

Kotlin	Programming:	The	Big
Nerd	Ranch	Guide
by	Josh	Skeen	and	David	Greenhalgh

Copyright	©	2018	Big	Nerd	Ranch,	LLC
All	rights	reserved.	Printed	in	the	United	States	of	America.	This	publication	is
protected	by	copyright,	and	permission	must	be	obtained	from	the	publisher
prior	to	any	prohibited	reproduction,	storage	in	a	retrieval	system,	or
transmission	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	likewise.	For	information	regarding	permissions,
contact

Big	Nerd	Ranch,	LLC
200	Arizona	Ave	NE
Atlanta,	GA	30307
(770)	817-6373
http://www.bignerdranch.com/
book-comments@bignerdranch.com
The	10-gallon	hat	with	propeller	logo	is	a	trademark	of	Big	Nerd	Ranch,	LLC.
Exclusive	worldwide	distribution	of	the	English	edition	of	this	book	by

Pearson	Technology	Group
800	East	96th	Street
Indianapolis,	IN	46240	USA
http://www.informit.com
The	authors	and	publisher	have	taken	care	in	writing	and	printing	this	book	but
make	no	expressed	or	implied	warranty	of	any	kind	and	assume	no	responsibility
for	errors	or	omissions.	No	liability	is	assumed	for	incidental	or	consequential
damages	in	connection	with	or	arising	out	of	the	use	of	the	information	or
programs	contained	herein.
Many	of	the	designations	used	by	manufacturers	and	sellers	to	distinguish	their

products	are	claimed	as	trademarks.	Where	those	designations	appear	in	this
book,	and	the	publisher	was	aware	of	a	trademark	claim,	the	designations	have
been	printed	with	initial	capital	letters	or	in	all	capitals.
	
ISBN-10		013516236X
ISBN-13		978-0135162361

First	edition,	first	printing,	July	2018	
Release	E.1.1.1

Dedication
	 	 	
	 For	Baker,	the	best	little	bug.

	 —	J.S.
	 	 	
	 To	Rebecca,	a	driven,	patient,	beautiful	woman,	and	the	reason

that	this	book	came	to	be.	To	Mom	and	Dad,	for	valuing	education

above	all	else.

	 —	D.G.

Acknowledgments
We	received	a	lot	of	help	in	writing	this	book.	Without	that	help,	this	book
would	not	be	what	it	is,	and	it	may	never	even	have	happened.	Thanks	are	due.
First,	we	need	to	say	thank	you	to	our	colleagues	at	Big	Nerd	Ranch.	Thank	you
to	Stacy	Henry	and	Aaron	Hillegass	for	providing	us	with	the	time	and	space	to
write	this	book.	It	has	been	immensely	gratifying	to	learn	and	teach	Kotlin.	We
hope	that	this	book	lives	up	to	the	trust	and	the	support	that	we	have	received.
Particular	thanks	are	also	due	to	our	colleagues	at	Big	Nerd	Ranch.	Your	careful
teaching	revealed	many	bugs	in	the	text,	and	your	thoughtful	recommendations
led	to	many	improvements	in	our	approach.	It	is	truly	wonderful	to	have
colleagues	such	as	you.	Thank	you	Kristin	Marsicano,	Bolot	Kerimbaev,	Brian
Gardner,	Chris	Stewart,	Paul	Turner,	Chris	Hare,	Mark	Allison,	Andrew
Lunsford,	Rafael	Moreno	Cesar,	Eric	Maxwell,	Andrew	Bailey,	Jeremy
Sherman,	Christian	Keur,	Mikey	Ward,	Steve	Sparks,	Mark	Dalrymple,	CBQ,
and	everyone	else	at	the	Ranch	who	helped	us	with	this	work.
Our	colleagues	in	operations,	marketing,	and	sales	are	also	instrumental.	Classes
would	literally	never	be	scheduled	without	their	work.	Thank	you	Heather
Sharpe,	Mat	Jackson,	Rodrigo	"Ram	Rod"	Perez-Velasco,	Nicholas	Stolte,	Justin
Williams,	Dan	Barker,	Israel	Machovec,	Emily	Herman,	Patrick	Freeman,	Ian
Eze,	and	Nikki	Porter.	We	cannot	do	what	we	do	without	what	you	do.
Special	thanks	and	an	extra	bit	of	karma	are	also	owed	to	our	amazing	students
who	were	adventurous	enough	to	join	us	for	the	early	access	version	of	the
course	and	were	kind	enough	to	help	us	identify	errata.	Without	your	feedback
and	insights	into	how	to	improve	the	course,	this	text	would	not	be	where	it	is
today.	Those	students	include:	Santosh	Katta,	Abdul	Hannan,	Chandra	Mohan,
Benjamin	DiGregorio,	Peng	Wan,	Kapil	Bhalla,	Girish	Hanchinal,	Hashan
Godakanda,	Mithun	Mahadevan,	Brittany	Berlanga,	Natalie	Ryan,	Balarka
Velidi,	Pranay	Airan,	Jacob	Rogers,	Jean-Luc	Delpech,	Dennis	Lin,	Kristina
Thai,	Reid	Baker,	Setareh	Lotfi,	Harish	Ravichandran,	Matthew	Knapp,	Nathan
Klee,	Brian	Lee,	Heidi	Muth,	Martin	Davidsson,	Misha	Burshteyn,	Kyle
Summers,	Cameron	Hill,	Vidhi	Shah,	Fabrice	Di	Meglio,	Jared	Burrows,	Riley
Brewer,	Michael	Krause,	Tyler	Holland,	Gajendra	Singh,	Pedro	Sanchez,	Joe
Cyboski,	Zach	Waldowski,	Noe	Arzate,	Allan	Caine,	Zack	Simon,	Josh	Meyers,
Rick	Meyers,	Stephanie	Guevara,	Abdulrahman	Alshmrani,	Robert	Edwards,

Maribel	Montejano,	and	Mohammad	Yusuf.
We	want	to	extend	a	special	thank	you	to	our	colleagues	and	members	of	the
Android	community	who	helped	us	test	the	book's	accuracy,	clarity,	and	ease	of
use.	Without	your	external	perspective,	putting	this	book	together	would	have
been	even	more	daunting.	Thank	you	Jon	Reeve,	Bill	Phillips,	Matthew
Compton,	Vishnu	Rajeevan,	Scott	Stanlick,	Alex	Lumans,	Shauvik	Choudhary,
and	Jason	Atwood.
We	also	need	to	acknowledge	the	many	talented	folks	who	worked	on	the	book
with	us.	Elizabeth	Holaday,	our	editor,	helped	refine	the	book,	crystallize	its
strengths,	and	diminish	its	weaknesses.	Anna	Bentley,	our	copyeditor,	found	and
corrected	errors	and	ultimately	made	us	look	smarter	than	we	are.	Ellie
Volckhausen	designed	the	cover.	And	Chris	Loper	designed	and	produced	the
print	book	and	the	EPUB	and	Kindle	versions.
Finally,	thank	you	to	all	our	students.	Being	your	teacher	offers	us	the
opportunity	to	be	a	student	in	many	ways,	and	for	that	we	are	immensely
grateful.	Teaching	is	part	of	the	greatest	thing	that	we	do,	and	it	has	been	a
pleasure	working	with	you.	We	hope	that	the	quality	of	this	book	matches	your
enthusiasm	and	determination.

Table	of	Contents
Introducing	Kotlin

Why	Kotlin?
Who	Is	This	Book	For?
How	to	Use	This	Book

For	the	More	Curious
Challenges
Typographical	conventions
Using	an	eBook

Looking	Forward
1.	Your	First	Kotlin	Application

Installing	IntelliJ	IDEA
Your	First	Kotlin	Project

Creating	your	first	Kotlin	file
Running	your	Kotlin	file

The	Kotlin	REPL
For	the	More	Curious:	Why	Use	IntelliJ?
For	the	More	Curious:	Targeting	the	JVM
Challenge:	REPL	Arithmetic

2.	Variables,	Constants,	and	Types
Types
Declaring	a	Variable
Kotlin’s	Built-In	Types
Read-Only	Variables
Type	Inference
Compile-Time	Constants
Inspecting	Kotlin	Bytecode
For	the	More	Curious:	Java	Primitive	Types	in	Kotlin
Challenge:	hasSteed
Challenge:	The	Unicorn’s	Horn
Challenge:	Magic	Mirror

3.	Conditionals
if/else	Statements

Adding	more	conditions
Nested	if/else	statements

More	elegant	conditionals
Ranges
when	Expressions
String	Templates
Challenge:	Trying	Out	Some	Ranges
Challenge:	Enhancing	the	Aura
Challenge:	Configurable	Status	Format

4.	Functions
Extracting	Code	to	Functions
Anatomy	of	a	Function

Function	header
Function	body
Function	scope

Calling	a	Function
Refactoring	to	Functions
Writing	Your	Own	Functions
Default	Arguments
Single-Expression	Functions
Unit	Functions
Named	Function	Arguments
For	the	More	Curious:	The	Nothing	Type
For	the	More	Curious:	File-Level	Functions	in	Java
For	the	More	Curious:	Function	Overloading
For	the	More	Curious:	Function	Names	in	Backticks
Challenge:	Single-Expression	Functions
Challenge:	Fireball	Inebriation	Level
Challenge:	Inebriation	Status

5.	Anonymous	Functions	and	the	Function	Type
Anonymous	Functions

The	function	type
Implicit	returns
Function	arguments
The	it	keyword
Accepting	multiple	arguments

Type	Inference	Support
Defining	a	Function	That	Accepts	a	Function

Shorthand	syntax
Function	Inlining
Function	References

Function	Type	as	Return	Type
For	the	More	Curious:	Kotlin’s	Lambdas	Are	Closures
For	the	More	Curious:	Lambdas	vs	Anonymous	Inner	Classes

6.	Null	Safety	and	Exceptions
Nullability
Kotlin’s	Explicit	Null	Type
Compile	Time	vs	Runtime
Null	Safety

Option	one:	the	safe	call	operator
Option	two:	the	double-bang	operator
Option	three:	checking	whether	a	value	is	null	with	if

Exceptions
Throwing	an	exception
Custom	exceptions
Handling	exceptions

Preconditions
Null:	What	Is	It	Good	For?
For	the	More	Curious:	Checked	vs	Unchecked	Exceptions
For	the	More	Curious:	How	Is	Nullability	Enforced?

7.	Strings
Extracting	Substrings

substring
split

String	Manipulation
Strings	are	immutable

String	Comparison
For	the	More	Curious:	Unicode
For	the	More	Curious:	Traversing	a	String’s	Characters
Challenge:	Improving	DragonSpeak

8.	Numbers
Numeric	Types
Integers
Decimal	Numbers
Converting	a	String	to	a	Numeric	Type
Converting	an	Int	to	a	Double
Formatting	a	Double
Converting	a	Double	to	an	Int
For	the	More	Curious:	Bit	Manipulation
Challenge:	Remaining	Pints

Challenge:	Handling	a	Negative	Balance
Challenge:	Dragoncoin

9.	Standard	Functions
apply
let
run
with
also
takeIf

takeUnless
Using	Standard	Library	Functions

10.	Lists	and	Sets
Lists

Accessing	a	list’s	elements
Changing	a	list’s	contents

Iteration
Reading	a	File	into	a	List
Destructuring
Sets

Creating	a	set
Adding	elements	to	a	set

while	Loops
The	break	Expression
Collection	Conversion
For	the	More	Curious:	Array	Types
For	the	More	Curious:	Read-Only	vs	Immutable
Challenge:	Formatted	Tavern	Menu
Challenge:	Advanced	Formatted	Tavern	Menu

11.	Maps
Creating	a	Map
Accessing	Map	Values
Adding	Entries	to	a	Map
Modifying	Map	Values
Challenge:	Tavern	Bouncer

12.	Defining	Classes
Defining	a	Class
Constructing	Instances
Class	Functions
Visibility	and	Encapsulation

Class	Properties
Property	getters	and	setters
Property	visibility
Computed	properties

Refactoring	NyetHack
Using	Packages
For	the	More	Curious:	A	Closer	Look	at	var	and	val	Properties
For	the	More	Curious:	Guarding	Against	Race	Conditions
For	the	More	Curious:	Package	Private

13.	Initialization
Constructors

Primary	constructors
Defining	properties	in	a	primary	constructor
Secondary	constructors
Default	arguments
Named	arguments

Initializer	Blocks
Property	Initialization
Initialization	Order
Delaying	Initialization

Late	initialization
Lazy	initialization

For	the	More	Curious:	Initialization	Gotchas
Challenge:	The	Riddle	of	Excalibur

14.	Inheritance
Defining	the	Room	Class
Creating	a	Subclass
Type	Checking
The	Kotlin	Type	Hierarchy

Type	casting
Smart	casting

For	the	More	Curious:	Any
15.	Objects

The	object	Keyword
Object	declarations
Object	expressions
Companion	objects

Nested	Classes
Data	Classes

toString
equals
copy
Destructuring	declarations

Enumerated	Classes
Operator	Overloading
Exploring	the	World	of	NyetHack
For	the	More	Curious:	Defining	Structural	Comparison
For	the	More	Curious:	Algebraic	Data	Types
Challenge:	“Quit”	Command
Challenge:	Implementing	a	World	Map
Challenge:	Ring	the	Bell

16.	Interfaces	and	Abstract	Classes
Defining	an	Interface
Implementing	an	Interface
Default	Implementations
Abstract	Classes
Combat	in	NyetHack

17.	Generics
Defining	Generic	Types
Generic	Functions
Multiple	Generic	Type	Parameters
Generic	Constraints
vararg	and	get
in	and	out
For	the	More	Curious:	The	reified	Keyword

18.	Extensions
Defining	Extension	Functions

Defining	an	extension	on	a	superclass
Generic	Extension	Functions
Extension	Properties
Extensions	on	Nullable	Types
Extensions,	Under	the	Hood
Extracting	to	Extensions
Defining	an	Extensions	File
Renaming	an	Extension
Extensions	in	the	Kotlin	Standard	Library
For	the	More	Curious:	Function	Literals	with	Receivers
Challenge:	toDragonSpeak	Extension

Challenge:	Frame	Extension
19.	Functional	Programming	Basics

Function	Categories
Transforms
Filters
Combines

Why	Functional	Programming?
Sequences
For	the	More	Curious:	Profiling
For	the	More	Curious:	Arrow.kt
Challenge:	Reversing	the	Values	in	a	Map
Challenge:	Applying	Functional	Programming	to	Tavern.kt
Challenge:	Sliding	Window

20.	Java	Interoperability
Interoperating	with	a	Java	Class
Interoperability	and	Nullity
Type	Mapping
Getters,	Setters,	and	Interoperability
Beyond	Classes
Exceptions	and	Interoperability
Function	Types	in	Java

21.	Building	Your	First	Android	Application	with	Kotlin
Android	Studio

Gradle	configuration
Project	organization

Defining	a	UI
Running	the	App	on	an	Emulator
Generating	a	Character
The	Activity	Class
Wiring	Up	Views
Kotlin	Android	Extensions	Synthetic	Properties
Setting	a	Click	Listener
Saved	Instance	State

Reading	from	the	saved	instance	state
Refactoring	to	an	Extension
For	the	More	Curious:	Android	KTX	and	Anko	Libraries

22.	Introduction	to	Coroutines
Parsing	Character	Data
Fetching	Live	Data

The	Android	Main	Thread
Enabling	Coroutines
Specifying	a	Coroutine	with	async
launch	vs	async/await
Suspending	Functions
Challenge:	Live	Data
Challenge:	Minimum	Strength

23.	Afterword
Where	to	Go	from	Here
Shameless	Plugs
Thank	You

Appendix:	More	Challenges
Leveling	Up	with	Exercism

Glossary
Index

Introducing	Kotlin
In	2011,	JetBrains	announced	the	development	of	the	Kotlin	programming
language,	an	alternative	to	writing	code	in	languages	like	Java	or	Scala	to	run	on
the	Java	Virtual	Machine.	Six	years	later,	Google	announced	that	Kotlin	would
be	an	officially	supported	development	path	for	the	Android	operating	system.
Kotlin’s	scope	quickly	grew	from	a	language	with	a	bright	future	into	the
language	powering	applications	on	the	world’s	foremost	mobile	operating
system.	Today,	large	companies	like	Google,	Uber,	Netflix,	Capital	One,
Amazon,	and	more	have	embraced	Kotlin	for	its	many	advantages,	including	its
concise	syntax,	modern	features,	and	seamless	interoperability	with	legacy	Java
code.

Why	Kotlin?
To	understand	the	appeal	of	Kotlin,	you	first	need	to	understand	the	role	of	Java
in	the	modern	software	development	landscape.	The	two	languages	are	closely
tied,	because	Kotlin	code	is	most	often	written	for	the	Java	Virtual	Machine.
Java	is	a	robust	and	time-tested	language	and	has	been	one	of	the	most
commonly	written	languages	in	production	codebases	for	years.	However,	since
Java	was	released	in	1995,	much	has	been	learned	about	what	makes	for	a	good
programming	language.	Java	is	missing	the	many	advancements	that	developers
working	with	more	modern	languages	enjoy.
Kotlin	benefits	from	the	learning	gained	as	some	design	decisions	made	in	Java
(and	other	languages,	like	Scala)	have	aged	poorly.	It	has	evolved	beyond	what
was	possible	with	older	languages	and	has	corrected	what	was	painful	about
them.	You	will	learn	more	in	the	coming	chapters	about	how	Kotlin	improves	on
Java	and	offers	a	more	reliable	development	experience.
And	Kotlin	is	not	just	a	better	language	to	write	code	to	run	on	the	Java	Virtual
Machine.	It	is	a	multiplatform	language	that	aims	to	be	general	purpose:	Kotlin
can	be	used	to	write	native	macOS	and	Windows	applications,	JavaScript
applications,	and,	of	course,	Android	applications.	Platform	independence	means
that	Kotlin	has	a	wide	variety	of	uses.

Who	Is	This	Book	For?
We	have	written	this	book	for	developers	of	all	kinds:	experienced	Android
developers	who	want	modern	features	beyond	what	Java	offers,	server-side
developers	interested	in	learning	about	Kotlin’s	features,	and	newer	developers
looking	to	venture	into	a	high-performance	compiled	language.
Android	support	might	be	why	you	are	reading	this	book,	but	the	book	is	not
limited	to	Kotlin	programming	for	Android.	In	fact,	except	in	one	advanced
chapter,	Chapter	21,	all	the	Kotlin	code	in	this	book	is	agnostic	to	the	Android
framework.	That	said,	if	you	are	interested	in	using	Kotlin	for	Android
application	development,	this	book	shows	off	some	common	patterns	that	make
writing	Android	apps	a	breeze	in	Kotlin.
Although	Kotlin	has	been	influenced	by	a	number	of	other	languages,	you	do	not
need	to	know	the	ins	and	outs	of	any	other	language	to	learn	Kotlin.	From	time
to	time,	we	will	discuss	the	Java	code	equivalent	for	Kotlin	code	you	have
written.	If	you	have	Java	experience,	this	will	help	you	understand	the
relationship	between	the	two	languages.	If	you	do	not	know	Java,	seeing	how
another	language	tackles	the	same	problems	can	help	you	grasp	the	principles
that	have	shaped	Kotlin’s	development.

How	to	Use	This	Book
This	book	is	not	a	reference	guide.	Our	goal	is	to	guide	you	through	the	most
important	parts	of	the	Kotlin	programming	language.	You	will	be	working
through	example	projects,	building	knowledge	as	you	progress.	To	get	the	most
out	of	this	book,	we	recommend	that	you	type	out	the	examples	in	the	book	as
you	read	along.	Working	through	the	projects	will	help	build	muscle	memory
and	will	give	you	something	to	carry	on	from	one	chapter	to	the	next.
Also,	each	chapter	builds	on	the	topics	presented	in	the	last,	so	we	recommend
that	you	do	not	jump	around.	Even	if	you	feel	that	you	are	familiar	with	a	topic
in	other	languages,	we	suggest	that	you	read	straight	through	–	Kotlin	handles
many	problems	in	unique	ways.	You	will	begin	with	introductory	topics	like
variables	and	lists,	work	your	way	through	object-oriented	and	functional
programming	techniques,	and	understand	along	the	way	what	makes	Kotlin	such
a	powerful	language.	By	the	end	of	the	book,	you	will	have	built	your
knowledge	of	Kotlin	from	that	of	a	beginner	to	a	more	advanced	developer.
Having	said	that,	do	take	your	time:	Branch	out,	use	the	Kotlin	reference	at
kotlinlang.org/docs/reference	to	follow	up	on	anything	that	piqued
your	curiosity,	and	experiment.

For	the	More	Curious

Most	of	the	chapters	in	this	book	have	a	section	or	two	titled	“For	the	More
Curious.”	Many	of	these	sections	illuminate	the	underlying	mechanisms	of	the
Kotlin	language.	The	examples	in	the	chapters	do	not	depend	on	the	information
in	these	sections,	but	they	provide	additional	information	that	you	may	find
interesting	or	helpful.

Challenges

Most	chapters	end	with	one	or	more	challenges.	These	are	additional	problems
to	solve	that	are	designed	to	further	your	understanding	of	Kotlin.	We	encourage
you	to	give	them	a	try	to	enhance	your	Kotlin	mastery.

Typographical	conventions

https://kotlinlang.org/docs/reference/

As	you	build	the	projects	in	this	book,	we	will	guide	you	by	introducing	a	topic
and	then	showing	how	to	apply	your	new-found	knowledge.	For	clarity,	we	stick
to	the	following	typographical	conventions.
Variables,	values,	and	types	are	shown	with	fixed-width	font.	Class,	function,
and	interface	names	are	given	bold	font.
All	code	listings	are	shown	in	fixed-width	font.	If	you	are	to	type	some	code	in	a
code	listing,	that	code	is	denoted	in	bold.	If	you	are	to	delete	some	code	in	a
code	listing,	that	code	is	struck	through.	In	the	following	example,	you	are	being
instructed	to	delete	the	line	defining	variable	y	and	to	add	a	variable	called	z:
var	x	=	"Python"

var	y	=	"Java"

var	z	=	"Kotlin"

Kotlin	is	a	relatively	young	language,	so	many	coding	conventions	are	still	being
figured	out.	Over	time,	you	will	likely	develop	your	own	style,	but	we	tend	to
adhere	to	JetBrains’	and	Google’s	Kotlin	style	guides:

JetBrains’	coding	conventions:	kotlinlang.org/docs/
reference/coding-conventions.html

Google’s	style	guide,	including	conventions	for	Android	code	and
interoperability:	android.github.io/kotlin-guides/
style.html

Using	an	eBook

If	you	are	reading	this	book	on	an	eReader,	we	want	to	point	out	that	reading	the
code	may	be	tricky	at	times.	Longer	lines	of	code	may	wrap	to	a	second	line,
depending	on	your	selected	font	size.
The	longest	lines	of	code	in	this	book	are	86	monospace	characters,	like	this	one.
println(playerCreateMessage(nameIsLong("Polarcubis,	the	Supreme	Master	of	NyetHack")))

You	can	play	with	your	eReader’s	settings	to	find	the	best	for	viewing	long	code
lines.
If	you	are	reading	on	an	iPad	with	iBooks,	we	recommend	you	go	to	the	Settings
app,	select	iBooks,	and	set	Full	Justification	OFF	and	Auto-hyphenation	OFF.
When	you	get	to	the	point	where	you	are	actually	typing	in	code,	we	suggest
opening	the	book	on	your	PC	or	Mac	in	Adobe	Digital	Editions.	(Adobe	Digital
Editions	is	a	free	eReader	application	you	can	download	from
www.adobe.com/products/digitaleditions.)	Make	the	application

https://kotlinlang.org/docs/reference/coding-conventions.html
https://android.github.io/kotlin-guides/style.html
http://www.adobe.com/products/digitaleditions

window	large	enough	so	that	you	can	see	the	code	with	no	wrapping	lines.	You
will	also	be	able	to	see	the	figures	in	full	detail.

Looking	Forward
Take	your	time	with	the	examples	in	this	book.	Once	you	get	the	hang	of
Kotlin’s	syntax,	we	think	that	you	will	find	the	development	process	to	be	clear,
pragmatic,	and	fluid.	Until	then,	keep	at	it;	learning	a	new	language	can	be	quite
rewarding.

1	
Your	First	Kotlin	Application

In	this	chapter	you	will	write	your	first	Kotlin	program,	using	IntelliJ	IDEA.
While	completing	this	programming	rite	of	passage,	you	will	familiarize
yourself	with	your	development	environment,	create	a	new	Kotlin	project,	write
and	run	Kotlin	code,	and	inspect	the	resulting	output.	The	project	you	create	in
this	chapter	will	serve	as	a	sandbox	to	easily	try	out	new	concepts	you	will
encounter	throughout	this	book.

Installing	IntelliJ	IDEA
IntelliJ	IDEA	is	an	integrated	development	environment	(IDE)	for	Kotlin	created
by	JetBrains	(which	also	created	the	Kotlin	language).	To	get	started,	download
the	IntelliJ	IDEA	Community	Edition	from	the	JetBrains	website	at
jetbrains.com/idea/download	(Figure	1.1).

Figure	1.1		Downloading	IntelliJ	IDEA	Community	Edition

Once	it	has	downloaded,	follow	the	installation	instructions	for	your	platform	as
described	on	the	JetBrains	installation	and	setup	page	at	jetbrains.com/
help/idea/install-and-set-up-product.html.
IntelliJ	IDEA,	called	IntelliJ	for	short,	helps	you	write	well-formed	Kotlin	code.
It	also	streamlines	the	development	process	with	built-in	tools	for	running,
debugging,	inspecting,	and	refactoring	your	code.	You	can	read	more	about	why
we	recommend	IntelliJ	for	writing	Kotlin	code	in	the	section	called	For	the	More
Curious:	Why	Use	IntelliJ?	near	the	end	of	this	chapter.

https://www.jetbrains.com/idea/download/
https://www.jetbrains.com/help/idea/install-and-set-up-product.html

Your	First	Kotlin	Project
Congratulations,	you	now	have	the	Kotlin	programming	language	and	a
powerful	development	environment	to	write	it	with.	Now	there	is	only	one	thing
left	to	do:	Learn	to	speak	Kotlin	fluently.	First	order	of	business	–	create	a	Kotlin
project.
Open	IntelliJ.	You	will	be	presented	with	the	Welcome	to	IntelliJ	IDEA	dialog
(Figure	1.2).

Figure	1.2		Welcome	dialog

(If	this	is	not	the	first	time	you	have	opened	IntelliJ	since	installing	it,	you	may
be	brought	directly	to	the	last	project	you	had	open.	To	get	back	to	the	welcome
dialog,	close	the	project	using	File	→	Close	Project.)
Click	Create	New	Project.	IntelliJ	will	display	the	New	Project	dialog,	as	shown	in
Figure	1.3.

Figure	1.3		New	Project	dialog

In	the	New	Project	dialog,	select	Kotlin	on	the	left	and	Kotlin/JVM	on	the	right,	as
shown	in	Figure	1.4.

Figure	1.4		Creating	a	Kotlin/JVM	project

You	can	use	IntelliJ	to	write	code	in	languages	other	than	Kotlin,	including	Java,
Python,	Scala,	and	Groovy.	Selecting	Kotlin/JVM	tells	IntelliJ	you	intend	to	use
Kotlin.	More	specifically,	Kotlin/JVM	tells	IntelliJ	you	intend	to	write	Kotlin	code
that	targets,	or	runs	on,	the	Java	Virtual	Machine.	One	of	the	benefits	of	Kotlin	is
that	it	features	a	toolchain	that	allows	you	to	write	Kotlin	code	that	can	run	on
different	operating	systems	and	platforms.
(From	here	on,	we	will	refer	to	the	Java	Virtual	Machine	as	just	“JVM,”	as	it	is
commonly	called	in	the	Java	developer	community.	You	can	learn	more	about
targeting	the	JVM	in	the	section	called	For	the	More	Curious:	Targeting	the
JVM	near	the	end	of	this	chapter.)
Click	Next	in	the	New	Project	dialog.	IntelliJ	will	display	a	dialog	where	you	can
choose	settings	for	your	new	project	(Figure	1.5).	For	the	Project	name,	enter
“Sandbox.”	The	Project	location	field	will	auto-populate.	You	can	leave	the
location	as	is	or	select	a	new	location	by	pressing	the	...	button	to	the	right	of	the
field.	Select	a	Java	1.8	version	from	the	Project	SDK	dropdown	to	link	your	project
to	Java	Development	Kit	(JDK)	version	8.

Figure	1.5		Naming	the	project

Why	do	you	need	the	JDK	to	write	a	Kotlin	program?	The	JDK	gives	IntelliJ
access	to	the	JVM	and	to	Java	tools	that	are	necessary	for	converting	your	Kotlin
code	to	bytecode	(more	on	that	in	a	moment).	Technically,	any	version	6	or
greater	will	work.	But	our	experience,	as	of	this	writing,	is	that	JDK	8	works
most	seamlessly.
If	you	do	not	see	some	version	of	Java	1.8	listed	in	the	Project	SDK	dropdown,	this
means	you	have	not	yet	installed	JDK	8.	Do	so	now	before	proceeding:
Download	JDK	8	for	your	specific	platform	from	oracle.com/
technetwork/java/javase/downloads/jdk8-downloads-

2133151.html.	Install	the	JDK,	then	restart	IntelliJ.	Work	back	through	the
steps	outlined	to	this	point	to	create	a	new	project.
When	your	settings	dialog	looks	like	Figure	1.5,	click	Finish.
IntelliJ	will	generate	a	project	named	Sandbox	and	display	the	new	project	in	a
default	two-pane	view	(Figure	1.6).	On	disk,	IntelliJ	creates	a	folder	and	a	set	of
subfolders	and	project	files	in	the	location	specified	in	the	Project	location	field.

http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html

Figure	1.6		Default	two-pane	view

The	pane	on	the	left	shows	the	project	tool	window.	The	pane	on	the	right	is
currently	empty.	This	is	where	you	will	view	and	edit	the	contents	of	your	Kotlin
files	in	the	editor.	Turn	your	attention	to	the	project	tool	window	on	the	left.
Click	the	disclosure	arrow	to	the	left	of	the	project	name,	Sandbox.	It	will	expand
to	display	the	files	contained	in	the	project,	as	shown	in	Figure	1.7.

Figure	1.7		Project	view

A	project	includes	all	of	the	source	code	for	your	program,	along	with

information	about	dependencies	and	configurations.	A	project	can	be	broken
down	into	one	or	more	modules,	which	are	like	subprojects.	By	default,	a	new
project	has	one	module,	which	is	all	you	need	for	your	simple	first	project.
The	Sandbox.iml	file	contains	configuration	information	specific	to	your
single	module.	The	.idea	folder	contains	settings	files	for	the	entire	project	as
well	as	those	specific	to	your	interaction	with	the	project	in	the	IDE	(for
example,	which	files	you	have	open	in	the	editor).	Leave	these	auto-generated
files	as	they	are.
The	External	Libraries	entry	contains	information	about	libraries	the	project
depends	on.	If	you	expand	this	entry	you	will	see	that	IntelliJ	automatically
added	Java	1.8	and	KotlinJavaRuntime	as	dependencies	for	your	project.
(You	can	learn	more	about	IntelliJ	project	structure	on	the	JetBrains
documentation	website	at	jetbrains.org/intellij/sdk/docs/
basics/project_structure.html.)
The	src	folder	is	where	you	will	place	all	the	Kotlin	files	you	create	for	your
Sandbox	project.	And	with	that,	it	is	time	to	create	and	edit	your	first	Kotlin	file.

Creating	your	first	Kotlin	file

Right-click	on	the	src	folder	in	the	project	tool	window.	Select	New	and	then
Kotlin	File/Class	from	the	menu	that	appears	(Figure	1.8).

https://www.jetbrains.org/intellij/sdk/docs/basics/project_structure.html

Figure	1.8		Creating	a	new	Kotlin	file

In	the	New	Kotlin	File/Class	dialog,	type	“Hello”	in	the	Name	field	and	leave	the	Kind
field	set	to	File	(Figure	1.9).

Figure	1.9		Naming	the	file

Click	OK.	IntelliJ	will	create	a	new	file	in	your	project,	src/Hello.kt,	and
display	the	contents	of	the	file	in	the	editor	on	the	righthand	side	of	the	IntelliJ
window	(Figure	1.10).	The	.kt	extension	indicates	that	the	file	contains	Kotlin,
just	like	the	.java	extension	is	used	for	Java	files	and	.py	for	Python	files.

Figure	1.10		Empty	Hello.kt	file	displays	in	editor

At	last,	you	are	ready	to	write	Kotlin	code.	Give	your	fingers	a	little	stretch	and
go	for	it.	Type	the	following	code	into	the	Hello.kt	editor.	(Remember	that
throughout	this	book,	code	you	are	to	enter	is	shown	in	bold.)

Listing	1.1		“Hello,	world!”	in	Kotlin	(Hello.kt)
fun	main(args:	Array<String>)	{

				println("Hello,	world!")

}

The	code	you	just	wrote	might	look	unfamiliar.	Do	not	fear	–	by	the	end	of	this
book,	reading	and	writing	Kotlin	will	feel	like	second	nature.	For	now,	it	is
enough	to	understand	the	code	at	a	high	level.
The	code	in	Listing	1.1	defines	a	new	function.	A	function	is	a	group	of
instructions	that	can	be	run	later.	You	will	learn	in	great	detail	how	to	define	and
work	with	functions	in	Chapter	4.
This	particular	function	–	the	main	function	–	has	a	special	meaning	in	Kotlin.
The	main	function	indicates	the	starting	place	for	your	program.	This	is	called
the	application	entry	point,	and	one	such	entry	point	must	be	defined	for
Sandbox	(or	any	program)	to	be	runnable.	Every	project	you	write	in	this	book
will	start	with	a	main	function.
Your	main	function	contains	one	instruction	(also	known	as	a	statement):
println("Hello,	world!").	println()	is	also	a	function	that	is	built	into	the

Kotlin	standard	library.	When	the	program	runs	and	println("Hello,
world!")	is	executed,	IntelliJ	will	print	the	contents	of	the	parentheses	(without
the	quotation	marks,	so	in	this	case	Hello,	world!)	to	the	screen.

Running	your	Kotlin	file

Shortly	after	you	finish	typing	the	code	in	Listing	1.1,	IntelliJ	will	display	a
green	 ,	known	as	the	“run	button,”	to	the	left	of	the	first	line	(Figure	1.11).	(If
the	icon	does	not	appear,	or	if	you	see	a	red	line	underneath	the	filename	in	the
tab	or	under	any	of	the	code	you	entered,	this	means	you	have	an	error	in	your
code.	Double-check	that	you	typed	the	code	exactly	as	shown	in	Listing	1.1.	On
the	other	hand,	if	you	see	a	red	and	blue	Kotlin	K,	this	flag	is	the	same	as	the	run
button.)

Figure	1.11		Run	button

It	is	time	for	your	program	to	come	to	life	and	greet	the	world.	Click	the	run
button.	Select	Run	'HelloKt'	from	the	menu	that	appears	(Figure	1.12).	This	tells
IntelliJ	you	want	to	see	your	program	in	action.

Figure	1.12		Running	Hello.kt

When	you	run	your	program,	IntelliJ	executes	the	code	inside	of	the	curly	braces
({}),	one	line	at	a	time,	and	then	terminates	execution.	It	also	displays	two	new

tool	windows	at	the	bottom	of	the	IntelliJ	window	(Figure	1.13).

Figure	1.13		Run	and	event	log	tool	windows

On	the	left	is	the	run	tool	window,	also	known	as	the	console	(which	is	what	we
will	call	it	from	now	on).	It	displays	information	about	what	happened	as	IntelliJ
executed	your	program,	as	well	as	any	output	your	program	prints.	You	should
see	Hello,	world!	printed	in	your	console.	You	should	also	see	Process
finished	with	exit	code	0,	indicating	successful	completion.	This	line
appears	at	the	end	of	all	console	output	when	there	is	no	error;	we	will	not	show
it	in	console	results	from	now	on.
(macOS	users,	you	may	see	red	error	text	stating	that	there	is	an	issue	with
JavaLauncherHelper,	as	shown	in	Figure	1.13.	Do	not	worry	about	this.	It	is	an
unfortunate	side	effect	of	how	the	Java	Runtime	Environment	is	installed	on
macOS.	To	remove	it	would	require	a	lot	of	effort,	but	the	issue	does	no	harm	–
so	you	may	ignore	it	and	carry	on.)
On	the	right	is	the	event	log	tool	window,	which	displays	information	about	work
IntelliJ	did	to	get	your	program	ready	to	run.	We	will	not	mention	the	event	log
again,	because	you	get	much	more	interesting	output	in	the	console.	(For	the
same	reason,	do	not	be	concerned	if	the	event	log	never	opened	to	begin	with.)
You	can	close	it	with	the	hide	button	at	its	top	right,	which	looks	like	this:	 .

Compilation	and	execution	of	Kotlin/JVM	code

A	lot	goes	on	in	the	short	time	between	when	you	select	the	run	button’s	Run
'HelloKt'	option	and	when	you	see	Hello,	World!	print	to	the	console.
First,	IntelliJ	compiles	the	Kotlin	code	using	the	kotlinc-jvm	compiler.	This
means	IntelliJ	translates	the	Kotlin	code	you	wrote	into	bytecode,	the	language
the	JVM	“speaks.”	If	kotlinc-jvm	has	any	problems	translating	your	Kotlin
code,	it	will	display	an	error	message	(or	messages)	giving	you	a	hint	about	how
to	fix	the	issues.	Otherwise,	if	the	compilation	process	goes	smoothly,	IntelliJ
moves	on	to	the	execution	phase.

In	the	execution	phase,	the	bytecode	that	was	generated	by	kotlinc-jvm	is
executed	on	the	JVM.	The	console	displays	any	output	from	your	program,	such
as	printing	the	text	you	specified	in	your	call	to	the	println()	function,	as	the
JVM	executes	the	instructions.
When	there	are	no	more	bytecode	instructions	to	execute,	the	JVM	terminates.
IntelliJ	shows	the	termination	status	in	the	console,	letting	you	know	whether
execution	finished	successfully	or	with	an	error	code.
You	will	not	need	a	comprehensive	understanding	of	the	Kotlin	compilation
process	to	work	through	this	book.	We	will,	however,	discuss	bytecode	in	more
detail	in	Chapter	2.

The	Kotlin	REPL
Sometimes	you	might	want	to	test	out	a	small	bit	of	Kotlin	code	to	see	what
happens	when	you	run	it,	similar	to	how	you	might	use	a	piece	of	scratch	paper
to	jot	down	steps	for	a	small	calculation.	This	is	especially	helpful	as	you	are
learning	the	Kotlin	language.	Luckily	for	you,	IntelliJ	provides	a	tool	for	quickly
testing	code	without	having	to	create	a	file.	This	tool	is	called	the	Kotlin	REPL.
We	will	explain	the	name	in	a	moment	–	for	now,	open	it	up	and	see	what	it	can
do.
In	IntelliJ,	open	the	Kotlin	REPL	tool	window	by	selecting	Tools	→	Kotlin	→	Kotlin
REPL	(Figure	1.14).

Figure	1.14		Opening	the	Kotlin	REPL	tool	window

IntelliJ	will	display	the	REPL	at	the	bottom	of	the	window	(Figure	1.15).

Figure	1.15		The	Kotlin	REPL	tool	window

You	can	type	code	into	the	REPL,	just	like	in	the	editor.	The	difference	is	that
you	can	have	it	evaluated	quickly,	without	compiling	an	entire	project.
Enter	the	following	code	in	the	REPL:

Listing	1.2		“Hello,	Kotlin!”	(REPL)
println("Hello,	Kotlin!")

Once	you	have	entered	the	text,	press	Command-Return	(Ctrl-Return)	to
evaluate	the	code	in	the	REPL.	After	a	moment,	you	will	see	the	resulting	output
underneath,	which	should	read	Hello,	Kotlin!	(Figure	1.16).

Figure	1.16		Evaluating	the	code

REPL	is	short	for	“read,	evaluate,	print,	loop.”	You	type	in	a	piece	of	code	at	the
prompt	and	submit	it	by	clicking	the	green	run	button	on	the	REPL’s	left	side	or
by	pressing	Command-Return	(Ctrl-Return).	The	REPL	then	reads	the	code,
evaluates	(runs)	the	code,	and	prints	out	the	resulting	value	or	side	effect.
Once	the	REPL	finishes	executing,	it	returns	control	back	to	you	and	the	process
loop	starts	all	over.
Your	Kotlin	journey	has	begun!	You	accomplished	a	great	deal	in	this	chapter,
laying	the	foundation	for	your	growing	knowledge	of	Kotlin	programming.	In
the	next	chapter,	you	will	begin	to	dig	into	the	language’s	details	by	learning

about	how	you	can	use	variables,	constants,	and	types	to	represent	data.

For	the	More	Curious:	Why	Use	IntelliJ?
Kotlin	can	be	written	using	any	plain	text	editor.	However,	we	recommend	using
IntelliJ,	especially	as	you	are	learning.	Just	as	text	editing	software	that	offers
spell	check	and	grammar	check	makes	writing	a	well-formed	prose	essay	easier,
IntelliJ	makes	writing	well-formed	Kotlin	easier.	IntelliJ	helps	you:

write	syntactically	and	semantically	correct	code	with	features	like
syntax	highlighting,	context-sensitive	suggestions,	and	automatic	code
completion

run	and	debug	your	code	with	features	like	debug	breakpoints	and	real-
time	code	stepping	when	your	application	is	running

restructure	existing	code	with	refactoring	shortcuts	(like	rename	and
extract	constant)	and	code	formatting	to	clean	up	indentation	and
spacing

Also,	since	Kotlin	was	created	by	JetBrains,	the	integration	between	IntelliJ	and
Kotlin	is	carefully	designed	–	often	leading	to	a	delightful	editing	experience.	As
an	added	bonus,	IntelliJ	is	the	basis	of	Android	Studio,	so	shortcuts	and	tools
you	learn	here	will	translate	to	using	Android	Studio,	if	that	is	your	thing.

For	the	More	Curious:	Targeting	the	JVM
The	JVM	is	a	piece	of	software	that	knows	how	to	execute	a	set	of	instructions,
called	bytecode.	“Targeting	the	JVM”	means	compiling,	or	translating,	your
Kotlin	source	code	into	Java	bytecode,	with	the	intention	of	running	that
bytecode	on	the	JVM	(Figure	1.17).

Figure	1.17		Compilation	and	execution	flow

Each	platform,	such	as	Windows	or	macOS,	has	its	own	instruction	set.	The
JVM	acts	as	a	bridge	between	the	bytecode	and	the	different	hardware	and
software	environments	the	JVM	runs	on,	reading	a	piece	of	bytecode	and	calling
the	corresponding	platform-specific	instruction(s)	that	map	to	that	bytecode.
Therefore,	there	are	different	versions	of	the	JVM	for	different	platforms.	This	is
what	allows	Kotlin	developers	to	write	platform-independent	code	that	can	be
written	one	time	and	then	compiled	into	bytecode	and	executed	on	different
devices	regardless	of	their	operating	systems.
Since	Kotlin	can	be	converted	to	bytecode	that	the	JVM	can	execute,	it	is
considered	a	JVM	language.	Java	is	perhaps	the	most	well-known	JVM
language,	because	it	was	the	first.	However,	other	JVM	languages,	such	as	Scala
and	Kotlin,	have	emerged	to	address	some	shortcomings	of	Java	from	the
developer	perspective.
Kotlin	is	not	limited	to	the	JVM,	however.	At	the	time	of	this	writing,	Kotlin	can
also	be	compiled	into	JavaScript	or	even	into	native	binaries	that	run	directly	on
a	given	platform	–	such	as	Windows,	Linux,	and	macOS	–	negating	the	need	for

a	virtual	machine	layer.

Challenge:	REPL	Arithmetic
Many	of	the	chapters	in	this	book	end	with	one	or	more	challenges.	The
challenges	are	for	you	to	work	through	on	your	own	to	deepen	your
understanding	of	Kotlin	and	get	a	little	extra	experience.
Use	the	REPL	to	explore	how	arithmetic	operators	in	Kotlin	work:	+,	-,	*,	/,	and
%.	For	example,	type	(9+12)*2	into	the	REPL.	Does	the	output	match	what	you
expected?
If	you	wish	to	dive	deeper,	look	over	the	mathematical	functions	available	in	the
Kotlin	standard	library	at	kotlinlang.org/api/latest/jvm/
stdlib/kotlin.math/index.html	and	try	them	out	in	the	REPL.	For
example,	try	min(94,	-99),	which	will	tell	you	the	minimum	of	the	two
numbers	provided	in	parentheses.

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.math/index.html

2	
Variables,	Constants,	and	Types

This	chapter	will	introduce	you	to	variables,	constants,	and	Kotlin’s	basic	data
types	–	fundamental	elements	of	any	program.	You	use	variables	and	constants
to	store	values	and	pass	data	around	in	your	application.	Types	describe	the
particular	kind	of	data	that	is	held	by	a	constant	or	variable.
There	are	important	differences	between	each	of	the	data	types	and	between
variables	and	constants	that	shape	how	they	are	used.

Types
Variables	and	constants	have	a	data	type	that	you	specify.	The	type	describes	the
data	that	is	held	by	a	variable	or	constant	and	tells	the	compiler	how	type
checking	will	be	handled,	a	feature	in	Kotlin	that	prevents	the	assignment	of	the
wrong	kind	of	data	to	a	variable	or	constant.
To	see	this	idea	in	action,	you	are	going	to	add	a	file	to	the	Sandbox	project	you
created	in	Chapter	1.	Open	IntelliJ.	The	Sandbox	project	will	likely	open
automatically,	because	IntelliJ	reopens	your	most	recent	project.	If	it	does	not,
you	can	open	Sandbox	from	the	list	of	recent	files	on	the	lefthand	side	of	the
welcome	dialog	or	by	selecting	File	→	Open	Recent	→	Sandbox.
Begin	by	adding	a	new	file	to	the	project	by	right-clicking	src	in	the	project
tool	window.	(You	may	need	to	click	the	Sandbox	disclosure	arrow	to	see	src.)
Select	New	→	Kotlin	File/Class,	and	name	the	file	TypeIntro.	The	new	file	will
open	in	the	editor.
The	main	function,	as	you	saw	in	Chapter	1,	defines	the	entry	point	for	your
program.	IntelliJ	offers	a	shortcut	for	writing	this	function:	Type	the	word
“main”	in	TypeIntro.kt	and	press	the	Tab	key.	IntelliJ	will	automatically
add	the	basic	elements	of	the	function	for	you,	as	shown	in	Listing	2.1.

Listing	2.1		Adding	a	main	function	(TypeIntro.kt)
fun	main(args:	Array<String>)	{

}

Declaring	a	Variable
Imagine	you	are	writing	an	adventure	game	that	allows	a	player	to	explore	an
interactive	world.	You	may	want	a	variable	for	keeping	track	of	the	player’s
score.
In	TypeIntro.kt,	create	your	first	variable,	called	experiencePoints,
and	assign	it	a	value:

Listing	2.2		Declaring	an	experiencePoints	variable
(TypeIntro.kt)
fun	main(args:	Array<String>)	{

				var	experiencePoints:	Int	=	5

				println(experiencePoints)

}

Here,	you	have	assigned	an	instance	of	the	type	Int	to	a	variable	called
experiencePoints.	Let’s	walk	through	each	part	of	what	happened.
You	defined	a	variable	using	the	keyword	var,	which	indicates	that	you	want	to
declare	a	new	variable,	followed	by	the	new	variable’s	name.
Next,	you	specified	the	type	definition	for	the	variable,	:	Int,	which	indicates
that	experiencePoints	will	hold	an	integer	(whole	number)	value.
Last,	you	used	the	assignment	operator	(=)	to	assign	what	is	on	the	righthand
side	(an	instance	of	the	Int	type,	specifically	5)	to	what	is	on	the	lefthand	side
(experiencePoints).
Figure	2.1	shows	the	experiencePoints	variable’s	definition	in	diagram
form.

Figure	2.1		Anatomy	of	a	variable	definition

After	defining	the	variable,	you	print	its	value	to	the	console	using	the
println	function.
Run	the	program	by	clicking	the	run	button	next	to	the	main	function	and
selecting	Run	'TypeIntroKt'.	The	result	printed	to	the	console	is	5,	the	value	you
assigned	to	experiencePoints.
Now,	try	assigning	experiencePoints	the	value	"thirty-two"	instead.
(The	strike-through	indicates	code	you	are	to	delete.)

Listing	2.3		Assigning	"thirty-two"	to	experiencePoints
(TypeIntro.kt)
fun	main(args:	Array<String>)	{

				var	experiencePoints:	Int	=	5

				var	experiencePoints:	Int	=	"thirty-two"

				println(experiencePoints)

}

Run	main	again	by	clicking	the	run	button.	This	time,	the	Kotlin	compiler
displays	an	error:
				Error:(2,	33)	Kotlin:	Type	mismatch:	inferred	type	is	String	but	Int	was	expected

When	you	typed	this	code,	you	may	have	noticed	the	red	underline	beneath
"thirty-two".	This	is	IntelliJ’s	signal	that	the	program	has	an	error.	Hover
over	"thirty-two"	to	read	the	details	of	the	detected	problem	(Figure	2.2).

Figure	2.2		Type	mismatch	disclosure

Kotlin	uses	a	static	type	system	–	meaning	the	compiler	labels	the	source	code
you	define	with	types	so	that	it	can	ensure	the	code	you	wrote	is	valid.	IntelliJ
also	checks	code	as	you	type	it	and	notices	when	an	instance	of	a	particular	type
is	incorrectly	assigned	to	a	variable	of	a	different	type.	This	feature	is	called
static	type	checking,	and	it	tells	you	about	programming	mistakes	before	you
even	compile	the	program.
To	fix	the	error,	change	the	value	assigned	to	experiencePoints	to	an	Int
that	matches	its	declared	type	by	changing	"thirty-two"	back	to	5:

Listing	2.4		Fixing	the	type	error	(TypeIntro.kt)
fun	main(args:	Array<String>)	{

				var	experiencePoints:	Int	=	"thirty-two"

				var	experiencePoints:	Int	=	5

				println(experiencePoints)

}

A	variable	can	be	reassigned	in	the	course	of	your	program.	If	the	player	gains
more	experience,	for	example,	you	can	assign	a	new	value	to	the
experiencePoints	variable.	Add	5	to	the	experiencePoints	variable,
as	shown:

Listing	2.5		Adding	5	to	experiencePoints	(TypeIntro.kt)
fun	main(args:	Array<String>)	{

				var	experiencePoints:	Int	=	5

				experiencePoints	+=	5

				println(experiencePoints)

}

After	assigning	the	experiencePoints	variable	a	value	of	5,	you	use	the
addition	and	assignment	operator	(+=)	to	add	5	to	the	original	value.	Run	the
program	again.	You	will	see	the	number	10	printed	to	the	console.

Kotlin’s	Built-In	Types
You	have	seen	variables	that	are	of	the	String	type	and	variables	of	the	Int
type.	Kotlin	also	has	types	to	handle	values	like	true/false,	lists	of	elements,	and
key-value	pairs	for	defining	mappings	of	elements.	Table	2.1	shows	many	of	the
commonly	used	built-in	types	available	in	Kotlin:

Table	2.1		Commonly	used	built-in	types
Type Description Examples
String Textual

data
"Estragon"

"happy	meal"

Char Single
character

'X'

Unicode	character	U+0041
Boolean True/false

values
true
false

Int Whole
numbers

"Estragon".length

5

Double Decimal
numbers

3.14

2.718

List Collections
of	
elements

3,	1,	2,	4,	3

"root	beer",	"club	soda",	"coke"

Set Collections
of	
unique
elements

"Larry",	"Moe",	"Curly"

"Mercury",	"Venus",	"Earth",	"Mars",	"Jupiter",

"Saturn",	"Uranus",	"Neptune"

Map Collections
of	
key-value
pairs

"small"	to	5.99,	"medium"	to	7.99,	"large"	to

10.99

If	you	have	not	seen	all	of	these	types,	do	not	be	concerned	–	you	will	learn

about	all	of	them	throughout	the	course	of	this	book.	In	particular,	you	will	learn
more	about	strings	in	Chapter	7	and	numbers	in	Chapter	8,	and	you	will	learn
about	lists,	sets,	and	maps,	together	called	collection	types,	in	Chapter	10	and
Chapter	11.

Read-Only	Variables
So	far,	you	have	seen	variables	whose	values	can	be	reassigned.	But	often,	you
will	want	to	use	variables	whose	values	should	not	change	in	your	program.	For
example,	in	the	text	adventure	game,	the	player’s	name	will	not	change	after	it
has	been	initially	assigned.
Kotlin	provides	a	different	syntax	for	declaring	read-only	variables	–	variables
that	cannot	be	modified	once	they	are	assigned.
You	declare	a	variable	that	can	be	modified	using	the	var	keyword.	To	declare	a
read-only	variable,	you	use	the	val	keyword.
Colloquially,	variables	whose	values	can	change	are	referred	to	as	vars	and	read-
only	variables	are	referred	to	as	vals.	We	will	follow	this	convention	from	now
on,	since	“variable”	and	“read-only	variable”	are	less	distinct.	vars	and	vals	are
both	considered	“variables,”	so	we	will	continue	to	use	that	term	to	refer	to	them
as	a	group.
Add	a	val	definition	for	the	player’s	name	and	print	it	after	the	experience
points:

Listing	2.6		Adding	a	playerName	val	(TypeIntro.kt)
fun	main(args:	Array<String>)	{

				val	playerName:	String	=	"Estragon"

				var	experiencePoints:	Int	=	5

				experiencePoints	+=	5

				println(experiencePoints)

				println(playerName)

}

Run	the	program	by	clicking	the	run	button	next	to	the	main	function	and
selecting	Run	'TypeIntroKt'.	You	will	see	the	values	of	experiencePoints	and
playerName	printed	in	the	console:
				10

				Estragon

Next,	try	reassigning	playerName	to	a	different	String	value,	using	the	=
assignment	operator,	and	run	the	program	again.

Listing	2.7		Trying	to	change	playerName’s	value	(TypeIntro.kt)
fun	main(args:	Array<String>)	{

				val	playerName:	String	=	"Estragon"

				playerName	=	"Madrigal"

				var	experiencePoints:	Int	=	5

				experiencePoints	+=	5

				println(experiencePoints)

				println(playerName)

}

You	will	see	the	following	compilation	error:
				Error:(3,	5)	Kotlin:	Val	cannot	be	reassigned

The	compiler	complains	because	you	tried	to	modify	a	val.	Once	a	val	has	been
assigned,	it	can	never	be	reassigned.
Delete	the	second	assignment	to	fix	the	reassignment	error:

Listing	2.8		Fixing	the	val	reassignment	error	(TypeIntro.kt)
fun	main(args:	Array<String>)	{

				val	playerName:	String	=	"Estragon"

				playerName	=	"Madrigal"

				var	experiencePoints:	Int	=	5

				experiencePoints	+=	5

				println(experiencePoints)

				println(playerName)

}

vals	are	useful	for	guarding	against	accidentally	changing	variables	that	should
be	read-only.	For	this	reason,	we	recommend	that	you	use	a	val	any	time	you	do
not	need	a	var.
IntelliJ	can	detect	when	a	var	can	be	made	a	val	instead	by	analyzing	your	code
statically.	If	a	var	is	never	changed,	IntelliJ	will	suggest	that	you	convert	it	to	a
val.	We	suggest	you	follow	IntelliJ’s	suggestion	–	unless	you	are	about	to	write
the	code	that	reassigns	the	var.	To	see	what	IntelliJ’s	suggestion	looks	like,
change	playerName	to	a	var:

Listing	2.9		Changing	playerName	to	be	reassignable
(TypeIntro.kt)
fun	main(args:	Array<String>)	{

				val	playerName:	String	=	"Estragon"

				var	playerName:	String	=	"Estragon"

				var	experiencePoints:	Int	=	5

				experiencePoints	+=	5

				println(experiencePoints)

				println(playerName)

}

Because	the	value	of	playerName	is	never	reassigned,	it	does	not	need	to	be
(and	should	not	be)	a	var.	Notice	that	IntelliJ	has	added	a	mustard-colored
highlight	to	the	line	with	the	var	keyword.	If	you	mouse	over	the	var	keyword,
IntelliJ	explains	the	suggested	improvement	(Figure	2.3).

Figure	2.3		Variable	never	modified

As	expected,	IntelliJ	suggests	converting	playerName	to	a	val.	To	apply	the
suggestion,	click	on	the	var	keyword	next	to	playerName	and	press	Option-
Return	(Alt-Enter).	In	the	pop-up,	select	Make	variable	immutable	(Figure	2.4).

Figure	2.4		Making	a	variable	immutable

IntelliJ	automatically	converts	the	var	to	a	val	(Figure	2.5).

Figure	2.5		Immutable	playerName

As	we	said	earlier,	we	recommend	that	you	use	a	val	any	time	you	can,	so	that
Kotlin	can	warn	you	about	accidental	reassignments.	We	also	recommend	that

you	pay	attention	to	IntelliJ’s	suggestions	for	code	improvement.	You	may	not
always	use	them,	but	they	are	always	worth	taking	a	look	at.

Type	Inference
Notice	that	the	type	definitions	you	specified	for	the	playerName	and
experiencePoints	variables	are	grayed	out	in	IntelliJ.	Grayed-out	text
indicates	an	element	that	is	not	required.	Mouse	over	the	String	type
definition,	and	IntelliJ	will	provide	an	explanation	about	why	the	element	is	not
required	(Figure	2.6).

Figure	2.6		Redundant	type	information

As	you	can	see,	Kotlin	indicates	that	your	type	declaration	is	“redundant.”	What
does	this	mean?
Kotlin	includes	a	feature	called	type	inference	that	allows	you	to	omit	the	type
definition	for	variables	that	are	assigned	a	value	when	they	are	declared.
Because	you	assign	data	of	the	String	type	to	playerName	and	of	the	Int
type	to	experiencePoints	when	you	declare	them,	the	Kotlin	compiler
infers	the	appropriate	type	information	for	both	variables.
Just	as	IntelliJ	can	help	you	change	a	var	to	a	val,	it	can	also	help	you	remove
unneeded	type	specifications.	Click	on	the	String	type	definition	(:	String)
next	to	playerName	and	press	Option-Return	(Alt-Enter).	Then	click	Remove
explicit	type	specification	in	the	pop-up	(Figure	2.7).

Figure	2.7		Removing	explicit	type	specification

:	String	will	disappear.	Repeat	the	process	for	the	experiencePoints	var
to	remove	:	Int.
Whether	you	take	advantage	of	type	inference	or	specify	the	type	when	you
declare	the	variable,	the	compiler	will	keep	track	of	the	type.	In	this	book,	we
use	type	inference	where	it	is	unambiguous	to	do	so.	Type	inference	helps	keep
code	clean,	concise,	and	easier	to	modify	as	your	program	changes.
Note	that	IntelliJ	will	display	the	type	of	any	variable	on	request,	including	those
that	use	type	inference.	If	you	ever	have	a	question	about	the	type	of	a	variable,
click	on	its	name	and	press	Control-Shift-P.	IntelliJ	will	display	its	type
(Figure	2.8).

Figure	2.8		Displaying	type	info

Compile-Time	Constants
Earlier	we	told	you	that	vars	can	have	their	values	changed	and	vals	cannot.
That	…	was	a	white	lie.	In	fact,	there	are	special	cases	where	a	val	can	return
different	values,	which	we	will	discuss	in	Chapter	12.	If	you	have	a	piece	of	data
that	you	want	to	be	absolutely,	positively	immutable	–	to	never	change	–
consider	a	compile-time	constant.
A	compile-time	constant	must	be	defined	outside	of	any	function,	including
main,	because	its	value	must	be	assigned	at	compile	time	(that	is,	when	the
program	compiles)	–	hence	the	name.	main	and	your	other	functions	are	called
during	runtime	(when	the	program	is	executed),	and	the	variables	within	them
are	assigned	their	values	then.	A	compile-time	constant	exists	before	any	of
these	assignments	take	place.
Compile-time	constants	also	must	be	of	one	of	the	following	basic	types,
because	use	of	more	complex	types	for	a	constant	could	jeopardize	the	compile-
time	guarantee.	You	will	learn	more	about	how	types	are	constructed	in
Chapter	13.	Here	are	the	supported	basic	types	for	a	compile-time	constant:

String

Int

Double

Float

Long

Short

Byte

Char

Boolean

Add	a	compile-time	constant	to	TypeIntro.kt,	above	the	declaration	of	the
main	function,	using	the	const	modifier:

Listing	2.10		Declaring	a	compile-time	constant	(TypeIntro.kt)

const	val	MAX_EXPERIENCE:	Int	=	5000

fun	main(args:	Array<String>)	{

				...

}

Prepending	a	val	with	the	const	modifier	tells	the	compiler	that	it	can	be	sure
that	this	val	will	never	change.	In	this	case,	MAX_EXPERIENCE	is	guaranteed
to	have	the	integer	value	5000,	no	matter	what.	This	gives	the	compiler	the
flexibility	to	perform	optimization	behind	the	scenes.
Wondering	about	the	format	of	the	const	val’s	name,	MAX_EXPERIENCE?
While	this	format	is	not	required	by	the	compiler,	our	preferred	style	is	to
distinguish	const	vals	by	fully	capitalizing	them	and	replacing	spaces	with
underscores.	As	you	may	have	noticed,	we	use	camel	casing	and	an	initial
lowercase	for	both	vars	and	vals.	Style	norms	like	these	help	keep	your	code
readable	and	clear.

Inspecting	Kotlin	Bytecode
You	learned	in	Chapter	1	that	Kotlin	is	an	alternative	to	Java	for	writing
programs	that	run	on	the	JVM,	where	Java	bytecode	is	executed.	It	is	often
useful	to	inspect	the	Java	bytecode	that	the	Kotlin	compiler	generates	to	run	on
the	JVM.	You	will	look	at	the	bytecode	in	several	places	in	this	book	as	a	way	to
analyze	how	a	particular	language	feature	works	on	the	JVM.
Knowing	how	to	inspect	the	Java	equivalent	of	the	Kotlin	code	you	write	is	a
great	technique	for	understanding	how	Kotlin	works,	especially	if	you	have	Java
experience.	If	you	do	not	have	Java	experience	specifically,	the	Java	code	will
likely	share	familiar	traits	with	a	language	that	you	have	worked	with	–	so	think
of	it	as	a	pseudocode	to	aid	your	understanding.	And,	if	you	are	brand	new	to
programming	–	congratulations!	In	choosing	Kotlin,	you	have	chosen	a	language
that,	as	you	will	see	in	these	sections,	allows	you	to	express	the	same	logic	that
Java	does,	typically	in	much	less	code.
For	example,	you	may	have	wondered	how	using	type	inference	when	defining
variables	in	Kotlin	affects	the	resulting	bytecode	that	is	generated	to	run	on	the
JVM.	To	learn	how,	you	can	use	the	Kotlin	bytecode	tool	window.
In	TypeIntro.kt,	press	the	Shift	key	twice	to	open	the	Search	Everywhere
dialog.	Begin	entering	“show	kotlin	bytecode”	in	the	search	box,	and	select	Show
Kotlin	Bytecode	from	the	list	of	available	actions	when	it	appears	(Figure	2.9).

Figure	2.9		Showing	Kotlin	bytecode

The	Kotlin	bytecode	tool	window	will	open	(Figure	2.10).	(You	can	also	open
the	tool	window	with	Tools	→	Kotlin	→	Show	Kotlin	Bytecode.)

Figure	2.10		Kotlin	bytecode	tool	window

If	bytecode	is	not	your	native	tongue,	fear	not!	You	can	translate	the	bytecode
back	to	Java	to	see	it	represented	in	terms	you	may	be	more	familiar	with.	In	the
bytecode	tool	window,	click	the	Decompile	button	at	the	top	left.
A	new	tab	will	open	showing	TypeIntro.decompiled.java
(Figure	2.11),	a	Java	version	of	the	bytecode	the	Kotlin	compiler	generated	for
the	JVM.

Figure	2.11		Decompiled	bytecode

(The	red	underlines	in	this	case	are	due	to	a	quirk	in	the	interaction	between
Kotlin	and	Java,	rather	than	a	problem.)
Focus	on	the	variable	declarations	for	experiencePoints	and
playerName:
						String	playerName	=	"Estragon";

						int	experiencePoints	=	5;

Although	you	omitted	type	declarations	from	the	definitions	of	both	variables	in
the	Kotlin	source,	the	bytecode	that	was	generated	includes	explicit	type
definitions.	This	is	how	the	variables	would	be	declared	in	Java,	and	the
bytecode	gives	a	behind-the-scenes	look	at	Kotlin’s	type	inference	support.
You	will	dig	deeper	into	the	decompiled	Java	bytecode	in	later	chapters.	For
now,	close	TypeIntro.decompiled.java	(using	the	X	in	its	tab)	and	the
bytecode	tool	window	(using	the	 	icon	at	the	top	right).
In	this	chapter,	you	have	learned	how	to	store	basic	data	in	vars	and	vals	and
seen	when	to	use	each,	depending	on	whether	you	need	to	be	able	to	change	their
values.	You	have	seen	how	to	declare	immutable	values	using	compile-time
constants.	Last,	you	learned	how	Kotlin	leverages	the	power	of	type	inference	to

save	you	keystrokes	every	time	you	declare	a	variable.	You	will	be	using	all
these	basic	tools	over	and	over	as	you	proceed	through	this	book.
In	the	next	chapter,	you	will	learn	how	to	represent	more	complex	states	using
conditionals.

For	the	More	Curious:	Java	Primitive	Types	in
Kotlin
In	Java,	there	are	two	kinds	of	types:	reference	types	and	primitive	types.
Reference	types	are	defined	in	source	code:	A	matching	source	code	definition
corresponds	to	the	type.	Java	also	offers	primitive	types	(often	called	just
“primitives”),	which	have	no	source	file	definition	and	are	represented	by	special
keywords	instead.
A	reference	type	in	Java	always	begins	with	a	capital	letter,	indicating	that	it	is
backed	by	a	source	definition	for	its	type.	Here	is	experiencePoints	defined
using	a	Java	reference	type:
				Integer	experiencePoints	=	5;

A	Java	primitive	type	starts	with	a	lowercase	letter:
				int	experiencePoints	=	5;

All	primitives	in	Java	have	a	corresponding	reference	type.	(But	not	all	reference
types	have	a	corresponding	primitive	type.)	Why	use	one	versus	the	other?
One	reason	for	choosing	a	reference	type	is	that	there	are	certain	features	of	the
Java	language	that	are	only	available	when	using	reference	types.	Generics,	for
example,	which	you	will	learn	about	in	Chapter	17,	do	not	work	with	primitives.
Reference	types	can	also	work	with	the	object-oriented	features	of	Java	more
readily	than	Java	primitives.	(You	will	learn	about	object-oriented	programming
and	the	object-oriented	features	of	Kotlin	in	Chapter	12.)
On	the	other	hand,	primitives	offer	better	performance	and	some	other	perks.
Unlike	Java,	Kotlin	provides	only	one	kind	of	type:	reference	types.
				var	experiencePoints:	Int	=	5

Kotlin	made	this	design	decision	for	several	reasons.	First,	if	there	is	no	choice
between	kinds	of	types,	you	cannot	code	yourself	into	a	corner	as	easily	as	you
can	with	multiple	kinds	to	choose	from.	For	example,	what	if	you	define	an
instance	of	a	primitive	type,	then	realize	later	that	you	need	to	use	the	generic
feature,	which	requires	a	reference	type?	Having	only	reference	types	in	Kotlin
means	that	you	will	never	encounter	this	problem.
If	you	are	familiar	with	Java,	you	may	be	thinking,	“But	primitives	offer	better
performance	than	reference	types!”	This	is	true.	But	take	another	look	at	the
experiencePoints	variable	in	the	decompiled	bytecode	you	saw	earlier:

		int	experiencePoints	=	5;

As	you	can	see,	a	primitive	type	was	used	in	place	of	the	reference	type.	Why	is
that,	if	Kotlin	only	has	reference	types?	The	Kotlin	compiler	will,	where
possible,	use	primitives	in	the	Java	bytecode,	because	they	do	indeed	offer	better
performance.
Kotlin	gives	you	the	ease	of	reference	types	with	the	performance	of	primitives
under	the	hood.	In	Kotlin	you	will	find	a	corresponding	reference	type	for	the
eight	primitive	types	you	may	be	familiar	with	in	Java.

Challenge:	hasSteed
Here	is	your	first	challenge:	In	the	text	adventure	game,	players	may	acquire	a
dragon	or	minotaur	they	can	ride.	Define	a	variable	called	hasSteed	to	track
whether	the	player	has	acquired	one.	Give	the	variable	an	initial	state	indicating
that	the	player	does	not	have	one	yet.

Challenge:	The	Unicorn’s	Horn
Imagine	this	scene	from	the	adventure	game:
The	hero	Estragon	arrives	at	a	pub	known	as	the	Unicorn’s	Horn.	The	publican
asks,	“Do	you	need	to	stable	a	steed?”
“No,”	Estragon	replies,	“I	have	no	steed.	But	I	do	have	50	gold	pieces,	and	I
would	like	a	drink.”
“Excellent!”	says	the	publican.	“I	have	mead,	wine,	and	LaCroix.	What	will	you
have?”
For	this	challenge,	add	below	your	hasSteed	variable	the	variables	required
for	the	scene	at	the	Unicorn’s	Horn,	using	type	inference	and	assigned	values
where	possible.	Add	variables	to	hold	values	for	the	name	of	the	pub,	the	name
of	the	current	publican	on	duty,	and	how	much	gold	the	player	has	acquired	so
far.
Notice	that	the	Unicorn’s	Horn	has	a	menu	of	drinks	the	hero	can	select	from.
What	type	might	you	use	to	represent	the	menu?	If	you	need	to,	consult
Table	2.1.

Challenge:	Magic	Mirror
Refreshed,	Estragon	is	ready	for	a	challenging	quest.	Are	you?
The	hero	discovers	a	magic	mirror	that	shows	a	player	the	reflection	of	their
playerName.	Using	the	String	type’s	magic,	transform	the	playerName
string	"Estragon"	into	"nogartsE",	a	reflection	of	its	value.
To	solve	this	challenge,	consult	the	documentation	for	String	at
kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/

index.html.	You	will	find	that,	fortunately,	the	actions	that	a	particular	type
can	perform	are	usually	very	intuitively	named	(hint).

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-string/index.html

3	
Conditionals

In	this	chapter,	you	will	learn	how	to	define	rules	for	when	code	should	be
executed.	This	language	feature	is	called	control	flow,	and	it	allows	you	to
describe	the	conditions	for	when	specific	portions	of	your	program	should	run.
You	will	see	the	if/else	statement	and	expression	and	the	when	expression,	and
you	will	learn	how	to	write	true/false	tests	using	the	comparison	and	logical
operators.	Along	the	way,	you	will	also	take	a	look	at	Kotlin’s	string	templating
feature.
To	see	these	concepts	in	action,	you	will	begin	building	a	project	called
NyetHack,	which	you	will	work	on	through	most	of	this	book.
Why	“NyetHack”?	We	are	glad	you	asked.	Perhaps	you	remember	NetHack,	a
game	released	in	1987	by	The	NetHack	DevTeam.	NetHack	was	a	single-player
text-based	fantasy	game	with	ASCII	graphics;	check	it	out	at	nethack.org.
You	will	be	building	elements	of	a	similar	text-based	game	(no	awesome	ASCII
graphics,	though	–	sorry).	JetBrains,	the	creator	of	the	Kotlin	language,	has
offices	in	Russia;	when	you	put	together	a	text-based	game	like	NetHack	and
Kotlin’s	Russian	origins,	you	get	NyetHack.

http://www.nethack.org

if/else	Statements
Let’s	get	started.	Open	IntelliJ	and	create	a	new	project.	(If	you	already	have
IntelliJ	open,	you	can	select	File	→	New	→	Project...)	Select	the	Kotlin/JVM	target
and	name	your	project	NyetHack.
Click	on	the	NyetHack	disclosure	arrow	in	the	project	tool	window	and	right-click
the	src	directory	to	create	a	new	Kotlin	File/Class.	Name	your	file	Game.	Add	a
main	entry	point	function	to	Game.kt	by	typing	“main”	and	pressing	the	Tab
key.	Your	function	should	look	like	this:
				fun	main(args:	Array<String>)	{

				}

In	NyetHack,	a	player’s	condition	is	based	on	remaining	health	points,	ranging
from	0	to	100.	On	their	quest,	they	may	sustain	injuries	during	combat.	On	the
other	hand,	they	may	be	in	excellent	condition.	You	want	to	define	rules	for	how
to	describe	the	player’s	visible	health	condition:	If	the	player’s	health	is	100,
you	want	to	show	that	they	are	in	excellent	health,	else	you	will	let	them	know
how	hurt	they	are.	One	tool	you	can	use	to	define	rules	like	that	is	the	if/else
statement.
Within	the	main	function,	write	your	first	if/else	statement,	as	shown	below.
There	is	a	lot	going	on	in	this	code;	we	will	break	it	down	after	you	enter	it.

Listing	3.1		Printing	the	player’s	health	condition	(Game.kt)
fun	main(args:	Array<String>)	{

				val	name	=	"Madrigal"

				var	healthPoints	=	100

				if	(healthPoints	==	100)	{

								println(name	+	"	is	in	excellent	condition!")

				}	else	{

								println(name	+	"	is	in	awful	condition!")

				}

}

Let’s	go	through	this	new	code	line	by	line.	First,	you	define	a	val	called	name
and	assign	it	a	string	value	representing	your	intrepid	player’s	name.	Next,	you
define	a	var	called	healthPoints	and	assign	it	an	initial	value	of	100,	a
perfect	score.	Then,	you	add	an	if/else	statement.
In	your	if/else	statement,	you	begin	by	posing	the	following	true/false
question:	“Does	the	player	have	a	healthPoints	score	of	100?”	You	express
this	with	the	==	structural	equality	operator.	It	can	be	read	as	“is	equal	to,”	so
this	statement	reads	“if	healthPoints	is	equal	to	100.”

Your	if	statement	is	followed	by	a	statement	in	curly	braces	({}).	The	code
within	the	curly	braces	is	what	you	want	the	program	to	do	if	the	if	condition
evaluates	as	the	Boolean	value	true	–	in	this	case,	if	healthPoints	has	a
value	of	exactly	100.
				if	(healthPoints	==	100)	{

								println(name	+	"	is	in	excellent	condition!")

				}

Included	in	this	statement	is	the	familiar	println	function	used	to	print
something	to	the	console.	What	to	print,	in	the	parentheses,	consists	of	the	value
of	name	and	the	string	"	is	in	excellent	condition!"	(Note	the	leading
space,	so	you	do	not	get	a	result	of	Madrigalis	in	excellent	condition!)	In
short,	your	if/else	statement	so	far	says	that	if	Madrigal	has	100	health	points,
the	program	should	print	that	the	hero	is	in	excellent	condition.
(While	your	if	statement’s	curly	braces	enclose	only	one	statement,	more	than
one	can	be	included	if	you	want	multiple	actions	to	be	taken	when	the	if
evaluates	as	true.)
Using	the	addition	operator	(+)	to	append	a	value	to	a	string	is	called	string
concatenation.	It	is	an	easy	way	to	customize	what	is	printed	to	the	console
based	on	the	value	of	a	variable.	Later	in	this	chapter,	you	will	see	another,
preferred	way	to	inject	values	into	your	strings.
What	if	healthPoints	has	a	value	other	than	100?	In	that	case,	the	if
evaluates	as	false,	and	the	compiler	will	skip	the	expression	in	curly	braces	that
follows	if	and	move	on	to	the	else.	Think	of	else	as	meaning	“otherwise”:	If
some	condition	is	true,	do	this;	otherwise	do	that.	Like	if,	else	is	followed	by
one	or	more	expressions	in	curly	braces	that	tell	the	compiler	what	to	do.	But
unlike	if,	else	does	not	need	to	define	a	condition.	It	applies	whenever	the	if
does	not,	so	the	curly	braces	immediately	follow	the	keyword.
				else	{

								println(name	+	"	is	in	awful	condition!")

				}

The	only	difference	in	this	call	to	the	println	function	is	in	the	string	that
follows	the	hero’s	name.	Instead	of	reporting	that	the	hero	“is	in	excellent
condition!”,	this	one	reports	that	the	injured	hero	“is	in	awful	condition!”	(Thus
far,	most	of	the	function	calls	that	you	have	seen	serve	only	to	print	strings	out	to
the	console.	You	will	learn	more	about	functions,	including	how	to	define	your
own,	in	Chapter	4.)
Putting	this	all	together	in	plain	English,	your	code	says	to	the	compiler,	“If	the
hero	has	exactly	100	health	points,	print	Madrigal	is	in	excellent
condition!	to	the	console.	If	Madrigal	does	not	have	100	health	points,	print

Madrigal	is	in	awful	condition!	to	the	console.”
The	structural	equality	operator,	==,	is	one	of	Kotlin’s	comparison	operators.
Table	3.1	lists	Kotlin’s	comparison	operators.	You	do	not	need	to	know	all	of	the
operators	listed	now,	as	you	will	learn	more	about	them	later.	Return	to	this	table
when	you	are	considering	possible	operators	to	express	a	condition.

Table	3.1		Comparison	operators
Operator Description

< Evaluates	whether	the	value	on	the	left	is	less	than	the	value	on	the
right.

<= Evaluates	whether	the	value	on	the	left	is	less	than	or	equal	to	the
value	on	the	right.

> Evaluates	whether	the	value	on	the	left	is	greater	than	the	value	on
the	right.

>= Evaluates	whether	the	value	on	the	left	is	greater	than	or	equal	to
the	value	on	the	right.

== Evaluates	whether	the	value	on	the	left	is	equal	to	the	value	on	the
right.

!= Evaluates	whether	the	value	on	the	left	is	not	equal	to	the	value	on
the	right.

=== Evaluates	whether	the	two	instances	point	to	the	same	reference.
!== Evaluates	whether	the	two	instances	do	not	point	to	the	same

reference.

Back	to	business.	Run	Game.kt	by	clicking	the	run	button	to	the	left	of	the
main	function.	You	should	see	the	following	output:
				Madrigal	is	in	excellent	condition!

Since	the	condition	you	defined,	healthPoints	==	100,	is	true,	the	if	branch	in
the	if/else	statement	was	triggered.	(We	use	the	word	branch	because	the	flow
of	your	code	execution	will	branch	depending	on	whether	your	specified
condition	is	met.)	Now,	try	changing	the	healthPoints	value	to	89:

Listing	3.2		Modifying	healthPoints	(Game.kt)
fun	main(args:	Array<String>)	{

				val	name	=	"Madrigal"

				var	healthPoints	=	100

				var	healthPoints	=	89

				if	(healthPoints	==	100)	{

								println(name	+	"	is	in	excellent	condition!")

				}	else	{

								println(name	+	"	is	in	awful	condition!")

				}

}

Run	the	program	again,	and	you	will	see:
				Madrigal	is	in	awful	condition!

Now,	the	condition	you	defined	is	false	(89	is	not	equal	to	100),	so	the	else
branch	is	triggered.

Adding	more	conditions

The	health	status	code	gives	a	crude	idea	of	the	player’s	condition,	but	it	is	…
well,	crude.	If	the	player’s	healthPoints	is	89,	you	report	that	they	are	in
“awful	condition,”	which	hardly	makes	sense.	It	might	be	just	a	flesh	wound,
after	all.
To	make	your	if/else	statement	more	nuanced,	you	can	add	more	conditions	to
check	for	and	more	branches	to	include	as	possible	results.	You	do	this	with	else
if	branches,	whose	syntax	is	just	like	an	if’s,	between	the	if	and	the	else.
Update	your	if/else	statement	to	include	three	else	if	branches	checking	for
intermediate	values	of	healthPoints:

Listing	3.3		Checking	for	more	player	conditions	(Game.kt)
fun	main(args:	Array<String>)	{

				val	name	=	"Madrigal"

				var	healthPoints	=	89

				if	(healthPoints	==	100)	{

								println(name	+	"	is	in	excellent	condition!")

				}	else	if	(healthPoints	>=	90)	{

								println(name	+	"	has	a	few	scratches.")

				}	else	if	(healthPoints	>=	75)	{

								println(name	+	"	has	some	minor	wounds.")

				}	else	if	(healthPoints	>=	15)	{

								println(name	+	"	looks	pretty	hurt.")

				}	else	{

								println(name	+	"	is	in	awful	condition!")

				}

}

Your	new	logic	reads	like	this:

If	Madrigal	has	this	many	health	points …	print	this	message
100 Madrigal	is	in	excellent	condition!
90-99 Madrigal	has	a	few	scratches.
75-89 Madrigal	has	some	minor	wounds.
15-74 Madrigal	looks	pretty	hurt.

0-14 Madrigal	is	in	awful	condition!

Run	the	program	again.	Because	the	value	of	Madrigal’s	healthPoints	is	89,
neither	the	if	nor	the	first	else	if	will	evaluate	as	true.	But	else	if
(healthPoints	>=	75)	is	true,	so	you	will	see	Madrigal	has	some	minor
wounds.	in	the	console.
Note	that	the	compiler	evaluates	the	conditions	of	an	if/else	from	top	to
bottom	and	stops	checking	conditions	as	soon	as	one	evaluates	as	true.	If	none	of
the	conditions	you	provide	are	true,	the	else	branch	will	be	executed.
This	means	that	the	order	of	the	conditions	matters:	If	you	had	arranged	the	if
and	else	ifs	from	the	lowest	checked	value	to	the	highest,	none	of	the	else
ifs	would	ever	be	executed.	Any	healthPoints	value	of	15	or	higher	would
trigger	the	first	condition,	and	any	value	lower	than	15	would	make	the	else	ifs
evaluate	as	false	–	so	the	else	would	apply.	(Do	not	make	this	change	to	your
code.	It	is	only	for	illustration.)
				fun	main(args:	Array<String>)	{

								val	name	=	"Madrigal"

								var	healthPoints	=	89

								if	(healthPoints	>=	15)	{		//	Triggered	for	any	value	of	15	or	higher

												println(name	+	"	looks	pretty	hurt.")

								}	else	if	(healthPoints	>=	75)	{

												println(name	+	"	has	some	minor	wounds.")

								}	else	if	(healthPoints	>=	90)	{

												println(name	+	"	has	a	few	scratches.")

								}	else	if	(healthPoints	==	100)	{

												println(name	+	"	is	in	excellent	condition!")

								}	else	{																						//	Triggered	for	values	0-14

												println(name	+	"	is	in	awful	condition!")

								}

				}

You	have	added	more	subtlety	in	how	the	player’s	health	is	reported	by
including	else	if	statements	with	more	conditions	to	check	when	the	initial	if
condition	evaluates	as	false.	Try	varying	healthPoints’s	value	to	trigger	the
result	in	each	branch	you	defined.	When	you	are	done,	return	healthPoints
to	a	value	of	89.

Nested	if/else	statements

In	NyetHack,	a	player	can	be	“blessed,”	which	means	that	if	they	are	in	good
health	they	will	heal	from	minor	injuries	quickly.	Your	next	step	is	to	add	a
variable	to	track	whether	a	player	is	blessed	(what	type	do	you	think	it	will	be?)
and,	if	so,	to	change	the	health	status	message	to	reflect	that.
Do	this	by	nesting	an	if/else	statement	within	one	of	your	existing	branches	so
that	when	the	player’s	health	is	greater	than	or	equal	to	75	you	use	an	additional
if/else	to	check	whether	the	player	is	blessed.	(As	you	enter	the	changes

below,	do	not	miss	the	added	}	before	the	last	else	if.)

Listing	3.4		Checking	for	blessedness	(Game.kt)
fun	main(args:	Array<String>)	{

				val	name	=	"Madrigal"

				var	healthPoints	=	89

				val	isBlessed	=	true

				if	(healthPoints	==	100)	{

								println(name	+	"is	in	excellent	condition!")

				}	else	if	(healthPoints	>=	90)	{

								println(name	+	"	has	a	few	scratches.")

				}	else	if	(healthPoints	>=	75)	{

								if	(isBlessed)	{

												println(name	+	"	has	some	minor	wounds	but	is	healing	quite	quickly!")

								}	else	{

												println(name	+	"	has	some	minor	wounds.")

								}

				}	else	if	(healthPoints	>=	15)	{

								println(name	+	"	looks	pretty	hurt.")

				}	else	{

								println(name	+	"	is	in	awful	condition!")

				}

}

You	added	a	Boolean	val	representing	whether	the	player	is	blessed	and	inserted
an	if/else	statement	to	create	a	new	output	when	a	player	is	blessed	and	has
between	75	and	89	health	points.	Recall	that	healthPoints	has	a	value	of	89,
so	you	should	expect	to	see	the	new	message	when	you	run	the	program.	Run	it
and	see.	Your	output	should	be:
				Madrigal	has	some	minor	wounds	but	is	healing	quite	quickly!

If	you	see	any	other	output,	check	that	your	code	matches	Listing	3.4	exactly	–
in	particular	that	healthPoints	is	assigned	a	value	of	89.
Nesting	conditionals	allows	you	to	create	logical	branches	within	branches	so
that	the	conditions	that	you	check	for	can	be	precise	and	complex.

More	elegant	conditionals

If	you	do	not	keep	a	sharp	eye	on	them,	conditionals	will	explode	all	over	the
place	like	tribbles.	Thankfully,	Kotlin	allows	you	to	take	advantage	of
conditionals’	usefulness	while	keeping	them	concise	and	readable.	Let’s	look	at
some	examples.

Logical	operators

In	NyetHack,	more	complex	conditions	can	arise	that	you	need	to	check	for.	For
example,	if	a	player	is	blessed	and	their	health	is	above	50,	or	if	they	are
immortal,	they	have	an	aura	that	is	visible.	Otherwise,	the	player’s	aura	cannot

be	seen	by	the	naked	eye.
You	could	use	a	series	of	if/else	statements	to	determine	whether	a	player	has
a	visible	aura,	but	you	would	end	up	with	a	lot	of	duplicate	code	and	the	logic	of
the	conditions	would	be	masked.	There	is	a	more	elegant	and	reader-friendly
way:	using	logical	operators	in	a	conditional.
Add	a	new	variable	and	an	if/else	statement	to	print	aura	information	to	the
console:

Listing	3.5		Using	logical	operators	in	a	conditional	(Game.kt)
fun	main(args:	Array<String>)	{

				val	name	=	"Madrigal"

				var	healthPoints	=	89

				val	isBlessed	=	true

				val	isImmortal	=	false

				//	Aura

				if	(isBlessed	&&	healthPoints	>	50	||	isImmortal)	{

								println("GREEN")

				}	else	{

								println("NONE")

				}

				if	(healthPoints	==	100)	{

								...

				}

}

You	added	a	val	called	isImmortal	to	track	the	player’s	immortality	(read-
only	because	a	player’s	immortality	does	not	change).	That	part	is	familiar,	but
there	are	a	couple	of	new	things	going	on,	too.	First,	you	included	a	code
comment,	indicated	by	//.
Anything	to	the	right	of	//	is	included	in	the	comment	and	is	ignored	by	the
compiler,	so	you	can	use	any	syntax	you	want	there.	Comments	are	useful	for
organizing	and	adding	information	about	your	code,	making	it	more	readable	for
others	(or	for	your	future	self,	who	may	not	remember	all	the	details).
Next,	you	used	two	logical	operators	in	your	if.	Logical	operators	allow	you	to
combine	comparison	operators	into	a	larger	statement.
&&	is	the	logical	‘and’	operator,	and	it	requires	that	both	the	condition	on	its	left
and	the	condition	on	its	right	be	true	for	the	expression	as	a	whole	to	be	true.	||
is	the	logical	‘or’	operator,	and	it	allows	the	expression	as	a	whole	to	be	true	if
either	the	condition	on	its	left	or	the	condition	on	its	right	(or	both)	is	true.
Table	3.2	shows	Kotlin’s	logical	operators.

Table	3.2		Logical	operators
Operator Description

&&

Logical	‘and’:	true	if	and	only	if	both	are	true	(false	otherwise).
|| Logical	‘or’:	true	if	either	is	true	(false	only	if	both	are	false).
! Logical	‘not’:	true	becomes	false,	false	becomes	true.

One	note:	When	operators	are	combined,	there	is	an	order	of	precedence	that
determines	what	order	they	are	evaluated	in.	Operators	with	the	same	precedence
are	applied	from	left	to	right.	You	can	also	group	operations	by	surrounding	the
operators	that	should	be	evaluated	as	a	group	in	parentheses.	Here	is	the	order	of
operator	precedence,	from	highest	to	lowest:
!	(logical	‘not’)
<	(less	than),	<=	(less	than	or	equal	to),	>	(greater	than),	>=	(greater	than	or
equal	to)
==	(structural	equality),	!=	(non-equality)
&&	(logical	‘and’)
||	(logical	‘or’)

Getting	back	to	NyetHack,	let’s	take	a	look	at	your	new	condition:
				if	(isBlessed	&&	healthPoints	>	50	||	isImmortal)	{

								println("GREEN")

				}

Put	another	way,	if	the	player	is	blessed	and	has	more	than	50	health	points,	or	if
the	player	is	immortal,	a	green	aura	is	visible.	Madrigal	is	not	immortal,	but	is
blessed	and	has	89	health	points.	Thus,	the	first	option	is	met,	and	Madrigal’s
aura	should	be	visible.	Run	your	program	to	see	whether	this	is	so.	You	should
see:
				GREEN

				Madrigal	has	some	minor	wounds	but	is	healing	quite	quickly!

Think	about	the	nested	conditional	statements	that	would	be	required	to	express
this	logic	without	logical	operators.	These	operators	give	you	the	tools	to	express
complex	logic	clearly.
Your	aura	code	is	more	clear	than	a	set	of	if/else	statements,	but	it	could	be
even	more	readable.	Logical	operators	are	not	only	for	conditionals.	They	can	be
used	in	many	expressions,	including	in	the	declaration	of	a	variable.	Add	a	new
Boolean	variable	that	encapsulates	the	conditions	for	a	visible	aura	and	refactor
(that	is,	rewrite)	your	conditional	to	use	the	new	variable.

Listing	3.6		Using	logical	operators	in	the	declaration	of	a	variable
(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Aura

				if	(isBlessed	&&	healthPoints	>	50	||	isImmortal)	{

				val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

				if	(auraVisible)	{

								println("GREEN")

				}	else	{

								println("NONE")

				}

				...

}

You	have	moved	the	condition	check	to	a	new	val	called	auraVisible	and
changed	your	if/else	statement	to	check	its	value.	This	is	functionally
equivalent	to	what	you	had	written	before,	but	now	you	express	the	rules	as	a
value	assignment	instead.	The	name	of	the	value	clearly	signifies	what	the	rule
you	defined	expresses	in	“human-readable”	terms:	aura	visibility.	This	is	an
especially	useful	technique	for	when	your	program’s	rules	become	complex,	and
it	helps	to	communicate	what	your	rules	mean	for	future	readers	of	your	code.
Run	your	program	again	to	make	sure	it	functions	as	before.	The	output	should
be	the	same.

