20.8 The completely themed BeatBox

As you press the buttons, you will notice that the buttons do not change when you press them. There is
no style change for the pressed state. In the next chapter, you will fix this issue and make these buttons
really shine.

For the More Curious: More on Style Inheritance
The description of style inheritance earlier in the chapter does not explain the full story. You may
have noticed a switch in inheritance style as you were exploring the theme hierarchy. The AppCompat
themes used the name of the theme to indicate inheritance until you arrive at the Platform.AppCompat
theme.

<style name="Platform.AppCompat" parent="android:Theme.Holo">
 ...
</style>

Here, the inheritance naming style changes to the more explicit parent attribute style. Why?

Specifying the parent theme in the theme name only works for themes that exist in the same package.
So you will see the Android OS themes use the theme name inheritance style most of the time, and you
will see the AppCompat library do the same. But once the AppCompat library crosses over to a parent
outside of itself, the explicit parent attribute is used.

Chapter 20 Styles and Themes

368

In your own applications, it is a good idea to follow the same convention. Specify your theme parent in
the name of your theme if you are inheriting from one of your own themes. If you inherit from a style
or theme in the Android OS, explicitly specify the parent attribute.

For the More Curious: Accessing Theme Attributes
Once attributes are declared in your theme, you can access them in XML or in code.

To access a theme attribute in XML, you use the notation that you saw on the divider attribute in
Chapter 17. When referencing a concrete value in XML, such as a color, you use the @ notation.
@color/gray points to a specific resource.

When referencing a resource in the theme, you use the ? notation.

<Button xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/button"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 android:background="?attr/colorAccent"
 tools:text="Sound name"/>

The ? notation says to use the resource that the colorAccent attribute on your theme points to. In your
case, this is the gray color that you defined in your colors.xml file.

You can also use theme attributes in code, although it is much more verbose.

Resources.Theme theme = getActivity().getTheme();
int[] attrsToFetch = { R.attr.colorAccent };
TypedArray a = theme.obtainStyledAttributes(R.style.AppTheme, attrsToFetch);
int accentColor = a.getInt(0, 0);
a.recycle();

On the Theme object, you ask to resolve the attribute R.attr.colorAccent that is defined in your
AppTheme: R.style.AppTheme. This call returns a TypedArray, which holds your data. On the
TypedArray, you ask for an int value to pull out the accent color. From here, you can use that color to
change the background of a button, for example.

The toolbar and buttons in BeatBox are doing exactly this to style themselves based on your theme
attributes.

Challenge: An Appropriate Base Theme
When you created BeatBoxButton, you inherited attributes from android:style/
Widget.Holo.Button. While inheriting from the Holo theme works, you are not taking advantage of
the latest theme available.

In Android 5.0 (Lollipop), the material theme was released. This theme makes changes to various
properties of your button, including the font size. It is a good idea to take advantage of this new look on
a device that supports the material theme.

Your challenge is to create a resource-qualified version of your styles.xml file: values-v21/
styles.xml. Next, create two versions of your BeatBoxButton style. One should inherit attributes from
Widget.Holo.Button, and the other from Widget.Material.Button.

369

21
XML Drawables

Now that BeatBox has been themed it is time to do something about those buttons.

Currently, the buttons do not show any kind of response when you press on them, and they are just blue
boxes. In this chapter, you will use XML drawables to take BeatBox to the next level (Figure 21.1).

Figure 21.1 BeatBox makeover

Android calls anything that is intended to be drawn to the screen a drawable, whether it is an abstract
shape, a clever bit of code that subclasses the Drawable class, or a bitmap image. You have already
seen one kind of drawable: BitmapDrawable, which wraps an image. In this chapter, you will see a few
more kinds of drawables: state list drawables, shape drawables, and layer list drawables. All three are
defined in XML files, so we group them together in the broader category of XML drawables.

Making Uniform Buttons
Before creating any XML drawables, modify list_item_sound.xml.

Chapter 21 XML Drawables

370

Listing 21.1 Spacing the buttons out (res/layout/list_item_sound.xml)

<Button xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/list_item_sound_button"
 android:layout_width="match_parent"
 android:layout_height="120dp"
 tools:text="Sound name"/>

<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_margin="8dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <Button
 android:id="@+id/list_item_sound_button"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:layout_gravity="center"
 tools:text="Sound name"/>
</FrameLayout>

You gave each button a width and height of 100dp so that when the buttons are circles later on they will
not be skewed.

Your recycler view will always show three columns, no matter what the screen size is. If there is extra
room, the recycler view will stretch those columns to fit the device. You do not want the recycler
view to stretch your buttons, so you wrapped your buttons in a frame layout. The frame layout will be
stretched and the buttons will not.

Run BeatBox and you will see that your buttons are all the same size and have some space between
them (Figure 21.2).

Shape Drawables

371

Figure 21.2 Spaced-out buttons

Shape Drawables
Now, make your buttons round with a ShapeDrawable. Since XML drawables are not density specific,
they are placed in the default drawable folder instead of a density-specific one.

In the Project tool window, create a new file in res/drawable called button_beat_box_normal.xml.
(Why is this one “normal”? Because soon it will have a not-so-normal friend.)

Listing 21.2 Making a round shape drawable (res/drawable/
button_beat_box_normal.xml)
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="oval">

 <solid
 android:color="@color/dark_blue"/>

</shape>

This file creates an oval shape drawable that is filled in with a dark blue color. There are additional
customization options with shape drawables, including rectangles, lines, and gradients. Check out
the documentation at http://developer.android.com/guide/topics/resources/drawable-
resource.html for details.

Apply button_beat_box_normal as the background for your buttons.

Chapter 21 XML Drawables

372

Listing 21.3 Modifying the background drawable (res/values/styles.xml)
<resources>

 <style name="AppTheme" parent="Theme.AppCompat">
 ...
 </style>

 <style name="BeatBoxButton" parent="android:style/Widget.Holo.Button">
 <item name="android:background">@color/dark_blue</item>
 <item name="android:background">@drawable/button_beat_box_normal</item>
 </style>

</resources>

Run BeatBox. Your buttons are now nice circles (Figure 21.3).

Figure 21.3 Circle buttons

Press a button. You will hear the sound, but the button will not change its appearance. It would be
better if the button looked different once it was pressed.

State List Drawables
To fix this, first define a new shape drawable that will be used for the pressed state of the button.

Create button_beat_box_pressed.xml in res/drawable. Make this pressed drawable the same as the
normal version but with a red background color.

State List Drawables

373

Listing 21.4 Defining a pressed shape drawable (res/drawable/
button_beat_box_pressed.xml)

<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="oval">

 <solid
 android:color="@color/red"/>

</shape>

Next, you are going to use this pressed version when the user presses the button. To do this, you will
make use of a state list drawable.

A state list drawable is a drawable that points to other drawables based on the state of something. A
button has a pressed and an unpressed state. You will use a state list drawable to specify one drawable
as the background when pressed and a different drawable when not pressed.

Define a state list drawable in your drawable folder.

Listing 21.5 Creating a state list drawable (res/drawable/
button_beat_box.xml)

<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/button_beat_box_pressed"
 android:state_pressed="true"/>
 <item android:drawable="@drawable/button_beat_box_normal" />
</selector>

Now, modify your button style to use this new state list drawable as the button background.

Listing 21.6 Applying a state list drawable (res/values/styles.xml)

<resources>

 <style name="AppTheme" parent="Theme.AppCompat">
 ...
 </style>

 <style name="BeatBoxButton" parent="android:style/Widget.Holo.Button">
 <item name="android:background">@drawable/button_beat_box_normal</item>
 <item name="android:background">@drawable/button_beat_box</item>
 </style>

</resources>

When the state of the button is pressed, button_beat_box_pressed will be used as the background.
Otherwise, button_beat_box_normal will be the background of the button.

Run BeatBox and press a button. The button’s background changes (Figure 21.4). Pretty slick, right?

Chapter 21 XML Drawables

374

Figure 21.4 BeatBox, now with a pressed button state

State list drawables are a handy customization tool. Many other states are also supported including
disabled, focused, and activated. Check out the documentation at http://developer.android.com/
guide/topics/resources/drawable-resource.html#StateList for details.

Layer List Drawables
BeatBox is looking good. You now have round buttons and they visually respond to presses. Time for
something a little more advanced.

Layer list drawables allow you to combine two XML drawables into one. Armed with this tool, add a
dark ring around your button when in the pressed state.

Layer List Drawables

375

Listing 21.7 Using a layer list drawable (res/drawable/
button_beat_box_pressed.xml)

<layer-list xmlns:android="http://schemas.android.com/apk/res/android">
 <item>
 <shape
 android:shape="oval">

 <solid
 android:color="@color/red"/>
 </shape>
 </item>
 <item>
 <shape
 android:shape="oval">

 <stroke
 android:width="4dp"
 android:color="@color/dark_red"/>

 </shape>
 </item>
</layer-list>

You specified two drawables in this layer list drawable. The first drawable is a red circle, as it was
before this change. The second drawable will be drawn on top of the first. In the second drawable, you
specified another oval with a stroke of 4dp. This will create a ring of dark red.

These two drawables combined form the layer list drawable. You can combine more than two
drawables with a layer list to make something even more complex.

Run BeatBox and press on a button or two. You will see a nice ring around the pressed interface
(Figure 21.5). Even slicker.

Chapter 21 XML Drawables

376

Figure 21.5 BeatBox complete

With the layer list drawable addition, BeatBox is now complete. Remember how plain BeatBox used to
look? You now have something special and uniquely identifiable. Making your app a pleasure to look
at makes it fun to use, and that will pay off in popularity.

For the More Curious: Why Bother with XML
Drawables?
You will always want a pressed state for your buttons, so state list drawables are a critical component
of any Android app. But what about shape drawables and layer list drawables? Should you use them?

XML drawables are flexible. You can use them for many purposes and you can easily update them in
the future. With a combination of layer list drawables and shape drawables, you can create complex
backgrounds without using an image editor. If you decide to change the color scheme in BeatBox,
updating the colors in an XML drawable is easy.

In this chapter, you defined your XML drawables in the drawable directory with no resource qualifiers
for the screen density. This is because XML drawables are density independent. With a standard
background that is an image, you will typically create multiple versions of that same image in different
densities so that the image will look crisp on most devices. XML drawables only need to be defined
once and will look crisp at any screen density.

For the More Curious: 9-Patch Images
Sometimes (or maybe often), you will fall back to regular old image files for your button backgrounds.
But what happens to those image files when your button can be displayed at many different sizes?

For the More Curious: 9-Patch Images

377

If the width of the button is greater than the width of its background image, the image just stretches,
right? Is that always going to look good?

Uniformly stretching your background image will not always look right. Sometimes you need more
control over how the image will stretch.

This section will convert BeatBox to use a 9-patch image as the background for the buttons. First,
list_item_sound.xml should be modified to allow the button size to change based on the available
space.

Listing 21.8 Let those buttons stretch (res/layout/list_item_sound.xml)
<FrameLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_margin="8dp"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content">

 <Button
 android:id="@+id/list_item_sound_button"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:layout_gravity="center"
 tools:text="Sound name"/>
</FrameLayout>

Now the buttons will take up the available space, leaving an 8dp margin. The image in Figure 21.6,
with a snazzy folded corner and shadow, will be used as the new button background for BeatBox.

Figure 21.6 A new button background image (res/drawable-xxhdpi/
ic_button_beat_box_default.png)

In the solutions for this chapter (see the section called “Adding an Icon” in Chapter 2), you can find
this image along with a pressed version in the xxhdpi drawable folder. Copy these two images into
your project’s drawable-xxhdpi folder and apply them as your button background by modifying
button_beat_box.xml.

Listing 21.9 Applying the new button background images (res/drawable/
button_beat_box.xml)
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:drawable="@drawable/ic_button_beat_box_pressed"
 android:state_pressed="true"/>
 <item android:drawable="@drawable/ic_button_beat_box_default" />
</selector>

Chapter 21 XML Drawables

378

Running BeatBox, you will see the new button background (Figure 21.7).

Figure 21.7 BeastBox

Whoa. That looks… bad.

Why does it look bad? Android is uniformly stretching ic_beat_box_button.png, including the dog-
eared edge and the rounded corners. It would look better if you could specify which parts of the image
to stretch and which parts not to stretch. Enter 9-patch images.

A 9-patch image file is specially formatted so that Android knows which portions can and cannot be
scaled. Done properly, this ensures that the edges and corners of your background remain consistent
with the image as it was created.

Why are they called 9-patches? A 9-patch breaks your image into a 3 x 3 grid – a grid with 9 sections,
or patches. The corners of the grid remain unscaled, the sides are only scaled in one dimension, and the
center is scaled in both dimensions, as shown in Figure 21.8.

For the More Curious: 9-Patch Images

379

Figure 21.8 How a 9-patch scales

A 9-patch image is like a regular PNG image in everything except two aspects: its filename ends with
.9.png, and it has an additional one-pixel border around the edge. This border is used to specify the
location of the center square of the 9-patch. Border pixels are drawn black to indicate the center and
transparent to indicate the edges.

You can create a 9-patch using any image editor, with the draw9patch tool provided as part of the
Android SDK, or using Android Studio. As of this writing, Android Studio’s 9-patch editor can be
flaky. If you need to use the draw9patch tool, you can find it in the tools directory of your SDK
installation.

First, convert your two new background images to 9-patch images by right-clicking on
ic_button_beat_box_default.png in the Project tool window and selecting Refactor → Rename...
to rename the file to: ic_button_beat_box_default.9.png. Then, repeat the process to rename the
pressed version to: ic_button_beat_box_pressed.9.png.

Next, double-click on the default image in the Project tool window to open it in Android Studio’s built-
in 9-patch editor, as shown in Figure 21.9. (If Android Studio does not open the editor, try closing the
file and collapsing your drawable folder in the Project tool window. Then re-open the default image.)

In the 9-patch editor, fill in black pixels on the top and left borders to mark the stretchable regions of
the image, as shown.

Chapter 21 XML Drawables

380

Figure 21.9 Creating a 9-patch image

With these two lines, you are telling Android not to stretch the top-right area of the image and each
corner if this file changes size. Repeat the process with the pressed version.

So the top and left lines indicate the areas of the image to stretch. What about the bottom and right
borders? You use them to define an optional drawable region for the 9-patch image. The drawable
region is the area where content (usually text) should be rendered. If you do not include a drawable
region, it defaults to be the same as your stretchable region. This is what you want here – that is, you
want the buttons’ text to be on the stretchable region – so you will not define a separate drawable
region.

Run BeatBox to see your new 9-patch image in action (Figure 21.10).

For the More Curious: Mipmap Images

381

Figure 21.10 New and improved

Try rotating to landscape. The images are even more stretched, but your button backgrounds still look
good.

For the More Curious: Mipmap Images
Resource qualifiers and drawables are handy. When you need an image in your app, you generate
the image at a few different sizes and add them to your resource-qualified folders: drawable-mdpi,
drawable-hdpi, etc. Then, you reference the image by name and Android figures out which density to
use based on the current device.

However, there is a downside to this system. The APK file that you release to the Google Play Store
will contain all of the images in your drawable directories at each density that you added to your
project – even though many of them will not be used. That is a lot of extra bloat.

To reduce this bloat, you can generate separate APKs for each screen density. You would have an
mdpi APK of your app, an hdpi APK, and so on. (For more info on APK splitting, see the tools
documentation: http://tools.android.com/tech-docs/new-build-system/user-guide/apk-
splits.)

But, there is one exception. You want to maintain every density of your launcher icon.

A launcher on Android is a home screen application (you will learn much more about launchers in
Chapter 22). When you press the Home button on your device, you are taken to the launcher.

Some newer launchers display app icons at a larger size than launchers have traditionally displayed
them. To make this larger icon look nice, these launchers will take the icon from the next density

Chapter 21 XML Drawables

382

bucket up. If your device is an hdpi device, the launcher will use the xhdpi icon to represent your app.
But if the xhdpi version has been stripped from your APK, the launcher will have to fall back to the
lower resolution version.

Scaled-up low-res icons look fuzzy. You want your icon to look crisp.

The mipmap directory is Android’s solution to this problem. As of this writing, new projects in
Android studio are set up to use a mipmap resource for their launcher icon (Figure 21.11).

Figure 21.11 Mipmap icons

When APK splitting is enabled, mipmaps are not pruned from the APKs. Otherwise, mipmaps are
identical to drawables.

So, we recommend putting just your launcher icon in the various mipmap directories. All other images
belong in the drawable directories.

383

22
More About Intents and Tasks

In this chapter, you will use implicit intents to create a launcher app to replace Android’s default
launcher app. Figure 22.1 shows what this app, NerdLauncher, will look like.

Figure 22.1 NerdLauncher final product

NerdLauncher will display a list of apps on the device. The user will press a list item to launch the app.

To get it working correctly, you will deepen your understanding of intents, intent filters, and how
applications interact in the Android environment.

Chapter 22 More About Intents and Tasks

384

Setting Up NerdLauncher
Create a new Android application project named NerdLauncher. Select Phone and Tablet as the form
factor and API 16: Android 4.1 (Jelly Bean) as the minimum SDK. Create a blank activity named
NerdLauncherActivity.

NerdLauncherActivity will host a single fragment and in turn should be a subclass of
SingleFragmentActivity. Copy SingleFragmentActivity.java and activity_fragment.xml into
your NerdLauncher from the CriminalIntent project.

Open NerdLauncherActivity.java and change NerdLauncherActivity’s superclass to
SingleFragmentActivity. Remove the template’s code and override createFragment() to return a
NerdLauncherFragment. (Bear with the error caused by the return line in createFragment(). This will
be fixed in a moment when you create the NerdLauncherFragment class.)

Listing 22.1 Another SingleFragmentActivity
(NerdLauncherActivity.java)
public class NerdLauncherActivity extends SingleFragmentActivityAppCompatActivity {

 @Override
 protected Fragment createFragment() {
 return NerdLauncherFragment.newInstance();
 }

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 /* Auto-generated template code... */
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 /* Auto-generated template code... */
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 /* Auto-generated template code... */
 }
}

NerdLauncherFragment will display a list of application names in a RecyclerView. Add the
RecyclerView library as a dependency, as you did in Chapter 9.

Rename layout/activity_nerd_launcher.xml to layout/fragment_nerd_launcher.xml to create a
layout for the fragment. Replace its contents with the RecyclerView shown in Figure 22.2.

Figure 22.2 Create NerdLauncherFragment layout (layout/
fragment_nerd_launcher.xml)

Setting Up NerdLauncher

385

Finally, add a new class named NerdLauncherFragment that extends from
android.support.v4.app.Fragment. Add a newInstance() method and override onCreateView(…)
to stash a reference to the RecyclerView object in a member variable. (You will hook data up to the
RecyclerView in just a bit.)

Listing 22.2 Basic NerdLauncherFragment implementation
(NerdLauncherFragment.java)

public class NerdLauncherFragment extends Fragment {

 private RecyclerView mRecyclerView;

 public static NerdLauncherFragment newInstance() {
 return new NerdLauncherFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_nerd_launcher, container, false);
 mRecyclerView = (RecyclerView) v
 .findViewById(R.id.fragment_nerd_launcher_recycler_view);
 mRecyclerView.setLayoutManager(new LinearLayoutManager(getActivity()));

 return v;
 }
}

Run your app to make sure everything is hooked up correctly to this point. If so, you will be the proud
owner of an app titled NerdLauncher, displaying an empty RecyclerView (Figure 22.3).

Chapter 22 More About Intents and Tasks

386

Figure 22.3 NerdLauncher beginnings

Resolving an Implicit Intent
NerdLauncher will show the user a list of launchable apps on the device. (A launchable app is an app
the user can open by clicking an icon on the Home or launcher screen.) To do so, it will query the
system (using the PackageManager) for launchable main activities. Launchable main activities are
simply activities with intent filters that include a MAIN action and a LAUNCHER category. You have seen
this intent filter in the AndroidManifest.xml file in your projects:

<intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
</intent-filter>

In NerdLauncherFragment.java, add a method named setupAdapter() and call that method from
onCreateView(…). (Ultimately this method will create a RecyclerView.Adapter instance and set it
on your RecyclerView object. For now, it will just generate a list of application data.) Also, create
an implicit intent and get a list of activities that match the intent from the PackageManager. Log the
number of activities that the PackageManager returns.

Resolving an Implicit Intent

387

Listing 22.3 Querying the PackageManager (NerdLauncherFragment.java)

public class NerdLauncherFragment extends Fragment {
 private static final String TAG = "NerdLauncherFragment";

 private RecyclerView mRecyclerView;

 public static NerdLauncherFragment newInstance() {
 return new NerdLauncherFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 setupAdapter();
 return v;
 }

 private void setupAdapter() {
 Intent startupIntent = new Intent(Intent.ACTION_MAIN);
 startupIntent.addCategory(Intent.CATEGORY_LAUNCHER);

 PackageManager pm = getActivity().getPackageManager();
 List<ResolveInfo> activities = pm.queryIntentActivities(startupIntent, 0);

 Log.i(TAG, "Found " + activities.size() + " activities.");
 }

}

Run NerdLauncher and check LogCat to see how many apps the PackageManager returned. (We got 42
the first time we tried it.)

In CriminalIntent, you used an implicit intent to send a crime report. You presented an activity
chooser by creating an implicit intent, wrapping it in a chooser intent, and sending it to the OS with
startActivity(Intent):

Intent i = new Intent(Intent.ACTION_SEND);
... // Create and put intent extras
i = Intent.createChooser(i, getString(R.string.send_report));
startActivity(i);

You may be wondering why you are not using that approach here. The short explanation is that the
MAIN/LAUNCHER intent filter may or may not match a MAIN/LAUNCHER implicit intent that is sent via
startActivity(…).

It turns out that startActivity(Intent) does not mean “Start an activity matching this implicit
intent.” It means “Start the default activity matching this implicit intent.” When you send an
implicit intent via startActivity(…) (or startActivityForResult(…)), the OS secretly adds the
Intent.CATEGORY_DEFAULT category to the intent.

Thus, if you want an intent filter to match implicit intents sent via startActivity(…), you must
include the DEFAULT category in that intent filter.

Chapter 22 More About Intents and Tasks

388

An activity that has the MAIN/LAUNCHER intent filter is the main entry point for the app that it belongs
to. It only wants the job of main entry point for that application. It typically does not care about being
the “default” main entry point, so it does not have to include the CATEGORY_DEFAULT category.

Because MAIN/LAUNCHER intent filters may not include CATEGORY_DEFAULT, you cannot reliably match
them to an implicit intent sent via startActivity(…). So, instead you use the intent to query the
PackageManager directly for activities with the MAIN/LAUNCHER intent filter.

The next step is to display the labels of these activities in NerdLauncherFragment’s RecyclerView. An
activity’s label is its display name – something the user should recognize. Given that these activities
are launcher activities, the label is most likely the application name.

You can find the labels for the activities, along with other metadata, in the ResolveInfo objects that the
PackageManager returned.

First, sort the ResolveInfo objects returned from the PackageManager alphabetically by label using the
ResolveInfo.loadLabel(…) method.

Listing 22.4 Sorting alphabetically (NerdLauncherFragment.java)

public class NerdLauncherFragment extends Fragment {
 ...

 private void setupAdapter() {
 ...
 List<ResolveInfo> activities = pm.queryIntentActivities(startupIntent, 0);
 Collections.sort(activities, new Comparator<ResolveInfo>() {
 public int compare(ResolveInfo a, ResolveInfo b) {
 PackageManager pm = getActivity().getPackageManager();
 return String.CASE_INSENSITIVE_ORDER.compare(
 a.loadLabel(pm).toString(),
 b.loadLabel(pm).toString());
 }
 });
 Log.i(TAG, "Found " + activities.size() + " activities.");
 }
}

Now define a ViewHolder that displays an activity’s label. Store the activity’s ResolveInfo in a
member variable (you will use it more than once later on).

Resolving an Implicit Intent

389

Listing 22.5 ViewHolder implementation (NerdLauncherFragment.java)

public class NerdLauncherFragment extends Fragment {
 ...

 private void setupAdapter() {
 ...
 }

 private class ActivityHolder extends RecyclerView.ViewHolder {
 private ResolveInfo mResolveInfo;
 private TextView mNameTextView;

 public ActivityHolder(View itemView) {
 super(itemView);
 mNameTextView = (TextView) itemView;
 }

 public void bindActivity(ResolveInfo resolveInfo) {
 mResolveInfo = resolveInfo;
 PackageManager pm = getActivity().getPackageManager();
 String appName = mResolveInfo.loadLabel(pm).toString();
 mNameTextView.setText(appName);
 }
 }
}

Next add a RecyclerView.Adapter implementation.

Chapter 22 More About Intents and Tasks

390

Listing 22.6 RecyclerView.Adapter implementation
(NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {
 ...

 private class ActivityHolder extends RecyclerView.ViewHolder {
 ...
 }

 private class ActivityAdapter extends RecyclerView.Adapter<ActivityHolder> {
 private final List<ResolveInfo> mActivities;

 public ActivityAdapter(List<ResolveInfo> activities) {
 mActivities = activities;
 }

 @Override
 public ActivityHolder onCreateViewHolder(ViewGroup parent, int viewType) {
 LayoutInflater layoutInflater = LayoutInflater.from(getActivity());
 View view = layoutInflater
 .inflate(android.R.layout.simple_list_item_1, parent, false);
 return new ActivityHolder(view);
 }

 @Override
 public void onBindViewHolder(ActivityHolder activityHolder, int position) {
 ResolveInfo resolveInfo = mActivities.get(position);
 activityHolder.bindActivity(resolveInfo);
 }

 @Override
 public int getItemCount() {
 return mActivities.size();
 }
 }
}

Last but not least, update setupAdapter() to create an instance of ActivityAdapter and set it as the
RecyclerView’s adapter.

Listing 22.7 Set RecyclerView’s adapter (NerdLauncherFragment.java)
public class NerdLauncherFragment extends Fragment {
 ...

 private void setupAdapter() {
 ...
 Log.i(TAG, "Found " + activities.size() + " activities.");
 mRecyclerView.setAdapter(new ActivityAdapter(activities));
 }

 ...
}

Run NerdLauncher, and you will see a RecyclerView populated with activity labels (Figure 22.4).

Creating Explicit Intents at Runtime

391

Figure 22.4 All your activities are belong to us

Creating Explicit Intents at Runtime
You used an implicit intent to gather the desired activities and present them in a list. The next step is to
start the selected activity when the user presses its list item. You will start the activity using an explicit
intent.

To create the explicit intent, you need to get the activity’s package name and class name from the
ResolveInfo. You can get this data from a part of the ResolveInfo called ActivityInfo. (You
can learn what data is available in different parts of ResolveInfo from its reference page: http://
developer.android.com/reference/android/content/pm/ResolveInfo.html.)

Update ActivityHolder to implement a click listener. When an activity in the list is pressed, use the
ActivityInfo for that activity to create an explicit intent. Then use that explicit intent to launch the
selected activity.

Chapter 22 More About Intents and Tasks

392

Listing 22.8 Launching pressed activity (NerdLauncherFragment.java)
...

private class ActivityHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {
 private ResolveInfo mResolveInfo;
 private TextView mNameTextView;

 public ActivityHolder(View itemView) {
 super(itemView);
 mNameTextView = (TextView) itemView;
 mNameTextView.setOnClickListener(this);
 }

 public void bindActivity(ResolveInfo resolveInfo) {
 ...
 }

 @Override
 public void onClick(View v) {
 ActivityInfo activityInfo = mResolveInfo.activityInfo;

 Intent i = new Intent(Intent.ACTION_MAIN)
 .setClassName(activityInfo.applicationInfo.packageName,
 activityInfo.name);

 startActivity(i);
 }
}

Notice that in this intent you are sending an action as part of an explicit intent. Most apps will behave
the same whether you include the action or not. However, some may change their behavior. The same
activity can display different interfaces depending on how it is started. As a programmer, it is best to
declare your intentions clearly and let the activities you start do what they will.

In Listing 22.8, you get the package name and class name from the metadata and use them to create an
explicit intent using the Intent method:

 public Intent setClassName(String packageName, String className)

This is different from how you have created explicit intents in the past. Before, you have used an
Intent constructor that accepts a Context and a Class object:

 public Intent(Context packageContext, Class<?> cls)

This constructor uses its parameters to get what the Intent really needs – a ComponentName. A
ComponentName is a package name and a class name stuck together. When you pass in an Activity
and a Class to create an Intent, the constructor determines the fully qualified package name from the
Activity.

You could also create a ComponentName yourself from the package and class names and use the
following Intent method to create an explicit intent:

 public Intent setComponent(ComponentName component)

However, it is less code to use setClassName(…), which creates the component name behind the
scenes.

Run NerdLauncher and launch some apps.

Tasks and the Back Stack

393

Tasks and the Back Stack
Android uses tasks to keep track of the user’s state within each running application. Each application
opened from Android’s default launcher app gets its own task. This is the desired behavior but,
unfortunately for your NerdLauncher, it is not the default behavior. Before you foray into forcing
applications to launch into their own tasks, let’s discuss what tasks are and how they work.

A task is a stack of activities that the user is concerned with. The activity at the bottom of the stack
is called the base activity, and whatever activity is on top is the activity that the user sees. When you
press the Back button, you are popping the top activity off of this stack. If you are looking at the base
activity and hit the Back button, it will send you to the Home screen.

By default, new activities are started in the current task. In CriminalIntent, whenever you started a new
activity that activity was added to the current task (as shown in Figure 22.5). This was true even if the
activity was not part of the CriminalIntent application, like when you started an activity to select a
crime suspect.

Figure 22.5 CriminalIntent task

The benefit of adding an activity to the current task is that the user can navigate back through the task
instead of the application hierarchy (as shown in Figure 22.6).

Figure 22.6 Pressing the Back button in CriminalIntent

Switching between tasks
Using the overview screen, you can switch between tasks without affecting each task’s state. For
instance, if you start entering a new contact and switch to checking your Twitter feed, you will have
two tasks started. If you switch back to editing contacts, your place in both tasks will be saved.

(The overview screen has many other names. You may hear it called the task manager, recents screen,
recent apps screen, or recent tasks list.)

Try out the overview screen on your device or emulator. First, launch CriminalIntent from the Home
screen or from your app launcher. (If your device or emulator no longer has CriminalIntent installed,

Chapter 22 More About Intents and Tasks

394

open your CriminalIntent project in Android Studio and run it from there.) Select a crime from the
crime list. Then push the Home button to return to the Home screen. Next, launch BeatBox from the
Home screen or from your app launcher (or, if necessary, from Android Studio).

Open the overview screen. The method for doing so will vary depending on your device. Press
the Recents button if the device has one. (The Recents button usually looks like a square or two
overlapping rectangles and appears at the far right side of the navigation bar. You can see two examples
of the Recents button in Figure 22.7.) Otherwise, try long-pressing the Home button. If that does not
work, double-tap the Home button.

Figure 22.7 Overview screen versions

The overview screen displayed on the left in Figure 22.7 is what users will see if they are running
KitKat. The overview screen displayed on the right is what users running Lollipop will see. In both
cases, the entry displayed for each app (known as a card in Lollipop) represents the task for each app.
A screenshot of the activity at the top of each task’s back stack is displayed. Users can press on the
BeatBox or CriminalIntent entry to return to the app (and to whatever activity they were interacting
with in that app).

Users can clear an app’s task by removing the card from the task list. Do this by swiping on the card
entry. Clearing the task removes all activities from the application’s back stack.

Try clearing CriminalIntent’s task, then relaunch the app. You will see the list of crimes instead of the
crime you were editing before you cleared the task.

Starting a new task

395

Starting a new task
Sometimes, when you start an activity, you want the activity added to the current task. Other times, you
want it started in a new task that is independent of the activity that started it.

Right now, any activity started from NerdLauncher is added to NerdLauncher’s task, as depicted in
Figure 22.8.

Figure 22.8 NerdLauncher’s task contains CriminalIntent

You can confirm this by clearing all the tasks displayed in the overview screen. Then start
NerdLauncher and click on the CriminalIntent entry to launch the CriminalIntent app. Open the
overview screen again. You will not see CriminalIntent listed anywhere. When CrimeListActivity
was started, it was added to NerdLauncher’s task (Figure 22.9). If you press the NerdLauncher
task, you will be returned to whatever CriminalIntent screen you were looking at before starting the
overview screen.

Figure 22.9 CriminalIntent not in its own task

Chapter 22 More About Intents and Tasks

396

Instead, you want NerdLauncher to start activities in new tasks (Figure 22.10). This way each
application opened by pressing an item in the NerdLauncher list gets its own task, which will allow
users to switch between running applications as they like (via the overview screen, NerdLauncher, or
the Home screen).

Figure 22.10 Launching CriminalIntent into its own task

To start a new task when you start a new activity, add a flag to the intent in
NerdLauncherFragment.java.

Listing 22.9 Adding new task flag to intent (NerdLauncherFragment.java)

public class NerdLauncherFragment extends Fragment {
 ...

 private class ActivityHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {
 ...

 @Override
 public void onClick(View v) {
 ...

 Intent i = new Intent(Intent.ACTION_MAIN)
 .setClassName(activityInfo.applicationInfo.packageName,
 activityInfo.name)
 .addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);

 startActivity(i);
 }
 }

 ...
}

Clear the tasks listed in your overview screen. Run NerdLauncher and start CriminalIntent. This time,
when you pull up the overview screen you will see a separate task for CriminalIntent (Figure 22.11).

Using NerdLauncher as a Home Screen

397

Figure 22.11 CriminalIntent now in its own task

If you start CriminalIntent from NerdLauncher again, you will not create a second CriminalIntent task.
The FLAG_ACTIVITY_NEW_TASK flag by itself creates one task per activity. CrimeListActivity already
has a task running, so Android will switch to that task instead of starting a new one.

Try this out. Open the detail screen for one of the crimes in CriminalIntent. Use the overview screen to
switch to NerdLauncher. Press on CriminalIntent in the list. You will notice you are right back where
you were in the CriminalIntent app, viewing details for a single crime.

Using NerdLauncher as a Home Screen
Who wants to start an app to start other apps? It would make more sense to offer NerdLauncher as a
replacement for the device’s Home screen. Open NerdLauncher’s AndroidManifest.xml and add to its
main intent filter.

Listing 22.10 Changing NerdLauncherActivity’s categories
(AndroidManifest.xml)

<intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 <category android:name="android.intent.category.HOME" />
 <category android:name="android.intent.category.DEFAULT" />
</intent-filter>

Chapter 22 More About Intents and Tasks

398

By adding the HOME and DEFAULT categories, NerdLauncherActivity is asking to be offered as an
option for the Home screen. Press the Home button, and NerdLauncher will be offered as an option
(Figure 22.12).

Figure 22.12 Select Home app

(If you make NerdLauncher the Home screen you can easily change it back later. Launch the Settings
app from NerdLauncher. If you are running Lollipop, go to Settings → Apps. Select NerdLauncher
from the app list. If you are running a pre-Lollipop version of Android, go to Settings → Applications
→ Manage Applications. Select All to find NerdLauncher. Once you have selected NerdLauncher, you
should be on the App Info screen. Scroll down to Launch by default and press the CLEAR DEFAULTS
button. The next time you press the Home button, you will be able to select another default.)

Challenge: Icons
You used ResolveInfo.loadLabel(…) in this chapter to present useful names in your launcher.
ResolveInfo provides a similar method called loadIcon() that retrieves an icon to display for each
application. For a small challenge, add an icon for each application to NerdLauncher.

For the More Curious: Processes vs. Tasks
All objects need memory and a virtual machine to live in. A process is a place created by the OS for
your application’s objects to live and for your application to run.

For the More Curious: Processes vs. Tasks

399

Processes may own resources managed by the OS, like memory, network sockets, and open files.
Processes also have at least one, possibly many, threads of execution. On Android, your process will
also always have exactly one virtual machine running.

While there are some obscure exceptions, in general every application component in Android is
associated with exactly one process. Your application is created with its own process, and this is the
default process for all components in your application.

(You can assign individual components to different processes, but we recommend sticking to the
default process. If you think you need something running in a different process, you can usually
achieve the same ends with multi-threading, which is more straightforward to program in Android than
using multiple processes.)

Every activity instance lives in exactly one process and is referenced by exactly one task. But that is
where the similarities between processes and tasks end. Tasks contain only activities and often consist
of activities living in different application processes. Processes, on the other hand, contain all running
code and objects for a single application.

It can be easy to confuse processes and tasks because there is some overlap between the two
ideas and both are often referred to by an application name. For instance, when you launched
CriminalIntent from NerdLauncher, the OS created a CriminalIntent process and a new task for which
CrimeListActivity was the base activity. In the overview screen, this task was labeled CriminalIntent.

The task that an activity is referenced by can be different from the process it lives in. For example,
consider the CriminalIntent and contact applications and walk through the following scenario.

Open CriminalIntent, select a crime from the list (or add a new crime), and then press CHOOSE
SUSPECT. This launches the contacts application to choose a contact. The contact list activity is
added to the CriminalIntent task. This means that when your user presses the Back button to navigate
between different activities, he or she may be unknowingly switching between processes, which is
nifty.

However, the contact list activity instance is actually created in the contacts app’s process’s memory
space, and it runs on the virtual machine living in the contacts application’s process. (The state of the
activity instances and task references of this scenario are depicted in Figure 22.13.)

Chapter 22 More About Intents and Tasks

400

Figure 22.13 Tasks and processes

To explore the idea of processes vs. tasks further, leave CriminalIntent up and running on the contact
list screen. (Make sure the contacts app itself is not listed on the overview screen. If so, clear the
contacts app task.) Press the Home button. Launch the contacts app from the Home screen. Select a
contact from the list of contacts (or select to add a new contact).

In doing this, new contact list activity and contact details instances will be created in the contact
application’s process. A new task will be created for the contacts application, and that task will
reference the new contact list and contact details activity instances (as shown in Figure 22.14).

For the More Curious: Concurrent Documents

401

Figure 22.14 Tasks and processes

In this chapter, you created tasks and switched between them. What about replacing Android’s default
overview screen, as you are able to do with the Home screen? Unfortunately, Android does not provide
a way to do this. Also, you should know that apps advertised on the Google Play store as “task killers”
are, in fact, process killers. Such apps kill a particular process, which means you may be killing
activities referenced by other applications’ tasks.

For the More Curious: Concurrent Documents
If you are running your apps on a Lollipop device, you may have noticed some interesting behavior
with respect to CriminalIntent and the overview screen. When you opt to send a crime report from
CriminalIntent, the activity for the app you select from the chooser is added to its own separate task
rather than to CriminalIntent’s task (Figure 22.15).

Chapter 22 More About Intents and Tasks

402

Figure 22.15 Gmail launched into separate task

On Lollipop, the implicit intent chooser creates a new, separate task for activities launched with the
android.intent.action.SEND or action.intent.action.SEND_MULTIPLE actions. (On older versions
of Android, this does not happen, so Gmail’s compose activity would have been added directly to
CriminalIntent’s task.)

This behavior uses a new notion in Lollipop called concurrent documents. Concurrent documents allow
any number of tasks to be dynamically created for an app at runtime. Prior to Lollipop, apps could only
have a predefined set of tasks, each of which had to be named in the manifest.

A prime example of concurrent documents in practice is the Google Drive app. You can open and
edit multiple documents, each of which gets its own separate task in the Lollipop overview screen
(Figure 22.16). If you were to take the same actions in Google Drive on a pre-Lollipop device, you
would only see one task in the overview screen. This is because of the requirement on pre-Lollipop
devices to define an app’s tasks ahead of time in the manifest. It was not possible pre-Lollipop to
generate a dynamic number of tasks for a single app.

For the More Curious: Concurrent Documents

403

Figure 22.16 Multiple Google Drive tasks on Lollipop

You can start multiple “documents” (tasks) from your own app running on a Lollipop device by either
adding the Intent.FLAG_ACTIVITY_NEW_DOCUMENT flag to an intent before calling startActivity(…)
or by setting the documentLaunchMode on the activity in the manifest like so:

<activity
 android:name=".CrimePagerActivity"
 android:label="@string/app_name"
 android:parentActivityName=".CrimeListActivity"
 android:documentLaunchMode="intoExisting" />

Using this approach, only one task per document will be created (so if you issue an intent with
the same data as an already existing task, no new task is created). You can enforce a new task
to always be created, even if one already exists for a given document, by either adding the
Intent.FLAG_ACTIVITY_MULTIPLE_TASK flag along with the Intent.FLAG_ACTIVITY_NEW_DOCUMENT
flag before issuing the intent, or by using always as the value for documentLaunchMode in your
manifest.

To learn more about the overview screen and changes that were made to it with the Lollipop release,
check out https://developer.android.com/guide/components/recents.html.

405

23
HTTP & Background Tasks

The apps that dominate the brains of users are networked apps. Those people fiddling with their phones
instead of talking to each other at dinner? They are maniacally checking their newsfeeds, responding to
text messages, or playing networked games.

To get started with networking in Android, you are going to create a new app called PhotoGallery.
PhotoGallery is a client for the photo-sharing site Flickr. It will fetch and display the most recent
public photos uploaded to Flickr. Figure 23.1 gives you an idea of what the app will look like.

Figure 23.1 Complete PhotoGallery

(We added a filter to our PhotoGallery implementation to show only photos listed on Flickr as having
“no known copyright restrictions.” Visit https://www.flickr.com/commons/usage/ to learn more
about unrestricted images. All other photos on Flickr are the property of the person who posted
them and are subject to usage restrictions depending on the license specified by the owner. To read

Chapter 23 HTTP & Background Tasks

406

more about permissions for using third-party content that you retrieve from Flickr, visit https://
www.flickr.com/creativecommons/.)

You will spend six chapters with PhotoGallery. It will take two chapters for you to get the basics
of downloading and parsing JSON and displaying images up and running. Once that is done, in
subsequent chapters you will add features that explore search, services, notifications, broadcast
receivers, and web views.

In this chapter, you will learn how to use Android’s high-level HTTP networking. Almost all day-to-
day programming of web services these days is based on the HTTP networking protocol. By the end
of the chapter, you will be fetching, parsing, and displaying photo captions from Flickr (Figure 23.2).
(Retrieving and displaying photos will happen in Chapter 24.)

Figure 23.2 PhotoGallery at the end of the chapter

Creating PhotoGallery
Create a new Android application project. Configure the app as shown in Figure 23.3.

Creating PhotoGallery

407

Figure 23.3 Creating PhotoGallery

Click Next. When prompted, check Phone and Tablet as the target form factor and choose API 16:
Android 4.1 (Jelly Bean) from the Minimum SDK dropdown.

Then have the wizard create a blank activity named PhotoGalleryActivity.

PhotoGallery will follow the same architecture you have been using so far. PhotoGalleryActivity
will be a SingleFragmentActivity subclass and its view will be the container view defined
in activity_fragment.xml. This activity will host a fragment – in particular, an instance of
PhotoGalleryFragment, which you will create shortly.

Copy SingleFragmentActivity.java and activity_fragment.xml into your project from a previous
project.

In PhotoGalleryActivity.java, set up PhotoGalleryActivity as a SingleFragmentActivity
by deleting the code that the template generated and replacing it with an implementation of
createFragment(). Have createFragment() return an instance of PhotoGalleryFragment.
(Bear with the error that this code will cause for the moment. It will go away after you create the
PhotoGalleryFragment class.)

Chapter 23 HTTP & Background Tasks

408

Listing 23.1 Activity setup (PhotoGalleryActivity.java)

public class PhotoGalleryActivity extends Activity SingleFragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 /* Auto-generated template code... */
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 /* Auto-generated template code... */
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 /* Auto-generated template code... */
 }

 @Override
 public Fragment createFragment() {
 return PhotoGalleryFragment.newInstance();
 }
}

PhotoGallery will display its results in a RecyclerView, using the built-in GridLayoutManager to
arrange the items in a grid.

First, add the RecyclerView library as a dependency, as you did in Chapter 9. Open the Project
Structure window and select the app module on the left. Select the Dependencies tab and click the
+ button. Select Library dependency from the drop-down menu that appears. Find and select the
recyclerview-v7 library and click OK.

Rename layout/activity_photo_gallery.xml to layout/fragment_photo_gallery.xml to create a
layout for the fragment. Then replace its contents with the RecyclerView shown in Figure 23.4.

Figure 23.4 A RecyclerView (layout/fragment_photo_gallery.xml)

Finally, create the PhotoGalleryFragment class. Retain the fragment, inflate the layout you just
created, and initialize a member variable referencing the RecyclerView (Listing 23.2).

Networking Basics

409

Listing 23.2 Some skeleton code (PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {

 private RecyclerView mPhotoRecyclerView;

 public static PhotoGalleryFragment newInstance() {
 return new PhotoGalleryFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_photo_gallery, container, false);

 mPhotoRecyclerView = (RecyclerView) v
 .findViewById(R.id.fragment_photo_gallery_recycler_view);
 mPhotoRecyclerView.setLayoutManager(new GridLayoutManager(getActivity(), 3));

 return v;
 }
}

(Wondering why you are retaining the fragment? Hold that thought – we will explain later in the
chapter. See the section called “Cleaning Up AsyncTasks”.)