Conditional	expressions

Now	the	if/else	statement	displays	the	player’s	health	status	correctly	–	and
with	some	subtlety.
On	the	other	hand,	it	would	be	somewhat	unwieldy	to	make	changes	to	it,
because	each	branch	repeats	a	similar	println	statement.	What	if	you	wanted
to	make	a	change	to	the	overall	formatting	of	the	player	status	display?	The
program	in	its	current	state	would	require	you	to	hunt	through	each	branch	in	the
if/else	statement	and	change	each	println	function	to	the	new	format.
You	can	solve	this	by	changing	the	if/else	statement	you	wrote	to	a	conditional
expression	instead.	A	conditional	expression	is	like	a	conditional	statement,
except	that	you	assign	the	if/else	to	a	value	that	you	can	use	later.	Update	the
health	status	display	code	to	see	what	this	looks	like.

Listing	3.7		Using	a	conditional	expression	(Game.kt)
fun	main(args:	Array<String>)	{

				...

				if	(healthPoints	==	100)	{

				val	healthStatus	=	if	(healthPoints	==	100)	{

								println(name	+	"is	in	excellent	condition!")

								"is	in	excellent	condition!"

				}	else	if	(healthPoints	>=	90)	{

								println(name	+	"	has	a	few	scratches.")

								"has	a	few	scratches."

				}	else	if	(healthPoints	>=	75)	{

								if	(isBlessed)	{

												println(name	+	"	has	some	minor	wounds	but	is	healing	quite	quickly!")

												"has	some	minor	wounds	but	is	healing	quite	quickly!"

								}	else	{

												println(name	+	"	has	some	minor	wounds.")

												"has	some	minor	wounds."

								}

				}	else	if	(healthPoints	>=	15)	{

								println(name	+	"	looks	pretty	hurt.")

								"looks	pretty	hurt."

				}	else	{

								println(name	+	"	is	in	awful	condition!")

								"is	in	awful	condition!"

				}

				//	Player	status

				println(name	+	"	"	+	healthStatus)

}

(Incidentally,	if	you	are	tired	of	keeping	your	code	nicely	indented	as	you	make
changes,	IntelliJ	is	here	to	help.	Select	Code	→	Auto-Indent	Lines	and	enjoy	the
simple	pleasure	of	clean	indents.)
Through	the	if/else	expression,	the	new	variable	healthStatus	is	assigned
a	string	value	of	"is	in	excellent	condition!",	etc.,	depending	on	the	value
of	healthPoints.	That	is	the	beauty	of	a	conditional	expression.	Because
you	can	now	print	the	player’s	status	using	the	new	healthStatus	variable,
you	are	able	to	remove	six	virtually	identical	print	statements.
When	you	need	to	assign	a	variable	based	on	a	condition,	you	can	likely	use	a
conditional	expression.	Keep	in	mind,	however,	that	conditional	expressions	are
often	most	intuitive	when	the	value	being	assigned	from	each	branch	is	of	the
same	type	(like	the	healthStatus	strings).
Your	aura	code	can	also	be	streamlined	using	a	conditional	expression.	Do	so
now.

Listing	3.8		Improving	aura	code	with	a	conditional	expression
(Game.kt)
...

//	Aura

val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

if	(auraVisible)	{

				println("GREEN")

}	else	{

				println("NONE")

}

val	auraColor	=	if	(auraVisible)	"GREEN"	else	"NONE"

println(auraColor)

...

Run	your	code	one	more	time	to	make	sure	everything	works	as	expected.	You
should	see	the	same	output,	but	your	code	is	now	more	elegant	and	reader-
friendly.
You	may	have	noticed	that	you	dropped	the	curly	braces	in	the	aura	color
conditional	expression.	Let’s	discuss	why.

Removing	braces	from	if/else	expressions

In	cases	where	you	have	a	single	response	for	the	matching	condition,	it	is	valid
(at	least,	syntactically	–	more	on	that	shortly)	to	omit	the	curly	braces	wrapping
the	expression.	You	can	only	omit	the	{}s	when	a	branch	contains	only	one
expression	–	omitting	them	from	a	branch	with	more	than	one	expression	will
affect	how	the	code	is	evaluated.
Take	a	look	at	a	version	of	healthStatus	without	braces:
				val	healthStatus	=	if	(healthPoints	==	100)	"is	in	excellent	condition!"

								else	if	(healthPoints	>=	90)	"has	a	few	scratches."

								else	if	(healthPoints	>=	75)

												if	(isBlessed)	"has	some	minor	wounds	but	is	healing	quite	quickly!"

												else	"has	some	minor	wounds."

								else	if	(healthPoints	>=	15)	"looks	pretty	hurt."

								else	"is	in	awful	condition!"

This	version	of	the	healthStatus	conditional	expression	does	the	same	thing
as	the	version	you	have	in	your	code.	It	even	expresses	the	same	logic	in	less
code.	But	which	version	do	you	find	easier	to	read	and	understand	at	a	glance?	If
you	chose	the	version	with	the	braces	–	the	version	in	your	code	–	you	have
chosen	the	style	that	the	Kotlin	community	prefers.
We	recommend	that	you	do	not	omit	braces	for	conditional	statements	or
expressions	that	span	more	than	one	line.	For	one	thing,	without	braces	it
becomes	increasingly	difficult	to	understand	where	a	branch	starts	and	ends	with
every	condition	that	is	added.	For	another,	omitting	the	braces	for	the	conditional
increases	the	risk	of	a	new	contributor	mistakenly	updating	the	wrong	branch	or
misunderstanding	what	the	implementation	does.	It	is	just	not	worth	it	to	save	a
few	keystrokes.
Also,	while	the	code	above	expresses	the	same	thing	with	or	without	braces,	this
is	not	the	case	for	every	example.	If	you	have	multiple	expressions	on	a	branch
and	you	drop	the	braces	around	the	conditional,	only	the	first	expression	is
executed	in	that	branch.	Take	this	example:
				var	arrowsInQuiver	=	2

				if	(arrowsInQuiver	>=	5)	{

								println("Plenty	of	arrows")

								println("Cannot	hold	any	more	arrows")

				}

If	the	hero	has	five	or	more	arrows,	they	have	plenty	and	cannot	hold	any	more.
The	hero	has	only	two	arrows,	so	nothing	prints	to	the	console.	However,
without	the	braces	the	logic	changes:
				var	arrowsInQuiver	=	2

				if	(arrowsInQuiver	>=	5)

								println("Plenty	of	arrows")

								println("Cannot	hold	any	more	arrows")

Without	the	braces,	the	second	println	statement	is	no	longer	part	of	the	if
branch.	While	"Plenty	of	arrows"	only	prints	when	arrowsInQuiver	is	at

least	5,	"Cannot	hold	any	more	arrows"	always	prints	–	no	matter	how	many
arrows	the	hero	is	carrying.
For	a	one-line	expression,	this	overall	principle	should	inform	your	choice:
“Which	way	of	writing	the	expression	is	most	clear	for	new	readers	to
understand?”	Often,	for	one-line	expressions,	removing	the	curly	braces	is	more
readable.	For	example,	removing	the	curly	braces	helps	to	clarify	a	simple	one-
line	conditional	expression	like	your	aura	code,	or	this	example:
				val	healthSummary	=	if	(healthPoints	!=	100)	"Need	healing!"	else	"Looking	good."

By	the	way,	if	you	are	thinking,	“OK,	but	I	still	don’t	love	the	if/else	syntax,
even	with	the	curly	braces.	It	is	just	ugly!”	…	fear	not.	You	are	going	to	rewrite
the	health	status	expression	one	last	time	in	a	less	verbose	–	and	more	legible	–
syntax	soon.

Ranges
All	the	conditions	that	you	wrote	in	the	if/else	expression	for	healthStatus
branch	off	the	value	of	an	integer,	healthPoints.	Some	branches	use	the
structural	equality	operator	to	check	whether	healthPoints	is	equal	to	a
value,	and	others	use	multiple	comparison	operators	to	check	whether
healthPoints	is	within	a	range	of	two	numbers.	There	is	a	better	alternative
for	the	second	group:	Kotlin	provides	ranges	to	represent	a	linear	series	of
values.
The	..	operator,	as	in	in	1..5,	signals	a	range.	A	range	includes	all	values	from
the	value	on	the	left	of	the	..	operator	to	the	value	on	the	right,	so	1..5	includes
1,	2,	3,	4,	and	5.	Ranges	can	also	be	a	sequence	of	characters.
You	use	the	in	keyword	to	check	whether	a	value	is	within	a	range.	Refactor
your	healthStatus	conditional	expression	to	use	ranges	rather	than
comparison	operators.

Listing	3.9		Refactoring	healthStatus	with	ranges	(Game.kt)
fun	main(args:	Array<String>)	{

				...

				val	healthStatus	=	if	(healthPoints	==	100)	{

												"is	in	excellent	condition!"

								}	else	if	(healthPoints	>=	90)	{

								}	else	if	(healthPoints	in	90..99)	{

												"has	a	few	scratches."

								}	else	if	(healthPoints	>=	75)	{

								}	else	if	(healthPoints	in	75..89)	{

												if	(isBlessed)	{

																"has	some	minor	wounds	but	is	healing	quite	quickly!"

												}	else	{

																"has	some	minor	wounds."

												}

								}	else	if	(healthPoints	>=	15)	{

								}	else	if	(healthPoints	in	15..74)	{

												"looks	pretty	hurt."

								}	else	{

												"is	in	awful	condition!"

								}

}

Bonus:	Using	ranges	in	a	conditional	like	this	solves	the	else	if	ordering	issue
you	saw	earlier	in	this	chapter.	With	ranges,	your	branches	can	be	in	any	order
and	the	code	will	evaluate	the	same.
In	addition	to	the	..	operator,	several	functions	exist	for	creating	ranges.	The
downTo	function	creates	a	range	that	descends	rather	than	ascends,	for	example.
And	the	until	function	creates	a	range	that	excludes	the	upper	bound	of	the
range	specified.	You	will	see	some	of	these	functions	in	a	challenge	near	the	end
of	this	chapter,	and	you	will	learn	more	about	ranges	in	Chapter	10.

when	Expressions
The	when	expression	is	another	control	flow	mechanism	available	in	Kotlin.	Like
if/else,	the	when	expression	allows	you	to	write	conditions	to	check	for	and
will	execute	corresponding	code	when	the	condition	evaluates	as	true.	when
provides	a	more	concise	syntax	and	is	an	especially	good	fit	for	conditionals
with	three	or	more	branches.
Suppose	that	in	NyetHack,	players	can	be	members	of	several	different	fantasy
races,	like	orc	or	gnome,	and	those	fantasy	races	ally	with	each	other	in	factions.
This	when	expression	takes	in	a	fantasy	race	and	returns	the	name	of	the	faction
to	which	it	belongs:
				val	race	=	"gnome"

				val	faction	=	when	(race)	{

								"dwarf"	->	"Keepers	of	the	Mines"

								"gnome"	->	"Keepers	of	the	Mines"

								"orc"	->	"Free	People	of	the	Rolling	Hills"

								"human"	->	"Free	People	of	the	Rolling	Hills"

				}

First,	a	val	is	declared,	race.	Next,	a	second	val	is	declared:	faction,	whose
value	is	determined	with	a	when	expression.	The	expression	checks	the	value	of
race	against	each	of	the	values	on	the	lefthand	side	of	the	->	operator	(called
the	arrow),	and	when	it	finds	a	match	it	assigns	faction	the	value	on	the
righthand	side.	(->	is	used	differently	in	other	languages	–	and,	in	fact,	it	has
other	uses	in	Kotlin,	as	you	will	see	later	in	this	book.)
By	default,	a	when	expression	behaves	as	though	there	were	a	==	equality
operator	between	the	argument	you	provide	in	parentheses	and	the	conditions
you	specify	in	the	curly	braces.	(An	argument	is	data	that	is	given	to	a	piece	of
code	as	input.	You	will	learn	more	about	them	in	Chapter	4.)
In	the	example	when	expression,	race	is	provided	as	the	argument,	so	the
compiler	compares	the	value	of	race,	which	is	"gnome",	against	the	first
condition	to	check	whether	they	are	equal.	They	are	not,	so	the	result	of	the
comparison	is	false,	and	the	compiler	moves	along	to	the	next	condition.	The
next	comparison	is	true,	so	the	value	in	the	corresponding	branch,	"Keepers	of
the	Mines",	is	assigned	to	faction.
Now	that	you	have	seen	how	to	leverage	when	expressions,	you	can	refine	how
the	healthStatus	logic	is	implemented.	You	previously	used	an	if/else
expression,	but,	in	this	case,	a	when	expression	will	make	your	code	more
readable	and	concise.	A	practical	rule	of	thumb	is	that	a	when	expression	should

replace	an	if/else	expression	if	your	code	includes	an	else	if	branch.
Update	the	healthStatus	logic	to	use	when:

Listing	3.10		Refactoring	healthStatus	with	when	(Game.kt)
fun	main(args:	Array<String>)	{

				...

				val	healthStatus	=	if	(healthPoints	==	100)	{

												"is	in	excellent	condition!"

								}	else	if	(healthPoints	in	90..99)	{

												"has	a	few	scratches."

								}	else	if	(healthPoints	in	75..89)	{

												if	(isBlessed)	{

																"has	some	minor	wounds	but	is	healing	quite	quickly!"

												}	else	{

																"has	some	minor	wounds."

												}

								}	else	if	(healthPoints	in	15..74)	{

												"looks	pretty	hurt."

								}	else	{

												"is	in	awful	condition!"

								}

				val	healthStatus	=	when	(healthPoints)	{

								100	->	"is	in	excellent	condition!"

								in	90..99	->	"has	a	few	scratches."

								in	75..89	->	if	(isBlessed)	{

												"has	some	minor	wounds	but	is	healing	quite	quickly!"

								}	else	{

												"has	some	minor	wounds."

								}

								in	15..74	->	"looks	pretty	hurt."

								else	->	"is	in	awful	condition!"

				}

}

A	when	expression	works	similarly	to	an	if/else	expression	in	that	you	define
conditions	and	branches	that	are	executed	if	a	condition	is	true.	when	is	different
in	that	it	scopes	the	lefthand	side	of	the	condition	automatically	to	whatever	you
provide	as	an	argument	to	when.	We	will	talk	more	about	scoping	in	more	depth
in	Chapter	4	and	Chapter	12.	For	a	quick	introduction,	consider	the	in	90..99
branch	condition.
You	have	seen	how	to	use	the	in	keyword	to	check	whether	a	value	is	within	a
range,	and	that	is	what	you	are	doing	here	–	you	are	checking	the	value	of
healthPoints,	even	though	you	do	not	mention	it	by	name.	Because	the
range,	on	the	left	of	the	->,	is	scoped	to	the	healthPoints	variable,	the
compiler	evaluates	when	expressions	as	though	healthPoints	were	included
in	each	branch	condition.
Often,	when	better	expresses	the	logic	behind	code.	In	this	case,	achieving	the
same	result	with	an	if/else	expression	required	three	else	if	branches.	Your
when	expression	is	much	cleaner.
when	expressions	also	support	greater	flexibility	than	if/else	statements	in	how
they	match	branches	against	the	conditions	you	define.	Most	of	the	conditions	on
the	lefthand	side	of	the	branches	evaluate	to	either	true	or	false,	and	others	fall
back	to	a	default	equality	check,	as	is	the	case	with	the	100	branch	condition.	A

when	expression	can	express	either	one	interchangeably,	as	demonstrated	above.
By	the	way,	were	you	wondering	about	the	nested	if/else	in	one	branch	of	your
when	expression?	This	pattern	is	not	very	common,	but	Kotlin’s	when	expression
gives	you	all	of	the	flexibility	that	you	need	to	implement	it.
Run	NyetHack	to	confirm	that	your	refactoring	of	healthStatus	to	use	a
when	expression	did	not	change	any	logic.

String	Templates
You	have	seen	that	a	string	can	be	built	up	with	the	values	of	variables	and	even
the	results	of	conditional	expressions.	Kotlin	features	string	templates	to	aid	in
this	common	need	and,	again,	make	your	code	more	readable.	Templates	allow
you	to	include	the	value	of	a	variable	inside	a	string’s	quotation	marks.	Update
the	player	status	display	code	to	use	string	templates,	as	shown	below:

Listing	3.11		Using	a	string	template	(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Player	status

				println(name	+	"	"	+	healthStatus)

				println("$name	$healthStatus")

}

You	added	the	values	of	name	and	healthStatus	to	the	player	status	display
string	by	prefixing	each	with	$.	This	special	symbol	indicates	to	Kotlin	that	you
would	like	to	template	a	val	or	var	within	a	string	you	define,	and	it	is	provided
as	a	convenience.	Note	that	these	templated	values	appear	inside	the	quotation
marks	that	define	the	string.
Run	the	program.	You	should	see	the	same	output	you	have	been	seeing:
				GREEN

				Madrigal	has	some	minor	wounds	but	is	healing	quite	quickly!

Kotlin	also	allows	you	to	evaluate	an	expression	within	a	string	and	interpolate
the	result	–	that	is,	to	insert	the	result	into	the	string.	Any	expression	that	you
add	within	the	curly	braces	after	a	dollar-sign	character	(${})	will	be	evaluated
as	a	part	of	the	string.	Add	a	report	of	the	player’s	blessedness	and	aura	color	to
the	player	status	display	to	see	how	this	works.	Be	sure	to	remove	the	existing
print	statement	for	auraColor.

Listing	3.12		Formatting	the	isBlessed	status	with	a	string
expression	(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Aura

				val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

				val	auraColor	=	if	(auraVisible)	"GREEN"	else	"NONE"

				print(auraColor)

				...

				//	Player	status

				println("(Aura:	$auraColor)	"	+

												"(Blessed:	${if	(isBlessed)	"YES"	else	"NO"})")

				println("$name	$healthStatus")

}

This	new	line	tells	the	compiler	to	print	the	literal	string	(Blessed:	and	the

result	of	the	expression	if	(isBlessed)	"YES"	else	"NO".	Note	that	this	one-
line	conditional	expression	takes	advantage	of	the	option	to	skip	braces	for
simplicity.	It	is	the	same	as:
				if	(isBlessed)	{

								"YES"

				}	else	{

								"NO"

				}

The	extra	syntax	adds	nothing	here,	so	doing	away	with	it	makes	sense.	Either
way,	the	string	template	will	place	the	result	of	the	conditional	in	the	string.
Before	you	run	the	program	to	check	your	addition,	what	do	you	think	the	result
will	be?	Run	the	program	to	confirm.
Much	of	the	work	programs	do	is	in	response	to	some	status	or	action.	In	this
chapter,	you	saw	how	to	add	rules	for	when	your	code	will	execute	by	using
if/else	and	when	expressions.	You	also	saw	the	assignable	version	of	if/else,
the	if/else	conditional	expression.	You	saw	how	to	represent	series	of	numbers
or	characters	using	ranges.	Finally,	you	saw	how	a	string	expression	can	be	used
to	conveniently	interpolate	variables	and	values	into	a	string.
Be	sure	to	save	NyetHack,	because	you	will	be	using	it	again	in	the	next	chapter
–	where	you	will	learn	more	about	functions,	a	way	to	group	and	reuse
expressions	in	your	program.

Challenge:	Trying	Out	Some	Ranges
Ranges	are	a	powerful	tool	in	Kotlin,	and	with	some	practice	you	will	find	the
syntax	intuitive.	For	this	simple	challenge,	open	the	Kotlin	REPL	(Tools	→	Kotlin
→	REPL)	and	explore	some	range	syntax,	including	the	toList(),	downTo,
and	until	functions.	Enter	the	following	ranges,	one	by	one.	Before	pressing
Command-Return	(Ctrl-Return)	to	execute	the	line	and	see	the	result,	think	about
what	you	expect	the	result	to	be.

Listing	3.13		Exploring	ranges	(REPL)
1	in	1..3

(1..3).toList()

1	in	3	downTo	1

1	in	1	until	3

3	in	1	until	3

2	in	1..3

2	!in	1..3

'x'	in	'a'..'z'

Challenge:	Enhancing	the	Aura
Before	you	start	this	challenge	or	the	next	one,	close	NyetHack	and	create	a
copy	of	it	using	your	file	explorer.	You	will	be	making	changes	to	your	program
that	you	will	not	want	to	keep	for	future	chapters.	Name	your	copy
NyetHack_ConditionalsChallenges	or	whatever	you	would	like.	You
will	want	to	do	this	before	starting	the	challenges	in	future	chapters	as	well.
Currently,	if	an	aura	is	displayed,	it	is	always	green.	For	this	challenge,	have	the
color	of	the	player’s	aura	reflect	their	current	karma.
Karma	has	a	numeric	value	from	0	to	20.	To	determine	the	player’s	karma,	use
the	following	formula:
				val	karma	=	(Math.pow(Math.random(),	(110	-	healthPoints)	/	100.0)	*	20).toInt()

Have	the	displayed	aura	follow	these	rules:

Karma	value Aura	color
0-5 red
6-10 orange
11-15 purple
16-20 green

Determine	the	karma	value	with	the	formula	above	and	check	the	player’s	aura
color	using	a	conditional	expression.	Finally,	modify	the	player	status	display	to
report	the	new	color	if	the	aura	is	visible.

Challenge:	Configurable	Status	Format
Currently,	the	player’s	status	display	is	created	by	two	calls	to	println.	There
is	no	variable	that	holds	the	value	of	the	full	display	string.
The	code	looks	like	this:
				//	Player	status

				println("(Aura:	$auraColor)	"	+

												"(Blessed:	${if	(isBlessed)	"YES"	else	"NO"	})")

				println("$name	$healthStatus")

And	it	produces	output	like	this:
				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	has	some	minor	wounds	but	is	healing	quite	quickly!

For	this	more	difficult	challenge,	make	the	status	line	configurable	with	a	status
format	string.	Use	the	character	B	for	blessed,	A	for	aura	color,	H	for
healthStatus,	and	HP	for	healthPoints.	For	example,	a	status	format
string	of:
				val	statusFormatString	=	"(HP)(A)	->	H"

should	generate	a	player	status	display	like:
				(HP:	100)(Aura:	Green)	->	Madrigal	is	in	excellent	condition!

4	
Functions

A	function	is	a	reusable	portion	of	code	that	accomplishes	a	specific	task.
Functions	are	a	very	important	part	of	programming.	In	fact,	programs	are
fundamentally	a	series	of	functions	combined	to	accomplish	more	complex
tasks.
You	have	worked	with	some	functions	already,	like	the	println	function,
which	is	provided	by	the	Kotlin	standard	library	for	printing	data	to	the	console.
You	can	also	define	your	own	functions	in	code	that	you	write.	Some	functions
take	in	data	required	to	perform	a	specific	task.	Some	functions	also	return	data,
generating	output	that	can	be	used	elsewhere	after	the	function	has	performed	its
task.
To	get	your	function	feet	wet,	you	will	start	by	using	functions	to	organize
NyetHack’s	existing	code.	Then,	you	will	define	your	own	function	to	add	an
exciting	new	feature	to	NyetHack:	a	fireball	spell.

Extracting	Code	to	Functions
The	logic	you	coded	into	NyetHack	in	Chapter	3	was	sound,	but	it	would	be	a
better	practice	to	organize	it	using	functions.	Your	first	task	is	to	reorganize	your
project	to	encapsulate	much	of	the	logic	you	have	already	written	in	functions.
This	will	set	the	stage	for	adding	new	features	to	NyetHack.
Does	this	mean	you	are	going	to	delete	all	your	code	and	type	the	same	logic	in	a
different	way?	Perish	the	thought.	IntelliJ	will	help	you	group	your	logic	into
functions	easily.
Begin	by	opening	your	NyetHack	project.	Make	sure	the	file	Game.kt	is	open
in	the	editor.
Next,	select	the	conditional	code	that	you	defined	for	generating	the	player’s
healthStatus	message.	Click	and	drag	the	cursor,	beginning	with	the	line
that	defines	healthStatus	and	ending	with	the	closing	curly	brace	for	the
when	expression,	like	so:
				...

				val	healthStatus	=	when	(healthPoints)	{

								100	->	"is	in	excellent	condition!"

								in	90..99	->	"has	a	few	scratches."

								in	75..89	->	if	(isBlessed)	{

												"has	some	minor	wounds,	but	is	healing	quite	quickly!"

								}	else	{

												"has	some	minor	wounds."

								}

								in	15..74	->	"looks	pretty	hurt."

								else	->	"is	in	awful	condition!"

				}

				...

Control-click	(right-click)	on	the	code	you	selected	and	choose	Refactor	→	Extract
→	Function…	(Figure	4.1).

Figure	4.1		Extracting	logic	to	a	function

The	Extract	Function	dialog	will	pop	up,	as	in	Figure	4.2:

Figure	4.2		The	Extract	Function	dialog

We	will	come	back	to	the	elements	of	this	dialog	shortly.	For	now,	enter
“formatHealthStatus”	for	the	name,	as	shown,	and	leave	everything	else	as	is.
Then,	click	the	OK	button.	IntelliJ	will	add	a	function	definition	to	the	bottom	of
Game.kt,	like	this:
				private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean):	String	{

							val	healthStatus	=	when	(healthPoints)	{

											100	->	"is	in	excellent	condition!"

											in	90..99	->	"has	a	few	scratches."

											in	75..89	->	if	(isBlessed)	{

															"has	some	minor	wounds,	but	is	healing	quite	quickly!"

											}	else	{

															"has	some	minor	wounds."

											}

											in	15..74	->	"looks	pretty	hurt."

											else	->	"is	in	awful	condition!"

							}

							return	healthStatus

				}

Your	formatHealthStatus	function	is	surrounded	by	some	new	code.	We
will	break	this	down	piece	by	piece	next.

Anatomy	of	a	Function
Figure	4.3	shows	the	two	primary	parts	of	a	function,	the	header	and	body,	using
formatHealthStatus	as	a	model:

Figure	4.3		A	function	consists	of	a	function	header	and	a	function
body

Function	header

The	first	part	of	a	function	is	the	function	header.	The	function	header	is	made
up	of	five	parts:	the	visibility	modifier,	function	declaration	keyword,	function
name,	function	parameters,	and	return	type	(Figure	4.4).

Figure	4.4		Anatomy	of	a	function	header

Let’s	look	at	each	of	those	elements	in	some	detail.

Visibility	modifier

Not	all	functions	should	be	visible,	or	accessible,	to	all	other	functions.	Some
might	deal	with	data	that	should	be	kept	private	to	a	particular	file,	for	example.
A	function	can	optionally	begin	with	a	visibility	modifier	(Figure	4.5).	The

visibility	modifier	determines	which	other	functions	can	“see”	–	and	therefore
use	–	the	function.

Figure	4.5		Function	visibility	modifier

By	default,	a	function’s	visibility	is	public	–	meaning	that	all	other	functions
(including	functions	defined	in	other	files)	can	use	the	function.	In	other	words,
if	you	do	not	specify	a	modifier	for	the	function,	the	function	is	considered
public.
In	this	case,	IntelliJ	has	determined	that	this	function	can	have	private	visibility,
since	the	formatHealthStatus	function	is	used	only	within	the	current	file,
Game.kt.	You	will	learn	more	about	the	available	visibility	modifiers	and	how
to	use	them	to	control	which	functions	can	see	the	function	you	define	in
Chapter	12.

Function	name	declaration

After	the	visibility	modifier	(if	there	is	one)	comes	the	fun	keyword,	followed	by
a	name	for	the	function	(Figure	4.6):

Figure	4.6		Function	keyword	and	name	declaration

You	specified	formatHealthStatus	for	the	function	name	in	the	Extract
Function	dialog,	so	IntelliJ	added	fun	formatHealthStatus	for	the	function’s
name	declaration.
Notice	that	the	name	you	chose	for	the	function,	formatHealthStatus,
starts	with	a	lowercase	letter	and	uses	“camel	case”	naming	with	no	underscores.
All	of	your	function	names	should	conform	to	this	official	standard	naming
convention.

Function	parameters

Next	come	the	function	parameters	(Figure	4.7):

Figure	4.7		Function	parameters

Function	parameters	specify	the	name	and	type	of	each	input	required	for	the
function	to	perform	its	task.	Functions	can	require	zero	to	several	or	more
parameters,	depending	on	the	task	they	are	designed	to	perform.
For	the	formatHealthStatus	function	to	determine	the	health	status
message	it	should	display,	the	healthPoints	and	isBlessed	variables	are
needed,	because	the	when	expression	requires	them	to	check	its	conditions.
Therefore,	formatHealthStatus’s	function	definition	specifies	that	those
two	variables	are	required	as	parameters:
				private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean):	String	{

								val	healthStatus	=	when	(healthPoints)	{

												...

												in	75..89	->	if	(isBlessed)	{

													...

												}	else	{

													...

												}

												...

								}

								return	healthStatus

				}

For	each	parameter,	the	definition	also	specifies	the	type	of	data	it	requires.
healthPoints	must	be	an	Int,	and	isBlessed	must	be	a	Boolean.
Note	that	function	parameters	are	always	read-only	–	they	do	not	support
reassignment	within	the	function	body.	In	other	words,	within	the	body	of	a
function,	a	function	parameter	is	a	val,	instead	of	a	var.

Function	return	type

Many	functions	generate	some	type	of	output;	that	is	their	job,	to	send	a	value	of
some	type	back	to	where	they	are	called.	The	final	element	of	the	function
header	is	the	return	type,	which	defines	the	type	of	output	that	the	function	will
return	once	it	has	completed	its	work.

The	return	type	in	formatHealthStatus	specifies	that	the	function	sends
back	a	String	(Figure	4.8):

Figure	4.8		Function	return	type

Function	body

After	the	function	header,	the	function	body	is	defined	within	curly	braces.	The
body	is	where	the	action	the	function	performs	takes	place.	It	may	also	include	a
return	statement	that	indicates	what	data	to	send	back.
In	this	case,	the	extract	function	command	moved	the	definition	of	the
healthStatus	val	(the	code	you	selected	when	you	ran	the	command)	into
the	body	of	the	formatHealthStatus	function.
After	that	is	the	new	line	return	healthStatus.	The	return	keyword	indicates
to	the	compiler	that	the	function	has	finished	its	work	and	is	ready	to	return	its
output	data.	Here,	the	output	data	is	healthStatus,	meaning	that	the	function
will	return	the	value	of	the	healthStatus	variable	–	the	string	selected	based
on	the	logic	in	healthStatus’s	definition.

Function	scope

Notice	that	the	declaration	and	assignment	for	the	healthStatus	variable
occur	within	the	function	body	and	that	its	value	is	returned	at	the	end	of	the
function	body:
				private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean):	String	{

								val	healthStatus	=	when	(healthPoints)	{

										...

								}

								return	healthStatus

				}

The	healthStatus	variable	is	referred	to	as	a	local	variable	because	it	exists
only	in	the	formatHealthStatus	function’s	body.	Another	way	to	put	this
is	that	the	healthStatus	variable	exists	only	within	the
formatHealthStatus	function’s	scope.	You	can	think	of	scope	as	the
lifespan	for	a	variable.

Because	it	exists	only	within	the	function’s	scope,	healthStatus	will	cease
to	exist	once	formatHealthStatus	completes.	The	function	returns
healthStatus’s	value	to	its	caller,	but	the	variable	that	held	the	value	is	gone
once	the	function	completes.
The	same	is	true	of	the	function	parameters:	The	variables	healthPoints	and
isBlessed	exist	within	the	scope	of	the	function	body	and	cease	to	exist	once
the	function	completes.
In	Chapter	2,	you	saw	an	example	of	a	variable	that	was	not	local	to	a	function
or	class	–	a	file-level	variable:
				const	val	MAX_EXPERIENCE:	Int	=	5000

				fun	main(args:	Array<String>)	{

								...

				}

This	file-level	variable	can	be	accessed	from	anywhere	in	the	project	(though	a
visibility	modifier	can	be	added	to	the	declaration	to	change	its	visibility	level).
File-level	variables	remain	initialized	until	program	execution	stops.
Because	of	the	differences	between	local	and	file-level	variables,	the	compiler
enforces	different	requirements	on	when	they	must	be	assigned	an	initial	value,
or	initialized.
File-level	variables	must	always	be	assigned	when	they	are	defined,	or	the	code
will	not	compile.	(You	will	see	certain	exceptions	to	this	in	Chapter	15.)	This
requirement	protects	you	from	unexpected	–	and	unwanted	–	behavior,	like	a
variable	not	having	a	value	when	you	try	to	use	it.
Since	a	local	variable	is	more	limited	in	where	it	can	be	used	–	within	the	scope
of	the	function	in	which	it	is	defined	–	the	compiler	is	more	lenient	about	when	it
must	be	initialized.	A	local	variable	only	has	to	be	initialized	before	it	is	used.
This	means	that	the	following	statement	is	valid:
				fun	main(args:	Array<String>)	{

								val	name:	String

								name	=	"Madrigal"

								var	healthPoints:	Int

								healthPoints	=	89

								healthPoints	+=	3

								...

				}

So	long	as	you	have	assigned	a	value	before	referencing	the	variable,	the
compiler	permits	the	expression.

Calling	a	Function
IntelliJ	not	only	generated	the	formatHealthStatus	function,	but	it	also
added	a	line	in	place	of	the	code	it	extracted:
				fun	main(args:	Array<String>)	{

							val	name	=	"Madrigal"

							var	healthPoints	=	89

							var	isBlessed	=	true

							...

							val	healthStatus	=	formatHealthStatus(healthPoints,	isBlessed)

							...

				}

This	line	is	a	function	call,	which	triggers	the	function	to	perform	whatever
actions	are	defined	in	its	body.	You	call	a	function	with	its	name,	along	with	data
to	satisfy	any	parameters	required	by	the	function	header.
Compare	the	function	header	for	formatHealthStatus	with	its
corresponding	function	call:
				formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean):	String	//	Header

				formatHealthStatus(healthPoints,	isBlessed)																							//	Call

The	definition	of	formatHealthStatus	shows	that	it	requires	two
parameters,	as	discussed	above.	When	you	call	formatHealthStatus,	you
include	in	parentheses	the	inputs	to	those	parameters.	The	inputs	are	called
arguments,	and	providing	them	to	the	function	is	called	passing	in	arguments.
(A	note	about	the	terminology:	While	technically	a	parameter	is	what	a	function
requires	and	an	argument	is	what	the	caller	passes	in	to	fulfill	the	requirement,
you	will	hear	the	two	terms	used	interchangeably.)
Here,	as	the	function	definition	specifies,	you	pass	in	the	value	of
healthPoints	(which,	as	required,	is	an	Int)	and	the	Boolean	value	of
isBlessed.
Run	NyetHack	by	clicking	the	run	button,	and	shazam!	You	will	see	the	same
output	you	have	seen	before:
				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	has	some	minor	wounds,	but	is	healing	quite	quickly!

While	the	output	has	not	changed,	NyetHack’s	code	is	now	more	organized	and
maintainable.

Refactoring	to	Functions
Continue	extracting	the	logic	previously	defined	in	the	main	function	into
separate	functions	by	using	the	extract	to	function	feature.	Start	by	refactoring
the	logic	for	the	aura	color.	Select	the	code	from	the	line	where	aura	visibility	is
defined	to	the	end	of	the	if/else	condition	that	checks	the	Boolean	to
determine	what	value	to	print:
				...

				//	Aura

				val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

				val	auraColor	=	if	(auraVisible)	"GREEN"	else	"NONE"

				...

Next,	select	the	Extract	Function	command.	You	can	Control-click	(right-click)	the
selected	code	and	choose	Refactor	→	Extract	→	Function…,	as	you	did	before.	You
can	also	use	the	menus	to	select	Refactor	→	Extract	→	Function…	Or	you	can	use	the
keyboard	shortcut	Command-Option-M	(Ctrl-Alt-M).	Whichever	way	you
choose,	the	Extract	Function	dialog	you	saw	in	Figure	4.2	appears.
Give	the	new	function	the	name	auraColor.
(If	you	want	to	check	the	resulting	code,	hang	tight:	We	will	show	you	the	full
file	after	you	extract	a	few	more	functions.)
Next,	extract	the	logic	that	prints	the	player’s	status	to	a	new	function.	Select	the
two	calls	to	println	in	main:
				...

				//	Player	status

				println("(Aura:	$auraColor)	"	+

												"(Blessed:	${if	(isBlessed)	"YES"	else	"NO"})")

				println("$name	$healthStatus")

				...

Extract	them	to	a	function	called	printPlayerStatus.
The	Game.kt	file	now	looks	like	this:
				fun	main(args:	Array<String>)	{

								val	name	=	"Madrigal"

								var	healthPoints	=	89

								var	isBlessed	=	true

								val	isImmortal	=	false

								//	Aura

								val	auraColor	=	auraColor(isBlessed,	healthPoints,	isImmortal)

								val	healthStatus	=	formatHealthStatus(healthPoints,	isBlessed)

								//	Player	status

								printPlayerStatus(auraColor,	isBlessed,	name,	healthStatus)

				}

				private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean):	String	{

								val	healthStatus	=	when	(healthPoints)	{

												100	->	"is	in	excellent	condition!"

												in	90..99	->	"has	a	few	scratches."

												in	75..89	->	if	(isBlessed)	{

																"has	some	minor	wounds,	but	is	healing	quite	quickly!"

												}	else	{

																"has	some	minor	wounds."

												}

												in	15..74	->	"looks	pretty	hurt."

												else	->	"is	in	awful	condition!"

								}

								return	healthStatus

				}

				private	fun	printPlayerStatus(auraColor:	String,

																																		isBlessed:	Boolean,

																																		name:	String,

																																		healthStatus:	String)	{

								println("(Aura:	$auraColor)	"	+

																"(Blessed:	${if	(isBlessed)	"YES"	else	"NO"})")

								println("$name	$healthStatus")

				}

				private	fun	auraColor(isBlessed:	Boolean,

																										healthPoints:	Int,

																										isImmortal:	Boolean):	String	{

								val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

								val	auraColor	=	if	(auraVisible)	"GREEN"	else	"NONE"

								return	auraColor

				}

(We	have	broken	the	headers	for	printPlayerStatus	and	auraColor
onto	multiple	lines	for	readability	and	to	fit	on	the	page.)
Run	NyetHack.	You	should	see	Madrigal’s	familiar	stats	and	aura	color	printed:
				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	has	some	minor	wounds,	but	is	healing	quite	quickly!

Writing	Your	Own	Functions
Now	that	you	have	organized	NyetHack’s	logic	in	functions,	you	can	proceed	as
planned	to	implement	the	new	fireball	spell.	At	the	bottom	of	Game.kt,	define
a	function	called	castFireball	that	takes	no	parameters.	Make	its	visibility
private.	castFireball	should	have	no	return	statement,	but	it	should	print
the	results	of	casting	the	spell.

Listing	4.1		Adding	a	castFireball	function	(Game.kt)
...

private	fun	auraColor(isBlessed:	Boolean,

																						healthPoints:	Int,

																						isImmortal:	Boolean):	String	{

				val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

				val	auraColor	=	if	(auraVisible)	"GREEN"	else	"NONE"

				return	auraColor

}

private	fun	castFireball()	{

				println("A	glass	of	Fireball	springs	into	existence.")

}

Now,	call	castFireball	at	the	bottom	of	the	main	function.
(castFireball	was	defined	without	parameters,	so	you	do	not	pass	in	any
arguments	to	call	it	–	hence	the	empty	parentheses.)

Listing	4.2		Calling	castFireball	(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Player	status

				printPlayerStatus(auraColor,	isBlessed,	name,	healthStatus)

				castFireball()

}

...

Run	NyetHack	and	admire	your	new	output:
				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	has	some	minor	wounds,	but	is	healing	quite	quickly!

				A	glass	of	Fireball	springs	into	existence.

Excellent	–	it	appears	the	spell	works	as	intended.	Feel	free	to	have	a	glass	of
Fireball	as	a	celebratory	measure.	(On	second	thought,	better	wait	until	the	end
of	this	chapter.)
One	fireball	is	fine,	but	two	or	more	is	a	party.	Your	player	needs	to	be	able	to
cast	more	than	one	at	a	time.
Update	the	castFireball	function	to	accept	an	Int	parameter	called
numFireballs.	In	the	call	to	castFireball,	pass	in	5	as	the	argument.
Finally,	display	the	number	of	fireballs	in	the	message	that	is	printed.

Listing	4.3		Adding	a	numFireballs	parameter	(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Player	status

				printPlayerStatus(auraColor,	isBlessed,	name,	healthStatus)

				castFireball()

				castFireball(5)

}

...

private	fun	castFireball()	{

private	fun	castFireball(numFireballs:	Int)	{

				println("A	glass	of	Fireball	springs	into	existence.")

				println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

Run	NyetHack	again.	You	should	see	the	following	output:
				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	has	some	minor	wounds,	but	is	healing	quite	quickly!

				A	glass	of	Fireball	springs	into	existence.	(x5)

Functions	with	parameters	provide	a	way	for	the	caller	to	supply	the	function
with	input	as	an	argument.	You	can	use	that	input	in	your	function’s	logic	or
simply	print	it	out	in	a	string	template,	as	you	did	here	with	the	value	5.

Default	Arguments
Sometimes	an	argument	for	a	function	has	a	“usual”	value.	For	example,	with
the	castFireball	function,	five	glasses	of	Fireball	is	excessive.	Typically,
only	two	glasses	of	Fireball	should	appear	when	the	spell	is	cast.	To	make
calling	castFireball	more	efficient,	you	can	use	a	default	argument	to
specify	this.
You	saw	in	Chapter	2	that	a	var	can	be	assigned	an	initial	value	and	later
reassigned.	Similarly,	you	can	assign	a	default	value	for	a	parameter	that	will	be
assigned	if	no	argument	is	specified.	Update	the	castFireball	function	with
a	default	value	for	numFireballs:

Listing	4.4		Giving	the	numFireballs	parameter	a	default	value
(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Player	status

				printPlayerStatus(auraColor,	isBlessed,	name,	healthStatus)

				castFireball(5)

}

...

private	fun	castFireball(numFireballs:	Int)	{

private	fun	castFireball(numFireballs:	Int	=	2)	{

				println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

Now,	by	default,	numFireballs’s	Int	value	will	be	2	if	no	other	argument	is
provided	when	calling	castFireball.	Update	the	main	function,	removing
the	Int	argument	in	the	call	to	castFireball:

Listing	4.5		Using	castFireball’s	default	argument	value
(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Player	status

				printPlayerStatus(auraColor,	isBlessed,	name,	healthStatus)

				castFireball(5)

				castFireball()

}

...

Run	NyetHack	again.	With	no	argument	specified	for	castFireball,	you
will	see	the	following	output:
				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	has	some	minor	wounds,	but	is	healing	quite	quickly!

				A	glass	of	Fireball	springs	into	existence.	(x2)

Because	you	do	not	pass	an	argument	for	the	numFireballs	parameter,	the

default	value	you	defined,	2,	is	used	for	the	function	argument.

Single-Expression	Functions
Kotlin	allows	you	to	reduce	the	amount	of	code	required	to	define	a	function	like
castFireball	or	formatHealthStatus	that	has	only	one	expression	–
that	is,	one	statement	to	be	evaluated.	For	single-expression	functions,	you	can
omit	the	return	type,	curly	braces,	and	return	statement.	Make	those	changes	to
your	castFireball	and	formatHealthStatus	functions,	as	shown
below:

Listing	4.6		Using	optional	single-expression	function	syntax
(Game.kt)
...

private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean):	String	{

				val	healthStatus	=	when	(healthPoints)	{

private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean)	=

								when	(healthPoints)	{

												100	->	"is	in	excellent	condition!"

												in	90..99	->	"has	a	few	scratches."

												in	75..89	->	if	(isBlessed)	{

																"has	some	minor	wounds,	but	is	healing	quite	quickly!"

												}	else	{

																"has	some	minor	wounds."

												}

												in	15..74	->	"looks	pretty	hurt."

												else	->	"is	in	awful	condition!"

								}

				return	healthStatus

}

...

private	fun	castFireball(numFireballs:	Int	=	2)		{

private	fun	castFireball(numFireballs:	Int	=	2)	=

				println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

Notice	that	instead	of	using	the	function	body	to	specify	the	work	the	function
will	perform,	with	single-expression	function	syntax	you	use	the	assignment
operator	(=),	followed	by	the	expression.
This	optional	syntax	allows	you	to	tighten	up	the	definition	for	functions	with
only	one	expression	that	is	evaluated	to	perform	their	task.	When	you	need	the
results	of	more	than	one	expression,	use	the	function	definition	syntax	you	have
already	seen.
From	this	point	forward,	we	will	favor	using	single-expression	function	syntax
when	possible	to	make	the	code	more	concise.

Unit	Functions
Not	all	functions	return	a	value.	Some	use	side	effects	instead	to	do	their	work,
like	modifying	the	state	of	a	variable	or	calling	other	functions	that	yield	system
output.	Think	about	your	player	status	and	aura	display	code,	or	the
castFireball	function,	for	example.	They	define	no	return	type	and	have	no
return	statement.	They	use	println	to	do	their	work.
				private	fun	castFireball(numFireballs:	Int	=	2)	=

								println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

In	Kotlin,	such	functions	are	known	as	Unit	functions,	meaning	their	return
type	is	Unit.	Click	on	the	castFireball	function’s	name	and	press	Control-
Shift-P	(Ctrl-P).	IntelliJ	will	display	its	return	type	information	(Figure	4.9).

Figure	4.9		castFireball	is	a	Unit	function

What	kind	of	type	is	Unit?	Kotlin	uses	the	Unit	return	type	to	signify	exactly
this:	a	function	that	returns	no	value.	If	the	return	keyword	is	not	used,	it	is
implicit	that	the	return	type	for	that	function	is	Unit.
Prior	to	Kotlin,	many	languages	faced	the	problem	of	describing	a	function	that
does	not	return	anything.	Some	languages	opted	for	a	keyword	void,	which	said,
“There	is	no	return	type;	skip	it,	because	it	does	not	apply.”	This	seems	sound	on
the	surface:	If	the	function	does	not	return	anything,	skip	the	type,	since	there	is
nothing	being	returned.
Unfortunately,	this	solution	fails	to	account	for	an	important	feature	found	in
modern	languages:	generics.	Generics	are	a	feature	of	modern	compiled
language	that	enable	a	great	deal	of	flexibility.	You	will	investigate	generics	in
Kotlin,	which	allow	you	to	specify	functions	that	work	with	many	types,	in
Chapter	17.
What	do	generics	have	to	do	with	Unit	and	void?	Languages	that	use	the	void
keyword	have	no	good	way	to	deal	with	a	generic	function	that	returns	nothing.
void	is	not	a	type	–	in	fact,	it	says,	“Type	information	is	not	relevant;	skip	it.”
And	there	is	no	way	to	describe	this	“generically,”	so	these	languages	miss	out

on	being	able	to	describe	generic	functions	that	return	nothing.
Kotlin	solves	this	problem	by	specifying	Unit	for	the	return	type	instead.	Unit
indicates	a	function	that	does	not	return	anything,	but	at	the	same	time	it	is
compatible	with	generic	functions	that	must	have	some	type	to	work	with.	This
is	why	Kotlin	uses	Unit:	You	get	the	best	of	both	worlds.

Named	Function	Arguments
Take	a	look	at	how	you	call	the	printPlayerStatus	function,	passing
arguments	as	parameters:
				printPlayerStatus("NONE",	true,	"Madrigal",	status)

Another	way	you	could	call	the	same	function	is:
				printPlayerStatus(auraColor	=	"NONE",

																						isBlessed	=	true,

																						name	=	"Madrigal",

																						healthStatus	=	status)

This	optional	syntax	uses	named	function	arguments	and	is	an	alternative	way	to
provide	arguments	to	a	function.	In	certain	cases,	it	grants	several	advantages.
For	example,	using	named	arguments	frees	you	to	pass	the	arguments	to	the
function	in	whatever	order	you	would	like.	For	example,	you	could	also	call
printPlayerStatus	like	this:
				printPlayerStatus(healthStatus	=	status,

																						auraColor	=	"NONE",

																						name	=	"Madrigal",

																						isBlessed	=	true)

When	you	do	not	use	named	function	arguments,	you	must	pass	arguments	in	the
order	they	are	defined	on	the	function	header.	With	named	function	arguments,
you	can	pass	arguments	independent	of	the	function	header’s	parameter	order.
Another	benefit	of	named	function	arguments	is	that	they	can	bring	clarity	to
your	code.	When	a	function	requires	a	large	number	of	arguments,	it	can	become
confusing	to	keep	track	of	which	argument	provides	the	value	for	which	function
parameter.	This	is	especially	true	if	the	names	of	the	variables	passed	in	do	not
match	the	names	of	the	defined	function	parameters.	Named	function	arguments
are	always	named	the	same	as	the	parameters	they	provide	values	for.
In	this	chapter,	you	saw	how	to	define	functions	to	encapsulate	your	code’s
logic.	Your	code	has	become	much	cleaner	and	better	organized.	You	also
learned	a	number	of	the	conveniences	built	into	Kotlin’s	function	syntax	to
enable	you	to	write	less	code	that	is	just	as	descriptive:	single-expression
function	syntax,	named	function	arguments,	and	default	arguments.	In	the	next
chapter,	you	will	learn	about	a	different	kind	of	function	available	in	Kotlin	–
anonymous	functions.
Do	not	forget	to	save	NyetHack	and	create	a	copy	before	working	through	the
challenges	below.

For	the	More	Curious:	The	Nothing	Type
In	this	chapter	you	learned	about	the	Unit	type	and	that	a	function	of	the	Unit
type	returns	no	value.
Another	type	that	is	related	to	Unit	is	the	Nothing	type.	Like	Unit,
Nothing	indicates	that	a	function	returns	no	value	–	but	there	the	similarity
ends.	Nothing	lets	the	compiler	know	that	a	function	is	guaranteed	to	never
successfully	complete;	the	function	will	either	throw	an	exception	or	for	some
other	reason	never	return	to	where	it	was	called.
What	is	the	use	of	the	Nothing	type?	One	example	of	Nothing’s	use	is	the
TODO	function,	included	with	the	Kotlin	standard	library.
Take	a	look	at	TODO	by	pressing	the	Shift	key	twice	to	open	the	Search	Everywhere
dialog	and	entering	its	name.
				/**

				*	Always	throws	[NotImplementedError]	stating	that	operation	is	not	implemented.

				*/

				public	inline	fun	TODO():	Nothing	=	throw	NotImplementedError()

TODO	throws	an	exception	–	in	other	words,	it	is	guaranteed	to	never	complete
successfully	–	and	returns	the	Nothing	type.
When	would	you	use	TODO?	The	answer	is	in	the	name:	It	tells	you	what	you
still	have	“to	do.”	Consider	the	following	function	that	has	yet	to	be
implemented,	and	instead	calls	TODO:
				fun	shouldReturnAString():	String	{

							TODO("implement	the	string	building	functionality	here	to	return	a	string")

				}

The	developer	knows	that	the	shouldReturnAString	function	should
return	a	String,	but	they	have	not	yet	completed	the	other	features	needed	to
implement	it.	Notice	that	the	return	type	for	shouldReturnAString	is	a
String,	but	the	function	never	actually	returns	anything	at	all.	Because	of
TODO’s	return	value,	that	is	perfectly	fine.
TODO’s	Nothing	return	type	indicates	to	the	compiler	that	the	function	is
guaranteed	to	cause	an	error,	so	checking	the	return	type	in	the	function	body	is
not	required	past	TODO	because	shouldReturnAString	will	never	return.
The	compiler	is	happy,	and	the	developer	is	able	to	continue	feature	development
without	completing	the	implementation	for	shouldReturnAString	until	all
the	details	are	ready.

Another	feature	of	Nothing	that	is	useful	in	development	is	that	if	you	add
code	below	the	TODO	function,	the	compiler	will	show	a	warning	indicating	that
the	code	is	unreachable	(Figure	4.10):

Figure	4.10		Unreachable	code

Because	of	the	Nothing	type,	the	compiler	can	make	this	assertion:	It	is	aware
that	TODO	will	not	successfully	complete;	therefore,	all	code	after	TODO	is
unreachable.

For	the	More	Curious:	File-Level	Functions	in
Java
All	of	the	functions	that	you	have	written	so	far	have	been	defined	at	the	file
level	in	Game.kt.	If	you	are	a	Java	developer,	then	this	may	seem	surprising	to
you.	In	Java,	functions	and	variables	can	only	be	defined	within	classes,	a	rule
that	Kotlin	does	not	adhere	to.
How	is	this	possible	if	Kotlin	code	compiles	to	Java	bytecode	to	run	on	the
JVM?	Does	Kotlin	not	have	to	play	by	the	same	rules?	A	look	at	the	decompiled
Java	bytecode	for	Game.kt	should	prove	illuminating:
				public	final	class	GameKt	{

								public	static	final	void	main(...)	{

												...

								}

								private	static	final	String	formatHealthStatus(...)	{

												...

								}

								private	static	final	void	printPlayerStatus(...)	{

												...

								}

								private	static	final	String	auraColor(...)	{

												...

								}

								private	static	final	void	castFireball(...)	{

												...

								}

								//	$FF:	synthetic	method

								//	$FF:	bridge	method

								static	void	castFireball$default(...)	{

												...

								}

				}

File-level	functions	are	represented	in	Java	as	static	methods	on	a	class	with	a
name	based	on	the	file	in	which	they	are	declared	in	Kotlin.	(Method	is	Java	for
“function.”)	In	this	case,	functions	and	variables	defined	in	Game.kt	are
defined	in	Java	in	a	class	called	GameKt.
You	will	see	how	to	declare	functions	in	classes	in	Chapter	12,	but	being	able	to
declare	functions	and	variables	outside	of	them	gives	you	more	flexibility	to
define	a	function	that	is	not	tied	to	a	particular	class	definition.	(And	if	you	are
wondering	what	the	castFireball$default	method	in	GameKt	is	all
about,	this	is	how	default	arguments	are	implemented.	You	will	see	this	in	more
detail	in	Chapter	20.)

For	the	More	Curious:	Function	Overloading
The	castFireball	function	you	defined,	with	its	default	argument	for	the
numFireballs	parameter,	can	be	called	two	ways:
				castFireball()

				castFireball(numFireballs)

When	a	function	has	multiple	implementations,	like	castFireball,	it	is	said
to	be	overloaded.	Overloading	is	not	always	the	result	of	a	default	argument.
You	can	define	multiple	implementations	with	the	same	function	name.	To	see
what	this	looks	like,	open	the	Kotlin	REPL	(Tools	→	Kotlin	→	Kotlin	REPL)	and
enter	these	function	definitions:

Listing	4.7		Defining	an	overloaded	function	(REPL)
fun	performCombat()	{

				println("You	see	nothing	to	fight!")

}

fun	performCombat(enemyName:	String)	{

				println("You	begin	fighting	$enemyName.")

}

fun	performCombat(enemyName:	String,	isBlessed:	Boolean)	{

				if	(isBlessed)	{

								println("You	begin	fighting	$enemyName.	You	are	blessed	with	2X	damage!")

				}	else	{

								println("You	begin	fighting	$enemyName.")

				}

}

You	have	defined	three	implementations	of	performCombat.	All	are	Unit
functions,	with	no	return	value.	One	takes	no	arguments.	One	takes	a	single
argument,	the	name	of	an	enemy.	And	the	last	takes	two	arguments:	the	enemy’s
name	and	a	Boolean	indicating	whether	the	player	is	blessed.	Each	function
generates	a	different	message	(or	messages)	through	calls	to	println.
When	you	call	performCombat,	how	will	the	REPL	know	which	one	you
want?	It	will	evaluate	the	arguments	you	pass	in	and	find	the	implementation
that	matches	the	number	and	type	of	the	arguments.	In	the	REPL,	call	each	of	the
implementations	of	performCombat,	as	shown:

Listing	4.8		Calling	the	overloaded	functions	(REPL)
performCombat()

performCombat("Ulrich")

performCombat("Hildr",	true)

Your	output	will	read:
				You	see	nothing	to	fight!

				You	begin	fighting	Ulrich.

				You	begin	fighting	Hildr.	You	are	blessed	with	2X	damage!

Notice	that	the	implementation	of	the	overloaded	function	was	selected	based	on
how	many	arguments	you	provided.

For	the	More	Curious:	Function	Names	in
Backticks
Kotlin	includes	a	feature	that	might,	at	first	glance,	seem	slightly	peculiar:	the
ability	to	define	or	invoke	a	function	named	using	spaces	and	other	unusual
characters,	so	long	as	they	are	surrounded	using	the	backtick	symbol,	`.	For
example,	you	can	define	a	function	like	this:
				fun	`**~prolly	not	a	good	idea!~**`()	{

								...

				}

And	you	could	then	invoke	`**~prolly	not	a	good	idea!~**`	like
this:
				`**~prolly	not	a	good	idea!~**`()

Why	is	this	feature	included?	You	should	never	name	a	function	anything	like
`**~prolly	not	a	good	idea!~**`.	(Nor	with	an	emoji.	Please
backtick	responsibly.)	There	are	several	valid	reasons	the	function	name
backticks	exist.
The	first	is	to	support	Java	interoperability.	Kotlin	includes	great	support	for
invoking	methods	from	existing	Java	code	within	a	Kotlin	file.	(You	will	tour	a
number	of	Java	interoperability	features	in	Chapter	20.)	Because	Kotlin	and	Java
have	different	reserved	keywords,	words	that	are	forbidden	for	use	as	function
names,	the	function	name	backticks	allow	you	to	dodge	any	potential	conflict
when	interoperability	is	important.
For	example,	imagine	a	Java	method	name	from	a	legacy	Java	project,	is:
				public	static	void	is()	{

								...

				}

In	Kotlin,	is	is	a	reserved	keyword	(the	Kotlin	standard	library	includes	an	is
operator;	it	allows	you	to	check	the	type	of	an	instance,	as	you	will	see	in
Chapter	14).	In	Java,	however,	is	is	a	valid	method	name,	since	no	is	keyword
exists	in	the	language.	Because	of	the	backtick	feature,	you	are	able	to	invoke	a
Java	is	method	from	Kotlin,	like	so:
				fun	doStuff()	{

								`is`()	//	Invokes	the	Java	`is`	method	from	Kotlin

				}

In	this	case	the,	backtick	feature	supports	interoperating	with	a	Java	method	that
would	otherwise	be	inaccessible	due	to	its	name.

The	second	reason	for	the	feature	is	to	support	more	expressive	names	of
functions	that	are	used	in	a	testing	file.	For	example,	a	function	name	like	this:
				fun	`users	should	be	signed	out	when	they	click	logout`()	{

								//	Do	test

				}

Is	more	expressive	and	readable	than	this:
				fun	usersShouldBeSignedOutWhenTheyClickLogout()	{

								//	Do	test

				}

Using	backticks	to	provide	an	expressive	name	for	a	test	function	is	the
exception	to	the	“lowercase	first	letter,	followed	by	camel	case”	naming	standard
for	functions.

Challenge:	Single-Expression	Functions
Earlier,	you	saw	the	single-expression	function	syntax	as	a	way	to	make
functions	that	execute	one	statement	more	concise.	Can	you	convert
auraColor	to	use	the	single-expression	function	syntax?

Challenge:	Fireball	Inebriation	Level
Casting	fireballs	does	not	just	print	a	message	to	the	console.	While	NyetHack
fireballs	are	more	delicious	than	strong,	they	do	have	an	intoxicating	effect	on
the	caster.	Make	the	castFireball	function	return	a	resulting	inebriation
value	that	depends	on	the	number	of	fireballs	cast.	The	inebriation	value	should
be	between	1	and	50,	with	50	being	the	maximum	level	of	intoxication	in	the
game.

Challenge:	Inebriation	Status
Building	on	your	last	challenge,	display	the	player’s	inebriation	status	based	on
the	inebriation	value	returned	from	castFireball.	Have	the	displayed
inebriation	status	follow	these	rules:

Inebriation	level Inebriation	status
1-10 tipsy
11-20 sloshed
21-30 soused
31-40 stewed
41-50 ..t0aSt3d

BIG	NERD	RANCH	
CODING	BOOTCAMPS

Looking	 for	 additional	 support?	 Look	 into	 one	 of	 our	 coding	 bootcamps.
Students	 learn	 from	 authors	 and	 full-time	 consultants	 who	 work	 on	 projects
every	day.	Don’t	take	our	word	for	it;	hear	from	our	alumni:

LIFE	CHANGING.	The	Big	Nerd	Ranch	changed	my	life.	I	was	working
as	a	 lawyer	and	writing	 software	on	 the	side.	 I	wanted	 to	 transition	 to
writing	software	 full-time,	but	 I	didn't	have	 the	confidence	 to	make	 the
switch.	I	heard	about	the	Big	Nerd	Ranch	from	a	friend	and	I	decided	to
attend	a	seven-day	bootcamp	in	Atlanta.	I	was	very	nervous	because	I
wasn't	a	professional	software	developer	and	 I	didn't	have	a	computer
science	degree.	The	first	morning,	my	instructor	made	me	feel	at	ease.
As	we	worked	through	the	materials	and	the	examples,	I	noticed	that	I
knew	as	much	or	more	 than	my	peers.	 I	 took	 advantage	 of	 the	 lunch
and	 dinner	 time	 to	 speak	 with	 my	 instructors	 and	 peers	 and	 my
confidence	continued	to	grow.	I	got	home	and,	with	my	Big	Nerd	Ranch
certification	 in	 hand,	 I	 applied	 to	 several	 software	 development	 jobs.
After	several	offers,	I	closed	up	my	law	firm	and	started	my	new	career
as	 a	 software	 developer.	 I	 still	 work	 as	 a	 software	 developer.	 I	 even
write	software	for	some	of	my	lawyer	friends.	All	thanks	to	The	Big	Nerd
Ranch.
—Larry	Staton,	Jr.,	Alumnus

We	 offer	 classes	 in	 Android,	 Kotlin,	 Front	 End,	 iOS,	 Swift,	 design,	 and
more.	Take	$100	off	your	bootcamp	tuition	by	using	code	BNRGUIDE100
when	you	register.
Alumni	 gain	 access	 to	 an	 exclusive	 developer	 community	 to	 network	 and
nurture	their	career	growth.

www.bignerdranch.com

5	
Anonymous	Functions	and	the

Function	Type
In	the	last	chapter,	you	saw	how	to	define	functions	in	Kotlin	by	naming	them
and	how	to	call	them	by	name.	In	this	chapter,	you	will	see	another	way	to	define
functions:	anonymously.	You	will	be	taking	a	short	break	from	NyetHack	to
work	with	anonymous	functions	in	your	Sandbox	project,	but	do	not	worry	–
there	is	more	NyetHack	action	in	the	next	chapter.
Functions	like	the	ones	you	saw	and	wrote	in	Chapter	4	are	called	named
functions.	Functions	defined	without	a	name,	called	anonymous	functions,	are
similar,	with	two	major	differences:	Anonymous	functions	have	no	name	as	part
of	their	definition,	and	they	interact	with	the	rest	of	your	code	a	little	differently
in	that	they	are	commonly	passed	to	or	returned	from	other	functions.	These
interactions	are	made	possible	by	the	function	type	and	function	arguments,
which	you	will	also	learn	about	in	this	chapter.

Anonymous	Functions
Anonymous	functions	are	an	essential	part	of	Kotlin.	One	way	they	are	used	is	to
allow	you	to	easily	customize	how	built-in	functions	from	the	Kotlin	standard
library	work	to	meet	your	particular	needs.	An	anonymous	function	lets	you
describe	additional	rules	for	a	standard	library	function	so	that	you	can
customize	its	behavior.	Let’s	look	at	an	example.
One	of	the	many	functions	in	the	standard	library	is	count.	When	called	on	a
string,	count	returns	the	total	number	of	letters	in	the	string.	The	following
code	counts	the	letters	in	the	string	"Mississippi":
				val	numLetters	=	"Mississippi".count()

				print(numLetters)

				//	Prints	11

(Here	you	have	used	dot	syntax	to	invoke	the	count	function.	This	syntax	is
used	any	time	you	invoke	a	function	that	is	included	as	part	of	a	type’s
definition.)
But	what	if	you	wanted	to	count	only	a	specific	character	in	"Mississippi",	say
the	letter	“s”?
For	this	kind	of	problem,	the	Kotlin	standard	library	allows	you	to	provide	rules
to	the	count	function	to	determine	whether	a	letter	should	be	counted.	You
describe	the	rules	for	the	function	by	providing	an	anonymous	function	as	an
argument.	It	looks	like	this:
				val	numLetters	=	"Mississippi".count({	letter	->

								letter	==	's'

				})

				print(numLetters)

				//	Prints	4

Here,	the	Kotlin	String	count	function	uses	an	anonymous	function	to
decide	how	it	should	count	the	characters	in	the	string.	Proceeding	character	by
character,	if	the	anonymous	function	evaluates	as	true,	the	count	is	incremented.
Once	it	has	checked	every	character,	count	returns	the	final	number.
Anonymous	functions	let	the	standard	library	do	what	it	does	best	–	provide	a
foundation	of	functions	and	types	for	building	great	Kotlin	applications	–
without	including	features	that	would	be	too	specific	to	be	considered
“standard.”	They	also	have	other	uses,	which	you	will	see	later	in	this	chapter.
To	understand	how	count	works,	take	a	closer	look	at	Kotlin’s	anonymous
function	syntax	by	defining	your	own.	You	are	going	to	write	a	small	simulation

called	SimVillage,	a	game	that	allows	players	to	serve	as	mayor	of	a	virtual
village.
Your	first	anonymous	function	in	SimVillage	will	display	a	greeting	to	the
player,	acknowledging	them	as	mayor	of	the	village.	(Why	do	this	with	an
anonymous	function?	As	you	will	see	later	in	the	chapter,	this	will	allow	you	to
easily	pass	the	anonymous	function	to	other	functions.)
Open	your	Sandbox	project,	create	a	new	file	called	SimVillage.kt,	and
give	it	a	main	function,	as	you	have	done	before	(type	“main”	and	press	the	Tab
key).
Define	an	anonymous	function	within	the	main	function,	call	it,	and	print	the
result:

Listing	5.1		Defining	an	anonymous	greeting	function
(SimVillage.kt)
fun	main(args:	Array<String>)	{

				println({

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	Mayor!	(copyright	$currentYear)"

				}())

}

Just	as	you	write	a	string	by	putting	characters	between	opening	and	closing
quotes,	you	write	a	function	by	putting	an	expression	or	statements	between
opening	and	closing	curly	braces.	Here,	you	begin	with	a	call	to	println.
Inside	the	parentheses	that	enclose	println’s	argument,	you	define	an
anonymous	function	inside	a	set	of	curly	braces.	The	anonymous	function
defines	a	variable	and	returns	a	greeting	message	string:
				{

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	Mayor!	(copyright	$currentYear)"

				}

Outside	the	anonymous	function’s	closing	brace,	you	call	the	function	with	a
pair	of	empty	parentheses.	If	you	were	to	leave	the	parentheses	off	the	end	of	the
anonymous	function,	the	greeting	message	string	would	not	print.	Just	like	a
named	function,	an	anonymous	function	does	its	work	only	when	it	has	been
called,	using	parentheses	along	with	any	arguments	the	function	expects	(zero,	in
this	case):
				{

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	Mayor!	(copyright	$currentYear)"

				}()

Run	SimVillage.kt’s	main	function.	You	will	see	the	following	output:
				Welcome	to	SimVillage,	Mayor!	(copyright	2018)

The	function	type

In	Chapter	2,	you	learned	about	data	types	like	Int	and	String.	Anonymous
functions	also	have	a	type,	called	the	function	type.	Variables	of	the	function
type	can	hold	an	anonymous	function	as	their	value,	and	the	function	can	then	be
passed	around	your	code	like	any	other	variable.
(Do	not	confuse	the	function	type	with	a	type	called	Function.	You	define	the
specifics	of	a	function	using	a	function	type	declaration,	which	varies	depending
on	the	details	of	a	particular	function’s	input,	output,	and	parameters,	as	you	will
soon	see.)
Update	SimVillage.kt	to	define	a	variable	that	holds	a	function,	and	assign
it	the	anonymous	function	that	displays	the	greeting.	There	is	some	unfamiliar
syntax	here,	which	we	will	explain	after	you	enter	it.

Listing	5.2		Assigning	the	anonymous	function	to	a	variable
(SimVillage.kt)
fun	main(args:	Array<String>)	{

				println({

				val	greetingFunction:	()	->	String	=	{

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	Mayor!	(copyright	$currentYear)"

				}

		})()

				println(greetingFunction())

}

You	can	declare	a	variable	with	its	name	followed	by	a	colon	and	its	type.	That
is	exactly	what	you	have	done	here	with	greetingFunction:	()	->	String.
And	just	as	:	Int	tells	the	compiler	what	kind	of	data	a	variable	can	hold	(an
integer),	the	function	type	:	()	->	String	tells	the	compiler	what	kind	of
function	a	variable	can	hold.
A	function	type	definition	consists	of	two	parts:	the	function’s	parameters,	in
parentheses,	followed	by	its	return	type,	delimited	by	the	arrow	(->),	as	shown	in
Figure	5.1.

Figure	5.1		Function	type	syntax

The	type	declaration	you	specified	for	the	variable	greetingFunction,	()	-
>	String,	indicates	to	the	compiler	that	greetingFunction	can	be	assigned
any	function	that	accepts	no	arguments	(indicated	by	the	empty	parentheses)	and
returns	a	String.	As	with	any	other	type	declaration	for	a	variable,	the
compiler	will	ensure	that	the	function	assigned	to	the	variable	or	passed	as	an
argument	is	of	the	correct	type.
Run	main.	The	output	is	the	same:
				Welcome	to	SimVillage,	Mayor!	(copyright	2018)

Implicit	returns

You	may	have	noticed	that	there	is	no	return	keyword	within	the	anonymous
function	you	defined:
				val	greetingFunction:	()	->	String	=	{

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	Mayor!	(copyright	$currentYear)"

				}

However,	the	function	type	you	specified	indicates	that	the	function	must	return
a	String,	and	the	compiler	did	not	complain.	And,	based	on	the	output,	a
string	is	indeed	returned:	the	greeting	to	the	mayor.	Why,	then,	is	there	no
return	keyword?
Unlike	a	named	function,	an	anonymous	function	does	not	require	–	or	even
allow,	except	in	rare	cases	–	the	return	keyword	to	output	data.	Anonymous
functions	implicitly,	or	automatically,	return	the	last	line	of	their	function
definition,	allowing	you	to	omit	the	return	keyword.
This	feature	of	anonymous	functions	is	both	a	convenience	and	a	necessity	of	the
anonymous	function	syntax.	The	return	keyword	is	prohibited	in	an	anonymous
function	because	it	could	be	ambiguous	to	the	compiler	which	function	the
return	is	from:	the	function	the	anonymous	function	was	invoked	within,	or	the
anonymous	function	itself.

Function	arguments

Like	a	named	function,	an	anonymous	function	can	accept	zero,	one,	or	multiple
arguments	of	any	type.	The	parameters	an	anonymous	function	accepts	are
indicated	by	type	in	the	function	type	definition	and	then	named	in	the
anonymous	function’s	definition.
Update	the	greetingFunction	variable	declaration	to	accept	the	player’s

name	as	an	argument:

Listing	5.3		Adding	a	playerName	parameter	to	the	anonymous
function	(SimVillage.kt)
fun	main(args:	Array<String>)	{

				val	greetingFunction:	()	->	String	=	{

				val	greetingFunction:	(String)	->	String	=	{	playerName	->

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	Mayor!	(copyright	$currentYear)"

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

				}

				println(greetingFunction())

				println(greetingFunction("Guyal"))

}

Here	you	specify	that	the	anonymous	function	accepts	a	String.	You	name	the
string	parameter	within	the	function,	right	after	the	opening	brace,	and	follow	the
name	with	an	arrow:
				val	greetingFunction:	(String)	->	String	=	{	playerName	->

Run	SimVillage.kt	again.	You	will	see	that	the	argument	you	passed	to	the
anonymous	function	was	added	to	the	string:
				Welcome	to	SimVillage,	Guyal!	(copyright	2018)

Remember	the	count	function?	It	takes	in	an	anonymous	function	with	an
argument	called	predicate	of	type	(Char)	->	Boolean.	The	predicate
function	type	takes	a	Char	as	an	argument	and	returns	a	Boolean.	You	will
see	anonymous	functions	used	to	implement	much	of	the	Kotlin	standard	library,
so	it	is	best	to	familiarize	yourself	with	their	syntax.

The	it	keyword

When	defining	anonymous	functions	that	accept	exactly	one	argument,	the	it
keyword	is	available	as	a	convenient	alternative	to	specifying	the	parameter
name.	Both	it	and	a	named	parameter	are	valid	when	you	have	an	anonymous
function	that	has	only	one	parameter.
Delete	the	parameter	name	and	arrow	from	the	beginning	of	the	anonymous
function	and	use	the	it	keyword	instead:

Listing	5.4		Using	the	it	keyword	(SimVillage.kt)
fun	main(args:	Array<String>)	{

				val	greetingFunction:	(String)	->	String	=	{	playerName	->

				val	greetingFunction:	(String)	->	String	=	{

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

								"Welcome	to	SimVillage,	$it!	(copyright	$currentYear)"

				}

				println(greetingFunction("Guyal"))

}

Run	SimVillage.kt	to	confirm	that	it	works	as	before.
it	is	convenient	in	that	it	requires	no	variable	naming,	but	notice	that	it	is	not
very	descriptive	about	the	data	it	represents.	We	suggest	that	when	you	are
working	with	more	complex	anonymous	function	definitions,	or	with	nested
anonymous	functions	(anonymous	functions	within	anonymous	functions),	you
stick	with	naming	the	parameter	to	preserve	future	readers’	(and	your	own)
sanity.	On	the	other	hand,	it	is	great	for	shorter	expressions,	like	the	count
function	you	saw	earlier,	where	the	logic	is	clear	even	without	an	argument
name:
				"Mississippi".count({	it	==	's'	})

Accepting	multiple	arguments

While	the	it	syntax	is	available	for	an	anonymous	function	that	accepts	one
argument,	it	is	not	allowed	when	there	is	more	than	one	argument.	However,
anonymous	functions	can	certainly	accept	multiple	named	arguments.
It	is	time	for	SimVillage	to	do	something	besides	greet	its	mayor.	The	mayor
needs	to	know	whether	the	village	is	growing,	for	example.	Change	your
anonymous	function	to	accept	a	numBuildings	argument,	representing	the
number	of	houses	or	shops	constructed,	in	addition	to	the	player’s	name:

Listing	5.5		Accepting	a	second	argument	(SimVillage.kt)
fun	main(args:	Array<String>)	{

				val	greetingFunction:	(String)	->	String	=	{

				val	greetingFunction:	(String,	Int)	->	String	=	{	playerName,	numBuildings	->

								val	currentYear	=	2018

								println("Adding	$numBuildings	houses")

								"Welcome	to	SimVillage,	$it!	(copyright	$currentYear)"

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

				}

				println(greetingFunction("Guyal"))

				println(greetingFunction("Guyal",	2))

}

The	expression	now	declares	two	parameters,	playerName	and
numBuildings,	and	accepts	two	arguments	when	called.	Because	there	is
more	than	one	parameter	defined	for	the	expression,	the	it	keyword	is	no	longer
available.
Run	SimVillage	again.	This	time,	you	will	see	the	number	of	buildings
constructed	as	well	as	the	greeting:
				Adding	2	houses

				Welcome	to	SimVillage,	Guyal!	(copyright	2018)

Type	Inference	Support
Kotlin’s	type	inference	rules	behave	exactly	the	same	with	function	types	as	they
do	with	the	types	you	met	earlier	in	this	book:	If	a	variable	is	given	an
anonymous	function	as	its	value	when	it	is	declared,	no	explicit	type	definition	is
needed.
This	means	that	the	anonymous	function	you	wrote	earlier	that	accepted	no
arguments:
				val	greetingFunction:	()	->	String	=	{

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	Mayor!	(copyright	$currentYear)"

				}

Could	also	have	been	written	with	no	specified	type,	like	this:
				val	greetingFunction	=	{

								val	currentYear	=	2018

								"Welcome	to	SimVillage,	Mayor!	(copyright	$currentYear)"

				}

Type	inference	is	also	an	option	when	the	anonymous	function	accepts	one	or
more	arguments,	but	to	help	the	compiler	infer	the	type	of	the	variable,	you	do
need	to	provide	both	the	name	and	the	type	of	each	parameter	in	the	anonymous
function	definition.
Update	the	greetingFunction	variable	to	use	type	inference	by	including
types	for	each	parameter	in	the	anonymous	function.

Listing	5.6		Using	type	inference	for	greetingFunction
(SimVillage.kt)
fun	main()	{

				val	greetingFunction:	(String,	Int)	->	String	=	{	playerName,	numBuildings	->

				val	greetingFunction	=	{	playerName:	String,	numBuildings:	Int	->

								val	currentYear	=	2018

								println("Adding	$numBuildings	houses")

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

				}

				println(greetingFunction("Guyal",	2))

}

Run	SimVillage.kt	and	confirm	that	it	works	just	as	before.
When	combined	with	an	ambiguous	implicit	return	type,	type	inference	may
make	an	anonymous	function	difficult	to	read.	But	when	your	anonymous
function	is	simple	and	clear,	type	inference	is	an	asset	for	making	your	code
more	concise.

Defining	a	Function	That	Accepts	a	Function
You	have	seen	that	anonymous	functions	can	customize	the	work	of	standard
library	functions.	You	can	also	use	them	in	functions	you	write	yourself.
By	the	way,	from	here	on	out,	we	will	refer	to	anonymous	functions	as	lambdas
and	their	definitions	as	lambda	expressions.	We	will	also	refer	to	what	an
anonymous	function	returns	as	a	lambda	result.	This	is	common	terminology
you	will	encounter	in	the	wild	as	well.	(A	bit	of	trivia:	Why	“lambda”?	The	term,
also	represented	with	the	Greek	character	λ,	is	short	for	“lambda	calculus”	–	a
system	of	logic	for	expressing	computations,	devised	in	the	1930s	by
mathematician	Alonzo	Church.	You	use	lambda	calculus	notation	when	you
define	an	anonymous	function.)
A	function	parameter	can	accept	arguments	of	any	type,	including	arguments	that
are	functions.	A	function	type	parameter	is	defined	like	a	parameter	of	any	other
type:	You	list	it	in	the	parentheses	after	the	function	name	and	include	the	type.
To	see	how	this	works,	you	are	going	to	add	a	new	function	to	SimVillage	that
randomly	decides	how	many	buildings	have	been	constructed,	then	invokes	the
lambda	to	display	the	greeting.
Add	a	function	called	runSimulation	that	accepts	the	playerName	and
greetingFunction	variables.	You	will	use	a	couple	of	standard	library
functions	that	we	have	provided	for	you	to	generate	a	random	number.	Finally,
call	the	new	runSimulation	function.

Listing	5.7		Adding	the	runSimulation	function	(SimVillage.kt)
fun	main(args:	Array<String>)	{

				val	greetingFunction	=	{	playerName:	String,	numBuildings:	Int	->

								val	currentYear	=	2018

								println("Adding	$numBuildings	houses")

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

				}

				println(greetingFunction("Guyal",	2))

				runSimulation("Guyal",	greetingFunction)

}

fun	runSimulation(playerName:	String,	greetingFunction:	(String,	Int)	->	String)	{

				val	numBuildings	=	(1..3).shuffled().last()			//	Randomly	selects	1,	2,	or	3

				println(greetingFunction(playerName,	numBuildings))

}

The	two	parameters	to	runSimulation	are	the	player’s	name	and
greetingFunction,	a	function	that	accepts	a	String	and	Int	and	returns
a	String.	runSimulation	generates	a	random	number	and	calls	the
function	passed	as	greetingFunction	with	the	generated	number	and	the

playerName	(which	runSimulation	received	as	an	argument).
Run	SimVillage	several	times.	You	will	see	that	the	number	of	buildings
constructed	varies	now,	because	runSimulation	provides	a	random	number
to	the	greeting	function.

Shorthand	syntax

When	a	function	accepts	a	function	type	for	its	last	parameter,	you	can	also	omit
the	parentheses	around	the	lambda	argument.	So	this	example	that	we	showed
you	earlier:
				"Mississippi".count({	it	==	's'	})

Can	also	be	written	this	way,	without	the	parentheses:
				"Mississippi".count	{	it	==	's'	}

This	syntax	is	cleaner	to	read	and	gets	to	the	essential	ingredients	of	your
function	call	just	a	bit	more	quickly.
This	simplification	can	be	made	only	when	a	lambda	is	passed	as	the	last
argument	into	a	function.	When	writing	functions,	declare	function	type
parameters	as	the	final	parameter	so	that	callers	of	your	function	can	take
advantage	of	this	pattern.
In	SimVillage,	you	can	take	advantage	of	this	shorthand	with	the
runSimulation	function	you	defined.	runSimulation	expects	two
arguments:	a	string	and	a	function.	Provide	the	arguments	that	are	not	functions
to	runSimulation	inside	of	parentheses.	Then,	list	the	last	argument,	the
function,	outside	of	the	parentheses:

Listing	5.8		Passing	a	lambda	with	the	shorthand	syntax
(SimVillage.kt)
fun	main(args:	Array<String>)	{

				val	greetingFunction	=	{	playerName:	String,	numBuildings:	Int	->

				runSimulation("Guyal")	{	playerName,	numBuildings	->

								val	currentYear	=	2018

								println("Adding	$numBuildings	houses")

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

			}

}

fun	runSimulation(playerName:	String,	greetingFunction:	(String,	Int)	->	String)	{

			val	numBuildings	=	(1..3).shuffled().last()			//	Randomly	selects	1,	2,	or	3

			println(greetingFunction(playerName,	numBuildings))

}

Nothing	changed	in	the	implementation	of	runSimulation;	all	changes	were
on	how	it	is	called.	Notice	that	because	you	are	no	longer	assigning	the	lambda
to	a	variable	and	are	instead	directly	passing	it	to	runSimulation,	listing	the

types	for	the	parameters	in	the	lambda	is	no	longer	required.
This	shorthand	syntax	empowers	you	to	write	cleaner	code,	and	we	will	leverage
it	where	applicable	in	this	book.

Function	Inlining
Lambdas	are	useful	because	they	enable	a	high	degree	of	flexibility	in	how	your
programs	can	be	written.	However,	that	flexibility	comes	at	a	cost.
When	you	define	a	lambda,	it	is	represented	as	an	object	instance	on	the	JVM.
The	JVM	also	performs	memory	allocations	for	all	variables	accessible	to	the
lambda,	and	this	behavior	comes	with	associated	memory	costs.	As	a	result,
lambdas	introduce	memory	overhead	that	can	in	turn	cause	a	performance
impact	–	and	such	performance	impacts	are	to	be	avoided.
Fortunately,	there	is	an	optimization	you	can	enable	that	removes	the	overhead
when	using	lambdas	as	arguments	to	other	functions,	called	inlining.	Inlining
removes	the	need	for	the	JVM	to	use	an	object	instance	and	to	perform	variable
memory	allocations	for	the	lambda.
To	inline	a	lambda,	you	mark	the	function	that	accepts	the	lambda	using	the
inline	keyword.	Add	the	inline	keyword	to	the	runSimulation	function:

Listing	5.9		Using	the	inline	keyword	(SimVillage.kt)
...

inline	fun	runSimulation(playerName:	String,

																								greetingFunction:	(String,	Int)	->	String)	{

				val	numBuildings	=	(1..3).shuffled().last()			//	Randomly	selects	1,	2,	or	3

				println(greetingFunction(playerName,	numBuildings))

}

Now	that	you	have	added	the	inline	keyword,	instead	of	invoking
runSimulation	with	a	lambda	object	instance,	the	compiler	“copy	and
pastes”	the	function	body	where	the	call	is	made.	Take	a	look	at	the	decompiled
Kotlin	bytecode	for	SimVillage.kt’s	main	function,	where	the	(now
inlined)	runSimulation	function	is	called:
				...

				public	static	final	void	main(@NotNull	String[]	args)	{

				Intrinsics.checkParameterIsNotNull(args,	"args");

				String	playerName$iv	=	"Guyal";

				byte	var2	=	1;

				int	numBuildings$iv	=

								((Number)CollectionsKt.last(CollectionsKt.shuffled((Iterable)

								(new	IntRange(var2,	3))))).intValue();

				int	currentYear	=	2018;

				String	var7	=	"Adding	"	+	numBuildings$iv	+	"	houses";

				System.out.println(var7);

				String	var10	=	"Welcome	to	SimVillage,	"	+	playerName$iv	+	"!

								(copyright	"	+	currentYear	+	')';

				System.out.println(var10);

				}

				...

Notice	that	instead	of	invoking	the	runSimulation	function,	the	work	that

runSimulation	performed	with	the	lambda	is	now	directly	inlined	into	the
main	function,	avoiding	the	need	to	pass	any	lambda	at	all	(and	so	avoiding	the
need	for	a	new	object	instance).
It	is	generally	a	good	idea	to	mark	functions	that	accept	lambdas	as	arguments
with	the	inline	keyword.	However,	in	a	few	limited	instances,	it	is	not	possible.
One	situation	where	inlining	is	not	permitted,	for	example,	is	a	recursive
function	that	accepts	a	lambda,	since	the	result	of	inlining	such	a	function	would
be	an	infinite	loop	of	copying	and	pasting	function	bodies.	The	compiler	will
warn	you	if	you	try	to	inline	a	function	that	violates	the	rules.

Function	References
So	far,	you	have	defined	lambdas	to	provide	a	function	as	an	argument	to
another	function.	There	is	another	way	to	do	so:	by	passing	a	function	reference.
A	function	reference	converts	a	named	function	(a	function	defined	using	the	fun
keyword)	to	a	value	that	can	be	passed	as	an	argument.	You	can	use	a	function
reference	anywhere	you	use	a	lambda	expression.
To	see	a	function	reference,	start	by	defining	a	new	function,	called
printConstructionCost:

Listing	5.10		Defining	the	printConstructionCost	function
(SimVillage.kt)
...

inline	fun	runSimulation(playerName:	String,

																								greetingFunction:	(String,	Int)	->	String)	{

				val	numBuildings	=	(1..3).shuffled().last()			//	Randomly	selects	1,	2,	or	3

				println(greetingFunction(playerName,	numBuildings))

}

fun	printConstructionCost(numBuildings:	Int)	{

				val	cost	=	500

				println("construction	cost:	${cost	*	numBuildings}")

}

Now,	add	a	function	parameter	to	runSimulation	called	costPrinter,
and	use	the	value	within	runSimulation	to	print	the	construction	cost	for	the
buildings.

Listing	5.11		Adding	a	costPrinter	parameter	(SimVillage.kt)
...

inline	fun	runSimulation(playerName:	String,

																								greetingFunction:	(String,	Int)	->	String)	{

inline	fun	runSimulation(playerName:	String,

																								costPrinter:	(Int)	->	Unit,

																								greetingFunction:	(String,	Int)	->	String)	{

				val	numBuildings	=	(1..3).shuffled().last()			//	Randomly	selects	1,	2,	or	3

				costPrinter(numBuildings)

				println(greetingFunction(playerName,	numBuildings))

}

fun	printConstructionCost(numBuildings:	Int)	{

				val	cost	=	500

				println("construction	cost:	${cost	*	numBuildings}")

}

To	obtain	a	function	reference,	you	use	the	::	operator	with	the	function	name
you	would	like	a	reference	for.	Obtain	a	function	reference	for	the
printConstructionCost	function	and	pass	the	reference	as	the	argument
for	the	new	costPrinter	parameter	you	defined	on	runSimulation:

Listing	5.12		Passing	a	function	reference	(SimVillage.kt)
fun	main(args:	Array<String>)	{

				runSimulation("Guyal")	{	playerName,	numBuildings	->

				runSimulation("Guyal",	::printConstructionCost)	{	playerName,	numBuildings	->

								val	currentYear	=	2018

								println("Adding	$numBuildings	houses")

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

				}

}

...

Run	SimVillage.kt.	You	will	see	that	in	addition	to	the	number	of	buildings
constructed,	the	total	cost	of	the	construction	prints	as	well.
Function	references	are	useful	in	a	number	of	situations.	If	you	have	a	named
function	that	fits	the	needs	of	a	parameter	that	requires	a	function	argument,	a
function	reference	allows	you	to	use	it	instead	of	defining	a	lambda.	Or	you	may
want	to	use	a	Kotlin	standard	library	function	as	an	argument	to	a	function.	You
will	see	more	examples	of	both	of	these	uses	of	function	references	in	Chapter	9.

Function	Type	as	Return	Type
Like	any	other	type,	the	function	type	is	also	a	valid	return	type,	meaning	you
can	define	a	function	that	returns	a	function.
In	SimVillage,	define	a	configureGreetingFunction	function	that
configures	the	arguments	for	the	lambda	held	by	the	greetingFunction
variable	and	generates	and	then	returns	the	lambda,	ready	for	use:

Listing	5.13		Adding	the	configureGreetingFunction	function
(SimVillage.kt)
fun	main(args:	Array<String>)	{

				runSimulation("Guyal",	::printContructionCost)	{	playerName,	numBuildings	->

								val	currentYear	=	2018

								println("Adding	$numBuildings	houses")

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

				}

				runSimulation()

}

inline	fun	runSimulation(playerName:	String,

																								costPrinter:	(Int)	->	Unit,

																								greetingFunction:	(String,	Int)	->	String)	{

				val	numBuildings	=	(1..3).shuffled().last()			//	Randomly	selects	1,	2,	or	3

				costPrinter(numBuildings)

				println(greetingFunction(playerName,	numBuildings))

fun	runSimulation()	{

				val	greetingFunction	=	configureGreetingFunction()

				println(greetingFunction("Guyal"))

}

fun	configureGreetingFunction():	(String)	->	String	{

				val	structureType	=	"hospitals"

				var	numBuildings	=	5

				return	{	playerName:	String	->

								val	currentYear	=	2018

								numBuildings	+=	1

								println("Adding	$numBuildings	$structureType")

								"Welcome	to	SimVillage,	$playerName!	(copyright	$currentYear)"

				}

}

You	might	think	of	configureGreetingFunction	as	a	“function	factory”
–	a	function	that	sets	up	another	function.	It	declares	the	necessary	variables	and
assembles	them	in	a	lambda	that	it	then	returns	to	its	caller,	runSimulation.
Run	SimVillage.kt	again.	The	number	of	hospitals	built	is	incremented	and
displayed:
				Adding	6	hospitals

				Welcome	to	SimVillage,	Guyal!	(copyright	2018)

Both	numBuildings	and	structureType,	local	variables	defined	within
configureGreetingFunction,	were	used	by	the	lambda	that
configureGreetingFunction	returns,	even	though	they	were	defined	in
the	outer	function	the	lambda	was	returned	from.	This	works	because	lambdas	in

Kotlin	are	what	are	called	closures	–	they	“close	over”	the	variables	in	the	outer
scope	that	they	are	defined	within.	To	learn	more	about	closures,	take	a	look	at
the	section	called	For	the	More	Curious:	Kotlin’s	Lambdas	Are	Closures,	below.
A	function	that	accepts	or	returns	another	function	is	sometimes	also	referred	to
as	a	higher-order	function.	The	terminology	is	borrowed	from	the	same	area	of
mathematics	the	term	lambda	is	borrowed	from.	Higher-order	functions	are	used
extensively	in	a	style	of	programming	called	functional	programming,	which
you	will	learn	about	in	Chapter	19.
In	this	chapter,	you	have	learned	how	lambdas	(AKA	anonymous	functions)	are
used	to	customize	Kotlin	standard	library	functions	and	how	to	define	your	own.
You	have	also	learned	how	functions	behave	like	any	other	type	in	Kotlin	and
how	they	can	be	used	as	arguments	or	returned	by	functions	that	you	define.
In	the	next	chapter,	you	will	see	how	Kotlin	helps	prevent	programming
mistakes	by	enforcing	nullability	in	its	type	system.	You	will	also	return	to
NyetHack	and	begin	building	a	tavern	in	the	game.

For	the	More	Curious:	Kotlin’s	Lambdas	Are
Closures
In	Kotlin,	an	anonymous	function	can	modify	and	reference	variables	defined
outside	of	its	scope.	This	means	that	an	anonymous	function	has	a	reference	to
the	variables	defined	in	the	scope	where	it	is	itself	created	–	as	in	the	case	of	the
configureGreetingFunction	function	you	saw	earlier.
As	a	demonstration	of	this	property	of	anonymous	functions,	update	the
runSimulation	function	to	call	the	function	returned	from
configureGreetingFunction	multiple	times:

Listing	5.14		Calling	println	twice	in	runSimulation
(SimVillage.kt)
...

fun	runSimulation()	{

				val	greetingFunction	=	configureGreetingFunction()

				println(greetingFunction("Guyal"))

				println(greetingFunction("Guyal"))

}

...

Run	SimVillage	again.	You	will	see	the	following	output:
				building	6	hospitals

				Welcome	to	SimVillage,	Guyal!	(copyright	2018)

				building	7	hospitals

				Welcome	to	SimVillage,	Guyal!	(copyright	2018)

Though	the	numBuildings	variable	is	defined	outside	of	the	anonymous
function,	the	anonymous	function	has	access	to	the	variable	and	can	modify	it.
Therefore,	the	numBuildings	value	increments	from	6	to	7.

For	the	More	Curious:	Lambdas	vs	Anonymous
Inner	Classes
If	you	have	not	used	function	types	before,	you	may	wonder	why	you	would
want	to	use	them	in	your	program.	Our	answer:	Function	types	offer	increased
flexibility	with	less	boilerplate.	Consider	a	language	that	does	not	offer	function
types,	like	Java	8.
Java	8	includes	support	for	object-oriented	programming	and	lambda
expressions	but	does	not	include	the	ability	to	define	a	function	as	a	parameter	to
a	function	or	variable.	Instead,	Java	provides	anonymous	inner	classes	–
nameless	classes	that	are	defined	within	another	class	to	implement	a	single
method	definition.	You	can	pass	anonymous	inner	classes	as	an	instance,	like	a
lambda.	For	example,	in	Java	8,	to	pass	the	definition	for	a	single	method,	you
would	write:
				Greeting	greeting	=	(playerName,	numBuildings)	->	{

								int	currentYear	=	2018;

								System.out.println("Adding	"	+	numBuildings	+	"	houses");

								return	"Welcome	to	SimVillage,	"	+	playerName	+

																"!	(copyright	"	+	currentYear	+	")";

				};

				public	interface	Greeting	{

								String	greet(String	playerName,	int	numBuildings);

				}

				greeting.greet("Guyal",	6);

On	the	surface,	this	seems	mostly	equivalent	to	what	Kotlin	provides:	the	ability
to	pass	lambda	expressions.	But	if	you	dig	deeper,	you	will	find	that	Java
requires	the	definition	of	named	interfaces	or	classes	to	represent	the	functions
the	lambda	will	define,	even	though	instances	of	those	types	appear	to	be	written
in	almost	the	same	shorthand	Kotlin	allows.	If	you	would	like	to	simply	pass	a
function	without	defining	an	interface,	you	will	find	Java	does	not	support	this
concise	syntax.
For	example,	take	a	look	at	the	Runnable	interface	in	Java:
				public	interface	Runnable	{

								public	abstract	void	run();

				}

This	Java	8	lambda	declaration	requires	an	interface	definition.	In	Kotlin,	this
extra	effort	to	describe	a	single	abstract	method	is	not	required.	The	following	is
possible	in	Kotlin	and	is	functionally	equivalent	to	the	Java	code:
				fun	runMyRunnable(runnable:	()	->	Unit)	=	{	runnable()	}

				runMyRunnable	{	println("hey	now")	}

Combine	this	more	precise	syntax	with	the	other	features	you	learned	about	in
the	chapter	–	implicit	returns,	the	it	keyword,	and	the	closure	behavior	–	and
you	have	a	nice	improvement	on	manually	defining	inner	classes	to	implement	a
single	method.
The	flexibility	Kotlin	provides	by	including	functions	as	first-class	citizens	frees
you	to	spend	your	time	on	more	valuable	pursuits	than	writing	boilerplate	–	like
getting	your	work	done.

6	
Null	Safety	and	Exceptions

Null	is	a	special	value	that	indicates	that	the	value	of	a	var	or	val	does	not	exist.
In	many	programming	languages,	including	Java,	null	is	a	common	cause	of
crashes,	because	a	nonexistent	value	cannot	be	asked	to	do	anything.	Kotlin
requires	a	specific	declaration	if	a	var	or	val	can	accept	null	as	a	value,	which
helps	avoid	this	type	of	crash.
In	this	chapter,	you	will	learn	why	null	causes	a	crash,	how	Kotlin	protects
against	null	by	default	at	compile	time,	and	how	to	safely	work	with	nullable
values	in	Kotlin	when	you	require	them.	You	will	also	see	how	to	work	with
what	are	called	exceptions	in	Kotlin,	indicators	that	something	went	wrong	in
your	program.
To	see	these	issues	in	action,	you	will	be	updating	the	NyetHack	project.	You
will	add	a	tavern	to	the	game	that	accepts	user	input	and	attempts	to	fulfill
custom	drink	requests	for	its	choosy	patrons.	You	will	also	add	a	dangerous
sword	juggling	feature.

Nullability
Some	elements	in	Kotlin	can	be	assigned	a	value	of	null,	and	some	cannot.	We
say	that	the	former	are	nullable	and	the	latter	are	non-nullable.	For	example,
while	you	might	want	a	variable	in	NyetHack	that	tracks	a	player’s	steed	to	be
nullable,	since	not	every	player	will	ride	a	steed,	you	would	not	want	the	health
points	variable	to	be	null.	Every	player	has	to	have	an	associated	health	points
value;	it	would	be	illogical	for	them	not	to.	Its	value	might	be	0,	but	0	is	not	the
same	as	null	–	null	is	the	absence	of	any	value.
Open	NyetHack	and	create	a	new	file	called	Tavern.kt.	Add	a	main
function,	where	your	code	will	begin	executing.
Before	opening	the	tavern	to	custom	drink	requests	from	users,	first	try	an
experiment.	Start	by	adding	a	familiar-looking	var	assignment	to	main,	and
then	reassigning	the	variable’s	value	to	null:

Listing	6.1		Reassigning	a	var’s	value	to	null	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	signatureDrink	=	"Buttered	Ale"

				signatureDrink	=	null

}

Even	before	you	execute	this	code,	IntelliJ	warns	you	with	a	red	underline	that
something	is	amiss.	Run	it	anyway,	and	you	will	see:
				Null	can	not	be	a	value	of	a	non-null	type	String

Kotlin	prevents	the	assignment	of	null	to	the	signatureDrink	variable,
because	it	is	a	non-null	type	(String).	A	non-null	type	is	one	that	does	not
support	the	assignment	of	null.	The	current	definition	of	signatureDrink	is
guaranteed	to	be	a	string,	rather	than	null.
If	you	have	worked	with	Java	before,	this	behavior	is	different	than	what	you
may	be	familiar	with.	In	Java,	the	following	code	is	permitted,	for	example.
				String	signatureDrink	=	"Buttered	Ale";

				signatureDrink	=	null;

Reassigning	signatureDrink	to	a	value	of	null	is	fine	in	Java.	But	what	do
you	think	would	happen	if	you	asked	Java	to	concatenate	a	string	to	the	null
signatureDrink	variable?
				String	signatureDrink	=	"Buttered	Ale";

				signatureDrink	=	null;

				signatureDrink	=	signatureDrink	+	",	large";

In	fact,	this	code	will	cause	an	exception	that	will	crash	the	program,	called	a

NullPointerException.
The	Java	code	crashes	because	a	nonexistent	String	has	been	asked	to	perform
string	concatenation.	This	is	an	impossible	request.	(If	you	are	confused	about
why	a	value	of	null	is	not	the	same	as	an	empty	string,	this	example	shows	the
difference.	A	value	of	null	means	that	the	variable	does	not	exist.	An	empty
string	means	that	the	variable	exists	and	has	a	value	of	"",	which	could	easily
concatenate	with	",	large".)
Java	and	many	other	programming	languages	support	exactly	this	pseudo-code
statement:	“Hey,	nonexistent	string,	do	string	concatenation.”	In	those	languages,
the	value	of	any	variable	can	be	null	(with	the	exception	of	primitives,	which
Kotlin	does	not	support).	In	languages	that	allow	null	for	any	type,
NullPointerExceptions	are	a	common	source	of	application	crashes.
Kotlin	takes	the	opposite	position	on	the	problem	of	null.	Unless	otherwise
specified,	a	variable	cannot	be	assigned	a	value	of	null.	This	guards	against	the
problem	of	“Hey,	nonexistent	thing,	do	something”	at	compile	time,	rather	than
crashing	at	runtime.

Kotlin’s	Explicit	Null	Type
NullPointerExceptions	like	the	one	that	you	saw	above	should	be
avoided	at	all	costs.	Kotlin	protected	you	by	preventing	you	from	assigning	a
null	value	to	a	variable	of	a	non-nullable	type.	That	said,	nullness	does	still	exist
in	Kotlin.
Here	is	an	example,	from	the	header	for	the	function	called	readLine.
readLine	accepts	user	input	from	the	console	and	returns	it	so	that	it	can	be
used	later.
				public	fun	readLine():	String?

readLine’s	header	looks	like	one	that	you	have	seen	before,	with	one
exception:	the	return	type	String?.	The	question	mark	represents	a	nullable
version	of	a	type.	That	means	readLine	will	either	return	a	value	of	type
String,	or	it	will	return	null.
Remove	your	earlier	signatureDrink	experiment	and	add	a	call	to
readLine.	Store	the	value	that	is	passed	in	to	readLine	and	print	it	out.

Listing	6.2		Defining	a	nullable	variable	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	signatureDrink	=	"Buttered	Ale"

				signatureDrink	=	null

				var	beverage	=	readLine()

				println(beverage)

}

Run	Tavern.kt.	Nothing	will	happen	initially,	because	it	is	waiting	for	your
input.	Click	in	the	console,	type	the	name	of	your	preferred	beverage,	and	press
Return.	The	name	that	you	entered	will	be	echoed	back	to	you	in	the	console.
(What	if	you	entered	no	beverage	name	and	just	pressed	Return?	Would	that
assign	beverage	a	null	value?	No.	It	would	assign	the	variable	the	value	of	the
empty	string,	which	would	then	be	echoed	back	to	you.)
Recall	that	a	variable	of	type	String?	can	hold	either	a	string	value	or	null.
This	means	that	assigning	beverage	to	a	null	value	will	indeed	compile.	Try	it
out:

Listing	6.3		Reassigning	a	variable	to	null	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	beverage	=	readLine()

				beverage	=	null

				println(beverage)

}

Run	Tavern.kt	and,	as	before,	enter	your	beverage	of	choice.	This	time,	no
matter	what	you	enter,	the	value	printed	to	the	console	will	be	null.	No	beverage
for	you	–	but	no	error,	either.
Before	moving	on,	comment	out	the	reassignment	to	null	so	that	your	tavern	will
actually	serve	customers.	IntelliJ	provides	a	shortcut	for	commenting	out	a	line
of	code:	Click	anywhere	in	the	line	and	press	Command-/	(Ctrl-/).	Commenting
out	this	line	of	code	instead	of	deleting	it	will	give	you	the	option	to	toggle	the
nullness	of	beverage	by	uncommenting	the	line	(using	the	same	keybinding).
This	way,	you	can	easily	test	the	strategies	for	handling	nullness	outlined	in	this
chapter.

Listing	6.4		Restoring	service	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	beverage	=	readLine()

				beverage	=	null

//			beverage	=	null

				println(beverage)

}

Compile	Time	vs	Runtime
Kotlin	is	a	compiled	language,	meaning	that	your	program	is	translated	into
machine-language	instructions	prior	to	execution	by	a	special	program,	called
the	compiler.	During	this	step,	the	compiler	ensures	that	certain	requirements	are
met	by	your	code	before	the	instructions	are	generated.	For	example,	the
compiler	checks	whether	null	is	assigned	to	a	nullable	type.	As	you	have	seen,	if
you	attempt	to	assign	null	to	a	non-nullable	type,	Kotlin	will	refuse	to	compile
your	program.
Errors	caught	at	compile	time	are	called	compile-time	errors,	and	they	are	one	of
the	advantages	of	working	with	Kotlin.	It	may	sound	odd	to	say	that	errors	are	an
advantage,	but	having	the	compiler	check	your	work	during	development	–
before	you	allow	others	to	run	your	program	and	tell	you	about	your	mistakes	–
makes	it	much	easier	to	track	down	problems.
On	the	other	hand,	a	runtime	error	is	a	mistake	that	happens	after	the	program
has	compiled	and	is	already	running,	because	the	compiler	was	unable	to
discover	it.	For	example,	because	Java	lacks	any	distinction	between	nullable
and	non-nullable	types,	the	Java	compiler	cannot	tell	you	that	there	is	a	problem
if	you	ask	a	variable	with	a	value	of	null	to	perform	work.	Code	like	that
compiles	just	fine	in	Java,	but	it	will	crash	at	runtime.
Generally	speaking,	compile-time	errors	are	preferable	to	runtime	errors.
Finding	out	about	a	problem	while	you	are	writing	code	is	better	than	finding	out
later.	And	finding	out	after	your	program	has	been	released?	That	is	the	worst.

Null	Safety
Because	Kotlin	distinguishes	between	nullable	and	non-nullable	types,	the
compiler	is	aware	of	the	possibly	dangerous	situation	of	asking	a	variable
defined	as	a	nullable	type	to	do	something	when	the	variable	might	not	exist.	To
shield	against	these	dangers,	Kotlin	will	prevent	you	from	calling	functions	on	a
value	defined	as	nullable	until	you	have	accepted	responsibility	for	this	unsafe
situation.
To	see	what	this	looks	like	in	practice,	try	to	call	a	function	on	beverage.	This
is	a	fancy	tavern,	and,	as	such,	all	drink	names	should	be	capitalized.	Try	to	call
capitalize	on	beverage.	(You	will	see	more	String	functions	in
Chapter	7.)

Listing	6.5		Using	a	nullable	variable	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	beverage	=	readLine()

				var	beverage	=	readLine().capitalize()

//			beverage	=	null

				println(beverage)

}

Run	Tavern.kt.	You	might	expect	that	the	result	of	this	code	will	be	a	fancily
capitalized	version	of	the	drink	that	you	order.	But	when	you	execute	the	code,
you	will	see	a	compile-time	error	instead:
				Only	safe	(?.)	or	non-null	asserted	(!!.)	calls

				are	allowed	on	a	nullable	receiver	of	type	String?

Kotlin	did	not	allow	you	to	call	the	capitalize	function,	because	you	did	not
deal	with	the	possibility	of	beverage	being	null.	Even	though	you	assign
beverage	to	a	non-null	value	via	the	console	at	its	declaration,	its	type
remains	nullable.	Kotlin	has	prevented	you	at	compile	time	from	potentially
causing	a	runtime	error,	because	the	compiler	was	aware	of	your	mistake	with
the	nullable	type.
By	now	you	are	likely	thinking,	“So	how	do	I	deal	with	the	possibility	of	null?	I
have	important	drink	name	fancying-up	to	do.”	You	have	a	number	of	choices
for	safely	working	with	a	nullable	type	in	Kotlin,	and	in	a	moment	we	will	give
you	three	options,	plus	some	extras.
First,	though,	consider	option	zero:	Use	a	non-nullable	type,	if	at	all	possible.
Non-nullable	types	are	easier	to	reason	about	because	they	guarantee	that	they
contain	a	value	that	can	have	functions	called	on	it.	So	ask	yourself,	“Why	do	I

need	a	nullable	type	here?	Would	a	non-nullable	type	work	just	as	well?”	Often,
you	simply	do	not	need	null	–	and	when	you	do	not	need	it,	avoiding	it	is	the
safest	course.

Option	one:	the	safe	call	operator

Sometimes,	nothing	but	a	nullable	type	will	do.	For	example,	when	you	are
working	with	a	variable	from	code	you	do	not	control,	you	cannot	be	sure	that	it
will	not	return	null.	In	cases	like	that,	your	first	option	is	to	use	the	safe	call
operator	(?.)	in	your	function	call.	Try	it	out	in	Tavern.kt:

Listing	6.6		Using	the	safe	call	operator	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	beverage	=	readLine().capitalize()

				var	beverage	=	readLine()?.capitalize()

//			beverage	=	null

				println(beverage)

}

Notice	that	Kotlin	does	not	generate	an	error	this	time.	When	the	compiler
encounters	the	safe	call	operator,	it	knows	to	check	for	a	null	value.	If	it	finds
one,	it	skips	over	the	call	and	does	not	evaluate	it,	instead	returning	null.	Here,	if
beverage	is	non-null,	a	capitalized	version	is	returned.	(Try	it	and	see.)	If
beverage	is	null,	capitalize	is	not	called,	because	it	would	not	be	safe	to
do	so.	(Try	that,	too.)
The	safe	call	operator	ensures	that	a	function	is	called	if	and	only	if	the	variable
it	acts	on	is	not	null,	thus	preventing	a	null	pointer	exception.	We	say,	using	the
example	above,	that	capitalize	is	called	“safely,”	because	the	risk	of	a	null
pointer	exception	no	longer	exists.

Using	safe	calls	with	let

Safe	calls	allow	you	to	call	a	single	function	on	a	nullable	type,	but	what	if	you
want	to	perform	additional	work,	like	creating	a	new	value	or	calling	other
functions	if	the	variable	is	not	null?	One	way	to	achieve	this	is	to	use	the	safe
call	operator	with	the	function	let.	let	can	be	called	on	any	value,	and	its
purpose	is	to	allow	you	to	define	a	variable	or	variables	for	a	given	scope	that
you	provide.	(Recall	that	you	learned	about	function	scope	in	Chapter	4.)
Because	let	provides	its	own	function	scope,	you	can	use	a	safe	call	with	let
to	scope	multiple	expressions	that	each	require	the	variable	that	they	are	called

on	to	be	non-null.	You	will	learn	more	details	about	working	with	let	in
Chapter	9,	but	for	now	adapt	your	beverage	implementation	to	get	a	sneak
preview:

Listing	6.7		Using	let	with	the	safe	call	operator	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	beverage	=	readLine()?.capitalize()

				var	beverage	=	readLine()?.let	{

								if	(it.isNotBlank())	{

												it.capitalize()

								}	else	{

												"Buttered	Ale"

								}

				}

//			beverage	=	null

				println(beverage)

}

Here,	you	define	beverage	as	a	nullable	variable,	as	before.	But	this	time	you
assign	its	value	to	the	result	of	safely	calling	let	on	it.	When	beverage	is	not
null	and	let	is	invoked,	everything	within	the	anonymous	function	passed	to
let	is	evaluated:	The	input	from	readLine	is	checked	to	see	whether	it	is
blank;	if	it	is	not	blank	it	is	capitalized,	and	if	it	is	blank,	then	a	fallback
beverage	name,	"Buttered	Ale",	is	returned	instead.	Both	isNotBlank	and
capitalize	require	the	beverage	name	to	be	non-null,	which	is	guaranteed	by
let.
let	provides	a	number	of	conveniences,	two	of	which	you	take	advantage	of
here.	As	you	define	beverage,	you	use	the	convenience	value	it,	provided	by
let.	You	saw	it	in	Chapter	5.	Within	let,	it	is	a	reference	to	the	variable	on
which	let	is	called,	and	is	guaranteed	to	be	non-null.	You	call	isNotBlank
and	capitalize	on	it	–	a	non-null	form	of	beverage.
The	second	let	convenience	is	behind	the	scenes:	let	returns	the	results	of
your	expression	implicitly,	so	you	can	(and	do)	assign	that	result	to	a	variable
once	it	has	completed	evaluating	the	expression	you	define.
Run	Tavern.kt	with	the	reassignment	to	null	commented	out,	then
uncommented.	When	beverage	is	not	null,	let	is	invoked,	capitalization
happens,	and	the	result	is	printed.	When	beverage	is	null,	the	contents	of	the
let	function	are	not	evaluated,	and	beverage	remains	null.

Option	two:	the	double-bang	operator

The	double-bang	operator	(!!.)	can	also	be	used	to	call	a	function	on	a	nullable
type.	But	be	forewarned:	This	is	a	much	more	drastic	option	than	the	safe	call

operator	and	should	generally	not	be	used.	Visually,	the	!!.	should	look	very
loud	in	your	code,	because	it	is	a	dangerous	option.	If	you	use	!!.,	you	are
proclaiming	to	the	compiler:	“If	I	ask	a	nonexistent	thing	to	do	something,	I
DEMAND	that	you	throw	a	null	pointer	exception!!”	(By	the	way,	its	official
name	is	the	non-null	assertion	operator,	but	it	is	more	often	called	the	double-
bang	operator.)
While	we	generally	advise	against	the	double-bang	operator,	strap	on	your	safety
goggles	and	try	it	out:

Listing	6.8		Using	the	double-bang	operator	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	beverage	=	readLine()?.let	{

								if	(it.isNotBlank())	{

												it.capitalize()

								}	else	{

												"Buttered	Ale"

								}

				}

				var	beverage	=	readLine()!!.capitalize()

//			beverage	=	null

				println(beverage)

}

beverage	=	readLine()!!.capitalize()	means,	“I	don’t	care	whether
beverage	is	null;	capitalize	it	anyway!”	If	beverage	is	indeed	null,	a
KotlinNullPointerException	is	thrown.
There	are	situations	where	using	the	double-bang	operator	is	appropriate.
Perhaps	you	do	not	have	control	over	the	type	of	a	variable,	but	you	are	sure	that
it	will	never	be	null.	As	long	as	you	are	confident	that	the	variable	you	are	using
will	not	be	null	when	you	use	it,	then	!!.	may	be	an	option	for	you.	You	will	see
an	example	of	an	appropriate	use	of	!!.	later	in	this	chapter.

Option	three:	checking	whether	a	value	is	null	with	if

A	third	option	for	working	safely	with	null	values	is	to	check	whether	a	value	is
null	as	a	condition	for	executing	an	if	branch.	Recall	Table	3.1	in	Chapter	3,
which	lists	the	comparison	operators	available	in	Kotlin.	The	!=	operator
evaluates	whether	the	value	on	the	left	is	not	equal	to	the	value	on	the	right,	and
you	can	use	it	to	check	that	a	value	is	not	null.	Try	it	out	in	the	tavern:

Listing	6.9		Using	!=	null	for	null	checking	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	beverage	=	readLine()!!.capitalize()

				var	beverage	=	readLine()

//			beverage	=	null

				if	(beverage	!=	null)	{

								beverage	=	beverage.capitalize()

				}	else	{

								println("I	can't	do	that	without	crashing	-	beverage	was	null!")

				}

				println(beverage)

}

Now,	if	beverage	is	null,	you	will	get	the	following	output,	and	no	error.
				I	can't	do	that	without	crashing	-	beverage	was	null!

Using	the	safe	call	operator	should	be	favored	before	using	value	!=	null	as	a
means	to	guard	against	null,	since	it	is	a	more	flexible	tool	to	solve	generally	the
same	problem,	but	in	less	code.	For	example,	the	safe	call	operator	can	be
chained	on	to	subsequent	function	calls	with	ease:
				beverage?.capitalize()?.plus(",	large")

Notice	that	you	did	not	have	to	use	the	!!.	operator	when	referencing
beverage	in	beverage	=	beverage.capitalize().	The	Kotlin	compiler
recognizes	that	beverage	must	be	non-null	as	a	condition	for	that	branch,	and
it	can	deduce	that	a	second	null	check	is	unnecessary.	This	feature	–	the	compiler
tracking	conditions	within	an	if	expression	–	is	an	example	of	smart	casting.
When	would	you	use	an	if/else	statement	for	null	checking?	This	option	is	best
for	times	when	you	have	some	complex	logic	that	you	would	only	like	to	be
evaluated	if	a	variable	is	null.	An	if/else	statement	allows	you	to	represent	that
complex	logic	in	a	readable	form.

The	null	coalescing	operator

Another	way	to	check	for	null	values	is	to	use	Kotlin’s	null	coalescing	operator
?:	(also	known	as	the	“Elvis	operator”	due	to	its	semblance	to	Elvis	Presley’s
iconic	hairstyle).	This	operator	says,	“If	the	thing	on	the	lefthand	side	of	me	is
null,	do	the	thing	on	the	righthand	side	instead.”
Add	a	default	beverage	choice	to	your	tavern	using	the	null	coalescing	operator.
If	beverage	is	null,	then	print	out	the	house	specialty,	Buttered	Ale.

Listing	6.10		Using	the	null	coalescing	operator	(Tavern.kt)
fun	main(args:	Array<String>)	{

				var	beverage	=	readLine()

//			beverage	=	null

				if	(beverage	!=	null)	{

								beverage	=	beverage.capitalize()

				}	else	{

								println("I	can't	do	that	without	crashing	-	beverage	was	null!")

				}

				println(beverage)

				val	beverageServed:	String	=	beverage	?:	"Buttered	Ale"

				println(beverageServed)

}

Most	often	in	this	book,	we	exclude	the	type	of	a	variable	if	it	can	be	inferred	by
the	Kotlin	compiler.	We	include	it	here	to	illuminate	the	role	of	the	null
coalescing	operator.
If	beverage	is	non-null,	then	it	will	be	assigned	to	beverageServed.	If
beverage	is	null,	then	"Buttered	Ale"	is	assigned.	Either	way,
beverageServed	is	assigned	a	value	of	type	String,	not	String?.	This	is
great	–	the	beverage	served	to	the	user	is	now	guaranteed	to	be	non-null.
Think	of	the	null	coalescing	operator	as	ensuring	that	a	value	is	not	null	by
providing	a	default	(and	not	null)	value	to	be	assigned	if	the	first	option	turns	out
to	be	null.	Null	coalescing	can	be	used	to	clean	up	values	that	might	be	null	so
that	you	can	have	peace	of	mind	as	you	work	with	them.
Run	Tavern.kt.	As	long	as	beverage	is	not	null,	you	will	see	your
capitalized	drink	order.	When	beverage	is	null,	you	will	see	the	following
printed	to	the	console	instead.
				I	can't	do	that	without	crashing	-	beverage	was	null!

				Buttered	Ale

The	null	coalescing	operator	can	also	be	used	in	conjunction	with	the	let
function	in	place	of	an	if/else	statement.	Compare	this	code,	which	is	the	result
of	Listing	6.9:
				var	beverage	=	readLine()

								if	(beverage	!=	null)	{

												beverage	=	beverage.capitalize()

								}	else	{

												println("I	can't	do	that	without	crashing	-	beverage	was	null!")

								}

With	this:
				var	beverage	=	readLine()

				beverage?.let	{

								beverage	=	it.capitalize()

				}	?:	println("I	can't	do	that	without	crashing	-	beverage	was	null!")

This	code	is	functionally	equivalent	to	the	code	in	Listing	6.9.	If	beverage	is
null,	then	"I	can't	do	that	without	crashing	-	beverage	was	null!"	is
printed	to	the	console.	Otherwise,	beverage	is	capitalized.
So,	should	you	replace	your	existing	if/else	statements	with	this	style?	That	is
not	a	question	that	we	can	answer	for	you,	because	the	choice	is	a	stylistic	one.
We	tend	to	opt	for	if/else	statements	in	this	type	of	scenario,	and	you	will	see
them	throughout	this	book.	We	prefer	their	readability.	If	you	or	your	team
disagree,	that	is	OK	–	either	syntax	is	valid.

Exceptions
Like	many	other	languages,	Kotlin	also	includes	exceptions	to	indicate	that
something	went	wrong	in	your	program.	This	is	important,	because	the	world	of
NyetHack	is	a	place	in	which	things	can	indeed	go	wrong.
Let’s	see	some	examples.	Start	by	creating	a	new	file	in	NyetHack	called
SwordJuggler.kt	and	adding	a	main	function.
Against	your	better	judgment,	a	group	of	tavern	attendees	has	convinced	you	to
juggle	some	swords.	You	will	keep	track	of	the	number	of	swords	that	you	are
juggling	with	a	nullable	integer.	Why	a	nullable	integer?	If	swordsJuggling
is	null,	then	you	lack	proficiency	in	sword	juggling	and	your	journey	in
NyetHack	may	be	cut	short.
Begin	by	adding	variables	for	the	number	of	swords	you	are	juggling	as	well	as
your	juggling	proficiency.	You	can	represent	sword	juggling	proficiency	using
the	same	randomness	mechanism	that	you	wrote	in	Chapter	5.	If	you	are	a
proficient	juggler,	print	the	number	of	swords	juggled	to	the	console.

Listing	6.11		Adding	sword	juggling	logic	(SwordJuggler.kt)
fun	main(args:	Array<String>)	{

				var	swordsJuggling:	Int?	=	null

				val	isJugglingProficient	=	(1..3).shuffled().last()	==	3

				if	(isJugglingProficient)	{

								swordsJuggling	=	2

				}

				println("You	juggle	$swordsJuggling	swords!")

}

Run	SwordJuggler.	You	have	a	1	in	3	chance	of	being	proficient	with	juggling
swords	–	not	bad	for	a	first-timer.	If	your	proficiency	check	passes,	then	you	will
see	You	juggle	2	swords!	printed	to	the	console.	If	your	check	fails,	then	you
will	see	You	juggle	null	swords!	instead.
Printing	the	value	of	swordsJuggling	is	not	an	inherently	dangerous
operation.	You	can	print	null	to	the	console,	and	your	program	will	continue
running.	It	is	time	to	ratchet	up	the	danger.	Add	another	sword	using	the	plus
function	and	the	!!.	operator.

Listing	6.12		Adding	a	third	sword	(SwordJuggler.kt)
fun	main(args:	Array<String>)	{

				var	swordsJuggling:	Int?	=	null

				val	isJugglingProficient	=	(1..3).shuffled().last()	==	3

				if	(isJugglingProficient)	{

								swordsJuggling	=	2

				}

				swordsJuggling	=	swordsJuggling!!.plus(1)

				println("You	juggle	$swordsJuggling	swords!")

}

Using	the	!!.	operator	on	a	nullable	variable	is	a	dangerous	operation.	One-
third	of	the	time,	your	sword-juggling	proficiency	enables	you	juggle	a	third
sword.	The	other	two-thirds	of	the	time,	your	program	crashes.
When	an	exception	occurs,	it	must	be	dealt	with,	or	execution	of	the	program
will	be	halted.	An	exception	that	is	not	dealt	with	is	called	an	unhandled
exception.	And	halting	the	execution	of	the	program	is	known	by	the	ugly	name
crash.
Test	your	luck	by	running	SwordJuggler	a	couple	of	times.	If	your	application
crashes,	you	will	see	a	KotlinNullPointerException,	and	the	rest	of	the
code	(the	println	statement)	will	not	execute.
When	there	is	the	possibility	of	a	variable	being	null,	there	is	the	possibility	of	a
KotlinNullPointerException.	This	is	one	of	the	reasons	Kotlin	makes
variables	non-nullable	by	default.

Throwing	an	exception

Similar	to	many	other	languages,	Kotlin	allows	you	to	manually	signal	that	an
exception	has	occurred.	You	do	this	with	the	throw	operator,	and	it	is	called
throwing	an	exception.	There	are	many	more	exceptions	that	can	be	thrown	in
addition	to	the	null	pointer	exception	that	you	just	saw.
Why	would	you	want	to	throw	an	exception?	It	is	all	in	the	name	–	exceptions
are	used	to	represent	exceptional	state.	If	something	in	your	code	has	gone
extraordinarily	wrong,	then	throwing	an	exception	signals	that	the	issue	must	be
handled	before	execution	continues.
One	of	the	more	common	exceptions	that	you	will	see	is	called	an
IllegalStateException.	IllegalStateException	is	a	vague
name,	to	be	sure	–	it	means	that	your	program	has	reached	some	state	that	you
have	deemed	illegal.	This	is	useful,	because	you	can	pass
IllegalStateException	a	string	to	print	out	when	the	exception	is
thrown	to	provide	more	information	about	what	went	wrong.
The	world	of	NyetHack	may	be	expansive	and	mysterious,	but	the	tavern	has	its
share	of	good	people.	One	particular	merrymaker	recognizes	your	lack	of	sword-
juggling	proficiency	and	steps	in	before	you	can	do	anything	dangerous.	Add	a

function	called	proficiencyCheck	to	SwordJuggler,	and	call	it	in	main.	If
swordsJuggling	is	null,	interject	by	throwing	an
IllegalStateException	before	any	dangerous	operations	can	be
performed.

Listing	6.13		Throwing	an	IllegalStateException
(SwordJuggler.kt)
fun	main(args:	Array<String>)	{

				var	swordsJuggling:	Int?	=	null

				val	isJugglingProficient	=	(1..3).shuffled().last()	==	3

				if	(isJugglingProficient)	{

								swordsJuggling	=	2

				}

				proficiencyCheck(swordsJuggling)

				swordsJuggling	=	swordsJuggling!!.plus(1)

				println("You	juggle	$swordsJuggling	swords!")

}

fun	proficiencyCheck(swordsJuggling:	Int?)	{

				swordsJuggling	?:	throw	IllegalStateException("Player	cannot	juggle	swords")

}

Run	this	code	a	couple	of	times	to	see	the	different	results.
Here,	you	signaled	that	the	state	of	the	program	is	an	illegal	one	–
swordsJuggling	should	not	be	null,	lest	you	put	yourself	at	risk.	This	signal
decrees	that	anyone	that	would	like	to	work	with	the	swordsJuggling
variable	must	handle	the	exceptional	state	stemming	from	its	nullability.	It	is
loud,	but	that	is	a	good	thing,	as	it	increases	the	likelihood	that	you	will	notice
the	exceptional	state	during	development	–	before	it	causes	a	crash	for	your	user.
And	because	you	provided	an	error	message	to	the
IllegalStateException,	you	know	exactly	why	your	program	crashed.
When	you	throw	an	exception,	you	are	not	limited	to	Kotlin’s	built-in	types.	You
can	define	your	own	custom	exceptions	to	represent	a	state	that	is	specific	to
your	application.

Custom	exceptions

You	have	now	seen	how	to	use	the	throw	operator	to	signal	that	an	exception	has
occurred.	The	exception	you	just	threw,	IllegalStateException,
indicates	that	an	illegal	state	has	occurred	and	gives	you	the	opportunity	to	add
more	information	by	passing	a	string	to	be	printed	when	the	exception	is	thrown.
To	add	more	detail	to	your	exception,	you	can	create	a	custom	exception	for	the
particular	problem.	To	define	a	custom	exception,	you	define	a	new	class	that
inherits	from	some	other	exception.	Classes	allow	you	to	define	the	“things”	in

your	program	–	monsters,	weapons,	food,	tools,	and	so	on.	You	will	learn	lots
more	about	classes	in	Chapter	12,	so	do	not	worry	about	the	details	of	the	syntax
now.
Define	a	custom	exception	called	UnskilledSwordJugglerException
in	SwordJuggler.kt.

Listing	6.14		Defining	a	custom	exception	(SwordJuggler.kt)
fun	main(args:	Array<String>)	{

				...

}

fun	proficiencyCheck(swordsJuggling:	Int?)	{

				swordsJuggling	?:	throw	IllegalStateException("Player	cannot	juggle	swords")

}

class	UnskilledSwordJugglerException()	:

								IllegalStateException("Player	cannot	juggle	swords")

UnskilledSwordJugglerException	is	a	custom	exception	that	acts	as
an	IllegalStateException	with	a	specific	message.
You	can	throw	this	new,	custom	exception	in	the	same	way	that	you	threw
IllegalStateException,	using	the	throw	operator.	Throw	your	custom
exception	in	SwordJuggler.kt.

Listing	6.15		Throwing	a	custom	exception	(SwordJuggler.kt)
fun	main(args:	Array<String>)	{

				...

}

fun	proficiencyCheck(swordsJuggling:	Int?)	{

				swordsJuggling	?:	throw	IllegalStateException("Player	cannot	juggle	swords")

				swordsJuggling	?:	throw	UnskilledSwordJugglerException()

}

class	UnskilledSwordJugglerException()	:

								IllegalStateException("Player	cannot	juggle	swords")

UnskilledSwordJugglerException	is	a	custom	error	intended	to	be
thrown	when	swordsJuggling	is	null.	Nothing	about	the	code	used	to	define
this	exception	specifies	when	it	is	thrown	–	that	is	your	responsibility.
Custom	exceptions	are	flexible	and	useful.	Not	only	can	you	use	them	to	print
custom	messages,	but	you	also	can	add	functionality	to	be	executed	when	the
exception	is	thrown.	And	they	reduce	duplication,	as	you	can	reuse	them	across
your	codebase.

Handling	exceptions

Exceptions	are	disruptive,	and	they	should	be	–	they	represent	a	state	that	is
unrecoverable	unless	it	is	handled.	Kotlin	allows	you	to	specify	how	to	handle

exceptions	by	defining	a	try/catch	statement	around	the	code	that	might	cause
one.	The	syntax	of	try/catch	is	similar	to	the	syntax	for	if/else.	To	see	what	it
looks	like,	use	try/catch	in	SwordJuggler.kt	to	protect	against	the
dangerous	operation	that	you	performed,	as	shown:

Listing	6.16		Adding	a	try/catch	statement	(SwordJuggler.kt)
fun	main(args:	Array<String>)	{

				var	swordsJuggling:	Int?	=	null

				val	isJugglingProficient	=	(1..3).shuffled().last()	==	3

				if	(isJugglingProficient)	{

								swordsJuggling	=	2

				}

				try	{

								proficiencyCheck(swordsJuggling)

								swordsJuggling	=	swordsJuggling!!.plus(1)

				}	catch	(e:	Exception)	{

								println(e)

				}

				println("You	juggle	$swordsJuggling	swords!")

}

fun	proficiencyCheck(swordsJuggling:	Int?)	{

				swordsJuggling	?:	throw	UnskilledSwordJugglerException()

}

class	UnskilledSwordJugglerException()	:

								IllegalStateException("Player	cannot	juggle	swords")

When	you	define	a	try/catch	statement,	you	declare	what	will	happen	in	the
event	that	some	value	is	not	null	and	what	will	happen	if	it	is	null.	In	the	try
block,	you	“try”	to	use	a	variable.	If	no	exception	occurs,	the	try	statement
executes	and	the	catch	statement	does	not.	This	branching	logic	is	akin	to	a
conditional.	In	this	case,	you	try	to	add	another	sword	to	be	juggled	using	the
!!.	operator.
In	the	catch	block,	you	define	what	will	happen	if	some	expression	in	the	try
block	causes	an	exception.	The	catch	block	takes	a	specific	type	of	exception	to
protect	as	an	argument.	In	this	case,	you	catch	any	exception	of	type
Exception.
catch	blocks	can	include	all	sorts	of	logic,	but	this	example	keeps	it	simple.
Here,	you	use	the	catch	block	to	simply	print	the	name	of	the	exception.
Within	the	try	block,	each	line	of	code	is	executed	in	the	order	it	is	declared.	In
this	case,	if	swordsJuggling	is	non-null,	the	plus	function	will	add	1	to
swordsJuggling	without	issue,	and	the	following	statement	will	be	printed
to	the	console:
				You	juggle	3	swords!

If	you	are	not	fortunate	enough	to	be	proficient	with	sword	juggling,	then
swordsJuggling	will	be	null.	As	such,	proficiencyCheck	will	throw
an	UnskilledSwordJugglerException.	But	because	you	handled	the

exception	with	a	try/catch	statement,	program	execution	will	continue	and	the
catch	block	will	run,	printing	the	following	output	to	the	console:
				UnskilledSwordJugglerException:	Player	cannot	juggle	swords

				You	juggle	null	swords!

Note	that	both	the	name	of	the	exception	and	You	juggle	null	swords!	was
printed.	This	is	significant,	because	the	latter	string	is	printed	after	the
try/catch	block	executes.	An	unhandled	exception	will	crash	your	program,
halting	execution.	Because	you	handled	the	exception	using	a	try/catch	block,
code	execution	can	continue	as	if	a	dangerous	operation	never	caused	an	issue.
Run	SwordJuggler.kt	several	times	to	see	both	outcomes.

Preconditions
Unexpected	values	can	cause	your	program	to	behave	in	unintended	ways.	As	a
developer,	you	will	spend	plenty	of	time	validating	input	to	ensure	you	are
working	with	the	values	you	intend.	Some	sources	of	exceptions	are	common,
like	unexpected	null	values.	To	make	it	easier	to	validate	input	and	debug	to
avoid	certain	common	issues,	Kotlin	provides	some	convenience	functions	as
part	of	its	standard	library.	They	allow	you	to	use	a	built-in	function	to	throw	an
exception	with	a	custom	message.
These	functions	are	called	precondition	functions,	because	they	allow	you	to
define	preconditions	–	conditions	that	must	be	true	before	some	piece	of	code	is
executed.
For	example,	you	have	seen	a	number	of	ways	in	this	chapter	to	guard	against
the	KotlinNullPointerException	and	other	exceptions.	One	last	option
is	to	use	a	precondition	function	like	checkNotNull,	which	checks	whether	a
value	is	null	and	returns	the	value,	if	it	is	not	null,	or	throws	an
IllegalStateException	if	it	is	null.	Try	replacing	your	thrown
UnskilledSwordJugglerException	with	a	precondition	function:

Listing	6.17		Using	a	precondition	function	(SwordJuggler.kt)
fun	main(args:	Array<String>)	{

				var	swordsJuggling:	Int?	=	null

				val	isJugglingProficient	=	(1..3).shuffled().last()	==	3

				if	(isJugglingProficient)	{

								swordsJuggling	=	2

				}

				try	{

								proficiencyCheck(swordsJuggling)

								swordsJuggling	=	swordsJuggling!!.plus(1)

				}	catch	(e:	Exception)	{

								println(e)

				}

				println("You	juggle	$swordsJuggling	swords!")

}

fun	proficiencyCheck(swordsJuggling:	Int?)	{

				swordsJuggling	?:	throw	UnskilledSwordJugglerException()

				checkNotNull(swordsJuggling,	{	"Player	cannot	juggle	swords"	})

}

class	UnskilledSwordJugglerException()	:

								IllegalStateException("Player	cannot	juggle	swords")

checkNotNull	makes	explicit	that	swordsJuggling	must	not	be	null	past
a	certain	point	in	your	code	execution.	If	it	is	null	when	passed	to
checkNotNull,	then	a	thrown	IllegalStateException	makes	it	clear
that	the	current	state	is	unacceptable.	checkNotNull	takes	two	arguments:

The	first	is	a	value	to	check	for	nullness,	and	the	second	is	an	error	message	to
be	printed	to	the	console	in	the	event	that	the	first	argument	is	null.
Precondition	functions	are	a	great	way	to	communicate	requirements	before
some	bit	of	code	is	executed.	They	can	be	cleaner	than	manually	throwing	your
own	exception,	because	the	condition	to	be	satisfied	is	included	in	the	name	of
the	function.	In	this	case,	while	the	outcome	is	the	same	–	you	can	be	assured
that	either	swordsJuggling	will	not	be	null	or	that	a	custom	exception
message	will	print	–	checkNotNull	is	more	clear	than	the	earlier	throw
UnskilledSwordJugglerException.
Kotlin	includes	five	preconditions	in	the	standard	library;	this	variety
differentiates	them	from	other	types	of	null	checks.	The	five	precondition
functions	are	shown	in	Table	6.1:

Table	6.1		Kotlin	precondition	functions
Function Description
checkNotNull Throws	an	IllegalStateException	if	argument

is	null.	Otherwise	returns	the	non-null	value.

require Throws	an	IllegalArgumentException	if
argument	is	false.

requireNotNull Throws	an	IllegalArgumentException	if
argument	is	null.	Otherwise	returns	the	non-null	value.

error Throws	an	IllegalArgumentException	with	a
provided	message	if	argument	is	null.	Otherwise	returns
the	non-null	value.

assert Throws	an	AssertionError	if	argument	is	false	and
the	assertion	compiler	flag	is	enabled.a

a	The	details	of	enabling	assertions	are	outside	the	scope	of	this	book.	If	you
are	interested,	see	kotlinlang.org/api/latest/jvm/stdlib/
kotlin/assert.html	and	docs.oracle.com/cd/E19683-01/
806-7930/assert-4/index.html.

require	is	a	particularly	useful	precondition.	Functions	can	leverage

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/assert.html
https://docs.oracle.com/cd/E19683-01/806-7930/assert-4/index.html

require	to	communicate	bounds	for	the	arguments	passed	to	them.	Take	a
look	at	a	function	using	require	to	make	the	requirements	for	the
swordsJuggling	parameter	explicit:
				fun	juggleSwords(swordsJuggling:	Int)	{

								require(swordsJuggling	>=	3,	{	"Juggle	at	least	3	swords	to	be	exciting."	})

								//	Juggle

				}

To	put	on	a	good	show,	the	player	must	juggle	at	least	three	swords.	Using
require	at	the	top	of	the	function	declaration	makes	this	clear	to	whoever	calls
juggleSwords.

Null:	What	Is	It	Good	For?
This	chapter	has	taken	a	largely	anti-null	stance.	We	view	this	stance	to	be	a
noble	one,	but	in	the	wild	world	of	software	engineering,	representing	state	using
null	is	common.
Why?	Null	is	often	used	in	Java	and	languages	of	its	ilk	as	an	initial	value	for
variables.	For	example,	think	of	a	variable	declared	to	hold	a	person’s	name.
There	are	common	first	names	for	human	beings,	but	no	name	can	be	considered
a	default.	Null	is	often	used	as	an	initial	value	for	variables	that	have	no	natural
default	value.	In	fact,	in	many	languages,	you	can	define	a	variable	without
assigning	it	a	value,	and	its	value	will	default	to	null.
This	mentality	of	defaulting	to	null	can	lead	to	null	pointer	exceptions,	which
can	be	common	in	other	languages.	One	way	that	you	can	work	around	nullness
is	to	provide	better	initializers.	Not	every	type	has	a	natural	initial	value,	but	the
String	in	our	name	example	does	–	an	empty	string.	An	empty	string	tells	you
as	much	as	a	null	initializer	would:	This	value	is	not	yet	initialized.	Therefore,
you	can	represent	an	uninitialized	state	without	resorting	to	null	checks	in	your
code.
The	other	way	to	work	with	nullness	is	to	accept	it	and	to	use	the	strategies
outlined	in	this	chapter	to	work	with	nullable	types.	Whether	you	use	the	safe
call	operator	to	protect	yourself	against	null	pointer	exceptions	or	the	null
coalescing	operator	to	provide	your	own	default	value,	working	with	null	is	a
reasonable	expectation	of	you	as	a	Kotlin	developer.
Nullness	–	the	absence	of	a	value	–	is	a	real-world	phenomenon.	Being	able	to
represent	nullness	in	Kotlin	is	important	for	that	reason.	When	you	represent	it	in
your	code	or	call	into	someone	else’s	code	that	relies	on	nullness,	do	so	wisely.
In	this	chapter,	you	have	learned	how	Kotlin	handles	problems	related	to
nullness.	You	have	seen	that	you	must	explicitly	define	when	you	support
nullability,	because	values	are	by	default	non-nullable.	And	you	learned	that	you
should	favor	types	that	do	not	support	null	when	possible,	because	they	let	the
compiler	help	prevent	runtime	errors.
You	have	also	seen	how	to	work	safely	with	nullable	types	when	you	absolutely
must	have	them	–	by	using	the	safe	call	operator	or	null	coalescing	operator,	or
by	explicitly	checking	whether	the	value	is	null.	You	also	saw	the	let	function
and	how	it	can	be	used	in	conjunction	with	the	safe	call	operator	to	evaluate

expressions	safely	on	a	nullable	variable.	Finally,	you	learned	about	exceptions,
how	to	deal	with	them	using	the	try/catch	syntax	that	Kotlin	provides,	and	how
to	define	preconditions	to	catch	exceptional	states	before	they	cause	a	crash.
In	the	next	chapter	you	will	learn	more	about	working	with	strings	in	Kotlin	as
you	continue	to	build	NyetHack’s	tavern.

For	the	More	Curious:	Checked	vs	Unchecked
Exceptions
In	Kotlin,	all	exceptions	are	unchecked.	This	means	that	the	Kotlin	compiler
does	not	force	you	to	wrap	all	code	that	could	produce	an	exception	in	a
try/catch	statement.
Compare	this	with	Java,	for	example,	which	supports	a	mixture	of	both	checked
and	unchecked	exception	types.	With	a	checked	exception,	the	compiler	checks
that	the	exception	is	guarded	against,	requiring	you	add	a	try/catch	to	your
program.
This	sounds	reasonable.	But	in	practice,	the	idea	of	checked	exceptions	does	not
hold	up	as	well	as	the	inventors	thought	it	would.	Often,	checked	exceptions	are
caught	(because	the	compiler	requires	the	checked	exception	to	be	handled)	and
then	simply	ignored,	just	to	allow	the	program	to	compile.	This	is	called
“swallowing	an	exception,”	and	it	makes	your	program	very	hard	to	debug
because	it	suppresses	the	information	that	anything	went	wrong	in	the	first	place.
In	most	cases,	ignoring	the	problem	at	compile	time	leads	to	more	errors	at
runtime.
Unchecked	exceptions	have	won	out	in	modern	languages	because	experience
has	shown	that	checked	exceptions	lead	to	more	problems	than	they	solve:	code
duplication,	difficult-to-understand	error	recovery	logic,	and	swallowed
exceptions	with	no	record	of	an	error	even	taking	place.

For	the	More	Curious:	How	Is	Nullability
Enforced?
Kotlin	has	strict	patterns	around	nullness	when	compared	to	languages	like	Java.
This	is	a	boon	when	working	exclusively	in	Kotlin,	but	how	is	this	pattern
implemented?	Do	Kotlin’s	rules	still	protect	you	when	interoperating	with	a	less
strict	language	like	Java?	Think	back	to	the	printPlayerStatus	function
from	Chapter	4.
				fun	printPlayerStatus(auraColor:	String,

																										isBlessed:	Boolean,

																										name:	String,

																										healthStatus:	String)	{

								...

				}

printPlayerStatus	takes	in	parameters	of	Kotlin	types	String	and
Boolean.
If	you	are	calling	this	function	from	Kotlin,	then	the	function	signature	is	clear	–
auraColor,	name,	and	healthStatus	must	be	of	type	String,	which	is
not	nullable,	and	isBlessed	must	be	of	type	Boolean,	which	is	also	not
nullable.	However,	because	Java	does	not	have	the	same	rules	regarding
nullability,	a	String	in	Java	could	potentially	be	null.
How	does	Kotlin	maintain	a	null-safe	environment?	Answering	that	question
requires	a	dive	into	the	decompiled	Java	bytecode:
				public	static	final	void	printPlayerStatus(@NotNull	String	auraColor,

																																														boolean	isBlessed,

																																														@NotNull	String	name,

																																														@NotNull	String	healthStatus)	{

								Intrinsics.checkParameterIsNotNull(auraColor,	"auraColor");

								Intrinsics.checkParameterIsNotNull(name,	"name");

								Intrinsics.checkParameterIsNotNull(healthStatus,	"healthStatus");

								...

				}

There	are	two	mechanisms	for	ensuring	that	non-null	parameters	do	not	accept
null	arguments.	First,	note	the	@NotNull	annotations	on	each	of	the	non-
primitive	parameters	to	printPlayerStatus.	These	annotations	serve	as	a
signal	to	callers	of	this	Java	method	that	the	annotated	parameters	should	not
take	null	arguments.	isBlessed	does	not	require	a	@NotNull	annotation,
because	booleans	are	represented	as	primitive	types	in	Java	and,	as	such,	cannot
be	null.
@NotNull	annotations	can	be	found	in	many	Java	projects,	but	they	are
particularly	useful	for	those	calling	Java	methods	from	Kotlin,	as	the	Kotlin

compiler	uses	them	to	determine	whether	a	Java	method	parameter	is	nullable.
You	will	learn	more	about	Kotlin’s	interoperability	with	Java	in	Chapter	20.
The	Kotlin	compiler	goes	a	step	further	in	guaranteeing	that	auraColor,
name,	and	healthStatus	will	not	be	null:	using	a	method	called
Intrinsics.checkParameterIsNotNull.	This	method	is	called	on
each	non-nullable	parameter	and	will	throw	an
IllegalArgumentException	if	a	null	value	manages	to	be	passed	as	an
argument.
In	short,	any	function	that	you	declare	in	Kotlin	will	play	by	Kotlin’s	rules	about
nullness,	even	when	represented	as	Java	code	on	the	JVM.
So	there	you	have	it	–	you	are	doubly	protected	from	a	null	pointer	exception
when	writing	functions	that	take	values	of	non-null	types	in	Kotlin,	even	when
interoperating	with	languages	that	are	less	strict	about	nullness.

7	
Strings

In	programming,	textual	data	is	represented	by	strings	–	ordered	sequences	of
characters.	You	have	already	used	Kotlin’s	strings,	like	the	string	you	formatted
and	displayed	in	SimVillage:
				"Welcome	to	SimVillage,	Mayor!	(copyright	2018)"

In	this	chapter	you	will	see	more	of	what	strings	can	do,	using	a	variety	of
functions	for	the	String	type	from	the	Kotlin	standard	library.	In	the	process,
you	will	upgrade	NyetHack’s	tavern	to	allow	customers	to	order	from	the	menu,
an	essential	feature	of	any	tavern	worth	its	salt.

Extracting	Substrings
To	allow	tavern	customers	to	place	an	order,	you	will	look	at	two	ways	to	extract
one	string	from	another:	the	functions	substring	and	split.

substring

Your	first	task	is	to	write	a	function	that	allows	a	player	to	place	an	order	with
the	tavern	master.	Open	Tavern.kt	in	the	NyetHack	project,	add	a	variable	to
hold	the	name	of	the	tavern,	and	add	a	new	function	called	placeOrder.
Within	the	new	placeOrder	function,	use	String’s	indexOf	and
substring	functions	to	extract	the	tavern	master’s	name	from	the
TAVERN_NAME	string	and	display	it.	(We	will	walk	through	each	line	of
placeOrder	after	you	add	it.)	Also,	remove	the	old	beverage	code	from	the
previous	exercise.	The	tavern	will	feature	more	than	beverage	items,	and
Buttered	Ale	is	no	longer	lawful	to	serve	in	the	realm	anyway.

Listing	7.1		Extracting	the	tavern	master’s	name	(Tavern.kt)
const	val	TAVERN_NAME	=	"Taernyl's	Folly"

fun	main(args:	Array<String>)	{

				var	beverage	=	readLine()

				//	beverage	=	null

				if	(beverage	!=	null)	{

								beverage	=	beverage.capitalize()

				}	else	{

								println("I	can't	do	that	without	crashing	-	beverage	was	null!")

				}

				val	beverageServed:	String	=	beverage	?:	"Buttered	Ale"

				println(beverageServed)

				placeOrder()

}

private	fun	placeOrder()	{

			val	indexOfApostrophe	=	TAVERN_NAME.indexOf('\'')

			val	tavernMaster	=	TAVERN_NAME.substring(0	until	indexOfApostrophe)

			println("Madrigal	speaks	with	$tavernMaster	about	their	order.")

}

Run	Tavern.kt.	You	will	see	the	output	Madrigal	speaks	with	Taernyl
about	their	order.

Let’s	go	line	by	line	to	see	how	placeOrder	extracted	the	tavern	master’s
name	from	the	name	of	the	tavern.
First,	you	use	String’s	indexOf	function	to	get	the	index	of	the	first
apostrophe	in	the	String:

				val	indexOfFirstApostrophe	=	TAVERN_NAME.indexOf('\'')

An	index	is	an	integer	that	corresponds	to	the	position	of	a	character	in	the
string.	The	index	starts	at	0	for	the	first	character.	The	next	character	has	the
index	1,	the	next	2,	and	so	forth.
The	Char	type,	defined	within	single	quotes,	is	used	to	represent	the	individual
characters	in	a	string.	Passing	a	Char	to	indexOf	tells	the	function	to	locate
the	first	instance	of	the	Char	and	return	its	index.	The	argument	you	provide
indexOf	is	'\'',	so	the	indexOf	function	scans	through	the	string	until	it
finds	a	match	and	returns	the	index	for	the	apostrophe	character.
What	is	the	\	doing	in	that	argument?	The	apostrophe	character	is	also	the	single
quotation	mark	that	signals	a	character	literal.	If	you	entered	your	argument	as
''',	the	compiler	would	read	the	apostrophe	in	the	middle	as	a	single	quotation
mark	enclosing	an	empty	character	literal.	You	need	to	let	the	compiler	know
that	you	are	specifying	the	apostrophe	character	instead,	and	you	do	this	with	the
\	escape	character,	which	distinguishes	between	certain	characters	and	special
meanings	they	have	to	the	compiler.
Table	7.1	lists	the	escape	sequences	(consisting	of	\	and	the	character	being
escaped)	and	their	meanings	to	the	compiler:

Table	7.1		Escape	sequences
Escape	sequence Meaning

\t
Tab	character

\b
Backspace	character

\n
Newline	character

\r
Carriage	return

\"
Double	quotation	mark

\'
Single	quotation	mark/apostrophe

\\
Backslash

\$
Dollar	sign

\u
Unicode	character

Once	you	have	the	index	of	the	first	apostrophe	in	the	string,	you	use	string’s
substring	function,	which	returns	a	new	string	from	an	existing	string	using
parameters	you	provide:
				val	tavernMaster	=	TAVERN_NAME.substring(0	until	indexOfFirstApostrophe)

substring	accepts	an	IntRange	(a	type	that	represents	a	range	of	integers)
that	determines	the	indices	of	the	characters	to	extract.	In	this	case,	the	range
starts	with	the	first	character	and	ends	with	the	character	before	the	first
apostrophe	(recall	that	until	creates	a	range	that	excludes	the	specified	upper
bound).
This	sets	the	value	of	the	variable	tavernMaster	to	the	string	consisting	of
the	characters	from	the	beginning	of	the	TAVERN_NAME	string	to	just	before	the
first	apostrophe	–	in	other	words,	"Taernyl".
Finally,	you	used	string	templating	(as	you	saw	in	Chapter	3)	to	interpolate	the
variable	tavernMaster	in	the	output	by	prefixing	the	variable	with	$:
				println("Madrigal	speaks	with	$tavernMaster	about	their	order.")

split

The	tavern’s	menu	data	will	be	represented	as	a	string	and	stored	in	the
following	format,	separated	by	commas:	type	of	drink,	drink	name,	and	price	(in
gold).	For	example:
				shandy,Dragon's	Breath,5.91

Your	next	task	is	to	allow	the	placeOrder	function	to	accept	tavern	menu	data
and	display	the	name,	type,	and	price	of	the	item	the	customer	has	ordered.
Update	the	placeOrder	function	to	accept	tavern	menu	data,	passing	some
menu	data	where	placeOrder	is	called.
(Note	that	from	here	forward	we	will	show	additions	to	a	line	of	code	in	the
existing	line,	rather	than	showing	the	line	deleted	and	re-entered	with	the
change.)

Listing	7.2		Passing	tavern	data	to	placeOrder	(Tavern.kt)
const	val	TAVERN_NAME	=	"Taernyl's	Folly"

fun	main(args:	Array<String>)	{

				placeOrder("shandy,Dragon's	Breath,5.91")

}

private	fun	placeOrder(menuData:	String)	{

				val	indexOfApostrophe	=	TAVERN_NAME.indexOf('\'')

				val	tavernMaster	=	TAVERN_NAME.substring(0	until	indexOfApostrophe)

				println("Madrigal	speaks	with	$tavernMaster	about	their	order.")

}

Next,	to	extract	the	individual	parts	of	the	menu	data	for	display,	you	are	going
to	use	String’s	split	function,	which	creates	a	series	of	substrings	using	a
delimiter	you	provide.	Add	the	split	function	to	placeOrder:

Listing	7.3		Splitting	the	menu	data	(Tavern.kt)
...

private	fun	placeOrder(menuData:	String)	{

				val	indexOfApostrophe	=	TAVERN_NAME.indexOf('\'')

				val	tavernMaster	=	TAVERN_NAME.substring(0	until	indexOfApostrophe)

				println("Madrigal	speaks	with	$tavernMaster	about	their	order.")

				val	data	=	menuData.split(',')

				val	type	=	data[0]

				val	name	=	data[1]

				val	price	=	data[2]

				val	message	=	"Madrigal	buys	a	$name	($type)	for	$price."

				println(message)

}

split	accepts	a	delimiter	character	to	look	for	and	returns	a	list	of	the	resulting
substrings	with	the	delimiter	omitted.	(Lists,	which	you	will	learn	about	in
Chapter	10,	hold	a	series	of	elements.)	In	this	case,	split	returns	a	list	of
strings	in	the	order	it	found	them.	You	use	indices	in	square	brackets,	officially
known	as	the	indexed	access	operator,	to	extract	the	first,	second,	and	third
strings	from	the	list	and	assign	them	as	the	values	of	the	variables	type,	name,
and	price.
Finally,	as	before,	you	include	the	strings	in	a	message	using	string	interpolation.
Run	Tavern.kt.	This	time,	you	will	see	the	drink	order	printed,	including	the
item	type	and	price.
				Madrigal	speaks	with	Taernyl	about	their	order.

				Madrigal	buys	a	Dragon's	Breath	(shandy)	for	5.91.

Because	split	returns	a	list,	it	also	supports	simplified	syntax	called
destructuring	–	a	feature	that	allows	you	to	declare	and	assign	multiple	variables
in	a	single	expression.	Update	placeOrder	to	use	destructuring	syntax	instead
of	individual	assignments.

Listing	7.4		Destructuring	the	menu	data	(Tavern.kt)
...

private	fun	placeOrder(menuData:	String)	{

				val	indexOfApostrophe	=	TAVERN_NAME.indexOf('\'')

				val	tavernMaster	=	TAVERN_NAME.substring(0	until	indexOfApostrophe)

				println("Madrigal	speaks	with	$tavernMaster	about	their	order.")

				val	data	=	menuData.split(',')

				val	type	=	data[0]

				val	name	=	data[1]

				val	price	=	data[2]

				val	(type,	name,	price)	=	menuData.split(',')

				val	message	=	"Madrigal	buys	a	$name	($type)	for	$price."

				println(message)

}

Destructuring	can	often	be	used	to	simplify	the	assignment	of	variables.	Any
time	the	result	is	a	list,	a	destructuring	assignment	is	allowed.	In	addition	to
List,	other	types	that	support	destructuring	include	Maps	and	Pairs	(both	of
which	you	will	learn	about	in	Chapter	11),	as	well	as	data	classes.
Run	Tavern.kt	again.	The	results	should	be	the	same.

String	Manipulation
Whoever	drinks	a	Dragon’s	Breath	enjoys	not	only	a	delightful	sensory
experience	but	also	gains	elite	programming	abilities	as	well	as	DragonSpeak,	an
ancient	tongue	similar	to	1337Sp34k.
For	example,	the	following	utterance:
				A	word	of	advice:	Don't	drink	the	Dragon's	Breath

Translates	to	this	in	DragonSpeak:
				A	w0rd	0f	4dv1c3:	D0n't	dr1nk	th3	Dr4g0n's	Br34th

The	String	type	includes	functions	for	manipulating	the	values	of	a	string.	To
add	a	DragonSpeak	translator	to	NyetHack’s	tavern,	you	are	going	to	use
String’s	replace	function,	which,	as	the	name	suggests,	replaces	characters
based	on	rules	you	specify.	replace	accepts	a	regular	expression	(more	on	that
in	a	moment)	to	determine	what	characters	it	should	act	on	and	calls	an
anonymous	function	that	you	define	to	determine	what	to	replace	the	matched
characters	with.
Add	a	new	function	called	toDragonSpeak	that	accepts	a	phrase	and	returns
a	DragonSpeak	translation.	Also,	add	a	phrase	to	printOrder	and	call
toDragonSpeak	on	it.

Listing	7.5		Defining	the	toDragonSpeak	function	(Tavern.kt)
const	val	TAVERN_NAME	=	"Taernyl's	Folly"

fun	main(args:	Array<String>)	{

				placeOrder("shandy,Dragon's	Breath,5.91")

}

private	fun	toDragonSpeak(phrase:	String)	=

				phrase.replace(Regex("[aeiou]"))	{

								when	(it.value)	{

												"a"	->	"4"

												"e"	->	"3"

												"i"	->	"1"

												"o"	->	"0"

												"u"	->	"|_|"

												else	->	it.value

								}

				}

private	fun	placeOrder(menuData:	String)	{

				...

				println(message)

				val	phrase	=	"Ah,	delicious	$name!"

				println("Madrigal	exclaims:	${toDragonSpeak(phrase)}")

}

Run	Tavern.kt.	This	time,	you	will	notice	Madrigal’s	speech	has	taken	on	the
very	distinctive	drawl	of	DragonSpeak:

				Madrigal	speaks	with	Taernyl	about	their	order.

				Madrigal	buys	a	Dragon's	breath	(shandy)	for	5.91

				Madrigal	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

Here	you	used	a	combination	of	features	available	on	String	to	generate	the
DragonSpeak	version	of	the	phrase.
The	version	of	the	replace	function	you	used	accepts	two	arguments.	The	first
argument	is	a	regular	expression	that	determines	which	characters	you	want	to
replace.	A	regular	expression,	or	regex,	defines	a	search	pattern	for	characters
you	want	to	look	for.	The	second	argument	is	an	anonymous	function	that
defines	what	you	want	to	replace	each	matching	character	with.
Take	a	look	at	the	first	argument	that	you	provided	to	replace,	the	regular
expression	that	determines	which	characters	to	select	for	replacement:
				phrase.replace(Regex("[aeiou]"))	{

								...

				}

Regex	accepts	a	pattern	argument,	"[aeiou]",	that	defines	the	characters	you
want	to	match	and	replace.	Kotlin	uses	the	same	regular	expression	patterns	as
Java.	You	can	read	the	documentation	for	the	supported	regular	expression
pattern	syntax	at	docs.oracle.com/javase/8/docs/api/java/
util/regex/Pattern.html.
After	defining	the	characters	you	want	replace	to	match,	you	define	what	you
want	to	replace	those	characters	with,	using	an	anonymous	function.
				phrase.replace(Regex("[aeiou]"))	{

								when	(it.value)	{

												"a"	->	"4"

												"e"	->	"3"

												"i"	->	"1"

												"o"	->	"0"

												"u"	->	"|_|"

												else	->	it.value

								}

				}

The	argument	received	by	the	anonymous	function	gives	the	value	of	the	each
match	found	by	the	regular	expression	you	defined	and	returns	the	new	value	for
the	match.

Strings	are	immutable

A	clarification	regarding	the	“replacing”	of	the	characters	performed	by
toDragonSpeak:	If	you	were	to	print	the	phrase	variable	from	Listing	7.5
before	and	after	calling	replace	on	it,	you	would	find	that	the	variable’s	value
does	not	actually	change.
In	reality,	the	replace	function	does	not	“replace”	any	part	of	the	phrase

https://docs.oracle.com/javase/8/docs/api/java/util/regex/Pattern.html

variable.	Instead,	replace	creates	a	new	string.	It	uses	the	old	string’s	value	as
an	input	and	chooses	characters	for	the	new	string	using	the	expression	you
provide.
Whether	they	are	defined	with	var	or	val,	all	strings	in	Kotlin	are	actually
immutable	(as	they	are	in	Java).	Though	the	variables	that	hold	the	value	for	the
String	can	be	reassigned	if	the	string	is	a	var,	the	string	instance	itself	can
never	be	changed.	Any	function	that	appears	to	change	the	value	of	a	string	(like
replace)	actually	creates	a	new	string	with	the	changes	applied	to	it.

String	Comparison
What	if	a	player	were	to	order	something	other	than	Dragon’s	Breath?
toDragonSpeak	would	still	be	called.	This	is	not	what	you	want.
Add	a	conditional	to	Tavern.kt’s	placeOrder	function	to	skip	calling
toDragonSpeak	if	the	player	did	not	order	Dragon’s	Breath:

Listing	7.6		Comparing	strings	in	placeOrder	(Tavern.kt)
...

private	fun	placeOrder(menuData:	String)	{

				...

				val	phrase	=	"Ah,	delicious	$name!"

				println("Madrigal	exclaims:	${toDragonSpeak(phrase)}")

				val	phrase	=	if	(name	==	"Dragon's	Breath")	{

								"Madrigal	exclaims	${toDragonSpeak("Ah,	delicious	$name!")}"

				}	else	{

								"Madrigal	says:	Thanks	for	the	$name."

				}

				println(phrase)

}

Comment	out	your	Dragon’s	Breath	order	in	the	main	function	–	we	will	return
to	it	soon	–	and	add	a	new	call	to	placeOrder	with	different	menu	data.

Listing	7.7		Changing	the	menu	data	(Tavern.kt)
const	val	TAVERN_NAME	=	"Taernyl's	Folly"

fun	main(args:	Array<String>)	{

				placeOrder("shandy,Dragon's	Breath,5.91")

//		placeOrder("shandy,Dragon's	Breath,5.91")

				placeOrder("elixir,Shirley's	Temple,4.12")

}

...

Run	Tavern.kt.	You	will	see	the	following	output:
				Madrigal	speaks	with	Taernyl	about	their	order.

				Madrigal	buys	a	Shirley's	Temple	(elixir)	for	4.12

				Madrigal	says:	Thanks	for	the	Shirley's	Temple.

You	checked	the	structural	equality	of	name	and	"Dragon's	Breath"	using	the
structural	equality	operator,	==.	You	have	seen	this	operator	before,	used	with
numeric	values.	When	used	with	strings,	it	checks	that	the	characters	in	each
string	match	one	another	and	are	in	the	same	order.
There	is	another	way	to	check	the	equality	of	two	variables:	comparing
referential	equality,	which	means	checking	that	two	variables	share	the	same
reference	to	a	type	instance	–	in	other	words,	that	two	variables	point	to	the	same
object	on	the	heap.	Referential	equality	is	checked	using	===.
Referential	comparison	is	not	usually	what	you	want.	You	generally	do	not	care

whether	strings	are	different	instances,	only	that	they	have	the	same	characters	in
the	same	sequence	(i.e.,	that	the	structures	of	two	separate	type	instances	are
identical).
If	you	are	familiar	with	Java,	the	string	comparison	behavior	using	==	is	different
than	what	you	may	have	expected,	because	Java	uses	the	==	symbol	for
referential	comparison.	To	compare	strings	structurally	in	Java,	you	use	the
function	equals.
In	this	chapter,	you	have	learned	more	about	how	to	work	with	strings	in	Kotlin.
You	saw	how	to	use	the	indexOf	function	to	find	the	specific	index	of	a
character	and	regular	expressions	to	search	through	strings	for	patterns	that	you
define.	You	learned	about	destructuring	syntax,	which	allows	you	to	declare
multiple	variables	and	assign	their	values	in	a	single	expression,	and	you	also
learned	that	Kotlin	uses	structural	comparison	when	using	the	==	operator.
In	the	next	chapter,	you	will	learn	about	working	with	numbers	in	Kotlin	by
building	out	the	strongbox	for	the	tavern	so	that	gold	and	silver	can	change
hands.

For	the	More	Curious:	Unicode
As	you	have	learned,	a	string	consists	of	an	ordered	sequence	of	characters,	and
a	character	is	an	instance	of	the	Char	type.	Specifically,	a	Char	is	a	Unicode
character.	The	Unicode	character	encoding	system	is	designed	to	support	“the
interchange,	processing,	and	display	of	the	written	texts	of	the	diverse	languages
and	technical	disciplines	of	the	modern	world”	(unicode.org).
This	means	the	individual	characters	in	a	string	can	be	any	of	a	diverse	palette	of
characters	and	symbols	–	136,690	of	them	(and	growing)	–	including	characters
from	the	alphabet	of	any	language	in	the	world,	icons,	glyphs,	emoji,	and	more.
To	declare	a	character,	you	have	two	options.	Both	are	wrapped	in	single	quotes.
For	characters	on	your	keyboard,	the	simplest	option	is	the	character	itself	in	the
single	quotes:
				val	capitalA:	Char	=	'A'

But	not	all	136,690	characters	are	included	on	your	keyboard.	The	other	way	to
represent	a	character	is	with	its	Unicode	character	code,	preceded	by	the
Unicode	character	escape	sequence	\u:
				val	unicodeCapitalA:	Char	=	'\u0041'

There	is	a	key	for	the	letter	“A”	on	your	keyboard,	but	there	is	not	one	for	the	
symbol.	To	represent	it	in	your	program,	your	only	choice	is	to	use	its	character
code	in	single	quotes.	If	you	want	to	try	it	out,	create	a	new	Kotlin	file	in	your
project.	Enter	the	code	below	into	the	file	and	run	it.	(Delete	the	file	when	you
are	done	by	right-clicking	on	it	in	the	project	tool	window	and	selecting	Delete.)

Listing	7.8		Om...	(scratch	file)
fun	main(args:	Array<String>)	{

				val	omSymbol	=	'\u0950'

				print(omSymbol)

}

You	will	see	the	 	symbol	printed	in	the	console.

http://unicode.org

For	the	More	Curious:	Traversing	a	String’s
Characters
The	String	type	includes	other	functions	that	move	through	the	sequence	of
characters	one	at	a	time,	as	indexOf	and	split	do.	For	example,	you	can
print	each	character	of	the	tavern	data,	one	character	at	a	time,	using	String’s
forEach	function.	This	call:
				"Dragon's	Breath".forEach	{

								println("$it\n")

				}

Would	generate	the	following	output:
				D

				r

				a

				g

				o

				n

				'

				s

				B

				r

				e

				a

				t

				h

Many	of	these	functions	are	also	available	on	the	List	type,	just	as	the	majority
of	the	functions	for	traversing	lists	that	you	will	learn	about	in	Chapter	10	are
also	available	for	strings.	In	many	ways,	a	Kotlin	String	behaves	like	a	list	of
characters.

Challenge:	Improving	DragonSpeak
Currently,	toDragonSpeak	only	works	on	lowercase	letters.	For	example,	the
following	exclamation	would	not	be	rendered	correctly	as	DragonSpeak	output:
				DRAGON'S	BREATH:	IT'S	GOT	WHAT	ADVENTURERS	CRAVE!

Improve	the	toDragonSpeak	function	to	work	with	capital	letters.

8	
Numbers

Kotlin	has	a	variety	of	types	for	dealing	with	numbers	and	numeric
computations.	Multiple	types	are	available	for	each	of	the	two	main	varieties	of
numbers	that	Kotlin	can	work	with:	whole-number	integers	and	numbers	with
decimals.	In	this	chapter,	you	will	see	how	Kotlin	handles	both	varieties	as	you
update	NyetHack	to	implement	the	player’s	purse	and	allow	money	to	change
hands	at	the	tavern.

Numeric	Types
All	numeric	types	in	Kotlin,	as	in	Java,	are	signed,	meaning	they	can	represent
both	positive	and	negative	numbers.	In	addition	to	whether	they	support	decimal
values,	the	numeric	types	differ	in	the	number	of	bits	they	are	allocated	in
memory	and,	consequently,	their	minimum	and	maximum	values.
Table	8.1	shows	some	of	the	numeric	types	in	Kotlin,	the	number	of	bits	for	each
type,	and	the	maximum	and	minimum	value	the	type	supports.	(We	will	explain
these	details	in	a	moment.)

Table	8.1		Commonly	used	numeric	types
Type Bits Max	Value Min	Value
Byte 8 127 -128
Short 16 32767 -32768
Int 32 2147483647 -2147483648
Long 64 9223372036854775807 -9223372036854775808
Float 32 3.4028235E38 1.4E-45
Double 64 1.7976931348623157E308 4.9E-324

What	is	the	relationship	between	a	type’s	bit	size	and	its	maximum	and
minimum	values?	Computers	store	integers	in	binary	form	with	a	fixed	number
of	bits	(“bit”	is	short	for	“binary	digit,”	by	the	way).	A	bit	is	represented	by	a
single	0	or	1.
To	represent	a	number,	Kotlin	assigns	a	finite	number	of	bits,	depending	on	the
numeric	type	chosen.	The	leftmost	bit	position	represents	the	sign	(the	positive
or	negative	nature	of	the	number).	The	remaining	bit	positions	each	represent	a
power	of	2,	with	the	rightmost	position	being	20.	To	compute	the	value	of	a
binary	number,	add	up	each	of	the	powers	of	2	whose	bit	is	a	1.
Figure	8.1	shows	the	example	of	the	number	42	in	binary	form.

Figure	8.1		42	in	binary

Since	Int	is	32	bit,	the	largest	number	that	can	be	stored	in	an	Int	is
represented,	in	its	binary	form,	with	31	1s.	Adding	up	all	those	powers	of	2
yields	a	total	of	2,147,483,647,	the	largest	value	an	Int	in	Kotlin	can	hold.
Because	the	number	of	bits	determines	the	maximum	and	minimum	value	a
numeric	type	can	represent,	the	difference	between	the	types	is	the	number	of
bits	available	to	represent	the	number.	Since	Long	uses	64	bits	instead	of	32,	a
Long	can	hold	an	exponentially	larger	number	(263).
A	note	about	the	types	Short	and	Byte.	The	long	and	short	of	it	(sorry)	is	that
neither	Short	or	Byte	is	commonly	used	when	representing	conventional
numbers.	They	are	used	for	specialized	cases	and	to	support	interoperability	with
legacy	Java	programs.	For	example,	you	might	work	with	Byte	when	reading	a
stream	of	data	from	a	file	or	processing	graphics	(a	color	pixel	is	often
represented	as	three	bytes:	one	for	each	color	in	RGB).	You	will	sometimes	see
Short	used	when	interacting	with	native	code	for	CPUs	that	do	not	support	32
bit	instructions.	However,	for	most	purposes,	whole	numbers	are	represented
with	Int	or,	when	a	greater	value	is	needed,	Long.

Integers
You	learned	in	Chapter	2	that	an	integer	is	a	number	that	does	not	have	a	decimal
point	–	a	whole	number	–	and	is	represented	in	Kotlin	with	the	Int	type.	Int	is
good	for	representing	a	quantity	or	count	of	“things”:	the	remaining	pints	of
mead,	the	number	of	tavern	patrons,	or	the	count	of	gold	and	silver	coins	a
player	possesses.
Time	to	do	some	coding.	Open	Tavern.kt	and	add	Int	variables	to	represent
the	current	gold	and	silver	in	the	player’s	purse.	Uncomment	the	call	to
placeOrder	to	pass	the	menu	data	for	an	order	of	Dragon’s	Breath	and
remove	your	order	of	a	Shirley’s	Temple.
Also,	add	a	placeholder	performPurchase	function	that	will	handle	the	logic
for	making	a	purchase	and	a	function	to	display	the	player’s	current	purse
balance.	Call	the	new	performPurchase	in	placeOrder.

Listing	8.1		Setting	up	the	player’s	purse	(Tavern.kt)
const	val	TAVERN_NAME	=	"Taernyl's	Folly"

var	playerGold	=	10

var	playerSilver	=	10

fun	main(args:	Array<String>)	{

//		placeOrder("shandy,Dragon's	Breath,5.91")

				placeOrder("elixir,Shirley's	Temple,4.12")

}

fun	performPurchase()	{

				displayBalance()

}

private	fun	displayBalance()	{

				println("Player's	purse	balance:	Gold:	$playerGold	,	Silver:	$playerSilver")

}

private	fun	toDragonSpeak(phrase:	String)	=

								...

								}

private	fun	placeOrder(menuData:	String)	{

				val	indexOfApostrophe	=	TAVERN_NAME.indexOf('\'')

				val	tavernMaster	=	TAVERN_NAME.substring(0	until	indexOfApostrophe)

				println("Madrigal	speaks	with	$tavernMaster	about	their	order.")

				val	(type,	name,	price)	=	menuData.split(',')

				val	message	=	"Madrigal	buys	a	$name	($type)	for	$price."

				println(message)

				performPurchase()

				val	phrase	=	if	(name	==	"Dragon's	Breath")	{

								"Madrigal	exclaims	${toDragonSpeak("Ah,	delicious	$name!")}"

				}	else	{

								"Madrigal	says:	Thanks	for	the	$name."

				}

				println(phrase)

}

Notice	that	you	used	an	Int	to	represent	the	player’s	gold	and	silver	quantities.
The	max	quantity	of	gold	and	silver	in	the	player’s	purse	(and	in	the	known
NyetHack	universe)	will	be	much	less	than	2,147,483,647,	the	max	value	for	an
Int.
Go	ahead	and	run	Tavern.kt.	You	have	not	yet	implemented	the	logic	for
showing	that	the	player	has	paid	for	an	item,	so	this	time	Madrigal	gets	their
order	on	the	house:
				Madrigal	speaks	with	Taernyl	about	their	order.

				Madrigal	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Player's	purse	balance:	Gold:	10	,	Silver:	10

				Madrigal	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

Decimal	Numbers
Take	another	look	at	the	menuData	string	for	the	tavern:
				"shandy,Dragon's	Breath,5.91"

Madrigal	needs	to	pay	5.91	gold	for	the	Dragon’s	Breath,	so	playerGold
should	decrease	by	5.91	when	the	drink	is	ordered.
Numeric	values	with	decimal	places	are	represented	with	the	Float	or	Double
type.	Update	Tavern.kt	so	that	a	double	with	the	value	for	the	item	is	passed
to	the	performPurchase	function:

Listing	8.2		Passing	the	price	information	(Tavern.kt)
const	val	TAVERN_NAME	=	"Taernyl's	Folly"

...

fun	performPurchase(price:	Double)	{

				displayBalance()

				println("Purchasing	item	for	$price")

}

...

private	fun	placeOrder(menuData:	String)	{

				...

				val	(type,	name,	price)	=	menuData.split(',')

				val	message	=	"Madrigal	buys	a	$name	($type)	for	$price."

				println(message)

				performPurchase(price)

				...

}

Converting	a	String	to	a	Numeric	Type
If	you	were	to	run	Tavern.kt	right	now,	you	would	see	a	compilation	error.
This	is	because	the	price	variable	that	you	are	currently	passing	to
performPurchase	is	a	string,	and	the	function	expects	a	double.	To	the
human	eye,	“5.91”	might	look	like	a	number,	but	the	Kotlin	compiler	sees	it
differently,	because	it	was	split	from	the	menuData	string.
The	good	news	is	that	Kotlin	includes	functions	that	convert	strings	to	different
types	–	including	numbers.	Some	of	the	most	commonly	used	of	these
conversion	functions	are:

toFloat

toDouble

toDoubleOrNull

toIntOrNull

toLong

toBigDecimal

Attempting	to	convert	a	string	of	the	wrong	format	will	throw	an	exception.	For
example,	calling	toInt	on	a	string	with	the	value	“5.91”	would	throw	an
exception,	since	the	decimal	portion	of	the	string	value	would	not	fit	into	an
Int.
Because	of	the	possibility	of	exceptions	when	converting	between	different
numeric	types,	Kotlin	also	provides	the	safe	conversion	functions
toDoubleOrNull	and	toIntOrNull.	When	the	number	does	not	convert
correctly,	a	null	value	is	returned	instead	of	an	exception.	You	could	use	the	null
coalescing	operator	with	toIntOrNull,	for	example,	to	provide	a	default
value:
				val	gold:	Int	=		"5.91".toIntOrNull()	?:	0

Update	placeOrder	to	convert	the	string	argument	to	performPurchase
to	a	double.

Listing	8.3		Converting	the	price	argument	to	a	double

(Tavern.kt)
...

private	fun	placeOrder(menuData:	String)	{

				val	indexOfApostrophe	=	TAVERN_NAME.indexOf('\'')

				val	tavernMaster	=	TAVERN_NAME.substring(0	until	indexOfApostrophe)

				println("Madrigal	speaks	with	$tavernMaster	about	their	order.")

				val	(type,	name,	price)	=	menuData.split(',')

				val	message	=	"Madrigal	buys	a	$name	($type)	for	$price."

				println(message)

				performPurchase(price.toDouble())

				...

}

Converting	an	Int	to	a	Double
Now	to	take	the	gold	out	of	the	player’s	purse.	The	purse	contains	whole	gold
and	silver	coins,	but	the	price	of	a	menu	item	is	represented	in	gold	as	a	double.
To	do	the	sale,	you	first	need	to	convert	the	player’s	gold	and	silver	to	a	single
double	so	that	the	item	price	can	be	subtracted.	Add	a	new	variable	to
performPurchase	to	track	the	player’s	total	purse.	One	gold	is	worth	100
silver,	so	divide	the	player’s	silver	by	100	and	add	the	result	to	the	quantity	of
gold	to	get	the	total	value.	The	totalPurse	and	price	variables	are	of	the
same	type,	Double,	so	subtract	the	price	from	the	purse	and	assign	the	result	to
a	new	variable.

Listing	8.4		Subtracting	the	price	from	the	player’s	purse
(Tavern.kt)
...

fun	performPurchase(price:	Double)	{

				displayBalance()

				val	totalPurse	=	playerGold	+	(playerSilver	/	100.0)

				println("Total	purse:	$totalPurse")

				println("Purchasing	item	for	$price")

				val	remainingBalance	=	totalPurse	-	price

}

...

First,	you	do	the	calculation	for	getting	the	totalPurse	and	print	the	result.
Notice	that	the	division	to	convert	playerSilver	for	totalPurse	includes
a	decimal	point	for	the	divisor	–	100.0,	not	100.
If	you	were	to	divide	playerSilver,	an	Int,	by	100,	also	an	Int,	Kotlin
would	not	give	you	0.10,	a	Double.	Instead,	you	would	get	another	Int	–	0,	in
fact	–	that	loses	the	decimal	result	you	are	looking	for.	(Try	it	in	the	REPL.)
Because	both	numbers	in	the	operation	are	integers,	Kotlin	performs	integer
arithmetic,	which	does	not	support	a	result	with	a	decimal.
To	get	a	decimal	result,	you	need	Kotlin	to	perform	floating-point	arithmetic,
which	you	achieve	by	including	in	the	operation	at	least	one	type	that	supports	a
decimal.	Try	the	calculation	in	the	REPL	again,	but	this	time	add	a	decimal	to
either	number	to	indicate	that	floating-point	arithmetic	should	be	used	and	the
result	should	be	a	Double	(0.1).
With	the	player’s	purse	converted	to	totalPurse,	you	next	subtract	the	price
of	the	Dragon’s	Breath	from	the	converted	purse	value:
				val	remainingBalance	=	totalPurse	-	price

To	see	the	result	of	this	calculation,	enter	10.1	-	5.91	in	the	REPL.	If	you	have
not	worked	with	numeric	types	in	another	programming	language,	the	result
might	be	surprising.
You	might	have	assumed	a	result	of	4.19,	but	what	you	get	is
4.1899999999999995.	This	result	is	due	to	the	way	computers	represent
fractional	quantities:	by	using	a	floating	point.	A	floating	point,	meaning	a
decimal	that	can	be	positioned	at	an	arbitrary	place	(“float”),	is	an
approximation	of	a	real	number.	A	floating	point	number	approximates	its	value
to	support	both	precision	(the	ability	to	represent	a	wide	range	of	numbers	with
varying	levels	of	decimal	places)	and	performance	(speedy	calculations).
How	precisely	you	represent	a	number	with	a	fractional	portion	depends	on	the
type	of	calculation	required.	For	example,	if	you	were	programming	the
mainframe	for	the	central	bank	of	NyetHack,	processing	a	high	volume	of
financial	transactions	and	involved	fractional	computations,	you	would	represent
those	transactions	using	a	very	high	level	of	precision,	at	the	cost	of	some
processing	time.	Generally	speaking,	for	this	sort	of	financial	calculation	you
would	use	a	type	called	BigDecimal	to	specify	the	precision	and	rounding	of
the	floating	point	calculations.	(This	is	the	same	BigDecimal	type	that	you
may	be	familiar	with	from	Java.)
For	your	tavern	simulation,	however,	you	can	accept	the	very	small	degree	of
imprecision	in	Double.

Formatting	a	Double
Rather	than	working	with	4.1899999999999995	pieces	of	gold,	you	will	round
the	value	up	to	4.19.	String’s	format	function	can	be	used	to	round	a	double
to	a	precision	that	you	define.	Update	the	performPurchase	function	to
format	the	remaining	balance	amount:

Listing	8.5		Formatting	a	double	(Tavern.kt)
...

fun	performPurchase(price:	Double)	{

				displayBalance()

				val	totalPurse	=	playerGold	+	(playerSilver	/	100.0)

				println("Total	purse:	$totalPurse")

				println("Purchasing	item	for	$price")

				val	remainingBalance	=	totalPurse	-	price

				println("Remaining	balance:	${"%.2f".format(remainingBalance)}")

}

...

The	gold	remaining	in	the	purse	is	interpolated	into	the	string	using	$,	as	you
have	seen	before.	But	what	follows	the	$	is	not	simply	the	name	of	the	variable	–
it	is	an	expression	in	curly	braces.	Within	the	braces	is	a	call	to	format	with
remainingBalance	passed	in	as	the	argument.
The	call	to	format	also	specifies	a	format	string,	"%.2f".	A	format	string	uses
a	special	sequence	of	characters	to	define	how	you	want	to	format	data.	The
particular	format	string	you	defined	specifies	that	you	want	to	round	the	floating
point	number	up	to	the	second	decimal	place.	Then	you	pass	the	value	or	values
to	format	as	an	argument	to	the	format	function.
Kotlin’s	format	strings	use	the	same	style	as	the	standard	format	strings	in	Java,
C/C++,	Ruby,	and	many	other	languages.	For	details	on	format	string
specification,	take	a	look	at	the	Java	API	documentation	at
docs.oracle.com/javase/8/docs/api/java/util/

Formatter.html.
Run	Tavern.kt.	You	will	see	that	Madrigal	now	pays	for	the	Dragon's	Breath:
				Madrigal	speaks	with	Taernyl	about	their	order.