Fire up PhotoGallery to make sure everything is wired up correctly before moving on. If all is well,
you will be the proud owner of a blank screen.

Networking Basics
You are going to have one class handle the networking in PhotoGallery. Create a new Java class and,
since you will be connecting to Flickr, name this class FlickrFetchr.

FlickrFetchr will start off small with only two methods: getUrlBytes(String) and
getUrlString(String). The getUrlBytes(String) method fetches raw data from a URL and
returns it as an array of bytes. The getUrlString(String) method converts the result from
getUrlBytes(String) to a String.

In FlickrFetchr.java, add implementations for getUrlBytes(String) and getUrlString(String)
(Listing 23.3).

Chapter 23 HTTP & Background Tasks

410

Listing 23.3 Basic networking code (FlickrFetchr.java)

public class FlickrFetchr {
 public byte[] getUrlBytes(String urlSpec) throws IOException {
 URL url = new URL(urlSpec);
 HttpURLConnection connection = (HttpURLConnection)url.openConnection();

 try {
 ByteArrayOutputStream out = new ByteArrayOutputStream();
 InputStream in = connection.getInputStream();

 if (connection.getResponseCode() != HttpURLConnection.HTTP_OK) {
 throw new IOException(connection.getResponseMessage() +
 ": with " +
 urlSpec);
 }

 int bytesRead = 0;
 byte[] buffer = new byte[1024];
 while ((bytesRead = in.read(buffer)) > 0) {
 out.write(buffer, 0, bytesRead);
 }
 out.close();
 return out.toByteArray();
 } finally {
 connection.disconnect();
 }
 }

 public String getUrlString(String urlSpec) throws IOException {
 return new String(getUrlBytes(urlSpec));
 }
}

This code creates a URL object from a string – like, say, https://www.bignerdranch.com. Then it
calls openConnection() to create a connection object pointed at the URL. URL.openConnection()
returns a URLConnection, but because you are connecting to an http URL, you can cast it to
HttpURLConnection. This gives you HTTP-specific interfaces for working with request methods,
response codes, streaming methods, and more.

HttpURLConnection represents a connection, but it will not actually connect to your endpoint until you
call getInputStream() (or getOutputStream() for POST calls). Until then, you cannot get a valid
response code.

Once you create your URL and open a connection, you call read() repeatedly until your connection
runs out of data. The InputStream will yield bytes as they are available. When you are done, you close
it and spit out your ByteArrayOutputStream’s byte array.

While getUrlBytes(String) does the heavy lifting, getUrlString(String) is what you will actually
use in this chapter. It converts the bytes fetched by getUrlBytes(String) into a String. Right now, it
may seem strange to split this work into two methods. However, having two methods will be useful in
the next chapter when you start downloading image data.

Asking permission to network

411

Asking permission to network
One other thing is required to get networking up and running: you have to ask permission. Just as users
would not want you secretly taking their pictures, they also do not want you to secretly download
ASCII pictures of farm animals.

To ask permission to network, add the following permission to your AndroidManifest.xml.

Listing 23.4 Adding networking permission to manifest (AndroidManifest.xml)

<manifest
 xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.photogallery" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 ...
 </application>

</manifest>

When a user tries to download your app, a dialog showing these permissions is displayed. The user can
then accept or deny installation.

This is not a great system. Your app may have a legitimate but not immediately obvious reason for
requesting a permission. And if users do not like any particular permission request, their only option is
to remove the entire app.

The upcoming Android M release has a fix for these problems. In M, you can ask permission at the
time you first need it, not just when the app is installed. Also, users can revoke individual permissions
at any time.

For permissions you cannot do without (like internet access in PhotoGallery), the old behavior is still
best: prompt the user at app install. But for less obvious or less critical permissions, the newer style of
request is much kinder.

Using AsyncTask to Run on a Background Thread
The next step is to call and test the networking code you just added. However, you cannot simply call
FlickrFetchr.getUrlString(String) directly in PhotoGalleryFragment. Instead, you need to create
a background thread and run your code there.

The easiest way to work with a background thread is with a utility class called AsyncTask. AsyncTask
creates a background thread for you and runs the code in the doInBackground(…) method on that
thread.

In PhotoGalleryFragment.java, add a new inner class called FetchItemsTask at the bottom of
PhotoGalleryFragment. Override AsyncTask.doInBackground(…) to get data from a website and log
it.

Chapter 23 HTTP & Background Tasks

412

Listing 23.5 Writing an AsyncTask, part I (PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {

 private static final String TAG = "PhotoGalleryFragment";

 private RecyclerView mPhotoRecyclerView;

 ...

 private class FetchItemsTask extends AsyncTask<Void,Void,Void> {
 @Override
 protected Void doInBackground(Void... params) {
 try {
 String result = new FlickrFetchr()
 .getUrlString("https://www.bignerdranch.com");
 Log.i(TAG, "Fetched contents of URL: " + result);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch URL: ", ioe);
 }
 return null;
 }
 }
}

Now, in PhotoGalleryFragment.onCreate(…), call execute() on a new instance of FetchItemsTask.

Listing 23.6 Writing an AsyncTask, part II (PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {

 private static final String TAG = "PhotoGalleryFragment";

 private RecyclerView mPhotoRecyclerView;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 new FetchItemsTask().execute();
 }

 ...
}

The call to execute() will start your AsyncTask, which will then fire up its background thread and
call doInBackground(…). Run your code and you should see the amazing Big Nerd Ranch home page
HTML pop up in LogCat, as shown in Figure 23.5.

You and Your Main Thread

413

Figure 23.5 Big Nerd Ranch HTML in LogCat

Finding your log statements within the LogCat window can be tricky. It helps to search for something
specific. In this case, enter “PhotoGalleryFragment” into the LogCat search box, as shown.

Now that you have created a background thread and run some networking code on it, let’s take a closer
look at threads in Android.

You and Your Main Thread
Networking does not happen immediately. A web server may take as long as a second or two to
respond, and a file download can take even longer than that. Because networking can take so long,
Android disallows all networking on the main thread. If you try to do it, Android will throw a
NetworkOnMainThreadException.

Why? To understand that, you need to understand what a thread is, what the main thread is, and what
the main thread does.

A thread is a single sequence of execution. Code running within a single thread will execute one step
after another. Every Android app starts life with a main thread. The main thread, however, is not a
preordained list of steps. Instead, it sits in an infinite loop and waits for events initiated by the user or
the system. Then it executes code in response to those events as they occur (Figure 23.6).

Figure 23.6 Regular threads vs. the main thread

Chapter 23 HTTP & Background Tasks

414

Imagine that your app is an enormous shoe store, and that you only have one employee – The Flash.
(Who hasn’t dreamed of that?) There are a lot of things to do in a store to keep the customers happy:
arranging the merchandise, fetching shoes for customers, wielding the Brannock device. With The
Flash as your salesperson, everyone is taken care of in a timely fashion, even though there is only one
guy doing all the work.

For this situation to work, The Flash cannot spend too much time doing any one thing. What if a
shipment of shoes goes missing? Someone will have to spend a lot of time on the phone straightening it
out. Your customers will get mighty impatient waiting for shoes while The Flash is on hold.

The Flash is like the main thread in your application. It runs all the code that updates the UI. This
includes the code executed in response to different UI-related events – activity startup, button presses,
and so on. (Because the events are all related to the user interface in some way, the main thread is
sometimes called the UI thread.)

The event loop keeps the UI code in sequence. It makes sure that none of these operations step on each
other while still ensuring that the code is executed in a timely fashion. So far, all of the code you have
written (except for the code you just wrote with AsyncTask) has been executed on the main thread.

Beyond the main thread
Networking is a lot like a phone call to your shoe distributor: it takes a long time compared to other
tasks. During that time, the user interface will be completely unresponsive, which might result in an
application not responding, or ANR.

An ANR occurs when Android’s watchdog determines that the main thread has failed to respond to an
important event, like pressing the Back button. To the user, it looks like Figure 23.7.

Figure 23.7 Application not responding

Fetching JSON from Flickr

415

In your store, you would solve the problem by (naturally) hiring a second Flash to call the shoe
distributor. In Android, you do something similar – you create a background thread and access the
network from there.

And what is the easiest way to work with a background thread? Why, AsyncTask.

You will get to see other things AsyncTask can do later this chapter. Before you do that, you will want
to do some real work with your networking code.

Fetching JSON from Flickr
JSON stands for JavaScript Object Notation, a format that has become popular in recent years,
particularly for web services. Android includes the standard org.json package, which has classes that
provide simple access to creating and parsing JSON text. The Android developer documentation has
information about org.json, and you can get more information about JSON as a format at http://
json.org.

Flickr offers a fine JSON API. All the details you need are available in the documentation at http://
www.flickr.com/services/api/. Pull it up in your favorite web browser and find the list of Request
Formats. You will be using the simplest – REST. This tells you that the API endpoint is https://
api.flickr.com/services/rest/. You can invoke the methods Flickr provides on this endpoint.

Back on the main page of the API documentation, find the list of API Methods. Scroll down to the
photos section, then locate and click on flickr.photos.getRecent. The documentation will report that this
method “Returns a list of the latest public photos uploaded to flickr.” That is exactly what you need for
PhotoGallery.

The only required parameter for the getRecent method is an API key. To get an API key, return to
http://www.flickr.com/services/api/ and follow the link for API keys. You will need a Yahoo ID
to log in. Once you are logged in, request a new, noncommercial API key. This usually only takes a
moment. Your API key will look something like 4f721bgafa75bf6d2cb9af54f937bb70. (You do not
need the “Secret,” which is only used when an app will access user-specific information or images.)

Once you have a key, you have all you need to make a request to the Flickr web service. Your GET
request URL will look something like this:

https://api.flickr.com/services/rest/?
method=flickr.photos.getRecent&api_key=xxx&format=json&nojsoncallback=1.

The Flickr response is in XML format by default. In order to get a valid JSON response you need to
specify values for both the format and nojsoncallback parameters. Setting nojsoncallback to 1 tells
Flickr to exclude the enclosing method name and parentheses from the response it sends back. This is
necessary so that your Java code can more easily parse the response.

Copy the example URL into your browser, replacing the “xxx” value provided for the api_key with
your actual API key. This will allow you to see an example of what the response data will look like, as
shown in Figure 23.8.

Chapter 23 HTTP & Background Tasks

416

Figure 23.8 Example JSON output

Time to start coding. First, add some constants to FlickrFetchr.

Listing 23.7 Adding constants (FlickrFetchr.java)
 public class FlickrFetchr {

 private static final String TAG = "FlickrFetchr";

 private static final String API_KEY = "yourApiKeyHere";
 ...
 }

Make sure to replace yourApiKeyHere with the API key you generated earlier.

Now use the constants to write a method that builds an appropriate request URL and fetches its
contents.

Listing 23.8 Adding fetchItems() method (FlickrFetchr.java)
 public class FlickrFetchr {

 ...

 String getUrlString(String urlSpec) throws IOException {
 return new String(getUrlBytes(urlSpec));
 }

 public void fetchItems() {
 try {
 String url = Uri.parse("https://api.flickr.com/services/rest/")
 .buildUpon()
 .appendQueryParameter("method", "flickr.photos.getRecent")
 .appendQueryParameter("api_key", API_KEY)
 .appendQueryParameter("format", "json")
 .appendQueryParameter("nojsoncallback", "1")
 .appendQueryParameter("extras", "url_s")
 .build().toString();
 String jsonString = getUrlString(url);
 Log.i(TAG, "Received JSON: " + jsonString);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 }
 }
 }

Fetching JSON from Flickr

417

Here you use a Uri.Builder to build the complete URL for your Flickr API request.
Uri.Builder is a convenience class for creating properly escaped parameterized URLs.
Uri.Builder.appendQueryParameter(String, String) will automatically escape query strings for
you.

Notice you added values for the method, api_key, format, and nojsoncallback parameters. You also
specified one extra parameter called extras, with a value of url_s. Specifying the url_s extra tells
Flickr to include the URL for the small version of the picture if it is available.

Finally, modify the AsyncTask in PhotoGalleryFragment to call the new fetchItems() method.

Listing 23.9 Calling fetchItems() (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 ...

 private class FetchItemsTask extends AsyncTask<Void,Void,Void> {
 @Override
 protected Void doInBackground(Void... params) {
 try {
 String result = new FlickrFetchr()
 .getUrlString("https://www.bignerdranch.com");
 Log.i(TAG, "Fetched contents of URL: " + result);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch URL: ", ioe);
 }
 new FlickrFetchr().fetchItems();
 return null;
 }
 }
}

Run PhotoGallery and you should see rich, fertile Flickr JSON in LogCat, like Figure 23.9. (It will
help to search for “FlickrFetchr” in the LogCat search box.)

Figure 23.9 Flickr JSON in LogCat

Unfortunately the Android Studio LogCat window does not wrap the output nicely as of this writing.
Scroll to the right to see more of the extremely long JSON response string. (LogCat can be finicky. Do
not panic if you do not get results like ours. Sometimes the connection to the emulator is not quite right
and the log messages do not get printed out. Usually it clears up over time, but sometimes you have to
rerun your application or even restart your emulator.)

Now that you have such fine JSON from Flickr, what should you do with it? You do what you do with
all data – put it in one or more model objects. The model class you are going to create for PhotoGallery
is called GalleryItem. Figure 23.10 shows an object diagram of PhotoGallery.

Chapter 23 HTTP & Background Tasks

418

Figure 23.10 Object diagram of PhotoGallery

Note that Figure 23.10 does not show the hosting activity so that it can focus on the fragment and the
networking code.

Create the GalleryItem class and add the following code:

Listing 23.10 Creating model object class (GalleryItem.java)
 public class GalleryItem {
 private String mCaption;
 private String mId;
 private String mUrl;

 @Override
 public String toString() {
 return mCaption;
 }
 }

Have Android Studio generate getters and setters for mCaption, mId, and mUrl.

Now that you have made model objects, it is time to fill them with data from the JSON you got from
Flickr.

Parsing JSON text

419

Parsing JSON text
The JSON response displayed in your browser and LogCat window is hard to read. If you pretty print
(format with white space) the response, it looks something like Figure 23.11.

Figure 23.11 JSON hierarchy

A JSON object is a set of name-value pairs enclosed between curly braces, { }. A JSON array is a
comma-separated list of JSON objects enclosed in square brackets, []. You can have objects nested
within each other, resulting in a hierarchy.

The json.org API provides Java objects corresponding to JSON text, such as JSONObject
and JSONArray. You can easily parse JSON text into corresponding Java objects using the
JSONObject(String) constructor. Update fetchItems() to do just that.

Chapter 23 HTTP & Background Tasks

420

Listing 23.11 Reading JSON string into JSONObject (FlickrFetchr.java)

public class FlickrFetchr {

 private static final String TAG = "FlickrFetchr";

 ...

 public void fetchItems() {
 try {
 ...
 Log.i(TAG, "Received JSON: " + jsonString);
 JSONObject jsonBody = new JSONObject(jsonString);
 } catch (JSONException je){
 Log.e(TAG, "Failed to parse JSON", je);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 }
 }

}

The JSONObject constructor parses the JSON string you passed it, resulting in an object hierarchy that
maps to the original JSON text. The object hierarchy for the JSON returned from Flickr is shown in
Figure 23.11.

Here you have a top-level JSONObject that maps to the outermost curly braces in the original JSON
text. This top-level object contains a nested JSONObject named photos. Within this nested JSONObject
is a JSONArray named photo. This array contains a collection of JSONObjects, each representing
metadata for a single photo.

Write a method that pulls out information for each photo. Make a GalleryItem for each photo and add
it to a List.

Parsing JSON text

421

Listing 23.12 Parsing Flickr photos (FlickrFetchr.java)

public class FlickrFetchr {

 private static final String TAG = "FlickrFetchr";

 ...

 public void fetchItems() {
 ...
 }

 private void parseItems(List<GalleryItem> items, JSONObject jsonBody)
 throws IOException, JSONException {

 JSONObject photosJsonObject = jsonBody.getJSONObject("photos");
 JSONArray photoJsonArray = photosJsonObject.getJSONArray("photo");

 for (int i = 0; i < photoJsonArray.length(); i++) {
 JSONObject photoJsonObject = photoJsonArray.getJSONObject(i);

 GalleryItem item = new GalleryItem();
 item.setId(photoJsonObject.getString("id"));
 item.setCaption(photoJsonObject.getString("title"));

 if (!photoJsonObject.has("url_s")) {
 continue;
 }

 item.setUrl(photoJsonObject.getString("url_s"));
 items.add(item);
 }
 }

}

This code uses convenience methods such as getJSONObject(String name) and
getJSONArray(String name) to navigate the JSONObject hierarchy. (These methods are also
annotated on Figure 23.11.)

Flickr does not always return a url_s component for each image. You add a check here to ignore
images that do not have an image url.

The parseItems(…) method needs a List and JSONObject. Update fetchItems() to call
parseItems(…) and return a List of GalleryItems.

Chapter 23 HTTP & Background Tasks

422

Listing 23.13 Calling parseItems(…) (FlickrFetchr.java)
public void List<GalleryItem> fetchItems() {

 List<GalleryItem> items = new ArrayList<>();

 try {
 String url = ...;
 String jsonString = getUrlString(url);
 Log.i(TAG, "Received JSON: " + jsonString);
 JSONObject jsonBody = new JSONObject(jsonString);
 parseItems(items, jsonBody);
 } catch (JSONException je) {
 Log.e(TAG, "Failed to parse JSON", je);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 }

 return items;
}

Run PhotoGallery to test your JSON parsing code. PhotoGallery has no way of reporting the contents
of your List right now, so you will need to set a breakpoint and use the debugger if you want to make
sure everything worked correctly.

From AsyncTask Back to the Main Thread
To finish off, let’s switch to the view layer and get PhotoGalleryFragment’s RecyclerView to display
some captions.

First define a ViewHolder as an inner class.

Listing 23.14 Adding a ViewHolder implementation
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG = "PhotoGalleryFragment";

 ...

 private class PhotoHolder extends RecyclerView.ViewHolder {
 private TextView mTitleTextView;

 public PhotoHolder(View itemView) {
 super(itemView);

 mTitleTextView = (TextView) itemView;
 }

 public void bindGalleryItem(GalleryItem item) {
 mTitleTextView.setText(item.toString());
 }
 }

 private class FetchItemsTask extends AsyncTask<Void,Void,Void> {
 ...
 }
}

From AsyncTask Back to the Main Thread

423

Next, add a RecyclerView.Adapter to provide PhotoHolders as needed based on a list of
GalleryItems.

Listing 23.15 Adding a RecyclerView.Adapter implementation
(PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {

 private static final String TAG = "PhotoGalleryFragment";

 ...

 private class PhotoHolder extends RecyclerView.ViewHolder {
 ...
 }

 private class PhotoAdapter extends RecyclerView.Adapter<PhotoHolder> {

 private List<GalleryItem> mGalleryItems;

 public PhotoAdapter(List<GalleryItem> galleryItems) {
 mGalleryItems = galleryItems;
 }

 @Override
 public PhotoHolder onCreateViewHolder(ViewGroup viewGroup, int viewType) {
 TextView textView = new TextView(getActivity());
 return new PhotoHolder(textView);
 }

 @Override
 public void onBindViewHolder(PhotoHolder photoHolder, int position) {
 GalleryItem galleryItem = mGalleryItems.get(position);
 photoHolder.bindGalleryItem(galleryItem);
 }

 @Override
 public int getItemCount() {
 return mGalleryItems.size();
 }
 }

 ...
}

Now that you have the appropriate nuts and bolts in place for RecyclerView, add code to set up and
attach an adapter when appropriate.

Chapter 23 HTTP & Background Tasks

424

Listing 23.16 Implementing setupAdapter() (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG = "PhotoGalleryFragment";

 private RecyclerView mPhotoRecyclerView;
 private List<GalleryItem> mItems = new ArrayList<>();

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_photo_gallery, container, false);
 mPhotoRecyclerView = (RecyclerView) v
 .findViewById(R.id.fragment_photo_gallery_recycler_view);
 mPhotoRecyclerView.setLayoutManager(new GridLayoutManager(getActivity(), 3));

 setupAdapter();

 return v;
 }

 private void setupAdapter() {
 if (isAdded()) {
 mPhotoRecyclerView.setAdapter(new PhotoAdapter(mItems));
 }
 }

 ...

}

The setupAdapter() method you just added looks at the current model state, namely the List
of GalleryItems, and configures the adapter appropriately on your RecyclerView. You call
setupAdapter() in onCreateView(…) so that every time a new RecyclerView is created, it is
reconfigured with an appropriate adapter. You also want to call it every time your set of model objects
changes.

Notice that you check to see whether isAdded() is true before setting the adapter. This confirms that
the fragment has been attached to an activity, and in turn that getActivity() will not be null.

Remember that fragments can exist unattached to any activity. Before now, this possibility has not
come up because your method calls have been driven by callbacks from the framework. In this
scenario, if a fragment is receiving callbacks, then it definitely is attached to an activity. No activity, no
callbacks.

However, now that you are using an AsyncTask you are triggering some callbacks from a background
thread. Thus you cannot assume that the fragment is attached to an activity. You must check to make
sure that your fragment is still attached. If it is not, then operations that rely on that activity (like
creating your PhotoAdapter, which in turn creates a TextView using the hosting activity as the context)
will fail. This is why, in your code above, you check that isAdded() is true before setting the adapter.

Now you need to call setupAdapter() after data has been fetched from Flickr. Your first instinct might
be to call setupAdapter() at the end of FetchItemsTask’s doInBackground(…). This is not a good

Cleaning Up AsyncTasks

425

idea. Remember that you have two Flashes in the store now – one helping multiple customers, and one
on the phone with Flickr. What will happen if the second Flash tries to help customers after hanging up
the phone? Odds are good that the two Flashes will step on each other’s toes.

On a computer, this toe-stepping-on results in objects in memory becoming corrupted. Because of this,
you are not allowed to update the UI from a background thread, nor is it safe or advisable to do so.

What to do? AsyncTask has another method you can override called onPostExecute(…).
onPostExecute(…) is run after doInBackground(…) completes. More importantly, onPostExecute(…)
is run on the main thread, not the background thread, so it is safe to update the UI within it.

Modify FetchItemsTask to update mItems and call setupAdapter() after fetching your photos to
update the RecyclerView’s data source.

Listing 23.17 Adding adapter update code (PhotoGalleryFragment.java)
 private class FetchItemsTask extends AsyncTask<Void,Void,Void List<GalleryItem>> {
 @Override
 protected Void List<GalleryItem> doInBackground(Void... params) {

 return new FlickrFetchr().fetchItems();
 return null;
 }

 @Override
 protected void onPostExecute(List<GalleryItem> items) {
 mItems = items;
 setupAdapter();
 }
 }

You made three changes here. First, you changed the type of the FetchItemsTask’s third generic
parameter. This parameter is the type of result produced by your AsyncTask. It sets the type of value
returned by doInBackground(…) as well as the type of onPostExecute(…)’s input parameter.

Second, you modified doInBackground(…) to return your list of GalleryItems. By doing this you fix
your code so that it compiles properly. You also pass your list of items off so that it may be used from
within onPostExecute(…).

Finally, you added an implementation of onPostExecute(…). This method accepts as input the list you
fetched and returned inside doInBackground(…), puts it in mItems, and updates your RecyclerView’s
adapter.

With that, your work for this chapter is complete. Run, and you should see text displayed for each
GalleryItem you downloaded (similar to Figure 23.2).

Cleaning Up AsyncTasks
In this chapter, your AsyncTask and other code was carefully structured so that you would not
have to keep track of the AsyncTask instance. For example, you retained the fragment (called
setRetainInstance(true)) so that rotation does not repeatedly fire off new AsyncTasks to fetch the
JSON data. However, in other situations you will need to keep a handle on your AsyncTasks, even
canceling and rerunning them at times.

Chapter 23 HTTP & Background Tasks

426

For these more complicated uses, you will want to assign your AsyncTask to an instance variable. Once
you have a handle on it, you can call AsyncTask.cancel(boolean). This method allows you to cancel
an ongoing AsyncTask.

AsyncTask.cancel(boolean) can work in a more rude or less rude fashion. If you call
cancel(false), it will be polite and simply set isCancelled() to true. The AsyncTask can then
check isCancelled() inside of doInBackground(…) and elect to finish prematurely.

If you call cancel(true), however, it will be impolite and interrupt the thread doInBackground(…)
is on, if it is currently running. AsyncTask.cancel(true) is a more severe way of stopping the
AsyncTask. If you can avoid it, you should.

When and where should you cancel your AsyncTask? It depends. First ask yourself, should the work
the AsyncTask is doing stop if the fragment or activity is destroyed or goes out of view? If so, you
should cancel the AsyncTask instance in either onStop(…) (to cancel the task when the view is no
longer visible) or onDestroy(…) (to cancel the task when the fragment/activity instance is destroyed).

What if you want the work the AsyncTask is doing to survive the life of the fragment/activity and
its view? You could just let the AsyncTask run to completion, without canceling. However, this has
potential for memory leaks (e.g., the Activity instance being kept alive past when it should have been
destroyed) or problems related to updating or accessing the UI when it is in an invalid state. If you have
important work that must be completed regardless of what the user is doing, it is better to consider
alternative options, such as launching a Service (you will learn more about this in Chapter 26).

For the More Curious: More on AsyncTask
In this chapter you saw how to use the last type parameter on AsyncTask, which specifies the return
type. What about the other two?

The first type parameter allows you to specify the type of input parameters you will pass to the
execute(), which in turn dictates the type of input parameters doInBackground(…) will receive. You
would use it in the following way:

AsyncTask<String,Void,Void> task = new AsyncTask<String,Void,Void>() {
 public Void doInBackground(String... params) {
 for (String parameter : params) {
 Log.i(TAG, "Received parameter: " + parameter);
 }

 return null;
 }
};

Input parameters are passed in to the execute(…) method, which takes in a variable number of
arguments:

 task.execute("First parameter", "Second parameter", "Etc.");

Those variable arguments are then passed on to doInBackground(…).

The second type parameter allows you to specify the type for sending progress updates. Here is what
the code pieces look like:

For the More Curious: Alternatives to AsyncTask

427

final ProgressBar gestationProgressBar = /* A determinate progress bar */;
gestationProgressBar.setMax(42); /* max allowed gestation period */

AsyncTask<Void,Integer,Void> haveABaby = new AsyncTask<Void,Integer,Void>() {
 public Void doInBackground(Void... params) {
 while (!babyIsBorn()) {
 Integer weeksPassed = getNumberOfWeeksPassed();
 publishProgress(weeksPassed);
 patientlyWaitForBaby();
 }
 }

 public void onProgressUpdate(Integer... params) {
 int progress = params[0];
 gestationProgressBar.setProgress(progress);
 }
};

/* call when you want to execute the AsyncTask */
haveABaby.execute();

Progress updates usually happen in the middle of an ongoing background process. The problem is that
you cannot make the necessary UI updates inside that background process. So AsyncTask provides
publishProgress(…) and onProgressUpdate(…).

Here is how it works: you call publishProgress(…) from doInBackground(…) in the background
thread. This will make onProgressUpdate(…) be called on the UI thread. So you can do
your UI updates in onProgressUpdate(…), but control them from doInBackground(…) with
publishProgress(…).

For the More Curious: Alternatives to AsyncTask
If you use an AsyncTask to load data, you are responsible for managing its lifecycle during
configuration changes, such as rotation, and stashing its data somewhere that lives through them.
Often, this is simplified by using setRetainInstance(true) on a Fragment and storing the data there,
but there are still situations where you have to intervene and code you have to write in order to ensure
that everything happens correctly. Such situations include the user pressing the Back button while the
AsyncTask is running, or the fragment that launched the AsyncTask getting destroyed during execution
by the OS due to a low-memory situation.

Using a Loader is an alternative solution that takes some (but not all) of this responsibility off your
hands. A loader is designed to load some kind of data (an object) from some source. The source could
be a disk, a database, a ContentProvider, the network, or another process.

AsyncTaskLoader is an abstract Loader that uses an AsyncTask to move the work of loading data to
another thread. Almost all useful loader classes you create will be a subclass of AsyncTaskLoader. The
AsyncTaskLoader will do the job of fetching the data without blocking the main thread and delivering
the results to whomever is interested.

Why would you use a loader instead of, say, an AsyncTask directly? Well, the most compelling
reason is that the LoaderManager will keep your component’s loaders alive, along with their data,
between configuration changes like rotation. LoaderManager is responsible for starting, stopping, and
maintaining the lifecycle of any Loaders associated with your component.

Chapter 23 HTTP & Background Tasks

428

If, after a configuration change, you initialize a loader that has already finished loading its data, it can
deliver that data immediately rather than trying to fetch it again. This works whether your fragment
is retained or not, which can make your life easier because you do not have to consider the lifecycle
complications that retained fragments can introduce.

Challenge: Gson
Deserializing JSON in Java objects, as you did in Listing 23.12, is a common task in app development
regardless of the platform. Lots of smart people have created libraries to simplify the process of
converting JSON text to Java objects and back again.

One such library is Gson (https://github.com/google/gson). Gson maps JSON data to Java objects
for you automatically. This means you do not need to write any parsing code. For this reason, Gson is
currently our favorite JSON parsing library.

For this challenge, simplify your JSON parsing code in FlickrFetchr by incorporating the Gson
library into your app.

Challenge: Paging
By default, getRecent returns one page of 100 results. There is an additional parameter you can use
called page that will let you return page two, three, and so on.

For this challenge, implement a RecyclerView.OnScrollListener that detects when you are at the
end of your results and replaces the current page with the next page of results. For a slightly harder
challenge, append subsequent pages to your results.

Challenge: Dynamically Adjusting the Number of
Columns
Currently the number of columns displayed in the grid is fixed at three. Update your code to provide a
dynamic number of columns so more columns appear in landscape and on larger devices.

A simple approach could involve providing an integer resource qualified for different orientations
and/or screen sizes. This is similar to how you provided different layouts for different screen sizes in
Chapter 17. Integer resources should be placed in the res/values folder(s). Check out the Android
developer documentation for more details.

Providing qualified resources does not offer much in the way of granularity. For a more difficult
challenge (and more flexible implementation), calculate and set the number of columns each time
the fragment’s view is created. Calculate the number of columns based on the current width of the
RecyclerView and some predetermined constant column width.

There is only one catch: you cannot calculate the number of columns in
onCreateView() because the RecyclerView will not be sized yet. Instead, implement a
ViewTreeObserver.OnGlobalLayoutListener and put your column calculation code in
onGlobalLayout(). Add the listener to your RecyclerView using addOnGlobalLayoutListener().

429

24
Loopers, Handlers, and

HandlerThread

Now that you have downloaded and parsed JSON from Flickr, your next task is to download and
display images. In this chapter, you will learn how to use Looper, Handler, and HandlerThread to
dynamically download and display photos in PhotoGallery.

Preparing RecyclerView to Display Images
The current PhotoHolder in PhotoGalleryFragment simply provides TextViews for the
RecyclerView’s GridLayoutManager to display. Each TextView displays the caption of a GalleryItem.

To display photos, update PhotoHolder to provide ImageViews instead. Eventually, each ImageView
will display a photo downloaded from the mUrl of a GalleryItem.

Start by creating a new layout file for your gallery items called gallery_item.xml. This layout will
consist of a single ImageView (Figure 24.1).

Figure 24.1 Gallery item layout (res/layout/gallery_item.xml)

These ImageViews will be managed by RecyclerView’s GridLayoutManager, which means that
their width will vary. Their height, on the other hand, will remain fixed. To make the most of the
ImageView’s space, you have set its scaleType to centerCrop. This setting centers the image and then
scales it up so that the smaller dimension is equal to the view and the larger one is cropped on both
sides.

Next, update PhotoHolder to hold an ImageView instead of a TextView. Replace bindGalleryItem()
with a method to set the ImageView’s Drawable.

Chapter 24 Loopers, Handlers, and HandlerThread

430

Listing 24.1 Updating PhotoHolder (PhotoGalleryFragment.java)
...

private class PhotoHolder extends RecyclerView.ViewHolder {
 private TextView mTitleTextView ImageView mItemImageView;

 public PhotoHolder(View itemView) {
 super(itemView);

 mTitleTextView = (TextView) itemView;
 mItemImageView = (ImageView) itemView
 .findViewById(R.id.fragment_photo_gallery_image_view);
 }

 public void bindGalleryItem(GalleryItem item) {
 mTitleTextView.setText(item.toString());
 }

 public void bindDrawable(Drawable drawable) {
 mItemImageView.setImageDrawable(drawable);
 }
}

...

Previously the PhotoHolder constructor assumed it would be passed a TextView directly. The
new version instead expects a view hierarchy that contains an ImageView with the resource ID
R.id.fragment_photo_gallery_image_view.

Update PhotoAdapter’s onCreateViewHolder() to inflate the gallery_item file you created and pass
it to PhotoHolder’s constructor.

Listing 24.2 Updating PhotoAdapter’s onCreateViewHolder()
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...

 private class PhotoAdapter extends RecyclerView.Adapter<PhotoHolder> {
 ...

 @Override
 public PhotoHolder onCreateViewHolder(ViewGroup viewGroup, int viewType) {
 TextView textView = new TextView(getActivity());
 return new PhotoHolder(textView);
 LayoutInflater inflater = LayoutInflater.from(getActivity());
 View view = inflater.inflate(R.layout.gallery_item, viewGroup, false);
 return new PhotoHolder(view);
 }

 ...
 }

 ...
}

Preparing RecyclerView to Display Images

431

Next, you will need a placeholder image for each ImageView to display until you download an image
to replace it. Find bill_up_close.jpg in the solutions file and put it in res/drawable. (See the section
called “Adding an Icon” in Chapter 2 for more on the solutions.)

Update PhotoAdapter’s onBindViewHolder() to set the placeholder image as the ImageView’s
Drawable.

Listing 24.3 Binding default image (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 ...

 private class PhotoAdapter extends RecyclerView.Adapter<PhotoHolder> {
 ...

 @Override
 public void onBindViewHolder(PhotoHolder photoHolder, int position) {
 GalleryItem galleryItem = mGalleryItems.get(position);
 photoHolder.bindGalleryItem(galleryItem);
 Drawable placeholder = getResources().getDrawable(R.drawable.bill_up_close);
 photoHolder.bindDrawable(placeholder);
 }

 ...
 }

 ...
}

Run PhotoGallery, and you should see an array of close-up Bills, as in Figure 24.2.

Figure 24.2 A Billsplosion

Chapter 24 Loopers, Handlers, and HandlerThread

432

Downloading Lots of Small Things
Currently, PhotoGallery’s networking works like this: PhotoGalleryFragment executes an AsyncTask
that retrieves the JSON from Flickr on a background thread and parses the JSON into an array of
GalleryItems. Each GalleryItem now has a URL where a thumbnail-size photo lives.

The next step is to go and get those thumbnails. You might think that this additional networking code
could simply be added to FetchItemsTask’s doInBackground() method. Your GalleryItem array has
100 URLs to download from. You would download the images one after another until you had all 100.
When onPostExecute(…) executed, they would be displayed en masse in the RecyclerView.

However, downloading the thumbnails all at once causes two problems. The first is that it could take
a while, and the UI would not be updated until the downloading was complete. On a slow connection,
users would be staring at a wall of Bills for a long time.

The second problem is the cost of having to store the entire set of images. One hundred thumbnails will
fit into memory easily. But what if it were 1000? What if you wanted to implement infinite scrolling?
Eventually, you would run out of space.

Given these problems, real-world apps often download images only when they need to be displayed
on screen. Downloading on demand puts the responsibility on the RecyclerView and its adapter. The
adapter triggers the image downloading as part of its onBindViewHolder(…) implementation.

AsyncTask is the easiest way to get a background thread, but it is ill-suited for repetitive and long-
running work. (You can read why in the For the More Curious section at the end of this chapter.)

Instead of using an AsyncTask, you are going to create a dedicated background thread. This is the most
common way to implement downloading on an as-needed basis.

Communicating with the Main Thread
Your dedicated thread will download photos, but how will it work with the RecyclerView’s adapter to
display them when it cannot directly access the main thread?

Think back to the shoe store with two Flashes. Background Flash has wrapped up his phone call to
the distributor. He needs to tell Main Flash that the shoes are back in stock. If Main Flash is busy,
Background Flash cannot do this right away. He would have to wait by the register to catch Main Flash
at a spare moment. This would work, but it is not very efficient.

The better solution is to give each Flash an inbox. Background Flash writes a message about the shoes
being in stock and puts it on top of Main Flash’s inbox. Main Flash does the same thing when he wants
to tell Background Flash that the stock of shoes has run out.

The inbox idea turns out to be really handy. The Flash may have something that needs to be done soon,
but not right at the moment. In that case, he can put a message in his own inbox and then handle it
when he has time.

In Android, the inbox that threads use is called a message queue. A thread that works by using a
message queue is called a message loop; it loops again and again looking for new messages on its
queue (Figure 24.3).

Assembling a Background Thread

433

Figure 24.3 Flash dance

A message loop consists of a thread and a looper. The Looper is the object that manages a thread’s
message queue.

The main thread is a message loop and has a looper. Everything your main thread does is performed by
its looper, which grabs messages off of its message queue and performs the task they specify.

You are going to create a background thread that is also a message loop. You will use a class called
HandlerThread that prepares a Looper for you.

Assembling a Background Thread
Create a new class called ThumbnailDownloader that extends HandlerThread. Then give it a
constructor and a stub implementation of a method called queueThumbnail() (Listing 24.4).

Listing 24.4 Initial thread code (ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends HandlerThread {
 private static final String TAG = "ThumbnailDownloader";

 public ThumbnailDownloader() {
 super(TAG);
 }

 public void queueThumbnail(T target, String url) {
 Log.i(TAG, "Got a URL: " + url);
 }
}

Notice you gave the class a single generic argument, <T>. Your ThumbnailDownloader’s user,
PhotoGalleryFragment in this case, will need to use some object to identify each download and to

Chapter 24 Loopers, Handlers, and HandlerThread

434

determine which UI element to update with the image once it is downloaded. Rather than locking the
user into a specific type of object as the identifier, using a generic makes the implementation more
flexible.

The queueThumbnail() method expects an object of type T to use as the identifier for the download
and a String containing the URL to download. This is the method you will have GalleryItemAdapter
call in its onBindViewHolder(…) implementation.

Open PhotoGalleryFragment.java. Give PhotoGalleryFragment a ThumbnailDownloader member
variable. In onCreate(…), create the thread and start it. Override onDestroy() to quit the thread.

Listing 24.5 Creating ThumbnailDownloader (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 private static final String TAG = "PhotoGalleryFragment";

 private RecyclerView mPhotoRecyclerView;
 private List<GalleryItem> mItems = new ArrayList<>();
 private ThumbnailDownloader<PhotoHolder> mThumbnailDownloader;

 ...

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 new FetchItemsTask().execute();

 mThumbnailDownloader = new ThumbnailDownloader<>();
 mThumbnailDownloader.start();
 mThumbnailDownloader.getLooper();
 Log.i(TAG, "Background thread started");
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onDestroy() {
 super.onDestroy();
 mThumbnailDownloader.quit();
 Log.i(TAG, "Background thread destroyed");
 }
 ...
}

You can specify any type for ThumbnailDownloader’s generic argument. However, recall that this
argument specifies the type of the object that will be used as the identifier for your download. In this
case, the PhotoHolder makes for a convenient identifier as it is also the target where the downloaded
images will eventually go.

A couple of safety notes. One: notice that you call getLooper() after calling start() on your
ThumbnailDownloader (you will learn more about the Looper in a moment). This is a way to ensure

Messages and Message Handlers

435

that the thread’s guts are ready before proceeding, to obviate a potential (though rarely occurring) race
condition. Until you call getLooper(), there is no guarantee that onLooperPrepared() has been called,
so there is a possibility that calls to queueThumbnail(…) will fail due to a null Handler.

Safety note number two: you call quit() to terminate the thread inside onDestroy(). This is critical. If
you do not quit your HandlerThreads, they will never die. Like zombies. Or rock and roll.

Finally, within PhotoAdapter.onBindViewHolder(…), call the thread’s queueThumbnail() method and
pass in the target PhotoHolder where the image will ultimately be placed and the GalleryItem’s URL
to download from.

Listing 24.6 Hooking up ThumbnailDownloader
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 ...

 private class PhotoAdapter extends RecyclerView.Adapter<PhotoHolder> {

 ...

 @Override
 public void onBindViewHolder(PhotoHolder photoHolder, int position) {
 GalleryItem galleryItem = mGalleryItems.get(position);
 Drawable placeholder = getResources().getDrawable(R.drawable.bill_up_close);
 photoHolder.bindDrawable(placeholder);
 mThumbnailDownloader.queueThumbnail(photoHolder, galleryItem.getUrl());
 }

 ...
 }

 ...
}

Run PhotoGallery and check out LogCat. When you scroll around the RecyclerView, you should see
lines in LogCat signaling that ThumbnailDownloader is getting each one of your download requests.

Now that you have a HandlerThread up and running, the next step is to create a message with the
information passed in to queueThumbnail() and put that message on the ThumbnailDownloader’s
message queue.

Messages and Message Handlers
Before you create a message, you need to understand what a Message is and the relationship it has with
its Handler (often called its message handler).

Message anatomy
Let’s start by looking closely at messages. The messages that a Flash might put in an inbox (its own
inbox or that of another Flash) are not supportive notes, like “You run very fast, Flash.” They are tasks
that need to be handled.

Chapter 24 Loopers, Handlers, and HandlerThread

436

A message is an instance of Message and contains several fields. Three are relevant to your
implementation:

what a user-defined int that describes the message

obj a user-specified object to be sent with the message

target the Handler that will handle the message

The target of a Message is an instance of Handler. You can think of the name Handler as being short
for “message handler.” When you create a Message, it will automatically be attached to a Handler. And
when your Message is ready to be processed, Handler will be the object in charge of making it happen.

Handler anatomy
To do any real work with messages, you will need an instance of Handler first. A Handler is not just
a target for processing your Messages. A Handler is your interface for creating and posting Messages,
too. Take a look at Figure 24.4.

Figure 24.4 Looper, Handler, HandlerThread, and Messages

Messages must be posted and consumed on a Looper, because Looper owns the inbox of Message
objects. So Handler always has a reference to its coworker, the Looper.

A Handler is attached to exactly one Looper, and a Message is attached to exactly one target Handler,
called its target. A Looper has a whole queue of Messages. Multiple Messages can reference the same
target Handler (Figure 24.5).

Using handlers

437

Figure 24.5 Multiple Handlers, one Looper

Multiple Handlers can be attached to one Looper. This means that your Handler’s Messages may be
living side by side with another Handler’s messages.

Using handlers
Usually, you do not set a message’s target Handler by hand. It is better to build the message by calling
Handler.obtainMessage(…). You pass the other message fields into this method, and it automatically
sets the target to the Handler object the method was called on for you.

Handler.obtainMessage(…) pulls from a common recycling pool to avoid creating new Message
objects, so it is also more efficient than creating new instances.

Once you have obtained a Message, you call sendToTarget() to send the Message to its Handler. The
Handler will then put the Message on the end of Looper’s message queue.

In this case, you are going to obtain a message and send it to its target within the implementation
of queueThumbnail(). The message’s what will be a constant defined as MESSAGE_DOWNLOAD. The
message’s obj will be an object of type T, which will be used to identify the download. In this case,
obj will be the PhotoHolder that the adapter passed in to queueThumbnail().

When the looper pulls a Message from the queue, it gives the message to the message’s
target Handler to handle. Typically, the message is handled in the target’s implementation of
Handler.handleMessage(…).

Figure 24.6 shows the object relationships involved.

Chapter 24 Loopers, Handlers, and HandlerThread

438

Figure 24.6 Creating a Message and sending it

In this case, your implementation of handleMessage(…) will use FlickrFetchr to download bytes
from the URL and then turn these bytes into a bitmap.

First, add the constant and member variables as shown in Listing 24.7.

Listing 24.7 Adding constant and member variables
(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends HandlerThread {
 private static final String TAG = "ThumbnailDownloader";
 private static final int MESSAGE_DOWNLOAD = 0;

 private Handler mRequestHandler;
 private ConcurrentMap<T,String> mRequestMap = new ConcurrentHashMap<>();

 ...
}

MESSAGE_DOWNLOAD will be used to identify messages as download requests. (ThumbnailDownloader
will set this as the what on any new download messages it creates.)

The newly added mRequestHandler will store a reference to the Handler responsible for queueing
download requests as messages onto the ThumbnailDownloader background thread. This handler will
also be in charge of processing download request messages when they are pulled off the queue.