				Madrigal	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Player's	purse	balance:	Gold:	10	,	Silver:	10

				Total	purse:	10.1

				Purchasing	item	for	5.91

				Remaining	balance:	4.19

				Madrigal	exclaims	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

https://docs.oracle.com/javase/8/docs/api/java/util/Formatter.html

Converting	a	Double	to	an	Int
Now	that	the	player’s	remaining	balance	has	been	calculated,	all	that	is	left	to	do
is	to	convert	the	remaining	balance	back	to	gold	and	silver	amounts.	Update	the
performPurchase	function	to	convert	the	player’s	total	purse	value	to	gold
and	silver.	(Make	sure	to	add	the	import	kotlin.math.roundToInt	statement	at
the	top	of	the	file.)

Listing	8.6		Converting	to	silver	and	gold	(Tavern.kt)
import	kotlin.math.roundToInt

const	val	TAVERN_NAME	=	"Taernyl's	Folly"

...

fun	performPurchase(price:	Double)	{

				displayBalance()

				val	totalPurse	=	playerGold	+	(playerSilver	/	100.0)

				println("Total	purse:	$totalPurse")

				println("Purchasing	item	for	$price")

				val	remainingBalance	=	totalPurse	-	price

				println("Remaining	balance:	${"%.2f".format(remainingBalance)}")

				val	remainingGold	=	remainingBalance.toInt()

				val	remainingSilver	=	(remainingBalance	%	1	*	100).roundToInt()

				playerGold	=	remainingGold

				playerSilver	=	remainingSilver

				displayBalance()

}

...

Here,	you	used	two	of	the	conversion	functions	available	on	Double.	Calling
toInt	on	a	Double	results	in	dropping	any	fractional	value	from	the	double.
Another	term	for	this	is	loss	of	precision.	Some	portion	of	the	original	data	is
lost,	because	you	asked	for	an	integer	representation	of	a	double	that	included	a
fractional	quantity,	and	the	integer	representation	is	less	precise.
Note	that	calling	toInt	on	a	double	is	different	than	calling	toInt	on	a	string
like	"5.91",	which	would	result	in	an	exception	being	thrown.	The	difference	is
that	converting	a	string	to	a	double	requires	parsing	the	string	to	turn	it	into	a
numeric	type,	whereas	a	type	that	is	already	numeric,	like	Double	or	Int,	does
not	require	any	parsing.
In	this	case,	remainingBalance	is	4.1899999999999995,	so	calling	toInt
results	in	the	integer	4.	This	is	the	amount	of	gold	the	player	has	remaining.
Next,	you	convert	the	fractional	portion	of	the	total	value	to	silver:
				val	remainingSilver	=	(remainingBalance	%	1	*	100).roundToInt()

Here,	you	use	the	modulus	operator	(%,	also	known	as	the	remainder	operator),
which	finds	the	remainder	when	one	number	is	divided	by	another.	%	1	has	the

effect	of	stripping	the	whole-number	portion	of	remainingBalance	(the
portion	that	can	be	evenly	divided	by	1),	leaving	the	decimal	value.	Finally,	you
multiply	the	remainder	by	100	to	convert	to	silver	and	call	roundToInt	on	the
result,	18.99999999999995.	roundToInt	rounds	to	the	nearest	integer,	so	you
are	left	with	19	silver.
Run	Tavern.kt	again	to	see	the	smooth	operation	of	your	Tavern:
				Madrigal	speaks	with	Taernyl	about	their	order.

				Madrigal	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Player's	purse	balance:	Gold:	10	,	Silver:	10

				Total	purse:	10.1

				Purchasing	item	for	5.91

				Remaining	balance:	4.19

				Player's	purse	balance:	Gold:	4	,	Silver:	19

				Madrigal	exclaims	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

In	this	chapter	you	have	worked	with	Kotlin’s	numeric	types	and	learned	how
Kotlin	handles	the	two	major	categories	of	numbers:	whole	numbers	and
decimal	point	numbers.	You	have	also	learned	how	to	convert	between	the
different	types	and	what	each	type	supports.	In	the	next	chapter,	you	will	learn
about	Kotlin’s	standard	functions	–	a	set	of	utility	functions	available	for	use
with	all	types.

For	the	More	Curious:	Bit	Manipulation
Earlier,	you	saw	that	numbers	have	a	binary	representation.	You	can	get	the
binary	representation	for	a	number	at	any	time.	For	example,	you	could	ask	for
the	binary	representation	of	the	integer	42	with:
				Integer.toBinaryString(42)

				101010

Kotlin	includes	functions	for	performing	operations	on	the	binary	representation
of	a	value,	called	bitwise	operations	–	including	operations	you	may	be	familiar
with	from	other	languages,	such	as	Java.	Table	8.2	shows	commonly	used	binary
operations	available	in	Kotlin.

Table	8.2		Binary	operations
Function Description Example
Integer.toBinaryString Converts	an	integer

to	binary
representation.

Integer.toBinaryString(42)

//	101010

shl(bitcount) Shifts	bits	left	by
bitcount.

42.shl(2)

//	10101000

shr(bitcount) Shifts	bits	right	by
bitcount.

42.shr(2)

//	1010

inv() Inverts	bits. 42.inv()

//	

11111111111111111111111111010101

xor(number) Compares	two	binary
representations	and
performs	a	logical
‘exclusive	or’
operation	on	the
corresponding	bit
positions,	returning	1
for	each	bit	position
that	has	a	1	in	one
input	but	not	the
other.

42.xor(33)

//	001011

and(number) Compares	two	binary 42.and(10)

//	1010

representations	and
performs	a	logical
‘and’	operation	on	the
corresponding	bit
positions,	returning	1
for	each	bit	position
that	has	a	1	in	both
inputs.

Challenge:	Remaining	Pints
When	a	Dragon’s	Breath	is	sold,	it	is	drafted	from	the	cask,	which	holds	5
gallons.	Assuming	an	order	is	one	pint	(.125	gallons),	track	the	remaining
quantity	of	Dragon’s	Breath.	Display	the	number	of	pints	left	in	the	cask	after	12
pints	have	been	sold.

Challenge:	Handling	a	Negative	Balance
Currently,	Madrigal	can	place	an	order	no	matter	how	little	gold	and	silver	is	in
their	purse	–	even	if	there	is	none.	This	is	an	unsustainable	business	model	for
Taernyl’s	Folly.	In	this	challenge	you	will	correct	that.
Update	the	code	for	performPurchase	to	determine	whether	the	purchase
can	be	performed.	If	it	cannot,	no	money	should	change	hands,	and	instead	of
the	message	"Madrigal	buys	a	Dragon’s	Breath	(shandy)	for	5.91",	a
message	from	the	bartender	explaining	that	the	customer	is	short	on	gold	should
be	printed.	To	simulate	multiple	orders,	call	performPurchase	several	times
in	the	placeOrder	function.

Challenge:	Dragoncoin
A	new	currency	is	sweeping	the	land:	dragoncoin	–	instant,	secure,	and
anonymous	to	spend	at	any	tavern.	Assuming	the	current	valuation	is	1.43	gold
per	dragoncoin,	represent	the	player’s	purchase	in	dragoncoin	instead	of	silver
and	gold.	Tavern	prices	remain	defined	in	gold	prices.	Your	player	starts	the
game	with	5	dragoncoin.	For	a	single	purchase	of	Dragon’s	Breath	that	costs
5.91	gold,	make	sure	the	player’s	remaining	dragoncoin	balance	is	.8671	after
the	purchase.

9	
Standard	Functions

Standard	functions	are	general	utility	functions	in	the	Kotlin	standard	library	that
accept	lambdas	to	specify	their	work.	In	this	chapter	you	will	meet	the	six	most
commonly	used	standard	functions	–	apply,	let,	run,	with,	also,	and
takeIf	–	and	see	examples	of	what	they	can	do.
This	is	not	a	hands-on	chapter,	and	you	will	not	be	adding	to	NyetHack	or
Sandbox.	As	always,	however,	we	encourage	you	to	experiment	with	the	code
examples	in	the	REPL.
In	this	chapter	we	will	refer	to	an	instance	of	a	type	using	the	term	receiver.	This
is	because	Kotlin’s	standard	functions	are	extension	functions	under	the	hood,
and	receiver	is	the	term	for	the	subject	of	an	extension	function.	You	will	learn
about	extensions,	which	are	a	flexible	way	to	define	functions	for	use	with
different	types,	in	Chapter	18.

apply
First	on	our	tour	of	the	standard	functions	is	apply.	apply	can	be	thought	of
as	a	configuration	function:	It	allows	you	to	call	a	series	of	functions	on	a
receiver	to	configure	it	for	use.	After	the	lambda	provided	to	apply	executes,
apply	returns	the	configured	receiver.
apply	can	be	used	to	reduce	the	amount	of	repetition	when	configuring	an
object	for	use.	Here	is	an	example	of	configuring	a	file	instance	without	apply:
				val	menuFile	=	File("menu-file.txt")

				menuFile.setReadable(true)

				menuFile.setWritable(true)

				menuFile.setExecutable(false)

Using	apply,	the	same	configuration	can	be	achieved	with	less	repetition:
				val	menuFile	=	File("menu-file.txt").apply	{

								setReadable(true)

								setWritable(true)

								setExecutable(false)

				}

apply	allows	you	to	drop	the	variable	name	from	every	function	call	performed
to	configure	the	receiver.	This	is	because	apply	scopes	each	function	call
within	the	lambda	to	the	receiver	it	is	called	on.
This	behavior	is	sometimes	referred	to	as	relative	scoping,	because	all	the
function	calls	within	the	lambda	are	now	called	relative	to	the	receiver.	Another
way	to	say	this	is	that	they	are	implicitly	called	on	the	receiver:
				val	menuFile	=	File("menu-file.txt").apply	{

								setReadable(true)		//	Implicitly,	menuFile.setReadable(true)

								setWritable(true)		//	Implicitly,	menuFile.setWritable(true)

								setExecutable(false)		//	Implicitly,	menuFile.setExecutable(false)

				}

let
Another	commonly	used	standard	function	is	let,	which	you	encountered	in
Chapter	6.	let	scopes	a	variable	to	the	lambda	provided	and	makes	the
keyword	it,	which	you	learned	about	in	Chapter	5,	available	to	refer	to	it.	Here
is	an	example	of	let,	which	squares	the	first	number	in	a	list:
				val	firstItemSquared	=	listOf(1,2,3).first().let	{

								it	*	it

				}

Without	let,	you	would	need	to	assign	the	first	element	to	a	variable	to	do	the
multiplication:
				val	firstElement	=	listOf(1,2,3).first()

				val	firstItemSquared	=	firstElement	*	firstElement

When	combined	with	other	Kotlin	syntax,	let	provides	additional	benefits.	You
saw	in	Chapter	6	that	the	null	coalescing	operator	and	let	can	be	combined	to
work	on	a	nullable	type.	Consider	the	following	example	that	customizes	a
greeting	message	depending	on	whether	a	player	is	recognized	by	the	tavern
master:
				fun	formatGreeting(vipGuest:	String?):	String	{

								return	vipGuest?.let	{

												"Welcome,	$it.	Please,	go	straight	back	-	your	table	is	ready."

								}	?:	"Welcome	to	the	tavern.	You'll	be	seated	soon."

				}

Since	the	vipGuest	string	is	nullable,	it	is	important	to	deal	with	the
possibility	of	null	before	calling	functions	on	it.	Using	the	safe	call	operator
means	that	let	executes	if	and	only	if	the	string	is	non-null	–	and,	if	let	is
executed,	that	means	that	the	it	argument	is	non-null.
Compare	formatGreeting	using	let	with	a	version	that	does	not	use	let:
				fun	formatGreeting(vipGuest:	String?):	String	{

								return	if	(vipGuest	!=	null)	{

												"Welcome,	$vipGuest.	Please,	go	straight	back	-	your	table	is	ready."

								}	else	{

												"Welcome	to	the	tavern.	You'll	be	seated	shortly."

								}

				}

This	version	of	formatGreeting	is	functionally	equivalent,	but	slightly	more
verbose.	The	if/else	structure	uses	the	full	vipGuest	variable	name	twice:
once	in	the	condition	and	once	to	create	the	resulting	string.	let,	on	the	other
hand,	allows	a	fluent	or	chainable	style	that	only	requires	the	variable	name	to
be	used	one	time.
let	can	be	called	on	any	kind	of	receiver	and	returns	the	result	of	evaluating	the

lambda	you	provide.	Here,	let	is	called	on	a	nullable	string,	vipGuest.	The
lambda	passed	to	let	accepts	the	receiver	it	is	called	on	as	its	only	argument.
You	can	therefore	access	the	argument	using	the	it	keyword.
Several	differences	between	let	and	apply	are	worth	mentioning:	As	you	saw,
let	passes	the	receiver	to	the	lambda	you	provide,	but	apply	passes	nothing.
Also,	apply	returns	the	current	receiver	once	the	anonymous	function
completes.	let,	on	the	other	hand,	returns	the	last	line	of	the	lambda	(the
lambda	result).
Standard	functions	like	let	can	also	be	used	to	reduce	the	risk	of	accidentally
changing	a	variable,	because	the	argument	let	passes	to	the	lambda	is	a	read-
only	function	parameter.	You	will	see	an	example	of	this	application	of	standard
functions	in	Chapter	12.

run
Next	up	on	our	tour	of	the	standard	functions	is	run.	run	is	similar	to	apply
in	that	it	provides	the	same	relative	scoping	behavior.	However,	unlike	apply,
run	does	not	return	the	receiver.
Say	you	wanted	to	check	whether	a	file	contains	a	particular	string:
					val	menuFile	=	File("menu-file.txt")

					val	servesDragonsBreath	=	menuFile.run	{

									readText().contains("Dragon's	Breath")

					}

The	readText	function	is	implicitly	performed	on	the	receiver	–	the	File
instance.	This	is	just	like	the	setReadable,	setWriteable,	and
setExecutable	functions	you	saw	with	apply.	However,	unlike	apply,
run	returns	the	lambda	result	–	here,	a	true	or	false	value.
run	can	also	be	used	to	execute	a	function	reference	on	a	receiver.	You	used
function	references	in	Chapter	5;	here	is	an	example	that	shows	their	use	with
run:
				fun	nameIsLong(name:	String)	=	name.length	>=	20

				"Madrigal".run(::nameIsLong)		//	False

				"Polarcubis,	Supreme	Master	of	NyetHack".run(::nameIsLong)	//	True

While	code	like	this	is	equivalent	to	nameIsLong(“Madrigal”),	the	benefits	of
using	run	become	clear	when	there	are	multiple	function	calls:	Chained	calls
using	run	are	easier	to	read	and	follow	than	nested	function	calls.	For	example,
consider	the	following	code	that	checks	whether	a	player’s	name	is	10	characters
or	longer,	formats	a	message	depending	on	the	result,	and	prints	the	result.
				fun	nameIsLong(name:	String)	=	name.length	>=	20

				fun	playerCreateMessage(nameTooLong:	Boolean):	String	{

								return	if	(nameTooLong)	{

												"Name	is	too	long.	Please	choose	another	name."

								}	else	{

												"Welcome,	adventurer"

								}

				}

				"Polarcubis,	Supreme	Master	of	NyetHack"

								.run(::nameIsLong)

								.run(::playerCreateMessage)

								.run(::println)

Compare	the	calls	chained	with	run	to	calling	the	three	functions	using	nested
syntax:
				println(playerCreateMessage(nameIsLong("Polarcubis,	Supreme	Master	of	NyetHack")))

The	nested	function	calls	are	more	difficult	to	understand	because	they	require
the	reader	to	work	from	the	inside	out,	rather	than	the	more	familiar	top	to

bottom.
Note	that	there	is	a	second	flavor	of	run	that	is	not	called	on	a	receiver.	This
form	is	far	less	commonly	seen,	but	we	include	it	here	for	completeness:
				val	status	=	run	{

								if	(healthPoints	==	100)	"perfect	health"	else	"has	injuries"

				}

with
with	is	a	variant	of	run.	It	behaves	identically,	but	it	uses	a	different	calling
convention.	Unlike	the	standard	functions	you	have	seen	so	far,	with	requires
its	argument	to	be	accepted	as	the	first	parameter	rather	than	calling	the	standard
function	on	a	receiver	type:
				val	nameTooLong	=	with("Polarcubis,	Supreme	Master	of	NyetHack")	{

								length	>=	20

				}

Instead	of	calling	with	on	the	string,	as	in	"Polarcubis,	Supreme	Master	of
NyetHack".run,	the	string	is	passed	as	the	first	(in	this	case,	only)	argument	to
with.
This	is	inconsistent	with	the	way	you	work	with	the	rest	of	the	standard
functions,	making	it	a	less	favorable	choice	than	run.	In	fact,	we	recommend
avoiding	with	and	using	run	instead.	We	are	including	with	here	so	that	if
you	encounter	it	in	the	wild	you	will	know	what	it	means	(and	possibly	consider
replacing	it	with	run).

also
The	also	function	works	very	similarly	to	the	let	function.	Just	like	let,
also	passes	the	receiver	you	call	it	on	as	an	argument	to	a	lambda	you	provide.
But	there	is	one	major	difference	between	let	and	also:	also	returns	the
receiver,	rather	than	the	result	of	the	lambda.
This	makes	also	especially	useful	for	adding	multiple	side	effects	from	a
common	source.	In	the	example	below,	also	is	called	twice	to	organize	two
different	operations:	One	prints	the	filename,	and	the	other	assigns	a	variable,
fileContents,	with	the	contents	of	the	file.
				var	fileContents:	List<String>

				File("file.txt")

											.also	{

															print(it.name)

											}.also	{

															fileContents	=	it.readLines()

											}

				}

Since	also	returns	the	receiver	instead	of	the	result	of	the	lambda,	you	can
continue	to	chain	additional	function	calls	on	to	the	original	receiver.

takeIf
The	last	stop	on	our	tour	of	the	standard	functions	is	takeIf.	takeIf	works	a
bit	differently	than	the	other	standard	functions:	It	evaluates	a	condition	provided
in	a	lambda,	called	a	predicate,	that	returns	either	true	or	false	depending	on	the
conditions	defined.	If	the	condition	evaluates	as	true,	the	receiver	is	returned
from	takeIf.	If	the	condition	is	false,	null	is	returned	instead.
Consider	the	following	example,	which	reads	a	file	if	and	only	if	it	is	readable
and	writable.
				val	fileContents	=	File("myfile.txt")

												.takeIf	{	it.canRead()	&&	it.canWrite()	}

												?.readText()

Without	takeIf,	this	would	be	more	verbose:
				val	file	=	File("myfile.txt")

				val	fileContents	=	if	(file.canRead()	&&	file.canWrite())	{

								file.readText()

				}	else	{

								null

				}

The	takeIf	version	does	not	require	the	temporary	variable	file,	nor	does	it
need	to	specify	the	possibility	of	a	null	return.	takeIf	is	useful	for	checking
that	some	condition	required	for	assigning	a	variable	or	proceeding	with	work	is
true	before	continuing.	Conceptually,	takeIf	is	similar	to	an	if	statement,	but
with	the	advantage	of	being	directly	callable	on	an	instance,	often	allowing	you
to	remove	a	temporary	variable	assignment.

takeUnless

We	said	that	the	tour	was	over,	but	there	is	a	complementary	function	to
takeIf	that	we	should	mention,	if	only	to	warn	you	away	from	it:
takeUnless.	The	takeUnless	function	is	exactly	like	takeIf	except	that
it	returns	the	original	value	if	the	condition	you	define	is	false.	This	example
reads	the	file	if	it	is	not	hidden	(and	returns	null	otherwise):
				val	fileContents	=	File("myfile.txt").takeUnless	{	it.isHidden	}?.readText()

We	recommend	that	you	limit	the	use	of	takeUnless,	especially	for	more
complicated	condition-checking,	because	it	takes	longer	for	human	readers	of
your	program	to	interpret.	Compare	the	“understandability”	of	these	two
phrases:

“Return	the	value	if	the	condition	is	true”	–	takeIf

“Return	the	value	unless	the	condition	is	true”	–	takeUnless

If	you	found	yourself	having	to	pause	slightly	for	the	second	phrase,	you	are	like
us:	takeUnless	seems	to	be	a	less	natural	way	of	describing	the	logic	you
want	to	express.
For	simple	conditions	(as	in	the	example	above),	takeUnless	is	not
problematic.	But	with	more	complicated	examples,	we	find	takeUnless	is
harder	to	parse	(for	human	brains,	anyway).

Using	Standard	Library	Functions
Table	9.1	summarizes	the	Kotlin	standard	library	functions	discussed	in	this
chapter:

Table	9.1		Standard	functions

Function Passes	receiver	to
lambda	as	argument?

Provides
relative
scoping?

Returns

let Yes No Lambda	result
apply No Yes Receiver
run	a No Yes Lambda	result

with	b No Yes Lambda	result
also Yes No Receiver
takeIf Yes No Nullable	version

of	receiver
takeUnless Yes No Nullable	version

of	receiver

a	The	non-receiver	version	of	run	(less	commonly	used)	passes	no	receiver,
performs	no	relative	scoping,	and	returns	the	lambda	result.
b	with	is	not	called	on	the	receiver	like	this:	"hello.with	{..}".	Instead,	it
treats	the	first	argument	as	the	receiver,	the	second	being	the	lambda,	like	this:
with("hello"){..}.	It	is	the	only	standard	function	that	works	this	way,
which	is	why	we	recommend	avoiding	it.

In	this	chapter,	you	saw	how	to	simplify	your	code	using	standard	functions.
They	give	you	the	ability	to	write	code	that	is	not	only	concise	but	also	has	the
unique	feel	of	Kotlin.	We	will	use	standard	functions	in	the	rest	of	this	book
where	applicable.
In	Chapter	2,	you	saw	how	to	represent	data	using	variables.	In	the	next	chapter,
you	will	learn	how	to	represent	series	of	data	with	variables	of	Kotlin’s	List
and	Set	collection	types.

10	
Lists	and	Sets

Working	with	a	group	of	related	values	is	an	essential	part	of	many	programs.
For	example,	your	program	might	manage	lists	of	books,	travel	destinations,
menu	items,	or	tavern	patron	check	balances.	Collections	allow	you	to
conveniently	work	with	those	groups	of	values	and	pass	them	as	arguments	to
functions.
You	will	see	the	most	commonly	used	collection	types	in	the	next	two	chapters:
List,	Set,	and	Map.	Like	the	other	variable	types	you	learned	about	in
Chapter	2,	lists,	sets,	and	maps	come	in	two	distinct	varieties:	mutable	and	read-
only.	In	this	chapter,	we	will	focus	on	lists	and	sets.
You	are	going	to	use	collections	to	upgrade	NyetHack’s	tavern.	When	your	work
is	finished,	the	tavern	will	sport	a	full	menu	of	items	for	purchase	–	along	with	a
bustling	scene	of	patrons	eager	to	spend	their	gold.

Lists
You	worked	indirectly	with	a	list	in	Chapter	7,	when	you	used	the	split
function	to	extract	three	elements	from	the	menu	data.	Lists	hold	an	ordered
collection	of	values	and	allow	duplicate	values.
Begin	your	tavern	simulation	in	Tavern.kt	by	adding	a	list	of	patrons,	using
the	listOf	function.	listOf	returns	a	read-only	list	(more	on	that	shortly)
populated	with	the	elements	you	provide	for	the	argument.	Create	your	list	with
three	patron	names:

Listing	10.1		Creating	a	list	of	patrons	(Tavern.kt)
import	kotlin.math.roundToInt

const	val	TAVERN_NAME	=	"Taernyl's	Folly"

var	playerGold	=	10

var	playerSilver	=	10

val	patronList:	List<String>	=	listOf("Eli",	"Mordoc",	"Sophie")

fun	main(args:	Array<String>)	{

				placeOrder("shandy,Dragon's	Breath,5.91")

				println(patronList)

}

...

Up	to	now,	you	have	been	creating	variables	of	various	types	by	simply
declaring	them.	But	collections	require	two	steps:	creating	the	collection	(here,
the	list	to	hold	the	patrons)	and	adding	contents	to	it	(the	patron	names).	Kotlin
provides	functions,	like	listOf,	that	do	both	at	once.
Now	that	you	have	a	list,	let’s	take	a	closer	look	at	the	List	type.
Though	type	inference	does	work	with	lists,	you	included	the	type	information	–
val	patronList:	List<String>	–	to	make	it	visible	for	discussion.	Notice	the
diamond	braces	in	List<String>.	<String>	is	known	as	a	parameterized	type,
and	it	tells	the	compiler	about	the	type	that	the	contents	of	the	list	will	be	–	in
this	case,	Strings.	Changing	the	type	parameter	changes	what	the	compiler
allows	the	list	to	hold.
If	you	tried	to	put	an	integer	in	the	patronList,	the	compiler	would	not	allow
it.	Try	adding	a	number	to	the	list	you	defined:

Listing	10.2		Adding	an	integer	to	a	list	of	strings	(Tavern.kt)
...

var	patronList:	List<String>	=	listOf("Eli",	"Mordoc",	"Sophie",	1)

...

IntelliJ	warns	you	that	the	integer	does	not	conform	to	the	expected	type,
String.	Type	parameters	are	used	with	List	because	List	is	a	generic	type.
This	means	that	a	list	can	hold	any	type	of	data,	including	textual	data	like
strings	(as	in	the	case	of	patronList)	or	characters,	numeric	data	like	integers
or	doubles,	or	even	a	new	type	that	you	define.	(You	will	learn	more	about
generics	in	Chapter	17.)
Undo	your	last	change,	either	with	IntelliJ’s	undo	command	(Command-z	[Ctrl-
z])	or	by	deleting	the	integer:

Listing	10.3		Correcting	the	list	contents	(Tavern.kt)
...

var	patronList:	List<String>	=	listOf("Eli",	"Mordoc",	"Sophie",	1)

...

Accessing	a	list’s	elements

Recall	from	your	work	with	the	split	function	in	Chapter	7	that	you	can
access	any	element	of	a	list	using	the	element’s	index	and	the	[]	operator.	Lists
are	zero-indexed,	so	"Eli"	is	at	index	0,	and	"Sophie"	is	at	index	2.
Change	Tavern.kt	to	print	only	the	first	patron.	Also,	remove	the	explicit
type	information	from	patronList.	Now	that	you	have	seen	the
parameterized	type	that	this	List	uses,	you	can	return	to	using	type	inference
for	cleaner	code.

Listing	10.4		Accessing	the	first	patron	(Tavern.kt)
import	kotlin.math.roundToInt

const	val	TAVERN_NAME	=	"Taernyl's	Folly"

var	playerGold	=	10

var	playerSilver	=	10

val	patronList:	List<String>	=	listOf("Eli",	"Mordoc",	"Sophie")

fun	main(args:	Array<String>)	{

				placeOrder("shandy,Dragon's	Breath,5.91")

				println(patronList[0])

}

...

Run	Tavern.kt.	You	will	see	the	first	patron,	Eli,	printed.
List	also	provides	other	convenience	index	access	functions,	like	accessing	the
first	or	last	element:
				patronList.first()	//	Eli

				patronList.last()	//	Sophie

Index	boundaries	and	safe	index	access

Accessing	an	element	by	index	requires	care,	because	attempting	to	access	an
element	at	an	index	that	does	not	exist	–	say,	the	fourth	item	from	a	list	that
contains	only	three	–	causes	an	ArrayIndexOutOfBoundsException
exception.
Try	this	in	the	Kotlin	REPL.	(You	can	copy	the	first	line	from	Tavern.kt.)

Listing	10.5		Accessing	a	nonexistent	index	(REPL)
val	patronList	=	listOf("Eli",	"Mordoc",	"Sophie")

patronList[4]

The	result	is	java.lang.ArrayIndexOutOfBoundsException:	4.
Because	accessing	an	element	by	an	index	can	throw	an	exception,	Kotlin
provides	safe	index	access	functions	that	allow	you	to	deal	with	the	problem
differently.	Instead	of	throwing	an	exception	if	the	index	is	out	of	bounds,	some
other	result	will	occur.
For	example,	one	of	these	safe	index	access	functions,	getOrElse,	takes	two
arguments:	The	first	is	the	requested	index	(in	parentheses,	not	square	brackets).
The	second	is	a	lambda	that	generates	a	default	value,	instead	of	an	exception,	if
the	requested	index	does	not	exist.
Try	it	out	in	the	REPL:

Listing	10.6		Testing	getOrElse	(REPL)
val	patronList	=	listOf("Eli",	"Mordoc",	"Sophie")

patronList.getOrElse(4)	{	"Unknown	Patron"	}

This	time,	the	result	is	Unknown	Patron.	The	anonymous	function	was	used	to
provide	a	default	value,	since	the	requested	index	does	not	exist.
Another	safe	index	access	function,	getOrNull,	returns	null	instead	of
throwing	an	exception.	When	you	use	getOrNull,	you	must	decide	what	to	do
with	the	null	value,	as	you	saw	in	Chapter	6.	One	option	is	to	coalesce	the	null
value	to	a	default.	Try	using	getOrNull	with	the	null	coalescing	operator	in
the	REPL.

Listing	10.7		Testing	getOrNull	(REPL)
val	fifthPatron	=	patronList.getOrNull(4)	?:	"Unknown	Patron"

fifthPatron

Again,	the	result	is	Unknown	Patron.

Checking	the	contents	of	a	list

The	tavern	has	dark	corners	and	secret	back	rooms.	Fortunately,	the	keen-eyed
tavern	master	keeps	diligent	records	of	which	patrons	have	left	or	entered	in	the
patron	list.	If	you	ask	whether	a	particular	patron	is	present,	the	tavern	master
can	tell	you	by	looking	at	the	list.
Update	Tavern.kt	to	use	the	contains	function	to	check	whether	a
particular	patron	is	present:

Listing	10.8		Checking	for	a	patron	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				if	(patronList.contains("Eli"))	{

								println("The	tavern	master	says:	Eli's	in	the	back	playing	cards.")

				}	else	{

								println("The	tavern	master	says:	Eli	isn't	here.")

				}

				placeOrder("shandy,Dragon's	Breath,5.91")

				println(patronList[0])

}

...

Run	Tavern.kt.	Because	patronList	does	contain	"Eli",	you	will	see	The
tavern	master	says:	Eli's	in	the	back	playing	cards.	in	the	console
above	the	output	from	your	placeOrder	call.
Note	that	the	contains	function	performs	a	structural	comparison	for	the
elements	in	the	list,	like	the	structural	equality	operator.
You	can	also	use	the	containsAll	function	to	check	whether	several	patrons
are	present	at	once.	Update	the	code	to	ask	the	tavern	master	whether	both
Sophie	and	Mordoc	are	present:

Listing	10.9		Checking	for	multiple	patrons	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				if	(patronList.contains("Eli"))	{

								println("The	tavern	master	says:	Eli's	in	the	back	playing	cards.	")

				}	else	{

								println("The	tavern	master	says:	Eli	isn't	here.")

				}

				if	(patronList.containsAll(listOf("Sophie",	"Mordoc")))	{

								println("The	tavern	master	says:	Yea,	they're	seated	by	the	stew	kettle.")

				}	else	{

								println("The	tavern	master	says:	Nay,	they	departed	hours	ago.")

				}

				placeOrder("shandy,Dragon's	Breath,5.91")

}

...

Run	Tavern.kt.	You	will	see	the	following	printed:
				The	tavern	master	says:	Eli's	in	the	back	playing	cards.

				The	tavern	master	says:	Yea,	they're	seated	by	the	stew	kettle.

				...

Changing	a	list’s	contents

If	a	patron	shows	up	or	leaves	halfway	through	the	night,	the	watchful	tavern
master	needs	to	add	or	remove	the	patron’s	name	from	the	patronList
variable.	Currently,	that	is	not	possible.
listOf	returns	a	read-only	list	that	does	not	allow	changes	to	its	contents:	You
cannot	add,	remove,	update,	or	replace	entries.	Read-only	lists	are	a	good	idea,
because	they	prevent	unfortunate	mistakes	–	like	kicking	a	patron	out	into	the
cold	by	accidentally	removing	them	from	the	list.
The	read-only	nature	of	the	list	has	nothing	to	do	with	the	val	or	var	keyword
you	used	to	define	the	list	variable.	Changing	the	variable	declaration	for
patronList	from	val	(as	it	is	defined	now)	to	var	would	not	change	the	list
from	read-only	to	writable.	Instead,	it	would	allow	you	to	reassign	the
patronList	variable	to	hold	a	new,	different	list.
List	mutability	is	defined	by	the	type	of	the	list	and	refers	to	whether	you	can
modify	the	elements	in	the	list.	Since	patrons	come	and	go	from	the	tavern
freely,	the	type	of	patronList	needs	to	be	changed	to	allow	updates.	In
Kotlin,	a	modifiable	list	is	known	as	a	mutable	list,	and	you	use	the
mutableListOf	function	to	create	one.
Update	Tavern.kt	to	use	mutableListOf	instead	of	listOf.	Mutable
lists	come	with	a	variety	of	functions	for	adding,	removing,	and	updating	items.
Simulate	several	patrons	coming	and	going	by	using	the	add	and	remove
functions:

Listing	10.10		Making	the	patron	list	mutable	(Tavern.kt)
...

val	patronList	=	listOf("Eli",	"Mordoc",	"Sophie")

val	patronList	=	mutableListOf("Eli",	"Mordoc",	"Sophie")

fun	main(args:	Array<String>)	{

				...

				placeOrder("shandy,Dragon's	Breath,5.91")

				println(patronList)

				patronList.remove("Eli")

				patronList.add("Alex")

				println(patronList)

}

...

Run	Tavern.kt.	You	will	see	the	following	printed	to	the	console:
				...

				Madrigal	exclaims	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

				[Eli,	Mordoc,	Sophie]

				[Mordoc,	Sophie,	Alex]

The	read-only	nature	of	the	list	has	nothing	to	do	with	the	val	or	var	keyword
you	used	to	define	the	list	variable.	Changing	the	variable	declaration	for
patronList	from	val	(as	it	is	defined	now)	to	var	would	not	change	the	list
from	read-only	to	writable.	Instead,	you	would	be	able	to	reassign	the
patronList	variable	to	hold	a	new,	different	list.
List	mutability	is	defined	by	the	type	of	the	list	and	refers	to	whether	you	can
modify	the	elements	in	the	list.	When	you	need	to	be	able	to	modify	the	elements
in	a	list,	use	a	MutableList.	Otherwise,	it	is	a	good	idea	to	restrict	mutability
by	using	List.
Note	that	the	new	element	was	added	at	the	end	of	the	list.	You	can	also	add	a
patron	at	a	particular	position	in	the	list.	For	example,	if	a	VIP	comes	into	the
tavern,	the	tavern	master	can	prioritize	their	place	in	line.
Add	a	VIP	patron	–	coincidentally	also	with	the	name	Alex	–	to	the	beginning	of
the	patron	list.	(This	Alex	is	well-known	around	town	and	enjoys	perks	like
getting	a	pint	of	Dragon’s	Breath	before	everyone	else,	much	to	the	chagrin	of
the	other	Alex.)	List	supports	multiple	elements	with	the	same	value,	such	as
two	patrons	with	the	same	name,	so	adding	another	Alex	is	no	problem	for	the
list.

Listing	10.11		Adding	another	Alex	(Tavern.kt)
...

val	patronList	=	mutableListOf("Eli",	"Mordoc",	"Sophie")

fun	main(args:	Array<String>)	{

				...

				placeOrder("shandy,Dragon's	Breath,5.91")

				println(patronList)

				patronList.remove("Eli")

				patronList.add("Alex")

				patronList.add(0,	"Alex")

				println(patronList)

}

...

Run	Tavern.kt	again.	You	will	see	the	following	printed:
				...

				[Eli,	Mordoc,	Sophie]

				[Alex,	Mordoc,	Sophie,	Alex]

To	change	patronList	from	a	read-only	list	to	a	mutable	list,	you	changed
your	code	to	use	mutableListOf	instead	of	listOf.	List	also	provides
functions	for	moving	between	read-only	and	mutable	versions	on	the	fly:
toList	and	toMutableList.	For	example,	you	could	create	a	read-only
version	of	the	mutable	patronList	using	toList:
				val	patronList	=	mutableListOf("Eli",	"Mordoc",	"Sophie")

				val	readOnlyPatronList	=	patronList.toList()

Say	that	the	famous	Alex	would	prefer	to	go	by	Alexis.	Respect	this	wish	by
modifying	patronList	using	the	set	operator	([]=)	to	reassign	the	string	at
the	first	index	in	the	list.

Listing	10.12		Modifying	a	mutable	list	using	the	set	operator
(Tavern.kt)
...

val	patronList	=	mutableListOf("Eli",	"Mordoc",	"Sophie")

fun	main(args:	Array<String>)	{

				...

				placeOrder("shandy,Dragon's	Breath,5.91")

				println(patronList)

				patronList.remove("Eli")

				patronList.add("Alex")

				patronList.add(0,	"Alex")

				patronList[0]	=	"Alexis"

				println(patronList)

}

...

Run	Tavern.kt.	You	will	see	that	patronList	has	been	updated	with
Alexis’	preferred	name.
				...

				[Eli,	Mordoc,	Sophie]

				[Alexis,	Mordoc,	Sophie,	Alex]

Functions	that	change	the	contents	of	a	mutable	list	are	called	mutator	functions.
Table	10.1	lists	the	most	commonly	used	mutator	functions	for	lists.

Table	10.1		Mutable	list	mutator	functions
Function Description Example(s)
[]=

(set
operator)

Sets	the	value	at	the	index;	throws	an
exception	if	the	index	does	not	exist.

val	patronList	=	

mutableListOf("Eli",

																															

"Mordoc",

																															

"Sophie")

patronList[4]	=	"Reggie"

IndexOutOfBoundsException

add Adds	an	element	to	the	end	of	the	list,
resizing	it	by	one	element.

val	patronList	=	

mutableListOf("Eli",

																															

"Mordoc",

																															

"Sophie")

patronList.add("Reggie")

[Eli,	Mordoc,	Sophie,	Reggie]

patronList.size

4

add

(at	index)
Adds	an	element	to	the	list	at	a
particular	index,	resizing	the	list	by	one
element.	Throws	an	exception	if	the
index	does	not	exist.

val	patronList	=	

mutableListOf("Eli",

																															

"Mordoc",

																															

"Sophie")

patronList.add(0,	"Reggie")

[Reggie,	Eli,	Mordoc,	Sophie]

patronList.add(5,	"Sophie")

IndexOutOfBoundsException

addAll Adds	all	of	another	collection	with
contents	of	the	same	type	to	the	list.

val	patronList	=	

mutableListOf("Eli",

																															

"Mordoc",

																															

"Sophie")

patronList.addAll(listOf("Reginald",	

"Alex"))

[Eli,	Mordoc,	Sophie,	Reginald,	

Alex]

+=

(plus
assign
operator)

Adds	an	element	or	collection	of
elements	to	the	list.

mutableListOf("Eli",

														"Mordoc",

														"Sophie")	+=	

"Reginald"

[Eli,	Mordoc,	Sophie,	Reginald]

mutableListOf("Eli",

														"Mordoc",

														"Sophie")	+=	

listOf("Alex",	"Shruti")

[Eli,	Mordoc,	Sophie,	Alex,	Shruti]

-=

(minus
assign
operator)

Removes	an	element	or	collection	of
elements	from	the	list.

mutableListOf("Eli",

														"Mordoc",

														"Sophie")	-=	"Eli"

[Mordoc,	Sophie]

val	patronList	=	

mutableListOf("Eli",

																															

"Mordoc",

																															

"Sophie")

patronList	-=	listOf("Eli",	Mordoc")

[Sophie]

clear Removes	all	the	elements	from	the	list. mutableListOf("Eli",	"Mordoc",	

Sophie").clear()

[]

removeIf Removes	elements	from	the	list	based
on	a	predicate	lambda.

val	patronList	=	

mutableListOf("Eli",

																															

"Mordoc",

																															

"Sophie")

patronList.removeIf	{	

it.contains("o")	}

[Eli]

Iteration
The	tavern	master	makes	a	point	of	greeting	each	patron,	as	it	is	just	good
business	to	do	so.	Lists	include	built-in	support	for	a	variety	of	functions	that
allow	you	to	perform	an	action	for	each	element	of	their	contents.	This	concept
is	called	iteration.
One	way	to	iterate	through	a	list	is	a	for	loop.	Its	logic	is,	“for	each	element	in
the	list,	do	something.”	You	give	the	element	a	name,	and	the	Kotlin	compiler
will	automatically	detect	its	type	for	you.
Update	Tavern.kt	to	print	a	greeting	for	each	patron.	(Also,	remove	the	code
from	earlier	that	modifies	and	prints	patronList	to	tidy	up	your	console
output.)

Listing	10.13		Iterating	over	the	patronList	with	for	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				placeOrder("shandy,Dragon's	Breath,5.91")

				println(patronList)

				patronList.remove("Eli")

				patronList.add("Alex")

				patronList.add(0,	"Alex")

				patronList[0]	=	"Alexis"

				println(patronList)

				for	(patron	in	patronList)	{

								println("Good	evening,	$patron")

				}

}

...

Run	Tavern.kt,	and	the	tavern	master	will	greet	each	patron	by	name:
				...

				Good	evening,	Eli

				Good	evening,	Mordoc

				Good	evening,	Sophie

In	this	case,	because	patronList	is	of	type	MutableList<String>,
patron	will	be	of	type	String.	Within	the	block	of	the	for	loop,	any	code
that	you	apply	to	patron	will	be	applied	to	all	elements	in	patronList.
In	some	languages,	Java	included,	the	default	for	loop	syntax	requires	you	to
work	with	indices	of	the	array	or	collection	you	are	iterating	through.	This	is
often	cumbersome,	but	it	can	be	useful.	The	syntax	is	verbose	and	not	very
readable,	but	you	do	get	a	great	amount	of	control	over	how	you	iterate.
In	Kotlin,	all	for	loops	rely	on	iteration	to	do	their	work.	If	you	are	familiar	with
Java	or	C#,	this	is	equivalent	to	the	foreach	loops	found	in	those	languages.

For	those	familiar	with	Java,	it	can	be	surprising	to	find	that	the	common	Java
expression	for(int	i	=	0;	i	<	10;	i++)	{	...	}	is	not	possible	in	Kotlin.
Instead,	a	for	loop	is	written	for(i	in	1..10)	{	...	}.	However,	at	the
bytecode	level,	the	compiler	will	optimize	a	Kotlin	for	loop	to	use	the	Java
version,	when	possible,	to	improve	performance.
Note	the	in	keyword:
				for	(patron	in	patronList)	{	...	}

in	specifies	the	object	being	iterated	over	in	a	for	loop.
The	for	loop	is	simple	and	readable,	but	if	you	prefer	a	more	functional	style	to
your	code,	then	a	loop	using	the	forEach	function	is	also	an	option.
The	forEach	function	traverses	each	element	in	the	list	–	one	by	one,	from	left
to	right	–	and	passes	each	element	to	the	anonymous	function	you	provide	as	an
argument.
Replace	your	for	loop	with	the	forEach	function.

Listing	10.14		Iterating	over	the	patronList	with	forEach
(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				placeOrder("shandy,Dragon's	Breath,5.91")

				for	(patron	in	patronList)	{

								println("Good	evening,	$patron")

				}

				patronList.forEach	{	patron	->

								println("Good	evening,	$patron")

				}

}

...

Run	Tavern.kt,	and	you	will	see	the	same	output	as	before.	The	for	loop	and
the	forEach	function	are	functionally	equivalent.
Kotlin’s	for	loop	and	forEach	function	handle	indexing	behind	the	scenes.	If
you	also	want	access	to	the	index	of	each	element	in	a	list	as	you	iterate,	use
forEachIndexed.	Update	Tavern.kt	to	use	forEachIndexed	to
display	each	patron’s	position	in	line:

Listing	10.15		Displaying	line	position	with	forEachIndexed
(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				placeOrder("shandy,Dragon's	Breath,5.91")

				patronList.forEachIndexed	{	index,	patron	->

								println("Good	evening,	$patron	-	you're	#${index	+	1}	in	line.")

				}

}

...

Run	Tavern.kt	again	to	see	the	patrons	and	their	positions:
				...

				Good	evening,	Eli	-	you're	#1	in	line.

				Good	evening,	Mordoc	-	you're	#2	in	line.

				Good	evening,	Sophie	-	you're	#3	in	line.

The	forEach	and	forEachIndexed	functions	are	also	available	on	certain
other	types	in	Kotlin.	This	category	of	types	is	called	Iterable,	and	List,
Set,	Map,	IntRange	(ranges	like	0..9,	which	you	saw	in	Chapter	3),	and
other	collection	types	belong	to	the	Iterable	category.	An	iterable	supports
iteration	–	in	other	words,	it	allows	traversing	the	elements	it	holds,	performing
some	action	for	each	element.
Time	to	get	the	tavern	simulation	going.	Have	each	patron	place	an	order	for	a
Dragon’s	Breath.	To	do	so,	move	the	call	to	placeOrder	within	the	lambda
that	you	passed	to	the	forEachIndexed	function	so	that	it	will	be	called	for
each	patron	in	the	list.	Now	that	patrons	other	than	Madrigal	will	be	ordering,
update	placeOrder	to	accept	the	name	of	the	patron	placing	the	order.
Also,	comment	out	the	call	to	performPurchase	in	placeOrder.	(You
will	add	it	back	in	the	next	chapter.)

Listing	10.16		Simulating	several	orders	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				placeOrder("shandy,Dragon's	Breath,5.91")

				patronList.forEachIndexed	{	index,	patron	->

								println("Good	evening,	$patron	-	you're	#${index	+	1}	in	line.")

								placeOrder(patron,	"shandy,Dragon's	Breath,5.91")

				}

}

...

private	fun	placeOrder(patronName:	String,	menuData:	String)	{

				val	indexOfApostrophe	=	TAVERN_NAME.indexOf('\'')

				val	tavernMaster	=	TAVERN_NAME.substring(0	until	indexOfApostrophe)

				println("Madrigal	speaks	with	$tavernMaster	about	their	order.")

				println("$patronName	speaks	with	$tavernMaster	about	their	order.")

				val	(type,	name,	price)	=	menuData.split(',')

				val	message	=	"Madrigal	buys	a	$name	($type)	for	$price."

				val	message	=	"$patronName	buys	a	$name	($type)	for	$price."

				println(message)

//		performPurchase(price.toDouble())

				performPurchase(price.toDouble())

				val	phrase	=	if	(name	==	"Dragon's	Breath")	{

								"Madrigal	exclaims:	${toDragonSpeak("Ah,	delicious	$name!")}"

								"$patronName	exclaims:	${toDragonSpeak("Ah,	delicious	$name!")}"

				}	else	{

								"Madrigal	says:	Thanks	for	the	$name."

								"$patronName	says:	Thanks	for	the	$name."

				}

				println(phrase)

}

Run	Tavern.kt	and	watch	the	tavern	spring	to	life	as	the	three	patrons
excitedly	place	their	orders	for	Dragon’s	Breath:
				The	tavern	master	says:	Eli's	in	the	back	playing	cards.

				The	tavern	master	says:	Yea,	they're	seated	by	the	stew	kettle.

				Good	evening,	Eli	-	you're	#1	in	line.

				Eli	speaks	with	Taernyl	about	their	order.

				Eli	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Eli	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

				Good	evening,	Mordoc	-	you're	#2	in	line.

				Mordoc	speaks	with	Taernyl	about	their	order.

				Mordoc	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Mordoc	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

				Good	evening,	Sophie	-	you're	#3	in	line.

				Sophie	speaks	with	Taernyl	about	their	order.

				Sophie	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Sophie	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

Iterable	collections	support	a	variety	of	functions	that	let	you	define	an
action	to	perform	for	each	item	in	the	collection.	You	will	learn	more	about
Iterables	and	the	other	iteration	functions	in	Chapter	19.

Reading	a	File	into	a	List
Variety	is	the	spice	of	life	–	and	the	tavern	master	knows	that	patrons	expect	a
variety	of	items	on	the	menu.	Currently,	Dragon’s	Breath	is	the	only	item	for
sale.	Time	to	fix	that	by	loading	up	some	menu	items	for	patrons	to	choose	from.
To	save	you	some	typing,	we	have	provided	you	with	predefined	menu	data	in	a
text	file	you	can	load	into	NyetHack.	The	file	contains	several	menu	items	in	the
same	format	as	your	current	Dragon’s	Breath	menu	data.
Start	by	creating	a	new	folder	for	data:	Right-click	the	NyetHack	project	in	the
project	tool	window	and	choose	New	→	Directory	(Figure	10.1).	Name	the
directory	data.

Figure	10.1		Creating	a	new	directory

Next,	download	the	menu	data	from	bignerdranch.com/solutions/
tavern-menu-data.txt	and	save	it	to	the	data	folder	you	created	in	a	file
called	tavern-menu-items.txt.
Now	you	can	update	Tavern.kt	to	read	the	text	from	that	file	into	a	string	and
call	split	on	the	resulting	string.	Make	sure	to	include	the	java.io.File
statement	at	the	very	top	of	Tavern.kt.

https://www.bignerdranch.com/solutions/tavern-menu-data.txt

Listing	10.17		Reading	menu	data	from	a	file	(Tavern.kt)
import	java.io.File

...

val	patronList	=	mutableListOf("Eli",	"Mordoc",	"Sophie")

val	menuList	=	File("data/tavern-menu-items.txt")

																			.readText()

																			.split("\n")

...

You	used	the	java.io.File	type	to	work	with	a	particular	file	by	providing	a
file	path.
The	readText	function	on	File	returns	the	contents	of	the	file	as	a	String.
Then	you	use	the	split	function	(as	you	did	in	Chapter	7)	to	return	a	list,
splitting	on	the	newline	character	(represented	by	the	escape	sequence	'\n').
Now,	call	forEachIndexed	on	menuList	to	print	out	each	entry	in	the
List	along	with	its	index.

Listing	10.18		Printing	the	diversified	menu	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				patronList.forEachIndexed	{	index,	patron	->

								println("Good	evening,	$patron	-	you're	#${index	+	1}	in	line.")

								placeOrder(patron,	"shandy,Dragon's	Breath,5.91")

				}

				menuList.forEachIndexed	{	index,	data	->

								println("$index	:	$data")

				}

}

...

Run	Tavern.kt.	You	will	see	the	menu	data	that	was	loaded	into	the	List:
				...

				0	:	shandy,Dragon's	Breath,5.91

				1	:	elixir,Shirley's	Temple,4.12

				2	:	meal,goblet	of	LaCroix,1.22

				3	:	desert	dessert,pickled	camel	hump,7.33

				4	:	elixir,iced	boilermaker,11.22

Now	that	the	menuList	is	loaded,	have	each	patron	choose	randomly	from	the
menu	when	placing	their	order:

Listing	10.19		Placing	random	orders	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				patronList.forEachIndexed	{	index,	patron	->

								println("Good	evening,	$patron	-	you're	#${index	+	1}	in	line.")

								placeOrder(patron,	"shandy,Dragon's	Breath,5.91")

								placeOrder(patron,	menuList.shuffled().first())

				}

				menuList.forEachIndexed	{	index,	data	->

								println("$index	:	$data")

				}

}

...

Run	Tavern.kt.	You	will	see	each	patron	place	an	order	for	a	random	item	on

the	menu.

Destructuring
A	list	also	offers	the	ability	to	destructure	up	to	the	first	five	elements	it	contains.
Destructuring,	as	you	saw	in	Chapter	7,	allows	you	to	declare	and	assign
multiple	variables	in	a	single	expression.	You	are	using	this	destructuring
declaration	to	separate	the	elements	of	the	menu	data:
				val	(type,	name,	price)	=	menuData.split(',')

This	declaration	assigns	the	first	three	elements	in	the	list	returned	by	the
split	function	to	string	values	named	type,	name,	and	price.
By	the	way,	you	can	also	selectively	destructure	elements	from	a	list	by	using	the
symbol	_	to	skip	unwanted	elements.	Say,	for	example,	that	the	tavern	master
would	like	to	hand	out	medals	to	the	best	sword	jugglers	in	the	realm	but	has
misplaced	the	silver	medal.	If	you	wanted	to	destructure	only	the	first	and	third
value	in	the	result	from	splitting	the	patron	list,	you	could	do	so	with:
				val	(goldMedal,	_,	bronzeMedal)	=	patronList

Sets
Lists,	as	you	have	seen,	allow	duplicate	elements	(and	are	ordered,	so	duplicates
–	and	other	elements	–	can	be	identified	by	their	position).	But	sometimes	you
want	a	collection	that	guarantees	that	its	items	are	unique.	For	that,	you	use	a
Set.
Sets	are	like	Lists	in	many	ways.	They	use	the	same	iteration	functions,	and
Set	also	comes	in	read-only	and	mutable	flavors.
But	there	are	two	major	differences	between	lists	and	sets:	The	elements	of	a	set
are	unique,	and	a	set	does	not	provide	index-based	mutators,	because	the	items
in	a	set	are	not	guaranteed	to	be	in	any	particular	order.	(That	said,	you	can	still
read	an	element	at	a	particular	index,	which	we	will	discuss	shortly.)

Creating	a	set

Just	as	you	can	create	a	list	using	the	listOf	function,	you	can	create	a	Set
using	the	setOf	function.	Try	creating	a	set	in	the	REPL:

Listing	10.20		Creating	a	set	(REPL)
val	planets	=	setOf("Mercury",	"Venus",	"Earth")

planets

["Mercury",	"Venus",	"Earth"]

If	you	try	to	create	the	planets	set	with	a	duplicate,	only	one	of	the	duplicate
items	will	remain	in	the	set:

Listing	10.21		Trying	to	create	a	set	with	a	duplicate	(REPL)
val	planets	=	setOf("Mercury",	"Venus",	"Earth",	"Earth")

planets

["Mercury",	"Venus",	"Earth"]

The	duplicate	element	"Earth"	was	dropped	from	the	set.
As	with	a	List,	you	can	check	whether	a	set	contains	a	particular	element	using
contains	and	containsAll.	Try	the	contains	function	in	the	REPL:

Listing	10.22		Checking	planets	(REPL)
planets.contains("Earth")

true

planets.contains("Pluto")

false

Set	does	not	index	its	contents	–	meaning	it	provides	no	built-in	[]	operator	to
access	elements	using	an	index.	However,	you	can	still	request	an	element	at	a
particular	index,	using	functions	that	use	iteration	to	accomplish	the	task.	Enter
the	following	into	the	REPL	to	read	the	third	planet	in	the	set	with	the
elementAt	function:

Listing	10.23		Finding	the	third	planet	(REPL)
val	planets	=	setOf("Mercury",	"Venus",	"Earth")

planets.elementAt(2)

Earth

While	this	works,	using	index-based	access	with	a	set	is	an	order	of	magnitude
slower	than	index-based	access	with	a	list,	because	of	the	way	elementAt
works	under	the	hood.	When	you	call	the	elementAt	function	on	the	set,	the
set	iterates	to	the	index	you	provide,	one	element	at	a	time.	This	means	that	for	a
large	set,	requesting	an	element	at	a	high	index	would	be	slower	than	accessing
an	element	by	index	in	a	list.	For	this	reason,	if	you	want	index-based	access,
you	probably	want	a	List,	not	a	Set.
Also,	while	Set	does	have	a	mutable	version	(which	you	will	soon	see),	no
mutator	functions	are	available	that	rely	on	indices	(like	List’s	add(index,
element)	function).
Having	said	that,	Set	does	provide	the	very	useful	feature	of	eliminating
duplicate	elements.	So	what	is	a	programmer	who	wants	unique	elements	and
high-performance,	index-based	access	to	do?	Use	both:	Create	a	Set	to
eliminate	duplicates	and	convert	it	a	to	a	List	when	index-based	access	or
mutator	functions	are	needed.
This	is	exactly	what	you	will	do	to	develop	a	more	elaborate	patron	name	list	for
your	tavern	simulation.

Adding	elements	to	a	set

To	add	some	diversity	to	the	tavern,	you	will	randomly	generate	patron	names,
using	lists	of	first	and	last	names.	Update	Tavern.kt	with	a	list	of	last	names
and	use	forEach	to	generate	10	random	combinations	of	first	names	(from
patronList)	and	last	names.	(Recall	that	ranges	are	iterable.)
Remove	the	two	calls	to	forEachIndexed	that	created	patron	greetings	and
menu	orders.	You	will	be	iterating	over	a	list	of	unique	patrons	soon	instead.

Listing	10.24		Generating	10	random	patrons	(Tavern.kt)

...

val	patronList	=	mutableListOf("Eli",	"Mordoc",	"Sophie")

val	lastName	=	listOf("Ironfoot",	"Fernsworth",	"Baggins")

val	menuList	=	File("data/tavern-menu-items.txt")

																																	.readText()

																																	.split("\n")

fun	main(args:	Array<String>)	{

				...

				patronList.forEachIndexed	{	index,	patron	->

								println("Good	evening,	$patron	-	you're	#${index	+	1}	in	line.")

								placeOrder(patron,	menuList.shuffled().first())

				}

				menuList.forEachIndexed	{	index,	data	->

								println("$index	:	$data")

				}

			(0..9).forEach	{

								val	first	=	patronList.shuffled().first()

								val	last	=	lastName.shuffled().first()

								val	name	=	"$first	$last"

								println(name)

			}

}

...

Run	Tavern.kt.	You	will	see	10	random	patron	names	in	the	output.	They
will	not	necessarily	match	the	ones	below,	but	they	will	be	similar	–	and	you
should	see	some	duplicate	first	and	last	name	combinations:
				...

				Eli	Baggins

				Eli	Baggins

				Eli	Baggins

				Eli	Ironfoot

				Sophie	Baggins

				Sophie	Fernsworth

				Sophie	Baggins

				Eli	Ironfoot

				Eli	Ironfoot

				Sophie	Fernsworth

Your	tavern	simulation	requires	unique	patron	names,	because	soon	you	will
associate	gold	balances	with	each	patron’s	unique	name	in	the	tavern	ledger.	A
duplicate	patron	name	could	lead	to	a	case	of	mistaken	identity.
To	remove	the	duplicate	names	from	your	list,	you	will	add	each	name	to	a	set.
Any	duplicate	elements	will	be	dropped,	and	you	will	be	left	with	only	the
unique	elements.
Define	an	empty	mutable	set	and	add	the	randomly	generated	patron	names	to	it:

Listing	10.25		Ensuring	uniqueness	using	a	set	(Tavern.kt)
...

val	lastName	=	listOf("Ironfoot",	"Fernsworth",	"Baggins")

val	uniquePatrons	=	mutableSetOf<String>()

val	menuList	=	File("data/tavern-menu-items.txt")

																																	.readText()

																																	.split("\n")

fun	main(args:	Array<String>)	{

				...

				(0..9).forEach	{

								val	first	=	patronList.shuffled().first()

								val	last	=	lastName.shuffled().first()

								val	name	=	"$first	$last"

								println(name)

								uniquePatrons	+=	name

				}

				println(uniquePatrons)

}

...

Note	that	you	cannot	rely	on	type	inference	for	uniquePatrons,	because	you
declare	it	as	an	empty	set.	You	must	specify	the	type	of	elements	it	can	hold:
mutableSetOf<String>.	Then,	you	use	the	+=	operator	to	add	name	to
uniquePatrons,	iterating	10	times.
Run	Tavern.kt	again.	You	will	see	that	only	unique	values	are	held	in	the	set,
and	consequently	you	will	have	fewer	than	10	patron	names.
				...

				[Eli	Fernsworth,	Eli	Ironfoot,	Sophie	Baggins,	Mordoc	Baggins,	Sophie	Fernsworth]

While	MutableSet	supports	adding	and	removing	elements,	like
MutableList,	it	does	not	provide	index-based	mutator	functions.	Table	10.2
shows	some	of	the	most	commonly	used	MutableSet	mutator	functions.

Table	10.2		Mutable	set	mutator	functions
Function Description Example(s)
add Adds	the	value

to	the	set.
mutableSetOf(1,2).add(3)

[1,2,3]

addAll Adds	all	elements
from	another	collection
to	the	set.

mutableSetOf(1,2).addAll(listOf(1,5,6))

[1,2,5,6]

+=

(plus	assign	operator)
Adds	the	value(s)
to	the	set.

mutableSetOf(1,2)	+=	3

[1,2,3]

-=

(minus	assign	operator)
Removes	the	value(s)
from	the	set.

mutableSetOf(1,2,3)	-=	3

[1,2]

mutableSetOf(1,2,3)	-=	listOf(2,3)

[1]

remove Removes	the	element
from	the	set.

mutableSetOf(1,2,3).remove(1)

[2,3]

removeAll Removes	all	elements
in	another	collection
from	the	set.

mutableSetOf(1,2).removeAll(listOf(1,5,6))

[2]

clear Removes	all	elements
from	the	set.

mutableSetOf(1,2).clear()

[]

while	Loops
Now	that	you	have	a	unique	list	of	patrons,	you	will	have	them	randomly	place
their	orders	from	the	menu.	In	this	section,	however,	you	will	use	a	different
control	flow	mechanism	for	looping	through	a	collection:	a	while	loop.
for	loops	are	a	useful	form	of	control	flow	when	you	want	to	run	some	code	for
each	element	in	series.	But	they	are	not	as	good	at	representing	state	that	cannot
be	iterated	through.	That	is	where	while	loops	are	useful.
A	while	loop’s	logic	is,	“While	some	condition	is	true,	execute	the	code	in	this
block.”	You	are	going	to	generate	exactly	10	orders	by	using	a	var	to	keep	track
of	how	many	orders	have	been	generated	and	a	while	loop	to	continue
generating	orders	until	10	have	been	placed.
Update	Tavern.kt	to	iterate	through	the	set	and	have	a	total	of	10	orders
placed	using	a	while	loop:

Listing	10.26		Unique	patrons	placing	random	orders	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				println(uniquePatrons)

				var	orderCount	=	0

				while	(orderCount	<=	9)	{

								placeOrder(uniquePatrons.shuffled().first(),

																menuList.shuffled().first())

								orderCount++

				}

}

...

The	increment	operator	(++)	adds	1	to	the	value	of	orderCount	during	each
iteration.
Run	Tavern.kt.	This	time,	you	will	see	10	random	orders	placed	by	the
patrons	you	generated,	along	the	lines	of:
				Sophie	Ironfoot	speaks	with	Taernyl	about	their	order.

				Sophie	Ironfoot	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Sophie	Ironfoot	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

				Mordoc	Fernsworth	speaks	with	Taernyl	about	their	order.

				Mordoc	Fernsworth	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Mordoc	Fernsworth	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

				Eli	Baggins	speaks	with	Taernyl	about	their	order.

				Eli	Baggins	buys	a	pickled	camel	hump	(desert	dessert)	for	7.33.

				Eli	Baggins	says:	Thanks	for	the	pickled	camel	hump.

				...

A	while	loop	requires	you	to	maintain	your	own	counter	to	manage	its	state.	You
start	with	an	orderCount	value	of	0	and	increment	each	time	that	you	loop.
while	loops	are	more	flexible	than	for	loops	in	that	they	can	represent	state	that

is	not	purely	based	on	iteration.	Here,	you	are	doing	so	by	incrementing	the
orderCount	counter.
You	can	represent	more	complex	state	by	combining	while	loops	with	other
forms	of	control	flow,	like	the	conditionals	you	saw	in	Chapter	3.	Consider	this
Boolean	example:
				var	isTavernOpen	=	true

				val	isClosingTime	=	false

				while	(isTavernOpen	==	true)	{

								if	(isClosingTime)	{

												isTavernOpen	=	false

								}

								println("Having	a	grand	old	time!")

				}

In	this	example,	the	while	loop	continues	to	loop	as	long	as	isTavernOpen	is
true,	keeping	track	of	state	represented	by	a	Boolean.	This	is	very	powerful	–
but	can	also	be	dangerous.	Consider	what	would	happen	if	isTavernOpen	was
never	false.	This	while	loop	would	loop	forever,	and	the	program	would	“hang,”
or	continue	to	execute	indefinitely.	Take	care	when	using	while	loops	for	this
reason.

The	break	Expression
One	way	to	exit	a	while	loop	is	by	changing	the	state	it	depends	on.	Another
way	to	break	out	of	a	loop	is	the	break	expression.	Consider	the	above	example
in	which	a	while	loop	runs	while	isTavernOpen	is	true.	Instead	of	changing
isTavernOpen’s	value	to	false	to	end	the	loop,	a	break	expression	would	halt
the	loop	immediately:
				var	isTavernOpen	=	true

				val	isClosingTime	=	false

				while	(isTavernOpen	==	true)	{

								if	(isClosingTime)	{

												break

								}

								println("Having	a	grand	old	time!")

				}

Without	break,	"Having	a	grand	old	time!"	would	print	one	more	time	after
the	value	of	isClosingTime	changes.	With	break,	the	grand	old	times	are
interrupted	as	execution	breaks	out	of	the	loop	immediately.
Note	that	break	does	not	stop	execution	of	your	program	entirely.	Rather,	it
simply	breaks	out	of	the	loop	from	which	it	is	called,	and	program	execution
continues.	break	can	be	used	to	jump	out	of	any	loop	or	conditional,	which	can
be	quite	useful.

Collection	Conversion
In	NyetHack,	you	create	a	mutable	set	of	unique	patron	names	by	feeding	the
elements	from	a	list	into	it,	one	by	one.	You	can	also	convert	a	list	to	a	set,	or
vice	versa,	using	the	toSet	and	toList	functions	(or	their	mutable	cousins:
toMutableSet	and	toMutableList).	A	common	trick	is	to	call	toSet	to
drop	the	non-unique	elements	in	a	list.	(Try	these	experiments	in	the	REPL.)

Listing	10.27		Converting	a	list	to	a	set	(REPL)
listOf("Eli	Baggins",	"Eli	Baggins",	"Eli	Ironfoot").toSet()

[Eli	Baggins,	Eli	Ironfoot]

If	you	want	quick	index-based	access	after	converting	a	list	to	a	set	to	remove
duplicates,	you	can	convert	the	set	back	to	a	list:

Listing	10.28		Converting	a	set	back	to	a	list	(REPL)
val	patrons	=	listOf("Eli	Baggins",	"Eli	Baggins",	"Eli	Ironfoot")

												.toSet()

												.toList()

[Eli	Baggins,	Eli	Ironfoot]

patrons[0]

Eli	Baggins

The	need	to	remove	duplicates	and	resume	index-based	access	is	so	common
that	Kotlin	provides	a	function	on	List	called	distinct	that	calls	toSet
and	toList	internally:

Listing	10.29		Calling	distinct	(REPL)
val	patrons	=	listOf("Eli	Baggins",	"Eli	Baggins",	"Eli	Ironfoot").distinct()

[Eli	Baggins,	Eli	Ironfoot]

patrons[0]

Eli	Baggins

Sets	are	useful	for	representing	series	of	data	where	each	element	is	unique.	In
the	next	chapter,	you	will	complete	your	tour	of	the	Kotlin	collection	types	by
learning	about	maps	as	you	finish	the	tavern	simulation.

For	the	More	Curious:	Array	Types
If	you	have	worked	with	Java,	you	know	that	it	supports	primitive	definitions	of
arrays	–	different	from	the	reference	types	like	List	and	Set	that	you	worked
with	in	this	chapter.	Kotlin	also	includes	a	number	of	reference	types,	called
Arrays,	that	compile	down	to	Java	primitive	arrays.	Arrays	are	included
primarily	to	support	interoperability	between	Kotlin	and	Java.
Suppose	you	had	a	Java	method	that	you	wanted	to	call	from	Kotlin	that	looked
like	this:
				static	void	displayPlayerAges(int[]	playerAges)	{

								for(int	i	=	0;	i	<	ages.length;	i++)	{

												System.out.println("age:	"	+	ages[i]);

								}

				}

Notice	that	the	parameter	expected	by	displayPlayerAges	is	int[]
playerAges,	a	Java	primitive	array	of	int	primitives.	To	call	the	Java
displayPlayerAges	method	from	Kotlin,	you	would	write	the	following:
				val	playerAges:	IntArray	=	intArrayOf(34,	27,	14,	52,	101)

				displayPlayerAges(playerAges)

Notice	the	IntArray	type	and	the	intArrayOf	function	that	was	called.
Like	a	List,	an	IntArray	represents	a	series	of	elements	–	specifically
integers.	Unlike	a	List,	an	IntArray	is	backed	by	a	primitive	type	when
compiled	to	bytecode.	When	the	Kotlin	code	is	compiled,	the	bytecode	that	is
generated	will	exactly	match	the	expected	primitive	int	array	required	for	the
Java	displayPlayerAges	method	to	be	invoked.
It	is	also	possible	to	convert	a	Kotlin	collection	to	the	required	Java	primitive
array	type	using	built-in	conversion	functions.	For	example,	you	could	convert	a
list	of	integers	to	an	IntArray	using	the	toIntArray	function	provided	by
List.	This	would	allow	you	to	convert	a	collection	to	an	int	array	only	at	the
point	that	you	need	to	provide	a	primitive	array	to	a	Java	function:
				val	playerAges:	List<Int>	=	listOf(34,	27,	14,	52,	101)

				displayPlayerAges(playerAges.toIntArray())

Table	10.3	shows	the	array	types	and	the	functions	that	create	them.

Table	10.3		Array	types
Array	type Creation	function
IntArray intArrayOf

DoubleArray doubleArrayOf

LongArray longArrayOf

ShortArray shortArrayOf

ByteArray byteArrayOf

FloatArray floatArrayOf

BooleanArray booleanArrayOf

Array	a arrayOf

a	Array	compiles	to	a	primitive	array	that	holds	any	reference	type.

As	a	general	rule,	stick	with	the	collection	types	like	List	unless	you	have	a
compelling	reason	to	do	otherwise	–	like	the	need	to	interoperate	with	Java	code.
A	Kotlin	collection	is	a	better	choice	in	most	cases	because	collections	provide
the	concept	of	“read-only-ness”	versus	“mutability”	and	support	a	more	robust
set	of	features.

For	the	More	Curious:	Read-Only	vs	Immutable
Throughout	this	book,	we	have	favored	the	terms	"read-only"	over	"immutable,"
with	few	exceptions	–	but	we	have	not	explained	why.	Now	is	the	time.
“Immutable”	means	“unchangeable,”	and	we	think	it	is	a	misleading	label	for
Kotlin	collections	(and	certain	other	types)	because	they	can,	indeed,	change.
Let’s	look	at	some	examples	using	lists.
Here	are	declarations	of	two	Lists.	They	are	read-only	–	declared	with	val.
The	element	each	one	happens	to	contain	is	a	mutable	list.
				val	x	=	listOf(mutableListOf(1,2,3))

				val	y	=	listOf(mutableListOf(1,2,3))

				x	==	y

				true

So	far,	so	good.	It	appears	that	x	and	y	were	assigned	with	the	same	value,	and
the	List	API	does	not	expose	any	functions	for	adding,	removing,	or
reassigning	a	particular	element.
However,	the	lists	contain	mutable	lists,	and	their	contents	can	be	modified:
				val	x	=	listOf(mutableListOf(1,2,3))

				val	y	=	listOf(mutableListOf(1,2,3))

				x[0].add(4)

				x	==	y

				false

The	structural	comparison	between	x	and	y	now	evaluates	as	false,	because	the
contents	of	x	mutated.	Should	an	immutable	(“unchangeable”)	list	behave	this
way?	In	our	opinion,	it	should	not.
Here	is	another	example:
				var	myList:	List<Int>	=	listOf(1,2,3)

				(myList	as	MutableList)[2]	=	1000

				myList

				[1,	2,	1000]

In	this	example,	myList	was	cast	to	the	MutableList	type	–	meaning	that
the	compiler	was	instructed	to	treat	myList	as	a	mutable	list,	despite	the	fact
that	it	was	created	with	listOf.	(You	will	read	about	casting	in	depth	in
Chapter	14	and	Chapter	16.)	This	cast	has	the	effect	of	allowing	a	change	to	the
value	of	the	third	item	in	myList.	Again,	not	the	behavior	we	expect	of
something	labeled	“unchangeable.”
A	List	in	Kotlin	does	not	enforce	immutability	–	it	is	up	to	you	to	use	it	in	an
immutable	fashion.	A	Kotlin	List’s	“immutability”	is	only	skin	deep	–	and

whatever	you	wind	up	calling	it,	remember	that.

Challenge:	Formatted	Tavern	Menu
First	impressions	go	a	long	way,	and	one	of	the	first	things	a	patron	will	see	is
the	tavern	menu.	For	this	challenge,	generate	a	more	elegant	version	of	the	menu
to	kick	it	up	a	notch.	Show	the	item	names	capitalized	and	uniformly	aligned.
Include	the	prices,	aligned	by	their	decimal	points.	Format	the	whole	menu	in	a
pleasing	block.
The	output	should	resemble	the	following:
				***	Welcome	to	Taernyl's	Folly	***

				Dragon's	Breath...............5.91

				Shirley's	Temple..............4.12

				Goblet	of	LaCroix.............1.22

				Pickled	Camel	Hump............7.33

				Iced	Boilermaker.............11.22

Hint:	You	will	need	to	calculate	the	amount	of	padding	for	each	line	by	using	the
longest	string	from	the	list	of	menu	items.

Challenge:	Advanced	Formatted	Tavern	Menu
Building	on	the	previous	menu	formatting	code,	generate	a	menu	that
additionally	groups	the	elements	to	be	listed	by	their	type.	The	output	should
resemble	the	following:
				***	Welcome	to	Taernyl's	Folly	***

															~[shandy]~

				Dragon's	Breath...............5.91

															~[elixir]~

				Iced	Boilermaker.............11.22

				Shirley's	Temple..............4.12

															~[meal]~

				Goblet	of	LaCroix.............1.22

											~[desert	dessert]~

				Pickled	Camel	Hump............7.33

11	
Maps

The	third	commonly	used	type	of	collection	in	Kotlin	is	Map.	The	Map	type	has
a	lot	in	common	with	the	List	and	Set	types:	All	three	group	a	series	of
elements,	are	read-only	by	default,	use	parameterized	types	to	tell	the	compiler
the	type	of	their	contents,	and	support	iteration.
Where	Map	is	different	from	List	and	Set	is	that	its	elements	consist	of	key-
value	pairs	that	you	define,	and	instead	of	index-based	access	using	an	integer,	a
map	provides	key-based	access	using	a	type	that	you	specify.	Keys	are	unique
and	identify	the	values	in	the	map;	the	values,	on	the	other	hand,	do	not	need	to
be	unique.	In	this	way,	Map	shares	another	feature	with	Set:	The	keys	of	a	map
are	guaranteed	to	be	unique,	just	like	the	elements	of	a	set.

Creating	a	Map
Like	lists	and	sets,	maps	are	created	using	functions:	mapOf	and
mutableMapOf.	In	Tavern.kt,	create	a	map	representing	the	amount	of
gold	each	patron’s	purse	contains.	(We	will	explain	the	argument	syntax	shortly.)

Listing	11.1		Creating	a	read-only	map	(Tavern.kt)
...

var	uniquePatrons	=	mutableSetOf<String>()

val	menuList	=	File("data/tavern-menu-items.txt")

																																	.readText()

																																	.split("\n")

val	patronGold	=	mapOf("Eli"	to	10.5,	"Mordoc"	to	8.0,	"Sophie"	to	5.5)

fun	main(args:	Array<String>)	{

				...

				println(uniquePatrons)

				var	orderCount	=	0

				while	(orderCount	<=	9)	{

								placeOrder(uniquePatrons.shuffled().first(),

																menuList.shuffled().first())

								orderCount++

				}

				println(patronGold)

}

...

While	the	keys	in	a	map	must	all	be	of	the	same	type,	and	the	values	must	be	of
the	same	type,	the	keys	and	values	can	be	of	different	types.	Here	you	have	a
map	with	string	keys	and	double	values.	You	are	using	type	inference,	but	if	you
had	wanted	to	include	explicit	type	information,	it	would	look	like	this:	val
patronGold:	Map<String,	Double>.
Run	Tavern.kt	to	see	the	map	printed.	Notice	that	when	a	map	is	printed,	it	is
shown	in	curly	braces,	while	lists	and	sets	are	both	shown	in	square	brackets.
				The	tavern	master	says:	Eli's	in	the	back	playing	cards.

				The	tavern	master	says:	Yea,	they're	seated	back	by	the	stew	kettle.

				...

				{Eli=10.5,	Mordoc=8.0,	Sophie=5.5}

You	used	to	to	define	each	entry	(key	and	value)	in	the	map:
				...

				mapOf("Eli"	to	10.75,	"Mordoc"	to	8.25,	"Sophie"	to	5.50)

to	may	look	like	a	keyword,	but	in	fact	it	is	a	special	type	of	function	that
allows	you	to	drop	the	dot	and	the	parentheses	around	its	arguments.	You	will
learn	more	about	this	in	Chapter	18.	The	to	function	converts	the	values	on	its
lefthand	and	righthand	sides	into	a	Pair	–	a	type	for	representing	a	group	of
two	elements.
Maps	are	built	using	key-value	Pairs.	In	fact,	another	way	you	could	have

defined	the	entries	for	the	map	is	as	follows.	(Try	it	in	the	REPL.)

Listing	11.2		Defining	a	map	using	the	Pair	type	(REPL)
val	patronGold	=	mapOf(Pair("Eli",	10.75),

				Pair("Mordoc",	8.00),

				Pair("Sophie",	5.50))

However,	building	a	map	using	the	to	function	is	cleaner	than	this	syntax.
We	have	said	that	the	keys	in	a	map	must	be	unique.	What	if	you	tried	adding	a
duplicate	entry	to	the	map?	In	the	REPL,	add	another	pair	with	"Sophie"	for	the
key:

Listing	11.3		Adding	a	duplicate	key	(REPL)
val	patronGold	=	mutableMapOf("Eli"	to	5.0,	"Sophie"	to	1.0)

patronGold	+=	"Sophie"	to	6.0

println(patronGold)

{Eli=5.0,	Sophie=6.0}

You	used	Map’s	plus	assign	operator	(+=)	to	add	a	pair	with	a	duplicate	key	into
the	map.	Since	the	key	"Sophie"	was	already	in	the	map,	the	existing	pair	was
replaced	with	the	new	one.	You	see	the	same	behavior	if	you	try	to	include
duplicate	keys	when	initializing	a	map:
				println(mapOf("Eli"	to	10.75,

												"Mordoc"	to	8.25,

												"Sophie"	to	5.50,

												"Sophie"	to	6.25))

				{Eli=10.5,	Mordoc=8.0,	Sophie=6.25}

Accessing	Map	Values
You	access	a	value	in	a	map	using	its	key.	For	the	patronGold	map,	you	will
use	the	string	key	to	access	the	patron’s	gold	balance	value.

Listing	11.4		Accessing	individual	gold	balances	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				println(uniquePatrons)

				var	orderCount	=	0

				while	(orderCount	<=	9)	{

								placeOrder(uniquePatrons.shuffled().first(),

																menuList.shuffled().first())

								orderCount++

				}

				println(patronGold)

				println(patronGold["Eli"])

				println(patronGold["Mordoc"])

				println(patronGold["Sophie"])

}

Run	Tavern.kt	to	print	the	balances	for	the	three	patrons	you	added	to	the
map:
				...

				10.5

				8.0

				5.5

Note	that	the	output	includes	only	the	values,	not	the	keys.
As	with	other	collections,	Kotlin	provides	functions	for	accessing	the	values
stored	in	a	map.	Table	11.1	shows	some	of	the	common	map	accessor	functions
and	their	behaviors.

Table	11.1		Map	accessor	functions
Function Description Example
[]	(get/index
operator)

Gets	the	value	for	a	key;	returns
null	if	the	key	does	not	exist.

patronGold["Reginald"]

null

getValue Gets	the	value	for	a	key;	throws	an
exception	if	the	key	provided	is
not	in	the	map.

patronGold.getValue("Reggie")

NoSuchElementException

getOrElse Gets	the	value	for	the	key	or
returns	a	default	using	an
anonymous	function.

patronGold.getOrElse("Reggie")	{"No	

such	patron"}

No	such	patron

patronGold.getOrDefault("Reginald",	

getOrDefault Gets	the	value	for	the	key	or
returns	a	default	using	a	value	you
provide.

0.0)

0.0

Adding	Entries	to	a	Map
Your	map	of	patron	gold	values	represents	the	purses	of	Eli,	Mordoc,	and
Sophie,	but	it	does	not	include	the	purse	values	for	the	patrons	you	dynamically
generated.	Time	to	fix	that	by	replacing	patronGold	with	a	MutableMap.
Make	the	patronGold	map	mutable.	Then	iterate	through	the
uniquePatrons	set,	adding	an	entry	to	the	map	for	each	patron	with	a	value
of	6.0	gold.	Also,	remove	the	map	entry	look-ups	that	you	performed,	since	the
keys	are	no	longer	just	first	names.

Listing	11.5		Populating	the	mutable	map	(Tavern.kt)
import	java.io.File

import	kotlin.math.roundToInt

const	val	TAVERN_NAME:	String	=	"Taernyl's	Folly"

var	playerGold	=	10

var	playerSilver	=	10

val	patronList	=	mutableListOf("Eli",	"Mordoc",	"Sophie")

val	lastName	=	listOf("Ironfoot",	"Fernsworth",	"Baggins")

val	uniquePatrons	=	mutableSetOf<String>()

val	menuList	=	File("data/tavern-menu-items.txt")

							.readText()

							.split("\n")

val	patronGold	=	mapOf("Eli"	to	10.5,	"Mordoc"	to	8.0,	"Sophie"	to	5.5)

val	patronGold	=	mutableMapOf<String,	Double>()

fun	main(args:	Array<String>)	{

				...

				println(uniquePatrons)

				uniquePatrons.forEach	{

								patronGold[it]	=	6.0

				}

				var	orderCount	=	0

				while	(orderCount	<=	9)	{

								placeOrder(uniquePatrons.shuffled().first(),

																menuList.shuffled().first())

								orderCount++

				}

				println(patronGold)

				println(patronGold["Eli"])

				println(patronGold["Mordoc"])

				println(patronGold["Sophie"])

}

...

You	have	added	an	entry	for	each	unique	patron	to	the	map,	with	a	value	of	6.0
gold	for	each,	by	iterating	over	uniquePatrons.	(Remember	the	it
keyword?	Here,	it	refers	to	an	element	in	uniquePatrons.)
Table	11.2	shows	some	of	the	commonly	used	functions	for	modifying	the
contents	of	a	mutable	map.

Table	11.2		Mutable	map	mutator	functions
Function Description Example

=

(assignment
operator)

Adds	or	updates	the	value	in	the	map	for
the	key	specified.

val	patronGold	=	

mutableMapOf("Mordoc"	to	6.0)

patronGold["Mordoc"]	=	5.0

{Mordoc=5.0}

+=

(plus	assign
operator)

Adds	or	updates	an	entry	or	entries	in
the	map	based	on	the	entry	or	map
specified.

val	patronGold	=	

mutableMapOf("Mordoc"	to	6.0)

patronGold	+=	"Eli"	to	5.0

{Mordoc=6.0,	Eli=5.0}

val	patronGold	=	

mutableMapOf("Mordoc"	to	6.0)

patronGold	+=	mapOf("Eli"	to	7.0,

																				"Mordoc"	to	

1.0,

																				"Jebediah"	to	

4.5)

{Mordoc=1.0,	Eli=7.0,	Jebediah=4.5}

put Adds	or	updates	the	value	in	the	map	for
the	key	specified.

val	patronGold	=	

mutableMapOf("Mordoc"	to	6.0)

patronGold.put("Mordoc",	5.0)

{Mordoc=5.0}

putAll Adds	all	of	the	key-value	pairs	provided
to	the	map.

val	patronGold	=	

mutableMapOf("Mordoc"	to	6.0)

patronGold.putAll(listOf("Jebediah"	

to	5.0,

																									"Sahara"	

to	6.0))

patronGold["Jebediah"]

5.0

patronGold["Sahara"]

6.0

getOrPut Adds	an	entry	for	the	key	if	it	does	not
exist	already	and	returns	the	result;
otherwise	returns	the	existing	entry.

val	patronGold	=	

mutableMapOf<String,	Double>()

patronGold.getOrPut("Randy"){5.0}

5.0

patronGold.getOrPut("Randy"){10.0}

5.0

remove Removes	an	entry	from	the	map	and
returns	the	value.

val	patronGold	=	

mutableMapOf("Mordoc"	to	5.0)

val	mordocBalance	=	

patronGold.remove("Mordoc")

{}

print(mordocBalance)

5.0

-

(minus
operator)

Returns	a	new	map,	excluding	the
entries	specified.

val	newPatrons	=	

mutableMapOf("Mordoc"	to	6.0,

																"Jebediah"	to	1.0)	

-	"Mordoc"

{Jebediah=1.0}

-=

(minus
assign
operator)

Removes	entry	or	map	of	entries	from
the	map.

mutableMapOf("Mordoc"	to	6.0,

													"Jebediah"	to	1.0)	-=	

"Mordoc"

{Jebediah=1.0}

clear Removes	all	entries	from	the	map. mutableMapOf("Mordoc"	to	6.0,

													"Jebediah"	to	

1.0).clear()

{}

Modifying	Map	Values
To	complete	the	transaction,	the	price	of	the	item	should	be	deducted	from	the
patron’s	purse.	The	patronGold	map	associates	gold	balance	values	with	a
given	patron’s	name	as	a	key.	You	will	modify	the	gold	balance	value	for	a
patron	to	record	the	patron’s	new	balance	once	the	purchase	is	completed.
Your	performPurchase	and	displayBalance	functions	are	tied	to
Madrigal’s	purse	and	get	into	details	of	gold	and	silver	pieces	that	are	not	needed
here.	Delete	them	and	the	playerGold	and	playerSilver	variables,	which
are	only	used	in	those	functions.	Then	define	a	new	performPurchase
function	to	handle	a	patron	purchase.	(You	will	define	a	new	function	to	display
patron	balances	soon.)
To	update	the	value	after	the	purchase	is	made,	the	function	will	get	it	from	the
patronGold	map	using	the	patron’s	name.	Call	the	new
performPurchase	function	after	the	patron	speaks	to	Taernyl,	the	tavern
master,	about	their	order	(do	not	forget	to	uncomment	the	call).

Listing	11.6		Updating	the	values	in	patronGold	(Tavern.kt)
import	java.io.File

import	kotlin.math.roundToInt

const	val	TAVERN_NAME:	String	=	"Taernyl's	Folly"

var	playerGold	=	10

var	playerSilver	=	10

val	patronList	=	mutableListOf("Eli",	"Mordoc",	"Sophie")

...

fun	performPurchase(price:	Double)	{

				displayBalance()

				val	totalPurse	=	playerGold	+	(playerSilver	/	100.0)

				println("Total	purse:	$totalPurse")

				println("Purchasing	item	for	$price")

				val	remainingBalance	=	totalPurse	-	price

				println("Remaining	balance:	${"%.2f".format(remainingBalance)}")

				val	remainingGold	=	remainingBalance.toInt()

				val	remainingSilver	=	(remainingBalance	%	1	*	100).roundToInt()

				playerGold	=	remainingGold

				playerSilver	=	remainingSilver

				displayBalance()

}

private	fun	displayBalance()	{

				println("Player's	purse	balance:	Gold:	$playerGold	,	Silver:	$playerSilver")

}

fun	performPurchase(price:	Double,	patronName:	String)	{

				val	totalPurse	=	patronGold.getValue(patronName)

				patronGold[patronName]	=	totalPurse	-	price

}

private	fun	toDragonSpeak(phrase:	String)	=

								...

								}

private	fun	placeOrder(patronName:	String,	menuData:	String)	{

				...

				println(message)

//		performPurchase(price.toDouble(),	patronName)

				val	phrase	=	if	(name	==	"Dragon's	Breath")	{

				...

}

...

Run	Tavern.kt.	You	will	continue	to	see	ten	random	orders	along	the	lines	of:
				The	tavern	master	says:	Eli's	in	the	back	playing	cards.

				The	tavern	master	says:	Yea,	they're	seated	by	the	stew	kettle.

				Mordoc	Fernsworth	speaks	with	Taernyl	about	their	order.

				Mordoc	Fernsworth	buys	a	goblet	of	LaCroix	(meal)	for	1.22.

				Mordoc	Fernsworth	says:	Thanks	for	the	goblet	of	LaCroix.

				...

You	have	updated	the	patron’s	gold	balance,	and	only	one	task	remains	–
reporting	the	patrons’	gold	balances	after	they	make	their	purchases.	You	will	do
this	by	iterating	through	your	map	using	forEach.
Add	a	new	function	to	Tavern.kt	called	displayPatronBalances	that
iterates	through	the	map,	printing	the	final	gold	balance	(formatted	to	the	second
decimal	place,	as	you	did	in	Chapter	8)	for	each	patron.	Call	it	after	the
simulation	completes	in	the	main	function.

Listing	11.7		Displaying	patron	balances	(Tavern.kt)
...

fun	main(args:	Array<String>)	{

				...

				var	orderCount	=	0

				while	(orderCount	<=	9)	{

								placeOrder(uniquePatrons.shuffled().first(),

																menuList.shuffled().first())

								orderCount++

				}

				displayPatronBalances()

}

private	fun	displayPatronBalances()	{

				patronGold.forEach	{	patron,	balance	->

								println("$patron,	balance:	${"%.2f".format(balance)}")

				}

}

...

Run	Tavern.kt,	sit	back,	and	watch	as	the	patrons	of	Taernyl’s	Folly	chat
with	the	tavern	master,	order	off	the	menu,	and	pay	for	their	items:
				The	tavern	master	says:	Eli's	in	the	back	playing	cards.

				The	tavern	master	says:	Yea,	they're	seated	by	the	stew	kettle.

				Mordoc	Ironfoot	speaks	with	Taernyl	about	their	order.

				Mordoc	Ironfoot	buys	a	iced	boilermaker	(elixir)	for	11.22.

				Mordoc	Ironfoot	says:	Thanks	for	the	iced	boilermaker.

				Sophie	Baggins	speaks	with	Taernyl	about	their	order.

				Sophie	Baggins	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Sophie	Baggins	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

				Sophie	Ironfoot	speaks	with	Taernyl	about	their	order.

				Sophie	Ironfoot	buys	a	pickled	camel	hump	(desert	dessert)	for	7.33.

				Sophie	Ironfoot	says:	Thanks	for	the	pickled	camel	hump.

				Eli	Fernsworth	speaks	with	Taernyl	about	their	order.

				Eli	Fernsworth	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Eli	Fernsworth	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

				Sophie	Fernsworth	speaks	with	Taernyl	about	their	order.

				Sophie	Fernsworth	buys	a	iced	boilermaker	(elixir)	for	11.22.

				Sophie	Fernsworth	says:	Thanks	for	the	iced	boilermaker.

				Sophie	Fernsworth	speaks	with	Taernyl	about	their	order.

				Sophie	Fernsworth	buys	a	Dragon's	Breath	(shandy)	for	5.91.

				Sophie	Fernsworth	exclaims:	Ah,	d3l1c10|_|s	Dr4g0n's	Br34th!

				Sophie	Fernsworth	speaks	with	Taernyl	about	their	order.

				Sophie	Fernsworth	buys	a	pickled	camel	hump	(desert	dessert)	for	7.33.

				Sophie	Fernsworth	says:	Thanks	for	the	pickled	camel	hump.

				Mordoc	Fernsworth	speaks	with	Taernyl	about	their	order.

				Mordoc	Fernsworth	buys	a	Shirley's	Temple	(elixir)	for	4.12.

				Mordoc	Fernsworth	says:	Thanks	for	the	Shirley's	Temple.

				Sophie	Baggins	speaks	with	Taernyl	about	their	order.

				Sophie	Baggins	buys	a	goblet	of	LaCroix	(meal)	for	1.22.

				Sophie	Baggins	says:	Thanks	for	the	goblet	of	LaCroix.

				Mordoc	Fernsworth	speaks	with	Taernyl	about	their	order.

				Mordoc	Fernsworth	buys	a	iced	boilermaker	(elixir)	for	11.22.

				Mordoc	Fernsworth	says:	Thanks	for	the	iced	boilermaker.

				Mordoc	Ironfoot,	balance:	-5.22

				Sophie	Baggins,	balance:	-1.13

				Eli	Fernsworth,	balance:	0.09

				Sophie	Fernsworth,	balance:	-18.46

				Sophie	Ironfoot,	balance:	-1.33

				Mordoc	Fernsworth,	balance:	-9.34

In	the	last	two	chapters,	you	learned	how	to	work	with	Kotlin’s	List,	Set,	and
Map	collection	types.	Table	11.3	compares	their	features.

Table	11.3		Kotlin	collections	summary
Collection
type Ordered? Unique? Stores Supports

destructuring?
List Yes No Elements Yes
Set No Yes Elements No
Map No Keys Key-value

pairs
No

Since	collections	are	read-only	by	default,	you	must	explicitly	create	a	mutable
collection	(or	convert	a	read-only	collection	to	be	mutable)	to	modify	its
contents	–	preventing	you	from	accidentally	adding	or	removing	elements.
In	the	next	chapter,	you	will	learn	how	to	apply	object-oriented	programming
principles	as	you	define	your	own	classes	within	NyetHack.

Challenge:	Tavern	Bouncer
A	patron	without	any	gold	should	not	be	allowed	to	place	an	order.	In	fact,	they
should	not	be	allowed	to	loiter	in	the	tavern	–	the	tavern	bouncer	should	see	to
that.	If	a	patron	lacks	sufficient	funds,	boot	them	out	onto	the	mean	streets	of
NyetHack	by	removing	them	from	uniquePatrons	and	the	patronGold
map.

12	
Defining	Classes

The	object-oriented	programming	paradigm	has	been	around	since	the	1960s	and
continues	to	be	popular	because	it	provides	a	set	of	useful	tools	for	simplifying
the	structure	of	a	program.	Central	to	the	object-oriented	style	are	classes,
definitions	of	the	unique	categories	of	“things”	your	code	represents.	Classes
define	what	sort	of	data	those	things	will	consist	of	and	what	kind	of	work	they
can	do.
To	make	NyetHack	object-oriented,	you	will	start	by	identifying	the	unique
types	of	things	that	will	exist	in	the	world	and	defining	classes	for	them.	In	this
chapter,	you	will	add	a	custom	Player	class	to	NyetHack,	which	you	will	use
to	represent	a	NyetHack	player’s	particular	characteristics.

Defining	a	Class
A	class	can	be	defined	in	its	own	file	or	alongside	other	elements,	like	functions
or	variables.	Defining	a	class	in	its	own	file	gives	it	room	to	grow	as	the	program
scales	up	over	time,	and	that	is	what	you	will	do	in	NyetHack.	Create	a	new
Player.kt	file	and	declare	your	first	class	with	the	class	keyword:

Listing	12.1		Defining	the	Player	class	(Player.kt)
class	Player

A	class	is	often	declared	in	a	file	matching	its	name,	but	it	does	not	have	to	be.
You	can	define	multiple	classes	in	the	same	file	–	and	you	may	want	to	if	you
have	multiple	classes	used	for	a	similar	purpose.
With	that,	your	class	is	defined.	Now	all	you	have	to	do	is	give	it	some	work	to
do.

Constructing	Instances
A	class	declaration	is	like	a	blueprint.	Blueprints	contain	the	details	for	how	to
construct	a	building,	but	they	are	not	a	building.	Your	Player	class	declaration
works	similarly:	So	far,	a	player	has	not	been	constructed	–	you	have	only
created	the	(so	far,	quite	sparse)	blueprint.
When	you	start	a	new	game	of	NyetHack,	the	main	function	is	called,	and	one
of	the	first	things	that	you	will	want	to	do	is	create	a	player	character	to	play	the
game.	To	construct	a	player	so	that	it	can	be	used	in	NyetHack,	you	must
instantiate	it	–	create	an	instance	of	it	–	by	calling	its	constructor.	In	Game.kt,
where	variables	are	declared	in	the	main	function,	instantiate	a	Player,	as
shown:

Listing	12.2		Instantiating	a	Player	(Game.kt)
fun	main(args:	Array<String>)	{

				val	name	=	"Madrigal"

				var	healthPoints	=	89

				val	isBlessed	=	true

				val	isImmortal	=	false

				val	player	=	Player()

				//	Aura

				val	auraColor	=	auraColor(isBlessed,	healthPoints,	isImmortal)

				//	Player	status

				val	healthStatus	=	formatHealthStatus(healthPoints,	isBlessed)

				printPlayerStatus(auraColor,	isBlessed,	name,	healthStatus)

				castFireball()

}

...

You	called	Player’s	primary	constructor	by	suffixing	the	Player	class	name
with	parentheses.	This	constructs	an	instance	of	the	Player	class.	The	player
variable	is	now	said	to	“contain	an	instance	of	the	Player	class.”
A	constructor	does	what	its	name	says:	It	constructs.	Specifically,	it	constructs	an
instance	and	prepares	it	for	use.	The	syntax	for	calling	a	constructor	is	a	lot	like
calling	a	function:	It	uses	parentheses	to	capture	arguments	for	its	parameters.
You	will	see	other	ways	instances	can	be	constructed	in	Chapter	13.
Now	that	you	have	an	instance	of	Player,	what	can	you	do	with	it?

Class	Functions
Class	definitions	can	specify	two	types	of	content:	behavior	and	data.	In
NyetHack,	a	player	can	take	various	actions:	perform	combat,	move,	cast	the
fireball	spell,	or	check	their	inventory,	for	example.	You	define	behavior	for	a
class	by	adding	function	definitions	to	its	class	body.	Functions	defined	within	a
class	are	called	class	functions.
You	already	have	some	player	behaviors	that	are	defined	in	Game.kt.	Now,
you	are	going	to	reorganize	your	code	to	bring	class-specific	elements	into	the
class	definition.
Begin	by	adding	the	castFireball	function	to	Player:

Listing	12.3		Defining	a	class	function	(Player.kt)
class	Player	{

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

(You	might	notice	that	this	implementation	of	castFireball	does	not	have	a
private	keyword.	We	will	explain	that	in	a	moment.)
Here,	you	define	a	class	body	for	Player	with	curly	braces.	The	class	body
holds	definitions	for	the	class’s	behavior	and	data,	much	like	the	actions	of	a
function	are	defined	within	the	function	body.
In	Game.kt,	remove	the	definition	of	castFireball	and	add	a	call	to	it	as	a
class	function	in	main:

Listing	12.4		Calling	a	class	function	(Game.kt)
fun	main(args:	Array<String>)	{

				var	healthPoints	=	89

				val	isBlessed	=	true

				val	isImmortal	=	false

				val	player	=	Player()

				player.castFireball()

				//	Aura

				val	auraColor	=	auraColor(isBlessed,	healthPoints,	isImmortal)

				//	Player	status

				val	healthStatus	=	formatHealthStatus(healthPoints,	isBlessed)

				printPlayerStatus(auraColor,	isBlessed,	player.name,	healthStatus)

				castFireball()

}

...

private	fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

Grouping	the	logic	about	the	“things”	in	your	code	using	classes	keeps	your

code	organized	at	scale.	As	NyetHack	grows,	you	will	add	more	classes,	each
with	its	own	responsibilities.
Run	Game.kt	and	confirm	that	the	player	summons	a	glass	of	Fireball.
Why	move	castFireball	to	Player?	In	NyetHack,	summoning	a	glass	of
Fireball	is	something	that	a	player	does:	It	cannot	happen	without	an	instance	of
Player,	and	it	is	performed	by	the	particular	player	on	which
castFireball	is	called.	Defining	castFireball	as	a	class	function,	so
that	it	is	called	on	an	instance	of	the	class,	reflects	this	logic.	Later	in	this
chapter,	you	will	move	other	functions	associated	with	NyetHack’s	player	into
the	Player	class	as	well.

Visibility	and	Encapsulation
Adding	behavior	to	a	class	with	class	functions	(and	data	with	class	properties,
as	you	will	see	in	a	moment)	builds	a	description	of	what	that	class	can	do	and
be,	and	that	description	is	visible	to	anyone	with	an	instance	of	that	class.
By	default,	any	function	or	property	without	a	visibility	modifier	is	public	–
meaning	it	is	accessible	from	any	file	or	function	in	your	program.	Since	you
now	include	no	visibility	modifier	on	castFireball,	it	can	be	called	from
everywhere.
In	some	cases,	like	with	castFireball,	you	want	other	parts	of	your	code	to
be	able	to	access	your	class	properties	or	call	your	class	functions.	But	you
might	have	other	class	functions	or	properties	you	do	not	want	to	be	called	from
elsewhere	in	your	codebase.
As	the	number	of	classes	in	your	program	grows,	so	does	your	codebase’s
complexity.	Hiding	the	implementation	details	that	do	not	need	to	be	visible
from	other	parts	of	your	codebase	helps	to	ensure	that	the	logic	of	your	code	is
clear	and	concise.	That	is	where	visibility	comes	into	play.
While	a	public	class	function	can	be	invoked	anywhere	in	the	program,	a	private
class	function	cannot	be	invoked	outside	of	the	class	on	which	it	is	defined.	This
idea	of	restricting	visibility	to	certain	class	functions	or	properties	drives	a
concept	in	object-oriented	programming	known	as	encapsulation.	Encapsulation
says	that	a	class	should	selectively	expose	functions	and	properties	to	define	how
other	objects	interact	with	it.	Anything	that	is	not	essential	to	expose,	including
implementation	details	of	exposed	functions	and	properties,	should	be	kept
private.
For	example,	if	castFireball	is	called	from	Game.kt,	Game.kt	does	not
care	about	how	castFireball	is	implemented.	It	only	cares	that	a	glass	of
Fireball	is	summoned.	So	while	the	function	itself	may	be	exposed,	the	details	of
its	implementation	should	not	matter	to	the	caller.
In	fact,	it	could	be	dangerous	if	code	in	Game.kt	could	alter	values	that
castFireball	depends	on	to	do	its	work	–	like	the	number	of	glasses	of
Fireball	to	create,	or	the	Fireball	intensity	level.
In	short:	When	building	classes,	expose	only	what	you	need	to.
Table	12.1	lists	the	available	visibility	modifiers:

Table	12.1		Visibility	modifiers
Modifier Description
public

(default)
The	function	or	property	will	be	accessible	by	code	outside	of	the
class.	By	default,	functions	and	properties	without	a	visibility
modifier	are	public.

private The	function	or	property	will	be	accessible	only	within	the	same
class.

protected The	function	or	property	will	be	accessible	only	within	the	same
class	or	its	subclass.

internal The	function	or	property	will	be	accessible	within	the	same
module.

We	will	discuss	the	protected	keyword	in	Chapter	14.
If	you	are	familiar	with	Java,	notice	that	the	package	private	visibility	level	is
not	included	in	Kotlin.	We	will	explain	why	in	the	section	called	For	the	More
Curious:	Package	Private	at	the	end	of	this	chapter.

Class	Properties
Class	function	definitions	describe	the	behavior	associated	with	a	class.	Data
definitions,	better	known	as	class	properties,	are	the	attributes	required	to
represent	the	specific	state	or	characteristics	of	a	class.	For	example,	Player’s
class	properties	could	represent	a	player’s	name,	current	health	points,	race,
alignment,	gender,	and	other	attributes.
Currently,	you	define	a	name	for	a	player	in	the	main	function,	but	your	new
class	definition	is	a	better	place	for	it.	Update	Player.kt	with	a	name
property.	(The	value	for	name	may	look	sloppy,	but	there	is	a	method	to	our
madness	–	enter	it	as	shown.)

Listing	12.5		Defining	the	name	property	(Player.kt)
class	Player	{

				val	name	=	"madrigal"

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

You	add	the	name	property	to	the	Player	class	body,	including	it	as	relevant
data	a	Player	instance	contains.	Notice	that	name	is	defined	as	a	val.	Like
variables,	properties	can	represent	either	read-only	or	mutable	data	using	the	val
and	var	keywords,	respectively.	We	will	talk	more	about	property	mutability
later	in	this	chapter.
Now,	remove	the	name	declaration	from	Game.kt:

Listing	12.6		Removing	name	from	main	(Game.kt)
fun	main(args:	Array<String>)	{

				val	name	=	"Madrigal"

				var	healthPoints	=	89

				...

}

...

You	might	notice	that	IntelliJ	is	now	warning	you	about	a	problem	in	Game.kt
(Figure	12.1).

Figure	12.1		Unresolved	reference	error

Now	that	name	is	a	property	of	Player,	you	will	need	to	update
printPlayerStatus	to	access	it	from	the	instance	of	the	Player	class.
Use	dot	syntax	to	pass	the	player	variable’s	name	property	to
printPlayerStatus:

Listing	12.7		Resolving	the	reference	to	Player’s	name	property
(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Player	status

				printPlayerStatus(auraColor,	isBlessed,	player.name,	healthStatus)

}

...

Run	Game.kt.	The	player	status,	including	the	name,	prints	as	before,	but	now
you	access	the	name	property	from	the	instance	of	the	Player	class	rather	than
from	a	local	variable	in	main.
When	an	instance	of	a	class	is	constructed,	all	of	its	properties	must	have	values.
This	means	that,	unlike	other	variables,	class	properties	must	be	assigned	an
initial	value.	For	example,	the	following	code	is	invalid,	because	name	is	not
assigned	at	declaration:
				class	Player	{

								var	name:	String

				}

We	will	explore	the	nuances	of	class	and	property	initialization	in	Chapter	13.
Later	in	this	chapter,	you	will	refactor	NyetHack	to	move	the	other	data

belonging	to	the	Player	class	into	the	class	definition.

Property	getters	and	setters

Properties	model	the	characteristics	of	each	instance	of	a	class.	They	also
provide	a	way	for	other	entities	to	interface	with	the	data	that	the	class	keeps
track	of,	represented	in	a	compact	and	concise	syntax.	This	interaction	happens
through	getters	and	setters.
For	each	property	you	define,	Kotlin	will	generate	a	field,	a	getter,	and,	if
needed,	a	setter.	A	field	is	where	the	data	for	a	property	is	stored.	You	cannot
directly	define	a	field	on	a	class.	Kotlin	encapsulates	the	fields	for	you,
protecting	the	data	in	the	field	and	exposing	it	via	getters	and	setters.	A
property’s	getter	specifies	how	the	property	is	read.	Getters	are	generated	for
every	property.	A	setter	defines	how	a	property’s	value	is	assigned,	so	it	is
generated	only	when	a	property	is	writable	–	in	other	words,	when	the	property
is	a	var.
Imagine	that	you	are	in	a	restaurant	where	the	menu	advertises	spaghetti,	among
other	foods.	You	order	spaghetti,	and	the	waiter	serves	you	spaghetti	dressed	up
with	spaghetti	sauce	and	cheese.	You	do	not	have	access	to	the	kitchen,	and	the
waiter	handles	everything	behind	the	scenes	for	you,	even	adding	spaghetti	sauce
and	cheese	to	your	order	of	spaghetti.	You	are	like	the	caller,	and	the	waiter	is
the	getter.
As	a	patron	of	this	restaurant,	you	do	not	want	the	responsibility	of	boiling	water
when	you	order	spaghetti.	Rather,	you	simply	want	to	order	spaghetti	and	have	it
brought	to	you.	And	the	restaurant	does	not	want	you	in	the	kitchen,	nosing
around	in	the	ingredients	and	putting	together	dishes	in	your	own	way.	This	is
encapsulation	at	work.
Although	default	getters	and	setters	are	provided	automatically	by	Kotlin,	you
can	define	your	own	custom	getters	and	setters	when	you	want	to	specify	how
the	data	will	be	read	or	written.	This	is	called	overriding	the	getter	or	setter.
To	see	how	getter	overriding	works,	add	a	getter	to	name	that	ensures	that	its
value	is	capitalized	when	it	is	accessed.

Listing	12.8		Defining	a	custom	getter	(Player.kt)
class	Player	{

				val	name	=	"madrigal"

								get()	=	field.capitalize()

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

When	you	define	a	custom	getter	for	a	property,	you	change	how	the	property
works	when	it	is	accessed.	Because	name	contains	a	proper	noun,	you	always
want	it	to	be	capitalized	when	you	reference	it.	This	custom	getter	makes	sure	of
that.
Run	Game.kt	and	confirm	that	Madrigal	now	prints	with	capital	“M.”
The	field	keyword	here	points	to	the	backing	field	that	Kotlin	manages	for	your
property	automatically.	The	backing	field	is	the	data	that	the	getters	and	setters
use	to	read	and	write	the	data	that	represents	the	property.	It	is	like	the
ingredients	in	the	restaurant	kitchen	–	the	caller	never	sees	the	backing	field
directly,	only	the	data	as	presented	by	the	getter.	In	fact,	a	field	is	only	accessible
within	a	getter	or	a	setter.
When	the	capitalized	version	of	name	is	returned,	the	backing	field	is	not
modified.	If	the	value	assigned	to	name	is	not	capitalized,	as	in	your	code,	it
remains	lowercase	after	the	getter	does	its	work.
A	setter,	on	the	other	hand,	does	modify	the	backing	field	of	the	property	on
which	it	is	declared.	Add	a	setter	to	name	that	uses	the	trim	function	to
remove	any	leading	and	trailing	spaces	from	the	value	it	is	passed.

Listing	12.9		Defining	a	custom	setter	(Player.kt)
class	Player	{

				val	name	=	"madrigal"

								get()	=	field.capitalize()

								set(value)	{

												field	=	value.trim()

								}

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

There	is	a	problem	with	adding	a	setter	to	this	property,	which	IntelliJ	is	warning
you	about	(Figure	12.2):

Figure	12.2		val	properties	are	read-only

Because	you	defined	the	name	property	as	a	val,	it	is	read-only	and	cannot	be
modified,	even	with	a	setter.	This	protects	your	vals	from	being	modified
without	your	consent.
IntelliJ’s	complaint	underscores	an	important	point	about	setters:	They	are
triggered	when	the	value	of	a	property	is	set.	It	is	not	logical	(and,	in	fact,	it	is	an
error)	to	define	a	setter	for	a	val	property,	because	if	the	value	is	read-only,	the
setter	can	never	do	its	job.
You	want	to	be	able	to	change	the	player’s	name,	so	change	the	name	property
from	a	val	to	a	var.	(Note	that	from	this	point	forward,	we	will	show	all	changes
to	the	code	inline	when	possible.)

Listing	12.10		Making	name	mutable	(Player.kt)
class	Player	{

				valvar	name	=	"madrigal"

								get()	=	field.capitalize()

								set(value)	{

												field	=	value.trim()

								}

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

Now,	name	can	be	modified	according	to	the	rules	outlined	in	its	custom	setter,
and	IntelliJ’s	warnings	disappear	accordingly.
Property	getters	are	called	using	the	same	access	syntax	as	the	other	variables
that	you	have	seen.	Property	setters	are	called	using	the	assignment	operator	that
you	have	used	to	assign	values	to	variables.	In	the	Kotlin	REPL,	try	changing	a
player’s	name	from	outside	of	the	Player	class.

Listing	12.11		Changing	a	player’s	name	(REPL)
val	player	=	Player()

player.name	=	"estragon	"

print(player.name	+	"TheBrave")

EstragonTheBrave

Here	you	can	see	the	effect	of	both	the	getter	and	the	setter	on	the	new	value	for
name.
Assigning	new	values	to	class	properties	changes	the	state	of	the	class	on	which
they	are	assigned.	If	name	were	still	a	val,	then	the	example	that	you	just	tried
in	the	REPL	would	result	in	the	following	error	message:
				error:	val	cannot	be	reassigned

(If	you	try	this,	you	will	need	to	reload	the	REPL	with	the	Build	and	restart	button
to	the	left	so	that	the	change	to	Player	is	recognized.)

Property	visibility

Properties	are	different	from	variables	defined	locally	within	a	function.	When	a
property	is	defined,	it	is	defined	at	the	class	level.	As	such,	it	may	be	accessible
to	other	classes,	if	its	visibility	allows.	Over-permissive	visibility	can	cause
problems:	If	other	classes	have	access	to	a	Player’s	data,	then	any	class	in
your	application	could	make	changes	to	that	instance	of	Player	at	will.
Properties	provide	fine-grained	control	around	reading	and	modifying	data
through	their	getters	and	setters.	All	properties	have	getters	–	and	all	var
properties	have	setters	–	whether	you	define	custom	behavior	for	them	or	not.	By
default,	the	visibility	of	a	property’s	getter	and	setter	match	the	visibility	of	the
property	itself.	So	if	you	have	a	public	property,	both	its	getter	and	setter	are
public.
What	if	you	want	to	expose	access	to	a	property	but	do	not	want	to	expose	its
setter?	You	can	define	the	visibility	of	the	setter	separately.	Make	the	name
property’s	setter	private:

Listing	12.12		Hiding	name’s	setter	(Player.kt)
class	Player	{

				var	name	=	"madrigal"

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

Now,	name	can	be	accessed	from	anywhere	in	NyetHack,	but	it	can	only	be
modified	from	within	Player.	This	technique	is	quite	useful	if	you	want	to
control	whether	certain	properties	can	be	modified	by	other	parts	of	your
application.

A	getter	or	a	setter’s	visibility	cannot	be	more	permissive	than	the	property	on
which	it	is	defined.	You	can	restrict	access	to	a	property	via	a	getter	or	a	setter,
but	they	are	not	intended	for	making	properties	more	visible.
Remember	that	properties	must	be	assigned	when	declared.	This	rule	is
especially	important	when	your	class	has	a	public	property.	If	an	instance	of	the
Player	class	is	referenced	elsewhere	in	your	codebase,	then	whoever	makes
that	reference	must	be	assured	that	when	they	reference	Player.name,	a	value
for	name	exists.

Computed	properties

Earlier,	we	said	that	when	you	define	a	property,	a	field	is	always	generated	to
store	the	value	the	property	encapsulates.	That	is	true	…	except	in	a	particular
case:	computed	properties.	A	computed	property	is	a	property	that	is	specified
with	an	overridden	get	and/or	set	operator	in	a	way	that	makes	a	field
unnecessary.	In	such	cases,	Kotlin	will	not	generate	a	field.
In	the	REPL,	create	a	Dice	class	with	a	computed	rolledValue	property:

Listing	12.13		Defining	a	computed	property	(REPL)
class	Dice()	{

				val	rolledValue

								get()	=	(1..6).shuffled().first()

}

Now,	take	it	for	a	roll:

Listing	12.14		Accessing	the	computed	property	(REPL)
val	myD6	=	Dice()

myD6.rolledValue

6

myD6.rolledValue

1

myD6.rolledValue

4

The	value	is	different	each	time	the	rolledValue	property	is	accessed.	This	is
because	the	value	is	computed	each	time	the	variable	is	accessed.	It	has	no	initial
or	default	value	–	and	no	backing	field	to	hold	a	value.
You	will	look	more	carefully	at	how	val	and	var	properties	are	implemented	and
what	bytecode	is	emitted	by	the	compiler	when	you	specify	them	in	the	section
called	For	the	More	Curious:	A	Closer	Look	at	var	and	val	Properties	near	the
end	of	this	chapter.

Refactoring	NyetHack
You	have	learned	about	class	functions,	properties,	and	encapsulation,	and	you
have	done	some	of	the	work	to	apply	these	concepts	to	NyetHack.	It	is	time	to
finish	the	job	and	thoroughly	clean	up	NyetHack’s	code.
You	will	be	moving	chunks	of	code	from	one	file	to	another.	It	helps	to	see	the
two	files	side	by	side.	Fortunately,	IntelliJ	provides	this	feature.
With	Game.kt	open,	right-click	on	the	Player.kt	tab	at	the	top	of	the	editor	and
select	Split	Vertically	(Figure	12.3).

Figure	12.3		Splitting	the	editor	vertically

You	now	have	another	editor	pane	to	work	in	(Figure	12.4).	(You	can	drag	tabs
between	editor	panes	to	configure	your	editor	experience	to	your	liking.)

Figure	12.4		Two	panes

This	is	a	complex	refactor,	but	by	the	end	of	this	section	Player	will	expose	a
selective	API	and	encapsulate	the	implementation	details	that	other	components
do	not	need	to	know	about.	In	short:	It	is	for	a	good	cause.
First,	locate	the	variables	declared	in	Game.kt’s	main	function	that	make
sense	as	properties	of	Player.	These	include	healthPoints,	isBlessed,
and	isImmortal.	Refactor	them	to	become	properties	of	Player.

Listing	12.15		Removing	variables	from	main	(Game.kt)
fun	main(args:	Array<String>)	{

				var	healthPoints	=	89

				val	isBlessed	=	true

				val	isImmortal	=	false

				val	player	=	Player()

				player.castFireball()

				...

}

...

As	you	add	them	to	Player.kt,	be	sure	that	the	variables	are	all	defined
inside	the	Player	class’s	body.

Listing	12.16		Adding	properties	to	Player	(Player.kt)
class	Player	{

				var	name	=	"madrigal"

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				var	healthPoints	=	89

				val	isBlessed	=	true

				val	isImmortal	=	false

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

These	changes	will	result	in	a	number	of	errors	in	Game.kt.	Hang	tight;	by	the
time	you	are	finished,	all	the	errors	will	be	taken	care	of.
healthPoints	and	isBlessed	will	be	accessed	from	Game.kt.	But
isImmortal	is	never	accessed	from	outside	of	Player,	so	it	behooves	you	to
make	isImmortal	private.	Encapsulate	the	property	by	making	it	private	to
ensure	that	other	classes	will	not	have	access	to	it.

Listing	12.17		Encapsulating	isImmortal	within	Player
(Player.kt)
class	Player	{

				var	name	=	"madrigal"

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				var	healthPoints	=	89

				val	isBlessed	=	true

				private	val	isImmortal	=	false

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

Next,	review	the	functions	declared	in	Game.kt.	printPlayerStatus
prints	out	the	textual	interface	for	the	game,	so	it	is	appropriate	for	it	to	be
declared	in	Game.kt.	But	auraColor	and	formatHealthStatus	both
relate	directly	to	the	player,	rather	than	the	gameplay.	Therefore,	those	two
functions	belong	in	the	class	definition	rather	than	in	main.
Move	auraColor	and	formatHealthStatus	into	Player.

Listing	12.18		Removing	functions	from	main	(Game.kt)
fun	main(args:	Array<String>)	{

				...

}

private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean)	=

								when	(healthPoints)	{

												100	->	"is	in	excellent	condition!"

												in	90..99	->	"has	a	few	scratches."

												in	75..89	->	if	(isBlessed)	{

																"has	some	minor	wounds,	but	is	healing	quite	quickly!"

												}	else	{

																"has	some	minor	wounds."

												}

												in	15..74	->	"looks	pretty	hurt."

												else	->	"is	in	awful	condition!"

								}

private	fun	printPlayerStatus(auraColor:	String,

																														isBlessed:	Boolean,

																														name:	String,

																														healthStatus:	String)	{

				println("(Aura:	$auraColor)	"	+

												"(Blessed:	${if	(isBlessed)	"YES"	else	"NO"})")

				println("$name	$healthStatus")

}

private	fun	auraColor(isBlessed:	Boolean,

																						healthPoints:	Int,

																						isImmortal:	Boolean):	String	{

				val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

				val	auraColor	=	if	(auraVisible)	"GREEN"	else	"NONE"

				return	auraColor

}

Again,	make	sure	the	refactored	functions	are	inside	the	class’s	body.

Listing	12.19		Adding	class	functions	to	Player	(Player.kt)
class	Player	{

				var	name	=	"madrigal"

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				var	healthPoints	=	89

				val	isBlessed	=	true

				private	val	isImmortal	=	false

				private	fun	auraColor(isBlessed:	Boolean,

																										healthPoints:	Int,

																										isImmortal:	Boolean):	String	{

								val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

								val	auraColor	=	if	(auraVisible)	"GREEN"	else	"NONE"

								return	auraColor

				}

				private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean)	=

												when	(healthPoints)	{

																100	->	"is	in	excellent	condition!"

																in	90..99	->	"has	a	few	scratches."

																in	75..89	->	if	(isBlessed)	{

																				"has	some	minor	wounds,	but	is	healing	quite	quickly!"

																}	else	{

																				"has	some	minor	wounds."

																}

																in	15..74	->	"looks	pretty	hurt."

																else	->	"is	in	awful	condition!"

												}

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

That	takes	care	of	the	cutting	and	pasting,	but	there	is	work	left	to	do	in	both
Game.kt	and	Player.kt.	For	now,	turn	your	attention	to	Player.
(If	you	split	your	editor	earlier,	you	can	un-split	it	now	by	closing	all	the	files
open	in	a	pane.	Close	files	by	clicking	the	X	in	their	tab	[Figure	12.5]	or	by
pressing	Command-W	[Ctrl-W].)

Figure	12.5		Closing	a	tab	in	IntelliJ

In	Player.kt,	notice	that	the	functions	previously	declared	in	Game.kt	that
were	moved	to	Player	–	auraColor	and	formatHealthStatus	–	take
in	values	that	are	now	properties	of	Player	–	isBlessed,	healthPoints,
and	isImmortal.	When	the	functions	were	defined	in	Game.kt,	they	were
outside	of	Player’s	class	scope.	But	because	they	are	now	class	functions	on
Player,	they	have	access	to	all	of	the	properties	declared	in	Player.
This	means	that	the	class	functions	in	Player	no	longer	need	any	of	their
parameters,	as	they	can	all	be	accessed	from	within	the	Player	class.
Modify	the	function	headers	to	remove	their	parameters.

Listing	12.20		Removing	unnecessary	parameters	from	class
functions	(Player.kt)
class	Player	{

				var	name	=	"madrigal"

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				var	healthPoints	=	89

				val	isBlessed	=	true

				private	val	isImmortal	=	false

				private	fun	auraColor(isBlessed:	Boolean,

																										healthPoints:	Int,

																										isImmortal:	Boolean):	String	{

								val	auraVisible	=	isBlessed	&&	healthPoints	>	50	||	isImmortal

								val	auraColor	=	if	(auraVisible)	"GREEN"	else	"NONE"

								return	auraColor

				}

				private	fun	formatHealthStatus(healthPoints:	Int,	isBlessed:	Boolean)	=

												when	(healthPoints)	{

																100	->	"is	in	excellent	condition!"

																in	90..99	->	"has	a	few	scratches."

																in	75..89	->	if	(isBlessed)	{

																				"has	some	minor	wounds,	but	is	healing	quite	quickly!"

																}	else	{

																				"has	some	minor	wounds."

																}

																in	15..74	->	"looks	pretty	hurt."

																else	->	"is	in	awful	condition!"

												}

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

Before	this	change,	a	reference	to	healthPoints	within	the

formatHealthStatus	function	would	be	a	reference	to
formatHealthStatus’s	parameter,	because	that	reference	was	scoped	to	the
function.	Without	a	variable	named	healthPoints	within	the	function	scope,
the	next	most	local	scope	is	at	the	class	level,	where	the	healthPoints
property	is	defined.
Next,	notice	that	the	two	class	functions	are	defined	as	private.	This	was	not	a
problem	when	they	were	defined	in	the	same	file	from	which	they	were
accessed.	But	now	that	they	are	private	to	the	Player	class,	they	are	not	visible
to	other	classes.	These	functions	should	not	be	encapsulated,	so	make	them
visible	by	removing	the	private	keyword	from	auraColor	and
formatHealthStatus.

Listing	12.21		Making	class	functions	public	(Player.kt)
class	Player	{

				var	name	=	"madrigal"

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				var	healthPoints	=	89

				val	isBlessed	=	true

				private	val	isImmortal	=	false

				private	fun	auraColor():	String	{

								...

				}

				private	fun	formatHealthStatus()	=	when	(healthPoints)	{

								...

				}

				fun	castFireball(numFireballs:	Int	=	2)	=

												println("A	glass	of	Fireball	springs	into	existence.	(x$numFireballs)")

}

At	this	point,	your	properties	and	functions	are	declared	in	the	correct	places,	but
their	invocation	syntax	in	Game.kt	is	no	longer	correct,	for	three	reasons:

1.	 printPlayerStatus	no	longer	has	access	to	the	variables	that	it
needs	to	do	its	job,	because	those	variables	are	now	properties	of
Player.

2.	 Now	that	functions	like	auraColor	are	class	functions	declared	in
Player,	they	need	to	be	called	on	an	instance	of	Player.

3.	 Player’s	class	functions	need	to	be	called	with	their	new,
parameterless	signatures.

Refactor	printPlayerStatus	to	take	a	Player	as	an	argument	that	can	be
used	to	access	any	properties	necessary	and	to	call	the	new,	parameterless

versions	of	auraColor	and	formatHealthStatus.

Listing	12.22		Calling	class	functions	(Game.kt)
fun	main(args:	Array<String>)	{

				val	player	=	Player()

				player.castFireball()

				//	Aura

				val	auraColor	=	player.auraColor(isBlessed,	healthPoints,	isImmortal)

				//	Player	status

				val	healthStatus	=	formatHealthStatus(healthPoints,	isBlessed)

				printPlayerStatus(playerauraColor,	isBlessed,	player.name,	healthStatus)

				//	Aura

				player.auraColor(isBlessed,	healthPoints,	isImmortal)

}

private	fun	printPlayerStatus(player:	PlayerauraColor:	String,

																														isBlessed:	Boolean,

																														name:	String,

																														healthStatus:	String)	{

				println("(Aura:	${player.auraColor()})	"	+

												"(Blessed:	${if	(player.isBlessed)	"YES"	else	"NO"})")

				println("${player.name}	${player.formatHealthStatus()}")

}

This	change	to	printPlayerStatus’s	header	keeps	it	clean	from	the
implementation	details	of	Player.	Compare	these	two	signatures:
				printPlayerStatus(player:	Player)

				printPlayerStatus(auraColor:	String,

																						isBlessed:	Boolean,

																						name:	String,

																						healthStatus:	String)

Which	is	cleaner	to	call?	The	latter	requires	the	caller	to	know	quite	a	lot	about
the	implementation	details	of	Player.	The	former	simply	requires	an	instance
of	Player.	Here	you	see	one	of	the	benefits	of	object-oriented	programming:
Since	the	data	is	now	a	part	of	the	Player	class,	it	can	be	referenced	without
having	to	explicitly	pass	it	to	and	from	each	function.
Take	a	step	back	and	assess	what	you	have	accomplished	in	this	refactor.	The
Player	class	now	owns	all	the	data	and	behaviors	specific	to	a	player	entity	in
the	game.	It	deliberately	exposes	three	properties	and	three	functions	and
encapsulates	all	other	implementation	details	as	private	concerns	that	only	the
Player	class	should	have	access	to.	These	functions	advertise	capabilities	of
the	player:	The	player	can	provide	a	health	status,	the	player	can	tell	you	their
aura	color,	etc.
As	your	applications	grow	in	scale,	keeping	scope	manageable	is	imperative.	By
embracing	object-oriented	programming,	you	subscribe	to	the	idea	that	each
object	should	hold	its	own	responsibilities	and	expose	only	the	properties	and
functions	that	other	functions	and	classes	should	see.	Now,	Player	exposes
what	it	means	to	be	a	player	of	NyetHack,	and	Game.kt	holds	the	game	loop	in

a	much	more	readable	main	function.

Run	Game.kt	to	confirm	that	everything	works	as	it	did	before.	And	pat
yourself	on	the	back	for	completing	that	refactor.	In	the	chapters	to	come,	you
will	build	on	this	solid	foundation	for	NyetHack,	adding	complexity	and	features
that	rely	on	the	object-oriented	programming	paradigm.
In	the	next	chapter,	you	will	add	more	ways	to	instantiate	Player	as	you	learn
about	initialization.	But	before	growing	your	application	further,	it	is	a	good	time
to	learn	about	packages.

Using	Packages
A	package	is	like	a	folder	for	similar	elements	that	helps	give	a	logical	grouping
to	the	files	in	your	project.	For	example,	the	kotlin.collections	package
contains	classes	to	create	and	manage	lists	and	sets.	Packages	allow	you	to
organize	your	project	as	it	becomes	more	complex,	and	they	also	prevent	naming
collisions.
Create	a	package	by	right-clicking	your	src	directory	and	selecting	New	→
Package.	When	prompted,	name	your	package	com.bignerdranch.nyethack.
(You	can	name	a	package	anything	you	like,	but	we	prefer	this	reverse-DNS
style	that	scales	with	the	number	of	applications	that	you	write.)
The	package	you	created,	com.bignerdranch.nyethack,	is	the	top-level	package
for	NyetHack.	Including	your	files	within	a	top-level	package	will	prevent	any
naming	collisions	with	types	that	you	define	and	types	defined	elsewhere	–	for
instance,	in	external	libraries	or	modules.	As	you	add	more	files,	you	can	create
additional	packages	to	keep	the	files	organized.
Notice	that	the	new	com.bignerdranch.nyethack	package	(which	resembles	a
folder)	is	displayed	in	the	project	tool	window.	Add	your	source	files
(Game.kt,	Player.kt,	SwordJuggler.kt,	and	Tavern.kt)	to	your
new	package	by	dragging	them	into	the	package	(Figure	12.6).

Figure	12.6		The	com.bignerdranch.nyethack	package

Organizing	code	using	classes,	files,	and	packages	will	help	you	to	make	sure
that	your	code	is	clear	as	your	application	grows	in	complexity.

For	the	More	Curious:	A	Closer	Look	at	var	and
val	Properties
In	this	chapter	you	learned	that	the	var	and	val	keywords	are	used	when
specifying	a	class	property	–	var	for	writable,	and	val	for	read-only.
You	may	be	wondering	how	a	Kotlin	class	property	works,	under	the	hood,	when
targeting	the	JVM.
To	understand	how	class	properties	are	implemented,	it	is	helpful	to	look	at	the
decompiled	JVM	bytecode	–	specifically,	to	compare	the	bytecode	generated	for
a	single	property	depending	on	how	it	is	specified.	Create	a	new	file	called
Student.kt.	(You	will	delete	this	file	after	this	exercise.)
First,	define	a	class	with	a	var	property	(which	allows	both	reading	and	writing
the	class	property).

Listing	12.23		Defining	a	Student	class	(Student.kt)
class	Student(var	name:	String)

The	name	property	in	this	example	is	defined	in	Student’s	primary
constructor.	You	will	learn	more	about	constructors	in	Chapter	13,	but	for	now,
just	think	of	the	constructor	as	providing	a	way	to	customize	how	your	class	is
built.	In	this	case,	the	constructor	gives	you	a	way	to	specify	the	name	of	the
student.
Now,	take	a	look	at	the	resulting	decompiled	bytecode	(Tools	→	Kotlin	→	Show
Kotlin	Bytecode):
				public	final	class	Student	{

						@NotNull

						private	String	name;

						@NotNull

						public	final	String	getName()	{

									return	this.name;

						}

						public	final	void	setName(@NotNull	String	var1)	{

									Intrinsics.checkParameterIsNotNull(var1,	"<set-?>");

									this.name	=	var1;

						}

						public	Student(@NotNull	String	name)	{

									Intrinsics.checkParameterIsNotNull(name,	"name");

									super();

									this.name	=	name;

						}

				}

Four	elements	of	the	Student	class	were	generated	in	bytecode	when	you
defined	the	name	var	on	the	class:	a	name	field	(where	name’s	data	will	be

stored),	a	getter	method,	a	setter	method,	and	finally	a	constructor	assignment
for	the	field,	where	the	name	field	is	initialized	with	the	Student’s	name
constructor	argument.
Now	try	changing	the	property	from	a	var	to	a	val:

Listing	12.24		Changing	the	var	to	a	val	(Student.kt)
class	Student(varval	name:	String)

And	observe	the	resulting	decompiled	bytecode.	(The	strike-through	here	is	to
emphasize	what	is	missing.)
				public	final	class	Student	{

						@NotNull

						private	String	name;

						@NotNull

						public	final	String	getName()	{

									return	this.name;

						}

					public	final	void	setName(@NotNull	String	var1)	{

									Intrinsics.checkParameterIsNotNull(var1,	"<set-?>");

									this.name	=	var1;

						}

						public	Student(@NotNull	String	name)	{

									Intrinsics.checkParameterIsNotNull(name,	"name");

									super();

									this.name	=	name;

						}

				}

The	difference	between	using	the	var	keyword	and	val	keyword	for	the	property
is	the	absence	of	a	setter.
You	also	learned	in	this	chapter	that	you	can	define	a	custom	getter	or	setter	for	a
property.	What	happens	in	bytecode	when	you	define	a	computed	property,	with
a	custom	getter	and	no	field	for	storing	the	data?	Try	it	with	the	Student	class
you	defined:

Listing	12.25		Making	name	a	computed	property	(Student.kt)
class	Student(val	name:	String)	{

				val	name:	String

								get()	=	"Madrigal"

}

Now	take	a	look	at	the	resulting	decompiled	bytecode:
				public	final	class	Student	{

								@NotNull

								private	String	name;

								@NotNull

								public	final	String	getName()	{

											return	this.name;

											return	"Madrigal"

								}

								public	final	void	setName(@NotNull	String	var1)	{

											Intrinsics.checkParameterIsNotNull(var1,	"<set-?>");

											this.name	=	var1;

								}

								public	Student(@NotNull	String	name)	{

											Intrinsics.checkParameterIsNotNull(name,	"name");

											super();

											this.name	=	name;

							}

				}

Only	one	element	was	generated	in	the	bytecode	this	time	–	a	getter.	The
compiler	was	able	to	determine	that	no	field	was	required,	since	no	data	from	a
field	was	read	or	written.
This	particular	feature	of	properties	–	computing	a	value,	rather	than	reading	a
field’s	state	–	is	another	reason	we	use	the	terms	“writable”	and	“read-only”
rather	than	“mutable”	and	“immutable.”	Look	again	at	the	Dice	class	you
defined	in	the	REPL	earlier:
				class	Dice()	{

								val	rolledValue

												get()	=	(1..6).shuffled().first()

				}

The	result	of	reading	Dice’s	rolledValue	property	is	a	random	value
ranging	from	1	to	6,	determined	each	time	the	property	is	accessed	–	hardly	the
definition	of	“immutable.”
When	you	are	done	exploring	the	bytecode,	close	Student.kt	and	delete	it	by
Control-clicking	(right-clicking)	on	the	filename	in	the	project	tool	window	and
selecting	Delete.

For	the	More	Curious:	Guarding	Against	Race
Conditions
When	a	class	property	is	both	nullable	and	mutable,	you	must	ensure	that	it	is
non-null	before	referencing	it.	For	example,	consider	the	following	code	that
checks	whether	a	player	is	wielding	a	weapon	(since	the	player	may	have	been
disarmed	or	dropped	their	weapon)	and,	if	so,	prints	its	name:
				class	Weapon(val	name:	String)

				class	Player	{

								var	weapon:	Weapon?	=	Weapon("Ebony	Kris")

								fun	printWeaponName()	{

												if	(weapon	!=	null)	{

																println(weapon.name)

												}

								}

				}

				fun	main(args:	Array<String>)	{

							Player().printWeaponName()

				}

You	may	be	surprised	to	learn	that	this	code	does	not	compile.	Check	out	the
error	to	see	why	(Figure	12.7):

Figure	12.7		Smart	cast	to	‘Weapon’	is	impossible

The	compiler	prevents	the	code	from	compiling	because	of	the	possibility	of
what	is	known	as	a	race	condition.	A	race	condition	occurs	when	some	other
part	of	your	program	simultaneously	modifies	the	state	of	your	code	in	a	manner
that	leads	to	unpredictable	results.
Here,	the	compiler	sees	that	although	weapon	is	checked	for	a	null	value,	there
is	still	a	possibility	of	the	Player’s	weapon	property	being	replaced	with	a
null	value	between	the	time	that	check	passed	and	the	time	the	name	of	the
weapon	is	printed.
Therefore,	unlike	in	other	cases	where	weapon	could	be	smart	cast	within	the

null	check,	the	compiler	balks	because	it	cannot	safely	say	that	weapon	will
never	be	null.
One	way	to	fix	this	problem	is	to	use	a	standard	function	like	also,	which	you
read	about	in	Chapter	9,	to	guard	against	null:
				class	Player	{

								var	weapon:	Weapon?	=	Weapon("Ebony	Kris")

								fun	printWeaponName()	{

												weapon?.also	{

																println(it.name)

												}

								}

				}

This	code	compiles,	thanks	to	the	also	standard	function.	Instead	of	referring	to
the	class	property,	it,	the	argument	to	also,	is	a	local	variable	that	exists	only
within	the	scope	of	the	anonymous	function.	Therefore,	the	it	variable	is
guaranteed	to	not	be	changed	by	another	part	of	your	program.	The	smart	cast
issue	is	avoided	entirely,	because	instead	of	dealing	with	the	original	nullable
property,	this	code	uses	a	read-only,	non-nullable	local	variable	(since	also	is
called	after	the	safe	call	operator:	weapon?.also).

For	the	More	Curious:	Package	Private
Recall	from	earlier	in	the	chapter	the	discussion	about	public	and	private
visibility	levels.	As	you	learned,	a	Kotlin	class,	function,	or	property	is	public	by
default	(without	a	visibility	modifier),	which	means	it	is	usable	by	any	other
class,	function,	or	property	in	the	project.
If	you	are	familiar	with	Java,	you	may	have	noticed	that	the	default	access	level
differs	from	that	of	Kotlin:	By	default,	Java	uses	package	private	visibility,
which	means	that	methods,	fields,	and	classes	with	no	visibility	modifier	are
usable	from	classes	belonging	to	the	same	package	only.	Kotlin	opted	out	of
supporting	package	private	visibility	because	it	accomplishes	little.	In	practice,	it
is	easily	circumvented	by	creating	a	matching	package	and	adding	a	class	to	it.
On	the	other	hand,	a	visibility	level	Kotlin	provides	that	Java	does	not	is	the
internal	visibility	level.	Internal	visibility	marks	a	function,	class,	or	property	as
public	to	other	functions,	classes,	and	properties	within	the	same	module.	A
module	is	a	discrete	unit	of	functionality	that	can	be	run,	tested,	and	debugged
independently.
Modules	include	such	things	as	source	code,	build	scripts,	unit	tests,	deployment
descriptors,	and	so	on.	NyetHack	is	one	module	within	your	project,	and	an
IntelliJ	project	can	contain	multiple	modules.	Modules	can	also	depend	on	other
modules	for	source	files	and	resources.
Internal	visibility	is	useful	for	sharing	classes	within	a	module	while	disallowing
access	from	other	modules,	which	makes	it	a	great	choice	for	building	libraries
in	Kotlin.

13	
Initialization

In	the	last	chapter,	you	saw	how	to	define	classes	that	represent	real-world
objects.	In	NyetHack,	a	player	is	defined	in	part	by	its	properties	and	by	its
behavior.	For	all	the	complexity	that	can	be	represented	using	class	properties
and	functions,	you	have	seen	very	little	so	far	of	how	instances	of	classes	come
to	be.
Think	back	to	how	Player	was	defined	in	the	last	chapter.
				class	Player	{

								...

				}

Player’s	class	header	is	quite	simple,	and,	as	such,	instantiating	Player	was
also	simple.
				fun	main(args:	Array<String>)	{

								val	player	=	Player()

								...

				}

Recall	that	when	you	call	a	class’s	constructor,	an	instance	of	that	class	is	created
–	a	process	known	as	instantiation.	This	chapter	covers	the	ways	classes	and
their	properties	can	be	initialized.	When	you	initialize	a	variable,	property,	or
class	instance,	you	assign	it	an	initial	value	to	make	it	ready	for	use.	You	will	see
more	constructors,	learn	about	property	initialization,	and	even	learn	how	to
bend	the	rules	with	late	and	lazy	initialization.
A	note	about	terminology:	Technically,	an	object	is	instantiated	when	memory
is	allocated	for	it,	and	it	is	initialized	when	it	is	assigned	a	value.	However,	in
practice	the	terms	are	often	used	slightly	differently.	Often,	initialization	is
used	to	mean	“everything	required	to	make	a	variable,	property,	or	class	instance
ready	to	use,”	while	instantiation	tends	to	be	limited	to	“creating	an	instance
of	a	class.”	In	this	book,	we	follow	this	more	typical	usage.

Constructors
Player	now	contains	behavior	and	data	you	defined.	For	example,	you
specified	an	isImmortal	property:
				val	isImmortal	=	false

You	used	a	val	because	once	the	player	is	created,	their	immortality	should
never	be	reassigned.	But	this	property	declaration	means	that,	at	the	moment,	no
player	can	be	immortal:	There	is	currently	no	way	to	initialize	isImmortal	to
any	value	other	than	false.
This	is	where	a	primary	constructor	comes	into	play.	A	constructor	allows	its
caller	to	specify	the	initial	values	that	an	instance	of	a	class	will	require	in	order
to	be	constructed.	Those	values	are	then	available	for	assignment	to	the
properties	defined	within	the	class.

Primary	constructors

Like	a	function,	a	constructor	defines	expected	parameters	that	must	be	provided
as	arguments.	To	specify	what	is	needed	for	a	Player	instance	to	work
correctly,	you	are	going	to	define	the	primary	constructor	in	Player’s	header.
Update	Player.kt	to	provide	initial	values	for	each	of	Player’s	properties
using	temporary	variables.

Listing	13.1		Defining	a	primary	constructor	(Player.kt)
class	Player(_name:	String,

												_healthPoints:	Int,

												_isBlessed:	Boolean,

												_isImmortal:	Boolean)	{

				var	name	=	"Madrigal"_name

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				var	healthPoints	=	89_healthPoints

				val	isBlessed	=	true_isBlessed

				private	val	isImmortal	=	false_isImmortal

				...

}

(Why	prepend	these	variable	names	with	underscores?	Temporary	variables,
including	parameters	that	you	do	not	need	to	reference	more	than	once,	are	often
given	a	name	starting	with	an	underscore	to	signify	that	they	are	single-use.)
Now,	to	create	an	instance	of	Player,	you	provide	arguments	that	match	the

parameters	you	added	to	the	constructor.	Instead	of	hardcoding	the	value	for	the
player’s	name	property,	for	example,	you	pass	an	argument	to	Player’s
primary	constructor.	Change	the	call	to	Player’s	constructor	in	main	to	reflect
this.

Listing	13.2		Calling	the	primary	constructor	(Game.kt)
fun	main(args:	Array<String>)	{

				val	player	=	Player("Madrigal",	89,	true,	false)

				...

}

Consider	how	much	functionality	the	primary	constructor	has	added	to	Player:
Before,	a	player	of	NyetHack	was	always	named	Madrigal,	was	never	immortal,
and	so	on.	Now,	a	player	can	be	named	anything,	and	the	door	to	immortality	is
open	–	none	of	Player’s	data	is	hardcoded.
Run	Game.kt	to	confirm	that	the	output	has	not	changed.

Defining	properties	in	a	primary	constructor

Notice	the	one-to-one	relationship	between	the	constructor	parameters	in
Player	and	the	class	properties:	You	have	a	parameter	and	a	class	property	for
each	property	to	be	specified	when	the	player	is	constructed.
For	properties	that	use	the	default	getter	and	setter,	Kotlin	allows	you	to	specify
both	in	one	definition,	rather	than	having	to	assign	them	using	temporary
variables.	name	uses	a	custom	getter	and	setter,	so	it	cannot	take	advantage	of
this	feature,	but	Player’s	other	properties	can.
Update	the	Player	class	to	define	healthPoints,	isBlessed,	and
isImmortal	as	properties	in	Player’s	primary	constructor.	(Do	not	neglect
to	delete	the	underscores	before	the	names	of	the	variables.)

Listing	13.3		Defining	properties	in	the	primary	constructor
(Player.kt)
class	Player(_name:	String,

												var	_healthPoints:	Int,

												val	_isBlessed:	Boolean,

												private	val	_isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				var	healthPoints	=	_healthPoints

				val	isBlessed	=	_isBlessed

				private	val	isImmortal	=	_isImmortal

				...

}

For	each	constructor	parameter,	you	specify	whether	it	is	writable	or	read-only.
By	specifying	the	parameters	with	val	or	var	keywords	in	the	constructor,	you
define	properties	for	the	class,	whether	they	are	val	or	var	properties,	and	the
parameters	the	constructor	will	expect	arguments	for.	You	also	implicitly	assign
each	property	to	the	value	passed	to	it	as	an	argument.
Duplication	of	code	makes	it	harder	to	make	changes.	Generally,	we	prefer	this
way	of	defining	class	properties	because	it	leads	to	less	duplication.	You	were
not	able	to	use	this	syntax	for	name,	because	of	its	custom	getter	and	setter,	but
in	other	cases,	defining	a	property	in	a	primary	constructor	is	often	the	most
straightforward	choice.

Secondary	constructors

Constructors	come	in	two	flavors:	primary	and	secondary.	When	you	specify	a
primary	constructor,	you	say,	“These	parameters	are	required	for	any	instance	of
this	class.”	When	you	specify	a	secondary	constructor,	you	provide	alternative
ways	to	construct	the	class	(while	still	meeting	the	requirements	of	the	primary
constructor).
A	secondary	constructor	must	either	call	the	primary	constructor,	providing	it	all
of	the	arguments	it	requires,	or	call	through	to	another	secondary	constructor	–
which	follows	the	same	rule.	For	example,	say	you	know	that	in	most	cases	a
player	will	begin	with	100	health	points,	will	be	blessed,	and	will	be	mortal.	You
can	define	a	secondary	constructor	to	provide	that	configuration.	Add	a
secondary	constructor	to	Player:

Listing	13.4		Defining	a	secondary	constructor	(Player.kt)
class	Player(_name:	String,

												var	healthPoints:	Int

												val	isBlessed:	Boolean

												private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				constructor(name:	String)	:	this(name,

												healthPoints	=	100,

												isBlessed	=	true,

												isImmortal	=	false)

				...

}

You	can	define	multiple	secondary	constructors	for	different	combinations	of
parameters.	This	secondary	constructor	calls	through	to	the	primary	constructor
with	a	certain	set	of	parameters.	The	this	keyword	in	this	case	refers	to	the

instance	of	the	class	for	which	this	constructor	is	defined.	Specifically,	this	is
calling	into	another	constructor	defined	in	the	class	–	the	primary	constructor.
Because	this	secondary	constructor	provides	default	values	for
healthPoints,	isBlessed,	and	isImmortal,	you	do	not	need	to	pass
arguments	for	those	parameters	when	calling	it.	Call	Player’s	secondary
constructor	from	Game.kt	instead	of	its	primary	constructor.

Listing	13.5		Calling	a	secondary	constructor	(Game.kt)
fun	main(args:	Array<String>)	{

				val	player	=	Player("Madrigal",	89,	true,	false)

				...

}

You	can	also	use	a	secondary	constructor	to	define	initialization	logic	–	code	that
will	run	when	your	class	is	instantiated.	For	example,	add	an	expression	that
reduces	the	player’s	health	points	value	to	40	if	their	name	is	Kar.

Listing	13.6		Adding	logic	to	a	secondary	constructor	(Player.kt)
class	Player(_name:	String,

												var	healthPoints:	Int

												val	isBlessed:	Boolean

												private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				constructor(name:	String)	:	this(name,

												healthPoints	=	100,

												isBlessed	=	true,

												isImmortal	=	false)	{

								if	(name.toLowerCase()	==	"kar")	healthPoints	=	40

				}

				...

}

Although	they	are	useful	for	defining	alternative	logic	to	be	run	on	instantiation,
secondary	constructors	cannot	be	used	to	define	properties	like	primary
constructors	can.	Class	properties	must	be	defined	in	the	primary	constructor	or
at	the	class	level.
Run	Game.kt	to	see	that	Madrigal	is	still	blessed	and	has	health	points,
showing	that	Player’s	secondary	constructor	was	called	from	Game.kt.

Default	arguments

When	defining	a	constructor,	you	can	also	specify	default	values	that	should	be
assigned	if	an	argument	is	not	provided	for	a	specific	parameter.	You	have	seen
these	default	arguments	in	the	context	of	functions,	and	they	work	the	same	way
with	both	primary	and	secondary	constructors.	For	example,	set	the	default	value

for	healthPoints	with	a	default	parameter	value	of	100	in	the	primary
constructor,	as	follows:

Listing	13.7		Defining	a	default	argument	in	a	constructor
(Player.kt)
class	Player(_name:	String,

												var	healthPoints:	Int	=	100

												val	isBlessed:	Boolean

												private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				constructor(name:	String)	:	this(name,

												healthPoints	=	100,

												isBlessed	=	true,

												isImmortal	=	false)	{

								if	(name.toLowerCase()	==	"kar")	healthPoints	=	40

				}

				...

}

Because	you	added	a	default	argument	value	to	the	healthPoints	parameter
in	the	primary	constructor,	you	removed	the	healthPoints	argument	passed
from	Player’s	secondary	constructor	to	its	primary	constructor.	This	gives	you
another	way	to	instantiate	Player:	with	or	without	an	argument	for
healthPoints.
				//	Player	constructed	with	64	health	points	using	the	primary	constructor

				Player("Madrigal",	64,	true,	false)

				//	Player	constructed	with	100	health	points	using	the	primary	constructor

				Player("Madrigal",	true,	false)

				//	Player	constructed	with	100	health	points	using	the	secondary	constructor

				Player("Madrigal")

Named	arguments

The	more	default	arguments	you	use,	the	more	options	you	have	for	calling	your
constructor.	More	options	can	open	the	door	for	more	ambiguity,	so	Kotlin
provides	named	constructor	arguments,	just	like	the	named	arguments	that	you
have	used	to	call	functions.
Compare	the	following	two	options	for	constructing	an	instance	of	Player:
				val	player	=	Player(name	=	"Madrigal",

												healthPoints	=	100,

												isBlessed	=	true,

												isImmortal	=	false)

				val	player	=	Player("Madrigal",	100,	true,	false)

Which	option	do	you	find	to	be	more	readable?	If	you	chose	the	first,	we	agree
with	your	judgment.

Named	argument	syntax	lets	you	include	the	parameter	name	for	each	argument
to	improve	readability.	This	is	especially	useful	when	you	have	multiple
parameters	of	the	same	type:	If	you	see	“true”	and	“false”	both	passed	into	the
Player	constructor,	named	arguments	will	help	you	determine	which	value
corresponds	to	which	parameter.	This	reduced	ambiguity	leads	to	another
benefit:	Named	arguments	allow	you	to	specify	the	arguments	to	a	function	or
constructor	in	any	order.	If	parameters	are	unnamed,	then	you	need	to	refer	to	the
constructor	to	know	their	order.
You	may	have	noticed	that	the	secondary	constructor	you	wrote	for	Player
used	named	arguments,	similar	to	the	ones	that	you	saw	in	Chapter	4.
				constructor(name:	String)	:	this(name,

												healthPoints	=	100,

												isBlessed	=	true,

												isImmortal	=	false)

When	you	have	more	than	a	few	arguments	to	provide	to	a	constructor	or
function,	we	recommend	using	named	parameters.	They	make	it	easier	for
readers	to	keep	track	of	which	argument	is	being	passed	as	which	parameter.

Initializer	Blocks
In	addition	to	the	primary	and	secondary	constructors,	you	can	also	specify	an
initializer	block	for	a	class	in	Kotlin.	The	initializer	block	is	a	way	to	set	up
variables	or	values	as	well	as	perform	validation	–	like	checking	to	make	sure
that	the	arguments	to	the	constructor	are	valid	ones.	The	code	it	holds	is
executed	when	the	class	is	constructed.
For	example,	players	have	certain	requirements	as	they	are	constructed:	A	player
must	begin	the	game	with	at	least	one	health	point.	Their	name	must	not	be
blank.
Use	an	initializer	block,	denoted	by	the	init	keyword,	to	enforce	these
requirements	with	preconditions.

Listing	13.8		Defining	an	initializer	block	(Player.kt)
class	Player(_name:	String,

												var	healthPoints:	Int	=	100

												val	isBlessed:	Boolean

												private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				init	{

								require(healthPoints	>	0,	{	"healthPoints	must	be	greater	than	zero."	})

								require(name.isNotBlank(),	{	"Player	must	have	a	name."	})

				}

				constructor(name:	String)	:	this(name,

												isBlessed	=	true,

												isImmortal	=	false)	{

								if	(name.toLowerCase()	==	"kar")	healthPoints	=	40

				}

				...

}

If	either	of	these	preconditions	fails,	then	an	IllegalArgumentException
is	thrown.	(You	can	test	this	by	passing	Player	different	parameters	in	the
Kotlin	REPL.)
These	requirements	would	be	difficult	to	encapsulate	in	a	constructor	or	a
property	declaration.	The	code	in	the	initializer	block	will	be	called	when	the
class	is	instantiated	–	no	matter	which	constructor	for	the	class	is	called,	primary
or	secondary.

Property	Initialization
So	far,	you	have	seen	a	property	initialized	in	two	ways	–	either	assigned	to	a
value	passed	as	an	argument,	or	defined	inline	in	a	primary	constructor.
A	property	can	(and	must)	be	initialized	with	any	value	of	its	type,	including
function	return	values.	Let’s	look	at	an	example.
Your	hero	can	come	from	one	of	any	number	of	exotic	locales	in	the	world	of
NyetHack.	Define	a	new	String	property	called	hometown	to	hold	the	name
of	a	player’s	town	of	origin.

Listing	13.9		Defining	the	hometown	property	(Player.kt)
class	Player(_name:	String,

												var	healthPoints:	Int	=	100

												val	isBlessed:	Boolean

												private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				val	hometown:	String

				init	{

								require(healthPoints	>	0,	{	"healthPoints	must	be	greater	than	zero."	})

								require(name.isNotBlank(),	{	"Player	must	have	a	name"	})

				}

				...

}

You	have	defined	hometown,	but	you	have	not	yet	satisfied	the	Kotlin
compiler.	Defining	the	name	and	type	of	a	property	is	not	enough	–	you	must
assign	an	initial	value	when	defining	a	property.	Why?	Kotlin’s	null	safety	rules.
Without	an	initial	value,	a	property	could	be	null,	which	would	be	illegal	if	the
property	is	of	a	non-nullable	type.
One	way	to	put	a	bandage	on	this	problem	would	be	to	initialize	hometown	as
an	empty	string:
				val	hometown	=	""

This	compiles,	but	it	is	not	the	ideal	solution	because	""	is	not	a	town	in
NyetHack.	Instead,	add	a	new	function	called	selectHometown	that	returns	a
random	town	from	a	file	containing	towns.	You	will	use	this	function	to	assign
an	initial	value	to	hometown.

Listing	13.10		Defining	the	selectHometown	function	(Player.kt)
import	java.io.File

class	Player(_name:	String,

												var	healthPoints:	Int	=	100

												val	isBlessed:	Boolean

												private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	field.capitalize()

								private	set(value)	{

												field	=	value.trim()

								}

				val	hometown:	String	=	selectHometown()

				...

				private	fun	selectHometown()	=	File("data/towns.txt")

												.readText()

												.split("\n")

												.shuffled()

												.first()

}

(Notice	that	you	need	to	import	java.io.File	into	Player.kt	to	access
the	File	class.)
You	will	need	to	add	a	towns.txt	file	to	your	existing	data	directory	to	hold
this	list	of	towns.	You	can	find	the	file	at	bignerdranch.com/
solutions/towns.txt.
Test	out	your	hometown	property	by	using	it	in	the	name	property’s	getter.	To
differentiate	your	hero	from	all	of	the	other	Madrigals	in	the	world,	your	hero
should	be	addressed	by	a	name	that	includes	their	hometown.

Listing	13.11		Using	the	hometown	property	(Player.kt)
class	Player(_name:	String,

												var	healthPoints:	Int	=	100

												val	isBlessed:	Boolean

												private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	"${field.capitalize()}	of	$hometown"

								private	set(value)	{

												field	=	value.trim()

								}

				val	hometown	=	selectHometown()

				...

				private	fun	selectHometown()	=	File("data/towns.txt")

												.readText()

												.split("\n")

												.shuffled()

												.first()

}

Run	Game.kt.	Whenever	your	hero	is	addressed	by	name,	they	will	be
differentiated	via	their	hometown:
				A	glass	of	Fireball	springs	into	existence.	Delicious!	(x2)

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

If	your	property	requires	complex	initialization	logic	–	multiple	expressions,	for
example	–	consider	pulling	this	initialization	logic	into	a	function	or	an
initializer	block.
The	rule	that	states	that	properties	must	be	assigned	on	declaration	does	not
apply	to	variables	in	a	smaller	scope,	like	a	function.	For	example:
				class	JazzPlayer	{

https://www.bignerdranch.com/solutions/towns.txt

								fun	acquireMusicalInstrument()	{

												val	instrumentName:	String

												instrumentName	=	"Oboe"

								}

				}

Because	instrumentName	is	assigned	a	value	before	it	can	be	referenced,
this	code	compiles.
Properties	have	more	strict	rules	on	initialization	because	they	can	be	accessed
from	other	classes	if	they	are	public.	Variables	local	to	a	function,	on	the	other
hand,	are	scoped	to	the	function	in	which	they	are	defined	and	cannot	be
accessed	from	outside	of	it.

Initialization	Order
You	have	seen	how	to	initialize	properties	or	add	logic	to	the	initialization	of
properties	in	various	ways	–	inline	in	a	primary	constructor,	initialized	at
declaration,	initialized	in	a	secondary	constructor,	or	initialized	in	an	initializer
block.	It	is	possible	for	the	same	property	to	be	referenced	in	multiple
initializers,	so	the	order	in	which	they	are	executed	is	important.
To	take	a	closer	look,	it	is	helpful	to	examine	the	resulting	field	initialization
order	and	method	invocations	in	the	decompiled	Java	bytecode.	Consider	the
following,	which	defines	a	Player	class	and	constructs	an	instance	of	it:
				class	Player(_name:	String,	val	health:	Int)	{

								val	race	=	"DWARF"

								var	town	=	"Bavaria"

								val	name	=	_name

								val	alignment:	String

								private	var	age	=	0

								init	{

												println("initializing	player")

												alignment	=	"GOOD"

								}

								constructor(_name:	String)	:	this(_name,	100)	{

												town	=	"The	Shire"

								}

				}

				fun	main(args:	Array<String>)	{

								Player("Madrigal")

				}

Notice	that	this	Player	class	is	constructed	by	calling	Player("Madrigal"),
the	secondary	constructor.
Figure	13.1	shows	this	Player	class	on	the	left.	The	abbreviated	decompiled
Java	bytecode	on	the	right	shows	the	resulting	initialization	order:

Figure	13.1		Initialization	order	for	the	Player	class	(decompiled
bytecode)

The	resulting	initialization	order	is	as	follows:
1.	 the	primary	constructor’s	inline	properties	(val	health:	Int)

2.	 required	class-level	property	assignments	(val	race	=	"DWARF",	val
town	=	"Bavaria",	val	name	=	_name)

3.	 init	block	property	assignments	and	function	calls	(alignment	=
"GOOD",	println	function)

4.	 secondary	constructor	property	assignments	and	function	calls	(town	=
"The	Shire")

The	initialization	order	of	the	init	block	(item	3)	and	the	class-level	property
assignments	(item	2)	depends	on	the	order	they	are	specified	in.	If	the	init
block	were	defined	before	the	class	property	assignments,	it	would	be	initialized
second,	followed	by	the	class	property	assignments.
Note	that	one	property	is	not	assigned	in	the	constructor	–	age	–	even	though	it	is
assigned	at	the	class	property	level.	Because	its	value	is	0	(Java’s	primitive	int
default	value),	the	assignment	is	not	required	and	the	compiler	optimizes
initialization	by	skipping	it.

Delaying	Initialization
Wherever	it	is	declared,	a	class	property	must	be	initialized	when	the	class
instance	is	constructed.	This	rule	is	an	important	part	of	Kotlin’s	null	safety
system,	because	it	means	that	all	non-nullable	properties	of	a	class	are	initialized
with	a	non-null	value	when	the	constructor	for	that	class	is	called.	When	you
instantiate	an	object,	you	can	immediately	reference	any	property	on	that	object,
from	within	or	outside	of	the	class.
Despite	its	importance,	you	can	bend	this	rule.	Why	would	you?	You	do	not
always	have	control	over	how	or	when	a	constructor	is	called.	One	such	case	is
in	the	Android	framework.

Late	initialization

On	Android,	a	class	called	Activity	represents	a	screen	in	your	application.
You	do	not	have	control	over	when	the	constructor	of	your	Activity	is	called.
Instead,	the	earliest	point	of	code	execution	you	have	is	in	a	function	called
onCreate.	If	you	cannot	initialize	your	properties	at	instantiation	time,	when
can	you?
This	is	where	late	initialization	becomes	important	–	and	more	than	just	a	simple
bending	of	Kotlin’s	rules	on	initialization.
Any	var	property	declaration	can	be	appended	with	the	lateinit	keyword,	and
the	Kotlin	compiler	will	let	you	put	off	initializing	the	property	until	you	assign
it.
				class	Player	{

								lateinit	var	alignment:	String

								fun	determineFate()	{

												alignment	=	"Good"

								}

								fun	proclaimFate()	{

												if	(::alignment.isInitialized)	println(alignment)

								}

				}

This	is	useful	but	must	be	regarded	with	care.	As	long	as	you	initialize	your	late-
initialized	variable	before	it	is	accessed,	then	there	is	no	problem.	But	if	you
reference	your	late-initialized	property	before	it	has	been	initialized,	then	you
will	be	greeted	with	an	unpleasant
UninitializedPropertyAccessException.

You	could	implement	this	pattern	using	a	nullable	type	instead,	but	you	would
then	be	required	to	handle	your	property’s	nullability	throughout	your	codebase,
which	is	burdensome.	Late-initialized	variables	function	just	like	other	variables
once	assigned.
The	lateinit	keyword	functions	as	a	contract	that	you	make	with	yourself:	“I
take	responsibility	for	initializing	this	variable	before	it	is	accessed.”	Kotlin	does
provide	a	way	to	check	whether	a	late-initialized	variable	has	been	initialized:
the	isInitialized	check	shown	in	the	example	above.	You	can	check
isInitialized	when	there	is	any	uncertainty	about	whether	the	lateinit
variable	is	initialized	to	avoid	an
UninitializedPropertyAccessException.
However,	isInitialized	should	be	used	sparingly	–	it	should	not	be	added
to	every	lateinit,	for	example.	If	you	are	using	isInitialized	a	lot,	it	is
likely	an	indicator	that	you	should	be	using	a	nullable	type	instead.

Lazy	initialization

Late	initialization	is	not	the	only	way	to	delay	initialization.	You	can	also	hold
off	on	initializing	a	variable	until	it	is	accessed	for	the	first	time.	This	concept	is
known	as	lazy	initialization,	and	despite	the	name,	it	can	actually	make	your
code	more	efficient.
Most	of	the	properties	that	you	have	initialized	in	this	chapter	have	been	pretty
lightweight	–	single	objects,	like	a	String.	Many	classes,	however,	are	more
complex.	They	may	require	the	instantiation	of	multiple	objects,	or	they	may
involve	some	more	computationally	intensive	task	when	being	initialized,	like
reading	from	a	file.	If	your	property	triggers	a	large	number	of	these	sorts	of
tasks,	or	if	your	class	does	not	require	access	to	a	property	right	away,	then	lazy
initialization	could	be	a	good	choice.
Lazy	initialization	is	implemented	in	Kotlin	using	a	mechanism	known	as	a
delegate.	Delegates	define	templates	for	how	a	property	is	initialized.
You	use	a	delegate	with	the	by	keyword.	The	Kotlin	standard	library	includes
some	delegates	that	are	already	implemented	for	you,	and	lazy	is	one	of	them.
Lazy	initialization	takes	a	lambda	in	which	you	define	any	code	that	you	wish	to
execute	when	your	property	is	initialized.
Player’s	hometown	property	reads	from	a	file	as	a	part	of	its	initialization.
You	might	not	access	hometown	right	away,	so	it	is	more	efficient	to	wait	to

initialize	until	hometown	is	needed.	Lazily	initialize	hometown	in	Player.
(Some	of	these	changes	are	tricky	to	see.	You	need	to	delete	the	=,	add	by	lazy,
and	add	curly	braces	around	selectHometown().)

Listing	13.12		Lazily	initializing	hometown	(Player.kt)
class	Player(_name:	String,

												var	healthPoints:	Int	=	100

												val	isBlessed:	Boolean

												private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	"${field.capitalize()}	of	$hometown"

								private	set(value)	{

												field	=	value.trim()

								}

				val	hometown	=by	lazy	{	selectHometown()	}

				...

				private	fun	selectHometown()	=	File("towns.txt")

												.readText()

												.split("\n")

												.shuffled()

												.first()

}

In	this	lambda,	the	result	of	selectHometown	is	implicitly	returned	and
assigned	to	hometown.
hometown	remains	uninitialized	until	it	is	referenced	for	the	first	time.	At	that
point,	all	of	the	code	in	lazy’s	lambda	is	executed.	Importantly,	this	code	is
only	executed	once	–	the	first	time	that	the	delegated	property	(hometown,
here)	is	accessed	in	name’s	getter.	Future	access	to	the	lazy	property	will	use	a
cached	result	instead	of	performing	the	expensive	computation	again.
Lazy	initialization	is	useful,	but	it	can	be	a	bit	verbose,	so	stick	to	using	lazy
initialization	for	more	computationally	needy	tasks.
And	with	that,	you	have	seen	what	there	is	to	see	when	it	comes	to	initializing	an
object	in	Kotlin.	Most	often,	your	experience	will	be	quite	straightforward:	You
call	a	constructor,	and	you	get	a	reference	to	an	instance	of	a	class	to	do	with
what	you	will.	That	said,	you	have	other	options	when	initializing	an	object	in
Kotlin,	and	understanding	those	options	can	help	you	write	clean,	efficient	code.
In	the	next	chapter	you	will	learn	about	inheritance,	an	object-oriented	principle
that	allows	you	to	share	data	and	behavior	between	related	classes.

For	the	More	Curious:	Initialization	Gotchas
You	saw	earlier	in	the	chapter	that	order	is	important	when	using	initializer
blocks	–	you	must	ensure	that	all	properties	used	in	the	block	are	initialized
before	the	initializer	block	is	defined.	Take	a	look	at	the	following	code	that
shows	this	initializer	block	ordering	problem:
				class	Player()	{

								init	{

												val	healthBonus	=	health.times(3)

								}

								val	health	=	100

				}

				fun	main(args:	Array<String>)	{

								Player()

				}

This	code	would	not	compile,	because	the	health	property	is	not	initialized	at
the	point	that	it	is	used	by	the	init	block.	As	we	mentioned	earlier,	when	a
property	is	used	within	an	init	block,	the	property	initialization	must	happen
before	it	is	accessed.	When	health	is	defined	before	the	initializer	block,	the
code	compiles:
				class	Player()	{

								val	health	=	100

								init	{

												val	healthBonus	=	health.times(3)

								}

				}

				fun	main(args:	Array<String>)	{

								Player()

				}

There	are	a	couple	of	similar,	but	more	subtle,	scenarios	that	trip	up	unwary
programmers.	For	example,	in	the	following	code,	a	name	property	is	declared,
then	a	firstLetter	function	reads	the	first	character	from	the	property:
				class	Player()	{

								val	name:	String

								private	fun	firstLetter()	=	name[0]

								init	{

												println(firstLetter())

												name	=	"Madrigal"

								}

				}

				fun	main(args:	Array<String>)	{

								Player()

				}

This	code	will	compile,	because	the	compiler	sees	that	the	name	property	is
initialized	in	the	init	block,	a	legal	place	to	assign	an	initial	value.	But	running
this	code	would	result	in	a	null	pointer	exception,	because	the	firstLetter

function	(which	uses	the	name	property)	is	called	before	the	name	property	is
assigned	an	initial	value	in	the	init	block.
The	compiler	does	not	inspect	the	order	properties	are	initialized	in	compared	to
the	functions	that	use	them	within	the	init	block.	When	defining	an	init	block
that	calls	functions	that	access	properties,	it	is	up	to	you	to	ensure	that	you	have
initialized	those	properties	before	calling	the	functions.	When	name	is	assigned
before	firstLetter	is	called,	the	code	compiles	and	will	run	without	error:
				class	Player()	{

								val	name:	String

								private	fun	firstLetter()	=	name[0]

								init	{

												name	=	"Madrigal"

												println(firstLetter())

								}

				}

				fun	main(args:	Array<String>)	{

								Player()

				}

One	more	tricky	scenario	is	shown	in	the	following	code,	in	which	two
properties	are	initialized:
				class	Player(_name:	String)	{

								val	playerName:	String	=	initPlayerName()

								val	name:	String	=	_name

								private	fun	initPlayerName()	=	name

				}

				fun	main(args:	Array<String>)	{

								println(Player("Madrigal").playerName)

				}

Again,	this	code	compiles,	since	the	compiler	sees	that	all	properties	have	been
initialized.	But	running	the	code	would	result	in	the	unsatisfying	output	null.
What	is	the	problem	here?	When	playerName	is	initialized	with	the
initPlayerName	function,	the	compiler	assumes	that	name	is	initialized,	but
when	initPlayerName	is	called,	name	is	actually	not	yet	initialized.
In	this	case,	once	again,	order	matters.	The	initialization	order	of	the	two
properties	must	be	reversed.	With	that	done,	the	Player	class	compiles	and
returns	a	non-null	name	value:
				class	Player(_name:	String)	{

								val	name:	String	=	_name

								val	playerName:	String	=	initPlayerName()

								private	fun	initPlayerName()	=	name

				}

				fun	main(args:	Array<String>)	{

								println(Player("Madrigal").playerName)

				}

Challenge:	The	Riddle	of	Excalibur
As	you	learned	in	Chapter	12,	you	can	specify	your	own	getter	and	setter	for	a
property.	Now	that	you	have	seen	how	properties	and	their	classes	are	initialized,
we	have	a	riddle	for	you.
Every	great	sword	has	a	name.	Define	a	class	called	Sword	in	the	Kotlin	REPL
that	reflects	this	truth.

Listing	13.13		Defining	Sword	(REPL)
class	Sword(_name:	String)	{

				var	name	=	_name

								get()	=	"The	Legendary	$field"

								set(value)	{

												field	=	value.toLowerCase().reversed().capitalize()

								}

}

What	is	printed	when	you	instantiate	a	Sword	and	reference	name?	(Try	to
answer	for	yourself	before	you	check	the	REPL.)

Listing	13.14		Referencing	name	(REPL)
val	sword	=	Sword("Excalibur")

println(sword.name)

What	is	printed	when	you	reassign	name?

Listing	13.15		Reassigning	name	(REPL)
sword.name	=	"Gleipnir"

println(sword.name)

Finally,	add	an	initializer	block	to	Sword	that	assigns	name.

Listing	13.16		Adding	an	initializer	block	(REPL)
class	Sword(_name:	String)	{

				var	name	=	_name

								get()	=	"The	Legendary	$field"

								set(value)	{

												field	=	value.toLowerCase().reversed().capitalize()

								}

				init	{

								name	=	_name

				}

}

What	is	printed	when	you	instantiate	Sword	and	reference	name	now?

Listing	13.17		Referencing	name	again	(REPL)
val	sword	=	Sword("Excalibur")

println(sword.name)

This	challenge	will	test	your	knowledge	of	both	initializers	and	custom	property
getters	and	setters.

14	
Inheritance

Inheritance	is	an	object-oriented	principle	you	can	use	to	define	hierarchical
relationships	between	types.	In	this	chapter	you	will	use	inheritance	to	share	data
and	behavior	between	related	classes.
To	get	a	handle	on	inheritance,	consider	an	example	outside	of	programming.
Cars	and	trucks	have	much	in	common:	They	each	have	wheels,	an	engine,	etc.
They	also	have	some	different	features.	Using	inheritance,	you	could	define	the
things	that	they	have	in	common	in	a	shared	class,	Vehicle,	so	that	you	do	not
have	to	implement	Wheel	and	Engine	and	so	on	in	both	Car	and	Truck.
Car	and	Truck	would	inherit	those	shared	features,	and	each	would	then	define
its	unique	features	as	well.
In	NyetHack,	you	have	defined	what	it	means	to	be	a	Player	in	the	game.	In
this	chapter,	you	will	put	inheritance	to	work	by	adding	a	series	of	rooms	to
NyetHack	so	that	your	player	has	places	to	go.

Defining	the	Room	Class
Begin	by	creating	a	new	file	in	NyetHack	called	Room.kt.	Room.kt	will
contain	a	new	class	called	Room	that	will	represent	one	square	in	NyetHack’s
coordinate	plane.	Later,	you	will	define	a	particular	kind	of	room	in	a	class	that
inherits	qualities	from	Room.
To	begin,	Room	will	have	one	property	–	name	–	and	two	functions,
description	and	load.	description	returns	a	String	describing	the
room.	load	returns	a	String	that	will	be	printed	to	the	console	when	you
enter	the	room.	These	are	features	you	want	for	every	room	in	NyetHack.
Add	the	Room	class	definition	to	Room.kt,	as	shown:

Listing	14.1		Declaring	the	Room	class	(Room.kt)
class	Room(val	name:	String)	{

				fun	description()	=	"Room:	$name"

				fun	load()	=	"Nothing	much	to	see	here..."

}

To	test	your	new	Room	class,	create	a	Room	instance	when	the	game	starts	in
main	and	print	the	result	of	its	description	function.

Listing	14.2		Printing	the	room	description	(Game.kt)
fun	main(args:	Array<String>)	{

				val	player	=	Player("Madrigal")

				player.castFireball()

				var	currentRoom	=	Room("Foyer")

				println(currentRoom.description())

				println(currentRoom.load())

				//	Player	status

				printPlayerStatus(player)

}

...

Run	Game.kt.	You	should	see	the	following	output	to	the	console.
				A	glass	of	Fireball	springs	into	existence.	Delicious!	(x2)

				Room:	Foyer

				Nothing	much	to	see	here...

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

So	far,	so	good	…	but	kind	of	boring.	Who	wants	to	hang	out	in	a	foyer?	It	is
time	for	Madrigal	of	Tampa	to	go	places.

Creating	a	Subclass
A	subclass	shares	all	properties	with	the	class	it	inherits	from,	commonly	known
as	the	parent	class	or	superclass.
For	example,	citizens	of	NyetHack	will	need	a	town	square.	A	town	square	is	a
type	of	Room	with	special	features	only	town	squares	will	have	–	like	a
customized	loading	message	when	players	enter.	To	create	the	TownSquare
class,	you	will	subclass	Room,	since	they	have	common	features,	and	then
describe	how	TownSquare	differs	from	Room.
But	before	defining	a	TownSquare	class,	you	first	need	to	make	a	change	to
the	Room	class	so	that	it	can	be	subclassed.
Not	every	class	you	write	is	intended	to	be	part	of	a	hierarchy,	and,	in	fact,
classes	are	closed	–	meaning	they	prohibit	subclassing	–	by	default.	For	a	class
to	be	subclassed,	it	must	be	marked	with	the	open	keyword.
Add	the	open	keyword	to	Room	so	that	it	can	be	subclassed.

Listing	14.3		Making	the	Room	class	open	for	subclassing	(Room.kt)
open	class	Room(val	name:	String)	{

				fun	description()	=	"Room:	$name"

				fun	load()	=	"Nothing	much	to	see	here..."

}

Now	that	Room	is	marked	open,	create	a	TownSquare	class	in	Room.kt	by
subclassing	the	Room	class	using	the	:	operator,	like	so:

Listing	14.4		Declaring	the	TownSquare	class	(Room.kt)
open	class	Room(val	name:	String)	{

				fun	description()	=	"Room:	$name"

				fun	load()	=	"Nothing	much	to	see	here..."

}

class	TownSquare	:	Room("Town	Square")

The	TownSquare	class	declaration	includes	the	class	name	to	the	left	of	the	:
operator	and	a	constructor	invocation	to	the	right.	The	constructor	invocation
indicates	which	constructor	to	call	for	TownSquare’s	parent	and	what
arguments	to	pass	to	it.	In	this	case,	a	TownSquare	is	a	version	of	Room	with
the	specific	name	"Town	Square".
But	you	want	more	from	your	town	square	than	just	a	name.	Another	way	for
you	to	differentiate	a	subclass	from	its	parent	is	through	overriding.	Recall	from

Chapter	12	that	a	class	uses	properties	to	represent	data	and	functions	to
represent	behavior.	Subclasses	can	override,	or	provide	custom	implementations
for,	both.
Room	has	two	functions,	description	and	load.	TownSquare	should
provide	its	own	implementation	of	load	to	express	the	joy	that	comes	with	your
hero	entering	the	town	square.
Override	load	in	TownSquare	using	the	override	keyword:

Listing	14.5		Declaring	the	TownSquare	class	(Room.kt)
open	class	Room(val	name:	String)	{

				fun	description()	=	"Room:	$name"

				fun	load()	=	"Nothing	much	to	see	here..."

}

class	TownSquare	:	Room("Town	Square")	{

				override	fun	load()	=	"The	villagers	rally	and	cheer	as	you	enter!"

}

When	you	override	load,	IntelliJ	complains	about	your	override	keyword
(Figure	14.1):

Figure	14.1		load	cannot	be	overridden

IntelliJ	is	right,	as	always:	There	is	a	problem.	In	addition	to	Room	being	marked
open,	load	must	also	be	marked	open	for	you	to	override	it.
Mark	the	load	function	in	the	Room	class	as	a	function	that	can	be	overridden.

Listing	14.6		Declaring	an	open	function	(Room.kt)
open	class	Room(val	name:	String)	{

				fun	description()	=	"Room:	$name"

				open	fun	load()	=	"Nothing	much	to	see	here..."

}

class	TownSquare	:	Room("Town	Square")	{

				override	fun	load()	=	"The	villagers	rally	and	cheer	as	you	enter!"

}

Now,	instead	of	printing	a	default	statement	(Nothing	much	to	see	here...),
an	instance	of	TownSquare	will	display	the	cheering	villagers	when	the	hero
enters	and	load	is	called.
In	Chapter	12,	you	saw	how	to	control	the	visibility	of	properties	and	functions
using	visibility	modifiers.	Properties	and	functions	are	public	by	default.	You
can	also	make	them	visible	only	within	the	class	where	they	are	defined	by
setting	visibility	to	private.
Protected	visibility	is	a	third	option	that	restricts	visibility	to	the	class	in	which	a
property	or	function	is	defined	or	to	any	subclasses	of	that	class.
Add	a	new	protected	property	called	dangerLevel	to	Room.

Listing	14.7		Declaring	a	protected	property	(Room.kt)
open	class	Room(val	name:	String)	{

				protected	open	val	dangerLevel	=	5

				fun	description()	=	"Room:	$name\n"	+

												"Danger	level:	$dangerLevel"

				open	fun	load()	=	"Nothing	much	to	see	here..."

}

class	TownSquare	:	Room("Town	Square")	{

				override	fun	load()	=	"The	villagers	rally	and	cheer	as	you	enter!"

}

dangerLevel	holds	a	rating	of	how	dangerous	a	room	is	on	a	scale	of	1	to	10.
It	is	printed	to	the	console	so	that	the	player	knows	what	level	of	suspense	to
expect	in	each	room.	The	average	danger	level	is	5,	so	that	is	the	default	value
assigned	to	the	Room	class.
Subclasses	of	Room	can	modify	dangerLevel	to	reflect	how	dangerous	(or
not)	a	particular	room	is,	but	dangerLevel	should	otherwise	be	encapsulated
to	Room	and	its	subclasses.	This	scenario	is	perfect	for	the	protected	keyword:
You	want	to	expose	a	property	only	to	the	class	where	the	property	is	defined
and	its	subclasses.
To	override	the	dangerLevel	property	in	TownSquare,	you	use	the
override	keyword,	just	as	you	did	with	the	load	function.
The	danger	level	of	a	NyetHack	town	square	is	three	points	below	average.	To
express	this	logic,	you	need	to	be	able	to	reference	the	average	danger	level	of	a
Room.	You	can	reference	a	class’s	superclass	using	the	super	keyword.	From
there,	you	have	access	to	any	public	or	protected	properties	or	functions,
including,	in	this	case,	dangerLevel.
Override	dangerLevel	in	TownSquare	to	indicate	that	the	danger	level	of	a

town	square	is	three	points	below	the	average	room.

Listing	14.8		Overriding	dangerLevel	(Room.kt)
open	class	Room(val	name:	String)	{

				protected	open	val	dangerLevel	=	5

				fun	description()	=	"Room:	$name\n"	+

												"Danger	level:	$dangerLevel"

				open	fun	load()	=	"Nothing	much	to	see	here..."

}

class	TownSquare	:	Room("Town	Square")	{

				override	val	dangerLevel	=	super.dangerLevel	-	3

				override	fun	load()	=	"The	villagers	rally	and	cheer	as	you	enter!"

}

Subclasses	are	not	limited	to	overriding	the	properties	and	functions	of	their
superclass.	They	can	also	define	their	own.
NyetHack	town	squares,	for	example,	are	unique	among	rooms	in	that	they	have
bells	that	chime	to	announce	important	happenings.	Add	a	private	function
called	ringBell	and	a	private	variable	called	bellSound	to	TownSquare.
bellSound	holds	a	string	representing	the	sound	that	the	bell	makes,	and
ringBell,	called	in	the	load	function,	returns	a	string	to	announce	your	entry
to	the	town	square.

Listing	14.9		Adding	a	new	property	and	function	to	a	subclass
(Room.kt)
open	class	Room(val	name:	String)	{

				protected	open	val	dangerLevel	=	5

				fun	description()	=	"Room:	$name\n"	+

												"Danger	level:	$dangerLevel"

				open	fun	load()	=	"Nothing	much	to	see	here..."