The mRequestMap variable is a ConcurrentHashMap. A ConcurrentHashMap is a thread-safe version
of HashMap. Here, using a download request’s identifying object of type T as a key, you can store
and retrieve the URL associated with a particular request. (In this case, the identifying object is
a PhotoHolder, so the request response can be easily routed back to the UI element where the
downloaded image should be placed.)

Next, add code to queueThumbnail(…) to update mRequestMap and to post a new message to the
background thread’s message queue.

Using handlers

439

Listing 24.8 Obtaining and sending a message (ThumbnailDownloader.java)

public class ThumbnailDownloader<T> extends HandlerThread {
 private static final String TAG = "ThumbnailDownloader";
 private static final int MESSAGE_DOWNLOAD = 0;

 private Handler mRequestHandler;
 private ConcurrentMap<T,String> mRequestMap = new ConcurrentHashMap<>();

 public ThumbnailDownloader() {
 super(TAG);
 }

 public void queueThumbnail(T target, String url) {
 Log.i(TAG, "Got a URL: " + url);

 if (url == null) {
 mRequestMap.remove(target);
 } else {
 mRequestMap.put(target, url);
 mRequestHandler.obtainMessage(MESSAGE_DOWNLOAD, target)
 .sendToTarget();
 }
 }
}

You obtain a message directly from mRequestHandler, which automatically sets the new Message
object’s target field to mRequestHandler. This means mRequestHandler will be in charge of
processing the message when it is pulled off the message queue. The message’s what field is set to
MESSAGE_DOWNLOAD. Its obj field is set to the T target value (a PhotoHolder in this case) that is
passed to queueThumbnail(…).

The new message represents a download request for the specified T target (a PhotoHolder from the
RecyclerView). Recall that PhotoGalleryFragment’s RecyclerView’s adapter implementation calls
queueThumbnail(…) from onBindViewHolder(…), passing along the PhotoHolder the image is being
downloaded for and the URL location of the image to download.

Notice that the message itself does not include the URL. Instead you update mRequestMap with
a mapping between the request identifier (PhotoHolder) and the URL for the request. Later you
will pull the URL from mRequestMap to ensure that you are always downloading the most recently
requested URL for a given PhotoHolder instance. (This is important because ViewHolder objects in
RecyclerViews are recycled and reused.)

Finally, initialize mRequestHandler and define what that Handler will do when downloaded messages
are pulled off the queue and passed to it.

Chapter 24 Loopers, Handlers, and HandlerThread

440

Listing 24.9 Handling a message (ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends HandlerThread {
 private static final String TAG = "ThumbnailDownloader";
 private static final int MESSAGE_DOWNLOAD = 0;

 private Handler mRequestHandler;
 private ConcurrentMap<T,String> mRequestMap = new ConcurrentHashMap<>();

 public ThumbnailDownloader(Handler responseHandler) {
 super(TAG);
 }

 @Override
 protected void onLooperPrepared() {
 mRequestHandler = new Handler() {
 @Override
 public void handleMessage(Message msg) {
 if (msg.what == MESSAGE_DOWNLOAD) {
 T target = (T) msg.obj;
 Log.i(TAG, "Got a request for URL: " + mRequestMap.get(target));
 handleRequest(target);
 }
 }
 };
 }

 public void queueThumbnail(T target, String url) {
 ...
 }

 private void handleRequest(final T target) {
 try {
 final String url = mRequestMap.get(target);

 if (url == null) {
 return;
 }

 byte[] bitmapBytes = new FlickrFetchr().getUrlBytes(url);
 final Bitmap bitmap = BitmapFactory
 .decodeByteArray(bitmapBytes, 0, bitmapBytes.length);
 Log.i(TAG, "Bitmap created");

 } catch (IOException ioe) {
 Log.e(TAG, "Error downloading image", ioe);
 }
 }
}

You implemented Handler.handleMessage(…) in your Handler subclass within onLooperPrepared().
HandlerThread.onLooperPrepared() is called before the Looper checks the queue for the first time.
This makes it a good place to create your Handler implementation.

Within Handler.handleMessage(…), you check the message type, retrieve the obj value (which will
be of type T and serves as the identifier for the request), and then pass it to handleRequest(…). (Recall
that Handler.handleMessage(…) will get called when a download message is pulled off the queue and
ready to be processed.)

Passing handlers

441

The handleRequest() method is a helper method where the downloading happens. Here you check for
the existence of a URL. Then you pass the URL to a new instance of your old friend FlickrFetchr. In
particular, you use the FlickrFetchr.getUrlBytes(…) method that you created with such foresight in
the last chapter.

Finally, you use BitmapFactory to construct a bitmap with the array of bytes returned from
getUrlBytes(…).

Run PhotoGallery and check LogCat for your confirming log statements.

Of course, the request will not be completely handled until you set the bitmap on the PhotoHolder that
originally came from PhotoAdapter. However, this is UI work, so it must be done on the main thread.

Everything you have seen so far uses handlers and messages on a single thread –
ThumbnailDownloader putting messages in ThumbnailDownloader’s own inbox. In the next section,
you will see how ThumbnailDownloader can use a Handler to post requests to a separate thread
(namely, the main thread).

Passing handlers
So far you are able to schedule work on the background thread from the main thread using
ThumbnailDownloader’s mRequestHandler. This flow is shown in Figure 24.7.

Figure 24.7 Scheduling work on ThumbnailDownloader from the main thread

You can also schedule work on the main thread from the background thread using a Handler attached
to the main thread. This flow looks like Figure 24.8.

Chapter 24 Loopers, Handlers, and HandlerThread

442

Figure 24.8 Scheduling work on the main thread from ThumbnailDownloader’s
thread

The main thread is a message loop with handlers and a Looper. When you create a Handler in the
main thread, it will be associated with the main thread’s Looper. You can then pass that Handler to
another thread. The passed Handler maintains its loyalty to the Looper of the thread that created it.
Any messages the Handler is responsible for will be handled on the main thread’s queue.

In ThumbnailDownloader.java, add the mResponseHandler variable seen above to hold a Handler
passed from the main thread. Then replace the constructor with one that accepts a Handler and sets
the variable, and add a listener interface that will be used to communicate the responses (downloaded
images) with the requester (the main thread).

Passing handlers

443

Listing 24.10 Handling a message (ThumbnailDownloader.java)

public class ThumbnailDownloader<T> extends HandlerThread {
 private static final String TAG = "ThumbnailDownloader";
 private static final int MESSAGE_DOWNLOAD = 0;

 private Handler mRequestHandler;
 private ConcurrentMap<T,String> mRequestMap = new ConcurrentHashMap<>();
 private Handler mResponseHandler;
 private ThumbnailDownloadListener<T> mThumbnailDownloadListener;

 public interface ThumbnailDownloadListener<T> {
 void onThumbnailDownloaded(T target, Bitmap thumbnail);
 }

 public void setThumbnailDownloadListener(ThumbnailDownloadListener<T> listener) {
 mThumbnailDownloadListener = listener;
 }

 public ThumbnailDownloader(Handler responseHandler) {
 super(TAG);
 mResponseHandler = responseHandler;
 }

 ...
}

The onThumbnailDownloaded(…) method defined in your new ThumbnailDownloadListener interface
will eventually be called when an image has been fully downloaded and is ready to be added to
the UI. Using this listener delegates the responsibility of what to do with the downloaded image
to a class other than ThumbnailDownloader (in this case, to PhotoGalleryFragment). Doing so
separates the downloading task from the UI updating task (putting the images into ImageViews), so that
ThumbnailDownloader could be used for downloading into other kinds of View objects as needed.

Next, modify PhotoGalleryFragment to pass a Handler attached to the main thread to
ThumbnailDownloader. Also, set a ThumbnailDownloadListener to handle the downloaded image
once it is complete.

Chapter 24 Loopers, Handlers, and HandlerThread

444

Listing 24.11 Hooking up to response Handler (PhotoGalleryFragment.java)
...

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 new FetchItemsTask().execute();

 Handler responseHandler = new Handler();
 mThumbnailDownloader = new ThumbnailDownloader<>(responseHandler);
 mThumbnailDownloader.setThumbnailDownloadListener(
 new ThumbnailDownloader.ThumbnailDownloadListener<PhotoHolder>() {
 @Override
 public void onThumbnailDownloaded(PhotoHolder photoHolder, Bitmap bitmap) {
 Drawable drawable = new BitmapDrawable(getResources(), bitmap);
 photoHolder.bindDrawable(drawable);
 }
 }
);
 mThumbnailDownloader.start();
 mThumbnailDownloader.getLooper();
 Log.i(TAG, "Background thread started");
}

...

Remember that by default, the Handler will attach itself to the Looper for the current thread. Because
this Handler is created in onCreate(…), it will be attached to the main thread’s Looper.

Now ThumbnailDownloader has access via mResponseHandler to a Handler that is tied to the main
thread’s Looper. It also has your ThumbnailDownloadListener to do the UI work with the returning
Bitmaps. Specifically, the onThumbnailDownloaded implementation sets the Drawable of the originally
requested PhotoHolder to the newly downloaded Bitmap.

You could send a custom Message back to the main thread requesting to add the image to the UI,
similar to how you queued a request on the background thread to download the image. However, this
would require another subclass of Handler, with an override of handleMessage(…).

Instead, let’s use another handy Handler method – post(Runnable).

Handler.post(Runnable) is a convenience method for posting Messages that look like this:

Runnable myRunnable = new Runnable() {
 public void run() {
 /* Your code here */
 }
};
Message m = mHandler.obtainMessage();
m.callback = myRunnable;

When a Message has its callback field set, it is not routed to its target Handler when pulled off the
message queue. Instead, the run() method of the Runnable stored in callback is executed directly.

In ThumbnailDownloader.handleRequest(), add the following code.

Passing handlers

445

Listing 24.12 Downloading and displaying images
(ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends HandlerThread {

 ...
 private Handler mResponseHandler;
 private ThumbnailDownloadListener<T> mThumbnailDownloadListener;

 ...

 private void handleRequest(final T target) {
 try {
 final String url = mRequestMap.get(target);

 if (url == null) {
 return;
 }

 byte[] bitmapBytes = new FlickrFetchr().getUrlBytes(url);
 final Bitmap bitmap = BitmapFactory
 .decodeByteArray(bitmapBytes, 0, bitmapBytes.length);
 Log.i(TAG, "Bitmap created");

 mResponseHandler.post(new Runnable() {
 public void run() {
 if (mRequestMap.get(target) != url) {
 return;
 }

 mRequestMap.remove(target);
 mThumbnailDownloadListener.onThumbnailDownloaded(target, bitmap);
 }
 });

 } catch (IOException ioe) {
 Log.e(TAG, "Error downloading image", ioe);
 }
 }
}

Because mResponseHandler is associated with the main thread’s Looper, all of the code inside of
run() will be executed on the main thread.

So what does this code do? First, you double-check the requestMap. This is necessary because the
RecyclerView recycles its views. By the time ThumbnailDownloader finishes downloading the Bitmap,
RecyclerView may have recycled the PhotoHolder and requested a different URL for it. This check
ensures that each PhotoHolder gets the correct image, even if another request has been made in the
meantime.

Finally, you remove the PhotoHolder-URL mapping from the requestMap and set the bitmap on the
target PhotoHolder.

Before running PhotoGallery and seeing your hard-won images, there is one last danger you need
to account for. If the user rotates the screen, ThumbnailDownloader may be hanging on to invalid
PhotoHolders. Bad things will happen if the corresponding ImageViews get pressed.

Write the following method to clean all the requests out of your queue.

Chapter 24 Loopers, Handlers, and HandlerThread

446

Listing 24.13 Adding cleanup method (ThumbnailDownloader.java)
public class ThumbnailDownloader<T> extends HandlerThread {

 ...

 public void queueThumbnail(T target, String url) {
 ...
 }

 public void clearQueue() {
 mRequestHandler.removeMessages(MESSAGE_DOWNLOAD);
 }

 private void handleRequest(final T target) {
 ...
 }
}

Then clean out your downloader in PhotoGalleryFragment when your view is destroyed.

Listing 24.14 Calling cleanup method (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onDestroyView() {
 super.onDestroyView();
 mThumbnailDownloader.clearQueue();
 }

 @Override
 public void onDestroy() {
 ...
 }

 ...
}

With that, your work for this chapter is complete. Run PhotoGallery. Scroll around to see images
dynamically loading.

PhotoGallery has achieved its basic goal of displaying images from Flickr. In the next few chapters,
you will add more functionality, like searching for photos and opening each photo’s Flickr page in a
web view.

For the More Curious: AsyncTask vs. Threads

447

For the More Curious: AsyncTask vs. Threads
Now that you understand Handler and Looper, AsyncTask may not seem quite so magical. It is still
less work than what you have done here. So why not use AsyncTask instead of a HandlerThread?

There are a few reasons. The most fundamental one is that AsyncTask is not designed for it. It is
intended for work that is short lived and not repeated too often. Your code in the previous chapter is
a place where AsyncTask shines. But if you are creating a lot of AsyncTasks or having them run for a
long time, you are probably using the wrong class.

A more compelling technical reason is that in Android 3.2 AsyncTask changed its implementation in
a significant way. Starting with Android 3.2, AsyncTask does not create a thread for each instance of
AsyncTask. Instead, it uses something called an Executor to run background work for all AsyncTasks
on a single background thread. That means that each AsyncTask will run one after the other. A long-
running AsyncTask will hog the thread, preventing other AsyncTasks from getting any CPU time.

It is possible to safely run AsyncTasks in parallel by using a thread pool executor instead, but we do not
recommend doing so. If you are considering doing this, it is usually better to do your own threading,
using Handlers to communicate back to the main thread when necessary.

Challenge: Preloading and Caching
Users accept that not everything can be instantaneous. (Well, most users.) Even so, programmers strive
toward perfection.

To approach instantaneity, most real-world apps augment the code you have here in two ways:

• adding a caching layer

• preloading images

A cache is a place to stash a certain number of Bitmap objects so that they stick around even when you
are done using them. A cache can only hold so many items, so you need a strategy to decide what to
keep when your cache runs out of room. Many caches use a strategy called LRU, or “least recently
used.” When you are out of room, the cache gets rid of the least recently used item.

The Android support library has a class called LruCache that implements an LRU strategy. For the first
challenge, use LruCache to add a simple cache to ThumbnailDownloader. Whenever you download the
Bitmap for a URL, you will stick it in the cache. Then, when you are about to download a new image,
you will check the cache first to see if you already have it around.

Once you have built a cache, you can preload things into it. Preloading is loading items in the cache
before you actually need them. That way, there is no delay for Bitmaps to download before displaying
them.

Preloading is tricky to implement well, but it makes a huge difference for the user. For a second, harder
challenge, for every GalleryItem you display, preload Bitmaps for the previous 10 and the next 10
GalleryItems.

Chapter 24 Loopers, Handlers, and HandlerThread

448

For the More Curious: Solving the Image Downloading
Problem
This book is here to teach you about the tools in the standard Android library. If you are open to using
third-party libraries, though, there are a few libraries that can save you a whole lot of time in various
scenarios, including the image downloading work you implemented in PhotoGallery.

Admittedly, the solution you implemented in this chapter is far from perfect. When you start to need
caching, transformations, and better performance, it is natural to ask if someone else has solved this
problem before you. The answer is, of course: someone has. There are several libraries available that
solve the image-loading problem. We currently use Picasso (http://square.github.io/picasso/)
for image loading in our production applications.

Picasso lets you do everything from this chapter in one line:

private class PhotoHolder extends RecyclerView.ViewHolder {
 ...

 public void bindGalleryItem(GalleryItem galleryItem) {
 Picasso.with(getActivity())
 .load(galleryItem.getUrl())
 .placeholder(R.drawable.bill_up_close)
 .into(mItemImageView);
 }

 ...
}

The fluent interface requires you specify a context using with(Context). You can specify the URL
of the image to download using load(String) and the ImageView object to load the result into using
into(ImageView). There are many other configurable options, such as specifying an image to display
until the requested image is fully downloaded (using placeholder(int) or placeholder(drawable)).

In PhotoAdapter.onBindViewHolder(…), you would replace the existing code with a call through to
the new bindGalleryItem(…) method.

Picasso does all of the work of ThumbnailDownloader (along with the
ThumbnailDownloader.ThumbnailDownloadListener<T> callback) and the image-related work of
FlickrFetchr. This means you can remove ThumbnailDownloader if you use Picasso (you will still
need FlickrFetchr for downloading the JSON data). In addition to simplifying your code, Picasso
supports more advanced features such as image transformations and disk caching with minimal effort
on your part.

You can add Picasso to your project as a library dependency using the Project Structure window, just as
you did for other dependencies (like RecyclerView).

449

25
Search

Your next task with PhotoGallery is to search photos on Flickr. You will learn how to integrate search
into your app the Android way. Or, as it turns out, one of the Android ways. Search has been integrated
into Android from the very beginning, but it has changed a lot over time.

In this chapter you will implement search using SearchView.

The user will be able to submit a query using the SearchView, which will search Flickr using the query
string and populate the RecyclerView with the search results (Figure 25.1). The query string submitted
will be persisted to the filesystem. This means the user’s last query will be accessible across restarts of
the app and even the device.

Figure 25.1 App preview

Searching Flickr
Let’s begin with the Flickr side of things. To search Flickr, you call the flickr.photos.search
method. Here is what a GET request to search for the text “cat” looks like:

https://api.flickr.com/services/rest/?method=flickr.photos.search
&api_key=xxx&format=json&nojsoncallback=1&text=cat

Chapter 25 Search

450

The method is set to flickr.photos.search. A new parameter, text, is added and set to whatever
string you are searching for (“cat,” in this case).

While the search request URL differs from the one you used to request recent photos, the format of
the JSON returned remains the same. This is good news, because it means you can use the same JSON
parsing code you already wrote, regardless of whether you are searching or getting recent photos.

First, refactor some of your old FlickrFetchr code to reuse the parsing code across both scenarios.
Start by adding constants for the reusable pieces of the URL, as shown in Listing 25.1. Cut the URI-
building code from fetchItems and paste it as the value for ENDPOINT. However, make sure to only
include the shaded parts. The constant ENDPOINT should not contain the method query parameter, and
the build statement should not be converted to a string using toString().

Listing 25.1 Adding URL constants (FlickrFetchr.java)
public class FlickrFetchr {
 private static final String TAG = "FlickrFetchr";

 private static final String API_KEY = "yourApiKeyHere";
 private static final String FETCH_RECENTS_METHOD = "flickr.photos.getRecent";
 private static final String SEARCH_METHOD = "flickr.photos.search";
 private static final Uri ENDPOINT = Uri
 .parse("https://api.flickr.com/services/rest/")
 .buildUpon()
 .appendQueryParameter("api_key", API_KEY)
 .appendQueryParameter("format", "json")
 .appendQueryParameter("nojsoncallback", "1")
 .appendQueryParameter("extras", "url_s")
 .build();

 ...

 public List<GalleryItem> fetchItems() {

 List<GalleryItem> items = new ArrayList<>();

 try {
 String url = Uri.parse("https://api.flickr.com/services/rest/")
 .buildUpon()
 .appendQueryParameter("method", "flickr.photos.getRecent")
 .appendQueryParameter("api_key", API_KEY)
 .appendQueryParameter("format", "json")
 .appendQueryParameter("nojsoncallback", "1")
 .appendQueryParameter("extras", "url_s")
 .build().toString();
 String jsonString = getUrlString(url);
 ...
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 } catch (JSONException je) {
 Log.e(TAG, "Failed to parse JSON", je);
 }

 return items;
 }

 ...
}

Searching Flickr

451

(The change you just made will result in an error in fetchItems(). You can ignore this error for now,
as you are about to delete fetchItems() anyway.)

Rename fetchItems() to downloadGalleryItems(String url) to reflect its new, more general
purpose. It no longer needs to be public, either, so change its visibility to private, too.

Listing 25.2 Refactoring Flickr code (FlickrFetchr.java)

public class FlickrFetchr {

 ...
 public List<GalleryItem> fetchItems() {
 private List<GalleryItem> downloadGalleryItems(String url) {
 List<GalleryItem> items = new ArrayList<>();

 try {
 String jsonString = getUrlString(url);
 Log.i(TAG, "Received JSON: " + jsonString);
 JSONObject jsonBody = new JSONObject(jsonString);
 parseItems(items, jsonBody);
 } catch (IOException ioe) {
 Log.e(TAG, "Failed to fetch items", ioe);
 } catch (JSONException je) {
 Log.e(TAG, "Failed to parse JSON", je);
 }

 return items;
 }

 ...
}

The new downloadGalleryItems(String) method takes a URL as input, so there is no need to build
the URL inside. Instead, add a new method to build the URL based on method and query values.

Chapter 25 Search

452

Listing 25.3 Adding helper method to build URL (FlickrFetchr.java)

public class FlickrFetchr {

 ...

 private List<GalleryItem> downloadGalleryItems(String url) {
 ...
 }

 private String buildUrl(String method, String query) {
 Uri.Builder uriBuilder = ENDPOINT.buildUpon()
 .appendQueryParameter("method", method);

 if (method.equals(SEARCH_METHOD)) {
 uriBuilder.appendQueryParameter("text", query);
 }

 return uriBuilder.build().toString();
 }

 private void parseItems(List<GalleryItem> items, JSONObject jsonBody)
 throws IOException, JSONException {
 ...
 }
}

The buildUrl(…) method appends the necessary parameters, just as the removed fetchItems() used
to. But it dynamically fills in the method parameter value. Additionally, it appends a value for the text
parameter only if the value specified for the method parameter is search.

Now add methods to kick off the download by building a URL and calling
downloadGalleryItems(String).

Searching Flickr

453

Listing 25.4 Adding methods to get recents and search (FlickrFetchr.java)

public class FlickrFetchr {

 ...

 public String getUrlString(String urlSpec) throws IOException {
 return new String(getUrlBytes(urlSpec));
 }

 public List<GalleryItem> fetchRecentPhotos() {
 String url = buildUrl(FETCH_RECENTS_METHOD, null);
 return downloadGalleryItems(url);
 }

 public List<GalleryItem> searchPhotos(String query) {
 String url = buildUrl(SEARCH_METHOD, query);
 return downloadGalleryItems(url);
 }

 private List<GalleryItem> downloadGalleryItems(String url) {
 List<GalleryItem> items = new ArrayList<>();
 ...
 return items;
 }

 ...
}

FlickrFetchr is now equipped to handle both searching and getting recent photos. The
fetchRecentPhotos() and searchPhotos(String) methods serve as the public interface for getting a
list of GalleryItems from the Flickr web service.

You need to update your fragment code to reflect the refactoring you just completed in FlickrFetchr.
Open PhotoGalleryFragment and update FetchItemsTask.

Chapter 25 Search

454

Listing 25.5 Hardwired search query code (PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {

 ...

 private class FetchItemsTask extends AsyncTask<Void,Void,List<GalleryItem>> {

 @Override
 protected List<GalleryItem> doInBackground(Void... params) {
 return new FlickrFetchr().fetchItems();
 String query = "robot"; // Just for testing

 if (query == null) {
 return new FlickrFetchr().fetchRecentPhotos();
 } else {
 return new FlickrFetchr().searchPhotos(query);
 }
 }

 @Override
 protected void onPostExecute(List<GalleryItem> items) {
 mItems = items;
 setupAdapter();
 }
 }

}

If the query string is not null (which for now is always the case), then FetchItemsTask will execute a
Flickr search. Otherwise FetchItemsTask will default to fetching recent photos, just as it did before.

Hardcoding the query allows you to test out your new search code even though you have not yet
provided a way to enter a query through the user interface.

Run PhotoGallery and see what you get. Hopefully, you will see a cool robot or two (Figure 25.2).

Using SearchView

455

Figure 25.2 Hardcoded search results

Using SearchView
Now that FlickrFetchr supports searching, it is time to add a way for the user to enter a query and
initiate a search. Do this by adding a SearchView.

SearchView is an action view – a view that may be included within the toolbar. SearchView allows
your entire search interface to live within your application’s toolbar.

First, confirm that a toolbar (containing your app title) appears at the top of your app. If not, follow the
steps outlined in Chapter 13 to add a toolbar to your app.

Next, create a new menu XML file for PhotoGalleryFragment in res/menu/
fragment_photo_gallery.xml. This file will specify the items that should appear in the toolbar.

Chapter 25 Search

456

Listing 25.6 Adding menu XML file (res/menu/
fragment_photo_gallery.xml)

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item android:id="@+id/menu_item_search"
 android:title="@string/search"
 app:actionViewClass="android.support.v7.widget.SearchView"
 app:showAsAction="ifRoom" />

 <item android:id="@+id/menu_item_clear"
 android:title="@string/clear_search"
 app:showAsAction="never" />
</menu>

You will see a couple errors in the new XML, complaining that you have not yet defined the strings
you are referencing for the android:title attributes. Ignore those for now. You will fix them in a bit.

The first item entry in Listing 25.6 tells the toolbar to display a SearchView by specifying the value
android.support.v7.widget.SearchView for the app:actionViewClass attribute. (Notice the usage
of the app namespace for the showAsAction and actionViewClass attributes. Please refer back to
Chapter 13 if you are unsure of why this is used.)

SearchView (android.widget.SearchView) was originally introduced in API 11 (Honeycomb
3.0). However, SearchView was more recently included as part of the support library
(android.support.v7.widget.SearchView). So which version of SearchView should you use? You
have seen our answer in the code you just entered: the support library version. This may seem strange,
as your app’s minimum SDK is 16.

We recommend using the support library for the same reasons outlined in Chapter 7. As new features
get added with each new release of Android, the features are often back-ported to the support library.
A prime example is theming. With the release of API 21 (Lollipop 5.0), the native framework
SearchView supports many options for customizing the SearchView’s appearance. The only way to get
these fancy features on earlier versions of Android (down to API 7) is to use the support library version
of SearchView.

The second item in Listing 25.6 will add a Clear Search option. This option will always display in the
overflow menu because you set app:showAsAction to never. Later on you will configure this item so
that, when pressed, the user’s stored query will be erased from the disk. For now, you can ignore this
item.

Now it is time to address the errors in your menu XML. Open strings.xml and add the missing
strings:

Listing 25.7 Adding search strings (res/values/strings.xml)
<resources>
 ...
 <string name="search">Search</string>
 <string name="clear_search">Clear Search</string>

</resources>

Using SearchView

457

Finally, open PhotoGalleryFragment. Add a call to setHasOptionsMenu(true) in onCreate(…) to
register the fragment to receive menu callbacks. Override onCreateOptionsMenu(…) and inflate the
menu XML file you created. This will add the items listed in your menu XML to the toolbar.

Listing 25.8 Overriding onCreateOptionsMenu(…)
(PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {

 ...

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 setHasOptionsMenu(true);
 new FetchItemsTask().execute();

 ...
 }

 ...

 @Override
 public void onDestroy() {
 ...
 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater menuInflater) {
 super.onCreateOptionsMenu(menu, menuInflater);
 menuInflater.inflate(R.menu.fragment_photo_gallery, menu);
 }

 private void setupAdapter() {
 ...
 }

 ...
}

Fire up PhotoGallery and see what the SearchView looks like. Pressing the Search icon expands the
view to display a text box where the user can enter a query (Figure 25.3).

Chapter 25 Search

458

Figure 25.3 SearchView collapsed and expanded

When the SearchView is expanded, a x icon appears on the right. Pressing the x icon one time clears
out what you typed. Pressing the x again collapses the SearchView back to a single search icon.

If you try submitting a query, it will not do anything yet. Not to worry. You will make your SearchView
more useful in just a moment.

Responding to SearchView user interactions
When the user submits a query, your app should execute a search against the Flickr web
service and refresh the images the user sees with the search results. Fortunately, the
SearchView.OnQueryTextListener interface provides a way to receive a callback when a query is
submitted.

Update onCreateOptionsMenu(…) to add a SearchView.OnQueryTextListener to your SearchView.

Responding to SearchView user interactions

459

Listing 25.9 Logging SearchView.OnQueryTextListener events
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 ...

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater menuInflater) {
 super.onCreateOptionsMenu(menu, menuInflater);
 menuInflater.inflate(R.menu.fragment_photo_gallery, menu);

 MenuItem searchItem = menu.findItem(R.id.menu_item_search);
 final SearchView searchView = (SearchView) searchItem.getActionView();

 searchView.setOnQueryTextListener(new SearchView.OnQueryTextListener() {
 @Override
 public boolean onQueryTextSubmit(String s) {
 Log.d(TAG, "QueryTextSubmit: " + s);
 updateItems();
 return true;
 }

 @Override
 public boolean onQueryTextChange(String s) {
 Log.d(TAG, "QueryTextChange: " + s);
 return false;
 }
 });
 }

 private void updateItems() {
 new FetchItemsTask().execute();
 }

 ...
}

In onCreateOptionsMenu(…), you pull the MenuItem representing the search box from the menu
and store it in searchItem. Then you pull the SearchView object from searchItem using the
getActionView() method.

(Note: MenuItem.getActionView() was added in API 11. This is fine here as the minimum SDK for
your app is API 16. However, if you need to make an app that goes back as far as the support library
allows, you will need to take a different approach for getting access to the SearchView object.)

Once you have a reference to the SearchView you are able to set a SearchView.OnQueryTextListener
using the setOnQueryTextListener(…) method. You must override two methods in the
SearchView.OnQueryTextListener implementation: onQueryTextSubmit(String) and
onQueryTextChange(String).

The onQueryTextChange(String) callback is executed any time text in the SearchView text box
changes. This means that it is called every time a single character changes. You will not do anything
inside this callback for this app except log the input string.

The onQueryTextSubmit(String) callback is executed when the user submits a query. The query
the user submitted is passed as input. Returning true signifies to the system that the search request

Chapter 25 Search

460

has been handled. This callback is where you will launch a FetchItemsTask to query for new results.
(Right now FetchItemsTask still has a hardcoded query. You will refactor FetchItemsTask in a bit so
that it uses a submitted query if there is one.)

The updateItems() does not seem terribly useful just yet. Later on you will have several places where
you need to execute FetchItemsTask. The updateItems() method is a wrapper for doing just that.

As a last bit of cleanup, replace the line that creates and executes a FetchItemsTask with a call to
updateItems() in the onCreate(…) method.

Listing 25.10 Cleaning up onCreate(…) (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 ...

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setRetainInstance(true);
 setHasOptionsMenu(true);
 new FetchItemsTask().execute();
 updateItems();

 ...
 Log.i(TAG, "Background thread started");
 }

 ...
}

Run your app and submit a query. The search results will still be based on the hardcoded query in
Listing 25.5, but you should see the images reload. You should also see log statements reflecting the
fact that your SearchView.OnQueryTextListener callback methods have been executed.

Note: If you use the hardware keyboard (e.g., from your laptop) to submit your search query on an
emulator, you will see the search executed two times, one after the other. It will look like the images
start to load, then load all over again. This is because there is a small bug in SearchView. You can
ignore this behavior because it is simply a side effect of using the emulator and will not affect your app
when it runs on a real Android device.

Simple Persistence with Shared Preferences
The last piece of functionality you need to add is to actually use the query entered in the SearchView
when the search request is submitted.

In your app, there will only be one active query at a time. That query should be persisted (remembered
by the app) between restarts of the app (even after the user turns off the device). You will achieve this
by writing the query string to shared preferences. Any time the user submits a query, you will first
write the query to shared preferences, overwriting whatever query was there before. When a search is
executed against Flickr, you will pull the query string from shared preferences and use it as the value
for the text parameter.

Simple Persistence with Shared Preferences

461

Shared preferences are files on your filesystem that you read and edit using the SharedPreferences
class. An instance of SharedPreferences acts like a key-value store, much like Bundle, except that it
is backed by persistent storage. The keys are strings, and the values are atomic data types. If you look
at them you will see that the files are simple XML, but SharedPreferences makes it easy to ignore
that implementation detail. Shared preferences files are stored in your application’s sandbox, so you
should not store sensitive information (like passwords) there.

To get a specific instance of SharedPreferences, you can use the
Context.getSharedPreferences(String, int) method. However, in practice, you will often not care
too much about the specific instance, just that it is shared across the entire app. In that case, it is better
to use the PreferenceManager.getDefaultSharedPreferences(Context) method, which returns an
instance with a default name and private permissions (so that the preferences are only available from
within your application).

Add a new class named QueryPreferences, which will serve as a convenient interface for reading and
writing the query to and from shared preferences.

Listing 25.11 Adding class to manage stored query (QueryPreferences.java)
 public class QueryPreferences {
 private static final String PREF_SEARCH_QUERY = "searchQuery";

 public static String getStoredQuery(Context context) {
 return PreferenceManager.getDefaultSharedPreferences(context)
 .getString(PREF_SEARCH_QUERY, null);
 }

 public static void setStoredQuery(Context context, String query) {
 PreferenceManager.getDefaultSharedPreferences(context)
 .edit()
 .putString(PREF_SEARCH_QUERY, query)
 .apply();
 }
 }

PREF_SEARCH_QUERY is used as the key for the query preference. You will use this key any time you
read or write the query value.

The getStoredQuery(Context) method returns the query value stored in shared preferences. It does so
by first acquiring the default SharedPreferences for the given context. (Because QueryPreferences
does not have a Context of its own, the calling component will have to pass its context as input.)

Getting a value you previously stored is as simple as calling SharedPreferences.getString(…),
getInt(…), or whichever method is appropriate for your data type. The second input to
SharedPreferences.getString(PREF_SEARCH_QUERY, null) specifies the default return value that
should be used if there is no entry for the PREF_SEARCH_QUERY key.

The setStoredQuery(Context) method writes the input query to the default shared preferences
for the given context. In your code above, you call SharedPreferences.edit() to get an
instance of SharedPreferences.Editor. This is the class you use to stash values in your
SharedPreferences. It allows you to group sets of changes together in transactions, much like you do
with FragmentTransaction. If you have a lot of changes, this will allow you to group them together
into a single storage write operation.

Chapter 25 Search

462

Once you are done making all of your changes, you call apply() on your editor to make them visible
to other users of that SharedPreferences file. The apply() method makes the change in memory
immediately and then does the actual file writing on a background thread.

QueryPreferences is your entire persistence engine for PhotoGallery. Now that you have a way to
easily store and access the user’s most recent query, update PhotoGalleryFragment to read and write
the query as necessary.

First, update the stored query whenever the user submits a new query.

Listing 25.12 Storing submitted query in shared preferences
(PhotoGalleryFragment.java)

 public class PhotoGalleryFragment extends Fragment {

 ...

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater menuInflater) {
 ...

 searchView.setOnQueryTextListener(new SearchView.OnQueryTextListener() {
 @Override
 public boolean onQueryTextSubmit(String s) {
 Log.d(TAG, "QueryTextSubmit: " + s);
 QueryPreferences.setStoredQuery(getActivity(), s);
 updateItems();
 return true;
 }

 @Override
 public boolean onQueryTextChange(String s) {
 Log.d(TAG, "QueryTextChange: " + s);
 return false;
 }
 });
 }

 ...
 }

Next, clear the stored query (set it to null) whenever the user selects the Clear Search item from the
overflow menu.

Simple Persistence with Shared Preferences

463

Listing 25.13 Clearing stored query (PhotoGalleryFragment.java)

 public class PhotoGalleryFragment extends Fragment {

 ...

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater menuInflater) {
 ...
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_clear:
 QueryPreferences.setStoredQuery(getActivity(), null);
 updateItems();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
 }

 ...
 }

Note that you call updateItems() after you update the stored query, just as you did in Listing 25.12.
This ensures that the images displayed in the RecyclerView reflect the most recent search query.

Last, but not least, update FetchItemsTask to use the stored query rather than a hardcoded string. Add
a custom constructor to FetchItemsTask that accepts a query string as input and stashes it in a member
variable. Update updateItems() to pull the stored query from shared preferences and use it to create a
new instance of FetchItemsTask. All of these changes are shown in Listing 25.14.

Chapter 25 Search

464

Listing 25.14 Using stored query in FetchItemsTask
(PhotoGalleryFragment.java)

public class PhotoGalleryFragment extends Fragment {
 ...

 private void updateItems() {
 String query = QueryPreferences.getStoredQuery(getActivity());
 new FetchItemsTask(query).execute();
 }

 ...

 private class FetchItemsTask extends AsyncTask<Void,Void,List<GalleryItem>> {
 private String mQuery;

 public FetchItemsTask(String query) {
 mQuery = query;
 }

 @Override
 protected List<GalleryItem> doInBackground(Void... params) {
 String query = "robot"; // Just for testing

 if (querymQuery == null) {
 return new FlickrFetchr().fetchRecentPhotos();
 } else {
 return new FlickrFetchr().searchPhotos(querymQuery);
 }
 }

 @Override
 protected void onPostExecute(List<GalleryItem> items) {
 mItems = items;
 setupAdapter();
 }
 }

}

Search should now work like a charm. Run PhotoGallery, try searching for something, and see what
you get.

Polishing Your App
For one last bit of polish, pre-populate the search text box with the saved query when the user presses
on the search icon to expand the SearchView. SearchView’s View.OnClickListener.onClick()
method is called when the user presses the search icon. Hook into this callback and set the
SearchView’s query text when the view is expanded.

Challenge: Polishing Your App Some More

465

Listing 25.15 Pre-populating SearchView (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {

 ...

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater menuInflater) {
 ...

 searchView.setOnQueryTextListener(new SearchView.OnQueryTextListener() {
 ...
 });

 searchView.setOnSearchClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 String query = QueryPreferences.getStoredQuery(getActivity());
 searchView.setQuery(query, false);
 }
 });
 }

 ...
}

Run your app and play around with submitting a few searches. Revel at the polish your last bit of code
added. Of course, there is always more polish you could add….

Challenge: Polishing Your App Some More
You may notice that, when you submit a query, there is a bit of a lag before the RecyclerView starts to
refresh. For this challenge, make the response to the user’s query submission feel more immediate. As
soon as a query is submitted, hide the soft keyboard and collapse the SearchView.

As an extra challenge, clear the contents of the RecyclerView and display a loading indicator
(indeterminate progress bar) as soon as a query is submitted. Get rid of the loading indicator once the
JSON data has been fully downloaded. In other words, the loading indicator should not show once your
code moves on to downloading individual images.

467

26
Background Services

All the code you have written so far has been hooked up to an activity, which means that it is
associated with some screen for the user to look at.

But what if you do not need a screen? What if you need to do something out of sight and out of mind,
like play music or check for new blog posts on an RSS feed? For this, you need a service.

In this chapter, you will add a new feature to PhotoGallery that will allow users to poll for new search
results in the background. Whenever a new search result is available, the user will receive a notification
in the status bar.

Creating an IntentService
Let’s start by creating your service. In this chapter, you will use an IntentService. IntentService is
not the only kind of service, but it is probably the most common. Create a subclass of IntentService
called PollService. This will be the service you use to poll for search results.

Listing 26.1 Creating PollService (PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 public static Intent newIntent(Context context) {
 return new Intent(context, PollService.class);
 }

 public PollService() {
 super(TAG);
 }

 @Override
 protected void onHandleIntent(Intent intent) {
 Log.i(TAG, "Received an intent: " + intent);
 }
}

This is a very basic IntentService. What does it do? Well, it is sort of like an activity. It
is a context (Service is a subclass of Context) and it responds to intents (as you can see in
onHandleIntent(Intent)). As a matter of convention (and to be a good citizen) you added
a newIntent(Context) method. Any component that wants to start this service should use
newIntent(…).

Chapter 26 Background Services

468

A service’s intents are called commands. Each command is an instruction to the service to do
something. Depending on the kind of service, that command could be serviced in a variety of ways.

An IntentService service pulls its commands off of a queue, as shown in Figure 26.1.

Figure 26.1 How IntentService services commands

When it receives its first command, the IntentService starts up, fires up a background thread, and
puts the command on a queue.

The IntentService then services each command in sequence, calling onHandleIntent(Intent) on its
background thread for each command. New commands that come in go to the back of the queue. When
there are no commands left in the queue, the service stops and is destroyed.

This description only applies to IntentService. Later in the chapter, we will discuss the broader world
of services and how commands work.

You might infer from what you just learned about how IntentService works that services respond
to intents. That is true! And because services, like activities, respond to intents, they must also be
declared in your AndroidManifest.xml. Add an element for PollService to your manifest.

What Services are For

469

Listing 26.2 Adding service to manifest (AndroidManifest.xml)
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.photogallery" >

 <uses-permission android:name="android.permission.INTERNET" />

 <application
 ... >
 <activity
 android:name=".PhotoGalleryActivity"
 android:label="@string/app_name" >
 ...
 </activity>
 <service android:name=".PollService" />
 </application>

 </manifest>

Then add code to start your service inside PhotoGalleryFragment.

Listing 26.3 Adding service startup code (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 private static final String TAG = "PhotoGalleryFragment";

 ...

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...

 updateItems();

 Intent i = PollService.newIntent(getActivity());
 getActivity().startService(i);

 Handler responseHandler = new Handler();
 mThumbnailDownloader = new ThumbnailDownloader<>(responseHandler);
 ...
 }

 ...
}

Fire this up and see what you get. You should see something like this in LogCat:

02-23 14:25:32.450 2692-2717/com.bignerdranch.android.photogallery I/PollService:
 Received an intent: Intent { cmp=com.bignerdranch.android.photogallery/.PollService }

What Services are For
OK, we admit it: looking at those LogCat statements was boring. But this code is really exciting! Why?
What can you do with it?

Chapter 26 Background Services

470

Time to go back to the Land of Make Believe, where we are no longer programmers but work in retail
shoe sales with superheroes who do our bidding.

Your Flash workers can work in two kinds of places in a store: the front of the store, where they talk to
customers, and the back of the store, where they do not. The back of the store may be larger or smaller,
depending on the store.

So far, all of your code has run in activities. Activities are your Android app’s storefront. All this code
is focused on a pleasant visual experience for your user, your customer.

Services are the back end of your Android app. Things can happen there that the user never needs to
know about. Work can go on there long after the storefront has closed, when your activities are long
gone.

OK, enough about stores. What can you do with a service that you cannot do with an activity? Well, for
one, you can run a service while the user is occupied elsewhere.

Safe background networking
Your service is going to poll Flickr in the background. To perform networking in the background
safely, some additional code is required. Android provides the ability for a user to turn off networking
for backgrounded applications. If the user has a lot of power-hungry applications, this can be a big
performance improvement.

This does mean, however, that if you are doing networking in the background, you need to verify with
the ConnectivityManager that the network is available.

Add the code in Listing 26.4 to perform this check.

Listing 26.4 Checking for background network availability (PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 ...

 @Override
 protected void onHandleIntent(Intent intent) {
 if (!isNetworkAvailableAndConnected()) {
 return;
 }

 Log.i(TAG, "Received an intent: " + intent);
 }

 private boolean isNetworkAvailableAndConnected() {
 ConnectivityManager cm =
 (ConnectivityManager) getSystemService(CONNECTIVITY_SERVICE);

 boolean isNetworkAvailable = cm.getActiveNetworkInfo() != null;
 boolean isNetworkConnected = isNetworkAvailable &&
 cm.getActiveNetworkInfo().isConnected();

 return isNetworkConnected;
 }

}

Looking for New Results

471

The logic for checking network availability is in isNetworkAvailableAndConnected(). Toggling the
background data setting to disallow downloading data in the background disables the network entirely
for use by background services. In this case, ConnectivityManager.getActiveNetworkInfo() returns
null, making it appear to the background service as if there is no active network available, even if
there really is.

If the network is available to your background service, it gets an instance of
android.net.NetworkInfo representing the current network connection. The code then checks
whether the current network is fully connected by calling NetworkInfo.isConnected().

If the app does not see a network available, or the device is not fully connected to a network,
onHandleIntent(…) will return without executing the rest of the method (and in turn will not try to
download data, once you have added the code to do so). This is good practice because your app cannot
download any data if it is not connected to the network.

One more thing. To use getActiveNetworkInfo(), you also need to acquire the
ACCESS_NETWORK_STATE permission. As you have seen, permissions are managed in your manifest.

Listing 26.5 Acquiring network state permission (AndroidManifest.xml)

<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.photogallery" >

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />

 <application
 ... >
 ...
 </application>

 </manifest>

Looking for New Results
Your service will be polling for new results, so it will need to know what the last result fetched was.
This is a perfect job for another SharedPreferences entry.

Update QueryPreferences to store the ID of the most recently fetched photo.