}

class	TownSquare	:	Room("Town	Square")	{

				override	val	dangerLevel	=	super.dangerLevel	-	3

				private	var	bellSound	=	"GWONG"

				override	fun	load()	=	"The	villagers	rally	and	cheer	as	you	enter!\n${ringBell()}"

				private	fun	ringBell()	=	"The	bell	tower	announces	your	arrival.	$bellSound"

}

TownSquare	includes	properties	and	functions	defined	both	in	TownSquare
and	in	Room.	Room,	however,	does	not	include	all	properties	and	functions
declared	in	TownSquare,	so	it	does	not	have	access	to	ringBell.
Test	the	load	function	by	updating	the	currentRoom	variable	in	Game.kt
to	create	an	instance	of	TownSquare.

Listing	14.10		Calling	subclass	function	implementation	(Game.kt)
fun	main(args:	Array<String>)	{

				val	player	=	Player("Madrigal")

				player.castFireball()

				var	currentRoom:	Room	=	Room("Foyer")TownSquare()

				println(currentRoom.description())

				println(currentRoom.load())

				//	Player	status

				printPlayerStatus(player)

}

...

Run	Game.kt	again.	You	should	see	the	following	output	to	the	console:
				A	glass	of	Fireball	springs	into	existence.	Delicious!	(x2)

				Room:	Town	Square

				Danger	level:	2

				The	villagers	rally	and	cheer	as	you	enter!

				The	bell	tower	announces	your	arrival.	GWONG

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

Notice	that	the	currentRoom	variable’s	type	in	Game.kt	is	still	Room,
despite	the	fact	that	the	instance	itself	is	a	TownSquare,	and	its	load	function
has	been	changed	substantially	from	Room’s	implementation.	You	explicitly
declared	the	type	of	currentRoom	to	be	Room	so	that	it	can	hold	any	type	of
Room,	even	though	you	assigned	currentRoom	with	a	TownSquare
constructor.
Since	TownSquare	subclasses	Room,	this	is	completely	valid	syntax.
You	can	also	subclass	a	subclass,	creating	a	deeper	hierarchy.	If	you	created	a
subclass	of	TownSquare	called	Piazza,	then	Piazza	would	also	be	of	type
TownSquare	and	of	type	Room.	The	only	limit	to	the	number	of	levels	that
you	can	subclass	is	what	makes	sense	for	the	organization	of	your	codebase.
(And,	of	course,	your	imagination.)
The	different	versions	of	load,	based	on	the	class	they	are	called	on,	are	an
example	of	a	concept	in	object-oriented	programming	called	polymorphism.
Polymorphism	is	a	strategy	for	simplifying	the	structure	of	your	program.	It
allows	you	to	reuse	functions	for	common	sets	of	features	across	groups	of
classes	(like	what	happens	when	a	player	enters	a	room)	and	also	to	customize
the	behavior	for	the	unique	needs	of	a	class	(like	the	cheering	crowd	in
TownSquare).	When	you	subclassed	Room	to	define	TownSquare,	you
defined	a	new	load	implementation	that	overrides	Room’s	version.	Now,	when
currentRoom’s	load	function	is	called,	TownSquare’s	version	of	load
will	be	used	–	and	no	changes	to	Game.kt	were	required.
Consider	the	following	function	header.
				fun	drawBlueprint(room:	Room)

drawBlueprint	accepts	a	Room	as	its	parameter.	It	can	also	accept	any
subclass	of	Room,	because	any	subclass	will	have	at	least	the	capabilities	that

Room	does.	Polymorphism	allows	you	to	write	functions	that	care	only	about
what	a	class	can	do,	not	how	it	is	implemented.
Opening	up	functions	to	be	overridden	is	useful	–	but	it	does	come	with	a	side
effect.	When	you	override	a	function	in	Kotlin,	the	overriding	function	in	the
subclass	is,	by	default,	open	to	being	overridden	(as	long	as	the	subclass	is
marked	open).
What	if	you	do	not	want	this	to	be	the	case?	In	the	TownSquare	example,	say
that	you	wanted	any	subclass	of	TownSquare	to	be	able	to	customize	its
description	but	not	how	it	loads.
The	final	keyword	allows	you	to	specify	that	a	function	cannot	be	overridden.
Open	TownSquare	and	make	its	load	function	final	so	that	no	one	can
override	the	fact	that	villagers	cheer	when	you	enter	a	town	square.

Listing	14.11		Declaring	a	function	to	be	final	(Room.kt)
open	class	Room(val	name:	String)	{

				protected	open	val	dangerLevel	=	5

				fun	description()	=	"Room:	$name\n"	+

												"Danger	level:	$dangerLevel"

				open	fun	load()	=	"Nothing	much	to	see	here..."

}

open	class	TownSquare	:	Room("Town	Square")	{

				override	val	dangerLevel	=	super.dangerLevel	-	3

				private	var	bellSound	=	"GWONG"

				final	override	fun	load()	=

												"The	villagers	rally	and	cheer	as	you	enter!\n${ringBell()}"

				private	fun	ringBell()	=	"The	bell	tower	announces	your	arrival.	$bellSound"

}

Now,	any	subclass	of	TownSquare	could	provide	an	overriding	function	for
description	but	not	load,	thanks	to	the	final	keyword.
As	you	saw	when	you	first	tried	to	override	load,	functions	are	final	by	default
unless	they	are	inherited	from	an	open	class.	Adding	the	final	keyword	to	an
inherited	function	will	ensure	that	it	cannot	be	overridden,	even	if	the	class	in
which	it	is	defined	is	open.
You	have	now	seen	how	to	use	inheritance	to	share	data	and	behavior	between
classes.	You	have	also	seen	how	to	use	open,	final,	and	override	to	customize
what	can	and	cannot	be	shared.	By	requiring	the	explicit	use	of	the	open	and
override	keywords,	Kotlin	requires	you	to	opt	in	to	inheritance.	This	reduces
the	chances	of	exposing	classes	that	were	not	meant	to	be	subclassed	and
prevents	you	–	or	others	–	from	overriding	functions	that	were	never	meant	to	be
overridden.

Type	Checking
NyetHack	is	not	a	terribly	complex	program.	But	a	production	codebase	can
include	many	classes	and	subclasses.	Despite	your	best	efforts	at	clear	naming,
you	may	find	yourself	from	time	to	time	unsure	of	the	type	of	a	variable	at
runtime.	The	is	operator	is	a	useful	tool	that	lets	you	query	whether	an	object	is
of	a	certain	type.
Try	this	out	in	the	Kotlin	REPL.	Instantiate	a	Room.	(You	may	need	to	import
Room	into	the	REPL.)

Listing	14.12		Instantiating	a	Room	(REPL)
var	room	=	Room("Foyer")

Next,	query	whether	room	is	an	instance	of	the	Room	class	using	the	is
operator.

Listing	14.13		Checking	room	is	Room	(REPL)
room	is	Room

true

The	type	of	the	object	on	the	lefthand	side	of	the	is	operator	is	checked	against
the	type	on	the	righthand	side.	The	expression	returns	a	Boolean:	true	if	the
types	match,	false	otherwise.
Try	another	query:	Check	whether	room	is	an	instance	of	the	TownSquare
class.

Listing	14.14		Checking	room	is	TownSquare	(REPL)
room	is	TownSquare

false

room	is	of	type	Room,	which	is	a	parent	class	to	TownSquare.	But	room	is
not	itself	a	TownSquare.
Try	another	variable	–	this	time,	a	TownSquare.

Listing	14.15		Checking	townSquare	is	TownSquare	(REPL)
var	townSquare	=	TownSquare()

townSquare	is	TownSquare

true

Listing	14.16		Checking	townSquare	is	Room	(REPL)
townSquare	is	Room

true

townSquare	is	of	type	TownSquare	and	also	of	type	Room.	This,
remember,	is	the	idea	that	makes	polymorphism	possible.
If	you	need	to	know	the	type	of	a	variable,	type	checking	is	a	straightforward
way	to	find	out.	You	can	build	branching	logic	using	type	checking	and
conditionals	–	but	be	sure	to	bear	in	mind	how	polymorphism	will	affect	that
logic.
For	example,	create	a	when	expression	in	the	Kotlin	REPL	that	returns	Room	or
TownSquare	depending	on	the	type	of	a	variable.

Listing	14.17		Type	checking	as	a	branching	condition	(REPL)
var	townSquare	=	TownSquare()

var	className	=	when(townSquare)	{

				is	TownSquare	->	"TownSquare"

				is	Room	->	"Room"

				else	->	throw	IllegalArgumentException()

}

print(className)

The	first	branch	in	this	when	expression	evaluates	as	true,	because
townSquare	is	of	type	TownSquare.	The	second	branch	is	also	true,
because	townSquare	is	also	of	type	Room	–	but	that	does	not	matter,	because
the	first	branch	was	already	satisfied.
Run	this	code,	and	TownSquare	is	printed	to	the	console.
Now	reverse	the	order	of	the	branches:

Listing	14.18		Type	checking	with	reversed	conditions	(REPL)
var	townSquare	=	TownSquare()

var	className	=	when(townSquare)	{

				is	TownSquare	->	"TownSquare"

				is	Room	->	"Room"

				is	TownSquare	->	"TownSquare"

				else	->	throw	IllegalArgumentException()

}

print(className)

Run	this	code,	and	this	time	Room	is	printed	to	the	console,	because	the	first
branch	evaluates	to	true.
When	branching	conditionally	on	object	type,	order	matters.

The	Kotlin	Type	Hierarchy
Every	class	in	Kotlin	descends	from	a	common	superclass,	known	as	Any,
without	you	having	to	explicitly	subclass	it	in	your	code	(Figure	14.2).

Figure	14.2		TownSquare	type	hierarchy

For	example,	a	Room	and	a	Player	are	both	implicitly	children	of	Any,	which
is	why	you	can	define	functions	that	will	accept	either	of	them	as	parameters.	If
you	have	worked	with	Java,	this	is	similar	to	how	classes	in	Java	subclass	the
java.lang.Object	class	implicitly.
Consider	the	following	example	of	a	function	called
printIsSourceOfBlessings.	printIsSourceOfBlessings	takes
in	an	argument	of	type	Any	and	uses	type	checking	to	branch	conditionally	on
the	type	of	the	argument	passed	to	it.	It	finishes	by	printing	a	statement	based	on
the	result.	There	are	some	new	concepts	in	this	code	that	we	will	discuss	over	the
next	couple	of	sections.
				fun	printIsSourceOfBlessings(any:	Any)	{

								val	isSourceOfBlessings	=	if	(any	is	Player)	{

												any.isBlessed

								}	else	{

												(any	as	Room).name	==	"Fount	of	Blessings"

								}

								println("$any	is	a	source	of	blessings:	$isSourceOfBlessings")

				}

In	NyetHack,	only	two	things	are	a	source	of	blessings:	a	blessed	player	or	the
room	called	Fount	of	Blessings.
Because	every	object	is	a	subclass	of	Any,	you	can	pass	arguments	of	whatever
type	you	want	to	printIsSourceOfBlessings.	This	flexibility	is	useful,
but	it	comes	at	the	cost	of	not	being	able	to	immediately	work	with	the
argument.	This	example	employs	type	casting	to	get	a	handle	on	the	slippery
Any	argument.

Type	casting

A	type	check	may	not	always	return	a	useful	answer.	For	example,	the	any
parameter	in	the	printIsSourceOfBlessings	function	tells	you	that	the
argument	passed	will	be	of	type	Any,	but	the	Any	type	is	unspecific	about	what
you	can	do	with	that	argument.
Type	casting	allows	you	to	treat	an	object	as	if	it	were	an	instance	of	a	different
type.	This	gives	you	the	power	to	do	anything	with	an	object	that	you	would	do
with	an	object	of	the	type	you	specify	(such	as	call	functions	on	it).
In	the	printIsSourceOfBlessings	function,	the	conditional	expression
uses	a	type	check	to	see	whether	any	is	of	type	Player.	If	it	is	not,	then	the
code	on	the	else	branch	will	be	executed.
The	else	branch	references	a	name	variable:
				fun	printIsSourceOfBlessings(any:	Any)	{

								val	isSourceOfBlessings	=	if	(any	is	Player)	{

												any.isBlessed

								}	else	{

												(any	as	Room).name	==	"Fount	of	Blessings"

								}

								println("$any	is	a	source	of	blessings:	$isSourceOfBlessings")

				}

The	as	operator	denotes	a	type	cast.	This	cast	says,	“Treat	any	as	if	it	were	of
type	Room	for	the	purposes	of	this	expression.”	The	expression	in	this	case	is	a
reference	to	Room’s	name	property,	so	that	it	can	be	compared	against	the	string
"Fount	of	Blessings".
Casting	is	powerful	and	comes	with	great	responsibility;	you	have	to	use	it
safely.	An	example	of	a	safe	cast	would	be	casting	from	an	Int	to	a	more
precise	number	type	like	Long.
The	cast	in	printIsSourceOfBlessings	works	–	but	it	is	not	safe.	Why

not?	Room,	Player,	and	TownSquare	are	the	only	three	classes	in	NyetHack,
so	isn’t	it	valid	to	assume	that	if	any	is	not	of	type	Player,	then	it	must	be	of
type	Room?
It	is	–	at	the	moment.	But	what	happens	when	a	new	class	is	added	to	NyetHack?
Your	cast	will	fail	if	the	type	being	cast	to	is	incompatible	with	the	type	being
cast	from.	A	String	has	nothing	to	do	with	an	Int,	for	example,	so	a	cast
from	String	to	Int	would	cause	a	ClassCastException	that	may	crash
your	program.	(Bear	in	mind	that	a	cast	is	different	from	a	conversion.	Some
strings	can	be	converted	to	integers;	no	String	can	be	cast	to	an	Int.)
Casts	allow	you	to	attempt	to	cast	any	variable	to	any	type,	but	it	is	up	to	you	to
make	sure	that	you	are	confident	in	the	type	of	what	you	are	casting	from	and
casting	to.	If	you	must	make	an	unsafe	cast,	then	surrounding	it	with	a
try/catch	block	is	a	good	idea.	It	is	best,	however,	to	avoid	type	casting	unless
you	are	sure	that	the	cast	will	succeed.

Smart	casting

One	way	to	be	sure	that	a	cast	will	succeed	is	by	first	checking	the	type	of	the
variable	being	cast.	Return	to	the	first	branch	of	the	conditional	expression	in
printIsSourceOfBlessings.
				fun	printIsSourceOfBlessings(any:	Any)	{

								val	isSourceOfBlessings	=	if	(any	is	Player)	{

												any.isBlessed

								}	else	{

												(any	as	Room).name	==	"Fount	of	Blessings"

								}

								println("$any	is	a	source	of	blessings:	$isSourceOfBlessings")

				}

The	condition	for	entering	this	branch	is	for	any	to	be	of	type	Player.	Inside
the	branch,	a	reference	to	the	isBlessed	property	is	made	on	any.
isBlessed	is	a	property	defined	on	Player,	not	Any,	so	how	is	this	possible
without	a	cast?
There	is,	in	fact,	a	cast	happening	here	–	a	smart	cast.	You	previously	saw	smart
casts	in	action	in	Chapter	6.
The	Kotlin	compiler	is	smart	enough	to	recognize	that	if	the	any	is	Player	type
check	is	successful	for	a	branch,	then	any	can	be	treated	as	a	Player	within
that	branch.	Because	it	knows	that	casting	any	to	Player	will	always	succeed
in	this	branch,	the	compiler	lets	you	drop	the	cast	syntax	and	just	reference
isBlessed,	a	Player	property,	on	any.

Smart	casting	is	an	example	of	how	the	intelligence	of	the	Kotlin	compiler
results	in	a	more	concise	syntax.
In	this	chapter	you	have	seen	how	to	use	subclassing	to	share	behavior	between
classes.	In	the	next	chapter,	you	will	work	with	more	types	of	classes,	including
data	classes,	enums,	and	object	–	Kotlin’s	single-instance	class	–	as	you	add	a
game	loop	to	NyetHack.

For	the	More	Curious:	Any
When	you	print	the	value	of	a	variable	to	the	console,	a	function	called
toString	is	called	to	determine	what	that	value	looks	like	in	the	console.	For
some	types,	this	is	easy	–	for	example,	the	value	of	a	string	makes	sense	to
represent	a	String	value.	For	other	types,	this	is	a	bit	less	clear.
Any	provides	abstract	definitions	for	common	functions	like	toString,	which
are	backed	by	an	implementation	found	on	the	platform	that	your	project	targets.
A	peek	at	the	source	for	the	Any	class	yields	the	following:
				/**

				*	The	root	of	the	Kotlin	class	hierarchy.

				*	Every	Kotlin	class	has	[Any]	as	a	superclass.

				*/

				public	open	class	Any	{

								public	open	operator	fun	equals(other:	Any?):	Boolean

								public	open	fun	hashCode():	Int

								public	open	fun	toString():	String

				}

Notice	that	no	definition	of	the	toString	function	is	contained	in	the	class
definition.	So	where	is	it	defined,	and	what	is	returned	when	the	toString
function	for,	say,	a	Player	is	called?
Recall	that	the	last	line	of	printIsSourceOfBlessings	prints	to	the
console:
				fun	printIsSourceOfBlessings(any:	Any)	{

								val	isSourceOfBlessings	=	if	(any	is	Player)	{

												any.isBlessed

								}	else	{

												(any	as	Room).name	==	"Fount	of	Blessings"

								}

								println("$any	is	a	source	of	blessings:	$isSourceOfBlessings")

				}

The	result	of	calling	printIsSourceOfBlessings	and	passing	it	a	blessed
player	looks	something	like	this:
				Player@71efa55d	is	a	source	of	blessings:	true

Player@71efa55d	is	the	result	of	the	default	implementation	of	toString	on
the	Any	class.	Kotlin	uses	the	JVM’s	java.lang.Object.toString
implementation	because	you	targeted	the	JVM	for	compilation.	You	can	override
toString	in	your	Player	class	to	return	something	more	human-readable.
The	Any	type	is	one	of	the	ways	that	Kotlin	allows	for	platform	independence	–
it	provides	an	abstraction	above	the	class	that	represents	a	common	superclass	on
each	specific	platform,	like	the	JVM.	So	while	Any’s	toString

implementation	is	java.lang.Object.toString	when	targeting	the
JVM,	it	could	be	something	entirely	different	when	compiling	down	to
JavaScript.	This	abstraction	means	that	you	do	not	need	to	know	the	details	of
each	platform	that	your	code	could	be	run	on.	Instead,	you	can	simply	rely	on
the	Any	type.

15	
Objects

In	the	last	three	chapters,	you	learned	how	to	leverage	object-oriented
programming	principles	to	build	meaningful	relationships	between	objects.
Despite	the	variety	in	how	they	can	be	initialized,	all	of	the	classes	that	you	have
worked	with	thus	far	have	been	declared	with	the	same	class	keyword.	This
chapter	introduces	object	declarations	as	well	as	other	types	of	classes:
nested	classes,	data	classes,	and	enum	classes.	As	you	will	see,	each	has
its	own	declaration	syntax	and	unique	characteristics.
By	the	end	of	this	chapter,	your	hero	will	be	able	to	walk	from	room	to	room
around	the	world	of	NyetHack,	thanks	to	all	the	work	you	have	put	into	the
game.	And	your	program	will	be	well	organized	to	support	further	enhancements
coming	in	later	chapters.

The	object	Keyword
In	Chapter	13,	you	learned	about	constructing	classes.	A	class	constructor
returns	an	instance	of	a	class,	and	you	can	call	the	constructor	any	number	of
times	to	create	any	number	of	instances.
For	example,	NyetHack	can	have	any	number	of	players,	because	Player’s
constructor	can	be	called	as	many	times	as	you	would	like.	For	Player,	this	is
desirable,	because	the	world	of	NyetHack	is	big	enough	for	multiple	players.
But	suppose	you	wanted	a	Game	class	to	keep	track	of	the	state	of	the	game.
Having	multiple	instances	of	Game	would	be	a	problem,	because	they	could
each	hold	their	own	states,	which	could	potentially	get	out	of	sync	with	each
other.
If	you	need	to	hold	on	to	a	single	instance	with	state	that	is	consistent	throughout
the	time	that	your	program	is	running,	consider	defining	a	singleton.	With	the
object	keyword,	you	specify	that	a	class	will	be	limited	to	a	single	instance	–	a
singleton.	The	first	time	you	access	an	object,	it	is	instantiated	for	you.	That
same	instance	will	persist	as	long	as	your	program	is	running,	and	each
subsequent	access	will	then	return	the	original	instance.
There	are	three	ways	to	use	the	object	keyword:	object	declarations,	object
expressions,	and	companion	objects.	We	will	outline	the	uses	for	each	in	the	next
three	sections.

Object	declarations

Object	declarations	are	useful	for	organization	and	state	management,	especially
when	you	need	to	maintain	some	state	consistently	throughout	the	lifespan	of
your	program.	You	are	going	to	define	a	Game	object	to	do	just	that.
Defining	a	Game	class	using	an	object	declaration	will	also	give	you	a
convenient	place	to	define	a	game	loop	and	will	allow	you	to	clean	up	the	main
function	in	Game.kt.	And	breaking	code	out	into	classes	and	object
declarations	furthers	your	quest	for	a	codebase	that	remains	organized	at	scale.
Define	a	Game	object	in	Game.kt	using	an	object	declaration.

Listing	15.1		Declaring	the	Game	object	(Game.kt)

fun	main(args:	Array<String>)	{

				...

}

private	fun	printPlayerStatus(player:	Player)	{

				println("(Aura:	${player.auraColor()})	"	+

												"(Blessed:	${if	(player.isBlessed)	"YES"	else	"NO"})")

				println("${player.name}	${player.formatHealthStatus()}")

}

object	Game	{

}

The	main	function	in	Game.kt	should	now	serve	exclusively	to	kick	off
gameplay.	All	game	logic	will	be	encapsulated	in	the	Game	object,	of	which
there	will	be	only	one	instance.
Because	an	object	declaration	is	instantiated	for	you,	you	do	not	add	a	custom
constructor	with	code	to	be	called	at	initialization.	Instead,	you	need	an
initializer	block	for	any	code	that	you	want	to	be	called	when	your	object	is
initialized.	Add	one	to	the	Game	object	with	a	greeting	to	be	printed	to	the
console	when	the	object	is	instantiated.

Listing	15.2		Adding	an	init	block	to	Game	(Game.kt)
fun	main(args:	Array<String>)	{

				...

}

private	fun	printPlayerStatus(player:	Player)	{

				println("(Aura:	${player.auraColor()})	"	+

												"(Blessed:	${if	(player.isBlessed)	"YES"	else	"NO"})")

				println("${player.name}	${player.formatHealthStatus()}")

}

object	Game	{

				init	{

								println("Welcome,	adventurer.")

				}

}

Run	Game.kt.	Your	welcome	message	does	not	print,	because	Game	has	not
been	initialized.	And	Game	has	not	been	initialized	because	it	has	not	been
referenced	yet.
An	object	declaration	is	referenced	by	one	of	its	properties	or	functions.	To
trigger	Game’s	initialization,	you	will	define	and	call	a	function	called	play.
play	will	serve	as	the	home	of	the	game	loop	for	NyetHack.
Add	play	to	Game	and	call	it	from	main.	When	you	call	a	function	defined	in
an	object	declaration,	you	call	it	using	the	name	of	the	object	in	which	it	is
defined	–	not	on	an	instance	of	a	class,	as	you	do	for	other	class	functions.

Listing	15.3		Calling	a	function	defined	on	an	object	declaration
(Game.kt)
fun	main(args:	Array<String>)	{

				...

				//	Player	status

				printPlayerStatus(player)

				Game.play()

}

private	fun	printPlayerStatus(player:	Player)	{

				println("(Aura:	${player.auraColor()})	"	+

												"(Blessed:	${if	(player.isBlessed)	"YES"	else	"NO"})")

				println("${player.name}	${player.formatHealthStatus()}")

}

object	Game	{

				init	{

								println("Welcome,	adventurer.")

				}

				fun	play()	{

								while	(true)	{

												//	Play	NyetHack

								}

				}

}

The	Game	object	will	do	more	than	encapsulate	the	game	state;	it	will	also	hold
the	game	loop	in	order	to	take	commands	from	the	player.	Your	game	loop	takes
the	form	of	a	while	loop	that	will	make	NyetHack	more	interactive.	The	while
loop	has	a	simple	condition:	true.	This	will	keep	the	game	loop	running	as	long
as	your	application	is	running.
For	now,	play	does	not	do	anything.	Eventually,	it	will	define	NyetHack’s
gameplay	in	terms	of	rounds:	For	each	round,	the	player’s	status	and	other
information	describing	the	world	will	be	printed	to	the	console.	Then,	user	input
will	be	accepted	via	the	readLine	function.
Take	a	look	at	the	game	logic	that	is	in	main	and	think	about	where	it	should	go
in	Game.	For	example,	you	will	not	want	to	create	a	new	Player	instance	or	a
new	currentRoom	at	the	beginning	of	each	round,	so	these	aspects	of	game
logic	belong	in	Game,	but	not	in	play.	Declare	player	and	currentRoom
as	private	properties	of	Game.
Next,	move	the	call	to	castFireball	to	Game’s	initializer	block	for	a	fun
start	to	each	game	of	NyetHack,	and	move	the	definition	of
printPlayerStatus	to	Game	as	well.	Make	printPlayerStatus
private,	like	player	and	currentRoom,	to	encapsulate	it	within	Game.

Listing	15.4		Encapsulating	properties	and	functions	within	the
object	declaration	(Game.kt)
fun	main(args:	Array<String>)	{

				val	player	=	Player("Madrigal")

				player.castFireball()

				var	currentRoom:	Room	=	TownSquare()

				println(currentRoom.description())

				println(currentRoom.load())

				//	Player	status

				printPlayerStatus(player)

				Game.play()

}

private	fun	printPlayerStatus(player:	Player)	{

				println("(Aura:	${player.auraColor()})	"	+

												"(Blessed:	${if	(player.isBlessed)	"YES"	else	"NO"})")

				println("${player.name}	${player.formatHealthStatus()}")

}

object	Game	{

				private	val	player	=	Player("Madrigal")

				private	var	currentRoom:	Room	=	TownSquare()

				init	{

								println("Welcome,	adventurer.")

								player.castFireball()

				}

				fun	play()	{

								while	(true)	{

												//	Play	NyetHack

								}

				}

				private	fun	printPlayerStatus(player:	Player)	{

								println("(Aura:	${player.auraColor()})	"	+

																"(Blessed:	${if	(player.isBlessed)	"YES"	else	"NO"})")

								println("${player.name}	${player.formatHealthStatus()}")

				}

}

Moving	code	from	the	main	function	in	Game.kt	to	the	play	function	in
Game	keeps	the	code	that	is	essential	for	setting	up	the	game	loop	encapsulated
within	Game.
What	is	left	in	main?	Three	sets	of	information	are	printed:	currentRoom’s
description	and	load	statement	and	the	player’s	status.	These	things	should	be
printed	at	the	beginning	of	each	round	of	gameplay,	so	move	them	to	the	game
loop.	Leave	the	call	to	Game.play	in	main.

Listing	15.5		Printing	status	in	the	game	loop	(Game.kt)
fun	main(args:	Array<String>)	{

				println(currentRoom.description())

				println(currentRoom.load())

				//	Player	status

				printPlayerStatus(player)

				Game.play()

}

object	Game	{

				private	val	player	=	Player("Madrigal")

				private	var	currentRoom:	Room	=	TownSquare()

				init	{

								println("Welcome,	adventurer.")

								player.castFireball()

				}

				fun	play()	{

								while	(true)	{

												//	Play	NyetHack

												println(currentRoom.description())

												println(currentRoom.load())

												//	Player	status

												printPlayerStatus(player)

								}

				}

				private	fun	printPlayerStatus(player:	Player)	{

								println("(Aura:	${player.auraColor()})	"	+

																"(Blessed:	${if	(player.isBlessed)	"YES"	else	"NO"})")

								println("${player.name}	${player.formatHealthStatus()}")

				}

}

If	you	were	to	run	Game.kt	right	now,	it	would	loop	indefinitely,	as	there	is
nothing	to	stop	the	loop.	The	last	step	for	the	game	loop,	at	least	for	now,	is	to
accept	user	input	from	the	console	using	the	readLine	function.	You	may
remember	readLine	from	Chapter	6:	It	pauses	execution	while	it	waits	for
user	input	in	the	console.	Once	the	return	character	is	received,	it	resumes
execution,	returning	the	input	that	was	collected.
Add	a	call	to	readLine	in	your	game	loop	to	accept	user	input.

Listing	15.6		Accepting	user	input	(Game.kt)
...

object	Game	{

				...

				fun	play()	{

								while	(true)	{

												println(currentRoom.description())

												println(currentRoom.load())

												//	Player	status

												printPlayerStatus(player)

												print(">	Enter	your	command:	")

												println("Last	command:	${readLine()}")

								}

				}

				...

}

Try	running	Game.kt	now	and	entering	a	command:
				Welcome,	adventurer.

				A	glass	of	Fireball	springs	into	existence.	Delicious!	(x2)

				Room:	Town	Square

				Danger	level:	2

				The	villagers	rally	and	cheer	as	you	enter!

				The	bell	tower	announces	your	arrival.	GWONG

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

				>	Enter	your	command:	fight

				Last	command:	fight

				Room:	Town	Square

				Danger	level:	2

				The	villagers	rally	and	cheer	as	you	enter!

				The	bell	tower	announces	your	arrival.	GWONG

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

				>	Enter	your	command:

Did	you	notice	that	the	entered	text	is	displayed	back	to	you?	Excellent	–	new
input	is	being	scanned	into	the	game.

Object	expressions

Defining	a	class	using	the	class	keyword	is	useful	in	that	it	establishes	a	new

concept	in	your	codebase.	By	writing	a	class	called	Room,	you	communicate	that
rooms	exist	in	NyetHack.	And	by	writing	a	subclass	of	Room	called
TownSquare,	you	establish	that	there	can	be	specific	types	of	rooms	called
town	squares.
But	defining	a	new,	named	class	is	not	always	necessary.	Perhaps	you	need	a
class	instance	that	is	a	variation	of	an	existing	class	and	will	be	used	for	a	one-
off	purpose.	In	fact,	it	will	be	so	temporary	that	it	does	not	even	require	a	name.
This	is	another	use	for	the	object	keyword:	an	object	expression.	Look	at	the
following	example:
				val	abandonedTownSquare	=	object	:	TownSquare()	{

								override	fun	load()	=	"You	anticipate	applause,	but	no	one	is	here..."

				}

This	object	expression	is	a	subclass	of	TownSquare	where	no	one	cheers	your
entrance.	In	the	body	of	this	declaration,	the	properties	and	functions	defined	in
TownSquare	can	be	overridden	–	and	new	properties	and	functions	can	be
added	–	to	define	the	data	and	behavior	of	the	anonymous	class.
This	class	still	adheres	to	the	rules	of	the	object	keyword	in	that	there	will	only
ever	be	one	instance	of	it	alive	at	a	time,	but	it	is	significantly	smaller	in	scope
than	a	named	singleton.	As	a	side	effect,	an	object	expression	takes	on	some	of
the	attributes	of	where	it	is	declared.	If	declared	at	the	file	level,	an	object
expression	is	initialized	immediately.	If	declared	within	another	class,	it	is
initialized	when	its	enclosing	class	is	initialized.

Companion	objects

If	you	would	like	to	tie	the	initialization	of	an	object	to	a	class	instance,	there	is
another	option	for	you:	a	companion	object.	A	companion	object	is	declared
within	another	class	declaration	using	the	companion	modifier.	A	class	can	have
no	more	than	one	companion	object.
There	are	two	cases	in	which	a	companion	object	will	be	initialized.	First,	a
companion	object	is	initialized	when	its	enclosing	class	is	initialized.	This	makes
it	a	good	place	for	singleton	data	that	has	a	contextual	connection	to	a	class
definition.	Second,	a	companion	object	is	initialized	when	one	of	its	properties
or	functions	is	accessed	directly.
Because	a	companion	object	is	still	an	object	declaration,	you	do	not	need	an
instance	of	a	class	to	use	any	of	the	functions	or	properties	defined	in	it.	Take	a
look	at	the	following	example	of	a	companion	object	defined	within	a	class

called	PremadeWorldMap:
				class	PremadeWorldMap	{

								...

								companion	object	{

												private	const	val	MAPS_FILEPATH	=	"nyethack.maps"

												fun	load()	=	File(MAPS_FILEPATH).readBytes()

								}

				}

PremadeWorldMap	has	a	companion	object	with	one	function	called	load.	If
you	were	to	call	load	from	elsewhere	in	your	codebase,	you	would	do	so
without	needing	an	instance	of	PremadeWorldMap,	like	so:
				PremadeWorldMap.load()

The	contents	of	this	companion	object	will	not	be	loaded	until	either
PremadeWorldMap	is	initialized	or	load	is	called.	And	no	matter	how	many
times	PremadeWorldMap	is	instantiated,	there	will	only	ever	be	one	instance
of	its	companion	object.
Understanding	the	differences	in	how	and	when	object	declarations,	object
expressions,	and	companion	objects	are	instantiated	is	key	in	understanding
when	to	use	each	of	them	effectively.	And	using	them	effectively	helps	you	write
well-organized	code	that	scales	well.

Nested	Classes
Not	all	classes	defined	within	other	classes	are	declared	without	a	name.	You	can
also	use	the	class	keyword	to	define	a	named	class	nested	inside	of	another
class.	In	this	section,	you	will	define	a	new	GameInput	class	nested	within	the
Game	object.
Now	that	you	have	defined	a	game	loop,	you	will	want	to	apply	some	control
over	the	user	input	passed	to	your	game.	NyetHack	is	a	text	adventure,	driven	by
the	user	entering	commands	to	the	readLine	function.	There	are	two	things
you	need	to	ensure	about	the	user’s	commands:	First,	that	they	are	valid
commands.	Second,	that	commands	with	multiple	parts,	like	“move	east,”	are
handled	correctly.	You	want	“move”	to	trigger	a	move	function	and	“east”	to
provide	the	move	function	a	direction	to	move	in.
You	are	going	to	address	these	two	requirements	next,	starting	with	separating
multipart	commands.	The	GameInput	class	will	provide	a	place	for	the	logic
that	delineates	command	and	argument.
Create	a	private	class	within	the	Game	object	to	provide	this	abstraction:

Listing	15.7		Defining	a	nested	class	(Game.kt)
...

object	Game	{

				...

				private	class	GameInput(arg:	String?)	{

								private	val	input	=	arg	?:	""

								val	command	=	input.split("	")[0]

								val	argument	=	input.split("	").getOrElse(1,	{	""	})

				}

}

Why	nest	GameInput	privately	within	Game?	The	GameInput	class	is	only
relevant	to	Game;	it	does	not	need	to	be	accessed	from	anywhere	else	in
NyetHack.	Making	GameInput	a	private,	nested	class	means	that	GameInput
can	be	used	within	Game	but	does	not	clutter	the	rest	of	your	API.
You	define	two	properties	on	the	GameInput	class:	one	for	the	command,	and
the	other	for	the	argument.	To	do	this,	you	call	split	to	break	the	input	apart	at
the	space	character,	then	getOrElse	to	attempt	to	fetch	the	second	item	in
split’s	resulting	list.	If	the	index	you	provide	to	getOrElse	does	not	exist,
getOrElse	returns	an	empty	string	as	a	default.
Now	you	can	separate	multipart	commands.	It	is	time	to	make	sure	the	user	has
entered	a	valid	command.

To	filter	user	input,	you	will	use	a	when	expression	to	build	a	whitelist	of	valid
commands	in	Game.	Any	good	whitelist	starts	by	locking	out	invalid	input.	Add
a	commandNotFound	function	to	GameInput	that	returns	a	String	to	be
printed	when	invalid	input	is	entered.

Listing	15.8		Defining	a	function	in	a	nested	class	(Game.kt)
...

object	Game	{

				...

				private	class	GameInput(arg:	String?)	{

								private	val	input	=	arg	?:	""

								val	command	=	input.split("	")[0]

								val	argument	=	input.split("	").getOrElse(1,	{	""	})

								private	fun	commandNotFound()	=	"I'm	not	quite	sure	what	you're	trying	to	do!"

				}

}

Next,	add	another	function	to	GameInput	called	processCommand.
processCommand	should	return	the	result	of	a	when	expression	that	branches
off	of	the	command	entered	by	the	user.	Be	sure	to	sanitize	the	user’s	input	by
calling	toLowerCase	on	the	entered	command.

Listing	15.9		Defining	the	processCommand	function	(Game.kt)
...

object	Game	{

				...

				private	class	GameInput(arg:	String?)	{

								private	val	input	=	arg	?:	""

								val	command	=	input.split("	")[0]

								val	argument	=	input.split("	").getOrElse(1,	{	""	})

								fun	processCommand()	=	when	(command.toLowerCase())	{

												else	->	commandNotFound()

								}

								private	fun	commandNotFound()	=	"I'm	not	quite	sure	what	you're	trying	to	do!"

				}

}

Now,	it	is	time	to	put	GameInput	to	work.	Replace	your	readLine	call	in
Game.play	with	a	version	that	uses	your	GameInput	class.

Listing	15.10		Using	GameInput	(Game.kt)
...

object	Game	{

				...

				fun	play()	{

								while	(true)	{

												println(currentRoom.description())

												println(currentRoom.load())

												//	Player	status

												printPlayerStatus(player)

												print(">	Enter	your	command:	")

												println("Last	command:	${readLine()}")

												println(GameInput(readLine()).processCommand())

								}

				}

				...

}

Run	Game.kt.	Now,	any	input	that	you	enter	triggers	the
commandNotFound	response:
				Welcome,	adventurer.

				A	glass	of	Fireball	springs	into	existence.	Delicious!	(x2)

				Room:	Town	Square

				Danger	level:	2

				The	villagers	rally	and	cheer	as	you	enter!

				The	bell	tower	announces	your	arrival.	GWONG

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

				>	Enter	your	command:	fight

				I'm	not	quite	sure	what	you're	trying	to	do!

				Room:	Town	Square

				Danger	level:	2

				The	villagers	rally	and	cheer	as	you	enter!

				The	bell	tower	announces	your	arrival.	GWONG

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

				>	Enter	your	command:

This	is	progress:	You	have	restricted	input	to	only	the	commands	specified	on	a
small	(empty,	for	now)	whitelist.	Later	in	this	chapter,	you	will	add	the	“move”
command,	and	GameInput	will	become	a	bit	more	useful.
But	before	they	can	move	around	the	world	of	NyetHack,	your	hero	needs	a
world	that	consists	of	more	than	one	town	square.

Data	Classes
Step	one	in	building	a	world	for	your	hero	is	to	establish	a	coordinate	system	to
move	around	on.	The	coordinate	system	will	use	cardinal	directions	to
communicate	direction	as	well	as	a	class	to	represent	change	in	direction,	called
Coordinate.
Coordinate	is	a	simple	type	and	a	good	candidate	to	be	defined	as	a	data
class.	As	the	name	suggests,	data	classes	are	classes	designed	specifically	for
holding	data,	and	they	come	with	some	powerful	data	manipulation	benefits,	as
you	will	see	shortly.
Create	a	new	file	called	Navigation.kt	and	add	Coordinate	as	a	data
class,	using	the	data	keyword.	Coordinate	should	have	three	properties:

x,	an	Int	val	defined	in	the	primary	constructor	for	the	x	coordinate

y,	an	Int	val	defined	in	the	primary	constructor	for	the	y	coordinate

isInBounds,	a	Boolean	val	representing	whether	both	of	the
coordinate	values	are	positive

Listing	15.11		Defining	a	data	class	(Navigation.kt)
data	class	Coordinate(val	x:	Int,	val	y:	Int)	{

				val	isInBounds	=	x	>=	0	&&	y	>=	0

}

A	coordinate	should	never	have	an	x	or	y	position	less	than	0,	so	you	add	a
property	to	the	coordinate	class	that	will	return	whether	the	current	position	is
out	of	bounds.	You	will	later	check	the	isInBounds	property	of	the
Coordinate	when	attempting	to	update	the	currentRoom	to	determine
whether	the	Coordinate	is	a	valid	direction	to	move.	For	example,	if	a	player
at	the	top	of	the	game	map	tries	to	move	north,	your	isInBounds	check	will
block	this.
To	keep	track	of	where	the	player	is	on	the	world	map,	add	a	property	called
currentPosition	to	the	Player	class.

Listing	15.12		Tracking	player	position	(Player.kt)
class	Player(_name:	String,

													var	healthPoints:	Int	=	100,

													val	isBlessed:	Boolean,

													private	val	isImmortal:	Boolean)	{

				var	name	=	_name

								get()	=	"${field.capitalize()}	of	$hometown"

								private	set(value)	{

												field	=	value.trim()

								}

				val	hometown	by	lazy	{	selectHometown()	}

				var	currentPosition	=	Coordinate(0,	0)

				...

}

Recall	from	Chapter	14	that	all	classes	in	Kotlin	inherit	from	the	same	class,
Any.	Defined	on	Any	are	a	series	of	functions	that	you	can	call	on	any	instance.
These	functions	include	toString,	equals,	and	hashCode,	which
improves	the	speed	a	value	can	be	retrieved	with	a	key	when	using	a	Map.
Any	provides	default	implementations	for	all	of	these	functions,	but,	as	you	have
seen	before,	they	are	often	not	very	reader	friendly.	Data	classes	provide
implementations	for	these	functions	that	may	work	better	for	your	project.	In	this
section,	we	will	walk	through	two	of	those	functions	and	some	of	the	other
benefits	of	using	data	classes	to	represent	data	in	your	codebase.

toString

The	default	toString	implementation	for	a	class	is	not	very	human	readable.
Take	Coordinate,	for	example.	If	Coordinate	were	defined	as	a	normal
class,	calling	toString	on	a	Coordinate	would	return	something	like	this:
				Coordinate@3527c201

You	are	looking	at	a	reference	to	where	this	Coordinate	was	allocated	space
in	memory.	If	you	are	wondering	why	you	would	care	about	the	details	of
Coordinate’s	memory	allocation,	that	is	a	sensible	question.	Most	often,	you
do	not	care.
You	can	override	toString	in	your	class	to	provide	your	own	implementation,
just	like	any	other	open	function.	But	data	classes	save	you	that	work	by
providing	their	own	default	implementation.	For	Coordinate,	that
implementation	looks	like	this:
				Coordinate(x=1,	y=0)

Because	x	and	y	are	properties	declared	in	Coordinate’s	primary	constructor,
they	are	used	to	represent	Coordinate	in	textual	form.	(isInBounds	is	not
included	because	it	was	not	defined	in	Coordinate’s	primary	constructor.)	A
data	class’s	toString	implementation	is	considerably	more	useful	than	the
default	implementation	on	Any.

equals

The	next	function	that	data	classes	provide	an	implementation	for	is	equals.	If
Coordinate	were	defined	as	a	normal	class,	what	would	be	the	result	of	the
following	expression?
				Coordinate(1,	0)	==	Coordinate(1,	0)

You	may	be	surprised,	but	the	answer	is	false.	Why?
By	default,	objects	are	compared	by	their	references,	because	that	is	the	default
implementation	of	the	equals	function	in	Any.	Because	these	two	coordinates
are	separate	instances,	they	will	have	different	references	and	will	not	be	equal.
Perhaps	you	would	want	to	consider	two	players	to	be	equal	if	they	have	the
same	name.	You	can	provide	your	own	equality	check	by	overriding	equals	in
your	class	to	determine	equality	based	on	a	comparison	of	properties,	not
memory	references.	You	have	seen	that	classes	like	String	do	this	to	compare
equality	based	on	value.
Again,	data	classes	take	care	of	this	for	you	by	providing	an	implementation	of
equals	that	bases	equality	on	all	of	the	properties	declared	in	the	primary
constructor.	With	Coordinate	defined	as	a	data	class,	Coordinate(1,	0)	==
Coordinate(1,	0)	yields	a	result	of	true,	because	the	values	of	the	two
instances’	x	properties	are	equal,	as	are	the	values	of	their	y	properties.

copy

In	addition	to	giving	you	more	usable	default	implementations	of	functions	on
Any,	data	classes	also	provide	a	function	that	makes	it	easy	to	create	a	new	copy
of	an	object.
Say	that	you	want	to	create	a	new	instance	of	Player	that	has	all	of	the	same
property	values	as	another	player	except	for	isImmortal.	If	Player	were	a
data	class,	then	copying	a	Player	instance	would	be	as	simple	as	calling	copy
and	passing	arguments	for	any	properties	that	you	would	like	to	change.
				val	mortalPlayer	=	player.copy(isImmortal	=	false)

Data	classes	save	you	the	work	of	implementing	this	copy	function	on	your
own.

Destructuring	declarations

Another	benefit	of	data	classes	is	that	they	automatically	enable	your	class’s	data
to	be	destructured.
The	examples	of	destructuring	you	have	seen	up	to	this	point	have	involved
things	like	the	list	output	from	split.	Under	the	hood,	destructuring
declarations	depend	on	the	declaration	of	functions	with	names	like
component1,	component2,	etc.,	each	declared	for	some	piece	of	data	that
you	would	like	to	return.	Data	classes	automatically	add	these	functions	for	you
for	each	property	defined	in	their	primary	constructor.
There	is	nothing	magic	about	a	class	supporting	destructuring;	a	data	class
simply	does	the	extra	work	required	to	make	the	class	“destructurable”	for	you.
You	can	make	any	class	support	destructuring	by	adding	component	operator
functions	to	it,	like	so:
				class	PlayerScore(val	experience:	Int,	val	level:Int){

								operator	fun	component1()	=	experience

								operator	fun	component2()	=	level

				}

				val	(experience,	level)	=	PlayerScore(1250,	5)

By	declaring	Coordinate	to	be	a	data	class,	you	are	able	to	retrieve	the
properties	defined	in	Coordinate’s	primary	constructor	like	so:
				val	(x,	y)	=	Coordinate(1,	0)

In	this	example,	x	has	a	value	of	1,	because	component1	returns	the	value	of
the	first	property	declared	in	Coordinate’s	primary	constructor.	y	has	a	value
of	0,	because	component2	returns	the	value	of	the	second	property	declared	in
Coordinate’s	primary	constructor.
These	features	all	weigh	in	favor	of	using	data	classes	to	represent	simple
objects	that	hold	data,	like	Coordinate.	Classes	that	are	often	compared	or
copied	or	have	their	contents	printed	out	are	especially	ripe	for	being	made	data
classes.
However,	there	are	also	some	limitations	and	requirements	on	data	classes.	Data
classes:

must	have	a	primary	constructor	with	at	least	one	parameter

require	their	primary	constructor	parameters	to	be	marked	either	val	or
var

cannot	be	abstract,	open,	sealed,	or	inner

If	your	class	does	not	require	the	toString,	copy,	equals,	or	hashCode
functions,	a	data	class	offers	no	benefits.	And	if	you	require	a	customized

equals	function	–	one	that	uses	only	certain	properties	rather	than	all
properties	for	the	comparison,	for	example	–	a	data	class	is	not	the	right	tool,
because	it	includes	all	properties	in	the	equals	function	it	automatically
generates.
You	will	learn	about	overriding	equals	and	other	functions	in	your	own	types
later	in	this	chapter,	in	the	section	called	Operator	Overloading,	and	about	a
shortcut	IntelliJ	provides	for	overriding	equals	in	the	section	called	For	the
More	Curious:	Defining	Structural	Comparison.

Enumerated	Classes
Enumerated	classes,	or	“enums,”	are	a	special	type	of	class	useful	for	defining	a
collection	of	constants,	known	as	enumerated	types.
In	NyetHack,	you	will	use	an	enum	to	represent	the	set	of	four	possible
directions	a	player	can	move	in	–	the	four	cardinal	directions.	Add	an	enum
called	Direction	to	Navigation.kt.

Listing	15.13		Defining	an	enum	(Navigation.kt)
enum	class	Direction	{

				NORTH,

				EAST,

				SOUTH,

				WEST

}

data	class	Coordinate(val	x:	Int,	val	y:	Int)	{

				val	isInBounds	=	x	>=	0	&&	y	>=	0

}

Enums	are	more	descriptive	than	other	types	of	constants,	like	strings.	You	can
reference	enumerated	types	using	the	name	of	the	enum	class,	a	dot,	and	the
name	of	the	type,	like	so:
				Direction.EAST

And	enums	can	represent	more	than	simple	naming	constants.	To	use
Direction	to	represent	character	movement	in	NyetHack,	you	will	tie	each
Direction	type	to	the	Coordinate	change	when	the	player	moves	in	that
direction.
Moving	in	the	game	world	should	modify	the	player’s	x	and	y	position	according
to	the	direction	moved.	For	example,	if	a	player	moves	to	the	east,	the	x	position
should	change	by	1	and	the	y	by	0.	If	the	player	moves	to	the	south,	the	x
position	should	change	by	0	and	the	y	by	1.
Add	a	primary	constructor	to	the	Direction	enum	that	defines	a
coordinate	property.	Because	you	add	a	parameter	to	the	constructor	of	the
enum,	you	will	have	to	call	that	constructor	when	defining	each	enumerated	type
in	Direction,	providing	a	Coordinate	for	each	one.

Listing	15.14		Defining	an	enum	constructor	(Navigation.kt)
enum	class	Direction(private	val	coordinate:	Coordinate)	{

				NORTH(Coordinate(0,	-1)),

				EAST(Coordinate(1,	0)),

				SOUTH(Coordinate(0,	1)),

				WEST(Coordinate(-1,	0))

}

data	class	Coordinate(val	x:	Int,	val	y:	Int)	{

				val	isInBounds	=	x	>=	0	&&	y	>=	0

}

Enums,	like	other	classes,	can	also	hold	function	declarations.
Add	a	function	called	updateCoordinate	to	Direction	to	change	the
player’s	location	based	on	their	movement.	(Note	that	you	need	to	add	a
semicolon	to	separate	your	enumerated	type	declarations	from	your	function
declarations.)

Listing	15.15		Defining	a	function	in	an	enum	(Navigation.kt)
enum	class	Direction(private	val	coordinate:	Coordinate)	{

				NORTH(Coordinate(0,	-1)),

				EAST(Coordinate(1,	0)),

				SOUTH(Coordinate(0,	1)),

				WEST(Coordinate(-1,	0));

				fun	updateCoordinate(playerCoordinate:	Coordinate)	=

												Coordinate(playerCoordinate.x	+	coordinate.x,

																				playerCoordinate.y	+	coordinate.y)

}

data	class	Coordinate(val	x:	Int,	val	y:	Int)	{

				val	isInBounds	=	x	>=	0	&&	y	>=	0

}

You	call	functions	on	enumerated	types,	not	on	the	enum	class	itself,	so	calling
updateCoordinate	will	look	something	like	this:
				Direction.EAST.updateCoordinate(Coordinate(1,	0))

Operator	Overloading
You	have	seen	that	Kotlin’s	built-in	types	come	with	a	range	of	available
operations	and	that	some	types	tailor	those	operations	based	on	the	data	they
represent.	Take	the	equals	function	and	its	associated	==	operator:	You	can	use
them	to	check	whether	two	instances	of	a	numeric	type	have	the	same	value,
whether	two	strings	hold	the	same	sequence	of	characters,	and	whether	instances
of	a	data	class	have	the	same	values	for	properties	in	the	primary	constructor.
Similarly,	the	plus	function	and	+	operator	add	two	numeric	values	together,
append	one	string	to	the	end	of	another,	and	add	the	elements	of	one	list	to
another.
When	you	create	your	own	types,	the	Kotlin	compiler	does	not	automatically
know	how	to	apply	the	built-in	operators	to	them.	What	does	it	mean	to	ask
whether	one	Player	is	equal	to	another,	for	example?	When	you	want	to	use
built-in	operators	with	your	custom	types,	you	have	to	override	the	operators’
functions	to	tell	the	compiler	how	to	implement	them	for	your	type.	This	is
known	as	operator	overloading.
You	saw	operator	overloading	used	extensively	in	Chapter	10	and	Chapter	11.
Rather	than	having	to	directly	call	a	function	called	get	to	retrieve	an	element
from	a	list,	you	were	able	to	use	the	index	access	operator,	[],	to	index	into	a
collection.	Kotlin’s	concise	syntax	is	built	on	small	improvements	like	this
(spellList[3]	instead	of	spellList.get(3)).
Coordinate	is	a	prime	candidate	for	improvement	via	operator	overloading.
You	move	your	hero	through	the	world	by	adding	the	properties	of	two
Coordinate	instances	together.	Instead	of	having	to	define	that	work	in
Direction,	you	can	overload	the	plus	operator	on	Coordinate.
Make	it	so	in	Navigation.kt,	prepending	the	function	declaration	with	the
operator	modifier.

Listing	15.16		Overloading	the	plus	operator	(Navigation.kt)
enum	class	Direction(private	val	coordinate:	Coordinate)	{

				NORTH(Coordinate(0,	-1)),

				EAST(Coordinate(1,	0)),

				SOUTH(Coordinate(0,	1)),

				WEST(Coordinate(-1,	0));

				fun	updateCoordinate(playerCoordinate:	Coordinate)	=

												Coordinate(playerCoordinate.x	+	coordinate.x,

																				playerCoordinate.y	+	coordinate.y)

}

data	class	Coordinate(val	x:	Int,	val	y:	Int)	{

				val	isInBounds	=	x	>=	0	&&	y	>=	0

				operator	fun	plus(other:	Coordinate)	=	Coordinate(x	+	other.x,	y	+	other.y)

}

Now,	you	can	simply	use	the	addition	operator	(+)	to	add	two	Coordinate
instances	together.	Do	so	now	in	Direction.

Listing	15.17		Using	an	overloaded	operator	(Navigation.kt)
enum	class	Direction(private	val	coordinate:	Coordinate)	{

				NORTH(Coordinate(0,	-1)),

				EAST(Coordinate(1,	0)),

				SOUTH(Coordinate(0,	1)),

				WEST(Coordinate(-1,	0));

				fun	updateCoordinate(playerCoordinate:	Coordinate)	=

												Coordinate(playerCoordinate.x	+	coordinate.x,

																				playerCoordinate.y	+	coordinate.y)

												coordinate	+	playerCoordinate

}

data	class	Coordinate(val	x:	Int,	val	y:	Int)	{

				val	isInBounds	=	x	>=	0	&&	y	>=	0

				operator	fun	plus(other:	Coordinate)	=	Coordinate(x	+	other.x,	y	+	other.y)

}

Table	15.1	shows	some	commonly	used	operators	you	can	override:

Table	15.1		Common	operators

Operator Functionname Purpose

+ plus Adds	an	object	to	another.
+= plusAssign Adds	an	object	to	another	and	assigns	the	result	to

the	first.
== equals Returns	true	if	two	objects	are	equal,	false

otherwise.
> compareTo Returns	true	if	the	object	on	the	lefthand	side	is

greater	than	the	object	on	the	righthand	side,	false
otherwise.

[] get Returns	the	element	in	a	collection	at	a	given	index.
.. rangeTo Creates	a	range	object.
in contains Returns	true	if	an	object	exists	within	a	collection.

These	operators	can	be	overloaded	on	any	class,	but	make	sure	to	do	so	only
when	it	makes	sense.	While	you	can	assign	logic	to	the	addition	operator	on	the
Player	class,	what	does	“Player	plus	Player”	mean?	Ask	yourself	this	question
before	overloading	an	operator.

By	the	way,	if	you	override	equals	yourself,	you	should	also	override	a
function	called	hashCode.	An	example	of	overriding	both	of	these	functions
using	an	IntelliJ	command	as	a	shortcut	is	shown	in	the	section	called	For	the
More	Curious:	Defining	Structural	Comparison	near	the	end	of	this	chapter.
More	detailed	discussion	of	why	and	how	hashCode	should	be	overridden	is
outside	the	scope	of	this	book;	if	you	are	interested,	see	kotlinlang.org/
api/latest/jvm/stdlib/kotlin/-any/hash-code.html.

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin/-any/hash-code.html

Exploring	the	World	of	NyetHack
Now	that	you	have	built	a	game	loop	and	established	a	cardinal	direction	system
on	a	coordinate	plane,	it	is	time	to	put	your	knowledge	to	the	test	and	add	more
rooms	to	explore	in	NyetHack.
To	set	up	a	map	of	the	world,	you	need	a	list	that	will	hold	all	of	the	rooms.	In
fact,	since	players	can	move	in	two	dimensions,	you	need	a	list	containing	two
lists	of	rooms.	The	first	list	of	rooms	will	hold	the	Town	Square	(where	the
player	begins),	Tavern,	and	Back	Room,	from	west	to	east.	The	second	list	of
rooms	will	hold	the	Long	Corridor	and	the	Generic	Room.	These	lists	will	be
held	in	a	third	list	representing	the	y	coordinate,	called	worldMap.
Add	a	worldMap	property	to	Game	with	a	series	of	rooms	for	your	hero	to
explore.

Listing	15.18		Defining	a	world	map	in	NyetHack	(Game.kt)
...

object	Game	{

				private	val	player	=	Player("Madrigal")

				private	var	currentRoom:	Room	=	TownSquare()

				private	var	worldMap	=	listOf(

												listOf(currentRoom,	Room("Tavern"),	Room("Back	Room")),

												listOf(Room("Long	Corridor"),	Room("Generic	Room")))

				...

}

Figure	15.1	shows	the	grid	of	rooms	that	can	be	explored	in	NyetHack.

Figure	15.1		NyetHack	world	map

With	the	rooms	in	place,	it	is	time	to	add	the	“move”	command	and	give	the
player	the	ability	to	step	out	into	the	mysterious	land	of	NyetHack.	Add	a

function	called	move	that	takes	in	a	direction	input	as	a	String.	There	is	a	lot
going	in	move;	we	will	explain	it	after	you	enter	it.

Listing	15.19		Defining	the	move	function	(Game.kt)
...

object	Game	{

				private	var	currentRoom:	Room	=	TownSquare()

				private	val	player	=	Player("Madrigal")

				private	var	worldMap	=	listOf(

												listOf(currentRoom,	Room("Tavern"),	Room("Back	Room")),

												listOf(Room("Long	Corridor"),	Room("Generic	Room")))

				...

					private	fun	move(directionInput:	String)	=

												try	{

																val	direction	=	Direction.valueOf(directionInput.toUpperCase())

																val	newPosition	=	direction.updateCoordinate(player.currentPosition)

																if	(!newPosition.isInBounds)	{

																				throw	IllegalStateException("$direction	is	out	of	bounds.")

																}

																val	newRoom	=	worldMap[newPosition.y][newPosition.x]

																player.currentPosition	=	newPosition

																currentRoom	=	newRoom

																"OK,	you	move	$direction	to	the	${newRoom.name}.\n${newRoom.load()}"

												}	catch	(e:	Exception)	{

																"Invalid	direction:	$directionInput."

												}

}

move	returns	a	String	based	on	the	result	of	a	try/catch	expression.	In	the
try	block,	you	use	the	valueOf	function	to	match	the	user’s	input.	valueOf
is	a	function	available	on	all	enum	classes	that	returns	an	enumerated	type	with	a
name	that	matches	the	String	value	that	you	pass	to	it.	If	you	call
Direction.valueOf("EAST"),	then	Direction.EAST	will	be	returned.	If	you
pass	a	value	that	does	not	match	one	of	the	enumerated	types,	then	an
IllegalArgumentException	is	thrown.
That	exception	will	be	caught	by	the	catch	block.	(In	fact,	it	will	catch	any	type
of	exception	thrown	in	the	try	block.)
If	execution	continues	past	the	valueOf	call,	then	a	check	to	make	sure	that	the
player	is	still	in	bounds	is	made.	If	not,	then	an	IllegalStateException
is	thrown,	which	is	also	caught	by	the	catch	block.
If	the	player	moves	in	a	valid	direction,	then	your	next	step	is	to	query
worldMap	for	a	room	at	the	new	position.	You	saw	how	to	index	into	a
collection	in	Chapter	10,	and	here,	you	are	doing	so	twice.	The	first	indexing,
worldMap[newPosition.y],	returns	a	list	from	the	list	of	lists	called	worldMap.
The	second	indexing,	[newPosition.x],	returns	a	Room	inside	the	list	returned
in	the	first	indexing.	If	a	room	does	not	exist	for	the	coordinate	queried,	then	an
ArrayIndexOutOfBoundsException	is	thrown	and,	yes,	caught	by	the
catch	block.

If	all	that	code	executes	without	throwing	an	exception,	then	the	player’s
currentPosition	property	is	updated	and	you	return	some	text	to	print	out
as	a	part	of	NyetHack’s	text	interface.
The	move	function	should	be	called	when	the	player	enters	the	“move”
command,	which	you	will	now	implement	using	the	GameInput	class	you
wrote	earlier	in	this	chapter:

Listing	15.20		Defining	the	processCommand	function	(Game.kt)
...

object	Game	{

				...

				private	class	GameInput(arg:	String?)	{

								private	val	input	=	arg	?:	""

								val	command	=	input.split("	")[0]

								val	argument	=	input.split("	").getOrElse(1,	{	""	})

								fun	processCommand()	=	when	(command.toLowerCase())	{

												"move"	->	move(argument)

												else	->	commandNotFound()

								}

								private	fun	commandNotFound()	=	"I'm	not	quite	sure	what	you're	trying	to	do!"

				}

}

Try	running	Game.kt	and	moving	around	the	world.	You	should	see	some
output	like	the	following:
				Welcome,	adventurer.

				A	glass	of	Fireball	springs	into	existence.	Delicious!	(x2)

				Room:	Town	Square

				Danger	level:	2

				The	villagers	rally	and	cheer	as	you	enter!

				The	bell	tower	announces	your	arrival.	GWONG

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

				>	Enter	your	command:	move	east

				OK,	you	move	EAST	to	the	Tavern.

				Nothing	much	to	see	here...

				Room:	Tavern

				Danger	level:	5

				Nothing	much	to	see	here...

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

				>	Enter	your	command:

And	that	is	it	–	you	are	now	able	to	walk	around	the	world	of	NyetHack.	In	this
chapter,	you	learned	how	to	use	several	variants	of	classes.	Beyond	the	class
keyword,	you	can	use	object	declarations,	data	classes,	and	enum	classes	to
represent	data.	Using	the	right	tool	for	the	job	will	make	the	relationships	among
objects	in	your	code	more	straightforward.
In	the	next	chapter,	you	will	learn	about	interfaces	and	abstract	classes	–
mechanisms	for	defining	protocols	that	your	classes	must	adhere	to	–	as	you	add
the	thrill	of	combat	to	NyetHack.

For	the	More	Curious:	Defining	Structural
Comparison
Imagine	a	Weapon	class	that	has	name	and	type	properties:
				open	class	Weapon(val	name:	String,	val	type:	String)

Suppose	you	would	like	two	individual	weapon	instances	to	be	considered
structurally	equal,	using	the	structural	equality	operator	(==),	if	the	values	of
their	names	and	types	are	structurally	equal.	By	default,	as	we	said	earlier	in	this
chapter,	==	checks	referential	equality	for	objects,	so	this	expression	would
evaluate	as	false:
				open	class	Weapon(val	name:	String,	val	type:	String)

				println(Weapon("ebony	kris",	"dagger")	==	Weapon("ebony	kris",	"dagger"))	//	False

You	saw	in	this	chapter	that	data	classes	provide	a	solution	to	this	problem	–	an
implementation	of	equals	that	bases	equality	on	all	of	the	properties	declared
in	the	primary	constructor.	But	Weapon	is	not	(and	cannot	be)	a	data	class,
because	it	is	intended	to	be	the	base	class	for	other	weapon	variations	(hence	the
open	keyword).	Data	classes	are	not	permitted	to	be	superclasses.
However,	as	we	discussed	in	the	section	called	Operator	Overloading,	you	can
provide	your	own	implementation	of	equals	and	hashCode	to	specify	how
instances	of	your	class	should	be	compared	structurally.
This	need	is	so	common	that	IntelliJ	has	a	Generate	task	for	adding	the	function
overrides	via	its	Code	→	Generate	command,	which	brings	up	the	Generate	dialog
(Figure	15.2):

Figure	15.2		The	Generate	dialog

When	generating	equals	and	hashCode	overrides,	you	can	select	the

properties	that	should	be	used	when	you	compare	two	instances	of	your	object
structurally	(Figure	15.3):

Figure	15.3		Generating	equals	and	hashCode	overrides

IntelliJ	adds	the	equals	and	hashCode	functions	to	the	class	based	on	the
choices	made:
				open	class	Weapon(val	name:String,	val	type:	String)	{

								override	fun	equals(other:	Any?):	Boolean	{

												if	(this	===	other)	return	true

												if	(javaClass	!=	other?.javaClass)	return	false

												other	as	Weapon

												if	(name	!=	other.name)	return	false

												if	(type	!=	other.type)	return	false

												return	true

								}

								override	fun	hashCode():	Int	{

												var	result	=	name.hashCode()

												result	=	31	*	result	+	type.hashCode()

												return	result

								}

				}

With	these	overrides	in	place,	comparing	two	weapons	would	result	in	true	as
long	as	their	names	and	types	are	the	same:
				println(Weapon("ebony	kris",	"dagger")	==	Weapon("ebony	kris",	"dagger"))	//	True

Notice	that	the	overridden	equals	function	that	was	generated	sets	up	a
structural	comparison	between	the	properties	selected	in	the	Generate	command:
				...

				if	(name	!=	other.name)	return	false

				if	(type	!=	other.type)	return	false

				return	true

				...

If	any	of	the	properties	are	not	structurally	equal,	then	the	comparison	results	in

false.	Otherwise,	true	is	returned.
As	we	mentioned	earlier,	whenever	you	define	structural	comparison,	you	also
provide	a	hashCode	definition.	hashCode	improves	performance	–	how
quickly	a	value	can	be	retrieved	with	a	key	when	using	a	Map	type,	for	example
–	and	is	tied	to	the	uniqueness	of	a	class	instance.

For	the	More	Curious:	Algebraic	Data	Types
Algebraic	data	types	(or	ADTs,	for	short)	allow	you	to	represent	a	closed	set	of
possible	subtypes	that	can	be	associated	with	a	given	type.	Enum	classes	are	a
simple	form	of	ADT.
Imagine	a	Student	class	that	has	three	possible	associated	states,	depending	on
the	student’s	enrollment	status:	NOT_ENROLLED,	ACTIVE,	or	GRADUATED.
Using	the	enum	class	that	you	learned	about	in	this	chapter,	you	could	model	the
three	states	for	the	Student	class	as	follows:
				enum	class	StudentStatus	{

								NOT_ENROLLED,

								ACTIVE,

								GRADUATED

				}

				class	Student(var	status:	StudentStatus)

				fun	main(args:	Array<String>)	{

								val	student	=	Student(StudentStatus.NOT_ENROLLED)

				}

And	you	could	write	a	function	that	generates	a	student	message	using	the
student’s	status:
				fun	studentMessage(status:	StudentStatus):	String	{

								return	when	(status)	{

												StudentStatus.NOT_ENROLLED	->	"Please	choose	a	course."

								}

				}

One	of	the	benefits	of	enums	and	other	ADTs	is	that	the	compiler	can	check	to
ensure	that	you	handled	all	possibilities,	because	an	ADT	is	a	closed	set	of
possible	types.	The	implementation	for	studentMessage	does	not	handle	the
ACTIVE	or	GRADUATED	types,	so	the	compiler	would	give	an	error
(Figure	15.4):

Figure	15.4		Add	necessary	branches

The	compiler	is	satisfied	when	all	types	are	addressed	either	explicitly	or
through	an	else	branch:
				fun	studentMessage(status:	StudentStatus):	String	{

								return	when	(studentStatus)	{

												StudentStatus.NOT_ENROLLED	->	"Please	choose	a	course."

												StudentStatus.ACTIVE	->	"Welcome,	student!"

												StudentStatus.GRADUATED	->	"Congratulations!"

								}

				}

For	more	complex	ADTs,	you	can	use	Kotlin’s	sealed	classes	to	implement	more
sophisticated	definitions.	Sealed	classes	let	you	specify	an	ADT	similar	to	an
enum,	but	with	more	control	over	the	specific	subtypes	than	an	enum	provides.
For	example,	imagine	that	when	a	student	is	active,	the	student	is	also	assigned	a
course	ID.	You	could	add	a	course	ID	property	to	the	enum	definition,	but	it
would	be	used	only	in	the	ACTIVE	case	–	leading	to	two	unneeded	null	states
for	the	property:
				enum	class	StudentStatus	{

								NOT_ENROLLED,

								ACTIVE,

								GRADUATED;

								var	courseId:	String?	=	null	//	Used	for	ACTIVE	only

				}

A	better	solution	would	be	to	use	a	sealed	class	to	model	the	student	statuses:
				sealed	class	StudentStatus	{

								object	NotEnrolled	:	StudentStatus()

								class	Active(val	courseId:	String)	:	StudentStatus()

								object	Graduated	:	StudentStatus()

				}

The	StudentStatus	sealed	class	has	a	limited	number	of	subclasses	that
must	be	defined	within	the	same	file	where	StudentStatus	is	defined	–
otherwise	it	is	ineligible	for	subclassing.	Defining	a	sealed	class	instead	of	an
enum	to	represent	the	possible	states	allows	you	to	specify	a	limited	set	of
StudentStatuses	that	the	compiler	can	check	in	a	when	(as	in	the	case	of	the
enum),	but	with	more	control	over	the	declaration	of	the	subclasses.
The	object	keyword	is	used	for	the	statuses	that	require	no	course	ID,	since
there	will	never	be	any	variation	on	their	instances,	and	the	class	keyword	is
used	for	the	ACTIVE	class	because	it	will	have	different	instances,	since	the
course	ID	will	change	depending	on	the	student.
Using	the	new	sealed	class	in	the	when	would	allow	you	to	now	read	the
courseId	from	the	ACTIVE	class,	accessible	through	smart	casting:
				fun	main(args:	Array<String>)	{

								val	student	=	Student(StudentStatus.Active("Kotlin101"))

								studentMessage(student.status)

				}

				fun	studentMessage(status:	StudentStatus):	String	{

								return	when	(status)	{

												is	StudentStatus.NotEnrolled	->	"Please	choose	a	course!"

												is	StudentStatus.Active	->	"You	are	enrolled	in:	${status.courseId}"

												is	StudentStatus.Graduated	->	"Congratulations!"

								}

				}

Challenge:	“Quit”	Command
Players	will	most	likely	want	to	quit	NyetHack	at	some	point,	and	currently
NyetHack	offers	no	way	to	do	that.	Your	challenge	is	to	fix	this.	When	a	user
enters	“quit”	or	“exit,”	NyetHack	should	display	a	farewell	message	to	the
adventurer	and	terminate.	Hint:	Remember	that,	currently,	your	while	loop
executes	forever	–	a	significant	part	of	solving	this	puzzle	is	to	end	that	loop
conditionally.

Challenge:	Implementing	a	World	Map
Remember	when	we	said	NyetHack	would	not	feature	awesome	ASCII
graphics?	Once	you	successfully	complete	this	challenge,	it	will!
Players	sometimes	get	lost	in	the	expansive	world	of	NyetHack,	and	fortunately
you	have	the	power	to	give	them	a	magic	map	of	the	realm.	Implement	a	“map”
command	that	displays	the	player’s	current	position	in	the	game	world.	For	a
player	currently	at	the	tavern,	the	game	interaction	should	resemble	the
following:
				>	Enter	your	command:	map

				O	X	O

				O	O

The	X	represents	the	room	the	player	is	currently	in.

Challenge:	Ring	the	Bell
Add	a	“ring”	command	to	NyetHack	so	that	you	can	ring	the	bell	as	many	times
as	you	would	like	from	within	the	town	square.
Hint:	You	will	have	to	make	the	ringBell	function	public.

16	
Interfaces	and	Abstract	Classes

In	this	chapter	you	will	see	how	to	define	and	use	interfaces	and	abstract	classes
in	Kotlin.
An	interface	allows	you	to	specify	common	properties	and	behavior	that	are
supported	by	a	subset	of	classes	in	your	program	–	without	being	required	to
specify	how	they	will	be	implemented.	This	capability	–	the	what	without	the
how	–	is	useful	when	inheritance	is	not	the	right	relationship	for	classes	in	a
program.	Using	an	interface,	a	group	of	classes	can	have	properties	or	functions
in	common	without	sharing	a	superclass	or	subclassing	one	another.
You	will	also	work	with	a	type	of	class	called	an	abstract	class,	a	hybrid	between
the	features	of	interfaces	and	classes.	Abstract	classes	are	similar	to	interfaces	in
that	they	can	specify	the	what	without	the	how,	but	they	are	different	in	that	they
can	also	define	constructors	and	act	as	a	superclass.
These	new	concepts	will	allow	you	to	add	an	exciting	feature	to	NyetHack:	Now
that	your	hero	can	walk	around,	you	will	add	a	combat	system	to	deal	with	the
evildoers	your	hero	encounters.

Defining	an	Interface
To	define	how	combat	is	performed,	you	will	first	create	an	interface	that
specifies	the	functions	and	properties	used	for	entities	in	the	game	when
performing	combat.	Your	player	will	face	goblins,	but	you	will	define	a	combat
system	that	can	be	applied	to	any	type	of	creature	–	not	just	goblins.
Create	a	new	file	called	Creature.kt	in	the	com.bignerdranch.nyethack
package	(remember	that	this	pattern	is	to	avoid	naming	collisions),	and	define	a
Fightable	interface,	using	the	keyword	interface:

Listing	16.1		Defining	an	interface	(Creature.kt)
interface	Fightable	{

				var	healthPoints:	Int

				val	diceCount:	Int

				val	diceSides:	Int

				val	damageRoll:	Int

				fun	attack(opponent:	Fightable):	Int

}

Your	interface	declaration	defines	things	that	are	common	to	any	entity	that	can
fight	in	NyetHack.	Fightable	creatures	use	the	number	of	dice,	the	number	of
sides	on	each	die,	and	the	damage	roll	–	the	sum	of	the	numbers	rolled	on	the
dice	–	to	determine	the	amount	of	damage	dealt	to	an	enemy.	Fightable	creatures
must	also	have	healthPoints	and	an	implementation	for	a	function	called
attack.
The	four	properties	in	Fightable	have	no	initializers,	and	the	attack	function
has	no	function	body.	An	interface	is	not	concerned	with	providing	initializers	or
function	bodies.	Remember	–	interfaces	only	specify	the	what,	not	the	how.
Note	that	the	Fightable	interface	is	also	the	type	of	the	opponent	parameter
that	the	attack	function	accepts.	An	interface	can	be	used	as	a	type	for	a
parameter,	just	as	a	class	can	be	used	as	a	parameter	type.
When	a	function	specifies	a	parameter	type,	that	function	cares	about	what	the
argument	can	do,	not	how	the	behavior	is	implemented.	This	is	one	of	the
strengths	of	an	interface	–	you	can	create	a	set	of	requirements	that	is	shared
between	classes	that	otherwise	have	nothing	in	common.

Implementing	an	Interface
To	use	an	interface,	we	say	that	you	“implement”	it	on	a	class.	There	are	two
parts	to	this:	First,	you	declare	that	the	class	implements	the	interface.	Then,	you
must	ensure	that	the	class	provides	implementations	for	all	of	the	properties	and
functions	specified	in	the	interface.
Use	the	:	operator	to	implement	the	Fightable	interface	on	Player.

Listing	16.2		Implementing	an	interface	(Player.kt)
class	Player(_name:	String,

								override	var	healthPoints:	Int	=	100,

								var	isBlessed:	Boolean	=	false,

								private	var	isImmortal:	Boolean)	:	Fightable	{

				...

}

When	you	add	the	Fightable	interface	to	Player,	IntelliJ	indicates	that
functions	and	properties	are	missing.	Warning	you	that	properties	and	functions
have	yet	to	be	implemented	on	Player	helps	you	adhere	to	Fightable’s	rules,
and	IntelliJ	will	also	help	you	implement	everything	that	is	required	by	the
interface.
Right-click	on	Player	and	select	Generate...	→	Implement	Methods...,	then	select
diceCount,	diceSides,	and	attack	in	the	Implement	Members	dialog
(Figure	16.1).	(You	will	deal	with	damageRoll	in	the	next	section.)

Figure	16.1		Implementing	Fightable	members

You	should	see	the	following	code	added	to	the	Player	class:
class	Player(_name:	String,

								override	var	healthPoints:	Int	=	100,

								var	isBlessed:	Boolean	=	false,

								private	var	isImmortal:	Boolean)	:	Fightable	{

				override	val	diceCount:	Int

								get()	=	TODO("not	implemented")

								//To	change	initializer	of	created	properties	use

								//File	|	Settings	|	File	Templates.

				override	val	diceSides:	Int

								get()	=	TODO("not	implemented")

								//To	change	initializer	of	created	properties	use

								//File	|	Settings	|	File	Templates.

				override	fun	attack(opponent:	Fightable):	Int	{

								TODO("not	implemented")

								//To	change	body	of	created	functions	use

								//File	|	Settings	|	File	Templates.

				}

				...

}

The	function	implementations	added	to	Player	are	just	stubs.	You	will	provide
more	realistic	implementations	for	them	next.	(By	the	way,	you	might	recall	the
TODO	function	from	the	discussion	of	the	Nothing	type	in	Chapter	4.	Here	it	is
in	action	–	or,	perhaps,	in	anticipation.)	Once	you	implement	these	properties
and	functions,	Player	will	satisfy	the	Fightable	interface	and	can	be	used	in
combat.
Notice	that	the	property	and	function	implementations	all	use	the	override
keyword.	This	may	surprise	you	–	after	all,	you	are	not	replacing	an
implementation	for	these	properties	in	Fightable.	However,	all	implementations
of	interface	properties	and	functions	must	be	marked	with	override.
On	the	other	hand,	the	open	keyword	is	not	required	on	function	declarations	in
an	interface.	This	is	because	all	properties	and	functions	you	add	to	an	interface
must	be	open	implicitly,	since	they	would	serve	no	purpose	otherwise.	After	all,
an	interface	outlines	the	what,	and	the	how	must	be	provided	in	the	classes	that
implement	it.
Replace	the	TODO	calls	in	diceCount,	diceSides,	and	attack	with
appropriate	values	and	functionality.

Listing	16.3		Stubbing	out	an	interface	implementation	(Player.kt)
class	Player(_name:	String,

								override	var	healthPoints:	Int	=	100,

								var	isBlessed:	Boolean	=	false,

								private	var	isImmortal:	Boolean)	:	Fightable	{

				override	val	diceCount:	Int	=	3

								get()	=	TODO("not	implemented")

								//To	change	initializer	of	created	properties	use

								//File	|	Settings	|	File	Templates.

				override	val	diceSides:	Int	=	6

								get()	=	TODO("not	implemented")

								//To	change	initializer	of	created	properties	use

								//File	|	Settings	|	File	Templates.

				override	fun	attack(opponent:	Fightable):	Int	{

								TODO("not	implemented")

								//To	change	body	of	created	functions	use

								//File	|	Settings	|	File	Templates.

								val	damageDealt	=	if	(isBlessed)	{

												damageRoll	*	2

								}	else	{

												damageRoll

								}

								opponent.healthPoints	-=	damageDealt

								return	damageDealt

				}

				...

}

diceCount	and	diceSides	are	implemented	with	integers.	Player’s
attack	function	takes	the	result	from	damageRoll	(which	is	not	yet	fleshed
out)	and	doubles	it	if	the	player	is	blessed.	It	then	takes	that	value	and	subtracts
it	from	opponent’s	healthPoints	property	–	which	opponent	is
guaranteed	to	have,	no	matter	what	its	class	is,	because	it	implements
Fightable.	That	is	the	beauty	of	an	interface.

Default	Implementations
We	have	said	several	times	now	that	interfaces	focus	on	the	what	and	not	the
how.	You	can,	however,	provide	a	default	implementation	for	property	getters
and	functions	in	an	interface.	Classes	that	implement	the	interface	then	have	the
option	of	using	the	default	or	defining	their	own	implementation.
Provide	a	default	getter	for	damageRoll	in	Fightable.	This	getter	should
return	the	sum	of	all	the	dice	rolls	to	determine	how	much	damage	is	dealt	in	a
round	of	combat.

Listing	16.4		Defining	a	default	getter	implementation
(Creature.kt)
interface	Fightable	{

				var	healthPoints:	Int

				val	diceCount:	Int

				val	diceSides:	Int

				val	damageRoll:	Int

								get()	=	(0	until	diceCount).map	{

												Random().nextInt(diceSides	+	1)

								}.sum()

				fun	attack(opponent:	Fightable):	Int

}

Now	that	damageRoll	has	a	default	getter,	any	class	that	implements	the
Fightable	interface	can	opt	out	of	providing	a	value	for	the	damageRoll
property	–	in	which	case	the	property’s	value	will	be	assigned	based	on	the
default	implementation.
Not	every	property	or	function	needs	a	unique	implementation	in	every	class,	so
providing	a	default	implementation	is	a	good	way	to	reduce	duplication	in	your
code.

Abstract	Classes
Abstract	classes	provide	another	way	to	enforce	structure	in	your	classes.	An
abstract	class	is	never	instantiated.	Its	purpose	is	to	provide	function
implementations	through	inheritance	to	subclasses	that	are	instantiated.
An	abstract	class	is	defined	by	prepending	the	abstract	keyword	to	a	class
definition.	In	addition	to	function	implementations,	abstract	classes	can	include
abstract	functions	–	function	declarations	without	implementations.
It	is	time	to	give	the	player	something	to	fight	in	NyetHack.	Add	an	abstract
class	called	Monster	to	Creature.kt.	Monster	implements	the
Fightable	interface,	and	therefore	needs	a	healthPoints	property	and	an
attack	function.	(What	about	the	other	Fightable	properties?	We	will	return
to	those	in	a	moment.)

Listing	16.5		Defining	an	abstract	class	(Creature.kt)
interface	Fightable	{

				var	healthPoints:	Int

				val	diceCount:	Int

				val	diceSides:	Int

				val	damageRoll:	Int

								get()	=	(0	until	diceCount).map	{

												Random().nextInt(diceSides	+	1)

								}.sum()

				fun	attack(opponent:	Fightable):	Int

}

abstract	class	Monster(val	name:	String,

																							val	description:	String,

																							override	var	healthPoints:	Int)	:	Fightable	{

				override	fun	attack(opponent:	Fightable):	Int	{

								val	damageDealt	=	damageRoll

								opponent.healthPoints	-=	damageDealt

								return	damageDealt

				}

}

You	define	Monster	as	an	abstract	class	because	it	is	meant	as	a	foundation	for
more	specific	creatures	in	the	game.	You	will	never	create	an	instance	of
Monster	–	and	could	not	if	you	tried.	Instead,	you	will	create	instances	of
Monster	subclasses:	more	specific	monsters,	like	goblins,	wraiths,	and
dragons,	that	are	concrete	versions	of	an	abstract	monster.
Defining	Monster	as	an	abstract	class	provides	a	template	for	what	it	means	to
be	a	monster	in	NyetHack:	A	monster	must	have	a	name	and	a	description,	and	it
must	satisfy	the	criteria	of	the	Fightable	interface.
Now,	create	the	first	concrete	version	of	the	Monster	abstract	class	–	the

Goblin	subclass	–	in	Creature.kt.

Listing	16.6		Subclassing	an	abstract	class	(Creature.kt)
interface	Fightable	{

				...

}

abstract	class	Monster(val	name:	String,

																							val	description:	String,

																							override	var	healthPoints:	Int)	:	Fightable	{

				override	fun	attack(opponent:	Fightable):	Int	{

								val	damageDealt	=	damageRoll

								opponent.healthPoints	-=	damageDealt

								return	damageDealt

				}

}

class	Goblin(name:	String	=	"Goblin",

													description:	String	=	"A	nasty-looking	goblin",

													healthPoints:	Int	=	30)	:	Monster(name,	description,	healthPoints)	{

}

Because	Goblin	is	a	subclass	of	Monster,	it	has	all	of	the	properties	and
functions	that	Monster	does.
If	you	attempted	to	compile	your	code	at	this	point,	compilation	would	fail.	This
is	because	both	diceCount	and	diceSides	are	specified	as	requirements	of
the	Fightable	interface,	but	they	are	not	implemented	in	Monster	(and	have
no	default	implementation).
Monster	does	not	have	to	include	all	the	requirements	of	the	Fightable
interface,	even	though	it	implements	it,	because	it	is	an	abstract	class	and	will
never	be	instantiated.	Its	subclasses,	however,	must	implement	all	requirements
of	Fightable,	either	through	inheritance	from	Monster	or	on	their	own.
Satisfy	the	requirements	defined	on	the	Fightable	interface	by	adding	them	to
Goblin:

Listing	16.7		Implementing	properties	in	the	subclass	of	an	abstract
class	(Creature.kt)
interface	Fightable	{

				...

}

abstract	class	Monster(val	name:	String,

																							val	description:	String,

																							override	var	healthPoints:	Int)	:	Fightable	{

				...

}

class	Goblin(name:	String	=	"Goblin",

													description:	String	=	"A	nasty-looking	goblin",

													healthPoints:	Int	=	30)	:	Monster(name,	description,	healthPoints)	{

				override	val	diceCount	=	2

				override	val	diceSides	=	8

}

A	subclass	shares	all	functionality	with	its	superclass,	by	default.	This	is	true	no

matter	what	kind	of	class	the	superclass	is.	If	a	class	implements	an	interface,
then	its	subclass	must	also	satisfy	the	requirements	of	the	interface.
You	may	have	noticed	the	similarity	between	abstract	classes	and	interfaces:
Both	can	define	functions	and	properties	that	do	not	require	an	implementation.
What,	then,	is	the	difference	between	the	two?
For	one	thing,	an	interface	cannot	specify	a	constructor.	For	another,	a	class	can
extend	(or	subclass)	only	one	abstract	class,	but	it	can	implement	many
interfaces.	A	good	rule	of	thumb	is	this:	When	you	need	a	category	of	behavior
or	properties	that	objects	have	in	common	that	does	not	fit	using	inheritance,	use
an	interface.	If,	on	the	other	hand,	inheritance	makes	sense	–	but	you	do	not	want
a	concrete	parent	class	–	then	an	abstract	class	may	make	sense.	(And	if	you
want	to	be	able	to	construct	your	parent	class,	then	a	regular	class	is	still	your
best	bet.)

Combat	in	NyetHack
Adding	combat	to	NyetHack	will	put	to	use	all	that	you	have	learned	about
object-oriented	programming.
Each	room	in	NyetHack	will	contain	a	monster	for	your	hero	to	vanquish	in	the
most	graphic	way	that	you	know	how:	by	nullifying	it.
Add	a	monster	property	of	nullable	type	Monster?	to	the	Room	class,	and
initialize	it	by	assigning	it	a	Goblin.	Update	Room’s	description	to	let	the
player	know	whether	the	room	has	a	monster	to	fight.

Listing	16.8		Adding	a	monster	to	each	room	(Room.kt)
open	class	Room(val	name:	String)	{

				protected	open	val	dangerLevel	=	5

				var	monster:	Monster?	=	Goblin()

				fun	description()	=	"Room:	$name\n"	+

												"Danger	level:	$dangerLevel\n"	+

												"Creature:	${monster?.description	?:	"none."}"

				open	fun	load()	=	"Nothing	much	to	see	here..."

}

If	a	Room’s	monster	is	null,	then	it	has	been	bested.	Otherwise,	your	hero	still
has	a	foe	to	defeat.
You	initialized	monster,	a	property	of	type	Monster?,	with	an	object	of	type
Goblin.	A	room	can	host	any	subclass	of	Monster,	and	Goblin	is	a	subclass
of	Monster	–	this	is	polymorphism	at	work.	If	you	were	to	create	another	class
that	subclasses	Monster,	then	it	could	also	be	used	in	a	room	in	NyetHack.
Now,	it	is	time	to	add	a	“fight”	command	to	use	Room’s	new	monster
property.	Add	a	private	function	called	fight	to	Game.

Listing	16.9		Defining	the	fight	function	(Game.kt)
...

object	Game	{

				...

				private	fun	move(directionInput:	String)	=	...

				private	fun	fight()	=	currentRoom.monster?.let	{

												while	(player.healthPoints	>	0	&&	it.healthPoints	>	0)	{

																Thread.sleep(1000)

												}

												"Combat	complete."

								}	?:	"There's	nothing	here	to	fight."

				private	class	GameInput(arg:	String?)	{

								...

				}

}

fight	first	checks	to	see	whether	the	current	room’s	monster	is	null.	If	it	is,
then	there	is	nothing	to	fight,	and	a	corresponding	message	is	returned.	If	there	is
a	monster	to	fight,	then	–	as	long	as	the	player	and	the	monster	still	have	at	least
1	health	point	–	a	round	of	combat	is	performed.
That	round	of	combat	is	represented	by	the	next	private	function	you	will	add,
called	slay.	slay	calls	the	attack	function	on	the	monster	and	on	the	player.
The	same	attack	function	can	be	called	on	both	Monster	and	Player,
because	they	both	implement	the	Fightable	interface.

Listing	16.10		Defining	the	slay	function	(Game.kt)
...

object	Game	{

				...

				private	fun	fight()	=	...

				private	fun	slay(monster:	Monster)	{

								println("${monster.name}	did	${monster.attack(player)}	damage!")

								println("${player.name}	did	${player.attack(monster)}	damage!")

								if	(player.healthPoints	<=	0)	{

												println(">>>>	You	have	been	defeated!	Thanks	for	playing.	<<<<")

												exitProcess(0)

								}

								if	(monster.healthPoints	<=	0)	{

												println(">>>>	${monster.name}	has	been	defeated!	<<<<")

												currentRoom.monster	=	null

								}

				}

				private	class	GameInput(arg:	String?)	{

								...

				}

}

As	specified	by	the	condition	of	the	while	loop	in	fight,	combat	rounds	repeat
until	either	the	player	or	the	monster	runs	out	of	health	points.
If	the	player’s	healthPoints	value	reaches	0,	then	the	game	ends,	which	you
achieve	with	a	call	to	exitProcess.	exitProcess	is	a	Kotlin	standard
library	function	that	terminates	the	running	instance	of	the	JVM.	To	access	this
function,	you	will	have	to	import	kotlin.system.exitProcess.
If	the	monster’s	healthPoints	value	reaches	0,	then	the	monster	is	nullified
in	dramatic	fashion.
Call	slay	from	fight.

Listing	16.11		Calling	the	slay	function	(Game.kt)
...

object	Game	{

				...

				private	fun	move(directionInput:	String)	=	...

				private	fun	fight()	=	currentRoom.monster?.let	{

												while	(player.healthPoints	>	0	&&	it.healthPoints	>	0)	{

																slay(it)

																Thread.sleep(1000)

												}

												"Combat	complete."

								}	?:	"There's	nothing	here	to	fight."

				private	fun	slay(monster:	Monster)	{

								...

				}

				private	class	GameInput(arg:	String?)	{

								...

				}

}

After	a	round	of	combat,	Thread.sleep	is	called	for	1	second.
Thread.sleep	is	a	heavy-handed	function	that	pauses	execution	for	a	given
length	of	time,	in	this	case	1,000	milliseconds	(or	1	second).	We	do	not
recommend	using	Thread.sleep	throughout	a	production	codebase,	but	in
this	case,	it	is	a	handy	way	to	create	time	between	combat	rounds	in	NyetHack.
Once	the	condition	of	the	while	loop	is	no	longer	satisfied,	"Combat
complete."	is	returned	to	be	printed	to	the	console.
Test	your	new	combat	system	by	adding	a	“fight”	command	to	GameInput	that
calls	the	fight	function.

Listing	16.12		Adding	the	fight	command	(Game.kt)
...

object	Game	{

				...

				private	class	GameInput(arg:	String?)	{

								private	val	input	=	arg	?:	""

								val	command	=	input.split("	")[0]

								val	argument	=	input.split("	").getOrElse(1,	{	""	})

								fun	processCommand()	=	when	(command.toLowerCase())	{

												"fight"	->	fight()

												"move"	->	move(argument)

												else	->	commandNotFound()

								}

								private	fun	commandNotFound()	=	"I'm	not	quite	sure	what	you're	trying	to	do!"

				}

}

Run	Game.kt.	Try	moving	from	screen	to	screen	and	using	the	“fight”
command	in	different	rooms.	The	randomness	that	you	introduced	in	the
damageRoll	property	on	the	Fightable	interface	means	that	you	will	have	a
different	experience	each	time	that	you	walk	into	a	new	room	and	pick	a	fight.
				Welcome,	adventurer.

				A	glass	of	Fireball	springs	into	existence.	Delicious!	(x2)

				Room:	Town	Square

				Danger	level:	2

				Creature:	A	nasty-looking	goblin

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	is	in	excellent	condition!

				>	Enter	your	command:	fight

				Goblin	did	11	damage!

				Madrigal	of	Tampa	did	14	damage!

				Goblin	did	8	damage!

				Madrigal	of	Tampa	did	14	damage!

				Goblin	did	7	damage!

				Madrigal	of	Tampa	did	10	damage!

				>>>>	Goblin	has	been	defeated!	<<<<

				Combat	complete.

				Room:	Town	Square

				Danger	level:	2

				Creature:	none.

				(Aura:	GREEN)	(Blessed:	YES)

				Madrigal	of	Tampa	looks	pretty	hurt.

				>	Enter	your	command:

In	this	chapter,	you	leveraged	interfaces	to	define	what	a	creature	needs	to
engage	in	combat,	and	you	used	abstract	classes	to	create	a	base	class	for	all
monsters	in	the	world	of	NyetHack.	These	tools	will	help	you	create
relationships	that	focus	on	what	a	class	can	do	rather	than	how	it	does	it.
Many	of	the	object-oriented	concepts	that	you	have	learned	about	in	the	past
several	chapters	return	to	this	common	goal:	Leverage	the	tools	of	the	Kotlin
framework	to	create	scalable	codebases	that	only	expose	what	they	need	to	and
encapsulate	the	rest.
In	the	next	chapter,	you	will	learn	about	generics,	a	feature	that	allows	you	to
specify	classes	that	work	with	many	types.

17	
Generics

You	learned	in	Chapter	10	that	a	list	can	hold	any	type:	integers,	strings,	or	even
new	types	that	you	have	defined:
				val	listOfInts:	List<Int>	=	listOf(1,2,3)

				val	listOfStrings:	List<String>	=	listOf("string	one",	"string	two")

				val	listOfRooms:	List<Room>	=	listOf(Room(),	TownSquare())

Lists	can	hold	any	type	because	of	generics,	a	type	system	feature	that	allows
both	functions	and	types	to	work	with	types	that	are	not	yet	known	to	you	or	the
compiler.	Generics	greatly	expand	the	reusability	of	your	class	definitions,
because	they	allow	your	definitions	to	work	with	many	types.
In	this	chapter,	you	will	learn	how	to	create	your	own	generic	classes	and
functions	that	work	with	generic	type	parameters.	You	will	be	working	in	your
Sandbox	project	to	model	a	generic	LootBox	class	that	can	hold	virtual
rewards	of	any	kind	you	can	imagine.

Defining	Generic	Types
A	generic	type	is	a	class	that	accepts	an	input	of	any	type	in	its	constructor.	You
are	going	to	begin	by	defining	your	own	generic	type.
Open	the	Sandbox	project	and	add	a	new	file	called	Generics.kt.	Within
Generics.kt,	define	a	LootBox	class	that	specifies	a	generic	type
parameter	for	use	with	its	contents	and	contains	a	private	property	called	loot
that	is	assigned	the	item.

Listing	17.1		Creating	a	generic	type	(Generics.kt)
class	LootBox<T>(item:	T)	{

				private	var	loot:	T	=	item

}

You	define	the	LootBox	class	and	make	it	generic	by	specifying	a	generic	type
parameter	for	use	with	the	class,	written	as	T	and	specified	within	diamond
braces	(<	>)	like	other	type	parameters.	The	generic	type	parameter,	T,	is	a
placeholder	for	the	item’s	type.
The	LootBox	class	accepts	an	item	of	any	type	as	a	primary	constructor	value
(item:	T)	and	assigns	the	value	to	the	private	property	loot,	also	of	type	T.
Note	that	the	generic	type	parameter	is	usually	represented	with	a	single	letter	T,
short	for	“type,”	though	any	letter	or	word	can	be	used.	We	suggest	you
generally	stick	with	T,	since	it	is	what	is	commonly	used	in	other	languages	that
support	generics	and	is	therefore	the	most	readable	choice.
Time	to	put	the	new	LootBox	class	to	the	test.	Add	a	main	function,	define	a
couple	kinds	of	loot,	and	place	an	instance	of	each	new	item	in	its	very	own	loot
box.

Listing	17.2		Defining	loot	boxes	(Generics.kt)
class	LootBox<T>(item:	T)	{

				private	var	loot:	T	=	item

}

class	Fedora(val	name:	String,	val	value:	Int)

class	Coin(val	value:	Int)

fun	main(args:	Array<String>)	{

				val	lootBoxOne:	LootBox<Fedora>	=	LootBox(Fedora("a	generic-looking	fedora",	15))

				val	lootBoxTwo:	LootBox<Coin>	=	LootBox(Coin(15))

}

You	have	created	two	different	kinds	of	loot	(fedoras	and	coins,	both	highly
desirable	virtual	rewards)	and	two	different	kinds	of	loot	boxes	to	hold	them.

Since	you	made	the	LootBox	class	generic,	you	are	able	to	use	just	one	class
definition	to	support	different	kinds	of	loot	boxes:	ones	that	hold	fedoras,	ones
that	hold	coins,	and	so	on.
Notice	the	type	signature	for	each	LootBox	variable:
				val	lootBoxOne:	LootBox<Fedora>	=	LootBox(Fedora("a	generic-looking	fedora",	15))

				val	lootBoxTwo:	LootBox<Coin>	=	LootBox(Coin(15))

The	diamond	braces	on	the	type	signature	for	the	variable	show	what	type	of	loot
a	particular	LootBox	instance	is	capable	of	holding.
Generic	types,	like	other	types	in	Kotlin,	support	type	inference.	We	have
included	the	type	explicitly	for	illustration,	but	it	could	have	been	omitted	since
each	variable	is	initialized	with	a	value.	In	your	own	code,	you	typically	will
omit	the	type	information	when	it	is	not	needed;	feel	free	to	delete	it	here,	if	you
prefer.

Generic	Functions
Generic	type	parameters	also	work	with	functions.	That	is	good	news,	since
there	is	currently	no	way	for	a	player	to	retrieve	loot	from	a	loot	box.
Time	to	fix	that.	Add	a	function	that	lets	a	player	fetch	the	item	if	and	only	if	the
box	is	open.	Track	whether	the	box	is	open	by	adding	an	open	property.

Listing	17.3		Adding	a	fetch	function	(Generics.kt)
class	LootBox<T>(item:	T)	{

				var	open	=	false

				private	var	loot:	T	=	item

				fun	fetch():	T?	{

							return	loot.takeIf	{	open	}

				}

}

Here	you	define	a	generic	function,	fetch,	that	returns	T	–	the	generic	type
parameter	specified	on	the	LootBox	class,	which	is	a	placeholder	for	the	type
of	item.
Note	that	if	fetch	were	defined	outside	of	LootBox,	type	T	would	not	be
available,	since	T	is	tied	to	the	LootBox	class	definition.	However,	a	function
does	not	require	a	class	to	use	a	generic	type	parameter,	as	you	will	see	in	the
next	section.
Try	fetching	the	contents	of	lootBoxOne	in	the	main	function	using	the	new
fetch	function,	first	with	the	box	closed:

Listing	17.4		Testing	the	generic	fetch	function	(Generics.kt)
...

fun	main(args:	Array<String>)	{

				val	lootBoxOne:	LootBox<Fedora>	=	LootBox(Fedora("a	generic-looking	fedora",	15))

				val	lootBoxTwo:	LootBox<Coin>	=	LootBox(Coin(15))

				lootBoxOne.fetch()?.run	{

								println("You	retrieve	$name	from	the	box!")

				}

}

You	use	the	standard	function	run	(which	you	learned	about	in	Chapter	9)	to
print	the	name	of	lootBoxOne’s	contents,	if	it	is	non-null.
Recall	that	run	scopes	everything	within	the	lambda	it	accepts	to	the	receiver
instance	it	is	called	on	–	so	$name	accesses	Fedora’s	name	property.
Run	Generics.kt.	There	will	be	no	output.	You	could	not	take	the	loot,
because	the	loot	box	was	closed.	Now,	open	the	loot	box	and	run

Generics.kt	again.

Listing	17.5		Opening	the	box	(Generics.kt)
...

fun	main(args:	Array<String>)	{

				val	lootBoxOne:	LootBox<Fedora>	=	LootBox(Fedora("a	generic-looking	fedora",	15))

				val	lootBoxTwo:	LootBox<Coin>	=	LootBox(Coin(15))

				lootBoxOne.open	=	true

				lootBoxOne.fetch()?.run	{

								println("You	retrieve	a	$name	from	the	box!")

				}

}

This	time,	when	you	run	Generics.kt	you	will	see	the	name	of	the	loot
found:
				You	retrieve	a	generic-looking	fedora	from	the	box!

Multiple	Generic	Type	Parameters
A	generic	function	or	type	can	also	support	multiple	generic	type	parameters.
Suppose	you	want	a	second	fetch	function	that	accepts	a	loot-modification
function,	allowing	you	to	convert	the	loot	to	some	other	new	type,	perhaps	a
coin,	when	you	fetch	it.	The	value	of	the	coin	returned	depends	on	the	value	of
the	original	loot	–	and	a	lootModFunction	higher-order	function	that	is
passed	to	fetch	will	determine	that.
Add	a	new	fetch	function	to	LootBox	that	accepts	a	loot-modification
function.

Listing	17.6		Using	multiple	generic	type	parameters	(Generics.kt)
class	LootBox<T>(item:	T)	{

				var	open	=	false

				private	var	loot:	T	=	item

				fun	fetch():	T?	{

								return	loot.takeIf	{	open	}

				}

				fun	<R>	fetch(lootModFunction:	(T)	->	R):	R?	{

								return	lootModFunction(loot).takeIf	{	open	}

				}

}

...

Here,	you	add	a	new	generic	type	parameter	to	the	function,	R,	short	for
“return,”	since	the	generic	type	parameter	will	be	used	for	fetch’s	return	type.
You	place	the	generic	type	parameter	in	diamond	braces	directly	before	the
function	name:	fun	<R>	fetch.	fetch	returns	a	value	of	type	R?,	a	nullable
version	of	R.
You	also	specify	that	the	lootModFunction	(via	its	function	type
declaration,	(T)	->	R)	accepts	an	argument	of	type	T	and	returns	a	result	of
type	R.	Try	out	the	new	fetch	function	that	you	defined	–	this	time,	passing	a
loot-modification	function	as	an	argument.

Listing	17.7		Passing	the	loot-modification	function	as	an	argument
(Generics.kt)
...

fun	main(args:	Array<String>)	{

				val	lootBoxOne:	LootBox<Fedora>	=	LootBox(Fedora("a	generic-looking	fedora",	15))

				val	lootBoxTwo:	LootBox<Coin>	=	LootBox(Coin(15))

				lootBoxOne.open	=	true

				lootBoxOne.fetch()?.run	{

								println("You	retrieve	$name	from	the	box!")

				}

				val	coin	=	lootBoxOne.fetch()	{

								Coin(it.value	*	3)

				}

				coin?.let	{	println(it.value)	}

}

The	new	version	of	the	fetch	function	you	defined	returns	the	type	of	the
lambda	you	provide	it,	R.	You	return	a	Coin?	from	the	lambda,	so	the	type	of	R
in	this	case	is	Coin?.	But	the	new	version	of	fetch	is	more	flexible	than
returning	a	coin	every	time	–	whatever	you	return	from	the	lambda,	the	fetch
function	will	return	that	same	type,	since	the	type	of	R	depends	on	what	is
returned	from	the	anonymous	function.
lootBoxOne	holds	an	item	of	type	Fedora.	However,	your	new	fetch
function	returns	a	Coin?,	instead	of	a	Fedora?.	The	new	generic	type
parameter	that	you	added,	R,	makes	this	possible.
The	lootModFunction	you	pass	to	fetch	calculates	a	value	for	the	coin	by
looking	at	the	value	of	the	loot	in	the	box	and	multiplying	it	by	3.
Run	Generics.kt.	This	time	you	will	see	the	name	of	the	loot	found	along
with	the	value	of	the	coin	returned	from	the	loot	box:	the	value	of	the	original
item	(a	fedora)	multiplied	by	3:
				You	retrieve	a	generic-looking	fedora	from	the	box!

				45

Generic	Constraints
What	if	you	wanted	to	ensure	that	the	loot	box	was	only	used	to	hold	loot,	and
not	something	else?	You	can	specify	a	generic	type	constraint	to	enforce	exactly
that.
Start	by	changing	the	Coin	and	Fedora	classes	to	be	subclasses	of	a	new	top-
level	Loot	class:

Listing	17.8		Adding	a	superclass	(Generics.kt)
class	LootBox<T>(item:	T)	{

				var	open	=	false

				private	var	loot:	T	=	item

				fun	fetch():	T?	{

								return	loot.takeIf	{	open	}

				}

				fun	<R>	fetch(lootModFunction:	(T)	->	R):	R?	{

								return	lootModFunction(loot).takeIf	{	open	}

				}

}

open	class	Loot(val	value:	Int)

class	Fedora(val	name:	String,	val	value:	Int)	:	Loot(value)

class	Coin(val	value:	Int)	:	Loot(value)

...

Now,	add	a	generic	type	constraint	to	LootBox’s	generic	type	parameter	to
allow	only	descendants	of	the	Loot	class	to	be	used	with	LootBox:

Listing	17.9		Constraining	the	generic	parameter	to	Loot	only
(Generics.kt)
class	LootBox<T	:	Loot>(item:	T)	{

				...

}

...

Here,	you	add	a	constraint	to	the	generic	type	T,	specified	as	:	Loot.	Now,	only
items	that	are	descendants	of	the	Loot	class	can	be	added	to	the	loot	box.
You	might	be	wondering,	“Why	is	T	still	needed	here?	Why	not	just	use	the	type
Loot?”	By	using	T,	LootBox	allows	you	to	access	the	specific	kind	of	Loot
while	allowing	the	contents	to	be	any	kind	of	Loot.	So,	rather	than	the
LootBox	containing	Loot,	the	LootBox	can	contain	a	Fedora	–	and	the
Fedora’s	specific	type	is	tracked	with	T.
If	you	used	Loot	for	the	type,	that	would	constrain	LootBox	to	accept
descendants	of	Loot,	but	it	would	also	discard	the	information	that	a	Fedora

was	in	the	box.	Using	Loot	for	the	type,	for	example,	the	following	would	not
compile:
				val	lootBox:	LootBox<Loot>	=	LootBox(Fedora("a	dazzling	fuschia	fedora",	15))

				val	fedora:	Fedora	=	lootBox.item	//	Type	mismatch	-	Required:	Fedora,	Found:	Loot

It	would	no	longer	be	possible	to	see	that	the	LootBox	contained	anything
other	than	Loot.	By	using	a	type	constraint,	it	is	possible	to	constrain	the
contents	to	Loot	and	also	preserve	the	specific	subtype	of	the	loot	in	the	box.

vararg	and	get
Your	LootBox	can	now	hold	any	kind	of	Loot,	but	it	cannot	hold	more	than
one	item	at	a	time.	What	if	you	want	to	hold	multiple	items	of	Loot	in	your
LootBox?
To	do	so,	modify	LootBox’s	primary	constructor	with	the	vararg	keyword,
which	allows	a	variable	number	of	arguments	to	be	passed	to	the	constructor.

Listing	17.10		Adding	vararg	(Generics.kt)
class	LootBox<T	:	Loot>(vararg	item:	T)	{

				...

}

...

Now	that	you	have	added	the	vararg	keyword	to	LootBox,	its	item	variable
will	be	treated	as	an	Array	of	elements	instead	of	a	single	element	when	it	is
initialized,	and	LootBox	can	accept	multiple	items	passed	into	the	constructor.
(Recall	from	Chapter	10	that	Array	is	a	collection	type.)
Update	the	loot	variable	and	the	fetch	function	to	account	for	this	change	by
indexing	into	the	loot	array:

Listing	17.11		Indexing	into	the	loot	array	(Generics.kt)
class	LootBox<T	:	Loot>(vararg	item:	T)	{

				var	open	=	false

				private	var	loot:	TArray<out	T>	=	item

				fun	fetch(item:	Int):	T?	{

								return	loot[item].takeIf	{	open	}

				}

				fun	<R>	fetch(item:	Int,	lootModFunction:	(T)	->	R):	R?	{

								return	lootModFunction(loot[item]).takeIf	{	open	}

				}

}

...

Notice	the	out	keyword	that	you	added	for	the	new	loot	variable’s	type
signature.	The	out	keyword	is	required	here	because	it	is	part	of	the	return	type
for	any	variable	marked	as	a	vararg.	You	will	learn	more	about	this	keyword,
and	its	partner	in,	shortly.
Try	out	the	new	and	improved	LootBox	in	main.	Pass	another	fedora	into	the
loot	box	(get	creative	with	the	second	fedora’s	name,	if	you	like).	Then	fetch	the
two	items	from	lootBoxOne,	one	in	each	call	to	fetch:

Listing	17.12		Testing	the	new	LootBox	(Generics.kt)
...

fun	main(args:	Array<String>)	{

				val	lootBoxOne:	LootBox<Fedora>	=	LootBox(Fedora("a	generic-looking	fedora",	15),

																																														Fedora("a	dazzling	magenta	fedora",	25))

				val	lootBoxTwo:	LootBox<Coin>	=	LootBox(Coin(15))

				lootBoxOne.open	=	true

				lootBoxOne.fetch(1)?.run	{

								println("You	retrieve	$name	from	the	box!")

				}

				val	coin	=	lootBoxOne.fetch(0)	{

								Coin(it.value	*	3)

				}

				coin?.let	{	println(it.value)	}

}

Run	Generics.kt	again.	You	will	see	the	name	of	the	second	item	in
lootBoxOne	and	the	value	of	the	first	item	(multiplied	by	3):
				You	retrieve	a	dazzling	magenta	fedora	from	the	box!

				45

Another	way	to	provide	index	access	to	the	loot	array	is	to	have	LootBox
implement	an	operator	function:	the	get	function,	which	enables	the	[]
operator.	(You	saw	operator	overloading	in	Chapter	15.)
Update	LootBox	to	include	a	get	operator	implementation:

Listing	17.13		Adding	a	get	operator	to	LootBox	(Generics.kt)
class	LootBox<T	:	Loot>(vararg	item:	T)	{

			var	open	=	false

			private	var	loot:	Array<out	T>	=	item

			operator	fun	get(index:	Int):	T?	=	loot[index].takeIf	{	open	}

			fun	fetch(item:	Int):	T?	{

							return	loot[item].takeIf	{	open	}

			}

			fun	<R>	fetch(item:	Int,	lootModFunction:	(T)	->	R):	R?	{

							return	lootModFunction(loot[item]).takeIf	{	open	}

			}

}

...

Now,	use	the	new	get	operator	in	your	main	function:

Listing	17.14		Using	get	(Generics.kt)
...

fun	main(args:	Array<String>)	{

				...

				coin?.let	{	println(it.value)	}

				val	fedora	=	lootBoxOne[1]

				fedora?.let	{	println(it.name)	}

}

get	gives	you	a	shorthand	for	fetching	loot	at	a	particular	index.	Run
Generics.kt	again	–	you	will	see	the	name	of	the	second	fedora	in
lootBoxOne	printed	after	the	output	from	before.
				You	retrieve	a	dazzling	magenta	fedora	from	the	box!

				45

				a	dazzling	magenta	fedora

in	and	out
To	further	customize	your	generic	type	parameters,	Kotlin	provides	the
keywords	in	and	out.	To	see	how	they	work,	create	a	simple	generic	Barrel
class	in	a	new	file	called	Variance.kt:

Listing	17.15		Defining	Barrel	(Variance.kt)
class	Barrel<T>(var	item:	T)

To	experiment	with	Barrel,	add	a	main	function.	In	main,	define	a	Barrel
to	hold	a	Fedora	and	another	Barrel	to	hold	Loot:

Listing	17.16		Defining	Barrels	in	main	(Variance.kt)
class	Barrel<T>(var	item:	T)

fun	main(args:	Array<String>)	{

				var	fedoraBarrel:	Barrel<Fedora>	=	Barrel(Fedora("a	generic-looking	fedora",	15))

				var	lootBarrel:	Barrel<Loot>	=	Barrel(Coin(15))

}

While	a	Barrel<Loot>	can	hold	any	kind	of	loot,	the	particular	instance
defined	here	happens	to	hold	a	Coin	(which,	remember,	is	a	subclass	of	Loot).
Now,	assign	fedoraBarrel	to	lootBarrel:

Listing	17.17		Attempting	to	reassign	lootBarrel	(Variance.kt)
class	Barrel<T>(var	item:	T)

fun	main(args:	Array<String>)	{

				var	fedoraBarrel:	Barrel<Fedora>	=	Barrel(Fedora("a	generic-looking	fedora",	15))

				var	lootBarrel:	Barrel<Loot>	=	Barrel(Coin(15))

				lootBarrel	=	fedoraBarrel

}

You	may	be	surprised	to	find	that	the	assignment	was	not	allowed	by	the
compiler	(Figure	17.1):

Figure	17.1		Type	mismatch

It	might	seem	like	the	assignment	should	have	been	possible.	Fedora	is,	after
all,	a	descendant	of	Loot,	and	assigning	a	variable	of	the	Loot	type	an	instance
of	Fedora	is	possible:
				var	loot:	Loot	=	Fedora("a	generic-looking	fedora",	15)	//	No	errors

To	understand	why	the	assignment	fails,	let’s	walk	through	what	could	happen	if
it	succeeded.
If	the	compiler	allowed	you	to	assign	the	fedoraBarrel	instance	to	the
lootBarrel	variable,	lootBarrel	would	then	point	to	fedoraBarrel,
and	it	would	be	possible	to	interface	with	fedoraBarrel’s	item	as	Loot,
instead	of	Fedora	(because	of	lootBarrel’s	type,	Barrel<Loot>).
For	example,	a	coin	is	valid	Loot,	so	it	would	be	possible	to	assign	a	coin	to
lootBarrel.item	(which	points	to	fedoraBarrel).	Do	so	in
Variance.kt:

Listing	17.18		Assigning	a	coin	to	lootBarrel.item
(Variance.kt)
class	Barrel<T>(var	item:	T)

fun	main(args:	Array<String>)	{

				var	fedoraBarrel:	Barrel<Fedora>	=	Barrel(Fedora("a	generic-looking	fedora",	15))

				var	lootBarrel:	Barrel<Loot>	=	Barrel(Coin(15))

				lootBarrel	=	fedoraBarrel

				lootBarrel.item	=	Coin(15)

}

Now,	suppose	you	tried	to	access	fedoraBarrel.item,	expecting	a	fedora:

Listing	17.19		Accessing	fedoraBarrel.item	(Variance.kt)
class	Barrel<T>(var	item:	T)

fun	main(args:	Array<String>)	{

				var	fedoraBarrel:	Barrel<Fedora>	=	Barrel(Fedora("a	generic-looking	fedora",	15))

				var	lootBarrel:	Barrel<Loot>	=	Barrel(Coin(15))

				lootBarrel	=	fedoraBarrel

				lootBarrel.item	=	Coin(15)

				val	myFedora:	Fedora	=	fedoraBarrel.item

}

The	compiler	would	then	be	faced	with	a	type	mismatch	–
fedoraBarrel.item	is	not	a	Fedora,	it	is	a	Coin	–	and	you	would	be
faced	with	a	ClassCastException.	This	is	the	problem	that	arises,	and	the
reason	the	assignment	is	not	allowed	by	the	compiler.
It	is	also	why	the	in	and	out	keywords	exist.
In	the	Barrel	class’s	definition,	add	the	out	keyword	and	change	item	from	a
var	to	a	val:

Listing	17.20		Adding	out	(Variance.kt)
class	Barrel<out	T>(varval	item:	T)

...

Next,	delete	the	line	that	assigned	Coin	to	item	(which	is	no	longer	allowed,
since	item	is	a	val)	and	change	the	assignment	of	myFedora	to
lootBarrel.item	instead	of	fedoraBarrel.item.

Listing	17.21		Changing	the	assignment	(Variance.kt)
class	Barrel<out	T>(val	item:	T)

fun	main(args:	Array<String>)	{

				var	fedoraBarrel:	Barrel<Fedora>	=	Barrel(Fedora("a	generic-looking	fedora",	15))

				var	lootBarrel:	Barrel<Loot>	=	Barrel(Coin(15))

				lootBarrel	=	fedoraBarrel

				lootBarrel.item	=	Coin(15)

				val	myFedora:	Fedora	=	fedoraBarrel.itemlootBarrel.item

}

All	errors	are	resolved.	What	has	changed?
There	are	two	roles	a	generic	parameter	can	be	assigned:	producer	or	consumer.
The	role	of	producer	means	that	a	generic	parameter	will	be	readable	(but	not
writable),	and	consumer	means	the	generic	parameter	will	be	writable	(but	not
readable).
When	you	added	the	out	keyword	to	Barrel<out	T>,	you	specified	that	the
generic	would	act	as	a	producer	–	that	it	would	be	readable,	but	not	writable.
That	meant	that	defining	item	with	the	var	keyword	was	no	longer	permitted	–
otherwise,	it	would	not	simply	be	a	producer	of	Fedoras,	but	would	also	be
writable	and	support	consuming	one.
By	making	the	generic	a	producer,	you	assure	the	compiler	that	the	dilemma
pointed	out	earlier	is	no	longer	a	possibility:	Since	the	generic	parameter	is	a
producer,	not	a	consumer,	the	item	variable	will	never	change.	Kotlin	now
permits	the	assignment	of	fedoraBarrel	to	lootBarrel,	because	it	is	safe
to	do	so:	lootBarrel’s	item	now	has	type	Fedora,	not	Loot,	and	cannot
be	changed.
Take	a	closer	look	at	the	assignment	of	the	myFedora	variable	in	IntelliJ.	The
green	shading	around	lootBarrel	indicates	that	a	smart	cast	took	place,	and
that	is	confirmed	when	you	mouse	over	it	(Figure	17.2):

Figure	17.2		Smart	cast	to	Barrel<Fedora>

The	compiler	can	smart	cast	Barrel<Loot>	to	Barrel<Fedora>	because
item	can	never	change	–	it	is	a	producer	only.
By	the	way,	Lists	are	also	producers.	In	Kotlin’s	definition	for	List,	the
generic	type	parameter	is	marked	with	the	out	keyword:
				public	interface	List<out	E>	:	Collection<E>

Marking	the	generic	type	parameter	for	Barrel	with	the	in	keyword	would
have	the	opposite	effect	on	reassigning	the	Barrels:	Instead	of	being	allowed
to	assign	fedoraBarrel	to	lootBarrel,	you	would	be	allowed	to	assign
lootBarrel	to	fedoraBarrel	–	but	not	vice	versa.
Update	Barrel	to	use	the	in	keyword	instead	of	out.	You	will	notice	that
Barrel	will	now	require	dropping	the	val	keyword	for	item,	since	it	could
otherwise	produce	an	item	(a	violation	of	the	consumer	role).

Listing	17.22		Marking	Barrel	with	in	(Variance.kt)
class	Barrel<inout	T>(val	item:	T)

...

Now,	lootBarrel	=	fedoraBarrel	in	main	has	an	error	warning	you	of	a	type
mismatch.	Reverse	the	assignment:

Listing	17.23		Reversing	the	assignment	(Variance.kt)
...

fun	main(args:	Array<String>)	{

				var	fedoraBarrel:	Barrel<Fedora>	=	Barrel(Fedora("a	generic-looking	fedora",	15))

				var	lootBarrel:	Barrel<Loot>	=	Barrel(Coin(15))

				lootBarrel	=	fedoraBarrel

				fedoraBarrel	=	lootBarrel

				val	myFedora:	Fedora	=	lootBarrel.item

}

The	opposite	assignment	is	possible	because	the	compiler	can	be	certain	you
would	never	be	able	to	produce	Loot	from	a	Barrel	containing	Fedoras	–
leading	to	the	possibility	of	class	cast	exceptions.
You	removed	the	val	keyword	from	Barrel	because	Barrel	is	now	a
consumer	–	it	accepts	a	value,	but	it	does	not	produce	one.	Therefore,	you	also
drop	the	item	lookup.	This	is	how	the	compiler	is	able	to	reason	that	the
assignment	you	have	made	is	a	safe	one.

By	the	way,	you	may	have	heard	the	terms	covariance	and	contravariance	used
to	describe	what	out	and	in	do.	In	our	opinion,	these	terms	lack	the
commonsense	clarity	of	in	and	out,	so	we	avoid	them.	We	mention	them	here
because	you	may	encounter	them	elsewhere,	so	now	you	know:	If	you	hear
“covariance,”	think	“out,”	and	if	you	hear	“contravariance,”	think	“in.”
In	this	chapter	you	have	learned	how	to	use	generics	to	expand	the	capabilities	of
Kotlin’s	classes.	You	have	also	seen	type	constraints	and	how	the	in	and	out
keywords	can	be	used	to	define	the	producer	or	consumer	role	for	the	generic
parameter.
In	the	next	chapter,	you	will	learn	about	extensions,	which	allow	you	to	share
functions	and	properties	without	using	inheritance.	You	will	use	them	to	improve
NyetHack’s	codebase.

For	the	More	Curious:	The	reified	Keyword
There	are	cases	where	it	is	useful	to	know	the	specific	type	that	is	used	for	a
generic	parameter.	The	reified	keyword	allows	you	to	check	a	generic
parameter’s	type.
Imagine	that	you	wanted	to	fetch	loot	from	a	list	of	different	kinds	of	loot
(Coins	and	Fedoras,	for	example),	and	–	depending	on	the	type	of	loot	that
was	randomly	selected	–	you	either	wanted	to	provide	a	backup	loot	item	of	a
desired	type	or	return	the	one	that	was	selected.	Here	is	a
randomOrBackupLoot	function	that	attempts	to	capture	that	logic:
				fun	<T>	randomOrBackupLoot(backupLoot:	()	->	T):	T	{

								val	items	=	listOf(Coin(14),	Fedora("a	fedora	of	the	ages",	150))

								val	randomLoot:	Loot	=	items.shuffled().first()

								return	if	(randomLoot	is	T)

												randomLoot

								}	else	{

												backupLoot()

								}

				}

				fun	main(args:	Array<String>)	{

							randomOrBackupLoot	{

											Fedora("a	backup	fedora",	15)

							}.run	{

											//	Prints	either	the	backup	fedora	or	the	fedora	of	the	ages

											println(name)

							}

				}

If	you	typed	this	in,	you	would	find	that	it	does	not	work.	IntelliJ	would	flag	the
type	parameter	T	with	an	error	(Figure	17.3):

Figure	17.3		Cannot	check	for	instance	of	erased	type

Kotlin	normally	disallows	the	type	check	you	performed	against	T	because
generic	types	are	subject	to	type	erasure	–	meaning	the	type	information	for	T	is
not	available	at	runtime.	Java	has	the	same	rule.
If	you	were	to	look	at	the	bytecode	for	the	randomOrBackupLoot	function,
you	would	see	the	effect	of	type	erasure	on	the	expression	randomLoot	is	T:
				return	(randomLoot	!=	null	?	randomLoot	instanceof	Object	:	true)

				?	randomLoot	:	backupLoot.invoke();

Where	you	used	T,	Object	is	used	instead,	because	the	compiler	no	longer
knows	the	type	of	T	at	runtime.	This	is	why	type	checking	a	generic	defined	in
the	usual	way	is	not	possible.
However,	unlike	Java,	Kotlin	provides	the	reified	keyword,	which	allows	you
to	preserve	the	type	information	at	runtime.
reified	is	used	on	an	inlined	function:
				inline	fun	<reified	T>	randomOrBackupLoot(backupLoot:	()	->	T):	T	{

								val	items	=	listOf(Coin(14),	Fedora("a	fedora	of	the	ages",	150))

								val	first:	Loot	=	items.shuffled().first()

								return	if	(first	is	T)	{

												first

								}	else	{

												backupLoot()

								}

				}

Now	the	type	check	first	is	T	is	possible,	because	the	type	information	is
reified.	The	generic	type	information	that	is	normally	erased	is	instead	preserved
so	that	the	compiler	can	check	the	type	of	the	generic	parameter.
The	bytecode	for	the	updated	randomOrBackupLoot	shows	that	the	actual
type	information	for	T	is	maintained,	instead	of	Object:
				randomLoot$iv	instanceof	Fedora

				?	randomLoot$iv	:	new	Fedora("a	backup	fedora",	15);

Using	the	reified	keyword	allows	you	to	inspect	the	type	of	a	generic
parameter	without	requiring	reflection	(learning	a	name	or	a	type	of	a	property	or
function	at	runtime	–	generally	a	costly	operation).

18	
Extensions

Extensions	allow	you	to	add	functionality	to	a	type	without	directly	modifying
the	type’s	definition.	You	can	use	extensions	with	your	own	types	and	also	types
you	do	not	control,	like	List,	String,	and	other	types	from	the	Kotlin
standard	library.
Extensions	are	an	alternative	to	the	sharing	behavior	of	inheritance.	They	are	a
good	fit	for	adding	functionality	to	a	type	when	you	do	not	control	the	definition
of	the	class	or	when	a	class	is	not	marked	with	the	open	keyword,	making	it
ineligible	for	subclassing.
The	Kotlin	standard	library	frequently	uses	extensions.	For	example,	the
standard	functions	that	you	learned	about	in	Chapter	9	are	defined	as	extensions,
and	you	will	look	at	several	examples	of	their	declarations	in	this	chapter.
For	this	chapter,	you	will	be	working	first	in	the	Sandbox	project	and	then
applying	what	you	learned	to	streamline	NyetHack’s	codebase.	Begin	by
opening	the	Sandbox	project	and	creating	a	new	file	called	Extensions.kt.

Defining	Extension	Functions
Your	first	extension	allows	you	to	add	a	specified	amount	of	enthusiasm	to	any
String.	Define	it	in	Extensions.kt:

Listing	18.1		Adding	an	extension	to	String	(Extensions.kt)
fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

Extension	functions	are	defined	in	the	same	way	as	other	functions,	with	one
major	difference:	When	you	specify	an	extension	function,	you	also	specify	the
type	the	extension	adds	functionality	to,	known	as	the	receiver	type.	(Recall	from
Chapter	9	that	the	subject	of	an	extension	is	called	a	“receiver.”)	For	the
addEnthusiasm	function,	the	receiver	type	you	specified	is	String.
addEnthusiasm’s	function	body	is	a	single-expression	function	that	returns	a
new	string:	the	contents	of	this	plus	1	or	more	exclamation	points,	based	on	the
argument	passed	to	amount	(1,	if	the	default	vaue	is	used).	The	this	keyword
refers	to	the	receiver	instance	the	extension	function	was	called	on	(a	String
instance,	in	this	case).
Now,	you	can	invoke	the	addEnthusiasm	function	on	any	instance	of
String.	Try	out	the	new	extension	function	by	defining	a	string	in	a	new	main
function,	calling	the	addEnthusiasm	extension	function	on	it,	and	printing
the	result:

Listing	18.2		Calling	the	new	extension	on	a	String	receiver
instance	(Extensions.kt)
fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

fun	main(args:	Array<String>)	{

				println("Madrigal	has	left	the	building".addEnthusiasm())

}

Run	Extensions.kt	to	see	that	your	extension	function	adds	an	exclamation
point	to	the	string,	as	expected.
Could	you	have	subclassed	String	to	add	this	functionality	to	String
instances?	In	IntelliJ,	view	String’s	source	definition	by	pressing	the	Shift	key
twice	to	open	the	Search	Everywhere	dialog	and	then	searching	for	the	“String.kt”
file.	Its	header	looks	like	this:
				public	class	String	:	Comparable<String>,	CharSequence	{

								...

				}

Since	there	is	no	open	keyword	on	the	String	class	definition,	there	is	no	way
to	subclass	String	to	add	functionality	through	inheritance.	As	we	said	earlier,
extensions	are	a	good	option	when	you	want	to	add	functionality	to	a	class	you
do	not	control	or	that	is	ineligible	for	subclassing.

Defining	an	extension	on	a	superclass

Extensions	do	not	rely	on	inheritance,	but	they	can	be	combined	with	inheritance
to	expand	their	scope.	Try	it	in	Extensions.kt:	Define	an	extension	on	the
Any	type	called	easyPrint.	Because	it	is	defined	on	Any,	it	will	be	directly
callable	on	all	types.	In	main,	change	the	call	to	the	println	function	to
instead	call	your	new	easyPrint	extension	function	directly	on	the	String:

Listing	18.3		Extending	Any	(Extensions.kt)
fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

fun	Any.easyPrint()	=	println(this)

fun	main(args:	Array<String>)	{

				println("Madrigal	has	left	the	building".addEnthusiasm()).easyPrint()

}

Run	Extensions.kt	and	confirm	that	the	output	has	not	changed.
Since	you	added	the	extension	for	the	Any	type,	it	is	also	available	for	use	with
other	subtypes.	Call	the	extension	on	an	Int	after	the	String:

Listing	18.4		easyPrint	is	available	on	all	subtypes
(Extensions.kt)
fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

fun	Any.easyPrint()	=	println(this)

fun	main(args:	Array<String>)	{

				"Madrigal	has	left	the	building".addEnthusiasm().easyPrint()

				42.easyPrint()

}

Generic	Extension	Functions
What	if	you	wanted	to	print	the	string	"Madrigal	has	left	the	building"
both	before	and	after	calling	addEnthusiasm	on	it?
First,	you	would	need	to	make	the	easyPrint	function	chainable.	You	have
seen	chained	function	calls	before;	functions	can	be	chained	if	they	return	their
receiver	or	another	object	that	subsequent	functions	can	be	called	on.
Update	easyPrint	to	make	it	chainable:

Listing	18.5		Making	easyPrint	chainable	(Extensions.kt)
fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

fun	Any.easyPrint()=	println(this):	Any	{

				println(this)

				return	this

}

...

Now,	try	calling	the	easyPrint	function	two	times:	once	before
addEnthusiasm	and	once	afterward:

Listing	18.6		Calling	easyPrint	twice	(Extensions.kt)
fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

fun	Any.easyPrint():	Any	{

				println(this)

				return	this

}

fun	main(args:	Array<String>)	{

				"Madrigal	has	left	the	building".easyPrint().addEnthusiasm().easyPrint()

				42.easyPrint()

}

The	code	does	not	compile.	The	first	easyPrint	call	was	allowed,	but
addEnthusiasm	was	not.	Take	a	look	at	the	type	information	to	understand
why:	Click	on	the	first	easyPrint	and	press	Control-Shift-P	(Ctrl-P),	then,
from	the	list	of	expressions	that	pops	up,	select	the	first	("Madrigal	has	left
the	building".easyPrint()")	(Figure	18.1):

Figure	18.1		Chainable,	but	wrong	type	for	adding	enthusiasm

The	easyPrint	function	returns	the	String	it	was	called	on,	but	uses	Any	to
represent	it.	addEnthusiasm	is	only	available	on	String,	so	it	cannot	be

called	on	the	return	from	easyPrint.
To	solve	this,	you	can	make	the	extension	generic.	Update	the	easyPrint
extension	function	to	use	a	generic	type	as	its	receiver	instead	of	Any:

Listing	18.7		Making	easyPrint	generic	(Extensions.kt)
fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

fun	<T>	AnyT.easyPrint():	AnyT	{

				println(this)

				return	this

}

...

Now	that	the	extension	uses	the	generic	type	parameter	T	for	the	receiver	and
returns	T	instead	of	Any,	the	particular	type	information	for	the	receiver	is
passed	forward	in	the	chain	of	calls	(Figure	18.2):

Figure	18.2		Chained	function	returning	a	usable	type

Try	running	Extensions.kt	again.	This	time	you	will	see	the	string	printed
twice:
				Madrigal	has	left	the	building

				Madrigal	has	left	the	building!

				42

Your	new	generic	extension	function	works	with	any	type,	and	it	also	maintains
the	type	information.	Extensions	used	with	generic	types	allow	you	to	write
functions	that	have	a	wide	reach	across	a	number	of	different	types	in	your
program.
Extensions	on	generic	types	appear	throughout	the	Kotlin	standard	library.	For
example,	take	a	look	at	the	definition	for	the	let	function:
				public	inline	fun	<T,	R>	T.let(block:	(T)	->	R):	R	{

								return	block(this)

				}

let	is	defined	as	a	generic	extension	function,	allowing	it	to	work	with	all
types.	It	accepts	a	lambda	that	takes	the	receiver	as	its	argument	(T)	and	returns	R
–	some	new	type	that	is	whatever	the	lambda	returns.
Notice	that	the	inline	keyword	you	learned	about	in	Chapter	5	is	also	used	here.
The	same	guidance	from	before	applies:	Inlining	the	extension	function	if	it
accepts	a	lambda	reduces	the	memory	overhead	required.

Extension	Properties
In	addition	to	adding	functionality	to	a	type	by	specifying	extension	functions,
you	can	also	define	extension	properties.	Add	another	extension	to	String	in
Extensions.kt,	this	time	an	extension	property	that	counts	a	string’s
vowels:

Listing	18.8		Adding	an	extension	property	(Extensions.kt)
val	String.numVowels

				get()	=	count	{	"aeiouy".contains(it)	}

fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

...

Try	out	your	new	extension	property	by	printing	the	numVowels	extension	in
main:

Listing	18.9		Using	an	extension	property	(Extensions.kt)
val	String.numVowels

				get()	=	count	{	"aeiouy".contains(it)	}

fun	String.addEnthusiasm(amount:	Int	=	1)	=	this	+	"!".repeat(amount)

fun	<T>	T.easyPrint():	T	{

				println(this)

				return	this

}

fun	main(args:	Array<String>)	{

				"Madrigal	has	left	the	building".easyPrint().addEnthusiasm().easyPrint()

				42.easyPrint()

				"How	many	vowels?".numVowels.easyPrint()

}

Run	Extensions.kt.	You	will	see	the	new	numVowels	property	printed:
				Madrigal	has	left	the	building

				Madrigal	has	left	the	building!

				42

				5

Recall	from	Chapter	12	that	class	properties	have	a	backing	field	where	their
data	is	stored	(except	for	computed	properties)	and	that	they	are	automatically
assigned	getters	and,	if	needed,	setters.	Like	computed	properties,	extension
properties	do	not	have	a	backing	field	–	they	must	define	get	and/or	set
operators	that	compute	the	value	that	should	be	returned	by	the	property	to	be
valid.
For	example,	the	following	would	not	be	allowed:
				var	String.preferredCharacters	=	10

				error:	extension	property	cannot	be	initialized	because	it	has	no	backing	field

Instead,	you	could	define	a	valid	preferredCharacters	extension	property

by	defining	a	getter	for	the	preferredCharacters	val.

Extensions	on	Nullable	Types
An	extension	can	also	be	defined	for	use	with	a	nullable	type.	Defining	an
extension	on	a	nullable	type	allows	you	to	deal	with	the	possibility	of	the	value
being	null	within	the	body	of	the	extension	function,	rather	than	at	the	call	site.
Add	an	extension	for	nullable	Strings	in	Extensions.kt	and	test	it	out	in
the	main	function:

Listing	18.10		Adding	an	extension	on	a	nullable	type
(Extensions.kt)
...

infix	fun	String?.printWithDefault(default:	String)	=	print(this	?:	default)

fun	main(args:	Array<String>)	{

				"Madrigal	has	left	the	building".easyPrint().addEnthusiasm().easyPrint()

				42.easyPrint()

				"How	many	vowels?".numVowels.easyPrint()

				val	nullableString:	String?	=	null

				nullableString	printWithDefault	"Default	string"

}

The	infix	keyword,	available	for	both	extension	and	class	functions	that	have	a
single	argument,	allows	for	the	cleaner	syntax	you	see	in	the	function	call.	If	a
function	is	defined	with	infix,	you	can	omit	the	dot	between	the	receiver	and
the	function	call	as	well	as	the	parentheses	around	the	argument.
Here	are	versions	of	the	call	to	printWithDefault	with	and	without	infix:
				null	printWithDefault	"Default	string"			//	With	infix

				null.printWithDefault("Default	string")		//	Without	infix

Making	a	function	an	infix	allows	you	to	clean	up	usage	of	the	function	and	can
be	a	nice	refinement	when	you	have	an	extension	or	class	function	that	expects	a
single	argument.
Run	Extensions.kt.	You	will	see	that	Default	string	is	printed.	Since	the
value	of	nullableString	was	null,	printWithDefault	coalesced	the
value	to	use	the	default	you	provided.

Extensions,	Under	the	Hood
An	extension	function	or	property	is	called	in	the	same	style	as	a	normal
function	or	property,	but	it	is	not	directly	defined	on	the	class	it	extends,	nor	does
it	rely	on	inheritance	for	adding	functionality.	So	how	are	extensions
implemented	on	the	JVM?
To	inspect	how	an	extension	works	on	the	JVM,	you	can	look	at	the	bytecode
that	the	Kotlin	compiler	generates	when	you	define	one	and	translate	it	back	to
Java.
Open	the	Kotlin	bytecode	tool	window,	either	by	selecting	Tools	→	Kotlin	→	Kotlin
Bytecode	or	by	searching	for	“show	Kotlin	bytecode”	in	the	Search	Everywhere
dialog	(accessed	by	pressing	the	Shift	key	twice).
In	the	Kotlin	bytecode	window,	click	the	Decompile	button	at	the	top	left	to	open	a
new	tab	with	the	Java	representation	of	the	bytecode	that	was	generated	from
Extensions.kt.	Find	the	equivalent	bytecode	for	the	addEnthusiasm
extension	that	you	defined	for	String:
				public	static	final	String	addEnthusiasm(@NotNull	String	$receiver,	int	amount)	{

								Intrinsics.checkParameterIsNotNull($receiver,	"$receiver");

								return	$receiver	+	StringsKt.repeat((CharSequence)"!",	amount);

				}

In	the	Java	version	of	the	bytecode,	the	Kotlin	extension	is	a	static	method	that
accepts	what	it	extends	as	an	argument	when	you	compile	it	for	the	JVM.	The
compiler	substitutes	a	call	of	the	addEnthusiasm	function.

Extracting	to	Extensions
Next,	you	will	apply	what	you	have	learned	to	refine	NyetHack.	Open	the
project	and	the	Tavern.kt	file.
Tavern.kt	contains	duplicate	chains	of	logic	called	on	several	collections:
shuffled().first().
				...

				(0..9).forEach	{

								val	first	=	patronList.shuffled().first()

								val	last	=	lastName.shuffled().first()

				}

				uniquePatrons.forEach	{

								patronGold[it]	=	6.0

				}

				var	orderCount	=	0

				while	(orderCount	<=	9)	{

								placeOrder(uniquePatrons.shuffled().first(),

																menuList.shuffled().first())

								orderCount++

				...

This	duplication	indicates	an	opportunity	to	extract	the	duplicate	logic	to	a
reusable	extension.
Define	a	new	extension	called	random	at	the	top	of	Tavern.kt:

Listing	18.11		Adding	a	private	random	extension	(Tavern.kt)
...

val	patronGold	=	mutableMapOf<String,	Double>()

private	fun	<T>	Iterable<T>.random():	T	=	this.shuffled().first()

fun	main(args:	Array<String>)	{

				...

}

...

The	combination	of	shuffled	and	first	is	called	on	both	lists	(like
menuList)	and	a	set	–	uniquePatrons.	To	make	your	extension	available
on	both	types,	you	define	their	supertype	as	the	receiver	type:	Iterable.
Now,	replace	the	old	calls	to	shuffled().first()	with	a	call	to	the
extension	function	random.	(You	can	press	Command-R	[Ctrl-R]	to	open	the
search	and	replace	bar	to	make	this	easier.	However,	be	sure	not	to	replace	the
call	to	shuffled().first()	in	your	extension	definition.)

Listing	18.12		Using	the	random	extension	(Tavern.kt)
...

private	fun	<T>	Iterable<T>.random():	T	=	this.shuffled().first()

fun	main(args:	Array<String>)	{

				...

				(0..9).forEach	{

								val	first	=	patronList.shuffled().first()random()

								val	last	=	lastName.shuffled().first()random()

				}

				uniquePatrons.forEach	{

								patronGold[it]	=	6.0

				}

				var	orderCount	=	0

				while	(orderCount	<=	9)	{

								placeOrder(uniquePatrons.shuffled().first()random(),

																menuList.shuffled().first()random())

								orderCount++

				}

				displayPatronBalances()

}

...

Defining	an	Extensions	File
Your	random	extension	is	marked	with	the	private	visibility	modifier:
				private	fun	<T>	Iterable<T>.random():	T	=	this.shuffled().first()

Marking	an	extension	as	private	prohibits	use	of	the	extension	outside	of	the	file
it	is	defined	in.	Right	now,	the	extension	you	defined	is	only	used	in
Tavern.kt,	so	it	makes	sense	to	mark	it	private	to	restrict	access.	The	rule	of
thumb	is	the	same	for	extensions	as	it	is	for	functions:	If	the	extension	will	not
be	used	elsewhere,	mark	it	private.
Having	said	that,	you	also	defined	your	random	extension	so	that	it	would	work
with	any	Iterable.	Are	there	other	places	in	your	code,	outside	of
Tavern.kt,	where	you	could	put	it	to	use?	As	it	turns	out,	there	is	one.
Take	a	look	in	Player.kt	–	you	will	see	the	same	randomization	code	used	to
select	a	Player’s	hometown:
				...

				private	fun	selectHometown()	=	File("data/towns.txt")

																																								.readText()

																																								.split("\n")

																																								.shuffled()

																																								.first()

				...

It	would	be	nice	to	be	able	to	use	your	random	extension	there,	as	well.
Since	the	random	extension	will	be	used	across	several	files,	making	it	private
is	no	longer	appropriate	–	and	neither	is	leaving	it	in	Tavern.kt.	A	good	place
for	extensions	to	be	used	across	multiple	files	is	within	their	own	file	–	and,	in
fact,	their	own	package.
Control-click	(right-click)	the	com.bignerdranch.nyethack	package	and
choose	New	→	Package.	Name	the	package	extensions	and	add	a	file	to	it
called	IterableExt.kt	(Figure	18.3).	The	naming	convention	for	files	that
contain	only	extensions	is	typically	the	type	the	extension	applies	to	plus	-Ext.

Figure	18.3		Adding	an	extensions	package	and	file

Move	the	random	extension	to	IterableExt.kt,	removing	the	old	listing
in	Tavern.kt.	Delete	the	private	keyword	from	the	extension	when	you
move	it	to	IterableExt.kt.

Listing	18.13		Removing	the	random	extension	from	Tavern.kt
(Tavern.kt)
...

private	fun	<T>	Iterable<T>.random():	T	=	this.shuffled().first()

fun	main(args:	Array<String>)	{

				...

}

...

Listing	18.14		Adding	the	random	extension	to	IterableExt.kt
(IterableExt.kt)
package	com.bignerdranch.nyethack.extensions

fun	<T>	Iterable<T>.random():	T	=	this.shuffled().first()

Now	that	you	have	moved	the	extension	to	its	own	file	and	made	it	public,	you
can	use	it	in	Tavern.kt	and	Player.kt.	But	you	might	notice	that
Tavern.kt	is	reporting	errors.	When	an	extension	is	defined	in	a	separate
package,	you	must	import	the	extension	in	each	file	that	uses	it.	Make	sure	that
the	import	statement	for	the	random	extension	is	present	at	the	top	of	both
Tavern.kt	and	Player.kt:
				import	com.bignerdranch.nyethack.extensions.random

Now,	within	Player.kt,	update	the	selectHometown	function	to	use	the
random	extension	function	in	place	of	the	old	randomization	code:

Listing	18.15		Using	random	in	selectHometown	(Player.kt)
...

private	fun	selectHometown()	=	File("data/towns.txt")

				.readText()

				.split("\n")

				.random()

				.shuffled()

				.first()

...

Renaming	an	Extension
Occasionally,	you	may	want	to	use	an	extension	or	an	imported	class	whose
name	is	less	than	ideal	in	some	way.	Perhaps	it	is	a	difficult-to-remember
acronym,	or	maybe	you	already	have	a	class	with	the	same	name	in	your	file.	If
you	want	the	function	of	an	imported	function	or	class	but	not	its	name,	you	can
use	the	as	operator	to	assign	a	different	name	to	be	used	within	the	file.
For	example,	in	Tavern.kt	you	could	change	the	name	of	the	imported
random	function	to	randomizer:

Listing	18.16		The	as	operator	(Tavern.kt)
import	com.bignerdranch.nyethack.extensions.random	as	randomizer

...

private	fun	selectHometown()	=	File("data/towns.txt")

							.readText()

							.split("\n")

							.random()

							.randomizer()

...

And	with	that	done,	it	is	time	to	say	farewell	to	NyetHack.	Congratulations!	You
have	accomplished	quite	a	lot	in	your	journey:	You	laid	a	foundation	of
conditionals	and	functions,	defined	your	own	classes	so	that	you	could	represent
objects	in	the	world,	built	a	game	loop	to	take	input	from	the	player,	and	even
built	out	a	world	to	explore	with	monsters	to	defeat.
And	all	the	while	you	leveraged	Kotlin’s	language	features	to	take	advantage	of
the	object-oriented	programming	paradigm.

Extensions	in	the	Kotlin	Standard	Library
A	large	portion	of	the	Kotlin	standard	library’s	functionality	is	defined	via
extension	functions	and	extension	properties.
For	example,	take	a	look	at	the	source	code	file	Strings.kt	(note:	Strings,
not	String),	by	pressing	the	Shift	key	twice	to	open	the	Search	Everywhere	dialog
and	entering	“Strings.kt”:
				public	inline	fun	CharSequence.trim(predicate:	(Char)	->	Boolean):	CharSequence	{

								var	startIndex	=	0

								var	endIndex	=	length	-	1

								var	startFound	=	false

								while	(startIndex	<=	endIndex)	{

												val	index	=	if	(!startFound)	startIndex	else	endIndex

												val	match	=	predicate(this[index])

												if	(!startFound)	{

																if	(!match)

																				startFound	=	true

																else

																				startIndex	+=	1

												}

												else	{

																if	(!match)

																				break

																else

																				endIndex	-=	1

												}

								}

								return	subSequence(startIndex,	endIndex	+	1)

				}

Browse	through	this	standard	library	file,	and	you	will	see	that	it	consists	of
extensions	to	the	String	type.	The	excerpt	above,	for	example,	defines	an
extension	function	trim	that	is	used	to	remove	characters	from	a	string.
Standard	library	files	that	contain	extensions	to	a	type	are	often	named	in	this
way,	with	an	-s	appended	to	the	type	name.	If	you	look	through	the	standard
library	files,	you	will	notice	other	files	matching	this	same	naming	convention:
Sequences.kt,	Ranges.kt,	and	Maps.kt	are	just	some	of	the	files	that
add	functionality	to	the	standard	library	through	extensions	to	their
corresponding	type.
Heavy	use	of	extension	functions	to	define	core	API	functionality	is	one	of	the
ways	that	the	Kotlin	standard	library	keeps	such	a	small	footprint	(~930k)	but
packs	in	so	many	features.	Extensions	use	space	efficiently	because	they	can
provide	a	feature	for	many	types	with	one	definition.
In	this	chapter,	you	have	learned	how	extensions	provide	an	alternative	to
sharing	behavior	with	inheritance.	In	the	next	chapter	you	will	delve	into	the
fascinating	world	of	functional	programming.

For	the	More	Curious:	Function	Literals	with
Receivers
It	is	possible	to	use	function	literals	with	the	extension	syntax	to	powerful	effect.
To	understand	what	is	meant	by	“function	literals	with	receivers,”	take	a	look	at
the	definition	for	apply,	a	function	you	met	in	Chapter	9:
				public	inline	fun	<T>	T.apply(block:	T.()	->	Unit):	T	{

								block()

								return	this

				}

Remember	what	apply	enables	you	to	do:	set	up	properties	of	a	particular
receiver	instance	within	a	lambda	that	you	pass	as	an	argument.	For	example:
				val	menuFile	=	File("menu-file.txt").apply	{

								setReadable(true)

								setWritable(true)

								setExecutable(false)

				}

This	allows	you	to	avoid	explicitly	calling	each	function	on	a	menuFile
variable.	Instead,	you	can	call	them	implicitly	within	a	lambda.	The	bit	of	magic
that	apply	provides	is	accomplished	by	defining	a	function	literal	with	a
receiver.
Looking	again	at	the	definition	for	apply,	check	out	how	the	function
parameter	called	block	is	specified:
				public	inline	fun	<T>	T.apply(block:	T.()	->	Unit):	T	{

								block()

								return	this

				}

Not	only	is	the	block	function	parameter	a	lambda,	it	also	is	specified	as	an
extension	to	generic	type	T:	T.()	->	Unit.	This	is	what	allows	the	lambda	that
you	define	to	also	have	access	to	the	receiver	instance’s	properties	and	functions
implicitly.
Specified	as	an	extension,	the	lambda’s	receiver	is	also	the	instance	that	apply
is	called	on	–	granting	access	to	the	receiver	instance’s	functions	and	properties
within	the	body	lambda.
Using	this	style,	it	is	possible	to	write	what	are	known	as	“domain-specific
languages”	–	an	API	style	that	exposes	functions	and	features	of	a	receiver
context	you	configure	using	lambda	expressions	that	you	define	to	access	them.
For	example,	the	Exposed	framework	from	JetBrains	(github.com/
JetBrains/Exposed)	makes	extensive	use	of	the	DSL	style	for	its	API	to

https://github.com/JetBrains/Exposed

allow	you	to	define	SQL	queries.
You	might	add	a	function	to	NyetHack	that	uses	this	same	style,	allowing	a	room
to	be	configured	with	a	pit	goblin.	(Feel	free	to	add	this	to	your	NyetHack
project	as	an	experiment.)
				fun	Room.configurePitGoblin(block:	Room.(Goblin)	->	Goblin):	Room	{

								val	goblin	=	block(Goblin("Pit	Goblin",	description	=	"An	Evil	Pit	Goblin"))

								monster	=	goblin

								return	this

				}

This	extension	to	Room	accepts	a	lambda	that	has	Room	as	its	receiver.	The
result	is	that	the	properties	of	Room	are	available	within	the	lambda	that	you
define,	so	the	goblin	can	be	configured	using	the	Room	receiver’s	properties:
				currentRoom.configurePitGoblin	{	goblin	->

								goblin.healthPoints	=	dangerLevel	*	3

								goblin

				}

(Note	that	you	would	need	to	change	the	visibility	of	dangerLevel	on	Room
to	actually	allow	access	to	the	dangerLevel	property.)

Challenge:	toDragonSpeak	Extension
For	this	challenge,	revisit	Tavern.kt.	Convert	the	toDragonSpeak
function	that	you	wrote	to	be	a	private	extension	function	within	Tavern.kt.

Challenge:	Frame	Extension
The	following	is	a	small	program	that	allows	a	string	of	an	arbitrary	size	to	be
displayed	in	a	beautiful	ASCII	frame	that	is	suitable	for	printing	and	hanging	on
any	wall:
				fun	frame(name:	String,	padding:	Int,	formatChar:	String	=	"*"):	String	{

								val	greeting	=	"$name!"

								val	middle	=	formatChar.padEnd(padding)

															.plus(greeting)

															.plus(formatChar.padStart(padding))

								val	end	=	(0	until	middle.length).joinToString("")	{	formatChar	}

								return	"$end\n$middle\n$end"

				}

For	this	challenge,	you	will	apply	what	you	have	learned	about	extensions.	Try
refactoring	the	frame	function	as	an	extension	that	is	available	for	use	with	any
String.	An	example	of	calling	the	new	version	would	look	like	this:
				print("Welcome,	Madrigal".frame(5))

				*					Welcome,	Madrigal						*

19	
Functional	Programming	Basics

For	the	last	several	chapters,	you	have	been	learning	about	and	working	with	the
object-oriented	programming	paradigm.	Another	prominent	programming
paradigm	is	functional	programming,	developed	in	the	1950s	based	on	the
mathematical	abstraction	lambda	calculus.	While	functional	programming
languages	have	generally	been	more	common	in	academia	than	in	commercial
software,	the	principles	of	the	approach	are	useful	in	any	language.
The	functional	programming	style	relies	on	data	that	is	returned	from	a	small
number	of	higher-order	functions	(functions	that	accept	or	return	another
function)	designed	specifically	to	work	on	collections,	and	it	favors	composing
chains	of	operations	with	those	functions	to	create	more	complex	behavior.	You
have	worked	with	higher-order	functions	(which	accept	functions	as	parameters
and	return	functions	as	their	result)	and	function	types	(which	enable	you	to
define	functions	as	values)	already.
Kotlin	supports	multiple	programming	styles,	so	you	can	mix	object-oriented
and	functional	programming	styles	to	suit	the	problem	at	hand.	In	this	chapter,
you	will	use	the	REPL	to	explore	some	of	the	functional	programming	features
Kotlin	offers	and	learn	about	the	ideas	behind	the	functional	programming
paradigm.

Function	Categories
There	are	three	broad	categories	of	functions	that	compose	a	functional	program:
transforms,	filters,	and	combines.	Each	category	is	designed	to	work	on
collection	data	structures	to	yield	a	final	result.	Functions	in	functional
programming	are	also	designed	to	be	composable,	meaning	that	simple	functions
can	be	combined	to	build	complex	behavior.

Transforms

The	first	category	of	function	in	functional	programming	is	transforms.	A
transform	function	works	on	the	contents	of	a	collection	by	walking	through	the
collection	and	transforming	each	item	with	a	transformer	function	provided	as
an	argument.	The	transform	function	then	returns	a	copy	of	the	modified
collection,	and	execution	proceeds	to	the	next	function	in	the	chain.
Two	commonly	used	transforms	are	map	and	flatMap.
The	map	transform	function	iterates	through	the	collection	it	is	called	on	and
applies	its	transformer	function	to	each	element.	The	result	is	a	collection	with
the	same	number	of	elements	as	the	input	collection.	Enter	the	following	into	the
Kotlin	REPL	to	see	an	example:

Listing	19.1		Converting	a	list	of	animals	to	babies	–	with	tails
(REPL)
val	animals	=	listOf("zebra",	"giraffe",	"elephant",	"rat")

val	babies	=	animals

				.map{	animal	->	"A	baby	$animal"	}

				.map{	baby	->	"$baby,	with	the	cutest	little	tail	ever!"}

println(babies)

Functional	programming	emphasizes	composable	functions	that	can	be
combined	with	one	another	to	act	on	data	in	series.	Here,	the	first	map	applies	its
transformer	function,	{	animal	->	"A	baby	$animal"	},	to	transform	each
animal	into	a	baby	animal	(or,	at	least,	to	stick	“baby”	in	front	of	its	name)	and
passes	the	resulting	modified	copy	of	the	list	forward	to	the	next	function	in	the
chain.
The	next	function	here	is	also	a	map,	which	runs	through	the	same	series	of
steps	to	add	a	cute	tail	to	each	baby	animal.	Reaching	the	end	of	the	chain	of
functions,	a	final	collection	with	the	result	of	applying	both	map	operations	to

each	element	is	yielded:
				A	baby	zebra,	with	the	cutest	little	tail	ever!

				A	baby	giraffe,	with	the	cutest	little	tail	ever!

				A	baby	elephant,	with	the	cutest	little	tail	ever!

				A	baby	rat,	with	the	cutest	little	tail	ever!

We	said	earlier	that	transform	functions	return	a	modified	copy	of	the	collection
they	are	called	on.	They	do	not	directly	modify	the	original	collection.	In	the
REPL,	print	the	value	of	animals,	the	original	list,	to	see	that	it	has	not
changed:

Listing	19.2		Original	collection	not	modified	(REPL)
print(animals)

"zebra",	"giraffe",	"elephant",	"rat"

The	original	animals	collection	was	not	modified	in	any	way.	map	does	its
work	by	returning	a	new	copy	of	the	collection	with	the	transformer	you	defined
applied	to	each	element.
In	this	way,	variables	that	change	over	time	are	avoided.	In	fact,	the	functional
programming	style	favors	immutable	copies	of	data	that	are	passed	to	the	next
function	in	the	chain.	The	idea	behind	this	is	that	mutable	variables	lead	to
programs	that	are	harder	to	debug	and	reason	about.	They	also	increase	the
amount	of	state	programs	rely	on	to	do	their	work.
We	said	earlier	that	map	returns	a	collection	with	the	same	number	of	elements
as	the	input	collection.	(This	is	not	the	case	for	all	transform	functions,	as	you
will	see	in	the	next	section.)	However,	the	elements	do	not	need	to	be	of	the
same	type.	Try	entering	the	following	in	the	REPL:

Listing	19.3		Before	and	after	mapping:	same	number	of	items,
different	types	(REPL)
val	tenDollarWords	=	listOf("auspicious",	"avuncular",	"obviate")

val	tenDollarWordLengths	=	tenDollarWords.map	{	it.length	}

print(tenDollarWordLengths)

[10,	9,	7]

tenDollarWords.size

3

tenDollarWordLengths.size

3

size	is	a	property	available	on	collections	that	holds	the	number	of	elements	in
a	list	or	set	or	the	number	of	key-value	pairs	in	a	map.
In	this	example,	three	items	were	received	on	the	lefthand	side	of	map,	and	three
items	were	returned	on	its	righthand	side.	What	changes	is	the	type	of	data:	The
tenDollarWords	collection	is	a	List<String>,	and	the	list	generated	by	the
map	function	is	a	List<Int>.

Take	a	look	at	the	signature	of	the	map	function:
				<T,	R>	Iterable<T>.map(transform:	(T)	->	R):	List<R>

The	functional	programming	style	is	enabled	largely	because	of	Kotlin’s	support
for	higher-order	functions.	map,	as	you	can	see	in	its	signature,	accepts	a
function	type.	It	would	not	be	possible	to	pass	a	transformer	function	to	map
without	the	ability	to	define	a	higher-order	type.	And	map	would	not	be	nearly
as	useful	if	not	for	its	generic	type	parameters.
Another	commonly	used	transform	function	is	flatMap.	The	flatMap
function	works	with	a	collection	of	collections	and	returns	a	single,	“flattened”
collection	containing	all	of	the	elements	of	the	input	collections.
Enter	the	following	into	the	Kotlin	REPL	to	see	an	example:

Listing	19.4		Flattening	two	lists	(REPL)
listOf(listOf(1,	2,	3),	listOf(4,	5,	6)).flatMap	{	it	}

[1,	2,	3,	4,	5,	6]

The	result	is	a	new	list	with	all	the	elements	from	the	two	original	sublists.	Note
that	the	number	of	elements	in	the	original	collection	(two	–	the	two	sublists)
and	the	number	of	elements	in	the	output	collection	(six)	are	not	the	same.
In	the	next	section,	you	will	combine	flatMap	with	another	category	of
function.

Filters

The	second	category	of	functions	in	functional	programming	is	filters.	A	filter
function	accepts	a	predicate	function	that	checks	each	element	in	a	collection
against	a	condition	and	returns	either	true	or	false.	If	the	predicate	returns	true,
the	element	is	added	to	the	new	collection	that	the	filter	returns.	If	the	predicate
returns	false,	the	element	is	excluded	from	the	new	collection.
One	filter	function	is	the	aptly	named	filter.	Let’s	start	with	an	example	of
filter	combined	with	flatMap.	Enter	the	following	into	the	REPL:

Listing	19.5		Filtering	and	flattening	(REPL)
val	itemsOfManyColors	=	listOf(listOf("red	apple",	"green	apple",	"blue	apple"),

listOf("red	fish",	"blue	fish"),	listOf("yellow	banana",	"teal	banana"))

val	redItems	=	itemsOfManyColors.flatMap	{	it.filter	{	it.contains("red")	}	}

print(redItems)

[red	apple,	red	fish]

Here,	flatMap	accepts	the	transform	function	filter,	allowing	you	to	do

work	on	each	of	the	sublists	before	they	are	flattened.
filter,	in	turn,	accepts	a	predicate	function	with	a	condition	to	check:	{
it.contains("red")	}.	As	flatMap	iterates	through	all	of	the	elements	in	its
input	lists,	filter	checks	each	against	the	condition	in	its	predicate	and
includes	only	those	elements	for	which	the	predicate	is	true	in	the	new
collections	it	returns.
Finally,	flatMap	combines	the	items	from	the	resulting	transformed	sublists
into	one	new	list.
This	series	of	functions	is	typical	of	functional	programming.	Enter	the
following	into	the	Kotlin	REPL	to	see	another	example:

Listing	19.6		Filtering	non-prime	numbers	(REPL)
val	numbers	=	listOf(7,	4,	8,	4,	3,	22,	18,	11)

val	primes	=	numbers.filter	{	number	->

				(2	until	number).map	{	number	%	it	}

								.none	{	it	==	0	}

				}

print(primes)

You	have	implemented	a	solution	to	a	fairly	complex	problem	with	only	a
handful	of	simple	functions.	This	is	the	signature	style	of	functional
programming:	bite-sized	operations	that	do	one	thing	and	work	together	to
produce	a	more	complex	result.
The	filter	function’s	predicate	condition	here	is	the	result	of	another
function:	map.	For	each	element	in	numbers,	map	divides	the	number	by	each
value	in	the	range	from	2	until	the	number	in	question	and	returns	the
remainders.	Next,	none	returns	true	if	none	of	the	returned	remainders	equal	0.
If	so,	the	predicate	condition	is	true	and	the	number	checked	is	prime	(because	it
is	not	evenly	divisible	by	any	number	except	1	and	itself).

Combines

The	third	category	of	functions	used	in	functional	programming	is	combines.
Combining	functions	take	different	collections	and	merge	them	into	a	new	one.
(This	is	different	than	flatMap,	which	is	called	on	one	collection	that	contains
other	collections.)	Enter	the	following	into	the	Kotlin	REPL:

Listing	19.7		Combining	two	collections,	functional	style	(REPL)
val	employees	=	listOf("Denny",	"Claudette",	"Peter")

val	shirtSize	=	listOf("large",	"x-large",	"medium")

val	employeeShirtSizes	=	employees.zip(shirtSize).toMap()

println(employeeShirtSizes["Denny"])

Here,	you	used	the	zip	combining	function	to	combine	two	lists:	employees	and
their	respective	shirt	sizes.	zip	then	returns	a	new	list,	a	collection	of	Pairs.
You	call	toMap	on	the	resulting	list,	as	you	can	whenever	you	have	a	list	of
Pairs,	to	return	a	map	that	can	be	indexed	into	using	a	key	–	here,	an	employee
name.
Another	function	that	is	useful	for	combining	values	is	the	fold	function.	fold
accepts	an	initial	accumulator	value,	which	is	updated	with	the	result	of	an
anonymous	function	that	is	called	for	each	item.	The	accumulator	value	is	then
carried	forward	to	the	next	anonymous	function.	Consider	this	example,	where
the	fold	function	is	used	to	accumulate	a	list	of	numbers,	multiplied	by	3:
				val	foldedValue	=	listOf(1,	2,	3,	4).fold(0)	{	accumulator,	number	->

								println("Accumulated	value:	$accumulator")

								accumulator	+	(number	*	3)

				}

				println("Final	value:	$foldedValue")

If	you	were	to	run	this	code,	you	would	see	the	following	result:
				Accumulated	value:	0

				Accumulated	value:	3

				Accumulated	value:	9

				Accumulated	value:	18

				Final	value:	30

The	initial	value	for	the	accumulator,	0,	is	passed	to	the	anonymous	function,
with	the	result	that	Accumulated	value:	0	is	printed.	That	value,	0,	is	then
carried	forward	into	the	calculation	for	the	first	element	in	the	list,	1,	with	the
result	Accumulated	value:	3	(that	is,	0	+	(1	*	3)).	In	the	next	calculation,	the
accumulated	value	of	3	is	added	to	(2	*	3),	with	the	result	Accumulated	value:
9	–	and	so	forth.	Once	all	the	elements	have	been	visited,	the	final	accumulator
value	holds	the	result.

Why	Functional	Programming?
Look	back	at	the	example	using	zip	in	Listing	19.7.	Imagine	implementing	the
same	task	in	the	object-oriented	paradigm	or	its	broader	class,	called	imperative
programming.	In	Java,	for	example,	this	task	might	look	something	like	this:
				List<String>	employees	=	Arrays.asList("Denny",	"Claudette",	"Peter");

				List<String>	shirtSizes	=	Arrays.asList("large",	"x-large",	"medium");

				Map<String,	String>	employeeShirtSizes	=	new	HashMap<>();

				for	(int	i	=	0;	i	<	employees.size;	i++)	{

								employeeShirtSizes.put(employees.get(i),	shirtSizes.get(i));

				}

At	first	glance,	the	imperative	version	here	may	look	like	it	accomplishes	the
task	in	roughly	the	same	number	of	lines	as	the	functional	version	in	Listing
19.7.	But	a	closer	look	shows	that	the	functional	approach	offers	a	number	of
key	benefits:

1.	 “Accumulator”	variables	(employeeShirtSizes,	for	example)	are
defined	implicitly,	reducing	the	number	of	stateful	variables	to	keep
track	of.

2.	 The	results	from	functional	operations	are	added	to	accumulator
variables	automatically,	reducing	the	risk	of	bugs.

3.	 New	operations	are	trivially	easy	to	add	to	the	functional	chain,	since
all	functional	operators	work	with	the	iterable	you	are	performing	work
on.

Considering	the	first	two	of	these	benefits,	new	operations	in	the	imperative
style	usually	also	involve	the	creation	of	more	variables	to	hold	more	state.	For
example,	an	employeeShirtSizes	collection	is	needed	outside	of	the	for
loop	to	hold	the	loop’s	results.
This	pattern	requires	manually	adding	the	results	to	employeeShirtSizes
with	each	loop.	If	you	neglect	to	add	the	values	to	the	employeeShirtSizes
collection	(a	step	that	can	be	easy	to	overlook),	the	rest	of	the	program	will	not
work	correctly.	Each	additional	step	increases	the	chances	that	this	type	of
mistake	will	occur.
On	the	other	hand,	a	functional	implementation	implicitly	accumulates	a	new
collection	after	each	operation	in	the	chain	without	requiring	new	accumulator
variable	definitions:
				val	formattedSwagOrders	=	employees.zip(shirtSize).toMap()

There	are	fewer	mistakes	to	make	in	the	functional	style	because	the
accumulation	of	the	values	in	a	new	collection	is	performed	implicitly,	as	part	of
the	functional	chain’s	work.
As	for	the	third	benefit	listed	above,	since	all	of	the	functional	operations	are
designed	to	work	with	iterables,	it	is	trivial	to	add	another	step	to	the	functional
chain.	For	example,	suppose	the	employeeShirtSizes	map	needed	to	be
formatted	to	represent	swag	orders	after	building	the	hash	map.	In	the	imperative
style,	that	would	require	an	addition	like	this:
				List<String>	formattedSwagOrders	=	new	ArrayList<>();

				for	(Map.Entry<String,	String>	shirtSize	:	employeeShirtSizes.entrySet())	{

								formattedSwagOrders.add(String.format("%s,	shirt	size:	%s",

																it.getKey(),	it.getValue());

				}

A	new	accumulator	value	and	a	new	for	loop	that	works	to	populate	the
accumulator	with	results:	more	entities,	more	state,	more	to	keep	track	of.
With	the	functional	style,	subsequent	operations	are	easily	added	to	the	chain
without	the	need	for	additional	state.	The	same	program	could	be	implemented
functionally	with	the	simple	addition	of:
				.map	{	"${it.key},	shirt	size:	${it.value}"	}

Sequences
In	Chapter	10	and	Chapter	11,	you	were	introduced	to	the	collection	types	List,
Set,	and	Map.	These	collection	types	are	all	known	as	eager	collections.	When
an	instance	of	any	of	these	types	is	created,	all	the	values	it	contains	are	added	to
the	collection	and	can	be	accessed.
There	is	another	flavor	of	collection:	lazy	collections.	You	learned	about	lazy
initialization,	in	which	a	variable	is	not	initialized	until	it	is	first	accessed,	in
Chapter	13.	Lazy	collection	types,	similar	to	lazy	initialization	of	other	types,
provide	better	performance	–	specifically	when	working	with	very	large
collections	–	because	their	values	are	produced	only	as	needed.
Kotlin	offers	a	built-in	lazy	collection	type	called	Sequence.	Sequences	do
not	index	their	contents,	and	they	do	not	keep	track	of	their	size.	In	fact,	when
working	with	a	sequence,	the	possibility	of	an	infinite	sequence	of	values	exists,
because	there	is	no	limit	to	the	number	of	items	that	can	be	produced.
With	a	sequence,	you	define	a	function	that	is	referred	to	each	time	a	new	value
is	requested,	called	an	iterator	function.	One	way	to	define	a	sequence	and	its
iterator	is	by	using	a	sequence	builder	function	provided	by	Kotlin,
generateSequence.	generateSequence	accepts	an	initial	seed	value,
the	starting	place	for	the	sequence.	When	the	sequence	is	acted	on	by	a	function,
generateSequence	calls	an	iterator	you	specify	that	determines	the	next
value	to	produce.	For	example:
				generateSequence(0)	{	it	+	1	}

												.onEach	{	println("The	Count	says:	$it,	ah	ah	ah!")	}

If	you	were	to	run	this	snippet,	the	onEach	function	would	execute	forever.
So,	what	is	a	lazy	collection	good	for,	and	why	choose	it	over	a	list?	Let’s	go
back	to	the	example	of	finding	primes	in	Listing	19.6.	Suppose	you	wanted	to
adapt	this	to	generate	the	first	N	number	of	primes	–	say,	1,000.	A	first	shot	at	an
implementation	might	look	like	this:
				//	Extension	to	Int	that	determines	whether	a	number	is	prime

				fun	Int.isPrime():	Boolean	{

								(2	until	this).map	{

												if	(this	%	it	==	0)	{

																return	false	//	Not	a	prime!

												}

								}

								return	true

				}

				val	toList	=	(1..5000).toList().filter	{	it.isPrime()	}.take(1000)

The	problem	with	this	implementation	is	that	you	do	not	know	how	many
numbers	you	have	to	check	to	get	1,000	primes.	This	implementation	takes	a
guess	–	5,000	–	but	in	fact	this	is	not	enough.	(It	will	only	get	you	669	primes,	if
you	want	to	know.)
This	is	a	perfect	case	for	using	a	lazy	collection,	instead	of	an	eager	one,	to	back
the	chain	of	functions.	A	lazy	collection	is	ideal,	because	you	do	not	need	to
define	an	upper	bound	for	the	number	of	items	to	check	for	the	sequence:
				val	oneThousandPrimes	=	generateSequence(3)	{	value	->

								value	+	1

				}.filter	{	it.isPrime()	}.take(1000)

In	this	solution,	generateSequence	produces	a	new	value,	one	at	a	time,
starting	from	3	(the	seed	value)	and	incrementing	by	one	each	time.	Then	it
filters	the	values	with	the	extension	isPrime.	It	continues	doing	this	until
1,000	items	have	been	produced.	Because	there	is	no	way	to	know	how	many
candidate	numbers	will	have	to	be	checked,	lazily	producing	new	values	until
the	take	function	is	satisfied	is	ideal.
In	most	cases,	the	collections	you	work	with	will	be	small,	containing	fewer	than
1,000	elements.	In	these	cases,	worrying	about	using	a	sequence	or	a	list	for	a
constrained	number	of	items	will	be	of	little	concern,	because	the	performance
difference	between	the	two	collection	types	will	be	negligible	–	on	the	order	of	a
few	nanoseconds.	But	with	more	sizable	collections,	with	hundreds	of	thousands
of	elements,	the	performance	improvement	to	be	realized	by	switching	the
collection	type	can	be	significant.	In	these	cases,	you	can	convert	a	list	to	a
sequence	quite	simply:
				val	listOfNumbers	=	(0	until	10000000).toList()

				val	sequenceOfNumbers	=	listOfNumbers.asSequence()

The	functional	programming	paradigm	can	require	frequent	creation	of	new
collections,	and	sequences	provide	a	scalable	mechanism	for	working	with	large
collections.
In	this	chapter,	you	saw	how	to	use	basic	functional	programming	tools	like
map,	flatMap,	and	filter	to	streamline	how	you	work	with	data.	You	also
saw	how	to	use	sequences	to	work	efficiently	as	your	data	set	grows	larger.
In	the	next	chapter,	you	will	learn	how	your	Kotlin	code	interoperates	with
Java	code	as	you	write	Kotlin	code	that	calls	Java	code	and	vice	versa.

For	the	More	Curious:	Profiling
When	the	speed	of	code	is	an	important	consideration,	Kotlin	provides	utility
functions	for	profiling	code	performance:	measureNanoTime	and
measureTimeInMillis.	Both	functions	accept	a	lambda	as	their	argument
and	measure	the	execution	speed	of	the	code	contained	within	the	lambda.
measureNanoTime	returns	a	time	in	nanoseconds,	and
measureTimeInMillis	returns	a	time	in	milliseconds.
Wrap	the	function	to	measure	in	one	of	the	utility	functions	like	so:
				val	listInNanos	=	measureNanoTime	{

								//	List	functional	chain	here

				}

				val	sequenceInNanos	=	measureNanoTime	{

								//	Sequence	functional	chain	here

				}

				println("List	completed	in	$listInNanos	ns")

				println("Sequence	completed	in	$sequenceInNanos	ns")

As	an	experiment,	try	profiling	the	performance	of	the	list	and	sequence	versions
of	the	prime	number	examples.	(Change	the	list	example	to	check	numbers
through	7,919	so	that	it	can	find	1,000	primes.)	How	much	does	the	change	from
a	list	to	a	sequence	affect	the	performance	time?

For	the	More	Curious:	Arrow.kt
In	this	chapter	you	saw	some	of	the	functional	programming-style	tools	that	are
included	in	Kotlin’s	standard	library,	like	map,	flatMap,	and	filter.
Kotlin	is	a	“multiparadigm”	language,	meaning	it	mixes	the	styles	of	object-
oriented,	imperative,	and	functional	programming.	If	you	have	worked	with	a
strictly	functional	programming	language	like	Haskell,	you	know	that	Haskell
offers	useful	functional	programming	ideas	that	go	further	than	the	basics
included	in	Kotlin.
For	example,	Haskell	includes	the	Maybe	type	–	a	type	that	includes	support	for
either	something	or	an	error	–	and	allows	operations	that	might	result	in	an	error
to	be	represented	using	a	type	instead.	Using	a	Maybe	type	allows	you	to
represent	an	exception,	like	incorrectly	parsing	a	number,	without	throwing	an
exception	–	which	allows	you	to	not	need	try/catch	logic	in	your	code.
Representing	an	exception	without	dealing	with	try/catch	logic	is	a	good	thing.
Some	view	try/catch	as	a	form	of	GOTO	statement:	More	often	than	not,	it	leads
to	code	that	is	difficult	to	read	and	maintain.
Many	of	the	functional	programming	features	found	in	Haskell	can	be	brought	to
Kotlin	through	libraries	like	Arrow.kt	(http://arrow-kt.io/).
For	example,	the	Arrow.kt	library	includes	a	flavor	of	the	Maybe	type	found	in
Haskell	called	Either.	Using	Either,	it	is	possible	to	represent	an	operation
that	could	result	in	failure	without	resorting	to	throwing	exceptions	and	try/catch
logic.
Consider,	for	example,	a	function	that	parses	some	user	input	from	a	string	to	an
Int.	If	the	value	is	a	number,	it	should	be	parsed	as	an	Int,	but	if	it	is	invalid,
it	should	instead	be	represented	as	an	error.
Using	Either,	the	logic	would	read	as	follows:
				fun	parse(s:	String):	Either<NumberFormatException,	Int>	=

								if	(s.matches(Regex("-?[0-9]+")))	{

												Either.Right(s.toInt())

								}	else	{

												Either.Left(NumberFormatException("$s	is	not	a	valid	integer."))

								}

				val	x	=	parse("123")

				val	value	=	when(x)	{

								is	Either.Left	->	when	(x.a)	{

												is	NumberFormatException	->	"Not	a	number!"

												else	->	"Unknown	error"

								}

http://arrow-kt.io/

								is	Either.Right	->	"Number	that	was	parsed:	${x.b}"

				}

No	exceptions,	no	try/catch	blocks	–	just	easy-to-follow	logic.

Challenge:	Reversing	the	Values	in	a	Map
Using	the	functional	techniques	you	learned	in	this	chapter,	write	a	function
called	flipValues	that	allows	you	to	flip-flop	the	keys	and	values	in	a	map.
For	example:
				val	gradesByStudent	=	mapOf("Josh"	to	4.0,	"Alex"	to	2.0,	"Jane"	to	3.0)

				{Josh=4.0,	Alex=2.0,	Jane=3.0}

				flipValues(gradesByStudent)

				{4.0=Josh,	2.0=Alex,	3.0=Jane}

Challenge:	Applying	Functional	Programming	to
Tavern.kt
Tavern.kt	could	be	improved	by	using	some	of	the	functional	programming
features	you	learned	about	in	this	chapter.
Consider	the	forEach	loop	that	you	use	to	generate	the	unique	patron	names:
				val	uniquePatrons	=	mutableSetOf<String>()

				fun	main(args:	Array<String>)	{

								...

								(0..9).forEach	{

												val	first	=	patronList.random()

												val	last	=	lastName.random()

												val	name	=	"$first	$last"

												uniquePatrons	+=	name

								}

								...

				}

The	loop	mutates	the	state	of	the	uniquePatrons	set	every	iteration.	This
works	–	but	it	is	possible	to	do	better	using	a	functional	programming	approach.
You	might	express	the	uniquePatrons	set	like	this	instead:
				val	uniquePatrons:	Set<String>	=	generateSequence	{

								val	first	=	patronList.random()

								val	last	=	lastName.random()

								"$first	$last"

				}.take(10).toSet()

This	is	an	improvement	over	the	old	version,	because	the	mutable	set	is	no
longer	required	and	you	can	make	the	collection	read-only.
Notice	that	the	number	of	uniquePatrons	currently	varies,	depending	on
chance.	For	your	first	challenge,	use	the	generateSequence	function	to
generate	exactly	nine	unique	patron	names.	(Look	back	at	the	example	in	this
chapter	that	generated	exactly	1,000	prime	numbers	for	a	hint.)
For	a	second	challenge,	using	what	you	learned	in	this	section,	upgrade	the	code
in	Tavern.kt	that	populates	the	patron	gold	map	with	initial	values:
				fun	main(args:	Array<String>)	{

								...

								uniquePatrons.forEach	{

												patronGold[it]	=	6.0

								}

								...

				}

The	new	version	should	perform	the	setup	for	the	patronGold	set	where	the
variable	is	defined,	rather	than	within	the	main	function.

Challenge:	Sliding	Window
For	this	advanced	challenge,	begin	with	this	list	of	values:
				val	valuesToAdd	=	listOf(1,	18,	73,	3,	44,	6,	1,	33,	2,	22,	5,	7)

Using	a	functional	programming	approach,	perform	the	following	operations	on
the	valuesToAdd	list:

1.	 Exclude	any	number	less	than	5.

2.	 Group	the	numbers	in	pairs.

3.	 Multiply	the	two	numbers	in	each	pair.

4.	 Sum	the	resulting	products	to	produce	a	final	number.

The	correct	result	is	2,339.	Walking	through	each	step,	here	is	what	the	data
should	look	like	along	the	way:
				Step	1:	1,	18,	73,	3,	44,	6,	1,	33,	2,	22,	5,	7

				Step	2:	18,	73,	44,	6,	33,	22,	5,	7

				Step	3:	[18*73],	[44*6],	[33*22],	[5*7]

				Step	4:	1314	+	264	+	726	+	35	=	2339

Notice	that	step	3	groups	the	list	into	sublists	of	two	elements	each	–	this	is
commonly	known	as	a	“sliding	window”	algorithm	(and	is	where	the	challenge
gets	its	name).	Solving	this	tricky	challenge	will	require	consulting	the	Kotlin
reference	documentation	–	particularly	the	collections	functions	at
kotlinlang.org/api/latest/jvm/stdlib/

kotlin.collections/index.html.	Good	luck!

https://kotlinlang.org/api/latest/jvm/stdlib/kotlin.collections/index.html

20	
Java	Interoperability

Throughout	this	book,	you	have	learned	the	fundamentals	of	the	Kotlin
programming	language,	and	we	hope	you	are	inspired	to	use	Kotlin	to	improve
existing	Java	projects	you	may	have.	Where	do	you	start?
You	have	seen	before	that	Kotlin	compiles	down	to	Java	bytecode.	This	means
that	Kotlin	is	interoperable	with	Java	–	that	is,	it	functions	alongside	and	works
with	Java	code.
This	is	likely	the	most	important	feature	of	the	Kotlin	programming	language.
Full	interoperability	with	Java	means	that	Kotlin	files	and	Java	files	can	exist	in
the	same	project,	side	by	side.	You	can	invoke	Java	methods	from	Kotlin	and
Kotlin	functions	from	Java.	This	means	you	can	use	existing	Java	libraries	from
Kotlin,	including	the	Android	framework.
Full	interoperability	with	Java	also	means	that	you	can	slowly	transition	your
codebase	from	Java	to	Kotlin.	Maybe	you	do	not	have	the	opportunity	to	rebuild
your	project	entirely	in	Kotlin	–	consider	moving	new	feature	development	to
Kotlin.	Perhaps	you	would	like	to	convert	the	Java	files	in	your	application	that
will	see	the	most	benefit	from	a	move	to	Kotlin	–	consider	converting	your
model	objects	or	your	unit	tests.
This	chapter	will	show	you	how	Java	and	Kotlin	files	interoperate	and	discuss
the	things	you	should	consider	when	writing	code	that	will	interoperate.