Chapter 26 Background Services

472

Listing 26.6 Adding recent ID preference constant (QueryPreferences.java)

public class QueryPreferences {

 private static final String PREF_SEARCH_QUERY = "searchQuery";
 private static final String PREF_LAST_RESULT_ID = "lastResultId";

 public static String getStoredQuery(Context context) {
 ...
 }

 public static void setStoredQuery(Context context, String query) {
 ...
 }

 public static String getLastResultId(Context context) {
 return PreferenceManager.getDefaultSharedPreferences(context)
 .getString(PREF_LAST_RESULT_ID, null);
 }

 public static void setLastResultId(Context context, String lastResultId) {
 PreferenceManager.getDefaultSharedPreferences(context)
 .edit()
 .putString(PREF_LAST_RESULT_ID, lastResultId)
 .apply();
 }
}

The next step is to fill out your service. Here is what you need to do:

1. Pull out the current query and the last result ID from the default SharedPreferences.

2. Fetch the latest result set with FlickrFetchr.

3. If there are results, grab the first one.

4. Check to see whether it is different from the last result ID.

5. Store the first result back in SharedPreferences.

Return to PollService.java and put this plan into action. Listing 26.7 shows a long swath of code,
but it uses nothing you have not seen before.

Delayed Execution with AlarmManager

473

Listing 26.7 Checking for new results (PollService.java)

public class PollService extends IntentService {
 private static final String TAG = "PollService";

 ...

 @Override
 protected void onHandleIntent(Intent intent) {
 ...

 Log.i(TAG, "Received an intent: " + intent);
 String query = QueryPreferences.getStoredQuery(this);
 String lastResultId = QueryPreferences.getLastResultId(this);
 List<GalleryItem> items;

 if (query == null) {
 items = new FlickrFetchr().fetchRecentPhotos();
 } else {
 items = new FlickrFetchr().searchPhotos(query);
 }

 if (items.size() == 0) {
 return;
 }

 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " + resultId);
 } else {
 Log.i(TAG, "Got a new result: " + resultId);
 }

 QueryPreferences.setLastResultId(this, resultId);
 }

 ...
}

See each part we discussed above? Good.

Run PhotoGallery, and you should see your app getting new results initially. If you have a search query
selected, you will probably see stale results when you subsequently start up the app.

Delayed Execution with AlarmManager
To actually use your service in the background, you will need some way to make things happen when
none of your activities are running. Say, by making a timer that goes off every 5 minutes or so.

You could do this with a Handler by calling Handler.sendMessageDelayed(…) or
Handler.postDelayed(…). But this solution will probably fail if the user navigates away from all your
activities. The process will shut down, and your Handler messages will go kaput with it.

So instead of Handler, you will use AlarmManager. AlarmManager is a system service that can send
Intents for you.

Chapter 26 Background Services

474

How do you tell AlarmManager what intents to send? You use a PendingIntent. You can use
PendingIntent to package up a wish: “I want to start PollService.” You can then send that wish to
other components on the system, like AlarmManager.

Write a new method called setServiceAlarm(Context, boolean) inside PollService that turns
an alarm on and off for you. You will write it as a static method. That keeps your alarm code with
the other code in PollService that it is related to, but allows other components to invoke it. You will
usually want to turn it on and off from frontend code in a fragment or other controller.

Listing 26.8 Adding alarm method (PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 private static final int POLL_INTERVAL = 1000 * 60; // 60 seconds

 public static Intent newIntent(Context context) {
 return new Intent(context, PollService.class);
 }

 public static void setServiceAlarm(Context context, boolean isOn) {
 Intent i = PollService.newIntent(context);
 PendingIntent pi = PendingIntent.getService(context, 0, i, 0);

 AlarmManager alarmManager = (AlarmManager)
 context.getSystemService(Context.ALARM_SERVICE);

 if (isOn) {
 alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME,
 SystemClock.elapsedRealtime(), POLL_INTERVAL, pi);
 } else {
 alarmManager.cancel(pi);
 pi.cancel();
 }
 }

 ...
}

The first thing you do in your method is construct your PendingIntent that starts PollService. You
do this by calling PendingIntent.getService(…). PendingIntent.getService(…) packages up an
invocation of Context.startService(Intent). It takes in four parameters: a Context with which
to send the intent, a request code that you can use to distinguish this PendingIntent from others, the
Intent object to send, and finally a set of flags that you can use to tweak how the PendingIntent is
created. (You will use one of these in a moment.)

After that, you need to either set the alarm or cancel it.

To set the alarm, you call AlarmManager.setInexactRepeating(…). This method also takes four
parameters: a constant to describe the time basis for the alarm (about which more in a moment),
the time at which to start the alarm, the time interval at which to repeat the alarm, and finally a
PendingIntent to fire when the alarm goes off.

Because you used AlarmManager.ELAPSED_REALTIME as the time basis value, you specified the start
time in terms of elapsed realtime: SystemClock.elapsedRealtime(). This triggers the alarm to go off

Being a good citizen: using alarms the right way

475

when the specified amount of time has passed. If you had used AlarmManager.RTC, you would instead
base the start time on “wall clock time” (e.g., System.currentTimeMillis()). This would trigger the
alarm to go off at a fixed point in time.

Canceling the alarm is done by calling AlarmManager.cancel(PendingIntent). You will also usually
want to cancel the PendingIntent. In a moment, you will see how canceling the PendingIntent also
helps you track the status of the alarm.

Add some quick test code to run your alarm from within PhotoGalleryFragment.

Listing 26.9 Adding alarm startup code (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 private static final String TAG = "PhotoGalleryFragment";

 ...

 @Override
 public void onCreate(Bundle savedInstanceState) {
 ...

 updateItems();

 Intent i = PollService.newIntent(getActivity());
 getActivity().startService(i);
 PollService.setServiceAlarm(getActivity(), true);

 Handler responseHandler = new Handler();
 mThumbnailDownloader = new ThumbnailDownloader<>(responseHandler);
 ...
 }

 ...
}

Finish typing in this code and run PhotoGallery. Then immediately hit the Back button and exit out of
the app.

Notice anything in LogCat? PollService is faithfully chugging along, running again every 60 seconds.
This is what AlarmManager is designed to do. Even if your process gets shut down, AlarmManager will
keep on firing intents to start PollService again and again. (This behavior is, of course, extremely
annoying. You may want to uninstall the app until we get it straightened out.)

(If you feel like 60 seconds is too long to wait, you can use a shorter interval. However, as of this
writing, if you are running Android 5.1 the minimum interval allowed is 60 seconds. Any interval less
than that minimum is rounded up to 60 seconds on Android 5.1.)

Being a good citizen: using alarms the right way
How exact do you need your repeating to be? Repeatedly executing work from your background
service has the potential to eat up the user’s battery power and data service allotment. Furthermore,
waking the device from sleep (spinning up the CPU when the screen was off to do work on your
behalf) is a costly operation. Luckily, you can configure your alarm to have a lighter usage footprint in
terms of interval timing and wake requirements.

Chapter 26 Background Services

476

Inexact vs. exact repeating
There are two methods available for setting repeating alarms: AlarmManager.setRepeating(…) and
AlarmManager.setInexactRepeating(…).

If your interval requirements are flexible, as they are in this case, you should give the system flexibility
to group your alarm with others. This is called “inexact repeating” and means your alarm will not
occur at the exact interval you specify. Instead, the time between repetitions will vary. This allows the
system to batch your alarm with others and minimize the amount of wake time needed.

Until API 19 (4.4 KitKat), setRepeating(…) set the alarm to repeat at exact intervals. And the
setInexactRepeating(…) method set the alarm to be repeated in an inexact fashion. That is, unless
you chose to specify a custom value for the interval. If you specified one of the provided interval
constants (INTERVAL_FIFTEEN_MINUTES, INTERVAL_HALF_HOUR, INTERVAL_HOUR, INTERVAL_HALF_DAY,
or INTERVAL_DAY), the alarm would repeat at inexact intervals, as you would expect. But if you
specified a custom interval, the behavior degraded back to exact repeating.

Starting with API 19 (4.4 KitKat), the behavior of these methods changed. Both setRepeating(…) and
setInexactRepeating() behave the same: they set the alarm for inexact repeating. Additionally, the
restriction on using one of the predefined interval constants was removed. Using a custom interval with
either of the methods still results in inexact repeating behavior.

In fact, the notion of exact repeating has been done away with in API 19 and higher. Instead you need
to use one of the new methods, such as AlarmManager.setWindow(…) or AlarmManager.setExact(…),
which allow you to set an exact alarm to occur only once.

So what is a well-meaning Android developer to do when an app does not need an alarm with exact
repeating? If your app supports only API 19 (KitKat) and up, call setRepeating(…) with whatever
time interval you see fit. If your app supports pre-KitKat devices, call setInexactRepeating(…). And,
if at all possible, use one of the built-in interval constants to ensure you get inexact behavior on all
devices.

Time basis options
Another important decision is which time basis value to specify. There are two main options:
AlarmManager.ELAPSED_REALTIME and AlarmManager.RTC.

AlarmManager.ELAPSED_REALTIME uses the amount of time that has passed since the last boot of the
device (including sleep time) as the basis for interval calculations. ELAPSED_REALTIME is the best
choice for your alarm in PhotoGallery because it is based on the relative passage of time and thus does
not depend on wall clock time. (Also, the documentation recommends you use ELAPSED_REALTIME
instead of RTC if at all possible.)

AlarmManager.RTC uses “wall clock time” in terms of UTC. UTC should only be used for wall-
clock basis alarms. However, UTC does not respect locale, whereas the user’s idea of wall-clock
time includes locale. Wall-clock basis alarms should respect locale somehow. This means you must
implement your own locale handling in conjunction with using the RTC time basis if you want to set a
wall-clock time alarm. Otherwise, use ELAPSED_REALTIME as the time basis.

If you use one of the time basis options outlined above, your alarm will not fire if the device is in
sleep mode (the screen is turned off), even if the prescribed interval has passed. If you need your
alarm to occur on a more precise interval or time, you can force the alarm to wake up the device

PendingIntent

477

by using one of the following time basis constants: AlarmManager.ELAPSED_REALTIME_WAKEUP and
AlarmManager.RTC_WAKEUP. However, you should avoid using the wakeup options unless your alarm
absolutely must occur at a specific time.

PendingIntent
Let’s talk a little bit more about PendingIntent. A PendingIntent is a token object. When you get
one here by calling PendingIntent.getService(…), you say to the OS, “Please remember that I want
to send this intent with startService(Intent).” Later on you can call send() on your PendingIntent
token, and the OS will send the intent you originally wrapped up in exactly the way you asked.

The really nice thing about this is that when you give that PendingIntent token to someone else and
they use it, it sends that token as your application. Also, because the PendingIntent itself lives in the
OS, not in the token, you maintain control of it. If you wanted to be cruel, you could give someone else
a PendingIntent object and then immediately cancel it, so that send() does nothing.

If you request a PendingIntent twice with the same intent, you will get the same PendingIntent.
You can use this to test whether a PendingIntent already exists or to cancel a previously issued
PendingIntent.

Managing alarms with PendingIntent
You can only register one alarm for each PendingIntent. That is how setServiceAlarm(Context,
boolean) works when isOn is false: it calls AlarmManager.cancel(PendingIntent) to cancel the
alarm for your PendingIntent, and then cancels your PendingIntent.

Because the PendingIntent is also cleaned up when the alarm is canceled, you can check whether that
PendingIntent exists or not to see whether the alarm is active or not. This is done by passing in the
PendingIntent.FLAG_NO_CREATE flag to PendingIntent.getService(…). This flag says that if the
PendingIntent does not already exist, return null instead of creating it.

Write a new method called isServiceAlarmOn(Context) that uses PendingIntent.FLAG_NO_CREATE
to tell whether the alarm is on or not.

Listing 26.10 Adding isServiceAlarmOn() method (PollService.java)
public class PollService extends IntentService {
 ...

 public static void setServiceAlarm(Context context, boolean isOn) {
 ...
 }

 public static boolean isServiceAlarmOn(Context context) {
 Intent i = PollService.newIntent(context);
 PendingIntent pi = PendingIntent
 .getService(context, 0, i, PendingIntent.FLAG_NO_CREATE);
 return pi != null;
 }

 ...
}

Chapter 26 Background Services

478

Because this PendingIntent is only used for setting your alarm, a null PendingIntent here means
that your alarm is not set.

Controlling Your Alarm
Now that you can turn your alarm on and off (as well as tell whether it is on or off), let’s add an
interface to turn this thing on and off. Add another menu item to menu/fragment_photo_gallery.xml.

Listing 26.11 Adding service toggle (menu/fragment_photo_gallery.xml)

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto">

 <item android:id="@+id/menu_item_search"
 ... />

 <item android:id="@+id/menu_item_clear"
 ... />

 <item android:id="@+id/menu_item_toggle_polling"
 android:title="@string/start_polling"
 app:showAsAction="ifRoom" />
</menu>

Then you need to add a few new strings – one to start polling and one to stop polling. (You will need a
couple of other ones later, too, for a status bar notification. Go ahead and add those as well.)

Listing 26.12 Adding polling strings (res/values/strings.xml)

<resources>

 ...
 <string name="search">Search</string>
 <string name="clear_search">Clear Search</string>
 <string name="start_polling">Start polling</string>
 <string name="stop_polling">Stop polling</string>
 <string name="new_pictures_title">New PhotoGallery Pictures</string>
 <string name="new_pictures_text">You have new pictures in PhotoGallery.</string>

</resources>

Now delete your old debug code for starting the alarm and add an implementation for the menu item.

Controlling Your Alarm

479

Listing 26.13 Toggle menu item implementation
(PhotoGalleryFragment.java)

private static final String TAG = "PhotoGalleryFragment";

...

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 ...
 updateItems();

 PollService.setServiceAlarm(getActivity(), true);

 Handler responseHandler = new Handler();
 ...
}

...

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_clear:
 QueryPreferences.setStoredQuery(getActivity(), null);
 updateItems();
 return true;
 case R.id.menu_item_toggle_polling:
 boolean shouldStartAlarm = !PollService.isServiceAlarmOn(getActivity());
 PollService.setServiceAlarm(getActivity(), shouldStartAlarm);
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

...

With that, you should be able to toggle your alarm on and off. However, you will notice that the menu
item for polling always says Start polling, even if the polling is currently on. You should instead toggle
the menu item title as you did for Show Subtitle in the CriminalIntent app (Chapter 13).

In onCreateOptionsMenu(…), check whether the alarm is on and change the text of
menu_item_toggle_polling to show the appropriate label to the user.

Chapter 26 Background Services

480

Listing 26.14 Toggling the menu item (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends Fragment {
 private static final String TAG = "PhotoGalleryFragment";

 ...

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater menuInflater) {
 super.onCreateOptionsMenu(menu, menuInflater);
 menuInflater.inflate(R.menu.fragment_photo_gallery, menu);

 MenuItem searchItem = menu.findItem(R.id.menu_item_search);
 final SearchView searchView = (SearchView) searchItem.getActionView();

 searchView.setOnQueryTextListener(…);

 searchView.setOnSearchClickListener(…);

 MenuItem toggleItem = menu.findItem(R.id.menu_item_toggle_polling);
 if (PollService.isServiceAlarmOn(getActivity())) {
 toggleItem.setTitle(R.string.stop_polling);
 } else {
 toggleItem.setTitle(R.string.start_polling);
 }
 }

 ...
}

Next, in onOptionsItemSelected(MenuItem), tell PhotoGalleryActivity to update its toolbar
options menu.

Listing 26.15 Invalidating your options menu (PhotoGalleryFragment.java)
...

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.menu_item_clear:
 ...
 case R.id.menu_item_toggle_polling:
 boolean shouldStartAlarm = !PollService.isServiceAlarmOn(getActivity());
 PollService.setServiceAlarm(getActivity(), shouldStartAlarm);
 getActivity().invalidateOptionsMenu();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

...

With that, your code to toggle the options menu contents should work great. And yet… there is
something missing.

Notifications

481

Notifications
Your service is now running and doing its thing in the background. But the user never knows a thing
about it, so it is not worth much.

When your service needs to communicate something to the user, the proper tool is almost always a
notification. Notifications are items that appear in the notifications drawer, which the user can access
by dragging it down from the top of the screen.

To post a notification, you first need to create a Notification object. Notifications are created by
using a builder object, much like AlertDialog was in Chapter 12. At a minimum, your Notification
should have:

• ticker text to display in the status bar when the notification is first shown on pre-Lollipop devices
(starting with Android 5.0 (Lollipop), ticker text is no longer displayed in the status bar but is still
relevant for accessibility services)

• an icon to show in the status bar (the icon will appear after the ticker text goes away on pre-
Lollipop devices)

• a view to show in the notification drawer to represent the notification itself

• a PendingIntent to fire when the user presses the notification in the drawer

Once you have created a Notification object, you can post it by calling notify(int, Notification)
on the NotificationManager system service.

First you need to add some plumbing code, as shown in Listing 26.16. Open PhotoGalleryActivity
and add a static newIntent(Context) method. This method will return an Intent instance
that can be used to start PhotoGalleryActivity. (Eventually PollService will call
PhotoGalleryActivity.newIntent(…), wrap the resulting intent in a PendingIntent, and set that
PendingIntent on a notification.)

Listing 26.16 Add newIntent(…) to PhotoGalleryActivity
(PhotoGalleryActivity.java)

public class PhotoGalleryActivity extends SingleFragmentActivity {

 public static Intent newIntent(Context context) {
 return new Intent(context, PhotoGalleryActivity.class);
 }

 @Override
 protected Fragment createFragment() {
 return PhotoGalleryFragment.newInstance();
 }
}

Make PollService notify the user that a new result is ready by adding the code in Listing 26.17,
which creates a Notification and calls NotificationManager.notify(int, Notification).

Chapter 26 Background Services

482

Listing 26.17 Adding a notification (PollService.java)
...

@Override
protected void onHandleIntent(Intent intent) {
 ...

 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " + resultId);
 } else {
 Log.i(TAG, "Got a new result: " + resultId);

 Resources resources = getResources();
 Intent i = PhotoGalleryActivity.newIntent(this);
 PendingIntent pi = PendingIntent.getActivity(this, 0, i, 0);

 Notification notification = new NotificationCompat.Builder(this)
 .setTicker(resources.getString(R.string.new_pictures_title))
 .setSmallIcon(android.R.drawable.ic_menu_report_image)
 .setContentTitle(resources.getString(R.string.new_pictures_title))
 .setContentText(resources.getString(R.string.new_pictures_text))
 .setContentIntent(pi)
 .setAutoCancel(true)
 .build();

 NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(this);
 notificationManager.notify(0, notification);
 }

 QueryPreferences.setLastResultId(this, resultId);
}

...

Let’s go over this from top to bottom. First, you configure the ticker text and small icon by
calling setTicker(CharSequence) and setSmallIcon(int). (Note that the icon resource
referenced is provided as part of the Android framework, denoted by the package name
android.R.drawable.some_drawable_resource_name, so you do not have to pull the icon image into
your resource folder.)

After that, you configure the appearance of your Notification in the drawer itself. It is
possible to create a completely custom look and feel, but it is easier to use the standard look
for a notification, which features an icon, a title, and a text area. It will use the value from
setSmallIcon(int) for the icon. To set the title and text, you call setContentTitle(CharSequence)
and setContentText(CharSequence), respectively.

Next, you must specify what happens when the user presses your Notification. Like
AlarmManager, this is done using a PendingIntent. The PendingIntent you pass in to
setContentIntent(PendingIntent) will be fired when the user presses your Notification in the
drawer. Calling setAutoCancel(true) tweaks that behavior a little bit. With setAutoCancel(true)
set, your notification will also be deleted from the notification drawer when the user presses it.

Finally, you get an instance of NotificationManagerCompat from the current context
(NotificationManagerCompat.from(this)) and call NotificationManagerCompat.notify(…)

Challenge: Notifications on Android Wear

483

to post your notification. The integer parameter you pass to notify(…) is an identifier for your
notification. It should be unique across your application. If you post a second notification with this
same ID, it will replace the last notification you posted with that ID. This is how you would implement
a progress bar or other dynamic visuals.

And that is it. Run your app and turn polling on. You should eventually see a notification icon appear
in the status bar. In the notification tray you will see a notification indicating that new photo results are
available.

After you are satisfied that everything is working correctly, change your alarm constant to be
something more sensible. (Using one of AlarmManager’s predefined interval constants ensures your
app will get inexact repeating alarm behavior on pre-KitKat devices.)

Listing 26.18 Changing to a sensible alarm constant (PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 public static final int POLL_INTERVAL = 1000 * 60; // 60 seconds
 private static final long POLL_INTERVAL = AlarmManager.INTERVAL_FIFTEEN_MINUTES;

 ...
}

Challenge: Notifications on Android Wear
Since you used NotificationCompat and NotificationManagerCompat, your notifications will
automatically appear on an Android Wear device if the user has it paired with an Android device
running your app. Users who receive the notification on a Wear device can swipe left to be presented
with the option to Open the app on the connected handheld. Pressing Open on the Wear device will
issue the notification’s pending intent on the connected handheld device.

To test this out, set up an Android Wear emulator and pair it with a handheld device running your app.
Details about how to do this can be found on http://developer.android.com.

For the More Curious: Service Details
We recommend using IntentService for most service tasks. If the IntentService pattern does
not suit your architecture for a particular app, you will need to understand more about services to
implement your own. Prepare for an infobomb, though – there are a lot of details and ins and outs to
using services.

What a service does (and does not) do
A service is an application component that provides lifecycle callbacks, just like an activity. Those
callbacks are even performed on the main UI thread for you, just like in an activity.

A service does not run any code on a background thread out of the box. This is the #1 reason we
recommend IntentService. Most nontrivial services will require a background thread of some kind,
and IntentService automatically manages the boilerplate code you need to accomplish that.

Let’s see what lifecycle callbacks a service has.

Chapter 26 Background Services

484

A service’s lifecycle
For a service started with startService(Intent), life is fairly simple. There are three lifecycle
callbacks.

• onCreate(…) – called when the service is created.

• onStartCommand(Intent, int, int) – called once each time a component starts the service with
startService(Intent). The two integer parameters are a set of flags and a start ID. The flags are
used to signify whether this intent delivery is an attempt to redeliver an intent or if it is an attempt
to retry a delivery which never made it to (or never returned from) onStartCommand(Intent,
int, int). The start ID will be different for every call to onStartCommand(Intent, int, int),
so it may be used to distinguish this command from others.

• onDestroy() – called when the service no longer needs to be alive. Often this will be after the
service is stopped.

The onDestroy() callback is called when the service stops. This can happen in different ways,
depending on what type of service you have written. The type of service is determined by
the value returned from onStartCommand(…), which may be Service.START_NOT_STICKY,
START_REDELIVER_INTENT, or START_STICKY.

Non-sticky services
IntentService is a non-sticky service, so let’s start there. A non-sticky service stops when the
service itself says it is done. To make your service non-sticky, return either START_NOT_STICKY or
START_REDELIVER_INTENT.

You tell Android that you are done by calling either stopSelf() or stopSelf(int). The first
method, stopSelf(), is unconditional. It will always stop your service, no matter how many times
onStartCommand(…) has been called.

The second method, stopSelf(int), is conditional. This method takes in the start ID received in
onStartCommand(…). This method will only stop your service if this was the most recent start ID
received. (This is how IntentService works under the hood.)

So what is the difference between returning START_NOT_STICKY and START_REDELIVER_INTENT? The
difference is in how your service behaves if the system needs to shut it down before it is done. A
START_NOT_STICKY service will die and disappear into the void. START_REDELIVER_INTENT, on the
other hand, will attempt to start up the service again later, when resources are less constrained.

Choosing between START_NOT_STICKY and START_REDELIVER_INTENT is a matter of deciding how
important that operation is to your application. If the service is not critical, choose START_NOT_STICKY.
In PhotoGallery, your service is being run repeatedly on an alarm. If one invocation falls through the
cracks, it is not a big deal, so: START_NOT_STICKY. This is the default behavior for IntentService. To
switch to using START_REDELIVER_INTENT, call IntentService.setIntentRedelivery(true).

Sticky services
A sticky service stays started until something outside the service tells it to stop by calling
Context.stopService(Intent). To make your service sticky, return START_STICKY.

Bound services

485

Once a sticky service is started it is “on” until a component calls Context.stopService(Intent). If
the service needs to be killed for some reason, it will be restarted again with a null intent passed in to
onStartCommand(…).

A sticky service may be appropriate for a long-running service, like a music player, which needs to
stick around until the user tells it to stop. Even then, it is worth considering an alternative architecture
using non-sticky services. Sticky service management is inconvenient, because it is difficult to tell
whether the service is already started.

Bound services
In addition to all this, it is possible to bind to a service by using the bindService(Intent,
ServiceConnection, int) method. This allows you to call methods on the service directly.
ServiceConnection is an object that represents your service binding and receives all binding
callbacks.

In a fragment, your binding code would look something like this:

private ServiceConnection mServiceConnection = new ServiceConnection() {
 public void onServiceConnected(ComponentName className,
 IBinder service) {
 // Used to communicate with the service
 MyBinder binder = (MyBinder)service;
 }

 public void onServiceDisconnected(ComponentName className) {
 }
};

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 Intent i = new Intent(getActivity(), MyService.class);
 getActivity().bindService(i, mServiceConnection, 0);
}

@Override
public void onDestroy() {
 super.onDestroy();
 getActivity().unbindService(mServiceConnection);
}

On the service’s side, binding introduces two additional lifecycle callbacks:

• onBind(Intent) – called every time the service is bound to. Returns the IBinder object received
in ServiceConnection.onServiceConnected(ComponentName, IBinder).

• onUnbind(Intent) – called when a service’s binding is terminated.

Local service binding
So what does MyBinder look like? If the service is a local service, then it may be a simple Java object
that lives in your local process. Usually this is used to provide a handle to directly call methods on your
service:

Chapter 26 Background Services

486

private class MyBinder extends IBinder {
 public MyService getService() {
 return MyService.this;
 }
}

@Override
public void onBind(Intent intent) {
 return new MyBinder();
}

This pattern looks exciting. It is the only place in Android that enables one Android component to
directly talk to another. However, we do not recommend it. Since services are effectively singletons,
using them this way provides no major benefits over just using a singleton instead.

Remote service binding
Binding is more useful for remote services, because they give applications in other processes the ability
to invoke methods on your service. Creating a remote service binder is an advanced topic and beyond
the scope of this book. Check out the AIDL guide in the Android documentation or the Messenger
class for more details.

For the More Curious: JobScheduler and JobServices
In this chapter, you saw how to use AlarmManager, an IntentService, and PendingIntents to stitch
together a periodically executing background task. In doing that, you had to do a few things manually:

• schedule a periodic task

• check whether that periodic task is currently running

• check whether the network is currently up

You might want to do more than that in the real world. For example, you might want to implement a
backoff-and-retry policy if your request fails, or restrict network access to unmetered Internet access.
What if you wanted to only check for new photos while the device was charging? These things are
certainly possible, but they are not easy or obvious.

On top of that, there are some fundamental problems with how the implementation in this chapter is
hooked up into the OS. For example, even if your service spins up and sees that there is nothing to
do, it still has to spin up. There is no way to say, “Do not spin up my service in these circumstances.”
Another problem: you have to do extra work to make sure your job stays scheduled after a reboot. (You
will see how that works in the next chapter, when you receive the BOOT_COMPLETED broadcast intent.)

We have presented this way of doing things because those are the APIs that are available in older
versions of Android. In Lollipop (API 21), however, a new API was introduced that is designed to
do exactly what your PollService does: the JobScheduler API. JobScheduler allows you to define
services to run particular jobs, and then schedule them to run only when particular conditions apply.

Here is how it works. First, you create a service to handle your job. That is going to be some kind of
JobService subclass. A JobService has two methods to override: onStartJob(JobParameters) and
onStopJob(JobParameters). (Do not enter this code anywhere. It is only a sample for purposes of this
discussion.)

For the More Curious: JobScheduler and JobServices

487

public class PollService extends JobService {
 @Override
 public boolean onStartJob(JobParameters params) {
 return false;
 }

 @Override
 public boolean onStopJob(JobParameters params) {
 return false;
 }
}

When Android is ready to run your job, your service will be started and you will receive a call to
onStartJob(…) on your main thread. Returning false from this method means, “I went ahead and did
everything this job needs, so it is complete.” Returning true means, “Got it. I am working on this job
now, but I am not done yet.”

Unlike IntentService, JobService expects you to do your own threading, which is a minor hassle.
You might do that with an AsyncTask:

private PollTask mCurrentTask;

@Override
public boolean onStartJob(JobParameters params) {
 mCurrentTask = new PollTask();
 mCurrentTask.execute(params);
 return true;
}

private class PollTask extends AsyncTask<JobParameters,Void,Void> {
 @Override
 protected Void doInBackground(JobParameters... params) {
 JobParameters jobParams = params[0];

 // Poll Flickr for new images

 jobFinished(jobParams, false);
 return null;
 }
}

When you are done with your job, you call jobFinished(JobParameters, boolean) to say that you
are done. Passing in true for the second parameter means that you were not able to get the job done
this time, and that the job should be rescheduled again for the future.

The onStopJob(JobParameters) callback is for when your job needs to be interrupted. Maybe you
only want your job to run when a WiFi connection is available. If the phone moves out of WiFi range
before you call jobFinished(…), you will get a call to onStopJob(…), which is your cue to drop
everything immediately.

@Override
public boolean onStopJob(JobParameters params) {
 if (mCurrentTask != null) {
 mCurrentTask.cancel(true);
 }
 return true;
}

Chapter 26 Background Services

488

A call to onStopJob(…) is an indication that your service is about to be shut down. No waiting is
allowed: you must stop your business immediately. Returning true here means that your job should
be rescheduled to run again in the future. Returning false means, “Okay, I was done anyway. Do not
reschedule me.”

When you register your service in the manifest, you must export it and add a permission:

 <service
 android:name=".PollService"
 android:permission="android.permission.BIND_JOB_SERVICE"
 android:exported="true"/>

Exporting it exposes it to the world at large, but adding the permission restricts it back down so that
only JobScheduler can run it.

Once you have created a JobService, kicking it off is a snap. You can use JobScheduler to check on
whether your job has been scheduled.

final int JOB_ID = 1;

JobScheduler scheduler = (JobScheduler)
 context.getSystemService(Context.JOB_SCHEDULER_SERVICE);

boolean hasBeenScheduled = false;
for (JobInfo jobInfo : scheduler.getAllPendingJobs()) {
 if (jobInfo.getId() == JOB_ID) {
 hasBeenScheduled = true;
 }
}

And if it has not, you can create a new JobInfo that says when you want your job to run. Hmm, when
should PollService run? How about something like this:

final int JOB_ID = 1;

JobScheduler scheduler = (JobScheduler)
 context.getSystemService(Context.JOB_SCHEDULER_SERVICE);

JobInfo jobInfo = new JobInfo.Builder(
 JOB_ID, new ComponentName(context, PollService.class))
 .setRequiredNetworkType(JobInfo.NETWORK_TYPE_UNMETERED)
 .setPeriodic(1000 * 60 * 15)
 .setPersisted(true)
 .build();
scheduler.schedule(jobInfo);

This schedules your job to run every 15 minutes, but only on WiFi or another unmetered network.
Calling setPersisted(true) also makes your job persisted: it will survive a reboot. Check out the
reference documentation to see all the other ways you can configure a JobInfo.

For the More Curious: Sync Adapters
Yet another way to set up a regularly polling web service is to use a sync adapter. Sync adapters are
not adapters like you have seen before. Instead, their sole purpose is to sync data with a data source

For the More Curious: Sync Adapters

489

(uploading, downloading, or both). Unlike JobScheduler, sync adapters have been around for a while,
so you do not have to worry about which version of Android you are running on.

Like JobScheduler, sync adapters can be used as a replacement for the AlarmManager setup that you
had in PhotoGallery. Syncs from multiple applications are grouped together by default, without you
having to set flags a certain way. Furthermore, you do not have to worry about resetting the sync alarm
across reboots because sync adapters handle this for you.

Sync adapters also integrate nicely with the OS from a user perspective. You can expose your app
as a sync-able account that the user can manage through the Settings → Accounts menu. This is
where users manage accounts for other apps that use sync adapters, such as Google’s suite of apps
(Figure 26.2).

Figure 26.2 Accounts settings

While using a sync adapter makes correct usage of scheduling repeating network work easier, and
allows you to get rid of the alarm management and pending intent code, a sync adapter does require
a bunch more code. First, a sync adapter does not do any of your web requests for you, so you still
have to write that code (e.g., FlickrFetchr). Second, it requires a content provider implementation to
wrap the data, account, and authenticator classes to represent an account on a remote server (even if
the server does not require authentication), and a sync adapter and sync service implementation. It also
requires working knowledge of bound services.

So if your application already uses a ContentProvider for its data layer and requires account
authentication, using a sync adapter is a good option for you to consider. It is a big advantage that sync
adapters integrate with the user interface provided by the OS, too. JobScheduler does not do that,
either. If none of those considerations apply, the extra code required might not be worth it.

The online developer docs provide a tutorial on using sync adapters: https://
developer.android.com/training/sync-adapters/index.html. Check it out to learn more.

Chapter 26 Background Services

490

Challenge: Using JobService on Lollipop
For an additional challenge, create a second implementation of PollService that subclasses
JobService and is run using JobScheduler. In your PollService startup code, check to see whether
you are on Lollipop. If so, use JobScheduler to schedule your JobService. Otherwise, fall back on
your old AlarmManager implementation.

491

27
Broadcast Intents

In this chapter you will polish PhotoGallery in two big ways. First, you will make the app poll for
new search results and notify the user if new results are found, even if the user has not opened the
application since booting the device. Second, you will ensure notifications about new results are posted
only if the user is not interacting with the app. (It is annoying and redundant to both get a notification
and see the results update in the screen when you are actively viewing an app.)

In making these updates, you will learn how to listen for broadcast intents from the system and how to
handle such intents using a broadcast receiver. You will also dynamically send and receive broadcast
intents within your app at runtime. Finally, you will use ordered broadcasts to determine if your
application is currently running in the foreground or not.

Regular Intents vs. Broadcast Intents
Things are happening all the time on an Android device. WiFi is going in and out of range, packages
are getting installed, phone calls and text messages are coming and going.

When many components on the system need to know that some event has occurred, Android uses a
broadcast intent to tell everyone about it. Broadcast intents work similarly to the intents you already
know and love, except that they can be received by multiple components, called broadcast receivers, at
the same time (Figure 27.1).

Figure 27.1 Regular intents vs. broadcast intents

Chapter 27 Broadcast Intents

492

Activities and services should respond to implicit intents whenever they are used as part of a public
API. In other circumstances, explicit intents are almost always sufficient. On the other hand, the entire
reason broadcast intents exist is to send information to more than one listener. So while broadcast
receivers can respond to explicit intents, they are rarely, if ever, used this way, because explicit intents
have only have one receiver.

Receiving a System Broadcast: Waking Up on Boot
PhotoGallery’s background alarm works, but it is not perfect. If the user reboots the device, the alarm
will be forgotten.

Apps that perform an ongoing process for the user usually need to wake themselves up after the
device is booted. You can detect when boot is completed by listening for a broadcast intent with the
BOOT_COMPLETED action. The system sends out a BOOT_COMPLETED broadcast intent whenever the device
is turned on. You can listen for it by creating and registering a standalone broadcast receiver that filters
for the appropriate action.

Creating and registering a standalone receiver
A standalone receiver is a broadcast receiver that is declared in the manifest. Such a receiver can be
activated even if your app process is dead. (Later you will learn about dynamic receivers, which can
instead be tied to the lifecycle of a visible app component, like a fragment or activity.)

Just like services and activities, broadcast receivers must be registered with the system in order to do
anything useful. If the receiver is not registered with the system, the system will not send any intents its
way and in turn the receiver’s onReceive(…) will not get executed as desired.

But before you can register your broadcast receiver, you have to write it. Create a new Java class called
StartupReceiver that is a subclass of android.content.BroadcastReceiver.

Listing 27.1 Your first broadcast receiver (StartupReceiver.java)

public class StartupReceiver extends BroadcastReceiver{
 private static final String TAG = "StartupReceiver";

 @Override
 public void onReceive(Context context, Intent intent) {
 Log.i(TAG, "Received broadcast intent: " + intent.getAction());
 }
}

A broadcast receiver is a component that receives intents, just like a service or an activity. When an
intent is issued to StartupReceiver, its onReceive(…) method will be called.

Next, open AndroidManifest.xml and hook up StartupReceiver as a standalone receiver:

Creating and registering a standalone receiver

493

Listing 27.2 Adding your receiver to the manifest (AndroidManifest.xml)
<manifest ...>

 <uses-permission android:name="android.permission.INTERNET"/>
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />

 <application
 ...>
 <activity
 android:name=".PhotoGalleryActivity"
 android:label="@string/app_name">
 ...
 </activity>

 <service android:name=".PollService"/>

 <receiver android:name=".StartupReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED"/>
 </intent-filter>
 </receiver>
 </application>

</manifest>

Registering a standalone receiver to respond to an implicit intent works just like registering an activity
to do the same. You use the receiver tag with appropriate intent-filters within. StartupReceiver
will be listening for the BOOT_COMPLETED action. This action also requires a permission, so you include
an appropriate uses-permission tag as well.

With your broadcast receiver declared in your manifest, it will wake up any time a matching broadcast
intent is sent – even if your app is not currently running. Upon waking up, the ephemeral broadcast
receiver’s onReceive(Context, Intent) method will be run, and then it will die, as shown in
Figure 27.2.

Figure 27.2 Receiving BOOT_COMPLETED

Chapter 27 Broadcast Intents

494

Time to verify that StartupReceiver’s onReceive(…) is executed when the device boots up. First, run
PhotoGallery to install the most recent version on your device.

Next, shut down your device. If you are using a physical device, power it all the way off. If you are
using an emulator, the easiest way to shut it down is to quit out of the emulator by closing the emulator
window.

Turn the device back on. If you are using a physical device, use the power button. If you are using
an emulator, either rerun your application or start the device using AVD Manager. Make sure you are
using the same emulator image you just shut down.

Now, open the Android Device Monitor by selecting Tools → Android → Android Device Monitor.

(You may hear the Android Device Monitor called “Dalvik Debug Monitor Server” or “DDMS.”
Prior to KitKat (4.4), Dalvik was the only runtime system available on Android. Starting with KitKat,
Android Runtime (ART) was included as an alternative; as of Lollipop (5.0), ART is the only runtime
used. Android Device Monitor has been renamed accordingly, but the old name still lingers.)

Click on your device in Android Device Monitor’s Devices tab. (If you do not see the device listed, try
unplugging and replugging in your USB device, or restarting the emulator.)

Search the LogCat results within the Android Device Monitor window for your log statement
(Figure 27.3).

Figure 27.3 Searching LogCat output

You should see a LogCat statement showing that your receiver ran. However, if you check your device
in the Devices tab, you will probably not see a process for PhotoGallery. Your process came to life just
long enough to run your broadcast receiver, and then it died again.

Using receivers

495

(Testing that the receiver executed can be unreliable when you are using LogCat output, especially if
you are using an emulator. If you do not see the log statement the first time through the instructions
above, try a few more times. Worst case, continue through the rest of the exercise. Once you get to
the part where you hook up notifications you will have a more reliable way to check on whether the
receiver is working.)

Using receivers
The fact that broadcast receivers live such short lives restricts the things you can do with them. You
cannot use any asynchronous APIs, for example, or register any listeners, because your receiver
will not be alive any longer than the length of onReceive(Context, Intent). Also, because
onReceive(Context, Intent) runs on your main thread, you cannot do any heavy lifting inside it.
That means no networking or heavy work with permanent storage.

This does not make receivers useless, though. They are invaluable for all kinds of little plumbing
code, such as starting an activity or service (so long as you do not expect a result back) or resetting a
recurring alarm when the system finishes rebooting (as you will do in this exercise).

Your receiver will need to know whether the alarm should be on or off. Add a preference constant and
convenience methods to QueryPreferences to store this information in shared preferences.

Listing 27.3 Adding alarm status preference (QueryPreferences.java)

public class QueryPreferences {
 private static final String PREF_SEARCH_QUERY = "searchQuery";
 private static final String PREF_LAST_RESULT_ID = "lastResultId";
 private static final String PREF_IS_ALARM_ON = "isAlarmOn";

 ...

 public static void setLastResultId(Context context, String lastResultId) {
 ...
 }

 public static boolean isAlarmOn(Context context) {
 return PreferenceManager.getDefaultSharedPreferences(context)
 .getBoolean(PREF_IS_ALARM_ON, false);
 }

 public static void setAlarmOn(Context context, boolean isOn) {
 PreferenceManager.getDefaultSharedPreferences(context)
 .edit()
 .putBoolean(PREF_IS_ALARM_ON, isOn)
 .apply();
 }
}

Next, update PollService.setServiceAlarm(…) to write to shared preferences when the alarm is set.

Chapter 27 Broadcast Intents

496

Listing 27.4 Writing alarm status preference when alarm is set
(PollService.java)
public class PollService extends IntentService {
 ...

 public static void setServiceAlarm(Context context, boolean isOn) {
 ...

 if (isOn) {
 alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME,
 SystemClock.elapsedRealtime(), POLL_INTERVAL, pi);
 } else {
 alarmManager.cancel(pi);
 pi.cancel();
 }

 QueryPreferences.setAlarmOn(context, isOn);
 }

 ...
}

Then your StartupReceiver can use it to turn the alarm on at boot.

Listing 27.5 Starting alarm on boot (StartupReceiver.java)
public class StartupReceiver extends BroadcastReceiver{
 private static final String TAG = "StartupReceiver";

 @Override
 public void onReceive(Context context, Intent intent) {
 Log.i(TAG, "Received broadcast intent: " + intent.getAction());

 boolean isOn = QueryPreferences.isAlarmOn(context);
 PollService.setServiceAlarm(context, isOn);
 }
}

Run PhotoGallery again. (You may want to change PollService.POLL_INTERVAL back to a shorter
interval, such as 60 seconds, for testing purposes.) Turn polling on by clicking Start polling in the
toolbar. Reboot your device. This time, your background polling should be restarted after you reboot
your phone, tablet, or emulator.

Filtering Foreground Notifications
With that sharp corner filed down a bit, lets turn to another imperfection in PhotoGallery. Your
notifications work great, but they are sent even when the user already has the application open.

You can fix this problem with broadcast intents, too. But they will work in a completely different way.

First, you will send (and receive) your own custom broadcast intent (and ultimately will lock it down
so it can be received by components in your application only). Second, you will register a receiver

Sending broadcast intents

497

for your broadcast dynamically in code, rather than in the manifest. Finally, you will send an ordered
broadcast to pass data along a chain of receivers, ensuring a certain receiver is run last. (You do not
know how to do all this yet, but you will by the time you are done.)

Sending broadcast intents
This part is easy: you need to send your own broadcast intent. Specifically, you will send a broadcast
notifying interested components that a new search results notification is ready to post. To send a
broadcast intent, create an intent and pass it in to sendBroadcast(Intent). In this case, you will want
it to broadcast an action you define, so define an action constant as well.

Add these items in PollService.

Listing 27.6 Sending a broadcast intent (PollService.java)
public class PollService extends IntentService {
 private static final String TAG = "PollService";

 private static final long POLL_INTERVAL = AlarmManager.INTERVAL_FIFTEEN_MINUTES;

 public static final String ACTION_SHOW_NOTIFICATION =
 "com.bignerdranch.android.photogallery.SHOW_NOTIFICATION";

 ...

 @Override
 protected void onHandleIntent(Intent intent) {

 ...

 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " + resultId);
 } else {
 ...

 NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(this);
 notificationManager.notify(0, notification);

 sendBroadcast(new Intent(ACTION_SHOW_NOTIFICATION));
 }

 QueryPreferences.setLastResultId(this, resultId);
 }

 ...
}

Now your app will send out a broadcast every time new search results are available.

Creating and registering a dynamic receiver
Now you need a receiver for your ACTION_SHOW_NOTIFICATION broadcast intent.

Chapter 27 Broadcast Intents

498

You could write a standalone broadcast receiver, like StartupReceiver, and register it in the manifest.
But that would not be ideal in this case. Here, you want PhotoGalleryFragment to receive the intent
only while it is alive. A standalone receiver declared in the manifest would always receive the intent
and would need some other way of knowing that PhotoGalleryFragment is alive (which is not easily
achieved in Android).

The solution is to use a dynamic broadcast receiver. A dynamic receiver is registered in code, not
in the manifest. You register the receiver by calling registerReceiver(BroadcastReceiver,
IntentFilter) and unregister it by calling unregisterReceiver(BroadcastReceiver). The receiver
itself is typically defined as an inner instance, like a button-click listener. However, since you need
the same instance in registerReceiver(…) and unregisterReceiver(…), you will need to assign the
receiver to an instance variable.

Create a new abstract class called VisibleFragment, with Fragment as its superclass. This class will
be a generic fragment that hides foreground notifications. (You will write another fragment like this in
Chapter 28.)

Listing 27.7 A receiver of VisibleFragment’s own (VisibleFragment.java)

public abstract class VisibleFragment extends Fragment {
 private static final String TAG = "VisibleFragment";

 @Override
 public void onStart() {
 super.onStart();
 IntentFilter filter = new IntentFilter(PollService.ACTION_SHOW_NOTIFICATION);
 getActivity().registerReceiver(mOnShowNotification, filter);
 }

 @Override
 public void onStop() {
 super.onStop();
 getActivity().unregisterReceiver(mOnShowNotification);
 }

 private BroadcastReceiver mOnShowNotification = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 Toast.makeText(getActivity(),
 "Got a broadcast:" + intent.getAction(),
 Toast.LENGTH_LONG)
 .show();
 }
 };
}

Note that to pass in an IntentFilter, you have to create one in code. Your IntentFilter here is
identical to the filter specified by the following XML:

<intent-filter>
 <action android:name="com.bignerdranch.android.photogallery.SHOW_NOTIFICATION" />
</intent-filter>

Creating and registering a dynamic receiver

499

Any IntentFilter you can express in XML can also be expressed in code this way. Just call
addCategory(String), addAction(String), addDataPath(String), and so on to configure your filter.

When you use dynamically registered broadcast receivers, you must also take care to
clean them up. Typically, if you register a receiver in a startup lifecycle method, you call
Context.unregisterReceiver(BroadcastReceiver) in the corresponding shutdown method.
Here, you register inside onStart() and unregister inside onStop(). If instead you registered inside
onActivityCreated(…), you would unregister inside onActivityDestroyed().

(Be careful with onCreate(…) and onDestroy() in retained fragments, by the way. getActivity()
will return different values in onCreate(…) and onDestroy() if the screen has rotated. If you
want to register/unregister in Fragment.onCreate(Bundle) and Fragment.onDestroy(), use
getActivity().getApplicationContext() instead.)

Next, modify PhotoGalleryFragment to be a subclass of your new VisibleFragment.

Listing 27.8 Making your fragment visible (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends FragmentVisibleFragment {
 ...
}

Run PhotoGallery and toggle background polling a couple of times. You will see a nice toast pop up in
addition to your notification icon up top (Figure 27.4).

Figure 27.4 Proof that your broadcast exists

Chapter 27 Broadcast Intents

500

Limiting broadcasts to your app using private permissions
One issue with a broadcast like this is that anyone on the system can listen to it or trigger your
receivers. You are usually not going to want either of those things to happen.

You can preclude these unauthorized intrusions into your personal business in a couple of ways.
One way is to declare in your manifest that the receiver is internal to your app by adding an
android:exported="false" attribute to your receiver tag. This will prevent it from being visible to
other applications on the system.

Another way is to create your own permission by adding a permission tag to your
AndroidManifest.xml. This is the approach you will take for PhotoGallery.

Declare and acquire your own permission in AndroidManifest.xml.

Listing 27.9 Adding a private permission (AndroidManifest.xml)

 <manifest ...>

 <permission android:name="com.bignerdranch.android.photogallery.PRIVATE"
 android:protectionLevel="signature" />

 <uses-permission android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" />
 <uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
 <uses-permission android:name="com.bignerdranch.android.photogallery.PRIVATE" />

 <application
 ... >
 ...
 </application>

 </manifest>

Notice that you define a custom permission with a protection level of signature. You will learn
more about protection levels in just a moment. The permission itself is a simple string, just like intent
actions, categories, and system permissions you have used. You must always acquire a permission to
use it, even when you defined it yourself. Them’s the rules.

Take note of the shaded constant value above, by the way. This string needs to appear in three more
places and must be identical in each place. You would be wise to copy and paste it rather than typing it
out by hand.

Now, use your permission by defining a corresponding constant in code and then passing it in to your
sendBroadcast(…) call.

Limiting broadcasts to your app using private permissions

501

Listing 27.10 Sending with a permission (PollService.java)
public class PollService extends IntentService {
 ...

 public static final String ACTION_SHOW_NOTIFICATION =
 "com.bignerdranch.android.photogallery.SHOW_NOTIFICATION";
 public static final String PERM_PRIVATE =
 "com.bignerdranch.android.photogallery.PRIVATE";

 public static Intent newIntent(Context context) {
 return new Intent(context, PollService.class);
 }

 ...

 @Override
 protected void onHandleIntent(Intent intent) {

 ...

 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " + resultId);
 } else {
 ...
 notificationManager.notify(0, notification);

 sendBroadcast(new Intent(ACTION_SHOW_NOTIFICATION), PERM_PRIVATE);
 }

 QueryPreferences.setLastResultId(this, resultId);
 }

 ...
}

To use your permission, you pass it as a parameter to sendBroadcast(…). Using the permission here
ensures that any application must use that same permission to receive the intent you are sending.

What about your broadcast receiver? Someone could create their own broadcast intent to trigger it. You
can fix that by passing in your permission in registerReceiver(…), too.

Listing 27.11 Permissions on a broadcast receiver (VisibleFragment.java)
public abstract class VisibleFragment extends Fragment {
 ...

 @Override
 public void onStart() {
 super.onStart();
 IntentFilter filter = new IntentFilter(PollService.ACTION_SHOW_NOTIFICATION);
 getActivity().registerReceiver(mOnShowNotification, filter,
 PollService.PERM_PRIVATE, null);
 }

 ...
}

Now, your app is the only app that can trigger that receiver.

Chapter 27 Broadcast Intents

502

More about protection levels

Every custom permission has to specify a value for android:protectionLevel. Your permission’s
protectionLevel tells Android how it should be used. In your case, you used a protectionLevel of
signature.

The signature protection level means that if another application wants to use your permission, it has
to be signed with the same key as your application. This is usually the right choice for permissions
you use internally in your application. Because other developers do not have your key, they cannot get
access to anything this permission protects. Plus, because you do have your own key, you can use this
permission in any other app you decide to write later.

Table 27.1 Values for protectionLevel

Value Description

normal This is for protecting app functionality that will not do anything dangerous like
accessing secure personal data or sending data to the Internet. The user can see
the permission before choosing to install the app, but is not explicitly asked to
grant it. android.permission.RECEIVE_BOOT_COMPLETED uses this permission
level, and so does the permission that lets your app vibrate the user’s device.

dangerous This is for everything you would not use normal for – accessing personal data,
sending and receiving things from network interfaces, accessing hardware
that might be used to spy on the user, or anything else that could cause real
problems. The Internet permission, camera permission, and contacts permission
all fall under this category. Android may ask the user for an explicit go-ahead
before approving a dangerous permission.

signature The system grants this permission if the app is signed with the same certificate
as the declaring application, and denies it otherwise. If the permission is
granted, the user is not notified. This is for functionality that is internal to an
app – as the developer, because you have the certificate and only apps signed
with the same certificate can use the permission, you have control over who
uses the permission. You used it here to prevent anyone else from seeing your
broadcasts. If you wanted, you could write another app that listens to them, too.

signatureOrSystem This is like signature, but it also grants permission to all packages in the
Android system image. This is for communicating with apps built into the
system image. If the permission is granted, the user is not notified. Most
developers do not need to use it.

Passing and receiving data with ordered broadcasts
Time to finally bring this baby home. The last piece is to ensure your dynamically registered receiver
always receives the PollService.ACTION_SHOW_NOTIFICATION broadcast before any other receivers
and that it modifies the broadcast to indicate that the notification should not be posted.

Right now you are sending your own personal private broadcast, but so far you only have one-way
communication (Figure 27.5).

Passing and receiving data with ordered broadcasts

503

Figure 27.5 Regular broadcast intents

This is because a regular broadcast intent is conceptually received by everyone at the same time. In
reality, because onReceive(…) is called on the main thread, your receivers are not actually executed
concurrently. However, it is not possible to rely on their being executed in any particular order or to
know when they have all completed execution. As a result, it is a hassle for the broadcast receivers to
communicate with each other or for the sender of the intent to receive information from the receivers.

You can implement two-way communication using an ordered broadcast intent (Figure 27.6). Ordered
broadcasts allow a sequence of broadcast receivers to process a broadcast intent in order. They also
allow the sender of a broadcast to receive results from the broadcast’s recipients by passing in a special
broadcast receiver, called the result receiver.

Figure 27.6 Ordered broadcast intents

On the receiving side, this looks mostly the same as a regular broadcast. But you get an additional
tool: a set of methods used to change the return value of your receiver. Here, you want to cancel
the notification. This can be communicated by use of a simple integer result code. You will use the
setResultCode(int) method to set the result code to Activity.RESULT_CANCELED.

Modify VisibleFragment to tell the sender of SHOW_NOTIFICATION whether the notification should be
posted. This information will also be sent to any other broadcast receivers along the chain.

Chapter 27 Broadcast Intents

504

Listing 27.12 Sending a simple result back (VisibleFragment.java)

public abstract class VisibleFragment extends Fragment {
 private static final String TAG = "VisibleFragment";

 private BroadcastReceiver mOnShowNotification = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 Toast.makeText(getActivity(),
 "Got a broadcast:" + intent.getAction(),
 Toast.LENGTH_LONG)
 .show();
 // If we receive this, we're visible, so cancel
 // the notification
 Log.i(TAG, "canceling notification");
 setResultCode(Activity.RESULT_CANCELED);
 }
 };

 ...
}

Because all you need to do is signal yes or no here, you only need the result code. If you need to return
more complicated data, you can use setResultData(String) or setResultExtras(Bundle). And if
you want to set all three values, you can call setResult(int, String, Bundle). Once your return
values are set here, every subsequent receiver will be able to see or modify them.

For those methods to do anything useful, your broadcast needs to be ordered. Write a new method to
send an ordered broadcast in PollService. This method will package up a Notification invocation
and send it out as a broadcast. Update onHandleIntent(…) to call your new method and, in turn, send
out an ordered broadcast instead of posting the notification directly to the NotificationManager.

Passing and receiving data with ordered broadcasts

505

Listing 27.13 Sending an ordered broadcast (PollService.java)
...
public static final String PERM_PRIVATE =
 "com.bignerdranch.android.photogallery.PRIVATE";
public static final String REQUEST_CODE = "REQUEST_CODE";
public static final String NOTIFICATION = "NOTIFICATION";
...

@Override
protected void onHandleIntent(Intent intent) {
 ...

 String resultId = items.get(0).getId();
 if (resultId.equals(lastResultId)) {
 Log.i(TAG, "Got an old result: " + resultId);
 } else {
 Log.i(TAG, "Got a new result: " + resultId);
 ...

 Notification notification = ...;

 NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(this);
 notificationManager.notify(0, notification);

 sendBroadcast(new Intent(ACTION_SHOW_NOTIFICATION), PERM_PRIVATE);
 showBackgroundNotification(0, notification);
 }

 QueryPreferences.setLastResultId(this, resultId);
}

private void showBackgroundNotification(int requestCode, Notification notification) {
 Intent i = new Intent(ACTION_SHOW_NOTIFICATION);
 i.putExtra(REQUEST_CODE, requestCode);
 i.putExtra(NOTIFICATION, notification);
 sendOrderedBroadcast(i, PERM_PRIVATE, null, null,
 Activity.RESULT_OK, null, null);
}

...

Context.sendOrderedBroadcast(Intent, String, BroadcastReceiver, Handler, int, String,
Bundle) has five additional parameters beyond the ones you used in sendBroadcast(Intent,
String). They are, in order: a result receiver, a Handler to run the result receiver on, and then initial
values for the result code, result data, and result extras for the ordered broadcast.

The result receiver is a special receiver that runs after all the other recipients of your ordered broadcast
intent. In other circumstances, you would be able to use the result receiver to receive the broadcast and
post the notification object. Here, though, that will not work. This broadcast intent will often be sent
right before PollService dies. That means that your broadcast receiver might be dead, too.

Thus, your final broadcast receiver will need to be a standalone receiver, and you will need to enforce
that it runs after the dynamically registered receiver by different means.

First, create a new BroadcastReceiver subclass called NotificationReceiver. Implement it as
follows:

Chapter 27 Broadcast Intents

506

Listing 27.14 Implementing your result receiver
(NotificationReceiver.java)
public class NotificationReceiver extends BroadcastReceiver {
 private static final String TAG = "NotificationReceiver";

 @Override
 public void onReceive(Context c, Intent i) {
 Log.i(TAG, "received result: " + getResultCode());
 if (getResultCode() != Activity.RESULT_OK) {
 // A foreground activity cancelled the broadcast
 return;
 }

 int requestCode = i.getIntExtra(PollService.REQUEST_CODE, 0);
 Notification notification = (Notification)
 i.getParcelableExtra(PollService.NOTIFICATION);

 NotificationManagerCompat notificationManager =
 NotificationManagerCompat.from(c);
 notificationManager.notify(requestCode, notification);
 }
}

Next, register your new receiver and assign it a priority. To ensure NotificationReceiver receives
the broadcast after your dynamically registered receiver (so it can check to see whether it should post
the notification to NotificationManager), you need to set a low priority for NotificationReceiver.
Give it a priority of -999 so that it runs last. This is the lowest user-defined priority possible (-1000 and
below are reserved).

Also, since this receiver is only used by your application, you do not need it to be externally visible.
Set android:exported="false" to keep this receiver to yourself.

Listing 27.15 Registering the notification receiver (AndroidManifest.xml)
<manifest ...>
 ...

 <application
 ... >
 ...
 <receiver android:name=".StartupReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
 </receiver>
 <receiver android:name=".NotificationReceiver"
 android:exported="false">
 <intent-filter
 android:priority="-999">
 <action
 android:name="com.bignerdranch.android.photogallery.SHOW_NOTIFICATION" />
 </intent-filter>
 </receiver>
 </application>

</manifest>

Receivers and Long-Running Tasks

507

Run PhotoGallery and toggle background polling a couple of times. You should see that notifications
no longer appear when you have the app in the foreground. (If you have not already done so, change
PollService.POLL_INTERVAL to 60 seconds so that you do not have to wait 15 minutes to verify that
notifications still work in the background.)

Receivers and Long-Running Tasks
So what do you do if you want a broadcast intent to kick off a longer-running task than the restrictions
of the main run loop allow?

You have two options. The first is to put that work into a service instead, and start the service in your
broadcast receiver’s small window of opportunity. This is the method we recommend. A service can
take as long as it needs to service a request. It can queue up multiple requests and service them in order
or otherwise manage requests as it sees fit.

The second is to use the BroadcastReceiver.goAsync() method. This method returns a
BroadcastReceiver.PendingResult object, which can be used to provide a result at a later time. So
you could give that PendingResult to an AsyncTask to perform some longer running work, and then
respond to the broadcast by calling methods on PendingResult.

There is one downside to using the goAsync method: it is less flexible. You still have to service the
broadcast within 10 seconds or so, and you have fewer architectural options than you do with a service.

Of course, goAsync() has one huge advantage: you can set results for ordered broadcasts with it. If you
really need that, nothing else will do. Just make sure you do not take too long.

For the More Curious: Local Events
Broadcast intents allow you to propagate information across the system in a global fashion. What if
you want to broadcast the occurrence of an event within your app’s process only? Using an event bus is
a great alternative.

An event bus operates on the idea of having a shared bus, or stream of data, that components within
your application can subscribe to. When an event is posted to the bus, subscribed components will be
activated and have their callback code executed.

EventBus by greenrobot is a third-party event bus library we use in our Android applications. Other
alternatives to consider include Square’s Otto, which is another event bus implementation, or using
RxJava Subjects and Observables to simulate an event bus.

Android does provide a local way to send broadcast intents, called LocalBroadcastManager. But we
find that the third-party libraries mentioned here provide a more flexible and easier-to-use API for
broadcasting local events.

Using EventBus
In order to use EventBus in your application, you must add a library dependency to your project. Once
the dependency is set up, you define a class representing an event (you can add fields to the event if
you need to pass data along):

public class NewFriendAddedEvent { }

Chapter 27 Broadcast Intents

508

You can post to the bus from just about anywhere in your app:

EventBus eventBus = EventBus.getDefault();
eventBus.post(new NewFriendAddedEvent());

Other parts of your app can subscribe to receive events by first registering to listen on the bus. Often
you will register and unregister activities or fragments in corresponding lifecycle methods, such as
onStart(…) and onStop(…):

// In some fragment or activity...
private EventBus mEventBus;

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 mEventBus = EventBus.getDefault();
}

@Override
public void onStart() {
 super.onStart();
 mEventBus.register(this);
}

@Override
public void onStop() {
 super.onStop();
 mEventBus.unregister(this);
}

You specify what the subscriber should do when an event it is looking for is posted by implementing
an onEvent(…) or onEventMainThread(…) method with the appropriate event type as input. Using
onEvent(…) means the event will be processed on the same thread it was sent from. (You could
implement onEventMainThread(…) to ensure the event is processed on the main thread if it happens to
be issued from a background thread.)

// In some registered component, like a fragment or activity...
public void onEventMainThread(NewFriendAddedEvent event){
 Friend newFriend = event.getFriend();
 // Update the UI or do something in response to event...
}

Using RxJava
RxJava can also be used to implement an event broadcasting mechanism. RxJava is a library for
writing “reactive”-style Java code. That “reactive” idea is broad, and beyond the scope of what we can
cover here. The short story is that it allows you to publish and subscribe to sequences of events and
gives you a broad set of generic tools for manipulating these event sequences.

So you could create something called a Subject, which is an object you can publish events to as well
as subscribe to events on.

Subject<Object, Object> eventBus = new SerializedSubject<>(PublishSubject.create());

You can publish events to it:

For the More Curious: Detecting the Visibility of Your Fragment

509

Friend someNewFriend = ...;
NewFriendAddedEvent event = new NewFriendAddedEvent(someNewFriend);
eventBus.onNext(event);

And subscribe to events on it:

eventBus.subscribe(new Action1<Object>() {
 @Override
 public void call(Object event) {
 if (event instanceof NewFriendAddedEvent) {
 Friend newFriend = ((NewFriendAddedEvent)event).getFriend();
 // Update the UI
 }
 }
})

The advantage of RxJava’s solution is that your eventBus is now also an Observable, RxJava’s
representation of a stream of events. That means that you get to use all of RxJava’s various event
manipulation tools. If that piques your interest, check out the wiki on RxJava’s project page: https://
github.com/ReactiveX/RxJava/wiki.

For the More Curious: Detecting the Visibility of Your
Fragment
When you reflect on your PhotoGallery implementation, you may notice that you used the global
broadcast mechanism to broadcast the SHOW_NOTIFICATION intent. However, you locked the receiving
of that broadcast to items local to your app progress by using custom permissions. You may find
yourself asking, “Why am I using a global mechanism if I am just communicating things in my own
app? Why not a local mechanism instead?”

This is because you were specifically trying to solve the problem of knowing whether or not
PhotoGalleryFragment was visible. The combination of ordered broadcasts, standalone receivers,
and dynamically registered receivers you implemented gets the job done. There is not a more
straightforward way to do this in Android.

More specifically, LocalBroadcastManager would not work for PhotoGallery’s notification broadcast
and visible fragment detection, for two main reasons.

First, LocalBroadcastManager does not support ordered broadcasts (though it does provide a blocking
way to broadcast, namely sendBroadcastSync(Intent intent)). This will not work for PhotoGallery
because you need to force NotificationReceiver to run last in the chain.

Second, sendBroadcastSync(Intent intent) does not support sending and receiving a broadcast
on separate threads. In PhotoGallery you need to send the broadcast from a background thread (in
PollService.onHandleIntent(…)) and receive the intent on the main thread (by the dynamic receiver
that is registered by PhotoGalleryFragment on the main thread in onResume(…)).

As of this writing, the semantics of LocalBroadcastManager’s thread delivery are not well documented
and, in our experience, are not intuitive. For example, if you call sendBroadcastSync(…) from a
background thread, all pending broadcasts will get flushed out on that background thread regardless of
whether they were posted from the main thread.

This is not to say LocalBroadcastManager is not useful. It is simply not the right tool for the problems
you solved in this chapter.

511

28
Browsing the Web and WebView

Each photo you get from Flickr has a page associated with it. In this chapter, you are going to update
PhotoGallery so that users can press a photo to see its Flickr page. You will learn two different ways to
integrate web content into your apps, shown in Figure 28.1. The first works with the device’s browser
app (left), and the second uses a WebView to display web content within PhotoGallery (right).

Figure 28.1 Web content: two different approaches

One Last Bit of Flickr Data
For both ways, you need to get the URL for a photo’s Flickr page. If you look at the JSON you are
currently receiving for each photo, you can see that the photo page is not part of those results.

Chapter 28 Browsing the Web and WebView

512

{
 "photos": {
 ...,
 "photo": [
 {
 "id": "9452133594",
 "owner": "44494372@N05",
 "secret": "d6d20af93e",
 "server": "7365",
 "farm": 8,
 "title": "Low and Wisoff at Work",
 "ispublic": 1,
 "isfriend": 0,
 "isfamily": 0,
 "url_s":"https://farm8.staticflickr.com/7365/9452133594_d6d20af93e_m.jpg"
 }, ...
]
 },
 "stat": "ok"
}

You might think that you are in for some more JSON request writing. Fortunately, that is not the case.
If you look at the “Web Page URLs” section of Flickr’s documentation at http://www.flickr.com/
services/api/misc.urls.html, you will see that you can create the URL for an individual photo’s
page like so:

 http://www.flickr.com/photos/user-id/photo-id

The photo-id seen here is the same as the value of the id attribute from your JSON. You are already
stashing that in mId in GalleryItem. What about user-id? If you poke around the documentation, you
will find that the owner attribute in your JSON is a user ID. So if you pull out the owner attribute, you
should be able to build the URL from your photo JSON:

 http://www.flickr.com/photos/owner/id

Update GalleryItem to put this plan into action.

One Last Bit of Flickr Data

513

Listing 28.1 Adding code for photo page (GalleryItem.java)

public class GalleryItem {
 private String mCaption;
 private String mId;
 private String mUrl;
 private String mOwner;

 ...

 public void setUrl(String url) {
 mUrl = url;
 }

 public String getOwner() {
 return mOwner;
 }

 public void setOwner(String owner) {
 mOwner = owner;
 }

 public Uri getPhotoPageUri() {
 return Uri.parse("http://www.flickr.com/photos/")
 .buildUpon()
 .appendPath(mOwner)
 .appendPath(mId)
 .build();
 }

 @Override
 public String toString() {
 return mCaption;
 }
}

Here, you create a new mOwner property here and add a short method called getPhotoPageUri() to
generate photo page URLs as discussed above.

Now change parseItems(…) to read in the owner attribute.

Chapter 28 Browsing the Web and WebView

514

Listing 28.2 Reading in owner attribute (FlickrFetchr.java)

public class FlickrFetchr {
 ...

 private void parseItems(List<GalleryItem> items, JSONObject jsonBody)
 throws IOException, JSONException {

 JSONObject photosJsonObject = jsonBody.getJSONObject("photos");
 JSONArray photoJsonArray = photosJsonObject.getJSONArray("photo");

 for (int i = 0; i < photoJsonArray.length(); i++) {
 JSONObject photoJsonObject = photoJsonArray.getJSONObject(i);

 GalleryItem item = new GalleryItem();
 item.setId(photoJsonObject.getString("id"));
 item.setCaption(photoJsonObject.getString("title"));

 if (!photoJsonObject.has("url_s")) {
 continue;
 }

 item.setUrl(photoJsonObject.getString("url_s"));
 item.setOwner(photoJsonObject.getString("owner"));
 items.add(item);
 }
 }
}

Easy peasy. Now to have fun with your new photo page URL.

The Easy Way: Implicit Intents
You will browse to this URL first by using your old friend the implicit intent. This intent will start up
the browser with your photo URL.

The first step is to make your app listen to presses on an item in the RecyclerView. Update
PhotoGalleryFragment’s PhotoHolder to implement a click listener that will fire an implicit intent.

The Easy Way: Implicit Intents

515

Listing 28.3 Firing implicit intent when item is pressed
(PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends VisibleFragment {
 ...

 private class PhotoHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener {
 private ImageView mItemImageView;
 private GalleryItem mGalleryItem;

 public PhotoHolder(View itemView) {
 super(itemView);

 mItemImageView = (ImageView) itemView
 .findViewById(R.id.fragment_photo_gallery_image_view);
 itemView.setOnClickListener(this);
 }

 public void bindDrawable(Drawable drawable) {
 mItemImageView.setImageDrawable(drawable);
 }

 public void bindGalleryItem(GalleryItem galleryItem) {
 mGalleryItem = galleryItem;
 }

 @Override
 public void onClick(View v) {
 Intent i = new Intent(Intent.ACTION_VIEW, mGalleryItem.getPhotoPageUri());
 startActivity(i);
 }
 }

 ...
}

Next, bind the PhotoHolder to a GalleryItem in PhotoAdapter.onBindViewHolder(…).

Listing 28.4 Binding GalleryItem (PhotoGalleryFragment.java)
...

private class PhotoAdapter extends RecyclerView.Adapter<PhotoHolder> {

 ...

 @Override
 public void onBindViewHolder(PhotoHolder photoHolder, int position) {
 GalleryItem galleryItem = mGalleryItems.get(position);
 photoHolder.bindGalleryItem(galleryItem);
 Drawable placeholder = getResources().getDrawable(R.drawable.bill_up_close);
 photoHolder.bindDrawable(placeholder);
 mThumbnailDownloader.queueThumbnail(photoHolder, galleryItem.getUrl());
 }

 ...
}
...

Chapter 28 Browsing the Web and WebView

516

That is it. Start up PhotoGallery and press on a photo. Your browser app should pop up and load the
photo page for the item you pressed (similar to the image on the left in Figure 28.1).

The Harder Way: WebView
Using an implicit intent to display the photo page is easy and effective. But what if you do not want
your app to open the browser?

Often, you want to display web content within your own activities instead of heading off to the
browser. You may want to display HTML that you generate yourself, or you may want to lock down
the browser somehow. For apps that include help documentation, it is common to implement it as
a web page so that it is easy to update. Opening a web browser to a help web page does not look
professional, and it prevents you from customizing behavior or integrating that web page into your own
user interface.

When you want to present web content within your own user interface, you use the WebView class. We
are calling this the “harder” way here, but it is pretty darned easy. (Anything is hard compared to using
implicit intents.)

The first step is to create a new activity and fragment to display the WebView. Start, as usual, by
defining a layout file, using Figure 28.2.

Figure 28.2 Initial layout (res/layout/fragment_photo_page.xml)

You may be thinking, “That RelativeLayout is pretty useless.” True enough – for the moment. You
will fill it out later in the chapter with additional “chrome.”

Next, get the rudiments of your fragment set up. Create PhotoPageFragment as a subclass of the
VisibleFragment class you created in the last chapter. You will need to inflate your layout file, extract
your WebView from it, and forward along the URL to display as a fragment argument.

The Harder Way: WebView

517

Listing 28.5 Setting up your web browser fragment (PhotoPageFragment.java)
public class PhotoPageFragment extends VisibleFragment {
 private static final String ARG_URI = "photo_page_url";

 private Uri mUri;
 private WebView mWebView;

 public static PhotoPageFragment newInstance(Uri uri) {
 Bundle args = new Bundle();
 args.putParcelable(ARG_URI, uri);

 PhotoPageFragment fragment = new PhotoPageFragment();
 fragment.setArguments(args);
 return fragment;
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mUri = getArguments().getParcelable(ARG_URI);
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_photo_page, container, false);

 mWebView = (WebView) v.findViewById(R.id.fragment_photo_page_web_view);

 return v;
 }
}

For now, this is just a skeleton. You will fill it out a bit more in a moment. But first, create the
containing PhotoPageActivity class using good old SingleFragmentActivity.

Listing 28.6 Creating web activity (PhotoPageActivity.java)
public class PhotoPageActivity extends SingleFragmentActivity {

 public static Intent newIntent(Context context, Uri photoPageUri) {
 Intent i = new Intent(context, PhotoPageActivity.class);
 i.setData(photoPageUri);
 return i;
 }

 @Override
 protected Fragment createFragment() {
 return PhotoPageFragment.newInstance(getIntent().getData());
 }
}

Switch up your code in PhotoGalleryFragment to launch your new activity instead of the implicit
intent.

Chapter 28 Browsing the Web and WebView

518

Listing 28.7 Switching to launch your activity (PhotoGalleryFragment.java)
public class PhotoGalleryFragment extends VisibleFragment {
 ...

 private class PhotoHolder extends RecyclerView.ViewHolder
 implements View.OnClickListener{
 ...

 @Override
 public void onClick(View v) {
 Intent i = new Intent(Intent.ACTION_VIEW, mGalleryItem.getPhotoPageUri());
 Intent i = PhotoPageActivity
 .newIntent(getActivity(), mGalleryItem.getPhotoPageUri());
 startActivity(i);
 }
 }

 ...
}

And, finally, add your new activity to the manifest.

Listing 28.8 Adding activity to manifest (AndroidManifest.xml)
<manifest ... >
 ...

 <application
 ...>
 <activity
 android:name=".PhotoGalleryActivity"
 android:label="@string/app_name" >
 ...
 </activity>

 <activity android:name=".PhotoPageActivity" />

 <service android:name=".PollService" />

 ...
 </application>

</manifest>

Run PhotoGallery and press on a picture. You should see a new empty activity pop up.

OK, now to get to the meat and actually make your fragment do something. You need to do three
things to make your WebView successfully display a Flickr photo page. The first one is straightforward
– you need to tell it what URL to load.

The second thing you need to do is enable JavaScript. By default, JavaScript is off. You do not always
need to have it on, but for Flickr, you do. (If you run Android Lint, it gives you a warning for doing
this. It is worried about cross-site scripting attacks. You can suppress this Lint warning here by
annotating onCreateView(…) with @SuppressLint("SetJavaScriptEnabled").)

The Harder Way: WebView

519

Finally, you need to override one method on a class called WebViewClient,
shouldOverrideUrlLoading(WebView, String), and return false. We will discuss this class a bit
more after you enter the code.

Listing 28.9 Loading URL into WebView (PhotoPageFragment.java)
public class PhotoPageFragment extends VisibleFragment {
 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_photo_page, container, false);

 mWebView = (WebView) v.findViewById(R.id.fragment_photo_page_web_view);
 mWebView.getSettings().setJavaScriptEnabled(true);
 mWebView.setWebViewClient(new WebViewClient() {
 public boolean shouldOverrideUrlLoading(WebView view, String url) {
 return false;
 }
 });
 mWebView.loadUrl(mUri.toString());

 return v;
 }
}

Loading the URL has to be done after configuring the WebView, so you do that last. Before that,
you turn JavaScript on by calling getSettings() to get an instance of WebSettings and calling
WebSettings.setJavaScriptEnabled(true). WebSettings is the first of the three ways you can
modify your WebView. It has various properties you can set, like the user agent string and text size.

After that, you configure your WebViewClient. WebViewClient is an event interface. By providing your
own implementation of WebViewClient, you can respond to rendering events. For example, you could
detect when the renderer starts loading an image from a particular URL or decide whether to resubmit
a POST request to the server.

WebViewClient has many methods you can override, most of which you will not deal
with. However, you do need to replace the default WebViewClient’s implementation of
shouldOverrideUrlLoading(WebView, String). This method determines what will happen when a
new URL is loaded in the WebView, like by pressing a link. If you return true, you are saying, “Do not
handle this URL, I am handling it myself.” If you return false, you are saying, “Go ahead and load
this URL, WebView, I’m not doing anything with it.”

The default implementation fires an implicit intent with the URL, just like you did earlier. Now,
though, this would be a severe problem. The first thing Flickr does is redirect you to the mobile version
of the website. With the default WebViewClient, that means that you are immediately sent to the user’s
default web browser. This is just what you are trying to avoid.

The fix is simple – just override the default implementation and return false.

Run PhotoGallery, press an item, and you should see the item’s photo page displayed in the WebView
(just like the image on the right in Figure 28.1).

Chapter 28 Browsing the Web and WebView

520

Using WebChromeClient to spruce things up
Since you are taking the time to create your own WebView, let’s spruce it up a bit by adding a
progress bar and updating the toolbar’s subtitle with the title of the loaded page. Crack open
fragment_photo_page.xml and get started on these changes.

Listing 28.10 Adding title and progress (fragment_photo_page.xml)

<RelativeLayout ...>

 <ProgressBar
 android:id="@+id/fragment_photo_page_progress_bar"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_alignParentTop="true"
 android:visibility="gone"
 style="?android:attr/progressBarStyleHorizontal"
 android:background="?attr/colorPrimary"/>

 <WebView
 android:id="@+id/fragment_photo_page_web_view"
 android:layout_width="match_parent"
 android:layout_height="wrap_content"
 android:layout_height="match_parent"
 android:layout_alignParentTop="true" />
 android:layout_alignParentBottom="true"
 android:layout_below="@id/fragment_photo_page_progress_bar" />

</RelativeLayout>

To hook up the ProgressBar, you will use the second callback on WebView: WebChromeClient.
WebViewClient is an interface for responding to rendering events; WebChromeClient is an event
interface for reacting to events that should change elements of chrome around the browser. This
includes JavaScript alerts, favicons, and of course updates for loading progress and the title of the
current page.

Hook it up in onCreateView(…).

Using WebChromeClient to spruce things up

521

Listing 28.11 Using WebChromeClient (PhotoPageFragment.java)

public class PhotoPageFragment extends VisibleFragment {
 ...
 private WebView mWebView;
 private ProgressBar mProgressBar;

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_photo_page, container, false);

 mProgressBar =
 (ProgressBar)v.findViewById(R.id.fragment_photo_page_progress_bar);
 mProgressBar.setMax(100); // WebChromeClient reports in range 0-100

 mWebView = (WebView) v.findViewById(R.id.fragment_photo_page_web_view);
 mWebView.getSettings().setJavaScriptEnabled(true);
 mWebView.setWebChromeClient(new WebChromeClient() {
 public void onProgressChanged(WebView webView, int newProgress) {
 if (newProgress == 100) {
 mProgressBar.setVisibility(View.GONE);
 } else {
 mProgressBar.setVisibility(View.VISIBLE);
 mProgressBar.setProgress(newProgress);
 }
 }

 public void onReceivedTitle(WebView webView, String title) {
 AppCompatActivity activity = (AppCompatActivity) getActivity();
 activity.getSupportActionBar().setSubtitle(title);
 }
 });
 mWebView.setWebViewClient(new WebViewClient() {
 ...
 });
 mWebView.loadUrl(mUri.toString());

 return v;
 }
}

Progress updates and title updates each have their own callback method,
onProgressChanged(WebView, int) and onReceivedTitle(WebView, String). The progress you
receive from onProgressChanged(WebView, int) is an integer from 0 to 100. If it is 100, you know
that the page is done loading, so you hide the ProgressBar by setting its visibility to View.GONE.

Run PhotoGallery to test your changes. It should look like Figure 28.3.

Chapter 28 Browsing the Web and WebView

522

Figure 28.3 Fancy WebView

When you press on a photo, PhotoPageActivity pops up. A progress bar displays as the page loads
and a subtitle reflecting the subtitle received in onReceivedTitle(…) appears in the toolbar. Once the
page is loaded, the progress bar disappears.

Proper Rotation with WebView
Try rotating your screen. While it does work correctly, you will notice that the WebView has to
completely reload the web page. This is because WebView has too much data to save it all out inside
onSaveInstanceState(…). It has to start from scratch each time it is re-created on rotation.

You may think the easiest way to resolve this problem would be to retain PhotoPageFragment.
However, this would not work, because WebView is part of the view hierarchy and is thus still destroyed
and re-created on rotation.

For some classes like this (VideoView is another one), the Android documentation recommends that
you allow the activity to handle the configuration change itself. This means that instead of the activity
being destroyed on rotation, it simply moves its views around to fit the new screen size. As a result,
WebView does not have to reload all of its data.

To tell PhotoPageActivity to handle its own darned configuration changes, make the following tweak
to AndroidManifest.xml.

Dangers of handling configuration changes

523

Listing 28.12 Handling configuration changes yourself (AndroidManifest.xml)
<manifest ... >
 ...

 <activity
 android:name=".PhotoPageActivity"
 android:configChanges="keyboardHidden|orientation|screenSize" />

 ...
</manifest>

This attribute says that if the configuration changes because the keyboard was opened or closed, due to
an orientation change, or due to the screen size changing (which also happens when switching between
portrait and landscape after Android 3.2), then the activity should handle the change itself.

And that is it. Try rotating again, and admire how smoothly the change is handled.

Dangers of handling configuration changes
That is so easy and works so well that you are probably wondering why you do not do this all the time.
It seems like it would make life so much easier. However, handling configuration changes on your own
is a dangerous habit.

First, resource qualifiers no longer work automatically. You instead have to manually reload your view.
This can be more complicated than it sounds.

Second, and more important, allowing the activity to handle configuration changes will likely cause
you to not bother with overriding Activity.onSavedInstanceState(…) to stash transient UI states.
Doing so is still necessary, even if the activity is handling configuration changes on its own, because
you still have to worry about death and re-creation in low-memory situations. (Remember, the activity
can be destroyed and stashed by the system at any time if it is not in the running state, as shown in
Figure 3.13 on Page 71.)

For the More Curious: Injecting JavaScript Objects
In this chapter, you have seen how to use WebViewClient and WebChromeClient to respond to
specific events that happen in your WebView. However, it is possible to do even more than that by
injecting arbitrary JavaScript objects into the document contained in the WebView itself. Check out the
documentation at http://developer.android.com/reference/android/webkit/WebView.html and
scroll down to the addJavascriptInterface(Object, String) method. Using this, you can inject an
arbitrary object into the document with a name you specify.

mWebView.addJavascriptInterface(new Object() {
 @JavascriptInterface
 public void send(String message) {
 Log.i(TAG, "Received message: " + message);
 }
}, "androidObject");

And then invoke it like so:

Chapter 28 Browsing the Web and WebView

524

<input type="button" value="In WebView!"
 onClick="sendToAndroid('In Android land')" />

<script type="text/javascript">
 function sendToAndroid(message) {
 androidObject.send(message);
 }
</script>

Starting with API 17 (Jelly Bean 4.2) and up, only public methods annotated @JavascriptInterface
are exported to JavaScript. Prior to that, all public methods in the object hierarchy were accessible.

Either way, this could be dangerous. You are letting some potentially strange web page fiddle with your
program. So to be safe, it is a good idea to make sure you own the HTML in question – either that, or
be extremely conservative with the interface you expose.

For the More Curious: KitKat’s WebView Overhaul
WebView underwent a serious overhaul with the release of KitKat (Android 4.4, API 19). The new
WebView is based on the Chromium open source project. It now shares the same rendering engine used
by the Chrome for Android app, meaning pages should look and behave more consistently across the
two. (However, WebView does not have all the features Chrome for Android does. You can see a good
table comparing the two at https://developer.chrome.com/multidevice/webview/overview.)

The move to Chromium meant some really exciting improvements for WebView, like support
for new web standards like HTML5 and CSS3, an updated JavaScript engine, and improved
performance. From a development perspective, one of the most exciting new features is the added
support for remote debugging of WebView using Chrome DevTools (which can be enabled by calling
WebView.setWebContentsDebuggingEnabled()).

But what if your app supports pre-KitKat devices? It is important to note that some things behave very
differently now. For example, interaction with content providers is no longer allowed from nonlocal
web content (pages hosted on a server rather than your device), and custom URL schemes are handled
in a more restrictive fashion.

If you set your target SDK to a value less than API 19, WebView will try to avoid the behavior changes
introduced in API 19 while still attempting to provide the benefits of improved performance and web
standards support. (This is called “quirks mode.”) However, in some cases this is still not enough. For
example, default zoom levels are not supported at all on API 19 and higher devices.

To make a long story short, if you are supporting pre-KitKat devices and rely on WebView, you will
want to learn more about the differences between the pre- and post-KitKat versions. There is a great
guide on migrating to the new WebView on the developer site http://developer.android.com/guide/
webapps/migrating.html. Be prepared to test your WebView on both pre- and post-KitKat devices, and
also know that some changes may have to happen to the web content itself.

Challenge: Using the Back Button for Browser History
You may have noticed that you can follow other links within the WebView once you launch
PhotoPageActivity. However, no matter how many links you follow, the Back button always brings
you immediately back to PhotoGalleryActivity. What if you instead want the Back button to bring
users their browsing history within the WebView?

Challenge: Supporting Non-HTTP Links

525

Implement this behavior by overriding the Back button method Activity.onBackPressed(). Within
that method you can use a combination of WebView’s browsing history methods (WebView.canGoBack()
and WebView.goBack()) to do the right thing. If there are items in the WebView’s browsing history, go
back to the previous item. Otherwise, allow the Back button to behave as normal by calling through to
super.onBackPressed().

Challenge: Supporting Non-HTTP Links
If you poke around within PhotoPageFragment’s WebView, you may stumble upon non-HTTP links.
For example, as of this writing, the photo detail page Flickr provides displays an Open in App button.
Pressing this button is supposed to launch the Flickr app if it is installed. If it is not installed, the
Google Play store should launch and offer the option to install the Flickr app.

However, if you press Open in App, the WebView instead displays error text, as shown in Figure 28.4.

Figure 28.4 Open in app error

This is because you overrode WebViewClient.shouldOverrideUrlLoading(…) to always return false.
In turn, the WebView always tries to load the URI into itself, even if the URI scheme is not supported by
WebView.

To fix this, you want non-HTTP URIs to be handled by the application that is the best fit for that
URI. Before a URI is loaded, check the scheme. If the scheme is not HTTP or HTTPS, issue an
Intent.ACTION_VIEW for the URI.

527

29
Custom Views and Touch Events

In this chapter, you will learn how to handle touch events by writing a custom subclass of View named
BoxDrawingView. The BoxDrawingView class will be the star of a new project named DragAndDraw
and will draw boxes in response to the user touching the screen and dragging. The finished product will
look like Figure 29.1.

Figure 29.1 Boxes drawn in many shapes and sizes

Setting Up the DragAndDraw Project
Create a new project named “DragAndDraw”. Select API 16 as the minimum SDK and create a blank
activity. Name the activity DragAndDrawActivity.

Chapter 29 Custom Views and Touch Events

528

Setting up DragAndDrawActivity
DragAndDrawActivity will be a subclass of SingleFragmentActivity that inflates the usual single-
fragment-containing layout. Copy SingleFragmentActivity.java and its activity_fragment.xml
layout file into the DragAndDraw project.

In DragAndDrawActivity.java, make DragAndDrawActivity a SingleFragmentActivity that creates
a DragAndDrawFragment (a class that you will create next).

Listing 29.1 Modifying the activity (DragAndDrawActivity.java)
public class DragAndDrawActivity extends AppCompatActivity SingleFragmentActivity {
 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 ...
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 ...
 }

 @Override
 public Fragment createFragment() {
 return DragAndDrawFragment.newInstance();
 }
}

Setting up DragAndDrawFragment
To prepare a layout for DragAndDrawFragment, rename the activity_drag_and_draw.xml layout file
to fragment_drag_and_draw.xml.

DragAndDrawFragment’s layout will eventually consist of a BoxDrawingView, the custom view
that you are going to write. All of the drawing and touch-event handling will be implemented in
BoxDrawingView.

Setting up DragAndDrawFragment

529

Create a new class named DragAndDrawFragment and make its superclass
android.support.v4.app.Fragment. Override onCreateView(…) to inflate
fragment_drag_and_draw.xml.

Listing 29.2 Creating the fragment (DragAndDrawFragment.java)
public class DragAndDrawFragment extends Fragment {

 public static DragAndDrawFragment newInstance() {
 return new DragAndDrawFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_drag_and_draw, container, false);
 return v;
 }
}

You can run DragAndDraw to confirm that your app is set up properly. It should look like Figure 29.2.

Figure 29.2 DragAndDraw with default layout

Chapter 29 Custom Views and Touch Events

530

Creating a Custom View
Android provides many excellent standard views and widgets, but sometimes you need a custom view
that presents visuals that are unique to your app.

While there are all kinds of custom views, you can shoehorn them into two broad categories:

simple A simple view may be complicated inside; what makes it “simple” is that it has no
child views. A simple view will almost always perform custom rendering.

composite Composite views are composed of other view objects. Composite views typically
manage child views but do not perform custom rendering. Instead, rendering is
delegated to each child view.

There are three steps to follow when creating a custom view:

1. Pick a superclass. For a simple custom view, View is a blank canvas, so it is the most common
choice. For a composite custom view, choose an appropriate layout class, such as FrameLayout.

2. Subclass this class and override the constructors from the superclass.

3. Override other key methods to customize behavior.

Creating BoxDrawingView
BoxDrawingView will be a simple view and a direct subclass of View.

Create a new class named BoxDrawingView and make View its superclass. In BoxDrawingView.java,
add two constructors.

Listing 29.3 Initial implementation for BoxDrawingView
(BoxDrawingView.java)
public class BoxDrawingView extends View {

 // Used when creating the view in code
 public BoxDrawingView(Context context) {
 this(context, null);
 }

 // Used when inflating the view from XML
 public BoxDrawingView(Context context, AttributeSet attrs) {
 super(context, attrs);
 }

}

You write two constructors because your view could be instantiated in code or from a layout file. Views
instantiated from a layout file receive an instance of AttributeSet containing the XML attributes
that were specified in XML. Even if you do not plan on using both constructors, it is good practice to
include them.

Creating BoxDrawingView

531

Next, update your fragment_drag_and_draw.xml layout file to use your new view.

Listing 29.4 Adding BoxDrawingView to layout
(fragment_drag_and_draw.xml)

<RelativeLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 >

 <TextView
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_centerHorizontal="true"
 android:layout_centerVertical="true"
 android:text="@string/hello_world" />

</RelativeLayout>

<com.bignerdranch.android.draganddraw.BoxDrawingView
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 />

You must use BoxDrawingView’s fully qualified class name so that the layout inflater can find it. The
inflater works through a layout file creating View instances. If the element name is an unqualified class
name, then the inflater looks for a class with that name in the android.view and android.widget
packages. If the class lives somewhere else, then the layout inflater will not find it, and your app will
crash.

So, for custom classes and other classes that live outside of android.view and android.widget, you
must always specify the fully qualified class name.

Run DragAndDraw to confirm that all the connections are correct. All you will see is an empty view
(Figure 29.3).

Chapter 29 Custom Views and Touch Events

532

Figure 29.3 BoxDrawingView with no boxes

The next step is to get BoxDrawingView listening for touch events and using the information from them
to draw boxes on the screen.

Handling Touch Events
One way to listen for touch events is to set a touch event listener using the following View method:

 public void setOnTouchListener(View.OnTouchListener l)

This method works the same way as setOnClickListener(View.OnClickListener). You provide an
implementation of View.OnTouchListener, and your listener will be called every time a touch event
happens.

However, because you are subclassing View, you can take a shortcut and override this View method:

 public boolean onTouchEvent(MotionEvent event)

This method receives an instance of MotionEvent, a class that describes the touch event, including its
location and its action. The action describes the stage of the event:

Handling Touch Events

533

action
constants

description

ACTION_DOWN user’s finger touches the screen

ACTION_MOVE user moves finger on the screen

ACTION_UP user lifts finger off the screen

ACTION_CANCEL a parent view has intercepted the touch event

In your implementation of onTouchEvent(…), you can check the value of the action by calling the
MotionEvent method:

 public final int getAction()

Let’s get to it. In BoxDrawingView.java, add a log tag and then an implementation of
onTouchEvent(…) that logs a message for each of the four different actions.

Listing 29.5 Implementing BoxDrawingView (BoxDrawingView.java)
public class BoxDrawingView extends View {
 private static final String TAG = "BoxDrawingView";

 ...

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 PointF current = new PointF(event.getX(), event.getY());
 String action = "";

 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 action = "ACTION_DOWN";
 break;
 case MotionEvent.ACTION_MOVE:
 action = "ACTION_MOVE";
 break;
 case MotionEvent.ACTION_UP:
 action = "ACTION_UP";
 break;
 case MotionEvent.ACTION_CANCEL:
 action = "ACTION_CANCEL";
 break;
 }

 Log.i(TAG, action + " at x=" + current.x +
 ", y=" + current.y);

 return true;
 }
}

Notice that you package your X and Y coordinates in a PointF object. You want to pass these two
values together as you go through the rest of the chapter. PointF is a container class provided by
Android that does this for you.

Run DragAndDraw and pull up LogCat. Touch the screen and drag your finger. You should see a report
of the X and Y coordinate of every touch action that BoxDrawingView receives.

Chapter 29 Custom Views and Touch Events

534

Tracking across motion events
BoxDrawingView is intended to draw boxes on the screen, not just log coordinates. There are a few
problems to solve to get there.

First, to define a box, you need two points: the origin point (where the finger was initially placed) and
the current point (where the finger currently is).

To define a box, then, requires keeping track of data from more than one MotionEvent. You will store
this data in a Box object.

Create a class named Box to represent the data that defines a single box.

Listing 29.6 Adding Box (Box.java)
public class Box {
 private PointF mOrigin;
 private PointF mCurrent;

 public Box(PointF origin) {
 mOrigin = origin;
 mCurrent = origin;
 }

 public PointF getCurrent() {
 return mCurrent;
 }

 public void setCurrent(PointF current) {
 mCurrent = current;
 }

 public PointF getOrigin() {
 return mOrigin;
 }
}

When the user touches BoxDrawingView, a new Box will be created and added to a list of existing boxes
(Figure 29.4).

Figure 29.4 Objects in DragAndDraw

Back in BoxDrawingView, use your new Box object to track your drawing state.

Tracking across motion events

535

Listing 29.7 Adding drag lifecycle methods (BoxDrawingView.java)
public class BoxDrawingView extends View {
 public static final String TAG = "BoxDrawingView";

 private Box mCurrentBox;
 private List<Box> mBoxen = new ArrayList<>();

 ...

 @Override
 public boolean onTouchEvent(MotionEvent event) {
 PointF current = new PointF(event.getX(), event.getY());
 String action = "";

 switch (event.getAction()) {
 case MotionEvent.ACTION_DOWN:
 action = "ACTION_DOWN";
 // Reset drawing state
 mCurrentBox = new Box(current);
 mBoxen.add(mCurrentBox);
 break;
 case MotionEvent.ACTION_MOVE:
 action = "ACTION_MOVE";
 if (mCurrentBox != null) {
 mCurrentBox.setCurrent(current);
 invalidate();
 }
 break;
 case MotionEvent.ACTION_UP:
 action = "ACTION_UP";
 mCurrentBox = null;
 break;
 case MotionEvent.ACTION_CANCEL:
 action = "ACTION_CANCEL";
 mCurrentBox = null;
 break;
 }

 Log.i(TAG, action + " at x=" + current.x +
 ", y=" + current.y);

 return true;
 }
}

Any time an ACTION_DOWN motion event is received, you set mCurrentBox to be a new Box with its
origin as the event’s location. This new Box is added to the list of boxes. (In the next section, when you
implement custom drawing, BoxDrawingView will draw every Box within this list to the screen.)

As the user’s finger moves around the screen, you update mCurrentBox.mCurrent. Then, when the
touch is canceled or when the user’s finger leaves the screen, you null out mCurrentBox to end your
draw motion. The Box is complete; it is stored safely in the list but will no longer be updated about
motion events.

Notice the call to invalidate() in the case of ACTION_MOVE. This forces BoxDrawingView to redraw
itself so that the user can see the box while dragging across the screen. Which brings you to the next
step: drawing the boxes to the screen.

Chapter 29 Custom Views and Touch Events

536

Rendering Inside onDraw(…)
When your application is launched, all of its views are invalid. This means that they have not drawn
anything to the screen. To fix this situation, Android calls the top-level View’s draw() method. This
causes that view to draw itself, which causes its children to draw themselves. Those children’s children
then draw themselves, and so on down the hierarchy. When all the views in the hierarchy have drawn
themselves, the top-level View is no longer invalid.

To hook into this drawing, you override the following View method:

 protected void onDraw(Canvas canvas)

The call to invalidate() that you make in response to ACTION_MOVE in onTouchEvent(…) makes the
BoxDrawingView invalid again. This causes it to redraw itself and will cause onDraw(…) to be called
again.

Now let’s consider the Canvas parameter. Canvas and Paint are the two main drawing classes in
Android:

• The Canvas class has all the drawing operations you perform. The methods you call on Canvas
determine where and what you draw – a line, a circle, a word, or a rectangle.

• The Paint class determines how these operations are done. The methods you call on Paint
specify characteristics – whether shapes are filled, which font text is drawn in, and what color
lines are.

In BoxDrawingView.java, create two Paint objects in BoxDrawingView’s XML constructor.

Listing 29.8 Creating your paint (BoxDrawingView.java)
public class BoxDrawingView extends View {
 private static final String TAG = "BoxDrawingView";

 private Box mCurrentBox;
 private List<Box> mBoxen = new ArrayList<>();
 private Paint mBoxPaint;
 private Paint mBackgroundPaint;

 ...

 // Used when inflating the view from XML
 public BoxDrawingView(Context context, AttributeSet attrs) {
 super(context, attrs);

 // Paint the boxes a nice semitransparent red (ARGB)
 mBoxPaint = new Paint();
 mBoxPaint.setColor(0x22ff0000);

 // Paint the background off-white
 mBackgroundPaint = new Paint();
 mBackgroundPaint.setColor(0xfff8efe0);
 }
}

Armed with paint, you can now draw your boxes to the screen.

Rendering Inside onDraw(…)

537

Listing 29.9 Overriding onDraw(Canvas) (BoxDrawingView.java)

public BoxDrawingView(Context context, AttributeSet attrs) {
 ...
}

@Override
protected void onDraw(Canvas canvas) {
 // Fill the background
 canvas.drawPaint(mBackgroundPaint);

 for (Box box : mBoxen) {
 float left = Math.min(box.getOrigin().x, box.getCurrent().x);
 float right = Math.max(box.getOrigin().x, box.getCurrent().x);
 float top = Math.min(box.getOrigin().y, box.getCurrent().y);
 float bottom = Math.max(box.getOrigin().y, box.getCurrent().y);

 canvas.drawRect(left, top, right, bottom, mBoxPaint);
 }
}

The first part of this code is straightforward: using your off-white background paint, you fill the canvas
with a backdrop for your boxes.

Then, for each box in your list of boxes, you determine what the left, right, top, and bottom of the box
should be by looking at the two points for the box. The left and top values will be the minimum values,
and the bottom and right will be the maximum values.

After calculating these values, you call Canvas.drawRect(…) to draw a red rectangle onto the screen.

Run DragAndDraw and draw some red rectangles (Figure 29.5).

Figure 29.5 An expression of programmerly emotion

Chapter 29 Custom Views and Touch Events

538

And that is it. You have now created a view that captures its own touch events and performs its own
drawing.

Challenge: Saving State
Figure out how to persist your boxes across orientation changes from within your View. This can be
done with the following View methods:

 protected Parcelable onSaveInstanceState()
 protected void onRestoreInstanceState(Parcelable state)

These methods do not work like Activity and Fragment’s onSaveInstanceState(Bundle). First,
they will only be called if your View has an ID. Second, instead of taking in a Bundle, they return and
process an object that implements the Parcelable interface. We recommend using a Bundle as the
Parcelable instead of implementing a Parcelable class yourself. (Implementing the Parcelable
interface is complicated. It is better to avoid doing so when possible.)

Finally, you must also maintain the saved state of BoxDrawingView’s parent, the View class. Save the
result of super.onSaveInstanceState() in your new Bundle and send that same result to the super
class when calling super.onRestoreInstanceState(Parcelable).

Challenge: Rotating Boxes
For a harder challenge, make it so that you can use a second finger to rotate your rectangles. To do this,
you will need to handle multiple pointers in your MotionEvent handling code. You will also need to
rotate your canvas.

When dealing with multiple touches, you need these extra ideas:

pointer index tells you which pointer in the current set of pointers the event is for

pointer ID gives you a unique ID for a specific finger in a gesture

The pointer index may change, but the pointer ID will not.

For more details, check out the documentation for the following MotionEvent methods:

 public final int getActionMasked()
 public final int getActionIndex()
 public final int getPointerId(int pointerIndex)
 public final float getX(int pointerIndex)
 public final float getY(int pointerIndex)

Also look at the documentation for the ACTION_POINTER_UP and ACTION_POINTER_DOWN constants.

539

30
Property Animation

For an app to be functional, all you need to do is write your code correctly so that it does not crash. For
an app to be a joy to use, though, you need to give it more love than that. You need to make it feel like
a real, physical phenomenon playing out on your phone or tablet’s screen.

Real things move. To make your user interface move, you animate its elements into new positions.

In this chapter, you will write an app that shows a scene of the sun in the sky. When you press on the
scene, it will animate the sun down below the horizon, and the sky will change colors like a sunset.

Building the Scene
The first step is to build the scene that will be animated. Create a new project called Sunset. Make
sure that your minSdkVersion is set to 16. Name your main activity SunsetActivity, and add
SingleFragmentActivity.java and activity_fragment.xml to your project.

Now, build out your scene. A sunset by the sea should be colorful, so it will help to name a few colors.
Add a colors.xml file to your res/values folder, and add the following values to it:

Listing 30.1 Adding sunset colors (res/values/colors.xml)

<?xml version="1.0" encoding="utf-8"?>
<resources>
 <color name="bright_sun">#fcfcb7</color>
 <color name="blue_sky">#1e7ac7</color>
 <color name="sunset_sky">#ec8100</color>
 <color name="night_sky">#05192e</color>
 <color name="sea">#224869</color>
</resources>

Rectangular views will make for a fine impression of the sky and the sea. But people will not buy a
rectangular sun, no matter how much you argue in favor of its technical simplicity. So, in the res/
drawable/ folder, add an oval shape drawable for a circular sun called sun.xml.

Listing 30.2 Adding sun XML drawable (res/drawable/sun.xml)
<?xml version="1.0" encoding="utf-8"?>
<shape xmlns:android="http://schemas.android.com/apk/res/android"
 android:shape="oval">
 <solid android:color="@color/bright_sun" />
</shape>

When you display this oval in a square view, you will get a circle. People will nod their heads in
approval, and then think about the real sun up in the sky.

Chapter 30 Property Animation

540

Next, build the entire scene out in a layout file. This layout will be used in SunsetFragment, which you
will build in a moment, so name it fragment_sunset.xml.

Listing 30.3 Setting up the layout (res/layout/fragment_sunset.xml)

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:orientation="vertical"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 <FrameLayout
 android:id="@+id/sky"
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="0.61"
 android:background="@color/blue_sky">
 <ImageView
 android:id="@+id/sun"
 android:layout_width="100dp"
 android:layout_height="100dp"
 android:layout_gravity="center"
 android:src="@drawable/sun"
 />
 </FrameLayout>

 <View
 android:layout_width="match_parent"
 android:layout_height="0dp"
 android:layout_weight="0.39"
 android:background="@color/sea"
 />
</LinearLayout>

Check out the preview. You should see a daytime scene of the sun in a blue sky over a dark blue sea.
You may find yourself thinking about a trip you once took to the beach or aboard a boat.

Time to finally get this thing up and running on a device. Create a fragment called SunsetFragment
and add a newInstance(…) method. In onCreateView(…), inflate the fragment_sunset layout file and
return the resulting view.

Listing 30.4 Creating SunsetFragment (SunsetFragment.java)
public class SunsetFragment extends Fragment {

 public static SunsetFragment newInstance() {
 return new SunsetFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_sunset, container, false);

 return view;
 }
}

Building the Scene

541

Now turn SunsetActivity into a SingleFragmentActivity that displays your fragment.

Listing 30.5 Displaying SunsetFragment (SunsetActivity.java)
public class SunsetActivity extends SingleFragmentActivity {

 @Override
 protected void onCreate(Bundle savedInstanceState) {
 ...
 }

 @Override
 public boolean onCreateOptionsMenu(Menu menu) {
 ...
 }

 @Override
 public boolean onOptionsItemSelected(MenuItem item) {
 ...
 }

 @Override
 protected Fragment createFragment() {
 return SunsetFragment.newInstance();
 }

}

Take a moment to run Sunset to make sure everything is hooked up correctly before moving on. It
should look like Figure 30.1. Ahhh.

Figure 30.1 Before sunset

Chapter 30 Property Animation

542

Simple Property Animation
Now that you have the scene set up, it is time to make it do your bidding by moving parts of it around.
You are going to animate the sun down below the horizon.

But before you start animating, you will want a few bits of information handy in your fragment. Inside
of onCreateView(…), pull out a couple of views into fields on SunsetFragment.

Listing 30.6 Pulling out view references (SunsetFragment.java)
public class SunsetFragment extends Fragment {

 private View mSceneView;
 private View mSunView;
 private View mSkyView;

 public static SunsetFragment newInstance() {
 return new SunsetFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_sunset, container, false);

 mSceneView = view;
 mSunView = view.findViewById(R.id.sun);
 mSkyView = view.findViewById(R.id.sky);

 return view;
 }
}

Now that you have those, you can write your code to animate the sun. Here is the plan: smoothly move
mSunView so that its top is right at the edge of the top of the sea. You will do this by translating the
location of the top of mSunView to the bottom of its parent.

The first step is to find where the animation should start and end. Write this first step in a new method
called startAnimation().

Listing 30.7 Getting top of views (SunsetFragment.java)
 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();
 }

The getTop() method is one of four methods on View that return the local layout rect for that view:
getTop(), getBottom(), getRight(), and getLeft(). A view’s local layout rect is the position and

Simple Property Animation

543

size of that view in relation to its parent, as determined when the view was laid out. It is possible to
change the location of the view on screen by modifying these values, but it is not recommended. They
are reset every time a layout pass occurs, so they tend not to hold their value.

In any event, the animation will start with the top of the view at its current location. It needs to end
with the top at the bottom of mSunView’s parent, mSkyView. To get it there, it should be as far down as
mSkyView is tall, which you find by calling getHeight(). The getHeight() method returns the same
thing as getTop() - getBottom().

Now that you know where the animation should start and end, create and run an ObjectAnimator to
perform it.

Listing 30.8 Creating a sun animator (SunsetFragment.java)

 private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();

 ObjectAnimator heightAnimator = ObjectAnimator
 .ofFloat(mSunView, "y", sunYStart, sunYEnd)
 .setDuration(3000);

 heightAnimator.start();
 }

Then hook up startAnimation() so that it is called every time the user presses anywhere in the scene.

Listing 30.9 Starting animation on press (SunsetFragment.java)

 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View view = inflater.inflate(R.layout.fragment_sunset, container, false);

 mSceneView = view;
 mSunView = view.findViewById(R.id.sun);
 mSkyView = view.findViewById(R.id.sky);

 mSceneView.setOnClickListener(new View.OnClickListener() {
 @Override
 public void onClick(View v) {
 startAnimation();
 }
 });

 return view;
 }

Run Sunset and press anywhere on the scene to run the animation (Figure 30.2).

Chapter 30 Property Animation

544

Figure 30.2 Setting sun

You should see the sun move below the horizon.

Here is how it works: ObjectAnimator is a property animator. Instead of knowing specifically about
how to move a view around the screen, a property animator repeatedly calls property setter methods
with different values.

The following method call creates an ObjectAnimator:

ObjectAnimator.ofFloat(mSunView, "y", 0, 1)

When that ObjectAnimator is started, it will then repeatedly call mSunView.setY(float) with values
starting at 0 and moving up. Like this:

 mSunView.setY(0);
 mSunView.setY(0.02);
 mSunView.setY(0.04);
 mSunView.setY(0.06);
 mSunView.setY(0.08);
 ...

…and so on, until it finally calls mSunView.setY(1). This process of finding values in between a
starting and ending point is called interpolation. Between each interpolated value, a little time will
pass, which makes it look like the view is moving.

View transformation properties
Property animators are great, but with them alone it would be impossible to animate a view as easily as
you just did. Modern Android property animation works in concert with transformation properties.

Your view has a local layout rect, which is the position and size it is assigned from the layout
process. You can move the view around after that by setting additional properties on the view, called
transformation properties. You have three properties to rotate the view (rotation, pivotX, and

View transformation properties

545

pivotY), two properties to scale the view vertically and horizontally (scaleX and scaleY), and two to
move the view around the screen (translationX and translationY), as represented in Figure 30.3,
Figure 30.4, and Figure 30.5.

Figure 30.3 View translation

Figure 30.4 View rotation

Figure 30.5 View scaling

Chapter 30 Property Animation

546

All of these properties have getters and setters. For example, if you wanted to know the current
value of translationX, you would call getTranslationX(). If you wanted to set it, you would call
setTranslationX(float).

So what does the y property do? The x and y properties are conveniences built on top of local layout
coordinates and the transformation properties. They allow you to write code that simply says, “Put
this view at this X coordinate and this Y coordinate.” Under the hood, these properties will modify
translationX or translationY to put the view where you want it to be. That means that a call to
mSunView.setY(50) really means this:

 mSunView.setTranslationY(50 - mSunView.getTop())

Using different interpolators
Your animation, while pretty, is abrupt. If the sun was really sitting there perfectly still in the sky,
it would take a moment for it to accelerate into the animation you see. To add this sensation of
acceleration, all you need to do is use a TimeInterpolator. TimeInterpolator has one role: to change
the way your animation goes from point A to point B.

Add a line of code to startAnimation() to make your sun speed up a bit at the beginning using an
AccelerateInterpolator.

Listing 30.10 Adding acceleration (SunsetFragment.java)

 private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();

 ObjectAnimator heightAnimator = ObjectAnimator
 .ofFloat(mSunView, "y", sunYStart, sunYEnd)
 .setDuration(3000);
 heightAnimator.setInterpolator(new AccelerateInterpolator());

 heightAnimator.start();
 }

Run Sunset one more time and press to see your animation. Your sun should now start moving slowly
and accelerate to a quicker pace as it moves toward the horizon.

There are a lot of styles of motion you might want to use in your app, so there are a lot of different
TimeInterpolators. To see all the interpolators that ship with Android, look at the “Known Indirect
Subclasses” section in the reference documentation for TimeInterpolator.

Color evaluation
Now that your sun is animating down, let’s animate the sky to a sunset-y color. Inside of
onCreateView(…), pull all of the colors you defined in colors.xml into instance variables.

Color evaluation

547

Listing 30.11 Pulling out sunset colors (SunsetFragment.java)
public class SunsetFragment extends Fragment {

 ...
 private View mSkyView;

 private int mBlueSkyColor;
 private int mSunsetSkyColor;
 private int mNightSkyColor;

 ...

 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 mSkyView = view.findViewById(R.id.sky);

 Resources resources = getResources();
 mBlueSkyColor = resources.getColor(R.color.blue_sky);
 mSunsetSkyColor = resources.getColor(R.color.sunset_sky);
 mNightSkyColor = resources.getColor(R.color.night_sky);

 mSceneView.setOnClickListener(new View.OnClickListener() {
 ...
 });

 return view;
 }

Now add an additional animation to startAnimation() to animate the sky from mBlueSkyColor to
mSunsetSkyColor.

Listing 30.12 Animating sky colors (SunsetFragment.java)
 private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();

 ObjectAnimator heightAnimator = ObjectAnimator
 .ofFloat(mSunView, "y", sunYStart, sunYEnd)
 .setDuration(3000);
 heightAnimator.setInterpolator(new AccelerateInterpolator());

 ObjectAnimator sunsetSkyAnimator = ObjectAnimator
 .ofInt(mSkyView, "backgroundColor", mBlueSkyColor, mSunsetSkyColor)
 .setDuration(3000);

 heightAnimator.start();
 sunsetSkyAnimator.start();
 }

This seems like it is headed in the right direction, but if you run it you will see that something is amiss.
Instead of moving smoothly from blue to orange, the colors will kaleidoscope wildly.

The reason this happens is that a color integer is not a simple number. It is four smaller numbers
schlupped together into one int. So for ObjectAnimator to properly evaluate which color is halfway
between blue and orange, it needs to know how that works.

Chapter 30 Property Animation

548

When ObjectAnimator’s normal understanding of how to find values between the start and end is
insufficient, you can provide a subclass of TypeEvaluator to fix things. A TypeEvaluator is an object
that tells ObjectAnimator what value is, say, a quarter of the way between a start value and end value.
Android provides a subclass of TypeEvaluator called ArgbEvaluator that will do the trick here.

Listing 30.13 Providing ArgbEvaluator (SunsetFragment.java)
 private void startAnimation() {
 float sunYStart = mSunView.getTop();
 float sunYEnd = mSkyView.getHeight();

 ObjectAnimator heightAnimator = ObjectAnimator
 .ofFloat(mSunView, "y", sunYStart, sunYEnd)
 .setDuration(3000);
 heightAnimator.setInterpolator(new AccelerateInterpolator());

 ObjectAnimator sunsetSkyAnimator = ObjectAnimator
 .ofInt(mSkyView, "backgroundColor", mBlueSkyColor, mSunsetSkyColor)
 .setDuration(3000);
 sunsetSkyAnimator.setEvaluator(new ArgbEvaluator());

 heightAnimator.start();
 sunsetSkyAnimator.start();
 }

Run your animation one more time, and you should see the sky fade to a beautiful orange color
(Figure 30.6).

Figure 30.6 Changing sunset color

Playing Animators Together
If all you need to do is kick off a few animations at the same time, then your job is simple: call
start() on them all at the same time. They will all animate in sync with one another.

Playing Animators Together

549

For more sophisticated animation choreography, this will not do the trick. For example, to complete the
illusion of a sunset, it would be nice to show the sky turning from orange to a midnight blue after the
sun goes down.

This can be done by using an AnimatorListener. AnimatorListener tells you when an animation
completes. So you could write a listener that waits until the end of the first animation, at which time
you can start the second night sky animation. This is a huge hassle, though, and requires a lot of
listeners. It is much easier to use an AnimatorSet.

First, build out the night sky animation and delete your old animation start code.

Listing 30.14 Building night animation (SunsetFragment.java)
 private void startAnimation() {
 ...
 sunsetSkyAnimator.setEvaluator(new ArgbEvaluator());

 ObjectAnimator nightSkyAnimator = ObjectAnimator
 .ofInt(mSkyView, "backgroundColor", mSunsetSkyColor, mNightSkyColor)
 .setDuration(1500);
 nightSkyAnimator.setEvaluator(new ArgbEvaluator());

 heightAnimator.start();
 sunsetSkyAnimator.start();

 }

And then build and run an AnimatorSet.

Listing 30.15 Building animator set (SunsetFragment.java)
 private void startAnimation() {
 ...

 ObjectAnimator nightSkyAnimator = ObjectAnimator
 .ofInt(mSkyView, "backgroundColor", mSunsetSkyColor, mNightSkyColor)
 .setDuration(1500);
 nightSkyAnimator.setEvaluator(new ArgbEvaluator());

 AnimatorSet animatorSet = new AnimatorSet();
 animatorSet
 .play(heightAnimator)
 .with(sunsetSkyAnimator)
 .before(nightSkyAnimator);
 animatorSet.start();
 }

An AnimatorSet is nothing more than a set of animations that can be played together. There are a few
ways to build one, but the easiest way is to use the play(Animator) method you used above.

When you call play(Animator), you get an AnimatorSet.Builder, which allows you to build a chain
of instructions. The Animator passed in to play(Animator) is the “subject” of the chain. So the chain
of calls you wrote here could be described as, “Play heightAnimator with sunsetSkyAnimator; also,
play heightAnimator before nightSkyAnimator.” For complicated AnimatorSets, you may find it
necessary to call play(Animator) a few times, which is perfectly fine.

Run your app one more time and savor the soothing sunset you have created. Magic.

Chapter 30 Property Animation

550

For the More Curious: Other Animation APIs
While property animation is the most broadly useful tool in the animation toolbox, it is not the only
one. Whether or not you are using them, it is a good idea to know about the other tools out there.

Legacy animation tools
One set of tools is the classes living in the android.view.animation package. This should not be
confused with the newer android.animation package, which was introduced in Honeycomb.

This is the legacy animation framework, which you should mainly know about so that you can ignore
it. If you see the word “animaTION” in the class name instead of “animaTOR”, that is a good sign that
it is a legacy tool you should ignore.

Transitions
Android 4.4 introduced a new transitions framework, which enables fancy transitions between view
hierarchies. You might define a transition that explodes a small view in one activity into a zoomed-in
version of that view in another activity.

The basic idea of the transitions framework is that you can define scenes, which represent the state of
a view hierarchy at some point, and transitions between those scenes. Scenes can be described in XML
layout files, and transitions can be described in animation XML files.

When an activity is already running, as in this chapter, the transitions framework is not that useful. This
is where the property animation framework shines. However, the property animation framework is not
good at animating a layout as it is coming onto the screen.

Take CriminalIntent’s crime pictures as an example. If you were to try to implement a “zoom”
animation to the zoomed in dialog of an image, you would have to figure out where the original image
was and where the new image would be on the dialog. ObjectAnimator cannot achieve an effect like
that without a lot of work. In that case, you would want to use the transitions framework instead.

Challenges
For the first challenge, add the ability to reverse the sunset after it is completed. So you can press for a
sunset, and then press a second time to get a sunrise. You will need to build another AnimatorSet to do
this – AnimatorSets cannot be run in reverse.

For a second challenge, add a continuing animation to the sun. Make it pulsate with heat, or give it a
spinning halo of rays. (You can use the setRepeatCount(int) method on ObjectAnimator to make
your animation repeat itself.)

Another good challenge would be to have a reflection for the sun in the water.

Your final challenge is to add the ability to press to reverse the sunset scene while it is still happening.
So if you press the scene while the sun is halfway down, it will go right back up again seamlessly.
Likewise, if you press the scene while transitioning to night, it will smoothly transition right back to a
sunrise.

551

31
Locations and Play Services

In this chapter, you will start writing a new app called Locatr that performs a Flickr geosearch. It will
find your current location and then look for pictures nearby (Figure 31.1). Then, in the next chapter,
you will show the picture on a map.

Figure 31.1 Locatr at the end of this chapter

It turns out that this simple job – finding your current location – is more interesting than you might
expect. It requires integrating with Google’s set of libraries that live outside the standard library set,
called Google Play Services.

Locations and Libraries
To see why, let’s talk a bit about what your average Android device can see and what tools Android
gives you to see those things yourself.

Chapter 31 Locations and Play Services

552

Out of the box, Android provides a basic Location API. This API lets you listen to location data from a
variety of sources. For most phones, those sources are fine location points from a GPS radio and coarse
points from cell towers or WiFi connections. These APIs have been around for as long as Android
itself. You can find them in the android.location package.

So the android.location APIs exist. But they fall short of perfection. Real-world applications make
requests like, “Use as much battery as you can to get as much accuracy as possible,” or “I need a
location, but I would rather not waste my battery life.” Rarely if ever do they need to make a request as
specific as, “Please fire up the GPS radio and tell me what it says.”

This starts to be a problem when your devices move around. If you are outside, GPS is best. If you
have no GPS signal, the cell tower fix may be best. And if you can find neither of those signals, it
would be nicer to get by with the accelerometer and gyroscope than with no location fix at all.

In the past, high-quality apps had to manually subscribe to all of these different data sources and switch
between them as appropriate. This was not straightforward or easy to do right.

Google Play Services
A better API was needed. However, if it were added to the standard library, it would take a couple of
years for all developers to be able to use it. This was annoying, because the OS had everything that a
better API would need: GPS, coarse location, and so forth.

Fortunately, the standard library is not the only way Google can get code into your hands. In addition
to the standard library, Google provides Play Services. This is a set of common services that are
installed alongside the Google Play store application. To fix this locations mess, Google shipped a new
locations service in Play Services called the Fused Location Provider.

Since these libraries live in another application, you must actually have that application installed.
This means that only devices with the Play Store app installed and up to date will be able to use your
application. This almost certainly means that your app will be distributed through the Play Store, too. If
your app is not available through the Play store, you are unfortunately out of luck, and will need to use
another location API.

For the purposes of this exercise, if you will be testing on a hardware device make sure that you have
an up-to-date Play Store app. And what if you are running on an emulator? Never fear – we will cover
that later in this chapter.

Creating Locatr
Now to get started. In Android Studio, create a new project called Locatr. Name your main activity
LocatrActivity. As you have for your other apps, set your minSdkVersion to 16 and copy in
SingleFragmentActivity and activity_fragment.xml.

You will also want some additional code from PhotoGallery. You will be querying Flickr again,
so having your old query code will be handy. Open up your PhotoGallery solution (anything after
Chapter 24 will do), select FlickrFetchr.java and GalleryItem.java, and right-click to copy them.
Then paste them into your Java code area in Locatr.

In a minute, you will get started on building out your user interface. If you are using an emulator,
though, read this next section so that you can test all the code you are about to write. If you are not,
feel free to skip on ahead to the section called “Building out Locatr”.

Play Services and Location Testing on Emulators

553

Play Services and Location Testing on Emulators
If you are using an AVD emulator, you must first make sure that your emulator images are up to date.

To do that, open up your SDK Manager (Tools → Android → SDK Manager). Go down to the version
of Android you plan to use for your emulator and ensure that the Google APIs System Images are both
installed and up to date. If an update is available, click the button to install the update and wait until it
is ready to go before continuing (Figure 31.2).

Figure 31.2 Ensuring your emulator is up to date

Your AVD emulator also needs to have a target OS version that supports the Google APIs. When you
create an emulator you can identify these target OS versions because they will say “Google APIs” on
the right. Choose one with an API level of 21 or higher, and you will be all set (Figure 31.3).

Chapter 31 Locations and Play Services

554

Figure 31.3 Choosing a Google APIs image

If you already have a suitable emulator, but you had to update your images through the SDK earlier,
you will need to restart your emulator for it to work.

For these two chapters, if you are going to use an emulator, we recommend the built-in AVD emulator
over a Genymotion emulator. It is possible to use either, but setting up the Genymotion emulator
for use with this exercise is neither straightforward nor in the scope of this book. Explore the
documentation on Genymotion’s website for more information.

Mock location data
On an emulator you will also need some dummy (or mock) location updates to work with. Android
Studio provides an Emulator Control panel that lets you send location points to the emulator. This
works great on the old location services, but does nothing on the new Fused Location Provider. Instead,
you have to publish mock locations programmatically.

We here at Big Nerd Ranch love to explain interesting things in minute detail. After the debacle that
was Snipe Hunting: The Big Nerd Ranch Guide, though, we prefer to explain useful things. So instead
of making you type out this mock location code, we have written it for you in a stand-alone app, called
MockWalker. To use it, download and install the APK at this URL:

 https://www.bignerdranch.com/solutions/MockWalker.apk

The easiest way to do that is to open the browser app in your emulator and type in the URL
(Figure 31.4).

https://www.bignerdranch.com/solutions/MockWalker.apk

Mock location data

555

Figure 31.4 Typing in the URL

When it is done, press the download notification item in the toolbar to open the APK (Figure 31.5).

Figure 31.5 Opening the download

MockWalker will trigger a mock walk for you via a service that posts mock location data to Fused
Location Provider. It will pretend to walk in a loop around the Kirkwood neighborhood in Atlanta.

Chapter 31 Locations and Play Services

556

While the service is running, any time Locatr asks Fused Location Provider for a location fix, it will
receive a location posted by MockWalker (Figure 31.6).

Figure 31.6 Running MockWalker

Run MockWalker and press Start. Its service will keep running after you exit the app. (Do not exit the
emulator, however. Leave the emulator running while you work on Locatr.) When you no longer need
those mock locations, open MockWalker again and press the Stop button.

If you would like to know how MockWalker works, you can find its source code in the solutions folder
for this chapter (see the section called “Adding an Icon” in Chapter 2 for more on the solutions). It
uses a few interesting things: RxJava and a sticky foreground service to manage the ongoing location
updates. If those sound interesting to you, check it out.

Building out Locatr
Next, create your interface. First, add a string for your search button in res/values/strings.xml.

Listing 31.1 Adding search button text (res/values/strings.xml)
<resources>
 <string name="app_name">Locatr</string>

 <string name="hello_world">Hello world!</string>
 <string name="action_settings">Settings</string>
 <string name="search">Find an image near you</string>
</resources>

You will be using a fragment, as usual, so rename activity_locatr.xml to fragment_locatr.xml.
Change out the insides of its RelativeLayout to have an ImageView to display the image you find

Building out Locatr

557

(Figure 31.7). (The padding attribute values come from the template code as of this writing. They are
not important, so feel free to leave them out.)

Figure 31.7 Locatr’s layout (res/layout/fragment_locatr.xml)

You also need a button to trigger the search. You can use your toolbar for that. Rename res/menu/
menu_locatr.xml to res/menu/fragment_locatr.xml and change its button to display a location icon.
(Yes, this is the same filename as res/layout/fragment_locatr.xml. This is no problem at all: menu
resources live in a different namespace.)

Listing 31.2 Setting up Locatr’s menu (res/menu/fragment_locatr.xml)

<menu xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 xmlns:tools="http://schemas.android.com/tools"
 tools:context=".LocatrActivity">
 <item android:id="@+id/action_settings"
 android:title="@string/action_settings"
 android:orderInCategory="100"
 app:showAsAction="never"/>
 <item android:id="@+id/action_locate"
 android:icon="@android:drawable/ic_menu_compass"
 android:title="@string/search"
 android:orderInCategory="100"
 android:enabled="false"
 app:showAsAction="ifRoom"/>
</menu>

The button is disabled in XML by default. Later on, you will enable it once you are connected to Play
Services.

Now create a Fragment subclass called LocatrFragment that hooks up your layout and pulls out that
ImageView.

Chapter 31 Locations and Play Services

558

Listing 31.3 Creating LocatrFragment (LocatrFragment.java)

public class LocatrFragment extends Fragment {
 private ImageView mImageView;

 public static LocatrFragment newInstance() {
 return new LocatrFragment();
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_locatr, container, false);

 mImageView = (ImageView) v.findViewById(R.id.image);

 return v;
 }
}

Hook up your menu item, too. Pull it out into its own instance variable so that you can enable it later
on.

Listing 31.4 Adding menu to fragment (LocatrFragment.java)

public class LocatrFragment extends Fragment {
 private ImageView mImageView;

 public static LocatrFragment newInstance() {
 return new LocatrFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);
 }

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_locatr, menu);
 }
}

Now hook it up in LocatrActivity. Delete everything inside this class and replace it, like so:

Setting Up Google Play Services

559

Listing 31.5 Hooking up Locatr fragment (LocatrActivity.java)

public class LocatrActivity extends SingleFragmentActivity {
 @Override
 protected Fragment createFragment() {
 return LocatrFragment.newInstance();
 }
}

With that, you should be ready to get into some trouble.

Setting Up Google Play Services
To get your location using the Fused Location Provider, you need to use Google Play Services. To get
those up and running, you will need to add a few standard bits of boilerplate to your app.

First, you need to add the Google Play Services library dependency. The services themselves live in the
Play app, but the Play Services library contains all the code to interface with them.

Open up your app module’s settings (File → Project Structure). Navigate to its dependencies, and
add a library dependency. Type in the following dependency name: com.google.android.gms:play-
services-location:7.3.0. (As of this writing, this dependency will not show up in search results, so
type carefully.) This is the location portion of Play Services.

Over time, the version number for this library will change. If you want to see what the most up-to-date
version is, search the library dependencies for play-services. The com.google.android.gms:play-
services dependency will appear, along with a version number. This is the dependency that includes
everything in Play Services. If you want to use the latest version of the library, you can use the version
number from play-services for the more limited play-services-location library, too.

Which version number should you use, though? In your own practice, it is best to use the most recent
version you possibly can. But we cannot guarantee that the code in this chapter will work the same for
future versions. So for this chapter, use the version we wrote this code for: 7.3.0.

Next, you need to verify that Play Services is available. Since the working parts live in another app
on your device, the Play Services library is not always guaranteed to be working. The library makes it
easy to verify this. Update your main activity to perform this check.

Chapter 31 Locations and Play Services

560

Listing 31.6 Adding Play Services check (LocatrActivity.java)

public class LocatrActivity extends SingleFragmentActivity {
 private static final int REQUEST_ERROR = 0;

 @Override
 protected Fragment createFragment() {
 return LocatrFragment.newInstance();
 }

 @Override
 protected void onResume() {
 super.onResume();

 int errorCode = GooglePlayServicesUtil.isGooglePlayServicesAvailable(this);

 if (errorCode != ConnectionResult.SUCCESS) {
 Dialog errorDialog = GooglePlayServicesUtil
 .getErrorDialog(errorCode, this, REQUEST_ERROR,
 new DialogInterface.OnCancelListener() {

 @Override
 public void onCancel(DialogInterface dialog) {
 // Leave if services are unavailable.
 finish();
 }
 });

 errorDialog.show();
 }
 }
}

Normally you would not use a bare Dialog like this. However, in this case there is no need to defend
against rotation issues. The errorCode value will be the same if the user rotates, so the Dialog will be
displayed again.

Location permissions
You will also need some location permissions for your app to work. There are
two relevant permissions: android.permission.ACCESS_FINE_LOCATION, and
android.permission.ACCESS_COARSE_LOCATION. Fine location is the GPS radio; coarse location is
derived from cell towers or WiFi access points.

In this chapter, you will be requesting a high accuracy location fix, so you will definitely need
ACCESS_FINE_LOCATION. But it is also a good idea to request ACCESS_COARSE_LOCATION. If the fine
location provider is not available, this gives you permission to use the coarse provider as a backup.

Add these permissions to your manifest. Add an Internet permission while you are at it, too, so that you
can query Flickr.

Using Google Play Services

561

Listing 31.7 Adding permissions (AndroidManifest.xml)
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.locatr" >

 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission
 android:name="android.permission.INTERNET" />

 ...

</manifest>

Using Google Play Services
To use Play Services, you need to create a client. That client is an instance of the GoogleApiClient
class. You can find the documentation for this class (and all the other Play Services classes you will be
using in these two chapters) in the Play Services reference section: http://developer.android.com/
reference/gms-packages.html.

To create a client, create a GoogleApiClient.Builder and configure it. At a minimum, you want
to configure the instance with the specific APIs you will be using. Then call build() to create an
instance.

Inside your onCreate(Bundle), create an instance of GoogleApiClient.Builder and add the Location
Services API to your instance.

Listing 31.8 Creating GoogleApiClient (LocatrFragment.java)
public class LocatrFragment extends Fragment {
 private ImageView mImageView;
 private GoogleApiClient mClient;

 public static LocatrFragment newInstance() {
 return new LocatrFragment();
 }

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);

 mClient = new GoogleApiClient.Builder(getActivity())
 .addApi(LocationServices.API)
 .build();
 }

Once you do that, you need to connect to the client. Google recommends always connecting to the
client in onStart() and disconnecting in onStop(). Calling connect() on your client will change what
your menu button can do, too, so call invalidateOptionsMenu() to update its visible state. (You will
call it one more time later: after you are told you have been connected.)

Chapter 31 Locations and Play Services

562

Listing 31.9 Connecting and disconnecting (LocatrFragment.java)

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 ...
 }

 @Override
 public void onStart() {
 super.onStart();

 getActivity().invalidateOptionsMenu();
 mClient.connect();
 }

 @Override
 public void onStop() {
 super.onStop();

 mClient.disconnect();
 }

 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 ...

If your client is not connected, your app will not be able to do anything. So for the next step, enable or
disable the button depending on whether the client is connected.

Listing 31.10 Updating the menu button (LocatrFragment.java)

@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 super.onCreateOptionsMenu(menu, inflater);
 inflater.inflate(R.menu.fragment_locatr, menu);

 MenuItem searchItem = menu.findItem(R.id.action_locate);
 searchItem.setEnabled(mClient.isConnected());
}

Then add another call to getActivity().invalidateOptionsMenu() to update your menu
item when you find out that you are connected. Connection state information is passed through
two callback interfaces: ConnectionCallbacks and OnConnectionFailedListener. Hook up
a ConnectionCallbacks listener in onCreate(Bundle) to invalidate your toolbar when you are
connected.

Flickr Geosearch

563

Listing 31.11 Listening for connection events (LocatrFragment.java)

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 getActivity().invalidateOptionsMenu();

 mClient = new GoogleApiClient.Builder(getActivity())
 .addApi(LocationServices.API)
 .addConnectionCallbacks(new GoogleApiClient.ConnectionCallbacks() {
 @Override
 public void onConnected(Bundle bundle) {
 getActivity().invalidateOptionsMenu();
 }

 @Override
 public void onConnectionSuspended(int i) {

 }
 })
 .build();
}

If you are curious, you can hook up an OnConnectionFailedListener and see what it reports. But it is
not necessary.

With that, your Google Play Services hookup is ready.

Flickr Geosearch
The next step is to add the ability to search for geographic locations on Flickr. To do this, you perform
a regular search, but you also provide a latitude and longitude.

In Android, the location APIs pass around these location fixes in Location objects. So write a new
buildUrl(…) override that takes in one of these Location objects and builds an appropriate search
query.

Listing 31.12 New buildUrl(Location) (FlickrFetchr.java)

private String buildUrl(String method, String query) {
 ...
}

private String buildUrl(Location location) {
 return ENDPOINT.buildUpon()
 .appendQueryParameter("method", SEARCH_METHOD)
 .appendQueryParameter("lat", "" + location.getLatitude())
 .appendQueryParameter("lon", "" + location.getLongitude())
 .build().toString();
}

And then write a matching searchPhotos(Location) method.

Chapter 31 Locations and Play Services

564

Listing 31.13 New searchPhotos(Location) (FlickrFetchr.java)
public List<GalleryItem> searchPhotos(String query) {
 ...
}

public List<GalleryItem> searchPhotos(Location location) {
 String url = buildUrl(location);
 return downloadGalleryItems(url);
}

Getting a Location Fix
Now that you have everything set up, you are ready to get a location fix. Your window to the Fused
Location Provider API is a class named, appropriately enough, FusedLocationProviderApi.
There is one instance of this class. It is a singleton object that lives on LocationServices called
FusedLocationApi.

To get a location fix from this API, you need to build a location request. Fused location requests
are represented by LocationRequest objects. Create one and configure it in a new method called
findImage(). (There are two LocationRequest classes. Use the one with the complete name of
com.google.android.gms.location.LocationRequest.)

Listing 31.14 Building a location request (LocatrFragment.java)
 @Override
 public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 ...
 }

 private void findImage() {
 LocationRequest request = LocationRequest.create();
 request.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);
 request.setNumUpdates(1);
 request.setInterval(0);
 }
}

LocationRequest objects configure a variety of parameters for your request:

• interval – how frequently the location should be updated

• number of updates – how many times the location should be updated

• priority – how Android should prioritize battery life against accuracy to satisfy your request

• expiration – whether the request should expire and, if so, when

• smallest displacement – the smallest amount the device must move (in meters) to trigger a
location update

When you first create a LocationRequest, it will be configured for accuracy within a city block,
with repeated slow updates until the end of time. In your code, you change this to get a single, high-

Getting a Location Fix

565

accuracy location fix by changing the priority and the number of updates. You also set the interval to 0,
to signify that you would like a location fix as soon as possible.

The next step is to send off this request and listen for the Locations that come back. You do this by
adding a LocationListener. There are two versions of LocationListener you can import. Choose
com.google.android.gms.location.LocationListener. Add another method call to findImage().

Listing 31.15 Sending LocationRequest (LocatrFragment.java)
public class LocatrFragment extends Fragment {
 private static final String TAG = "LocatrFragment";
 ...

 private void findImage() {
 LocationRequest request = LocationRequest.create();
 request.setPriority(LocationRequest.PRIORITY_HIGH_ACCURACY);
 request.setNumUpdates(1);
 request.setInterval(0);
 LocationServices.FusedLocationApi
 .requestLocationUpdates(mClient, request, new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 Log.i(TAG, "Got a fix: " + location);
 }
 });
 }

If this were a longer-lived request, you would need to hold on to your listener and call
removeLocationUpdates(…) later to cancel the request. However, since you called setNumUpdates(1),
all you need to do is send this off and forget about it.

Finally, to send this off you need to hook up your search button. Override onOptionsItemSelected(…)
to call findImage().

Listing 31.16 Hooking up search button (LocatrFragment.java)
@Override
public void onCreateOptionsMenu(Menu menu, MenuInflater inflater) {
 ...
}

@Override
public boolean onOptionsItemSelected(MenuItem item) {
 switch (item.getItemId()) {
 case R.id.action_locate:
 findImage();
 return true;
 default:
 return super.onOptionsItemSelected(item);
 }
}

Run your app and press the search button. Remember to have MockWalker running if you are
running on an emulator. (If you run into issues with the menu, flip back to Chapter 13 to integrate the
AppCompat library.) You should see a line something like this logged out:

Chapter 31 Locations and Play Services

566

...D/libEGL: loaded /system/lib/egl/libGLESv2_MRVL.so

...D/GC: <tid=12423> OES20 ===> GC Version : GC Ver rls_pxa988_KK44_GC13.24

...D/OpenGLRenderer: Enabling debug mode 0

...I/LocatrFragment: Got a fix: Location[fused 33.758998,-84.331796 acc=38 et=...]

This shows you the latitude and longitude, accuracy, and the estimated time of the location fix. If
you plug your lat-lon pair into Google Maps, you should be able to pull up your current location
(Figure 31.8).

Figure 31.8 Our current location

Find and Display an Image
Now that you have a location fix, it is time to use it. Write an async task to find a GalleryItem near
your location fix, download its associated image, and display it.

Put this code inside a new inner AsyncTask called SearchTask. Start by performing the search,
selecting the first GalleryItem that comes up.

Find and Display an Image

567

Listing 31.17 Writing SearchTask (LocatrFragment.java)

private void findImage() {
 ...
 LocationServices.FusedLocationApi
 .requestLocationUpdates(mClient, request, new LocationListener() {
 @Override
 public void onLocationChanged(Location location) {
 Log.i(TAG, "Got a fix: " + location);
 new SearchTask().execute(location);
 }
 });
}

private class SearchTask extends AsyncTask<Location,Void,Void> {
 private GalleryItem mGalleryItem;

 @Override
 protected Void doInBackground(Location... params) {
 FlickrFetchr fetchr = new FlickrFetchr();
 List<GalleryItem> items = fetchr.searchPhotos(params[0]);

 if (items.size() == 0) {
 return null;
 }

 mGalleryItem = items.get(0);

 return null;
 }
}

Saving out the GalleryItem here accomplishes nothing for now. But it will save you a bit of typing in
the next chapter.

Next, download that GalleryItem’s associated image data and decode it. Then display it on
mImageView inside onPostExecute(Void).

Chapter 31 Locations and Play Services

568

Listing 31.18 Downloading and displaying image (LocatrFragment.java)
private class SearchTask extends AsyncTask<Location,Void,Void> {
 private GalleryItem mGalleryItem;
 private Bitmap mBitmap;

 @Override
 protected Void doInBackground(Location... params) {
 ...

 mGalleryItem = items.get(0);

 try {
 byte[] bytes = fetchr.getUrlBytes(mGalleryItem.getUrl());
 mBitmap = BitmapFactory.decodeByteArray(bytes, 0, bytes.length);
 } catch (IOException ioe) {
 Log.i(TAG, "Unable to download bitmap", ioe);
 }
 return null;
 }

 @Override
 protected void onPostExecute(Void result) {
 mImageView.setImageBitmap(mBitmap);
 }
}

With that, you should be able to find a nearby image on Flickr (Figure 31.9). Fire up Locatr and press
your location button.

Figure 31.9 The final product

Challenge: Progress

569

Challenge: Progress
This simple app could use some more feedback in its interface. There is no immediate indication when
you press the button that anything has happened.

For this challenge, modify Locatr so that it responds immediately to a press by displaying a progress
indicator. The ProgressDialog class can show a spinning progress indicator that will do the trick
nicely. You will also need to track when SearchTask is running so that you can clear away the progress
when that is appropriate.

571

32
Maps

In this chapter, you will go one step further with LocatrFragment. In addition to searching for a nearby
image, you will find its latitude and longitude and plot it on a map.

Importing Play Services Maps
Before you get started, you need to import the mapping library. This is another Play Services
library. Open your project structure and add the following dependency to your app module:
com.google.android.gms:play-services-maps:7.0.0. As in the previous chapter, note that the
actual version number will change over time. Use whatever the latest version number is for the plain
play-services dependency.

Mapping on Android
As enjoyable as it is to have data that tells you where your phone is, that data begs to be visualized.
Mapping was probably the first truly killer app for smartphones, which is why Android has had
mapping since day one.

Mapping is big, complicated, and involves an entire support system of servers to provide base map
data. Most of Android can stand alone as part of the Android Open Source Project. Maps, however,
cannot.

So while Android has always had maps, maps have also always been separate from the rest of
Android’s APIs. The current version of the Maps API, version 2, lives in Google Play Services along
with the Fused Location Provider. So in order to use it, the same requirements apply as you saw in the
section called “Google Play Services” in Chapter 31: you have to either have a device with the Play
Store installed or an emulator with the Google APIs.

If you are making something with maps and happen to flip to this chapter, make sure that you have
followed the steps from the previous chapter before you start:

1. Ensure your device supports Play Services.

2. Import the appropriate Play Services library.

3. Use GooglePlayServicesUtil at an appropriate entry point to ensure that an up-to-date Play
Store app is installed.

Chapter 32 Maps

572

Maps API Setup
Let’s move forward. In addition to the permissions configuration you did in the previous chapter, the
Maps API requires adding more items to your manifest.

The first part of that is simply to add a few additional permissions. The Maps API needs to be able to
do the following:

• download map data from the Internet (android.permission.INTERNET)

• query the state of the network (android.permission.ACCESS_NETWORK_STATE)

• write temporary map data to external storage (android.permission.WRITE_EXTERNAL_STORAGE)

The INTERNET permission was added in the previous chapter, so that is already taken care of. Add the
other two permissions to your manifest.

Listing 32.1 Adding more permissions (AndroidManifest.xml)
<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.bignerdranch.android.locatr" >

 <uses-permission
 android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission
 android:name="android.permission.ACCESS_COARSE_LOCATION" />
 <uses-permission
 android:name="android.permission.INTERNET" />
 <uses-permission android:name="android.permission.ACCESS_NETWORK_STATE"/>
 <uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE"/>
 ...

Getting a Maps API Key
Using the Maps API also requires you to declare an API key in your manifest. To do that, you have to
go get your own API key. This API key is used to ensure that your app is authorized to use Google’s
mapping services.

To get an API key, you need to obtain a hash of your signing key and then use it to register for the
Google Maps v2 API on the Google Developer Console. In the next section, we will show you how to
use the Android tools to see what your signing key is. The Google Developer Console is beyond the
scope of this book, however, so we will be pointing you to some documentation on the Web after that.

Getting an API key requires you to identify yourself by your signing key. A signing key is a
mathematically inscrutable chunk of numbers that is yours and yours alone. Every app that is installed
to an Android device is signed with a unique key so that Android knows who made that app.

You have not needed to worry about this so far, because it has been taken care of for you. Behind the
scenes, Android Studio automatically created a default signing key for you, called a debug key. Every
time it builds your app it signs your APK with that debug key before deploying it.

Your signing key
Gradle makes finding this signing key straightforward, but it does require you to do a little bit of work
on the command line.

Getting a Maps API Key

573

Open up a command line terminal in your OS and change your directory to your project directory by
typing in a cd command. On OS X, your author would type in a command like this:

Listing 32.2 Changing directory to solution folder (terminal)
$ cd /Users/bphillips/src/android/Locatr

Then you use one of the gradle command line tools to get a signing report. For Linux or OS X, run the
following command:

Listing 32.3 Signing report on Linux/OS X (terminal)
$ cd /Users/bphillips/src/android/Locatr
$./gradlew signingReport

If you are on Windows, on the other hand, use the Windows directory structure and run gradlew.bat
instead:

Listing 32.4 Signing report on Windows (terminal)
> cd c:\users\bphillips\Documents\android\Locatr
> gradlew.bat signingReport

When you type in that command, you will get a printout of a report of what signing keys are used for
different kinds of builds. It should look something like this:

$./gradlew signingReport
:app:signingReport
Variant: debug
Config: debug
Store: /Users/bphillips/.android/debug.keystore
Alias: AndroidDebugKey
MD5: XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX
SHA1: XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX
Valid until: Friday, May 16, 2042

Variant: release
Config: none

Variant: debugTest
Config: debug
Store: /Users/bphillips/.android/debug.keystore
Alias: AndroidDebugKey
MD5: XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX
SHA1: XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX:XX
Valid until: Friday, May 16, 2042

BUILD SUCCESSFUL

Total time: 4.354 secs

Chapter 32 Maps

574

In your report, you will see hexadecimal numbers instead of XX for the MD5 and SHA1 values reported
above. The debug SHA1 value shaded above will be the key you want to provide in a moment to get
your API key.

Getting an API key
Once you have the SHA1 of your debug key, you are ready to get an API key. For instructions on how
to finish that process, visit Google’s documentation:

https://developers.google.com/maps/documentation/android/start

When you finish those instructions, you will be provided with an API key for your project that
corresponds to your debug signing key. Add it to your manifest.

Listing 32.5 Adding API key to manifest (AndroidManifest.xml)

<application
 android:allowBackup="true"
 android:icon="@mipmap/ic_launcher"
 android:label="@string/app_name"
 android:theme="@style/AppTheme" >
 <meta-data
 android:name="com.google.android.maps.v2.API_KEY"
 android:value="XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX"/>
 ...
</application>

With that, you are all ready to go.

Setting Up Your Map
Now that you have the Maps API set up, you need to create a map. Maps are displayed, appropriately
enough, in a MapView. MapView is like other views, mostly, except in one way: for it to work correctly,
you have to forward all of your lifecycle events, like this:

@Override
public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);

 mMapView.onCreate(savedInstanceState);
}

This is a huge pain in the neck. It is far easier to let the SDK do that work for you instead by using a
MapFragment or, if you are using support library fragments, SupportMapFragment. The MapFragment
will create and host a MapView for you, including the proper lifecycle callback hookups.

Your first step is to wipe out your old user interface entirely and replace it with a SupportMapFragment.
This is not as painful as it might sound. All you need to do is switch to using a SupportMapFragment,
delete your onCreateView(…) method, and delete everything that uses your ImageView.

Setting Up Your Map

575

Listing 32.6 Switching to SupportMapFragment (LocatrFragment.java)

public class LocatrFragment extends SupportMapFragment Fragment{
 private static final String TAG = "LocatrFragment";

 private ImageView mImageView;
 private GoogleApiClient mClient;

 ...

 @Override
 public View onCreateView(LayoutInflater inflater, ViewGroup container,
 Bundle savedInstanceState) {
 View v = inflater.inflate(R.layout.fragment_locatr, container, false);

 mImageView = (ImageView) v.findViewById(R.id.image);

 return v;
 }

 ...

 private class SearchTask extends AsyncTask<Location,Void,Void> {
 ...

 @Override
 protected void onPostExecute(Void result) {
 mImageView.setImageBitmap(mBitmap);
 }
 }
}

SupportMapFragment has its own override of onCreateView(…), so you should be all set. Run Locatr
to see a map displayed (Figure 32.1).

Chapter 32 Maps

576

Figure 32.1 A plain old map

Getting More Location Data
To actually plot your image on this map, you need to know where it is. Add an additional “extra”
parameter to your Flickr API query to fetch a lat-lon pair back for your GalleryItem.

Listing 32.7 Adding lat-lon to query (FlickrFetchr.java)

private static final String API_KEY = "XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX";
private static final String FETCH_RECENTS_METHOD = "flickr.photos.getRecent";
private static final String SEARCH_METHOD = "flickr.photos.search";
private static final Uri ENDPOINT = Uri.parse("https://api.flickr.com/services/rest/")
 .buildUpon()
 .appendQueryParameter("api_key", API_KEY)
 .appendQueryParameter("format", "json")
 .appendQueryParameter("nojsoncallback", "1")
 .appendQueryParameter("extras", "url_s,geo")
 .build();

Now add latitude and longitude to GalleryItem.

Getting More Location Data

577

Listing 32.8 Adding lat-lon properties (GalleryItem.java)

public class GalleryItem {
 private String mCaption;
 private String mId;
 private String mUrl;
 private double mLat;
 private double mLon;

 ...

 public void setId(String id) {
 mId = id;
 }

 public double getLat() {
 return mLat;
 }

 public void setLat(double lat) {
 mLat = lat;
 }

 public double getLon() {
 return mLon;
 }

 public void setLon(double lon) {
 mLon = lon;
 }

 @Override
 public String toString() {
 return mCaption;
 }
}

And then pull that data out of your Flickr JSON response.

Chapter 32 Maps

578

Listing 32.9 Pulling data from Flickr JSON response (FlickrFetchr.java)

private void parseItems(List<GalleryItem> items, JSONObject jsonBody)
 throws IOException, JSONException {

 JSONObject photosJsonObject = jsonBody.getJSONObject("photos");
 JSONArray photoJsonArray = photosJsonObject.getJSONArray("photo");

 for (int i = 0; i < photoJsonArray.length(); i++) {
 JSONObject photoJsonObject = photoJsonArray.getJSONObject(i);

 GalleryItem item = new GalleryItem();
 item.setId(photoJsonObject.getString("id"));
 item.setCaption(photoJsonObject.getString("title"));

 if (!photoJsonObject.has("url_s")) {
 continue;
 }

 item.setUrl(photoJsonObject.getString("url_s"));
 item.setLat(photoJsonObject.getDouble("latitude"));
 item.setLon(photoJsonObject.getDouble("longitude"));

 items.add(item);
 }
}

Now that you are getting your location data, add some fields to your main fragment to store the current
state of your search. Add one field to stash the Bitmap you will display, one for the GalleryItem it is
associated with, and one for your current Location.

Listing 32.10 Adding map data (LocatrFragment.java)

public class LocatrFragment extends SupportMapFragment {
 private static final String TAG = "LocatrFragment";

 private GoogleApiClient mClient;
 private Bitmap mMapImage;
 private GalleryItem mMapItem;
 private Location mCurrentLocation;

 ...

Next, save those bits of information out from within SearchTask.

Working with Your Map

579

Listing 32.11 Saving out query results (LocatrFragment.java)
private class SearchTask extends AsyncTask<Location,Void,Void> {
 private Bitmap mBitmap;
 private GalleryItem mGalleryItem;
 private Location mLocation;

 @Override
 protected Void doInBackground(Location... params) {
 mLocation = params[0];
 FlickrFetchr fetchr = new FlickrFetchr();
 ...
 }

 @Override
 protected void onPostExecute(Void result) {
 mMapImage = mBitmap;
 mMapItem = mGalleryItem;
 mCurrentLocation = mLocation;
 }
}

With that, you have the data you need. Next up: making your map show it.

Working with Your Map
Your SupportMapFragment creates a MapView, which is, in turn, a host for the object that does the real
work: GoogleMap. So your first step is to acquire a reference to this master object. Do this by calling
getMapAsync(OnMapReadyCallback).

Listing 32.12 Getting a GoogleMap (LocatrFragment.java)
public class LocatrFragment extends SupportMapFragment {
 private static final String TAG = "LocatrFragment";

 private GoogleApiClient mClient;
 private GoogleMap mMap;
 private Bitmap mMapImage;
 private GalleryItem mMapItem;
 private Location mCurrentLocation;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setHasOptionsMenu(true);

 mClient = new GoogleApiClient.Builder(getActivity())
 ...
 .build();

 getMapAsync(new OnMapReadyCallback() {
 @Override
 public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;
 }
 });
 }

 ...

Chapter 32 Maps

580

SupportMapFragment.getMapAsync(…) does what it says on the tin: it gets a map object
asynchronously. If you call this from within your onCreate(Bundle), you will get a reference to a
GoogleMap once it is created and initialized.

Now that you have a GoogleMap, you can update the look of that map according to the current state of
LocatrFragment. The first thing you will want to do is zoom in on an area of interest. You will want a
margin around that area of interest. Add a dimension value for that margin.

Listing 32.13 Adding margin (res/values/dimens.xml)
<resources>
 <!-- Default screen margins, per the Android Design guidelines. -->
 <dimen name="activity_horizontal_margin">16dp</dimen>
 <dimen name="activity_vertical_margin">16dp</dimen>
 <dimen name="map_inset_margin">100dp</dimen>
</resources>

Then add an updateUI() implementation to perform the zoom.

Listing 32.14 Zooming in (LocatrFragment.java)
private void findImage() {
 ...
}

private void updateUI() {
 if (mMap == null || mMapImage == null) {
 return;
 }

 LatLng itemPoint = new LatLng(mMapItem.getLat(), mMapItem.getLon());
 LatLng myPoint = new LatLng(
 mCurrentLocation.getLatitude(), mCurrentLocation.getLongitude());

 LatLngBounds bounds = new LatLngBounds.Builder()
 .include(itemPoint)
 .include(myPoint)
 .build();

 int margin = getResources().getDimensionPixelSize(R.dimen.map_inset_margin);
 CameraUpdate update = CameraUpdateFactory.newLatLngBounds(bounds, margin);
 mMap.animateCamera(update);
}

private class SearchTask extends AsyncTask<Location,Void,Void> {
 ...

Here is what you just did. To move your GoogleMap around, you built a CameraUpdate.
CameraUpdateFactory has a variety of static methods to build different kinds of CameraUpdate objects
that adjust the position, zoom level, and other properties around what your map is displaying.

Here, you created an update that points the camera at a specific LatLngBounds. You can think of a
LatLngBounds as a rectangle around a set of points. You can make one explicitly by saying what the
southwest and northeast corners of it should be.

Working with Your Map

581

More often, it is easier to provide a list of points that you would like this rectangle to encompass.
LatLngBounds.Builder makes it easy to do this: simply create a LatLngBounds.Builder and call
.include(LatLng) for each point your LatLngBounds should encompass (represented by LatLng
objects). When you are done, call build(), and you get an appropriately configured LatLngBounds.

With that done, you can update your map in two ways: with moveCamera(CameraUpdate) or
animateCamera(CameraUpdate). Animating is more fun, so naturally that is what you used above.

Next, hook up your updateUI() method in two places: when the map is first received, and when your
search is finished.

Listing 32.15 Hooking up updateUI() (LocatrFragment.java)

@Override
public void onCreate(Bundle savedInstanceState) {
 ...

 getMapAsync(new OnMapReadyCallback() {
 @Override
 public void onMapReady(GoogleMap googleMap) {
 mMap = googleMap;
 updateUI();
 }
 });
}

...

private class SearchTask extends AsyncTask<Location,Void,Void> {
 ...

 @Override
 protected void onPostExecute(Void result) {
 mMapImage = mBitmap;
 mMapItem = mGalleryItem;
 mCurrentLocation = mLocation;

 updateUI();
 }
}

Run Locatr and press the search button. You should see your map zoom in on an area of interest that
includes your current location (Figure 32.2). (Emulator users will need to have MockWalker running to
get a location fix.)

Chapter 32 Maps

582

Figure 32.2 Zoomed map

Drawing on the map
Your map is nice, but a little vague. You know that you are in there somewhere, and you know that the
Flickr photo is in there somewhere. But where? Let’s add specificity with some markers.

Drawing on a map is not the same as drawing on a regular view. It is a little easier, in fact. Instead of
drawing pixels to the screen, you draw features to a geographic area. And by “drawing,” we mean,
“build little objects and add them to your GoogleMap so that it can draw them for you.”

Actually, that is not quite right, either. It is, in fact, the GoogleMap object that makes these objects, not
you. Instead, you create objects that describe what you want the GoogleMap to create, called options
objects.

Add two markers to your map by creating MarkerOptions objects and then calling
mMap.addMarker(MarkerOptions).

Drawing on the map

583

Listing 32.16 Adding markers (LocatrFragment.java)

private void updateUI() {
 ...

 LatLng itemPoint = new LatLng(mMapItem.getLat(), mMapItem.getLon());
 LatLng myPoint = new LatLng(
 mCurrentLocation.getLatitude(), mCurrentLocation.getLongitude());

 BitmapDescriptor itemBitmap = BitmapDescriptorFactory.fromBitmap(mMapImage);
 MarkerOptions itemMarker = new MarkerOptions()
 .position(itemPoint)
 .icon(itemBitmap);
 MarkerOptions myMarker = new MarkerOptions()
 .position(myPoint);

 mMap.clear();
 mMap.addMarker(itemMarker);
 mMap.addMarker(myMarker);

 LatLngBounds bounds = new LatLngBounds.Builder()
 ...
}

When you call addMarker(MarkerOptions), the GoogleMap builds a Marker instance and adds it to the
map. If you need to remove or modify the marker in the future, you can hold on to this instance. In this
case, you will be clearing the map every time you update it. As a result, you do not need to hold on to
the Markers.

Run Locatr, press the search button, and you should see your two markers show up (Figure 32.3).

Chapter 32 Maps

584

Figure 32.3 Geographic looming

And with that, your little geographic image finder is complete. You figured out how to use two Play
Services APIs, you tracked your phone’s location, you registered for one of Google’s many web
services APIs, and you plotted everything on a map. Perhaps a nap is in order now that your app’s map
is in order.

For the More Curious: Teams and API Keys
When you have more than one person working an app with an API key, debug builds start to be a pain.
Your signing credentials are stored in a keystore file, which is unique to you. On a team, everyone will
have their own keystore file, and their own credentials. In order for anyone new to work on the app,
you have to ask them for their SHA1, and then go and update your API key’s credentials.

Or, at least, that is one option for how to manage the API key: manage all of the signing hashes in your
project. If you want a lot of explicit control over who is doing what, that may be the right solution.

But there is another option: create a debug keystore specifically for the project. Start by creating a
brand new debug keystore with Java’s keytool program.

Listing 32.17 Creating a new keystore (terminal)
$ keytool -genkey -v -keystore debug.keystore -alias androiddebugkey \
-storepass android -keypass android -keyalg RSA -validity 14600

You will be asked a series of questions by keytool. Answer them honestly, as if no one were watching.
(Since this is a debug key, it is OK to leave the default value on everything but the name if you like.)

For the More Curious: Teams and API Keys

585

$ keytool -genkey -v -keystore debug.keystore -alias androiddebugkey \
-storepass android -keypass android -keyalg RSA -validity 14600
What is your first and last name?
 [Unknown]: Bill Phillips
...

Once you have that debug.keystore file, move it into your app module’s folder. Then open up your
project structure, select your app module, and navigate to the Signing tab. Click the + button to add
a new signing config. Type in debug in the Name field and debug.keystore for your newly created
keystore (Figure 32.4).

Figure 32.4 Configuring debug signing key

If you configure your API key to use this new keystore, then anyone else can use the same API key by
using the same keystore. Much easier.

Note that if you do this, you need to exercise some caution about how you distribute this new
debug.keystore. If you only share it in a private code repo, you should be fine. But do not publish this
keystore in a public repo where anybody can get to it, because it will allow them to use your API key.

587

33
Material Design

The biggest change in Android 5.0 Lollipop was the introduction of a new design style: material
design. This new visual language made a big splash and was accompanied by a wonderfully exhaustive
style guide.

Of course, as developers we are usually only peripherally concerned with questions of design. Our
job is to get it done, no matter what “it” is. However, material design introduces some new interface
concepts in addition to design sensibilities. If you familiarize yourself with them, you will find it much
easier to implement these new designs.

This final chapter is a little different from previous chapters. You can think of it as an enormous For
The More Curious section. There is no example app to work through, and most of this information is
not required reading.

For designers, material design emphasizes three big ideas:

• Material is the metaphor: The pieces of the app should act like physical, material objects.

• Bold, graphic, and intentional: App designs should jump off the page like they would in a well-
designed magazine or book.

• Motion provides meaning: The app should animate in response to actions taken by the user.

The only one of these that our book has nothing to say about is bold, graphic, and intentional. This is
a designer’s responsibility. If you are designing your own app, check out the material design guidelines
to see what they mean by that.

For the material is the metaphor part, designers need your help to build out the material surfaces. You
will need to know how to position them in three dimensions using z-axis properties, and you will need
to know how to use two new material widgets: floating action bars and snackbars.

Finally, to live up to the directive that motion provides meaning, you can learn a new set of animation
tools: state list animators, animated state list drawables (yes, you read that right – they are different
from state list animators), circular reveals, and shared element transitions. These can be used to add the
visual interest that bold designers crave.

Material Surfaces
As a developer, the single most important idea you should be familiar with in material design is
the idea of material surfaces. Designers think of these as 1dp thick bits of cardstock. These bits of
cardstock act like magically changeable bits of paper and ink: they can grow, they can show animated
pictures, they can show changing text (Figure 33.1).

Chapter 33 Material Design

588

Figure 33.1 An interface with two material surfaces

However, as magical as they may be they still behave like real pieces of paper. For example, one
sheet of paper cannot move right through another. The same logic applies when you animate material
surfaces: they cannot animate through one another.

Instead, surfaces exist and maneuver around one another in a three-dimensional space. They can move
up toward your finger, or down and away (Figure 33.2).

Figure 33.2 A material design in 3-D space

To animate one surface across another, you move it up and across the other surface (Figure 33.3).

Elevation and Z values

589

Figure 33.3 Animating one surface over another

Elevation and Z values
The most apparent way users will see the depth in your interface is by seeing how elements of your app
cast shadows on one another. Some might think that a perfect world would be one where the designers
worry about drawing those shadows and we developers go eat bagels. (Opinions differ on what a
perfect world looks like.)

But doing that with a variety of surfaces in play – while animating, no less – is not possible for
designers to do by themselves. Instead, you let Android take care of drawing the shadows by giving
each of your Views an elevation.

Lollipop introduced a z-axis to the layout system, allowing you to specify where a view lives in 3-D
space. Elevation is like the coordinates assigned to your view in layout: you can animate your view
away from this position, but this is where it naturally lives (Figure 33.4).

Figure 33.4 Elevation on the Z plane

To set the elevation value, you can either call the View.setElevation(float) method or set the value
in your layout file.

Listing 33.1 Setting elevation on a view in a layout file
<?xml version="1.0" encoding="utf-8"?>
<Button xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:id="@+id/button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:elevation="2dp"/>

Chapter 33 Material Design

590

Because this is intended to be your baseline Z value, using the XML attribute is preferred. It is also
easier to use than setElevation(float), because the elevation attribute is silently ignored on older
versions of Android, so you do not need to worry about compatibility.

To change a View’s elevation, you use the translationZ and Z properties. These work exactly
like translationX, translationY, X, and Y, which you saw in Chapter 30. Z’s value is always
elevation plus translationZ. If you assign a value to Z, it will do the math to assign the right value
to translationZ (Figure 33.5).

Figure 33.5 Z and translationZ

State list animators
Material applications are often designed with many animated user interactions. Press a button on
Lollipop to see one example: the button will animate up on the z-axis to meet your finger. When you
release your finger, it will animate back down.

To make implementing these animations easier, Lollipop introduced state list animators. State list
animators are the animation counterpart to the state list drawable: instead of switching out one
drawable for another, they animate the view into a particular state. To implement an animation that
raises the button up when you press it, you can define a state list animator that looks like this in res/
animator:

Listing 33.2 An example state list animator
<?xml version="1.0" encoding="utf-8"?>
<selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:state_pressed="true">
 <objectAnimator android:propertyName="translationZ"
 android:duration="100"
 android:valueTo="6dp"
 android:valueType="floatType"
 />
 </item>
 <item android:state_pressed="false">
 <objectAnimator android:propertyName="translationZ"
 android:duration="100"
 android:valueTo="0dp"
 android:valueType="floatType"
 />
 </item>
</selector>

This is great if you need to use a property animation. If you want to perform a framed animation, you
need to use another tool: the animated state list drawable.

Animation Tools

591

The name “animated state list drawable” is a little confusing. It sounds similar to “state list animator,”
but the purpose is totally different. Animated state list drawables allow you to define images for each
state, like a normal state list drawable, but they also allow you to define frame animation transitions
between those states.

Back in Chapter 21, you defined a state list drawable for BeatBox’s sound buttons. If a sadistic
designer (like our own Kar Loong Wong) wanted to have a multiframe animation each time the button
was pressed, you could modify your XML to look like Listing 33.3. This version would need to live
inside res/drawable-21 because this feature is not supported prior to Lollipop.

Listing 33.3 An animated state list drawable

<?xml version="1.0" encoding="utf-8"?>
<animated-selector xmlns:android="http://schemas.android.com/apk/res/android">
 <item android:id="@+id/pressed"
 android:drawable="@drawable/button_beat_box_pressed"
 android:state_pressed="true"/>
 <item android:id="@+id/released"
 android:drawable="@drawable/button_beat_box_normal" />

 <transition
 android:fromId="@id/released"
 android:toId="@id/pressed">
 <animation-list>
 <item android:duration="10" android:drawable="@drawable/button_frame_1" />
 <item android:duration="10" android:drawable="@drawable/button_frame_2" />
 <item android:duration="10" android:drawable="@drawable/button_frame_3" />
 ...
 </animation-list>
 </transition>
</animated-selector>

Here, each item in the selector gets an ID. You can then define a transition between different IDs to
play a multiframe animation. If you want to provide an animation when you release the button, too,
that requires an additional transition tag.

Animation Tools
Material design has many nifty new animations. Some of them can be achieved quickly. Others require
more work, but Android provides some tools to help you out.

Circular reveal
The circular reveal animation is used in material design to look like an ink flood-fill. A view or piece
of content is progressively revealed outward from a point of interaction, usually a point pressed by the
user. Figure 33.6 gives you an idea of what a circular reveal can bring to the party.

Chapter 33 Material Design

592

Figure 33.6 Circular reveal from pressing an item in BeatBox

You may remember using a simple version of this way back in Chapter 6, where you used it to hide a
button. Here we will talk about another way to use circular reveal that is slightly more involved.

To create a circular reveal animation, you call the createCircularReveal(…) method on
ViewAnimationUtils. This method takes in quite a few parameters:

static Animator createCircularReveal(View view, int centerX, int centerY,
 float startRadius, float endRadius)

The View passed in is the View you would like to reveal. In Figure 33.6, this view is a solid red view
that is the same width and height of the BeatBoxFragment. If you animate from a startRadius of 0 to
a large endRadius, this view will start out being completely transparent, and then slowly be revealed
as the circle expands. The circle’s origin (in terms of the View’s coordinates) will be centerX and
centerY. This method returns an Animator, which works exactly like the Animator you used back in
Chapter 30.

The material design guidelines say that these animations should originate from the point where the user
touched the screen. So your first step is to find the screen coordinates of the view that the user touched,
as in Listing 33.4.

Shared element transitions

593

Listing 33.4 Finding screen coordinates in a click listener

@Override
public void onClick(View clickSource) {
 int[] clickCoords = new int[2];

 // Find the location of clickSource on the screen
 clickSource.getLocationOnScreen(clickCoords);

 // Tweak that location so that it points at the center of the view,
 // not the corner
 clickCoords[0] += clickSource.getWidth() / 2;
 clickCoords[1] += clickSource.getHeight() / 2;

 performRevealAnimation(mViewToReveal, clickCoords[0], clickCoords[1]);
}

Then you can perform your reveal animation (Listing 33.5).

Listing 33.5 Making and executing a reveal animation

private void performRevealAnimation(View view, int screenCenterX, int screenCenterY) {
 // Find the center relative to the view that will be animated
 int[] animatingViewCoords = new int[2];
 view.getLocationOnScreen(animatingViewCoords);
 int centerX = screenCenterX - animatingViewCoords[0];
 int centerY = screenCenterY - animatingViewCoords[1];

 // Find the maximum radius
 Point size = new Point();
 getActivity().getWindowManager().getDefaultDisplay().getSize(size);
 int maxRadius = size.y;

 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP) {
 ViewAnimationUtils.createCircularReveal(view, centerX, centerY, 0, maxRadius)
 .start();
 }
}

Important note: the View must already be in the layout for this method to work.

Shared element transitions
Another kind of animation that is new to material design is the shared element transition, or hero
transition. This transition is meant for a specific situation: where two screens display some of the same
things.

Think back to your work on CriminalIntent. In that application, you had a thumbnail view of a picture
you took in CrimeDetailFragment. In one of the challenges, you were asked to construct another view
that zoomed in to a full-size visual of that picture. Your solution might have looked something like
Figure 33.7.

Chapter 33 Material Design

594

Figure 33.7 A zoomed-in picture view

This is a common interface pattern: you press one element and the next view provides more detail for
that element.

A shared element transition is an animation for any situation where you are transitioning between two
screens that are displaying some of the same elements. In this case, both the big image on the right
and the small one on the left are displaying the same picture. The picture, in other words, is a shared
element.

In Lollipop, Android provides techniques for accomplishing a transition between activities or between
fragments. Here, we will show you how it works with activities. The middle of the animation looks like
Figure 33.8.

Shared element transitions

595

Figure 33.8 Shared element transition

For activities, the basic implementation is a three-step process:

1. Turn on activity transitions.

2. Set transition name values for each shared element view.

3. Start your next activity with an ActivityOptions that will trigger the transition.

First, you have to turn on activity transitions. If your activity uses the AppCompat theme used
elsewhere in the book, then you can skip this step. (AppCompat inherits from the Material theme,
which turns on activity transitions for you.)

In our example, we gave our activity a transparent background by using @android:style/
Theme.Translucent.NoTitleBar. This theme does not inherit from the Material theme, so it does not
have activity transitions turned on. They have to be turned on manually, which can happen in either of
two ways. One option is to add a line of code to the activity, as in Listing 33.6.

Listing 33.6 Turning on activity transitions in code
@Override
public void onCreate(Bundle savedInstanceState) {
 getWindow().requestFeature(Window.FEATURE_ACTIVITY_TRANSITIONS);
 super.onCreate(savedInstanceState);

 ...
}

Chapter 33 Material Design

596

The other way is to tweak the style the activity uses and set the android:windowActivityTransitions
attribute to true.

Listing 33.7 Turning on activity transitions in a style
<resources>
 <style name="TransparentTheme"
 parent="@android:style/Theme.Translucent.NoTitleBar">
 <item name="android:windowActivityTransitions">true</item>
 </style>

</resources>

The next step in the shared element transition is to tag each shared element view with a transition
name. This is done in a property on View introduced in API 21: transitionName. You can set it in
either XML or in code; depending on the circumstance, one or the other might be appropriate. In our
case, we set the transition name for the zoomed-in image by setting android:transitionName to
image in our layout XML, as in Figure 33.9.

Figure 33.9 Zoomed-in image layout

Then we defined a static method startWithTransition(…) (Listing 33.8) to set the same transition
name on a view to animate from.

Listing 33.8 Start with transition method
public static void startWithTransition(Activity activity, Intent intent,
 View sourceView) {
 ViewCompat.setTransitionName(sourceView, "image");
 ActivityOptionsCompat options = ActivityOptionsCompat
 .makeSceneTransitionAnimation(activity, sourceView, "image");

 activity.startActivity(intent, options.toBundle());
}

View Components

597

ViewCompat.setTransitionName(View, String) is there to help out on older versions of Android,
where View will not have a setTransitionName(String) implementation.

In Listing 33.8, you can see the final step, too: making an ActivityOptions. The ActivityOptions
tells the OS what the shared elements are and what transitionName value to use.

There is a lot more to know about transitions and shared element transitions. They can also be used for
fragment transitions, for example. For more information, check out Google’s documentation for the
transitions framework: https://developer.android.com/training/transitions/overview.html.

View Components
Lollipop’s new material design guidelines specify a few new kinds of view components. The Android
team provides implementations of many of these components. Let’s take a look at a few of the views
you are likely to run into.

Cards
The first new widget is a frame for other widgets: cards (Figure 33.10).

Figure 33.10 Cards

A card is a container for other kinds of content. It is elevated slightly, with a shadow behind it, and its
corners are slightly rounded.

Chapter 33 Material Design

598

This is not a design book, so we cannot provide advice on when and where to use cards. (See Google’s
material design documentation on the web if you are curious: http://www.google.com/design/spec.)
We can tell you how to make them, though: by using CardView.

CardView is a class provided in its own v7 support library, much like RecyclerView. You can include it
in your project by adding a dependency on com.android.support:cardview-v7 to your module.

Once you do that, you can use CardView like any other ViewGroup in a layout. It is a FrameLayout
subclass, so you can use any of FrameLayout’s layout params for CardView’s children.

Listing 33.9 Using CardView in a layout

<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 android:layout_width="match_parent"
 android:layout_height="match_parent"
 android:orientation="vertical"
 tools:context=".MainActivity">
 <android.support.v7.widget.CardView
 android:id="@+id/item"
 android:layout_width="match_parent"
 android:layout_height="200dp"
 android:layout_margin="16dp"
 >
 ...
 </android.support.v7.widget.CardView>

</LinearLayout>

Because CardView is a support library class, it gives you some nice compatibility features on older
devices. Unlike other widgets, it will always project a shadow. (On older versions, it will simply draw
its own – not a perfect shadow, but close enough.) See CardView’s documentation for other minor
visual differences, if you are interested.

Floating action buttons
Another component you will often see is the floating action button, or FAB. You can see one in
Figure 33.11.

Floating action buttons

599

Figure 33.11 A floating action button

An implementation of the floating action button is available in Google’s design support
library. You can include this library in your project with this dependency on your module:
com.android.support:design:22.2.0.

Floating action buttons are little more than a solid-color circle with a custom circular shadow, provided
by an OutlineProvider. The FloatingActionButton class, a subclass of ImageView, takes care of the
circle and shadow for you. Simply place a FloatingActionButton in your layout file and set its src
attribute to the image that you want to display in your button.

While you could place your floating action button in a FrameLayout, the design support library also
includes the clever CoordinatorLayout. This layout is a subclass of FrameLayout that changes your
floating action button’s position based on the movement of other components. Now, when you display
a Snackbar, your FAB will move up so that the Snackbar does not cover it. This will look like Listing
33.10.

Chapter 33 Material Design

600

Listing 33.10 Laying out a floating action button
<android.support.design.widget.CoordinatorLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 xmlns:tools="http://schemas.android.com/tools"
 xmlns:app="http://schemas.android.com/apk/res-auto"
 android:layout_width="match_parent"
 android:layout_height="match_parent">
 [... main content here ...]
 <android.support.design.widget.FloatingActionButton
 android:id="@+id/floating_action_button"
 android:layout_width="wrap_content"
 android:layout_height="wrap_content"
 android:layout_gravity="bottom|right"
 android:layout_margin="16dp"
 android:src="@drawable/play"/>
</android.support.design.widget.CoordinatorLayout>

This code will place the button over the rest of the content in the bottom right, without interfering with
any of it.

Snackbars
Snackbars are a bit more involved than floating action buttons. They are little interaction components
that appear at the bottom of the screen (Figure 33.12).

Figure 33.12 A snackbar

Snackbars animate up from the bottom of the screen. After a certain period of time, or after another
interaction on the screen, they automatically animate back down. Snackbars are similar in purpose to

More on Material Design

601

Toasts, but unlike Toasts they are a part of your app’s own interface. A Toast appears above your app
and will stick around even if you navigate away. Also, snackbars let you provide a button so that the
user can take immediate action.

Like floating action buttons, Android provides an implementation of snackbars in the design support
library.

Snackbars are constructed and displayed in a similar way as Toasts (Listing 33.11).

Listing 33.11 Having a snack(bar)
Snackbar.make(container, R.string.munch, Snackbar.LENGTH_SHORT).show();

When constructing a Snackbar, pass in the view where the snackbar will be displayed, the text to
display, and the length of time that the snackbar should be visible for. Finally, call show() to display
the snackbar.

Snackbars can optionally provide an action on the right side. This is handy if the user performs a
destructive action, like deleting a crime, and you want to provide a way for the user to undo that action.

More on Material Design
In this chapter, we presented what amounts to a big grab bag of tools. Those tools are hardly any fun
if you let them sit and gather dust. So keep an eye out for ways to spiff up your application with some
depth or new animations.

One great place to look for inspiration is the material design specification itself, which is full of great
ideas: http://www.google.com/design/spec/material-design/introduction.html. You can also
look in Google Play to see what other apps are doing, and ask yourself: How would I do that in my
own app? You might end up with a niftier program than what you initially imagined.

603

34
Afterword

Congratulations! You are at the end of this guide. Not everyone has the discipline to do what you have
done, to learn what you have learned. Take a quick moment and give yourself a pat on the back.

This hard work has paid off: you are now an Android developer.

The Final Challenge
We have one last challenge for you: become a good Android developer. Good developers are each good
in their own way, so you must find your own path from here on out.

Where might you start, then? Here are some places we recommend:

Write code. Now. You will quickly forget what you have learned here if you do not apply it. Contribute
to a project, or write a simple application of your own. Whatever you do, waste no time: write code.

Learn. You have learned a little bit about a lot of things in this book. Did any of them spark
your imagination? Write some code to play around with your favorite thing. Find and read more
documentation about it, or an entire book if there is one. Also, check out the Android Developers
YouTube channel and listen to the Android Developers Backstage podcast for Android updates from
Google.

Meet people. Local meetups are a good place to meet like-minded developers. Lots of top-notch
Android developers are active on Twitter and Google Plus. Attend Android conferences to meet other
Android developers (and maybe even us!).

Explore the open source community. Android development is exploding on http://www.github.com.
When you find a cool library, see what other projects its contributors are committing to. Share
your own code, too – you never know who will find it useful or interesting. We find the Android
Weekly mailing list to be a great way to see what is happening in the Android community (http://
androidweekly.net/).

Shameless Plugs
You can find all of us on Twitter. Bill is @billjings, Chris is @cstew, Brian is @lyricsboy, and Kristin
is @kristinmars.

If you enjoyed this book, check out other Big Nerd Ranch Guides at http://www.bignerdranch.com/
books. We also have a broad selection of week-long courses for developers, where we make it
easy to learn this amount of stuff in only a week of time. And of course, if you just need someone

Chapter 34 Afterword

604

to write great code, we do contract programming, too. For more, go to our website at http://
www.bignerdranch.com.

Thank You
Without readers like you, our work would not exist. Thank you for buying and reading our book.

605

Index
Symbols
9-patch images, 376
@+id, 20, 187
@Override, 60

A
aapt (Android Asset Packing tool), 30
action bar, tool bar vs., 254
action view, 455
ACTION_CAPTURE_IMAGE, 299
activities

(see also Activity, fragments)
about, 2
abstract fragment-hosting activity, 172
adding to project, 87-109
as controller, 37
back stack of, 107, 108, 393
base, 393
child, 88, 101
creating new, 89
fragment transactions and, 314
handling configuration changes in, 522
hosting fragments, 125, 133-136
label (display name), 388
launcher, 106
lifecycle and fragments, 146
lifecycle diagram, 70
lifecycle of, 57, 63, 64, 70, 71
managing fragments, 314-323
overriding methods, 58
passing data between, 97-106
record, 70
rotation and, 63-68
starting from fragment, 193
starting in current task, 393
starting in new task, 396
states of, 57, 70
tasks and, 393
UI flexibility and, 123

Activity
as Context subclass, 24
FragmentActivity, 128
getIntent(), 100, 196
lifecycle methods, 57-63

onActivityResult(…), 103
onCreate(…), 17, 57, 59
onDestroy(), 57
onOptionsItemSelected(MenuItem), 17
onPause(), 57
onResume(), 57, 200
onSaveInstanceState(…), 68-70, 349, 351
onStart(), 57
onStop(), 57
setContentView(…), 17
setResult(…), 103
SingleFragmentActivity, 172, 173, 175, 309
startActivity(…), 95
startActivityForResult(…), 101

activity record, 70
ActivityInfo, 391
ActivityManager

back stack, 107, 108
starting activities, 95, 97, 103

ActivityNotFoundException, 97
Adapter, 179
adapters

defined, 179
implementing, 182

adb (Android Debug Bridge), 46
add(…) (FragmentTransaction), 143
addFlags(…) (Intent), 396
AlarmManager, 473, 477
AlertDialog, 215, 217, 219, 221
AlertDialog.Builder, 219

constructor, 219
create(), 219
setPositiveButton(…), 219
setTitle(…), 219
setView(…), 221

alias resources, 311-313
ancestral navigation, 248
Android Asset Packing tool, 30
Android Asset Studio, 241
Android Debug Bridge (adb), 46
Android developer documentation, 117, 118
Android firmware versions, 111
Android Lint

as static analyzer, 84
compatibility and, 115-117
running, 84

Android SDK Manager, xxi
Android Studio

Index

606

(see also debugging, projects)
adding dependencies in, 129-132
AppCompat theme, 358
build process, 29
code completion, 25
code style preferences, 34
creating new classes, 34
creating new projects, 2-7
debugger, 81

(see also debugging)
editor, 8
Emulator Control, 554
extracting a method with, 230
generating getter and setter methods, 34-36
graphical layout tool, 158
installing, xxi
preferences, 34
project tool window, 8
project window, 8
res/values directory, 15
src directory, 16
Tool Windows, 8
views

Devices view, 47
Lint Warnings view, 84
Variables view, 81

Android versions (see SDK versions)
Android Virtual Device Manager, 26
Android Wear, 483
Android XML namespace, 13
android.text.format.DateFormat, 166
android.util.Log (see Log)
android.view.animation, 550
android:background, 354
android:configChanges, 522
android:contentDescription, 56
android:documentLaunchMode, 403
android:drawablePadding, 52
android:drawableRight, 52
android:icon, 241
android:layout_gravity, 66
android:layout_height, 14
android:layout_weight, 164
android:layout_width, 14
android:minSdkVersion, 114
android:orientation, 14
android:padding, 157
android:protectionLevel, 502

android:targetSdkVersion, 113, 114
AndroidManifest.xml (see manifest)
animated state list drawables, 590
animation (see property animation)
animation tools, 591-597
AnimatorListener, 549
AnimatorSet, 549
anonymous inner classes, xix, 22, 23
API keys

maps, 572
when working with teams, 584

API levels (see SDK versions)
.apk file, 29, 381
app icon, 249
app:showAsAction, 239
AppCompat library, 216

themes in, 358
toolbars with, 235-238

AppCompatActivity, 17
appendQueryParameter(…) (Uri.Builder), 417
application context, 272
AppTheme, 357
arguments bundle, 197-199
ArrayList, 170
AssetManager, 332, 337
assets, 325-337

accessing, 336
importing, 329-331
managing, 331-333
presenting to user, 333-335
vs. resources, 326

AsyncTask
cancel(…), 426
doInBackground(…), 411
for running on background thread, 411
vs. HandlerThread, 447
onPostExecute(…), 425
onProgressUpdate(…), 427
publishProgress(…), 427

AsyncTaskLoader, 427
AttributeSet, 530
auto-complete, 25
AVDs (Android Virtual Devices)

creating, 26
for tablets, 307

Index

607

B
Back button, 61, 393, 524
back stack, 107
background threads

dedicated, 432
updating UI from, 425
using AsyncTask for, 411, 415

beginTransaction() (FragmentTransaction),
143
Bitmap, 301
BitmapFactory, 301
bitmaps, scaling and displaying, 301-304
breakpoints

(see also debugging)
exception, 82, 83
setting, 79-82

broadcast intents
defined, 491
ordered, 502-507
permissions and, 500, 501
registered in code, 498, 499
regular intents vs., 491
sending, 497

broadcast receivers
defined, 491
dynamic, 498, 499
implementing, 492-494
intent filters and, 492
long-running tasks and, 507
permissions and, 500-502
standalone, 492
uses for, 495, 496

build errors, 85
(see also debugging)

build process, 29
build target, 114
Build.VERSION.SDK_INT, 116
Bundle, 344

for fragment arguments, 197-199
in onCreate(…), 69
in onSaveInstanceState(…), 68
putCharSequence(…);, 198
putInt(…);, 198
putSerializable(…), 198

Button
adding ID, 20
example, 10

vs. ImageButton, 55
inheritance, 55

buttons, 55
9-patch images for, 376
adding icons to, 52
drawables for, 369
floating action, 598, 600
modifying attributes, 365-367

buttonStyle, 365

C
caching, 447
Calendar, 226
Callbacks interface, 314-323
camera, 291-305

firing intent, 299
layouts for, 292-294
taking pictures with intents, 297-300

CameraUpdate, 580
cancel(…) (AlarmManager), 477
cancel(…) (AsyncTask), 426
Canvas, 536
cards (view component), 597
CheckBox, 151
choosers, creating, 282
circular reveal animation, 591-593
close(), 269
code completion, 25
codenames, version, 111
color

for animation, 546
themes and, 359

colorAccent, 360
colorBackground, 363
colorPrimary, 359
commands (IntentService), 468
compatibility

Android Lint and, 115-117
fragments and, 128-132
importance of, xix, 111, 112
issues, 112
minimum SDK version and, 114
with support library, 128-132
using conditional code for, 116
wrapping code for, 114-117

compile SDK version, 114
ComponentName, 392

Index

608

components, 96
concurrent documents, 401-403
configuration changes, 64, 68, 346
configuration qualifiers

defined, 66
for screen density, 49
for screen orientation, 66
for screen size, 313, 323

ConnectivityManager, 470
contacts

getting data from, 285
permissions for, 287

container views, 135, 143
ContentProvider, 285
ContentResolver, 285
ContentValues, 263
Context, 272

AssetManager from, 332
basic file and directory methods in, 294
explicit intents and, 96
external file and directory methods in, 295
for opening database file, 258
getSharedPreferences(…), 461
resource IDs and, 24

Context.getExternalFilesDir(String), 298
Context.MODE_WORLD_READABLE, 295
controller objects, 37
conventions

class naming, 7
extra naming, 99
package naming, 4
variable naming, 21, 34

create() (AlertDialog.Builder), 219
createChooser(…) (Intent), 282
Creative Commons, 331
Cursor, 267, 269
CursorWrapper, 267

D
/data/data directory, 257
database schema, 258
databases, SQLite, 257-272
Date, 226
DatePicker, 221
debugging

(see also Android Lint)
build errors, 85

crash, 76
crash on unconnected device, 77
database issues, 261
misbehaviors, 77
online help for, 86
R, 85
running app with debugger, 80
stopping debugger, 81
when working with teams, 584

DEFAULT (Intent), 397
delayed execution, 473
density-independent pixel, 156
dependencies, adding, 129-132
dependency injector, 192
detach(…) (FragmentTransaction), 211
Dev Tools, 73
developer documentation, 117, 118
devices

configuration changes and, 64
hardware, 26
virtual, 26, 307

Devices view, 47
Dialog, 215
DialogFragment, 217

onCreateDialog(…), 219
show(…), 220

dialogs, 215-224
diamond notation, 170
dip (density-independent pixel), 156
documentation, 117, 118
doInBackground(…) (AsyncTask), 411
dp (density-independent pixel), 156
draw() (View), 536
draw9patch tool, 379
drawables, 369

9-patch images, 376
for uniform buttons, 369
layer list, 374
referencing, 52
shape, 371
state list, 372

drawing
Canvas, 536
in onDraw(…), 536
Paint, 536

Index

609

E
EditText, 136
elevation, 589
emulator

(see also virtual devices)
for location testing, 553-556
rotating, 52
running on, 26
search queries on, 460
for tablets, 307

Emulator Control (Android Studio), 554
Environment.getExternalStorageDirectory(…),
295
errors

(see also debugging)
escape sequence (in string), 41
EventBus, 507
exception breakpoints, 82, 83
exceptions, 76, 78
explicit intents

creating, 96
creating at runtime, 392
purpose, 97

external storage
for photos, 294-297
permissions for, 298

extras
defined, 98
fragments retrieving from activity, 195
as key-value pairs, 98
naming, 99
putting, 98, 100
retrieving, 100
structure of, 98

F
File

getCacheDir(…), 295
getDir(…), 295
getExternalCacheDir(…), 296
getExternalFilesDir(…), 296
getFilesDir(…), 295

FileDescriptor, 336
FileInputStream, 295
fileList(…) (String), 295
FileOutputStream, 295
File[]

getExternalCacheDirs(…), 296
getExternalFilesDirs(…), 296
getExternalMediaDirs(…), 296

fill_parent, 14
Flickr API, 415
Flickr Geosearch, 563
Flickr, searching in, 449-454
floating action buttons, 598, 600
FloatingActionButton, 598, 600
fluent interface, 143
format string, 278
Fragment

for asset management, 327
getActivity(), 194, 195
getArguments(…), 199
getTargetFragment(), 227
getTargetRequestCode(), 227
from native libraries, 148
newInstance(…), 198
onActivityResult(…), 224
onCreate(Bundle), 139
onCreateOptionsMenu(…), 244
onCreateView(…), 139
onOptionsItemSelected(…), 247
onSaveInstanceState(…), 139, 349
setArguments(…), 198
setHasOptionsMenu(…), 244
setRetainInstance(…), 345
setTargetFragment(…), 226
SingleFragmentActivity, 328
startActivityForResult(…), 203
from support library, 128, 148

fragment arguments, 195, 197-199, 204
fragment transactions, 314, 316

(see also FragmentTransaction)
FragmentActivity (from support library), 128
FragmentManager

adding fragments to, 142-145
fragment lifecycle and, 145, 146
onResume(), 200
responsibilities, 142
role in rotation, 344, 346

FragmentPagerAdapter, 211
fragments

(see also fragment transactions,
FragmentManager)
about, 123
accessing extra in activity’s intent, 195

Index

610

vs. activities, 123
activity lifecycle and, 146
adding in code, 134
adding to FragmentManager, 142-146
application architecture with, 146
arguments of, 197-199
as composable units, 123, 314
Callbacks interface, 314-323
compatibility and, 128-132
container views for, 135, 309
creating, 136
creating from support library, 138
delegating functionality to activity, 314
hosting, 125, 133-136
implementing lifecycle methods, 139
inflating layouts for, 139
layout, 134
lifecycle diagram, 146
lifecycle methods, 146
lifecycle of, 133, 145, 146
maintaining independence of, 197, 314
passing data between (same activity), 224
passing data with fragment arguments, 225
reasons for, 122-124, 147
retaining, 345-351
rotation and, 346-348
setting listeners in, 140
starting activities from, 193
support library and, 128-132, 148
without support library, 148
UI flexibility and, 123
widgets and, 140

FragmentStatePagerAdapter, 207
getCount(), 207, 208
getItem(…), 207, 208
setOffscreenPageLimit(…), 210

FragmentTransaction
add(…), 143
beginTransaction(), 143
detach(…), 211
remove(…), 211

FrameLayout
as container view for fragments, 135, 309
described, 66

FusedLocationProviderApi, 564

G
Gallery, 213
gen directory, 18
Genymotion, xxii, 554
getAction() (MotionEvent), 532
getActiveNetworkInfo()
(ConnectivityManager), 470
getActivity() (Fragment), 194, 195
getArguments(…) (Fragment), 199
getBackgroundDataSetting()
(ConnectivityManager), 470
getBooleanExtra(…) (Intent), 100
getCacheDir(…) (File), 295
getCount() (FragmentStatePagerAdapter), 207,
208
getDefaultSharedPreferences(…)
(PreferenceManager), 461
getDir(String name, int mode), 295
getExternalCacheDir(…) (File), 296
getExternalCacheDirs(…) (File[]), 296
getExternalFilesDir(String), 296, 297
getExternalFilesDirs(…) (File[]), 296
getExternalMediaDirs(…) (File[]), 296
getExternalStorageDirectory(…)
(Environment), 295
getFilesDir(…) (File), 295
getInputStream() (HttpURLConnection), 410
getIntent() (Activity), 100, 196
getItem(…) (FragmentStatePagerAdapter), 207,
208
getMapAsync(…) (SupportMapFragment), 579
getOutputStream() (HttpURLConnection), 410
getScaledBitmap(…), 301
getSharedPreferences(…) (Context), 461
getTargetFragment() (Fragment), 227
getTargetRequestCode() (Fragment), 227
getter and setter methods, generating, 34-36
getTop(), 542
Google Drive, 402
Google Play Services

about, 552
Maps API from, 571
setting up, 559
using, 561-563

GoogleMap, 579
graphical layout tool, 158-165
GridLayoutManager, 408

Index

611

GridView, 191

H
Handler, 436, 444
handlers, 436-446
HandlerThread

vs. AsyncTask, 447
handling downloads, 433

hardware devices, 26
-hdpi suffix, 49
hero transitions

(see also shared element transitions)
hierarchical navigation, 248
HOME (Intent), 397
Home button, 62, 63
home screen, 397, 398
Honeycomb, 112
HTTP networking, 406, 409-411, 414
HttpURLConnection

class, 410
getInputStream(), 410
getOutputStream(), 410

I
icons, 241-243
ImageButton, 55
implicit intents

action, 280, 386
ACTION_CALL category, 289
ACTION_DIAL category, 289
ACTION_PICK category, 283
ACTION_SEND category, 281
benefits of using, 273
categories, 280, 386
CATEGORY_DEFAULT, 387
data, 280
vs. explicit intent, 279
for browsing web content, 514
parts of, 280
sending with AlarmManager, 473
taking pictures with, 297-300
type, 280

include, 293
includes, 292, 304
inflating layouts, 17, 139
inheritance, 355, 367
InputStream

for delivering bytes, 410
read(), 410

inSampleSize, 302
insert(…), 264
Intent

addFlags(…), 396
constructors, 96
createChooser(…), 282
getBooleanExtra(…), 100
putExtra(…), 98, 195
setClassName(…), 392
setComponent(…), 392

intent filters
BOOT_COMPLETED, 493
explained, 280
MAIN, 106
SHOW_NOTIFICATION, 498

intent services
processing commands, 468
purpose, 467

Intent.FLAG_ACTIVITY_NEW_DOCUMENT, 403
intents

(see also broadcast intents, explicit intents,
extras, implicit intents, Intent)
communicating with, 96, 97
implicit vs. explicit, 97, 273
regular vs. broadcast, 491
taking pictures with, 297-300

IntentService, 467
interpolators, 546
invalidate() (View), 535
is prefix for variable names, 34

J
JavaScript Object Notation (see JSON)
JavaScript, enabling, 518
Javascript, injecting objects, 523
JobScheduler, 486
JobService, 486
JSON (JavaScript Object Notation), 415
JSONObject, 419

L
-land qualifier, 66
LatLngBounds, 580
launcher activities, 106
LAUNCHER category, 106, 387

Index

612

layer-list drawables, 374
layout attributes

android:background, 354
android:contentDescription, 56
android:drawablePadding, 52
android:drawableRight, 52
android:icon, 241
android:layout_gravity, 66
android:layout_height, 14
android:layout_weight, 164
android:layout_width, 14
android:orientation, 14
android:padding, 157

layout parameters (layout_), 157
LayoutInflater, 30, 140
LayoutManager, 327
layouts

(see also graphical layout tool, layout
attributes, widgets)
about, 2
alternative, 64-67
for asset management, 326
for cameras, 292-294
defining in XML, 12-14
design documentation, 156
inflating, 17, 139
landscape, 64-67
managing multiple, 166
naming, 7
previewing, 15, 91
for property animation, 540
root element, 13
view hierarchy and, 13

layout_weight attribute, 164
-ldpi suffix, 49
LinearLayout, 10, 13
lint (see Android Lint)
Lint Warnings view, 84
List, 170
list items

customizing display of, 185
list(String), 332
list-detail interfaces, 121, 205, 307-317
listeners

defined, 22
as interfaces, 22
setting in fragments, 140
setting up, 22-25

lists
displaying, 167
getting item data, 179

ListView, 191
load(Sound), 340
Loader, 427
LoaderManager, 427
loadLabel(…) (ResolveInfo), 388
local files, 257
local layout rect, 542
LocalBroadcastManager, 507, 509
location, 551-568

adding GPS permissions for, 560
finding and displaying images related to, 566
with Flickr Geosearch, 563
testing, 553-556

Location API, 552
LocationListener, 565
LocationRequest, 564
Log, 58
Log.d(…), 78
LogCat

(see also logging)
logging

of exceptions, 78
levels, 73
Log.d(…), 78
messages, 58
methods, 73
of stack traces, 78
TAG constant, 58

Looper, 433, 436
LRU (least recently used) caching strategy, 447
LRUCache, 447

M
m prefix for variable names, 21
MAIN category, 106, 387
main thread, 413
makeText(…) (Toast), 24
manifest

(see also manifest attributes)
about, 92
adding network permissions to, 411
adding service to, 468
adding uses-permission INTERNET, 411
Android versions in, 113

Index

613

build process and, 29
declaring Activity in, 92
uses-sdk, 113

manifest attributes
android:configChanges, 522
android:protectionLevel, 502

MapFragment, 574
maps, 571-584

adding markers to, 582
API setup for, 572-574
getting lat-lon data for, 576-579
working with, 579-581

Maps API, 572-574
Maps API key, 572
MapView, 574
master-detail interfaces, 121, 205, 307-317
match_parent, 14
material design, 587-601

animation tools, 591-597
material surfaces, 587-591
view components, 597-601

mContext, 272
-mdpi suffix, 49
MediaStore, 298, 299
MediaStore.ACTION_IMAGE_CAPTURE, 298
MediaStore.EXTRA_OUTPUT, 299
MenuItem, 247
menus

(see also toolbar)
about, 238
app:showAsAction, 239
creating, 244
creating XML file for, 239
defining in XML, 239
determining selected item, 247
populating with items, 244
as resources, 239
responding to selections, 246

Message, 436
message handlers, 436-446
message loop, 432
message queue, 432
messages, 435-446
minimum required SDK, 113
minSdkVersion, 114
mipmap images, 381
model layer, 37
model objects, 37

model objects, from databases, 269-271
motion events, handling, 532-535
MotionEvent

actions, 532
class, 532
getAction(), 532

mSoundId, 340
mSoundPool.load(…), 341
MVC (Model-View-Controller), 37, 38

N
namespace, Android XML, 13
navigation, 248
network, checking availability of, 470
networking (HTTP), 406, 409, 410, 414
networking permissions, 411
NetworkOnMainThreadException, 413
newInstance(…) (Fragment), 198
9-patch images, 376
Notification, 481
NotificationManager, 481
notifications, 481-483
notify(…) (NotificationManager), 481
NullPointerException, 77

O
ObjectAnimator, 543
onActivityResult(…) (Activity), 103
onActivityResult(…) (Fragment), 224
onBindViewHolder, 183
OnCheckedChangeListener interface, 154
onClick(View) (onClickListener), 23
OnClickListener interface, 22
onCreate(Bundle) (Activity), 17, 57
onCreate(…) (Fragment), 139
onCreateDialog(…) (DialogFragment), 219
onCreateOptionsMenu(…) (Action), 244
onCreateOptionsMenu(…) (Fragment), 244
onCreateView(…) (Fragment), 139
onCreateViewHolder(…), 183, 430
onDestroy() (Activity), 57
onDraw(…) (View), 536
onOptionsItemSelected(MenuItem), 17
onOptionsItemSelected(…) (Fragment), 247
onPause() (Activity), 57
onPostExecute(…) (AsyncTask), 425
onProgressChanged(…) (WebChromeClient), 521

Index

614

onProgressUpdate(…) (AsyncTask), 427
OnQueryTextListener(…) (SearchView), 458
onReceivedTitle(…) (WebChromeClient), 521
onRestoreStateInstance(…) (View), 538
onResume() (Activity), 57, 200
onResume() (FragmentManager), 200
onSaveInstanceState(…) (Activity, 68-73
onSaveInstanceState(…) (Activity), 349, 351
onSaveInstanceState(…) (Fragment), 139, 349
onSaveStateInstance() (View), 538
onStart() (Activity), 57
onStop() (Activity), 57
onTextChanged(…) (TextWatcher), 141
onTouchEvent(…) (View), 532
OnTouchListener (View), 532
openConnection() (URL), 410
openFileInput(…) (FileInputStream), 295
openFileOutput(…) (FileInputStream), 295
openNonAssetFd(…), 337
options objects, 582
overflow menu, 239
@Override, 60
overview screen, 393

P
PackageManager, 299

class, 287
resolveActivity(…), 287

packages, naming, 4
padding, 157
Paint, 536
Parcelable, 344, 538
parent, 356, 367
PendingIntent, 477
permissions, 411
permissions (defined), 298
persistent data, 460-464
photos

designating file location for, 296
external storage, 294-297
scaling and displaying bitmaps, 301-304
taking with intents, 297-300

PhotoView, 302
Play Services (see Google Play Services)
play(Sound), 341
PointF, 533
post(…) (Handler), 444

preferences (Android Studio), 34
preloading, 447
presses, responding to, 190
processes, 398, 401
progress indicator

hiding, 521
updating from background thread, 427

projects
adding resources, 49
configure, 5
creating, 2-7
gen directory, 18
layout, 7
res/layout directory, 18
res/menu directory, 239
res/values directory, 18
setting package name, 3
setting project name, 3
src directory, 16

property animation, 539-550
building scene for, 539
running multiple animators, 548
simple, 542-548

protection level values, 502
publishProgress(…) (AsyncTask), 427
putCharSequence(…); (Bundle), 198
putExtra(…) (Intent), 195
putInt(…); (Bundle), 198
putSerializable(…) (Bundle), 198

Q
query(…), 266

R
R, 18
randomUUID(), 132
read() (InputStream), 410
Recents button, 62
RecyclerView, 176-184, 326

efficient reloading of, 203
for display grid, 408
setOnItemClickListener(…), 514

RelativeLayout, 186, 187
release key, 29
remove(…) (FragmentTransaction), 211
request code (Activity), 101
res/layout directory, 18

Index

615

res/menu directory, 239
res/values directory, 15, 18, 353
resolveActivity(…) (PackageManager), 287,
304
ResolveInfo, 388
resource IDs, 18-20

+ prefix in, 20, 187
multiple layouts and, 166
syntax, 187

resources
(see also configuration qualifiers, drawables,
layouts, menus, string resources)
about, 18
adding, 49
alias, 311-313
vs. assets, 326
location of, 18
referencing in XML, 52
string, 14, 15

result code (Activity), 102
retained fragments, 345-351
retainInstance property (Fragment), 345, 346
rotation

activity lifecycle and, 63-68
onSaveInstanceState(…) and, 349, 351
saving data across, 68-70
with DatePicker, 223

rows, inserting and updating, 264
running on device, 46-48
RxJava, 508

S
s prefix for variable names, 34
sandbox, 257
savedInstanceState, 345
scale-independent pixel, 156
schema, database, 258
screen orientation, 66
screen pixel density, 49, 155
screen size, determining, 323
SD card, 296
SDK versions

(see also compatibility)
build target, 114
codenames, 111
installing, xxi
listed, 111

minimum required, 113
target, 113
updating, xxii

search, 449-465
in Flickr, 449-454
integrating into app, 449
user-initiated, 455-460

SearchView, 455-460
bug, 460
OnQueryTextListener(…), 458
post Honeycomb, 456
responding to user interactions, 458

Serializable, 344
services

adding to manifest, 468
bound, 485
lifecycle of, 484
locally bound, 485
non-sticky, 484
notifying user, 481
purpose of, 467
remotely bound, 486
sticky, 484

setArguments(…) (Fragment), 198
setClassName(…) (Intent), 392
setComponent(…) (Intent), 392
setContentView(…) (Activity), 17
setHasOptionsMenu(…) (Fragment), 244
setInexactRepeating(…) (AlarmManager), 476
setJavaScriptEnabled(…) (WebSettings), 519
setOffscreenPageLimit(…)
(FragmentStatePagerAdapter), 210
setOnClickListener(…), 22
setOnItemClickListener(…) (RecyclerView),
514
setOnTouchListener(…) (View), 532
setPositiveButton(…) (AlertDialog.Builder),
219
setRepeating(…) (AlarmManager), 476
setResult(…) (Activity), 102, 103, 203
setRetainInstance(…) (Fragment), 345
setTargetFragment(…) (Fragment), 226
setter methods, generating, 34-36
setText(…) (TextView), 101
setTitle(…) (AlertDialog.Builder), 219
setView(…) (AlertDialog.Builder), 221
shape drawables, 371
ShapeDrawable, 371

Index

616

shared element transitions, 593-597
SharedPreferences, 461
shouldOverrideUrlLoading(…)
(WebViewClient), 519
show() (Toast), 24
show(…) (DialogFragment), 220
signing key, 572
simulator (see emulator)
SingleFragmentActivity, 172, 173, 175, 309,
328, 384
singletons, 168, 192
snackbars, 600, 601
solutions file, 48
Sound, 340
SoundPool, 339-345

audio playback, 341-344
creating, 339
load(Sound), 340
loading sounds into, 340
mSoundPool.load(…), 341
play(Sound), 341
rotation and object continuity with, 344
SoundPool.play(…), 342
SoundPool.release(), 343
unloading sounds, 343

SoundPool.play(…), 342
SoundPool.release(), 343
sp (scale-independent pixel), 156
SQLite databases, 257-272

building, 258-262
debugging, 261
defining schema for, 258
inserting and updating rows, 264
model objects from, 269-271
reading from, 266-271
writing to, 263-266

SQLiteDatabase.query(…), 266
src directory, 16
stack traces

in LogCat, 76
logging of, 78

startActivity(…) (Activity), 95
startActivityForResult(…) (Activity), 101
startActivityForResult(…) (Fragment), 203
stashable objects, 344
state list animators, 590
state list drawables, 372
STREAM_MUSIC, 340

string resources
creating, 15
defined, 14
referencing, 52

String.replace(…), 334
String.split(…), 334
strings file, 14, 15
strings.xml, 15
String[], 295
styles, 354-356

defined, 154
inheritance, 355, 367
modifying button attributes, 365-367
themes and, 154

support library, 128-132, 148
SupportMapFragment, 574
SupportMapFragment.getMapAsync(…), 579
-sw600dp suffix, 313
sync adapters, 488
system icons, 241-243

T
tables, creating, 261
tablets

creating virtual devices for, 307
user interfaces for, 307-317

TAG constant, 58
target fragment, 226
target SDK version, 113
targetSdkVersion, 113, 114
task manager, 62
tasks

and Back button, 393
defined, 393
vs. processes, 398, 401
starting new, 395-397
switching between, 393

temporal navigation, 248
TextView

and tools:text, 91
example, 10
inheritance, 55
setText(…), 101

TextWatcher interface, 141
theme, 357
Theme.AppCompat, 361
themes, 154, 357-364

Index

617

accessing attributes, 368
adding colors to, 359
modifying, 357
overriding attributes, 360-364

threads
background (see background threads)
main, 413
message queue, 432
processes and, 399
as sequence of execution, 413
UI, 413

TimeInterpolator, 546
tinting, 360
Toast, 24
toasts, 23-25
toolbar

action bar vs., 254
action view in, 455
app:showAsAction, 239
features, 235
menu, 238
overflow menu, 239

Toolbar
onCreateOptionsMenu(…), 244

touch events, handling, 532-535
transformation properties, 544
transitions, animation, 550
TypeEvaluator, 548

U
UI fragments (see fragments)
UI thread, 414
Up button, 248, 249
update(…), 265
Uri, 299
Uri.Builder, 417
URL

for making URL from string, 410
openConnection(), 410

URLConnection, 410
user interfaces

defined by layout, 2
for tablets, 307-317
laying out, 9-16

uses-sdk, 113
UUID.randomUUID(), 132

V
variable names

conventions for, 34
prefixes for, 34

Variables view, 81
versions (Android SDK) (see SDK versions)
versions (firmware), 111
View

(see also views, widgets)
draw(), 536
invalidate(), 535
OnClickListener interface, 22
onDraw(…), 536
onRestoreStateInstance(…), 538
onSaveStateInstance(), 538
onTouchEvent(…), 532
setOnTouchListener(…), 532
subclasses, 9, 55

view components, 597-601
view layer, 37
view objects, 37
ViewGroup, 13, 66
ViewHolder, 177, 182, 388
ViewPager, 205-213

in support library, 207
internals of, 212

views
creating, 530
creation by RecyclerView, 177
custom, 530-532
laying out in code, 213
persisting, 538
simple vs. composite, 530
touch events and, 532-535
using fully qualified name in layout, 531

ViewTreeObserver, 305
virtual devices

(see also emulator)
for tablets, 307
testing low-memory handling, 72

W
web content

browsing via implicit intent, 514
displaying within an activity, 516
enabling JavaScript, 518

web rendering events, responding to, 519

Index

618

WebChromeClient
for enhancing appearance of WebView, 520
interface, 520
onProgressChanged(…), 521
onReceivedTitle(…), 521

WebSettings, 519
WebView

for presenting web content, 516
handling rotation, 522

WebViewClient, 519
widgets

about, 9
attributes of, 12, 157
Button, 10, 55
CheckBox, 151
DatePicker, 221
defining in XML, 12-14
EditText, 136
FrameLayout, 66
ImageButton, 55
LinearLayout, 10, 13
padding, 157
references, 21
styles and, 354
TextView, 10, 91
in view hierarchy, 13
as view layer, 37
wiring in fragments, 140
wiring up, 21

wrap_content, 14

X
-xhdpi suffix, 49
XML

Android namespace, 13
referencing resources in, 52

XML drawables (see drawables)
-xxhdpi suffix, 49

Z
Z values, 589

	Android Programming
	Table of Contents
	Learning Android
	Prerequisites
	What's New in the Second Edition?
	How to Use This Book
	How This Book is Organized
	Challenges
	Are you more curious?

	Code Style
	Typographical Conventions
	Android Versions

	The Necessary Tools
	Downloading and Installing Android Studio
	Downloading Earlier SDK Versions
	An Alternative Emulator
	A Hardware Device

	Chapter 1 Your First Android Application
	App Basics
	Creating an Android Project
	Navigating in Android Studio
	Laying Out the User Interface
	The view hierarchy
	Widget attributes
	android:layout_width and android:layout_height
	android:orientation
	android:text

	Creating string resources
	Previewing the layout

	From Layout XML to View Objects
	Resources and resource IDs

	Wiring Up Widgets
	Getting references to widgets
	Setting listeners
	Using anonymous inner classes

	Making Toasts
	Using code completion

	Running on the Emulator
	For the More Curious: Android Build Process
	Android build tools

	Chapter 2 Android and Model-View-Controller
	Creating a New Class
	Generating getters and setters

	Model-View-Controller and Android
	Benefits of MVC

	Updating the View Layer
	Updating the Controller Layer
	Running on a Device
	Connecting your device
	Configuring your device for development

	Adding an Icon
	Adding resources to a project
	Referencing resources in XML

	Challenges
	Challenge: Add a Listener to the TextView
	Challenge: Add a Previous Button
	Challenge: From Button to ImageButton

	Chapter 3 The Activity Lifecycle
	Logging the Activity Lifecycle
	Making log messages
	Using LogCat

	Rotation and the Activity Lifecycle
	Device configurations and alternative resources
	Creating a landscape layout

	Saving Data Across Rotation
	Overriding onSaveInstanceState(Bundle)

	The Activity Lifecycle, Revisited
	For the More Curious: Testing onSaveInstanceState(Bundle)
	For the More Curious: Logging Levels and Methods

	Chapter 4 Debugging Android Apps
	Exceptions and Stack Traces
	Diagnosing misbehaviors
	Logging stack traces
	Setting breakpoints
	Using exception breakpoints

	Android-Specific Debugging
	Using Android Lint
	Issues with the R class

	Chapter 5 Your Second Activity
	Setting Up a Second Activity
	Creating a new activity
	A new activity subclass
	Declaring activities in the manifest
	Adding a Cheat! button to QuizActivity

	Starting an Activity
	Communicating with intents
	Explicit and implicit intents

	Passing Data Between Activities
	Using intent extras
	Getting a result back from a child activity
	Setting a result
	Sending back an intent
	Handling a result

	How Android Sees Your Activities
	Challenge

	Chapter 6 Android SDK Versions and Compatibility
	Android SDK Versions
	Compatibility and Android Programming
	A sane minimum
	Minimum SDK version
	Target SDK version
	Compile SDK version
	Adding code from later APIs safely

	Using the Android Developer Documentation
	Challenge: Reporting the Build Version

	Chapter 7 UI Fragments and the Fragment Manager
	The Need for UI Flexibility
	Introducing Fragments
	Starting CriminalIntent
	Creating a new project
	Fragments and the support library
	Adding dependencies in Android Studio
	Creating the Crime class

	Hosting a UI Fragment
	The fragment lifecycle
	Two approaches to hosting
	Defining a container view

	Creating a UI Fragment
	Defining CrimeFragment’s layout
	Creating the CrimeFragment class
	Implementing fragment lifecycle methods
	Wiring widgets in a fragment

	Adding a UI Fragment to the FragmentManager
	Fragment transactions
	The FragmentManager and the fragment lifecycle

	Application Architecture with Fragments
	The reason all our activities will use fragments

	For the More Curious: Why Support Fragments are Superior
	For the More Curious: Using Built-In Fragments

	Chapter 8 Creating User Interfaces with Layouts and Widgets
	Upgrading Crime
	Updating the Layout
	Wiring Widgets
	More on XML Layout Attributes
	Styles, themes, and theme attributes
	Screen pixel densities and dp and sp
	Android’s design guidelines
	Layout parameters
	Margins vs. padding

	Using the Graphical Layout Tool
	Creating a landscape layout
	Adding a new widget
	Editing attributes in properties view
	Reorganizing widgets in the component tree
	Updating child layout parameters
	How android:layout_weight works
	The graphical layout tool and you
	Widget IDs and multiple layouts

	Challenge: Formatting the Date

	Chapter 9 Displaying Lists with RecyclerView
	Updating CriminalIntent’s Model Layer
	Singletons and centralized data storage

	An Abstract Activity for Hosting a Fragment
	A generic fragment-hosting layout
	An abstract Activity class
	Using an abstract class
	Creating the new controllers
	Declaring CrimeListActivity

	RecyclerView, Adapter, and ViewHolder
	ViewHolders and Adapters
	Adapters

	Using a RecyclerView
	Implementing an Adapter and ViewHolder

	Customizing List Items
	Creating the list item layout
	Using a custom item view

	Responding to Presses
	For the More Curious: ListView and GridView
	For the More Curious: Singletons

	Chapter 10 Using Fragment Arguments
	Starting an Activity from a Fragment
	Putting an extra
	Retrieving an extra
	Updating CrimeFragment’s view with Crime data
	The downside to direct retrieval

	Fragment Arguments
	Attaching arguments to a fragment
	Retrieving arguments

	Reloading the List
	Getting Results with Fragments
	Challenge: Efficient RecyclerView Reloading
	For the More Curious: Why Use Fragment Arguments?

	Chapter 11 Using ViewPager
	Creating CrimePagerActivity
	ViewPager and PagerAdapter
	Integrating CrimePagerActivity

	FragmentStatePagerAdapter vs. FragmentPagerAdapter
	For the More Curious: How ViewPager Really Works
	For the More Curious: Laying Out Views in Code

	Chapter 12 Dialogs
	The AppCompat Library
	Creating a DialogFragment
	Showing a DialogFragment
	Setting a dialog’s contents

	Passing Data Between Two Fragments
	Passing data to DatePickerFragment
	Returning data to CrimeFragment
	Setting a target fragment
	Sending data to the target fragment
	More flexibility in presenting a DialogFragment

	Challenge: More Dialogs
	Challenge: A Responsive DialogFragment

	Chapter 13 The Toolbar
	AppCompat
	Using the AppCompat library
	Updating the theme
	Using AppCompatActivity

	Menus
	Defining a menu in XML
	The app namespace
	Using Android Asset Studio

	Creating the menu
	Responding to menu selections

	Enabling Hierarchical Navigation
	How hierarchical navigation works

	An Alternative Action Item
	Toggling the action item title
	“Just one more thing...”

	For the More Curious: Toolbar vs Action Bar
	Challenge: Deleting Crimes
	Challenge: Plural String Resources
	Challenge: An Empty View for the RecyclerView

	Chapter 14 SQLite Databases
	Defining a Schema
	Building Your Initial Database
	Debugging database issues

	Gutting CrimeLab
	Writing to the Database
	Using ContentValues
	Inserting and updating rows

	Reading from the Database
	Using a CursorWrapper
	Converting to model objects
	Refreshing model data

	For the More Curious: More Databases
	For the More Curious: The Application Context
	Challenge: Deleting Crimes

	Chapter 15 Implicit Intents
	Adding Buttons
	Adding a Suspect to the Model Layer
	Using a Format String
	Using Implicit Intents
	Parts of an implicit intent
	Sending a crime report
	Asking Android for a contact
	Getting the data from the contact list
	Contacts permissions

	Checking for responding activities

	Challenge: ShareCompat
	Challenge: Another Implicit Intent

	Chapter 16 Taking Pictures with Intents
	A Place for Your Photo
	Including layout files

	External Storage
	Designating a picture location

	Using a Camera Intent
	External storage permission
	Firing the intent

	Scaling and Displaying Bitmaps
	Declaring Features
	For the More Curious: Using Includes
	Challenge: Detail Display
	Challenge: Efficient Thumbnail Load

	Chapter 17 Two-Pane Master-Detail Interfaces
	Adding Layout Flexibility
	Modifying SingleFragmentActivity
	Creating a layout with two fragment containers
	Using an alias resource
	Creating tablet alternatives

	Activity: Fragment Boss
	Fragment callback interfaces
	Implementing CrimeListFragment.Callbacks
	Implementing CrimeFragment.Callbacks

	For the More Curious: More on Determining Device Size

	Chapter 18 Assets
	Why Assets, Not Resources
	Creating BeatBox
	Importing Assets
	Getting at Assets
	Wiring Up Assets for Use
	Accessing Assets
	For the More Curious: Non-Assets?

	Chapter 19 Audio Playback with SoundPool
	Creating a SoundPool
	Loading Sounds
	Playing Sounds
	Unloading Sounds
	Rotation and Object Continuity
	Retaining a fragment
	Rotation and retained fragments

	For the More Curious: Whether to Retain
	For the More Curious: More on Rotation Handling

	Chapter 20 Styles and Themes
	Color Resources
	Styles
	Style inheritance

	Themes
	Modifying the theme

	Adding Theme Colors
	Overriding Theme Attributes
	Theme spelunking

	Modifying Button Attributes
	For the More Curious: More on Style Inheritance
	For the More Curious: Accessing Theme Attributes
	Challenge: An Appropriate Base Theme

	Chapter 21 XML Drawables
	Making Uniform Buttons
	Shape Drawables
	State List Drawables
	Layer List Drawables
	For the More Curious: Why Bother with XML Drawables?
	For the More Curious: 9-Patch Images
	For the More Curious: Mipmap Images

	Chapter 22 More About Intents and Tasks
	Setting Up NerdLauncher
	Resolving an Implicit Intent
	Creating Explicit Intents at Runtime
	Tasks and the Back Stack
	Switching between tasks
	Starting a new task

	Using NerdLauncher as a Home Screen
	Challenge: Icons
	For the More Curious: Processes vs. Tasks
	For the More Curious: Concurrent Documents

	Chapter 23 HTTP & Background Tasks
	Creating PhotoGallery
	Networking Basics
	Asking permission to network

	Using AsyncTask to Run on a Background Thread
	You and Your Main Thread
	Beyond the main thread

	Fetching JSON from Flickr
	Parsing JSON text

	From AsyncTask Back to the Main Thread
	Cleaning Up AsyncTasks
	For the More Curious: More on AsyncTask
	For the More Curious: Alternatives to AsyncTask
	Challenge: Gson
	Challenge: Paging
	Challenge: Dynamically Adjusting the Number of Columns

	Chapter 24 Loopers, Handlers, and HandlerThread
	Preparing RecyclerView to Display Images
	Downloading Lots of Small Things
	Communicating with the Main Thread
	Assembling a Background Thread
	Messages and Message Handlers
	Message anatomy
	Handler anatomy
	Using handlers
	Passing handlers

	For the More Curious: AsyncTask vs. Threads
	Challenge: Preloading and Caching
	For the More Curious: Solving the Image Downloading Problem

	Chapter 25 Search
	Searching Flickr
	Using SearchView
	Responding to SearchView user interactions

	Simple Persistence with Shared Preferences
	Polishing Your App
	Challenge: Polishing Your App Some More

	Chapter 26 Background Services
	Creating an IntentService
	What Services are For
	Safe background networking

	Looking for New Results
	Delayed Execution with AlarmManager
	Being a good citizen: using alarms the right way
	Inexact vs. exact repeating
	Time basis options

	PendingIntent
	Managing alarms with PendingIntent

	Controlling Your Alarm
	Notifications
	Challenge: Notifications on Android Wear
	For the More Curious: Service Details
	What a service does (and does not) do
	A service’s lifecycle
	Non-sticky services
	Sticky services
	Bound services
	Local service binding
	Remote service binding

	For the More Curious: JobScheduler and JobServices
	For the More Curious: Sync Adapters
	Challenge: Using JobService on Lollipop

	Chapter 27 Broadcast Intents
	Regular Intents vs. Broadcast Intents
	Receiving a System Broadcast: Waking Up on Boot
	Creating and registering a standalone receiver
	Using receivers

	Filtering Foreground Notifications
	Sending broadcast intents
	Creating and registering a dynamic receiver
	Limiting broadcasts to your app using private permissions
	More about protection levels

	Passing and receiving data with ordered broadcasts

	Receivers and Long-Running Tasks
	For the More Curious: Local Events
	Using EventBus
	Using RxJava

	For the More Curious: Detecting the Visibility of Your Fragment

	Chapter 28 Browsing the Web and WebView
	One Last Bit of Flickr Data
	The Easy Way: Implicit Intents
	The Harder Way: WebView
	Using WebChromeClient to spruce things up

	Proper Rotation with WebView
	Dangers of handling configuration changes

	For the More Curious: Injecting JavaScript Objects
	For the More Curious: KitKat’s WebView Overhaul
	Challenge: Using the Back Button for Browser History
	Challenge: Supporting Non-HTTP Links

	Chapter 29 Custom Views and Touch Events
	Setting Up the DragAndDraw Project
	Setting up DragAndDrawActivity
	Setting up DragAndDrawFragment

	Creating a Custom View
	Creating BoxDrawingView

	Handling Touch Events
	Tracking across motion events

	Rendering Inside onDraw(…)
	Challenge: Saving State
	Challenge: Rotating Boxes

	Chapter 30 Property Animation
	Building the Scene
	Simple Property Animation
	View transformation properties
	Using different interpolators
	Color evaluation

	Playing Animators Together
	For the More Curious: Other Animation APIs
	Legacy animation tools
	Transitions

	Challenges

	Chapter 31 Locations and Play Services
	Locations and Libraries
	Google Play Services

	Creating Locatr
	Play Services and Location Testing on Emulators
	Mock location data

	Building out Locatr
	Setting Up Google Play Services
	Location permissions

	Using Google Play Services
	Flickr Geosearch
	Getting a Location Fix
	Find and Display an Image
	Challenge: Progress

	Chapter 32 Maps
	Importing Play Services Maps
	Mapping on Android
	Maps API Setup
	Getting a Maps API Key
	Your signing key
	Getting an API key

	Setting Up Your Map
	Getting More Location Data
	Working with Your Map
	Drawing on the map

	For the More Curious: Teams and API Keys

	Chapter 33 Material Design
	Material Surfaces
	Elevation and Z values
	State list animators

	Animation Tools
	Circular reveal
	Shared element transitions

	View Components
	Cards
	Floating action buttons
	Snackbars

	More on Material Design

	Chapter 34 Afterword
	The Final Challenge
	Shameless Plugs
	Thank You

	Index