Interoperating	with	a	Java	Class
For	this	chapter,	create	a	new	project	in	IntelliJ	called	Interop.	Interop	will
contain	two	files:	Hero.kt,	a	Kotlin	file	that	represents	the	hero	from
NyetHack,	and	Jhava.java,	a	Java	class	that	represents	a	monster	from
another	realm.	Create	these	two	files	as	well.
In	this	chapter,	you	will	write	both	Kotlin	code	and	Java	code.	If	you	do	not	have
experience	writing	Java	code,	fear	not,	as	the	Java	code	in	these	examples	should
be	intuitive	given	your	Kotlin	experience.
Start	by	declaring	the	Jhava	class	and	giving	it	a	method	called
utterGreeting	that	returns	a	String:

Listing	20.1		Declaring	a	class	and	method	in	Java	(Jhava.java)
public	class	Jhava	{

				public	String	utterGreeting()	{

								return	"BLARGH";

				}

}

Now,	in	Hero.kt,	create	a	main	function.	In	it,	declare	an	adversary	val,
an	instance	of	Jhava:

Listing	20.2		Declaring	a	main	function	and	Jhava	adversary	in
Kotlin	(Hero.kt)
fun	main(args:	Array<String>)	{

				val	adversary	=	Jhava()

}

That	is	it!	With	that,	you	have	written	a	line	of	Kotlin	code	that	instantiates	a
Java	object	and	bridged	the	gap	between	the	two	languages.	Java	interoperability
in	Kotlin	really	is	that	easy.
But	we	do	have	more	to	show	you,	so	let’s	press	on.	As	a	test,	print	out	the
greeting	that	the	Jhava	adversary	utters.

Listing	20.3		Invoking	a	Java	method	in	Kotlin	(Hero.kt)
fun	main(args:	Array<String>)	{

				val	adversary	=	Jhava()

				println(adversary.utterGreeting())

}

You	have	now	instantiated	a	Java	object	and	invoked	a	Java	method	on	it,	all
from	Kotlin.	Run	Hero.kt.	You	should	see	the	monster’s	greeting	(BLARGH)
printed	out	to	the	console.

Kotlin	was	created	to	interoperate	seamlessly	with	Java.	It	was	also	created	with
a	number	of	improvements	over	Java.	Do	you	have	to	give	up	the	improvements
when	you	want	to	interoperate?	Not	at	all.	With	some	awareness	of	the
differences	in	the	two	languages	and	the	help	of	annotations	available	on	each
side,	you	can	enjoy	the	best	of	what	Kotlin	has	to	offer.

Interoperability	and	Nullity
Add	another	method	to	Jhava	called	determineFriendshipLevel.
determineFriendshipLevel	should	return	a	value	of	type	String	and,
because	the	monster	does	not	understand	friendship,	a	value	of	null.

Listing	20.4		Returning	null	from	a	Java	method	(Jhava.java)
public	class	Jhava	{

				public	String	utterGreeting()	{

								return	"BLARGH";

				}

				public	String	determineFriendshipLevel()	{

								return	null;

				}

}

Call	this	new	method	from	Hero.kt,	storing	the	monster’s	friendship	level	in	a
val.	You	are	going	to	print	this	value	out	to	the	console,	but,	remembering	that
the	monster	yelled	its	greeting	at	you	in	all	caps,	go	ahead	and	lowercase	the
friendship	level	before	printing	it	out.

Listing	20.5		Printing	the	friendship	level	(Hero.kt)
fun	main(args:	Array<String>)	{

				val	adversary	=	Jhava()

				println(adversary.utterGreeting())

				val	friendshipLevel	=	adversary.determineFriendshipLevel()

				println(friendshipLevel.toLowerCase())

}

Run	Hero.kt.	Although	the	compiler	did	not	alert	you	to	any	problems,	the
program	crashes	at	runtime:
				Exception	in	thread	"main"

				java.lang.IllegalStateException:	friendshipLevel	must	not	be	null

In	Chapter	6,	we	told	you	that	in	Java	all	objects	can	be	null.	When	you	call	a
Java	method	like	determineFriendshipLevel,	the	API	seems	to
advertise	that	the	method	will	return	a	String,	but	that	does	not	mean	that	you
can	assume	that	the	return	value	will	play	by	Kotlin’s	rules	about	nullity.
Because	all	objects	in	Java	can	be	null,	it	is	safer	to	assume	that	values	are
nullable	unless	otherwise	specified.	However,	while	this	assumption	is	safer,	it
can	lead	to	considerably	more	verbose	code,	as	you	will	have	to	handle	the
nullability	of	each	and	every	Java	variable	you	reference.
In	Hero.kt,	hold	down	the	Command	(Ctrl)	key	and	mouse	over
determineFriendshipLevel.	IntelliJ	reports	that	the	method	returns	a

value	of	type	String!.	The	exclamation	mark	means	that	the	return	value
could	either	be	String	or	String?.	The	Kotlin	compiler	does	not	know
whether	the	value	of	the	string	being	returned	from	Java	is	null.
These	ambiguous	return	value	types	are	called	platform	types.	Platform	types	are
not	syntactically	meaningful;	they	are	only	displayed	in	the	IDE	and	in	other
documentation.
Fortunately,	authors	of	Java	code	can	write	Kotlin-friendly	code	that	advertises
nullity	more	explicitly	using	nullability	annotations.	Explicitly	declare	that
determineFriendshipLevel	can	return	a	value	of	null	by	adding	a
@Nullable	annotation	to	its	method	header.

Listing	20.6		Specifying	that	a	return	value	will	possibly	be	null
(Jhava.java)
public	class	Jhava	{

				public	String	utterGreeting()	{

								return	"BLARGH";

				}

				@Nullable

				public	String	determineFriendshipLevel()	{

								return	null;

				}

}

(You	will	need	to	import	org.jetbrains.annotations.Nullable,	which	IntelliJ
will	offer	to	do	for	you.)
@Nullable	warns	the	consumer	of	this	API	that	the	method	can	return	null	(not
that	it	must	return	null).	The	Kotlin	compiler	recognizes	this	annotation.	Return
to	Hero.kt	and	note	that	IntelliJ	is	now	warning	you	about	invoking
toLowerCase	directly	on	a	String?.
Replace	this	direct	invocation	with	a	safe	call.

Listing	20.7		Handling	nullability	with	the	safe	call	operator
(Hero.kt)
fun	main(args:	Array<String>)	{

				val	adversary	=	Jhava()

				println(adversary.utterGreeting())

				val	friendshipLevel	=	adversary.determineFriendshipLevel()

				println(friendshipLevel?.toLowerCase())

}

Run	Hero.kt.	Now,	null	should	be	printed	to	the	console.
Because	friendshipLevel	is	null,	you	may	want	to	provide	a	default
friendship	level.	Use	the	null	coalescing	operator	to	provide	a	default	to	be	used
when	friendshipLevel	is	null.

Listing	20.8		Providing	a	default	value	with	the	Elvis	operator
(Hero.kt)
fun	main(args:	Array<String>)	{

				val	adversary	=	Jhava()

				println(adversary.utterGreeting())

				val	friendshipLevel	=	adversary.determineFriendshipLevel()

				println(friendshipLevel?.toLowerCase()	?:	"It's	complicated.")

}

Run	Hero.kt,	and	you	should	see	It's	complicated.
You	used	@Nullable	to	signify	that	a	method	could	return	null.	You	can	specify
that	a	value	will	definitely	not	be	null	using	the	@NotNull	annotation.	This
annotation	is	nice,	because	it	means	that	the	consumer	of	this	API	does	not	need
to	worry	that	the	value	returned	could	be	null.	The	Jhava	monster’s	greeting
should	not	be	null,	so	add	a	@NotNull	annotation	to	the	utterGreeting
method	header.

Listing	20.9		Specifying	that	a	return	value	will	not	be	null
(Jhava.java)
public	class	Jhava	{

				@NotNull

				public	String	utterGreeting()	{

								return	"BLARGH";

				}

				@Nullable

				public	String	determineFriendshipLevel()	{

								return	null;

				}

}

(Again,	you	will	need	to	import	the	annotation.)
Nullability	annotations	can	be	used	to	add	context	to	return	values,	parameters,
and	even	fields.
Kotlin	provides	a	variety	of	tools	for	dealing	with	nullability,	including
prohibiting	normal	types	from	being	null.	If	you	write	Kotlin	code,	then	the	most
common	source	of	issues	with	null	is	interoperation,	so	take	care	when	calling
Java	code	from	Kotlin.

Type	Mapping
Kotlin’s	types	often	correspond	one	to	one	with	Java	types.	A	String	in	Kotlin
is	a	String	when	compiled	down	to	Java.	This	means	that	a	String	returned
from	Java	methods	can	be	used	in	the	same	way	in	Kotlin	as	a	String
explicitly	declared	in	Kotlin.
There	are,	however,	some	type	mappings	that	are	not	one	to	one	between	Kotlin
and	Java.	For	an	example,	consider	basic	data	types.	As	we	discussed	in	the
section	called	For	the	More	Curious:	Java	Primitive	Types	in	Kotlin	in
Chapter	2,	Java	represents	basic	data	types	using	what	it	calls	primitive	types.
Primitive	types	are	not	objects	in	Java,	but	all	types	are	objects	in	Kotlin	–
including	basic	data	types.	However,	the	Kotlin	compiler	maps	Java	primitives
onto	the	most	similar	Kotlin	type.
To	see	type	mapping	in	action,	add	an	integer	called	hitPoints	to	Jhava.	An
integer	is	represented	by	the	object	type	Int	in	Kotlin	and	by	the	primitive	type
int	in	Java.

Listing	20.10		Declaring	an	int	in	Java	(Jhava.java)
public	class	Jhava	{

				public	int	hitPoints	=	52489112;

				@NotNull

				public	String	utterGreeting()	{

								return	"BLARGH";

				}

				@Nullable

				public	String	determineFriendshipLevel()	{

								return	null;

				}

}

Now,	obtain	a	reference	to	hitPoints	in	Hero.kt.

Listing	20.11		Referencing	a	Java	field	from	Kotlin	(Hero.kt)
fun	main(args:	Array<String>)	{

				val	adversary	=	Jhava()

				println(adversary.utterGreeting())

				val	friendshipLevel	=	adversary.determineFriendshipLevel()\

				println(friendshipLevel?.toLowerCase()	?:	"It's	complicated.")

				val	adversaryHitPoints:	Int	=	adversary.hitPoints

}

Although	hitPoints	is	defined	in	the	Jhava	class	as	an	int,	you	refer	to	it
here	as	an	Int	with	no	problem.	(You	are	not	using	type	inference	here	only	to
illustrate	the	type	mapping.	Explicit	type	declarations	are	not	required	for

interoperability:	val	adversaryHitPoints	=	adversary.hitPoints	would
work	just	as	well.)
Now	that	you	have	a	reference	to	this	integer,	you	can	invoke	functions	on	it.
Call	a	function	on	adversaryHitPoints	and	print	out	the	result.

Listing	20.12		Referencing	a	Java	field	from	Kotlin	(Hero.kt)
fun	main(args:	Array<String>)	{

				...

				val	adversaryHitPoints:	Int	=	adversary.hitPoints

				println(adversaryHitPoints.dec())

}

Run	Hero.kt	to	print	out	the	adversary’s	hit	points,	decremented	by	1.
In	Java,	methods	cannot	be	invoked	on	primitive	types.	In	Kotlin,	the	integer
adversaryHitPoints	is	an	object	of	type	Int,	and	functions	can	be	called
on	that	Int.
As	another	illustration	of	type	mapping,	print	the	name	of	the	Java	class	backing
adversaryHitPoints.

Listing	20.13		Java	backing	class	name	(Hero.kt)
fun	main(args:	Array<String>)	{

				...

				val	adversaryHitPoints:	Int	=	adversary.hitPoints

				println(adversaryHitPoints.dec())

				println(adversaryHitPoints.javaClass)

}

When	you	run	Hero.kt,	you	will	see	int	printed	to	the	console.	Although	you
can	invoke	Int	functions	on	adversaryHitPoints,	the	variable	is	a
primitive	int	at	runtime.	As	you	may	recall	from	the	bytecode	you	looked	at	in
Chapter	2,	all	mapped	types	are	mapped	back	to	their	Java	counterparts	at
runtime.	Kotlin	gives	you	the	power	of	objects	when	you	want	them,	but	the
performance	of	primitive	types	when	you	need	them.

Getters,	Setters,	and	Interoperability
Kotlin	and	Java	handle	class-level	variables	quite	differently.	Java	uses	fields
and	typically	gates	access	via	accessor	and	mutator	methods.	Kotlin,	as	you	have
seen,	features	properties,	which	restrict	access	to	backing	fields	and	may
automatically	expose	accessors	and	mutators.
In	the	last	section,	you	added	a	public	hitPoints	field	to	Jhava.	This
worked	to	illustrate	type	mapping,	but	it	violates	the	principle	of	encapsulation	–
so	is	not	a	good	solution.	In	Java,	fields	should	be	accessed	or	mutated	using
methods	called	getters	and	setters.	Getters	can	be	used	to	access	data,	and	setters
can	be	used	to	mutate	data.
Make	hitPoints	private	and	create	a	getter	method	so	that	hitPoints	can
be	accessed	but	not	mutated.

Listing	20.14		Declaring	a	field	in	Java	(Jhava.java)
public	class	Jhava	{

				publicprivate	int	hitPoints	=	52489112;

				@NotNull

				public	String	utterGreeting()	{

								return	"BLARGH";

				}

				@Nullable

				public	String	determineFriendshipLevel()	{

								return	null;

				}

				public	int	getHitPoints()	{

								return	hitPoints;

				}

}

Now,	return	to	Hero.kt.	Note	that	your	code	still	compiles.	Recall	from
Chapter	12	that	Kotlin	can	bypass	the	need	for	using	getter/setter	syntax,
meaning	that	you	can	use	syntax	that	looks	like	you	are	accessing	fields	or
properties	directly	while	still	maintaining	encapsulation.	Because
getHitPoints	is	prefixed	with	get,	you	can	drop	the	prefix	in	Kotlin	and
refer	to	it	simply	as	hitPoints.	This	Kotlin	feature	transcends	the	barrier
between	Kotlin	and	Java.
The	same	goes	for	setters.	By	now	your	hero	and	the	Jhava	monster	are	well
acquainted	and	wish	to	communicate	further.	The	hero	would	like	to	expand	the
monster’s	vocabulary	beyond	a	single	utterance.	Pull	the	monster’s	greeting	out
into	a	field	and	add	a	getter	and	a	setter	so	that	the	hero	can	modify	the	greeting

in	an	attempt	to	teach	the	monster	language.

Listing	20.15		Exposing	a	greeting	in	Java	(Jhava.java)
public	class	Jhava	{

				private	int	hitPoints	=	52489112;

				private	String	greeting	=	"BLARGH";

				...

				@NotNull

				public	String	utterGreeting()	{

								return	"BLARGH"greeting;

				}

				...

				public	String	getGreeting()	{

								return	greeting;

				}

				public	void	setGreeting(String	greeting)	{

								this.greeting	=	greeting;

				}

}

In	Hero.kt,	modify	adversary.greeting.

Listing	20.16		Setting	a	Java	field	from	Kotlin	(Hero.kt)
fun	main(args:	Array<String>)	{

				...

				val	adversaryHitPoints:	Int	=	adversary.hitPoints

				println(adversaryHitPoints.dec())

				println(adversaryHitPoints.javaClass)

				adversary.greeting	=	"Hello,	Hero."

				println(adversary.utterGreeting())

}

You	can	use	assignment	syntax	to	mutate	a	Java	field,	rather	than	calling	its
associated	setter.	You	have	the	syntax	benefits	provided	in	Kotlin,	even	while
working	with	Java	APIs.	Run	Hero.kt	to	see	that	the	hero	has	taught	the
Jhava	monster	some	language.

Beyond	Classes
Kotlin	affords	developers	greater	flexibility	with	respect	to	the	format	of	the
code	that	they	write.	A	Kotlin	file	can	include	classes,	functions,	and	variables	–
all	at	the	top	level	of	the	file.	In	Java,	a	file	represents	exactly	one	class.	How,
then,	are	top-level	functions	declared	in	Kotlin	represented	in	Java?
Expand	the	interspecies	communication	with	a	proclamation	from	the	hero.
Declare	a	function	called	makeProclamation	in	Hero.kt,	outside	of	the
main	function	that	you	worked	in	before.

Listing	20.17		Declaring	a	top-level	function	in	Kotlin	(Hero.kt)
fun	main(args:	Array<String>)	{

				...

}

fun	makeProclamation()	=	"Greetings,	beast!"

You	will	need	a	way	to	invoke	this	function	from	Java,	so	add	a	main	method	to
Jhava.

Listing	20.18		Defining	a	main	method	in	Java	(Jhava.java)
public	class	Jhava	{

				private	int	hitPoints	=	52489112;

				private	String	greeting	=	"BLARGH";

				public	static	void	main(String[]	args)	{

				}

				...

}

In	that	main	method,	print	out	the	value	returned	by	makeProclamation,
referencing	the	function	as	a	static	method	in	the	class	HeroKt:

Listing	20.19		Referencing	a	top-level	Kotlin	function	from	Java
(Jhava.java)
public	class	Jhava	{

				...

				public	static	void	main(String[]	args)	{

								System.out.println(HeroKt.makeProclamation());

				}

				...

}

Top-level	functions	defined	in	Kotlin	are	represented	as	static	methods	in	Java
and	are	called	as	such.	makeProclamation	is	defined	in	Hero.kt,	so	the
Kotlin	compiler	creates	a	class	called	HeroKt	for	the	static	method	to	be
associated	with.

If	you	would	like	Hero.kt	and	Jhava.java	to	interoperate	a	bit	more
fluidly,	you	can	change	the	name	of	the	generated	class	with	the	@JvmName
annotation.	Do	this	at	the	top	of	Hero.kt:

Listing	20.20		Specifying	compiled	class	name	using	JvmName
(Hero.kt)
@file:JvmName("Hero")

fun	main(args:	Array<String>)	{

				...

}

fun	makeProclamation()	=	"Greetings,	beast!"

Now,	in	Jhava,	you	can	reference	the	makeProclamation	function	more
cleanly.

Listing	20.21		Referencing	a	renamed	top-level	Kotlin	function	from
Java	(Jhava.java)
public	class	Jhava	{

				...

				public	static	void	main(String[]	args)	{

								System.out.println(HeroKt.makeProclamation());

				}

				...

}

Run	Jhava.java	to	read	your	hero’s	proclamation.	JVM	annotations	like
@JvmName	give	you	direct	control	over	what	Java	code	is	generated	when	you
write	Kotlin	code.
Another	important	JVM	annotation	is	@JvmOverloads.	Kotlin’s	default
parameters	empower	you	to	replace	verbose,	repetitive	method	overloading	with
a	streamlined	approach	to	providing	options	in	your	API.	What	does	this	mean	in
practice?	The	following	example	should	clarify	things.
Add	a	new	function	called	handOverFood	to	Hero.kt.

Listing	20.22		Adding	a	function	with	default	parameters	(Hero.kt)
...

fun	makeProclamation()	=	"Greetings,	beast!"

fun	handOverFood(leftHand:	String	=	"berries",	rightHand:	String	=	"beef")	{

				println("Mmmm...	you	hand	over	some	delicious	$leftHand	and	$rightHand.")

}

The	hero	offers	some	food	in	the	handOverFood	function,	and	the	function’s
caller	has	options	for	invoking	it	due	to	its	default	parameters.	The	caller	can
specify	what	is	in	the	hero’s	left	hand	and/or	right	hand	–	or	accept	the	default
options	of	berries	and	beef.	Kotlin	gives	the	caller	options	without	adding	much
complexity	to	the	code.

Java,	on	the	other	hand,	which	lacks	default	parameters,	would	accomplish	this
with	method	overloading:
				public	static	void	handOverFood(String	leftHand,	String	rightHand)	{

								System.out.println("Mmmm...	you	hand	over	some	delicious	"	+

																leftHand	+	"	and	"	+	rightHand	+	".");

				}

				public	static	void	handOverFood(String	leftHand)	{

								handOverFood(leftHand,	"beef");

				}

				public	static	void	handOverFood()	{

								handOverFood("berries",	"beef");

				}

Method	overloading	in	Java	requires	much	more	code	than	default	parameters	in
Kotlin.	Also,	one	option	for	calling	the	Kotlin	function	cannot	be	replicated	in
Java	–	the	option	of	using	the	default	value	for	the	first	parameter,	leftHand,
while	passing	a	value	for	the	second	parameter,	rightHand.	Kotlin’s	named
function	arguments	make	this	option	possible:	handOverFood(rightHand	=
"cookies")	will	result	in	Mmmm...	you	hand	over	some	delicious	berries
and	cookies.	But	Java	does	not	support	named	method	parameters,	so	it	has	no
way	to	distinguish	between	methods	called	with	the	same	number	of	parameters
(unless	the	parameters	are	of	different	types).
As	you	will	see	in	a	moment,	the	@JvmOverloads	annotation	triggers	the
generation	of	the	three	corresponding	Java	methods	so	that	Java	consumers	are,
for	the	most	part,	not	left	out.
The	Jhava	monster	abhors	fruit.	It	would	like	to	be	offered	pizza	or	beef
instead	of	berries.	Add	a	method	called	offerFood	to	Jhava.java	that
exposes	a	way	for	a	Hero	to	offer	food	to	a	Jhava	monster.

Listing	20.23		Only	one	method	signature	(Jhava.java)
public	class	Jhava	{

				...

				public	void	setGreeting(String	greeting)	{

								this.greeting	=	greeting;

				}

				public	void	offerFood()	{

								Hero.handOverFood("pizza");

				}

}

This	call	to	handOverFood	causes	a	compiler	error,	because	Java	has	no
concept	of	default	method	parameters.	As	such,	a	version	of	handOverFood
with	only	one	parameter	does	not	exist	in	Java.	To	verify,	take	a	look	at	the
decompiled	Java	bytecode	for	handOverFood:
				public	static	final	void	handOverFood(@NotNull	String	leftHand,

																																										@NotNull	String	rightHand)	{

								Intrinsics.checkParameterIsNotNull(leftHand,	"leftHand");

								Intrinsics.checkParameterIsNotNull(rightHand,	"rightHand");

								String	var2	=	"Mmmm...	you	hand	over	some	delicious	"	+

																leftHand	+	"	and	"	+	rightHand	+	'.';

								System.out.println(var2);

				}

While	you	have	the	option	to	avoid	method	overloading	in	Kotlin,	your	Java
counterparts	are	not	afforded	the	same	luxury.	The	@JvmOverloads	annotation
will	help	your	API	consumers	in	Java	by	providing	overloaded	versions	of	your
Kotlin	function.	Add	the	annotation	to	handOverFood	in	Hero.kt.

Listing	20.24		Adding	@JvmOverloads	(Hero.kt)
...

fun	makeProclamation()	=	"Greetings,	beast!"

@JvmOverloads

fun	handOverFood(leftHand:	String	=	"berries",	rightHand:	String	=	"beef")	{

				println("Mmmm...	you	hand	over	some	delicious	$leftHand	and	$rightHand.")

}

Your	invocation	of	handOverFood	in	Jhava.offerFood	no	longer	causes
an	error,	because	it	is	now	calling	a	version	of	handOverFood	that	exists	in
Java.	You	can	again	confirm	this	by	looking	at	the	new	decompiled	Java
bytecode:
				@JvmOverloads

				public	static	final	void	handOverFood(@NotNull	String	leftHand,

																																										@NotNull	String	rightHand)	{

								Intrinsics.checkParameterIsNotNull(leftHand,	"leftHand");

								Intrinsics.checkParameterIsNotNull(rightHand,	"rightHand");

								String	var2	=	"Mmmm...	you	hand	over	some	delicious	"	+

																leftHand	+	"	and	"	+	rightHand	+	'.';

								System.out.println(var2);

				}

				@JvmOverloads

				public	static	final	void	handOverFood(@NotNull	String	leftHand)	{

								handOverFood$default(leftHand,	(String)null,	2,	(Object)null);

				}

				@JvmOverloads

				public	static	final	void	handOverFood()	{

								handOverFood$default((String)null,	(String)null,	3,	(Object)null);

				}

Note	that	the	single-parameter	method	specifies	the	first	parameter	from	the
Kotlin	function:	leftHand.	When	this	method	is	called,	the	default	value	for
the	second	parameter	will	be	used.
To	test	offering	food	to	the	monster,	call	offerFood	in	Hero.kt:

Listing	20.25		Testing	out	offerFood	(Hero.kt)
@file:JvmName("Hero")

fun	main(args:	Array<String>)	{

				...

				adversary.greeting	=	"Hello,	Hero."

				println(adversary.utterGreeting())

				adversary.offerFood()

}

fun	makeProclamation()	=	"Greetings,	beast!"

...

Run	Hero.kt	to	confirm	that	the	hero	hands	over	pizza	and	beef.
If	you	are	designing	an	API	that	may	be	exposed	to	Java	consumers,	consider
using	@JvmOverloads	for	an	API	that	is	nearly	as	robust	for	Java	developers	as	it
is	for	Kotlin	developers.
There	are	two	more	JVM	annotations	that	you	should	consider	when	writing
Kotlin	code	that	will	interoperate	with	Java	code,	and	they	both	have	to	do	with
classes.	Hero.kt	does	not	yet	have	a	class	implementation,	so	add	a	new	class
called	Spellbook.	Give	Spellbook	one	property,	spells	–	a	list	of	string
spell	names.

Listing	20.26		Declaring	the	Spellbook	class	(Hero.kt)
...

@JvmOverloads

fun	handOverFood(leftHand:	String	=	"berries",	rightHand:	String	=	"beef")	{

				println("Mmmm...	you	hand	over	some	delicious	$leftHand	and	$rightHand.")

}

class	Spellbook	{

				val	spells	=	listOf("Magic	Ms.	L",	"Lay	on	Hans")

}

Recall	that	Kotlin	and	Java	handle	class-level	variables	quite	differently:	Java
uses	fields	with	getter	and	setter	methods,	while	Kotlin	has	properties	with
backing	fields.	As	a	result,	while	in	Java	you	can	access	a	field	directly,	in	Kotlin
you	will	be	routed	through	an	accessor	–	even	though	the	access	syntax	may	be
identical.
So,	referencing	spells,	a	property	of	Spellbook,	in	Kotlin	would	look	like
this:
				val	spellbook	=	Spellbook()

				val	spells	=	spellbook.spells

And	in	Java,	accessing	spells	would	look	like	this:
				Spellbook	spellbook	=	new	Spellbook();

				List<String>	spells	=	spellbook.getSpells();

In	Java,	calling	getSpells	would	be	necessary	because	you	cannot	directly
access	the	spells	field.	However,	you	can	apply	the	@JvmField	annotation	to	a
Kotlin	property	to	expose	its	backing	field	to	Java	consumers	and	avoid	the	need
for	a	getter	method.	Apply	JvmField	to	spells	to	expose	it	directly	to	Jhava:

Listing	20.27		Applying	the	@JvmField	annotation	(Hero.kt)
...

@JvmOverloads

fun	handOverFood(leftHand:	String	=	"berries",	rightHand:	String	=	"beef")	{

				println("Mmmm...	you	hand	over	some	delicious	$leftHand	and	$rightHand.")

}

class	Spellbook	{

				@JvmField

				val	spells	=	listOf("Magic	Ms.	L",	"Lay	on	Hans")

}

Now,	in	Jhava.java’s	main	method,	you	can	access	spells	directly	to
print	out	each	spell:

Listing	20.28		Accessing	a	Kotlin	field	directly	in	Java	(Jhava.java)
...

public	static	void	main(String[]	args)	{

				System.out.println(Hero.makeProclamation());

				System.out.println("Spells:");

				Spellbook	spellbook	=	new	Spellbook();

				for	(String	spell	:	spellbook.spells)	{

								System.out.println(spell);

				}

}

@NotNull

public	String	utterGreeting()	{

				return	greeting;

}

...

Run	Jhava.java	to	confirm	that	the	spells	in	the	spellbook	are	printed	out	to
the	console.
You	can	also	use	@JvmField	to	statically	represent	values	in	a	companion	object.
Recall	from	Chapter	15	that	companion	objects	are	declared	within	another	class
declaration	and	initialized	either	when	their	enclosing	class	is	initialized	or	when
any	of	their	properties	or	functions	are	accessed.	Add	a	companion	object
containing	one	value,	MAX_SPELL_COUNT,	to	Spellbook.

Listing	20.29		Adding	a	companion	object	to	Spellbook	(Hero.kt)
...

class	Spellbook	{

				@JvmField

				val	spells	=	listOf("Magic	Ms.	L",	"Lay	on	Hans")

				companion	object	{

								val	MAX_SPELL_COUNT	=	10

				}

}

Now	attempt	to	access	MAX_SPELL_COUNT	from	Jhava’s	main	method
using	Java’s	static	access	syntax.

Listing	20.30		Accessing	a	static	value	in	Java	(Jhava.java)
public	static	void	main(String[]	args)	{

				System.out.println(Hero.makeProclamation());

				System.out.println("Spells:");

				Spellbook	spellbook	=	new	Spellbook();

				for	(String	spell	:	spellbook.spells)	{

								System.out.println(spell);

				}

				System.out.println("Max	spell	count:	"	+	Spellbook.MAX_SPELL_COUNT);

}

...

The	code	does	not	compile.	Why	not?	When	referencing	members	of	a

companion	object	from	Java,	you	must	access	them	first	by	referencing	the
companion	object	and	using	its	accessor:
				System.out.println("Max	spell	count:	"	+

												Spellbook.Companion.getMAX_SPELL_COUNT());

@JvmField	takes	care	of	all	this	for	you.	Add	a	@JvmField	annotation	to
MAX_SPELL_COUNT	in	Spellbook’s	companion	object.

Listing	20.31		Adding	the	@JvmField	annotation	to	the	member	of	a
companion	object	(Hero.kt)
...

class	Spellbook	{

				@JvmField

				val	spells	=	listOf("Magic	Ms.	L",	"Lay	on	Hans")

				companion	object	{

								@JvmField

								val	MAX_SPELL_COUNT	=	10

				}

}

Once	that	annotation	is	in	place,	your	code	in	Jhava.java	will	compile,
because	you	can	access	MAX_SPELL_COUNT	just	like	any	other	Java	static.
Run	Jhava.kt	to	confirm	that	the	maximum	spell	count	is	printed	to	the
console.
Although	Kotlin	and	Java	handle	field	access	in	different	ways	by	default,
@JvmField	is	a	useful	way	to	expose	fields	and	ensure	equivalent	access	to	your
Java	counterparts.
Functions	defined	on	companion	objects	run	into	similar	issues	when	accessed
from	Java	–	they	have	to	be	accessed	via	a	reference	to	the	companion	object.
The	@JvmStatic	annotation	works	like	@JvmField	to	allow	direct	access	to
functions	defined	on	companion	objects.	Define	a	function	on	Spellbook’s
companion	object	called	getSpellbookGreeting.
getSpellbookGreeting	returns	a	function	to	be	invoked	when
getSpellbookGreeting	is	called.

Listing	20.32		Using	@JvmStatic	on	a	function	(Hero.kt)
...

class	Spellbook	{

				@JvmField

				val	spells	=	listOf("Magic	Ms.	L",	"Lay	on	Hans")

				companion	object	{

								@JvmField

								val	MAX_SPELL_COUNT	=	10

								@JvmStatic

								fun	getSpellbookGreeting()	=	println("I	am	the	Great	Grimoire!")

				}

}

Now,	invoke	getSpellbookGreeting	in	Jhava.java.

Listing	20.33		Invoking	a	static	method	in	Java	(Jhava.java)
...

public	static	void	main(String[]	args)	{

				System.out.println(Hero.makeProclamation());

				System.out.println("Spells:");

				Spellbook	spellbook	=	new	Spellbook();

				for	(String	spell	:	spellbook.spells)	{

								System.out.println(spell);

				}

				System.out.println("Max	spell	count:	"	+	Spellbook.MAX_SPELL_COUNT);

				Spellbook.getSpellbookGreeting();

}

...

Run	Jhava.java	to	confirm	that	the	spellbook’s	greeting	is	printed	to	the
console.
Although	statics	do	not	exist	in	Kotlin,	many	commonly	used	patterns	compile
down	to	static	variables	and	methods.	Employing	the	@JvmStatic	annotation
gives	you	greater	control	over	how	Java	developers	interface	with	your	code.

Exceptions	and	Interoperability
The	hero	has	taught	the	Jhava	monster	language,	and	the	monster	will	now
extend	its	hand	in	friendship	…	or	maybe	not.	Add	a	method,
extendHandInFriendship,	to	Jhava.java.

Listing	20.34		Throwing	an	exception	in	Java	(Jhava.java)
public	class	Jhava	{

				...

				public	void	offerFood()	{

								Hero.handOverFood("pizza");

				}

				public	void	extendHandInFriendship()	throws	Exception	{

								throw	new	Exception();

				}

}

Invoke	this	method	in	Hero.kt:

Listing	20.35		Invoking	a	method	that	throws	an	exception
(Hero.kt)
@file:JvmName("Hero")

fun	main(args:	Array<String>)	{

				...

				adversary.offerFood()

				adversary.extendHandInFriendship()

}

fun	makeProclamation()	=	"Greetings,	beast!"

...

Run	this	code,	and	you	will	see	that	a	runtime	exception	is	thrown.	It	is	not	wise
to	trust	a	monster.
Recall	that	exceptions	are	unchecked	in	Kotlin.	In	calling
extendHandInFriendship,	you	called	a	method	that	throws	an	exception.
In	this	instance,	you	knew	that	when	you	called	the	method.	Another	time,	you
may	not	be	so	lucky.	You	should	take	extra	care	to	understand	the	Java	APIs	that
you	are	interfacing	with	from	Kotlin.
Wrap	your	invocation	of	the	extendHandInFriendship	method	in	a
try/catch	block	to	thwart	the	monster’s	treachery.

Listing	20.36		Handling	exceptions	using	try/catch	(Hero.kt)
@file:JvmName("Hero")

fun	main(args:	Array<String>)	{

				...

				adversary.offerFood()

				try	{

								adversary.extendHandInFriendship()

				}	catch	(e:	Exception)	{

								println("Begone,	foul	beast!")

				}

}

fun	makeProclamation()	=	"Greetings,	beast!"

...

Run	Hero.kt	to	see	that	the	hero	deftly	avoids	the	monster’s	duplicitous
attack.
Calling	Kotlin	functions	from	Java	requires	some	additional	understanding	when
it	comes	to	handling	exceptions.	All	exceptions	in	Kotlin,	as	we	have	said,	are
unchecked.	But	this	is	not	the	case	in	Java	–	exceptions	can	be	checked,	and	they
must	be	handled	at	the	risk	of	a	crash.	How	does	this	affect	calling	a	Kotlin
function	from	Java?
To	see,	add	a	function	to	Hero.kt	called	acceptApology.	It	is	time	to	exact
revenge	on	the	monster.

Listing	20.37		Throwing	an	unchecked	exception	(Hero.kt)
...

@JvmOverloads

fun	handOverFood(leftHand:	String	=	"berries",	rightHand:	String	=	"beef")	{

				println("Mmmm...	you	hand	over	some	delicious	$leftHand	and	$rightHand.")

}

fun	acceptApology()	{

				throw	IOException()

}

class	Spellbook	{

				...

}

(You	will	need	to	import	java.io.IOException.)
Now,	call	acceptApology	from	Jhava.java.

Listing	20.38		Throwing	an	exception	in	Java	(Jhava.java)
public	class	Jhava	{

				...

				public	void	apologize()	{

								try	{

												Hero.acceptApology();

								}	catch	(IOException	e)	{

												System.out.println("Caught!");

								}

				}

}

The	Jhava	monster	is	clever	enough	to	suspect	the	hero	of	trickery	and	wraps
its	invocation	of	acceptApology	in	a	try/catch	block.	But	the	Java
compiler	warns	you	that	an	IOException	is	never	thrown	in	the	contents	of
the	try	block	–	that	is,	in	acceptApology.	How	can	this	be?
acceptApology	clearly	throws	an	IOException.

Understanding	this	scenario	requires	a	peek	into	the	decompiled	Java	bytecode:
				public	static	final	void	acceptApology()	{

								throw	(Throwable)(new	IOException());

				}

You	can	see	that	an	IOException	is	thrown	in	this	function,	but	nothing	about
the	function’s	signature	notifies	the	caller	that	an	IOException	should	be
checked	for.	When	the	Java	compiler	complains	that	acceptApology	does
not	throw	an	IOException	when	invoked	from	Java,	this	is	why.	It	has	no
idea.
Fortunately,	there	is	an	annotation	to	solve	this	problem,	too:	@Throws.	When
you	use	@Throws,	you	include	information	about	the	exception	that	the	function
throws.	Add	a	@Throws	annotation	to	acceptApology	to	augment	its	Java
bytecode.

Listing	20.39		Using	the	@Throws	annotation	(Hero.kt)
...

@Throws(IOException::class)

fun	acceptApology()	{

				throw	IOException()

}

class	Spellbook	{

				...

}

Now,	look	at	the	resulting	decompiled	Java	bytecode:
				public	static	final	void	acceptApology()	throws	IOException	{

								throw	(Throwable)(new	IOException());

				}

The	@Throws	annotation	adds	a	throws	keyword	to	the	Java	version	of
acceptApology.	Looking	back	at	Jhava.java,	you	should	see	that	you
have	now	satisfied	the	Java	compiler,	as	it	can	now	recognize	that
acceptApology	throws	an	IOException	that	requires	checking.
The	@Throws	annotation	smooths	over	some	of	the	ideological	differences
between	Java	and	Kotlin	with	respect	to	exception	checking.	If	you	are	writing	a
Kotlin	API	that	may	be	exposed	to	a	Java	consumer,	consider	using	this
annotation	so	that	your	consumer	can	properly	handle	any	exception	thrown.

Function	Types	in	Java
Function	types	and	anonymous	functions	are	novel	inclusions	in	the	Kotlin
programming	language	that	provide	a	streamlined	syntax	for	communicating
between	components.	Their	concise	syntax	is	made	possible	via	the	->	operator,
but	lambdas	are	not	supported	in	versions	of	Java	prior	to	Java	8.
So	what	do	these	function	types	look	like	when	called	from	Java?	The	answer
may	seem	deceptively	simple:	In	Java,	your	function	type	is	represented	by	an
interface	with	a	name	like	FunctionN,	where	N	is	the	number	of	arguments	taken
as	parameters.
To	see	this	in	practice,	add	a	function	type	called	translator	to	Hero.kt.
translator	should	take	a	String,	lowercase	it,	capitalize	the	first	letter,
and	print	out	the	result.

Listing	20.40		Defining	the	translator	function	type	(Hero.kt)
fun	main(args:	Array<String>)	{

				...

}

val	translator	=	{	utterance:	String	->

				println(utterance.toLowerCase().capitalize())

}

fun	makeProclamation()	=	"Greetings,	beast!"

translator	is	defined	like	many	of	the	function	types	that	you	saw	in
Chapter	5.	It	is	of	type	(String)	->	Unit.	What	will	this	function	type
look	like	in	Java?	Store	the	translator	instance	in	a	variable	in	Jhava.

Listing	20.41		Storing	a	function	type	in	a	variable	in	Java
(Jhava.java)
public	class	Jhava	{

				...

				public	static	void	main(String[]	args)	{

								...

								Spellbook.getSpellbookGreeting();

								Function1<String,	Unit>	translator	=	Hero.getTranslator();

				}

}

(You	will	need	to	import	kotlin.Unit;	be	sure	to	choose	the	option	from	the
Kotlin	standard	library.	You	will	also	need	to	import
kotlin.jvm.functions.Function1.)
This	function	type	is	of	type	Function1<String,	Unit>.	Function1	is
the	base	type	because	translator	has	exactly	one	parameter.	String	and

Unit	are	used	as	type	parameters	because	the	type	of	translator’s
parameter	is	String	and	it	returns	the	Kotlin	type	Unit.

There	are	23	of	these	Function	interfaces,	ranging	from	Function0	to
Function22.	Each	of	them	includes	one	function,	invoke.	invoke	is	used
to	call	a	function	type,	so	any	time	that	you	need	to	call	a	function	type,	you	call
invoke	on	it.	Call	translator	in	Jhava:

Listing	20.42		Calling	a	function	type	in	Java	(Jhava.java)
public	class	Jhava	{

				...

				public	static	void	main(String[]	args)	{

								...

								Function1<String,	Unit>	translator	=	Hero.getTranslator();

								translator.invoke("TRUCE");

				}

}

Run	Jhava.kt	to	confirm	that	Truce	is	printed	to	the	console.
While	function	types	are	useful	in	Kotlin,	be	mindful	of	how	they	are
represented	in	Java.	The	concise,	fluid	syntax	that	you	have	grown	fond	of	in
Kotlin	is	quite	different	when	called	from	Java.	If	your	code	is	visible	to	Java
classes	(e.g.,	as	a	part	of	an	API),	then	the	more	considerate	route	may	be	to
avoid	function	types.	But	if	you	are	comfortable	with	the	more	verbose	syntax,
then	Kotlin’s	function	types	are	indeed	available	to	you	in	Java.
Interoperability	between	Kotlin	and	Java	is	the	foundation	of	Kotlin’s	growth
trajectory.	It	provides	Kotlin	with	the	ability	to	leverage	existing	frameworks,
such	as	Android,	and	to	interface	with	legacy	codebases,	giving	you	a	path	to
gradually	introduce	Kotlin	in	your	projects.	Fortunately,	interoperation	between
Kotlin	and	Java	is	straightforward,	with	a	few	small	exceptions.	Writing	Java-
friendly	Kotlin	code	and	Kotlin-friendly	Java	code	is	useful	skill	that	will	pay
dividends	as	you	continue	your	Kotlin	journey.
In	the	next	chapter,	you	will	build	your	first	Android	app	with	Kotlin,	which	will
generate	the	starting	attributes	for	new	players	in	NyetHack.

21	
Building	Your	First	Android

Application	with	Kotlin
Kotlin	is	a	first-class	language	for	developing	Android	applications,	with	official
support	from	Google.	In	this	chapter,	you	will	write	your	first	Android
application	using	Kotlin.	The	app,	which	rolls	a	new	NyetHack	player
character’s	starting	attributes,	is	called	Samodelkin,	honoring	a	Russian	cartoon
android	from	the	1950s	who	created	himself.

Android	Studio
To	create	an	Android	project,	you	will	use	the	Android	Studio	IDE	instead	of
IntelliJ.	Android	Studio	is	built	on	IntelliJ,	and	while	they	share	many
similarities,	Android	Studio	includes	extra	features	required	for	developing
Android	applications.
Download	Android	Studio	from	developer.android.com/studio/
index.html.	Once	the	download	has	completed,	follow	the	installation
instructions	for	your	platform	at	developer.android.com/studio/
install.html.
Note	that	this	chapter	is	based	on	Android	Studio	3.1	and	Android	8.1	(API	27).
If	you	have	a	more	recent	version,	some	of	the	details	may	have	changed.
Before	creating	a	new	project,	confirm	that	the	Android	SDK	package	you	will
need	has	been	downloaded	for	your	system	by	selecting	Configure	→	SDK	Manager
from	the	Welcome	to	Android	Studio	dialog	(Figure	21.1):

https://developer.android.com/studio/index.html
https://developer.android.com/studio/install.html

Figure	21.1		Bringing	up	the	SDK	Manager

In	the	Android	SDK	window,	ensure	that	Android	8.1	(Oreo)	(API	27)	is	checked	and
marked	Installed	in	the	status	column	(Figure	21.2).	If	it	is	not,	check	the	box	next
to	it	and	click	OK,	which	will	download	the	required	API.	If	it	is	installed,	click
Cancel	to	return	to	the	Welcome	to	Android	Studio	dialog.

Figure	21.2		Confirming	API	27	is	installed

Back	at	the	Welcome	to	Android	Studio	dialog,	click	Start	a	new	Android	Studio	project.
In	the	Create	Android	Project	dialog,	enter	“Samodelkin”	for	Application	name	and
“android.bignerdranch.com”	for	Company	domain.	Make	sure	that	Include	Kotlin
support	is	checked	(Figure	21.3).

Figure	21.3		The	Create	Android	Project	dialog

Click	Next	and,	in	the	Target	Android	Devices	dialog,	make	sure	Phone	and	Tablet	is
checked.	Leave	the	default	in	the	API	dropdown	below	as	is	(even	if	it	looks
different	from	ours)	(Figure	21.4).	Click	Next.

Figure	21.4		The	Target	Android	Devices	dialog

In	the	Add	an	Activity	to	Mobile	dialog,	select	Empty	Activity	and	click	Next
(Figure	21.5).

Figure	21.5		Adding	an	empty	activity

Last,	you	will	be	presented	with	the	Configure	Activity	dialog.	Enter
“NewCharacterActivity”	for	the	Activity	Name	and	leave	the	other	defaults	as	they
are.
In	this	step,	you	specified	an	activity	that	will	be	created,
NewCharacterActivity.	You	can	think	of	an	activity	using	your	common-
sense	definition	of	the	word	–	it	is	something	a	user	of	your	application	will	be
able	to	do	when	using	your	app.	For	example,	composing	an	email,	searching	for
a	contact,	or,	in	the	case	of	Samodelkin,	creating	a	new	character	–	these	are	all
activities.

In	Android,	activities	consist	of	two	parts	–	a	user	interface	and	an	Activity
class.	The	user	interface,	or	UI,	defines	the	elements	a	user	will	see	and	interact
with	in	the	app,	and	the	Activity	class	defines	the	logic	required	to	bring	that
UI	to	life.	You	will	work	with	both	of	these	when	building	the	app.
Click	Finish.	A	small	dialog	appears,	showing	that	the	project	is	being	configured
(Figure	21.6):

Figure	21.6		Configuring	project

After	a	minute	or	two,	your	new	project	will	open.
A	new	project	configuration,	directory	structure,	and	default	definitions	for	the
activity’s	class	definition	and	UI	have	been	generated	and	added	to	your	project.
Let’s	take	a	quick	tour.

Gradle	configuration

First,	take	a	look	at	the	directory	structure	for	your	project,	visible	in	the	project
tool	window	on	the	left.	Make	sure	that	Android	is	selected	in	the	dropdown	for
the	project	tool	window	(Figure	21.7):

Figure	21.7		Android	project	tool	window	perspective

Now,	find	the	Gradle	Scripts	section	at	the	bottom	of	the	project	tool	window	and
expand	it	(Figure	21.8):

Figure	21.8		Gradle	Scripts

Android	uses	a	popular	build	automation	tool	called	Gradle	to	manage	your
application	dependencies	and	compilation.	Gradle	configuration	is	defined	using
a	lightweight	DSL.	An	Android	project’s	Gradle	settings	are	configured	using
two	build.gradle	files,	automatically	added	when	the	Android	project	is
created.
Certain	Gradle	configuration	steps	Android	Studio	took	care	of	for	you	enable
your	Android	project	to	be	developed	using	Kotlin.	Let’s	take	a	look.
The	(Project:	Samodelkin)	Gradle	configuration	file	defines	global
settings	for	the	project.	Double-click	on	build.gradle	(Project:
Samodelkin)	to	open	it	in	the	editor,	the	main	Android	Studio	window	area.
You	will	see	contents	similar	to	the	following:
				buildscript	{

							ext.kotlin_version	=	'1.2.30'

							repositories	{

											google()

											jcenter()

							}

							dependencies	{

											classpath	'com.android.tools.build:gradle:3.1.0'

											classpath	"org.jetbrains.kotlin:kotlin-gradle-plugin:$kotlin_version"

							}

				}

				allprojects	{

							repositories	{

											google()

											jcenter()

							}

				}

				task	clean(type:	Delete)	{

							delete	rootProject.buildDir

				}

The	shaded	lines	add	the	classpath	configuration	for	the	Kotlin	Gradle	plug-in,
enabling	Gradle	to	compile	Kotlin	files.
Next,	open	and	look	at	the	build.gradle	(Module:	app)	file:
				apply	plugin:	'com.android.application'

				apply	plugin:	'kotlin-android'

				apply	plugin:	'kotlin-android-extensions'

				android	{

								compileSdkVersion	27

								defaultConfig	{

												applicationId	"com.bignerdranch.android.samodelkin"

												minSdkVersion	19

												targetSdkVersion	27

												versionCode	1

												versionName	"1.0"

												testInstrumentationRunner	"android.support.test.runner.AndroidJUnitRunner"

								}

								buildTypes	{

												release	{

																minifyEnabled	false

																proguardFiles	getDefaultProguardFile('proguard-android.txt'),

																								'proguard-rules.pro'

												}

								}

				}

				dependencies	{

								implementation	fileTree(dir:	'libs',	include:	['*.jar'])

								implementation"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"

								implementation	'com.android.support:appcompat-v7:27.1.0'

								implementation	'com.android.support.constraint:constraint-layout:1.0.2'

								testImplementation	'junit:junit:4.12'

								androidTestImplementation	'com.android.support.test:runner:1.0.1'

								androidTestImplementation

																'com.android.support.test.espresso:espresso-core:3.0.1'

				}

The	shaded	lines	here	add	two	plug-ins	to	your	project.	The	kotlin-android
plug-in	enables	Kotlin	code	to	be	correctly	compiled	when	used	in	conjunction
with	the	Android	framework.	It	is	required	for	any	Android	project	that	will	be
written	using	Kotlin.
The	kotlin-android-extensions	plug-in	adds	a	number	of	conveniences	for
improving	your	Android	application	when	working	with	Kotlin.	You	will	be
using	a	feature	that	kotlin-android-extensions	provides	soon.
Gradle	also	manages	the	library	dependencies	that	are	required	for	your	Android
project.	Toward	the	end	of	the	app/build.gradle	file,	you	will	see	the	listing	of
the	required	libraries	that	are	downloaded	and	included	automatically	by	the
Gradle	build	management	tool.
Dependencies	for	a	Gradle	Android	project	are	defined	in	the	dependencies
block	of	app/build.gradle.	Note	that	the	Kotlin	standard	library	is	included	in
the	list	of	dependencies:	implementation"org.jetbrains.kotlin:kotlin-
stdlib-jre7:$kotlin_version".

Project	organization

Next,	expand	the	app/src/main/java	directory	in	the	project	tool	window.
You	will	see	a	package	called
com.bignerdranch.android.samodelkin	and	a	file	called
NewCharacterActivity.kt	(which	may	have	opened	in	the	editor	when
your	project	was	created).
All	source	code	for	your	project	will	live	within	the
com.bignerdranch.android.samodelkin	package.	Do	not	be	fooled
by	the	directory	name	–	your	project	will	be	written	in	Kotlin,	not	Java.	The
default	naming	convention	for	the	src	directory	is	a	holdover	from	the	days	of
Java.
Finally,	expand	the	app/src/main/res	directory	in	the	project	tool	window.
This	is	the	home	of	your	app’s	resources.	UI	XML	files,	images,	localized	string
definitions,	and	color	values	are	all	examples	of	Android	resources.

Defining	a	UI
Your	first	work	in	developing	Samodelkin	will	be	in	the	res	directory.	In
Android,	a	UI	layout	resource	is	an	XML	file	that	describes	the	elements	the	user
will	see	and	interact	with.
Open	the	res/layout	folder.	You	will	see	an	XML	file	called
activity_new_character.xml,	which	was	created	for	you	using	the
name	you	specified	for	your	first	activity	in	the	project	setup	process.
Double-click	on	activity_new_character.xml.	The	file	opens	in	the	UI
graphical	layout	tool	(Figure	21.9):

Figure	21.9		The	UI	graphical	layout	tool

The	UI	for	Samodelkin	will	display	five	attributes	for	the	new	character:	name,
race,	wisdom,	strength,	and	dexterity.	The	character	creation	screen	also	requires
a	button	to	randomly	generate	the	character’s	stats,	allowing	the	user	to	“re-roll”
the	stats	to	get	a	different	character	build.
Click	on	the	Text	tab	at	the	lower	left	of	the	editor.	UIs	for	Android	applications
are	written	in	XML.	The	details	of	the	XML	are	outside	the	scope	of	this	book,
so	–	to	allow	you	to	focus	on	the	Kotlin	aspects	of	project	development	–	we
have	provided	the	XML	for	the	new	character	UI	for	you	at
bignerdranch.com/solutions/activity_new_character.xml.
Overwrite	the	XML	content	in	the	file	with	the	XML	content	in	the	link.	Save

https://www.bignerdranch.com/solutions/activity_new_character.xml

the	file	with	Command-S	(Ctrl-S)	and	click	on	the	Design	tab	at	the	lower	left.
Your	UI	will	now	look	like	Figure	21.10.

Figure	21.10		The	new	character	UI

Switch	back	to	the	Text	tab	to	look	more	closely	at	the	XML.	Press	Command-F
(Ctrl-F)	to	search	for	the	text	“android:id”	in	the	file.	You	will	find	that	there	are
five	android:ids	in	the	XML	–	one	for	each	attribute	(name,	race,	wis,	str,	and
dex),	like	this	one:
				<TextView

						android:id="@+id/nameTextView"

						android:layout_width="wrap_content"

						android:layout_height="match_parent"

						android:textSize="24sp"

						tools:text="Madrigal"	/>

For	each	view	element	that	displays	data	or	allows	the	user	to	interact	with	the

app,	you	specify	an	id	attribute.	An	id	attribute	allows	you	to	programmatically
access	the	view	element	it	is	defined	on	(often	called	a	widget)	in	your	Kotlin
code.	You	will	be	using	these	id	attributes	shortly	to	associate	your	app’s	logic
with	its	UI.

Running	the	App	on	an	Emulator
Next,	you	are	going	to	deploy	and	run	the	application	on	an	Android	emulator	to
test	it.
The	first	step	is	to	configure	an	emulator.	From	the	Android	Studio	menus,	select
Tools	→	AVD	Manager	(Figure	21.11).

Figure	21.11		Showing	the	AVD	Manager

At	the	lower	left	of	the	window,	click	+	Create	Virtual	Device...	(Figure	21.12).

Figure	21.12		Android	Virtual	Device	Manager

In	the	Select	Hardware	dialog,	select	a	phone	model	(the	default	choice	should	be

fine)	and	click	Next.	In	the	System	Image	dialog,	select	the	Oreo	API	Level	27
release	(and	download	it,	if	necessary).	Click	Next.	When	the	system	image	has
finished	downloading,	click	Next	again.	Finally,	on	the	Android	Virtual	Device	(AVD)
dialog,	click	Finish.	Close	the	Android	Virtual	Device	Manager	window.
Back	at	the	main	Android	Studio	window,	look	at	the	row	of	buttons	in	the	top
right.	To	the	left	of	the	run	button	is	a	dropdown	box.	Make	sure	that	it	says	app,
then	click	the	run	button	(Figure	21.13).	This	opens	the	Select	Deployment	Target
dialog.

Figure	21.13		Running	Samodelkin

Select	the	virtual	device	you	configured	and	click	OK.	The	emulator	will	launch
and	display	the	new	character	activity	UI,	in	all	of	its	current	(unpopulated)
glory	(Figure	21.14):

Figure	21.14		Samodelkin,	running	in	the	emulator

The	UI	shows	no	values	for	the	character’s	stats	yet.	In	the	next	section,	you	will
fix	that.

Generating	a	Character
Now	that	you	have	defined	the	UI,	it	is	time	to	generate	and	display	a	new
character	sheet.	Since	the	focus	of	this	chapter	is	Android	and	Kotlin,	and	the
details	of	the	implementation	have	been	the	focus	of	the	previous	chapters,	we
will	move	quickly	with	the	implementation	for	CharacterGenerator.	Add
a	new	file	to	the	project	by	right-clicking	on	the
com.bignerdranch.android.samodelkin	package	and	selecting	New
→	Kotlin	File/Class.
Name	the	new	file	CharacterGenerator.kt	and	fill	it	in	like	so:

Listing	21.1		The	CharacterGenerator	object
(CharacterGenerator.kt)
private	fun	<T>	List<T>.rand()	=	shuffled().first()

private	fun	Int.roll()	=	(0	until	this)

								.map	{	(1..6).toList().rand()	}

								.sum()

								.toString()

private	val	firstName	=	listOf("Eli",	"Alex",	"Sophie")

private	val	lastName	=	listOf("Lightweaver",	"Greatfoot",	"Oakenfeld")

object	CharacterGenerator	{

				data	class	CharacterData(val	name:	String,

																													val	race:	String,

																													val	dex:	String,

																													val	wis:	String,

																													val	str:	String)

				private	fun	name()	=	"${firstName.rand()}	${lastName.rand()}"

				private	fun	race()	=	listOf("dwarf",	"elf",	"human",	"halfling").rand()

				private	fun	dex()	=	4.roll()

				private	fun	wis()	=	3.roll()

				private	fun	str()	=	5.roll()

				fun	generate()	=	CharacterData(name	=	name(),

																																			race	=	race(),

																																			dex	=	dex(),

																																			wis	=	wis(),

																																			str	=	str())

}

The	CharacterGenerator	object	you	define	exposes	one	public	function,
generate,	which	returns	the	data	representing	a	randomly	generated	character
wrapped	in	a	CharacterData	class.	You	also	define	two	extensions,
List<T>.rand	and	Int.roll,	to	shorten	the	code	for	selecting	an	element
at	random	from	a	collection	and	for	randomly	rolling	a	six-sided	die	a	set
number	of	times.

The	Activity	Class
NewCharacterActivity.kt	may	already	be	open	in	an	editor	tab.	If	it	is
not,	expand	the
app/src/main/java/com.bignerdranch.android.samodelkin

directory	and	double-click	NewCharacterActivity.kt.
The	initial	class	definition	appears	in	the	editor:
				class	NewCharacterActivity	:	AppCompatActivity()	{

								override	fun	onCreate(savedInstanceState:	Bundle?)	{

												super.onCreate(savedInstanceState)

												setContentView(R.layout.activity_new_character)

								}

				}

This	code	was	generated	along	with	your	project.	Notice	that
NewCharacterActivity,	the	activity	you	defined	during	the	setup	process,
subclasses	AppCompatActivity.
AppCompatActivity	is	part	of	the	Android	framework	and	serves	as	a	base
class	for	the	NewCharacterActivity	you	will	define	in	your	app.
Also,	notice	that	the	onCreate	function	has	been	overridden.	onCreate	is	an
Android	lifecycle	function:	a	function	that	the	Android	operating	system
invokes	for	you	when,	in	this	case,	your	activity	is	initially	created.
The	onCreate	function	is	where	you	retrieve	view	elements	from	the	UI	XML
and	where	you	wire	up	associated	interactive	logic	for	a	particular	activity.	Take
a	look	at	its	definition:
				class	NewCharacterActivity	:	AppCompatActivity()	{

								override	fun	onCreate(savedInstanceState:	Bundle?)	{

												super.onCreate(savedInstanceState)

												setContentView(R.layout.activity_new_character)

								}

				}

Within	onCreate,	the	setContentView	function	is	called	with	the	name
of	the	XML	file	you	defined,	activity_new_character.
setContentView	takes	a	layout	resource	and	inflates	it	–	converting	the
XML	to	a	UI	view	that	is	displayed	on	the	phone,	tablet,	or	emulator	for	a
particular	activity.

Wiring	Up	Views
To	display	the	character	data	in	the	UI,	you	will	first	retrieve	each	view	element
that	will	display	text	using	a	function	available	on	NewCharacterActivity
(via	inheritance)	called	findViewById.	findViewById	accepts	a	view
element	id	(the	android:ids	defined	in	the	XML)	and	returns	the	view	element
if	a	match	is	found.
In	NewCharacterActivity.kt,	update	onCreate	to	look	up	each	view
element	that	will	display	data	by	its	id	and	assign	it	to	a	local	variable:

Listing	21.2		Looking	up	view	elements
(NewCharacterActivity.kt)
class	NewCharacterActivity	:	AppCompatActivity()	{

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								super.onCreate(savedInstanceState)

								setContentView(R.layout.activity_new_character)

								val	nameTextView	=	findViewById<TextView>(R.id.nameTextView)

								val	raceTextView	=	findViewById<TextView>(R.id.raceTextView)

								val	dexterityTextView	=	findViewById<TextView>(R.id.dexterityTextView)

								val	wisdomTextView	=	findViewById<TextView>(R.id.wisdomTextView)

								val	strengthTextView	=	findViewById<TextView>(R.id.strengthTextView)

								val	generateButton	=	findViewById<Button>(R.id.generateButton)

				}

}

Android	Studio	will	complain	about	all	your	references	to	TextView	and
Button.	You	need	to	import	the	classes	that	define	these	widgets	in	your	file	to
access	their	properties.	Click	on	the	first	red	TextView	and	press	Option-
Return	(Alt-Enter).	The	line	import	android.widget.TextView	appears	at	the
top	of	your	file,	and	the	red	error	underlines	disappear.	Repeat	the	process	for
Button.
Next,	assign	the	character	data	to	a	property	on	the
NewCharacterActivity	class:

Listing	21.3		Defining	the	characterData	property
(NewCharacterActivity.kt)
class	NewCharacterActivity	:	AppCompatActivity()	{

				private	var	characterData	=	CharacterGenerator.generate()

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								...

				}

}

And	to	the	views	that	you	looked	up	at	the	end	of	the	onCreate	function:

Listing	21.4		Displaying	the	character	data

(NewCharacterActivity.kt)
class	NewCharacterActivity	:	AppCompatActivity()	{

				private	var	characterData	=	CharacterGenerator.generate()

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								...

								characterData.run	{

												nameTextView.text	=	name

												raceTextView.text	=	race

												dexterityTextView.text	=	dex

												wisdomTextView.text	=	wis

												strengthTextView.text	=	str

								}

				}

}

There	are	several	details	to	notice	about	the	code	that	assigns	the	character	data
to	the	text	views.	First,	you	use	the	run	standard	function	to	shorten	the	amount
of	code	required	to	configure	the	view	elements	from	the	character	data	–
scoping	each	character	data	property	access	to	be	implicitly	called	on
characterData.
Also,	you	assign	the	text	using	property	assignment	syntax,	like	this:
				nameTextView.text	=	name

To	do	this	with	Java,	instead	of	Kotlin,	you	would	write:
				nameTextView.setText(name);

Why	is	there	a	difference	here?	Android	is	a	Java	framework,	and	the	standard
Java	convention	for	accessing	a	field	is	to	use	getters	and	setters.	Remember	that
AppCompatActivity,	the	TextView	elements,	and	all	of	the	components
of	the	Android	platform	are	in	fact	written	in	the	Java	language,	and	you
interface	with	them	when	using	Kotlin	to	write	an	Android	app.
If	you	were	to	interface	with	the	nameTextView	from	a	Java	class,	you	would
use	the	standard	Java	getter/setter	syntax	(setText,	getText)	to	set	the	text
for	the	TextView.
Because	you	interfaced	with	the	TextView	Java	class	using	Kotlin,	Kotlin
translates	Java’s	getter/setter	convention	to	the	equivalent	Kotlin	convention:
property	access	syntax.	This	required	no	additional	code	or	extra	changes.	Kotlin
bridges	Java	style	and	Kotlin	style	automatically,	since	Kotlin	was	designed	with
seamless	Java	interoperability	in	mind.
Run	Samodelkin	on	the	emulator	again.	This	time,	you	will	see	character	data
that	was	loaded	from	CharacterGenerator	and	populated	in	the	UI
(Figure	21.15):

Figure	21.15		Samodelkin,	showing	data

Kotlin	Android	Extensions	Synthetic	Properties
One	problem	–	your	onCreate	function	is	getting	somewhat	lengthy	and
disorganized.	(Also,	the	GENERATE	button	does	nothing	yet.	You	will	fix	that	in	a
moment.)
As	you	pack	more	code	into	onCreate,	it	becomes	harder	to	follow	what	is
going	on.	In	a	more	elaborate	application,	this	lack	of	order	could	be
problematic.	Even	in	a	relatively	simple	app	like	Samodelkin,	it	is	good	practice
to	keep	things	tidy.
You	are	going	to	move	the	assignment	of	the	character	data	to	the	views	to	a
separate	function,	instead	of	cramming	it	all	into	the	onCreate	function.	Using
functions	to	organize	your	activity	can	preserve	your	sanity	as	the	interface	and
functionality	of	the	activity	grow	more	complex.
To	do	this,	you	need	a	way	to	use	the	views	that	you	looked	up	in	onCreate.
One	solution	is	to	make	the	view	elements	you	retrieved	with	findViewById
properties	of	NewCharacterActivity,	allowing	them	to	be	accessed	in
other	functions	beyond	onCreate.
However,	an	even	more	convenient	solution,	available	because	your	project
includes	the	kotlin-android-extensions	plug-in,	is	to	use	synthetic	properties,
which	expose	a	view	via	its	id	attribute.	These	properties	correspond	to	all	the
widget	properties	defined	in	the	named	layout	file,
activity_new_character.xml.
Update	NewCharacterActivity	with	a	displayCharacterData
function	to	see	what	this	means.	(You	can	cut	and	paste
characterData.run	to	save	typing.)

Listing	21.5		Refactoring	to	displayCharacterData
(NewCharacterActivity.kt)
import	kotlinx.android.synthetic.main.activity_new_character.*

class	NewCharacterActivity	:	AppCompatActivity()	{

				private	var	characterData	=	CharacterGenerator.generate()

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								super.onCreate(savedInstanceState)

								setContentView(R.layout.activity_new_character)

								val	nameTextView	=	findViewById<TextView>(R.id.nameTextView)

								val	raceTextView	=	findViewById<TextView>(R.id.raceTextView)

								val	dexterityTextView	=	findViewById<TextView>(R.id.dexterityTextView)

								val	wisdomTextView	=	findViewById<TextView>(R.id.wisdomTextView)

								val	strengthTextView	=	findViewById<TextView>(R.id.strengthTextView)

								val	generateButton	=	findViewById<Button>(R.id.generateButton)

								characterData.run	{

												nameTextView.text	=	name

												raceTextView.text	=	race

												dexterityTextView.text	=	dex

												wisdomTextView.text	=	wis

												strengthTextView.text	=	str

								}

								displayCharacterData()

				}

				private	fun	displayCharacterData()	{

								characterData.run	{

												nameTextView.text	=	name

												raceTextView.text	=	race

												dexterityTextView.text	=	dex

												wisdomTextView.text	=	wis

												strengthTextView.text	=	str

								}

				}

}

Kotlin	Android	extensions	are	a	suite	of	extras	included	by	default	with	your
new	project,	via	Gradle.	The	line	import
kotlinx.android.synthetic.main.activity_new_character.*,	enabled	by
the	kotlin-android-extensions	plug-in,	adds	a	series	of	extension	properties
to	your	Activity.	As	you	can	see,	synthetic	properties	greatly	simplify	your
view	lookup	code	–	no	findViewById	needed.	Instead	of	each	view	being	a
local	variable	in	the	onCreate	function,	you	now	have	properties	that
correspond	to	each	view’s	id	defined	in	the	layout	file.
Now	the	view	assignment	behavior	also	has	its	own	function,
displayCharacterData.

Setting	a	Click	Listener
You	have	displayed	a	character’s	stats,	but	the	user	currently	has	no	way	to
generate	another	character.	The	GENERATE	button	needs	to	be	wired	up	with	the
details	of	what	to	do	when	it	is	pressed.	It	should	update	the	character	data
property	and	display	the	results.
Update	onCreate	to	implement	this	behavior	by	defining	a	click	listener.
(Even	though	you	“press”	things	in	Android,	the	listener	is	called	“click.”)

Listing	21.6		Setting	a	click	listener	(NewCharacterActivity.kt)
class	NewCharacterActivity	:	AppCompatActivity()	{

				private	var	characterData	=	CharacterGenerator.generate()

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								super.onCreate(savedInstanceState)

								setContentView(R.layout.activity_new_character)

								generateButton.setOnClickListener	{

												characterData	=	CharacterGenerator.generate()

												displayCharacterData()

								}

								displayCharacterData()

				}

				...

}

Here,	you	define	a	click	listener	implementation	that	determines	what	happens
when	the	button	is	pressed.	Run	Samodelkin	again	and	press	the	GENERATE
button	several	times.	You	will	see	a	new	character	sheet	loaded	each	time	the
button	is	pressed.
The	setOnClickListener	method	expects	an	argument	that	implements	the
OnClickListener	interface.	(You	do	not	have	to	take	our	word	for	it;	you	can
look	it	up	yourself	at	developer.android.com/reference/
android/view/View.html.)	The	OnClickListener	interface	has	only	one
abstract	method	defined	on	it	–	onClick.	Interface	parameters	like	this	are
called	SAM	types	–	single	abstract	method	types.
In	older	versions	of	Java,	the	implementation	for	the	click	listener	interface
would	be	provided	using	an	anonymous	inner	class:
				generateButton.setOnClickListener(new	View.OnClickListener()	{

								@Override

								public	void	onClick(View	view)	{

											//	Do	stuff

								}

				});

Kotlin	includes	a	feature	called	SAM	conversions,	allowing	you	to	use	a
function	literal	as	a	valid	argument	in	place	of	an	anonymous	inner	class.	Any

https://developer.android.com/reference/android/view/View.html

time	you	interface	with	Java	code	that	requires	an	argument	implementing	an
SAM	interface,	traditionally	accomplished	with	an	anonymous	inner	class,
Kotlin	supports	using	a	function	literal	instead.
Note	that	if	you	were	to	look	at	the	bytecode	for	the	click	listener	code	that	you
have	written,	you	would	see	that	a	full	anonymous	inner	class	was	used	to
provide	the	implementation,	just	like	in	the	traditional	Java	code	above.

Saved	Instance	State
Your	character	attribute	app	is	really	shaping	up.	You	can	press	GENERATE	and
create	character	stats	to	your	heart’s	content.	But	there	is	still	a	problem.	To	see
it,	run	the	emulator,	then	simulate	rotating	the	phone	by	clicking	on	one	of	the
rotation	icons	in	the	emulator	options	window	(Figure	21.16):

Figure	21.16		Rotating	the	emulator

The	UI	shows	different	character	data	(Figure	21.17):

Figure	21.17		Different	character	data	after	rotating

The	data	shown	in	the	UI	changed	because	of	how	Android’s	activity	lifecycle
works.	When	a	device	is	rotated	(Android	calls	this	a	device	configuration
change),	Android	destroys	and	re-creates	the	activity	–	and,	in	the	process,	re-
creates	the	UI	by	calling	the	onCreate	function	on	a	new	instance	of	the
NewCharacterActivity	class.
One	way	to	fix	this	issue	is	to	carry	the	displayed	character	data	forward	to	the
next	instance	of	the	activity	by	storing	it	in	the	activity’s	saved	instance
state.	The	saved	instance	state	can	be	used	to	store	data	that	you	would	like	to
reuse	when	the	activity	is	re-created	after	a	device	configuration	change.
First,	update	the	NewCharacterActivity	class	to	serialize	the	character
data:

Listing	21.7		Serializing	the	characterData
(NewCharacterActivity.kt)
private	const	val	CHARACTER_DATA_KEY	=	"CHARACTER_DATA_KEY"

class	NewCharacterActivity	:	AppCompatActivity()	{

				private	var	characterData	=	CharacterGenerator.generate()

				override	fun	onSaveInstanceState(outState:	Bundle)	{

								super.onSaveInstanceState(outState)

								outState.putSerializable(CHARACTER_DATA_KEY,	characterData)

				}

				...

}

Serialization	is	a	process	by	which	objects	are	stored.	When	you	serialize	an
object,	you	break	it	down	into	basic	data	types,	like	String	or	Int.	Only

serializable	objects	can	be	stored	in	a	Bundle.

You	will	have	an	error	on	characterData	because	you	tried	to	pass	non-
serializable	data	to	the	putSerializable	function.	To	fix	it,	you	need	to	add
the	Serializable	interface	to	the	CharacterData	class	so	that
CharacterData	is	serializable:

Listing	21.8		Making	the	CharacterData	class	Serializable
(CharacterGenerator.kt)
object	CharacterGenerator	{

				data	class	CharacterData(val	name:	String,

																													val	race:	String,

																													val	dex:	String,

																													val	wis:	String,

																													val	str:	String)	:	Serializable

				...

}

The	onSaveInstanceState	function	is	called	once	before	the	activity	is
destroyed.	It	exposes	the	savedInstanceState	bundle,	which	allows	an
activity’s	instance	state	to	be	persisted.
You	add	the	current	characterData	to	the	saved	instance	state	bundle	using
the	putSerializable	method,	which	expects	a	serializable	class	and	a	key.
The	key	is	a	constant	and	will	be	used	later	to	retrieve	the	serializable	data,	and
the	value	is	the	CharacterData	class,	which	you	updated	to	implement
Serializable.

Reading	from	the	saved	instance	state

You	have	taken	care	of	the	problem	of	serializing	CharacterData	to	the
saved	instance	state,	and	now	you	need	to	deserialize	it	and	set	the	UI	back	up
using	the	old	data.	You	do	so	in	the	onCreate	function:

Listing	21.9		Fetching	the	serialized	character	data
(NewCharacterActivity.kt)
private	const	val	CHARACTER_DATA_KEY	=	"CHARACTER_DATA_KEY"

class	NewCharacterActivity	:	AppCompatActivity()	{

				...

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								super.onCreate(savedInstanceState)

								setContentView(R.layout.activity_new_character)

								characterData	=	savedInstanceState?.let	{

												it.getSerializable(CHARACTER_DATA_KEY)	as	CharacterGenerator.CharacterData

								}	?:	CharacterGenerator.generate()

								generateButton.setOnClickListener	{

												characterData	=	CharacterGenerator.generate()

												displayCharacterData()

								}

								displayCharacterData()

				}

				...

}

Here	you	read	the	serialized	character	data	from	the	saved	instance	state	bundle,
casting	it	back	to	CharacterData	if	the	saved	instance	state	is	non-null.	On
the	other	hand,	if	the	saved	instance	state	is	null,	you	use	the	null	coalescing
operator	(?:)	to	generate	new	character	data.
Either	way,	you	assign	the	result	of	this	expression	(either	the	deserialized
character	data	or	new	character	data)	to	the	characterData	property.
Try	running	Samodelkin	again	and	rotating	the	emulator.	This	time,	you	will	see
that	the	data	is	retrieved	from	the	bundle	and	displayed	again	after	rotating,
because	you	set	character	data	from	the	saved	instance	state.

Refactoring	to	an	Extension
The	saved	instance	state	serialization	and	deserialization	work	correctly,	but	the
code	can	be	improved.	Notice	that,	currently,	you	are	required	to	manage	the	key
and	type	of	data	(you	must	manually	cast	it	to	CharacterData)	when	you	get
and	put	the	CharacterData	on	the	savedInstanceState	bundle:
				private	const	val	CHARACTER_DATA_KEY	=	"CHARACTER_DATA_KEY"

				class	NewCharacterActivity	:	AppCompatActivity()	{

								private	var	characterData	=	CharacterGenerator.generate()

								override	fun	onSaveInstanceState(outState:	Bundle)	{

												super.onSaveInstanceState(outState)

												outState.putSerializable(CHARACTER_DATA_KEY,	characterData)

								}

								override	fun	onCreate(savedInstanceState:	Bundle?)	{

												super.onCreate(savedInstanceState)

												setContentView(R.layout.activity_new_character)

												characterData	=	savedInstanceState?.let	{

																it.getSerializable(CHARACTER_DATA_KEY)

																								as	CharacterGenerator.CharacterData

												}	?:	CharacterGenerator.generate()

												...

								}

								...

				}

To	improve	on	this,	add	an	extension	property	definition	to
NewCharacterActivity.kt:

Listing	21.10		Defining	a	characterData	extension	property
(NewCharacterActivity.kt)
private	const	val	CHARACTER_DATA_KEY	=	"CHARACTER_DATA_KEY"

private	var	Bundle.characterData

				get()	=	getSerializable(CHARACTER_DATA_KEY)	as	CharacterGenerator.CharacterData

				set(value)	=	putSerializable(CHARACTER_DATA_KEY,	value)

class	NewCharacterActivity	:	AppCompatActivity()	{

				...

}

Now	you	can	access	the	characterData	from	the	saved	instance	state	bundle
as	a	property.	You	no	longer	need	the	key	to	retrieve	the	data,	and	you	no	longer
require	casting	the	Serializable	to	CharacterData	when	you	retrieve	it.
The	extension	property	provides	a	clean	abstraction	over	the	bundle’s	API,
removing	the	need	for	tracking	the	details	of	how	the	character	data	was	stored
and	which	key	was	used	each	time	you	wish	to	read	or	write	the
characterData.
Now,	update	the	onSaveInstanceState	and	onCreate	functions	to	use
the	new	extension	property:

Listing	21.11		Using	the	new	extension	property
(NewCharacterActivity.kt)
private	const	val	CHARACTER_DATA_KEY	=	"CHARACTER_DATA_KEY"

class	NewCharacterActivity	:	AppCompatActivity()	{

				private	var	characterData	=	CharacterGenerator.generate()

				override	fun	onSaveInstanceState(outState:	Bundle)	{

								super.onSaveInstanceState(outState)

								outState.putSerializable(CHARACTER_DATA,	characterData)

								outState.characterData	=	characterData

				}

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								super.onCreate(savedInstanceState)

								setContentView(R.layout.activity_new_character)

								characterData	=	savedInstanceState?.let	{

												it.getSerializable(CHARACTER_DATA_KEY)	as	CharacterGenerator.CharacterData

								}	?:	CharacterGenerator.generate()

								characterData	=	savedInstanceState?.characterData	?:

												CharacterGenerator.generate()

								generateButton.setOnClickListener	{

												characterData	=	CharacterGenerator.generatw()

												displayCharacterData()

								}

								displayCharacterData()

				}

				...

}

Run	Samodelkin	again,	putting	the	application	through	its	paces	by	rotating	the
emulator	and	pressing	the	GENERATE	button	several	times.	You	will	see	that	the
character	data	is	persisted	correctly	as	before.
Congratulations!	You	have	created	your	first	Android	application	using	Kotlin.
You	have	learned	about	some	of	the	ways	Kotlin	supports	working	with	the	Java
code	that	the	Android	framework	is	written	in,	and	you	have	also	seen	an
example	of	how	kotlin-android-extensions	makes	your	coding	life	easier.
Finally,	you	have	seen	how	features	in	Kotlin,	like	extensions	and	standard
functions,	can	make	your	Android	code	more	clean.
In	the	next	chapter,	you	will	learn	about	Kotlin	coroutines,	an	experimental
feature	that	provides	a	lightweight	and	elegant	alternative	to	other	models	for
specifying	work	in	the	background.

For	the	More	Curious:	Android	KTX	and	Anko
Libraries
There	are	many	open-source	libraries	designed	to	enhance	the	developer
experience	when	working	with	Kotlin	and	Android.	We	will	highlight	two	here
to	give	an	idea	of	what	is	possible.
The	Android	KTX	project	(github.com/android/android-ktx)
provides	a	number	of	useful	Kotlin	extensions	for	Android	app	development,
often	also	granting	a	more	Kotlinesque	interface	to	the	Android	Java	APIs	than
would	otherwise	be	possible.	For	example,	consider	the	following	code,	which
uses	Android’s	shared	preferences	to	persist	a	small	amount	of	data	for	later	use:
				sharedPrefs.edit()

											.putBoolean(true,	USER_SIGNED_IN)

											.putString("Josh",	USER_CALLSIGN)

											.apply()

With	Android	KTX,	you	can	shorten	the	expression	and	write	it	in	a	more
idiomatic	Kotlin	style:
				sharedPrefs.edit	{

								putBoolean(true,	USER_SIGNED_IN)

								putString("Josh",	USER_CALLSIGN)

				}

Android	KTX	enables	many	nice,	if	small,	improvements	to	your	Kotlin
Android	code,	and	it	allows	you	to	work	with	the	Android	framework	in	a	style
that	is	a	closer	match	to	Kotlin,	rather	than	Java.
Another	popular	Kotlin	project	for	use	with	Android,	Anko	(github.com/
Kotlin/anko),	provides	a	variety	of	enhancements	for	Kotlin	Android
development,	including	a	DSL	for	defining	Android	UIs	and	a	number	of	helpers
for	working	with	Android	intents	and	dialogs,	SQLite,	and	many	other	aspects	of
an	Android	project.	For	example,	the	following	Anko	layout	code
programmatically	defines	a	vertically	oriented	linear	layout	containing	a	button
that	displays	a	toast	(a	pop-up	message)	when	clicked:
				verticalLayout	{

								val	username	=	editText()

								button("Greetings")	{

												onClick	{	toast("Hello,	${username.text}!")	}

								}

				}

Compare	this	with	the	large	amount	of	code	to	do	the	same	programmatically	in
classic	Java:
				LayoutParams	params	=	new	LinearLayout.LayoutParams(

																							LayoutParams.FILL_PARENT,

																							LayoutParams.WRAP_CONTENT);

https://github.com/android/android-ktx
https://github.com/Kotlin/anko

				LinearLayout	layout	=	new	LinearLayout(this);

				layout.setOrientation(LinearLayout.VERTICAL);

				EditText	name	=	new	EditText(this);

				name.setLayoutParams(params);

				layout.addView(name);

				Button	greetings	=	new	Button(this);

				greetings.setText("Greetings");

				greetings.setLayoutParams(params);

				layout.addView(greetings);

				LinearLayout.LayoutParams	layoutParam	=	new	LinearLayout.LayoutParams(

										LayoutParams.FILL_PARENT,

										LayoutParams.WRAP_CONTENT);

				this.addContentView(layout,	layoutParam);

				greetings.setOnClickListener(new	OnClickListener()	{

								public	void	onClick(View	v)	{

												Toast.makeText(this,	"Hello,	"	+	name.getText(),

																						Toast.LENGTH_SHORT).show();

								}

				}

Kotlin	is	still	a	relatively	young	language,	and	useful	libraries	are	being
developed	every	day.	Keep	your	eye	on	kotlinlang.org	for	up-to-date
news	on	developments	in	the	language.

https://kotlinlang.org/

22	
Introduction	to	Coroutines

Android	apps	perform	all	kinds	of	functions.	You	may	want	your	app	to
download	data,	query	a	database,	or	make	a	request	to	a	web	API.	These	are	all
useful	operations	–	but	they	can	all	require	a	considerable	amount	of	time	to
complete.	You	do	not	want	your	user	to	be	stuck	waiting	for	them	to	complete
before	they	can	continue	using	your	app.
Coroutines	allow	you	to	specify	work	that	happens	in	the	background	of	your
application,	or	asynchronously.	Instead	of	requiring	the	user	to	wait	while	that
work	completes,	coroutines	allow	the	user	to	continue	interacting	with	your	app
while	the	work	completes	in	the	background.
Coroutines	are	considerably	more	resource	efficient	and	easier	to	work	with	than
the	solutions	offered	by	some	other	programming	languages,	such	as	the	threads
used	by	Java	and	other	languages	(which	you	will	learn	more	about	in	this
chapter).	Complex	code	can	be	required	to	handle	the	delivery	of	results	between
threads,	and	they	are	faced	with	performance	issues	because	it	is	all	too	easy	to
“block”	a	thread.
In	this	chapter,	you	will	add	coroutines	to	your	Samodelkin	Android	app	to	fetch
new	character	data	from	a	web	API.

Parsing	Character	Data
The	new	character	data	web	API	is	located	at	chargen-
api.herokuapp.com.	(By	the	way,	the	new	character	web	API	is	written	in
Kotlin,	using	the	Ktor	web	framework	(github.com/ktorio/ktor).	If	you
are	interested,	you	can	check	out	the	source	code	for	the	web	API	at
github.com/bignerdranch/character-data-api.)
When	the	web	API	data	is	requested,	a	comma-separated	list	of	new	player
attributes	is	returned	with	values	for	the	race,	name,	dex,	wis,	and	str	attributes.
Try	visiting	chargen-api.herokuapp.com	to	see	a	set	of	attribute	values
like:
				halfling,Lars	Kizzy,14,13,8

Reload	your	web	browser	several	times	to	see	different	responses	from	the
service.
Your	first	task	is	to	convert	the	comma-separated	string	of	player	character	data
returned	from	the	web	API	to	a	CharacterData	instance	that	can	be
displayed	in	the	UI.
Let’s	get	started.	Open	CharacterGenerator.kt	in	Android	Studio	and
define	a	fromApiData	conversion	function:

Listing	22.1		Adding	the	fromApiData	function
(CharacterGenerator.kt)
...

object	CharacterGenerator	{

				data	class	CharacterData(val	name:	String,

																													val	race:	String,

																													val	dex:	String,

																													val	wis:	String,

																													val	str:	String)	:	Serializable

				...

				fun	fromApiData(apiData:	String):	CharacterData	{

								val	(race,	name,	dex,	wis,	str)	=

																apiData.split(",")

								return	CharacterData(name,	race,	dex,	wis,	str)

				}

}

...

The	fromApiData	function	takes	a	comma-separated	string	from	the	character
data	service,	splits	it	at	the	commas,	and	destructures	the	results	into	a	new
CharacterData	instance.
Test	fromApiData	by	calling	it	when	the	GENERATE	button	is	pressed.	For
now,	pass	some	fake	data:

https://chargen-api.herokuapp.com/
https://github.com/ktorio/ktor
https://github.com/bignerdranch/character-data-api
https://chargen-api.herokuapp.com/

Listing	22.2		Testing	the	fromApiData	function
(NewCharacterActivity.kt)
...

class	NewCharacterActivity	:	AppCompatActivity()	{

				...

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								super.onCreate(savedInstanceState)

								setContentView(R.layout.activity_new_character)

								characterData	=	savedInstanceState?.let	{

												it.getSerializable(CHARACTER_DATA_KEY)	as	CharacterGenerator.CharacterData

								}	?:	CharacterGenerator.generate()

								generateButton.setOnClickListener	{

												characterData	=	CharacterGenerator.generate()

																																fromApiData("halfling,Lars	Kizzy,14,13,8")

												displayCharacterData()

								}

								...

				}

				...

}

Run	Samodelkin	on	the	emulator	to	confirm	that	the	application	builds.	Press	the
GENERATE	button.	You	will	see	the	test	data	that	you	passed	to	the	conversion
function	displayed	in	the	UI	(Figure	22.1):

Figure	22.1		Displaying	test	data

Fetching	Live	Data
Now	that	you	have	tested	the	conversion	function,	it	is	time	to	fetch	some	live
data	from	the	character	data	web	API.
Before	starting	with	the	implementation,	you	will	need	to	add	several
permissions	to	your	Android	manifest	to	enable	network	requests.	Find	and	open
the	manifest	at	src/main/AndroidManifest.xml.	Add	the	permissions
as	shown:

Listing	22.3		Adding	required	permissions	(AndroidManifest.xml)
<?xml	version="1.0"	encoding="utf-8"?>

<manifest	xmlns:android="http://schemas.android.com/apk/res/android"

			package="com.bignerdranch.android.samodelkin">

			<uses-permission	android:name="android.permission.INTERNET"	/>

			<uses-permission	android:name="android.permission.ACCESS_NETWORK_STATE"	/>

			<application

							android:allowBackup="true"

							android:icon="@mipmap/ic_launcher"

							android:label="@string/app_name"

							...

				</application>

</manifest>

Now	to	request	the	data	from	the	web	API.	A	simple	way	to	fetch	the	web	API
data	is	to	use	a	java.net.URL	instance.	Kotlin	includes	an	extension	function	to
URL,	readText,	that	provides	simple	support	for	connecting	to	a	basic	web
API	endpoint,	buffering	the	data,	and	converting	that	data	into	a	string	–
everything	you	need	here.
Define	a	new	constant	in	CharacterGenerator	for	the	web	API	endpoint	as
well	as	a	new	function	called	fetchCharacterData	that	reads	data	from	the
web	API	using	URL’s	readText	function.	Make	sure	to	import	the	URL	class
at	the	top	of	the	file,	as	shown:

Listing	22.4		Adding	the	fetchCharacterData	function
(CharacterGenerator.kt)
import	java.io.Serializable

import	java.net.URL

private	const	val	CHARACTER_DATA_API	=	"https://chargen-api.herokuapp.com/"

private	fun	<T>	List<T>.rand()	=	shuffled().first()

object	CharacterGenerator	{

				...

}

fun	fetchCharacterData():	CharacterGenerator.CharacterData	{

				val	apiData	=	URL(CHARACTER_DATA_API).readText()

				return	CharacterGenerator.fromApiData(apiData)

}

Now,	put	the	new	function	to	use.	Update	the	GENERATE	button’s	click	listener	to
call	fetchCharacterData:

Listing	22.5		Calling	fetchCharacterData
(CharacterGenerator.kt)
...

class	NewCharacterActivity	:	AppCompatActivity()	{

				...

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								...

								generateButton.setOnClickListener	{

												characterData	=	CharacterGenerator.

																																fromApiData("halfling,Lars	Kizzy,14,13,8")

																												fetchCharacterData()

												displayCharacterData()

								}

								displayCharacterData()

				}

				...

}

Run	Samodelkin	again	and	click	the	GENERATE	button.	Instead	of	new	character
attributes,	you	will	see	the	dialog	in	Figure	22.2.

Figure	22.2		Samodelkin	has	stopped

Samodelkin	crashed.	Why?	To	find	out,	take	a	look	in	the	Logcat	output,	where
the	Android	application	logs	are	displayed.	Click	on	the	Logcat	tab	at	the	bottom
of	Android	Studio	and	scroll	up	until	you	reach	the	red	text	that	starts	with	FATAL
EXCEPTION:	main	(Figure	22.3):

Figure	22.3		Logcat	output

Two	lines	below	FATAL	EXCEPTION,	the	log	shows	the	cause	of	the	error:	an
android.os.NetworkOnMainThreadException.	The	exception
occurred	because	you	attempted	to	make	a	network	request	on	the	main	thread
of	the	application,	an	operation	that	is	not	allowed.

The	Android	Main	Thread
A	thread	is	a	pipeline	that	handles	a	sequence	of	work	to	be	performed.	The
main	thread	of	an	Android	application	is	reserved	for	processing	the	work
required	for	keeping	the	UI	responsive:	handling	button	presses,	rendering
updates	when	the	user	scrolls,	and	updating	the	text	box	as	characters	are
generated,	for	example.	For	this	reason,	it	is	sometimes	called	the	“UI	thread.”
When	you	requested	data	from	the	web	API,	the	UI	would	have	been
unresponsive	while	that	request	completed.	This	is	called	“blocking	a	thread”,
because	the	thread	cannot	move	forward	to	the	next	work	to	process	until	the
current	–	possibly	long-running	–	work	completes.	Android	explicitly	forbids
networking	on	the	main	thread	because	it	blocks	the	main	thread	for	an	unknown
amount	of	time,	leading	to	an	unresponsive	UI.

Enabling	Coroutines
To	solve	the	crash,	you	need	a	way	to	move	the	network	request	to	a	background
thread	instead	of	the	main	thread.	Kotlin	1.1	and	all	versions	since	include	a
coroutines	API	that	gives	you	a	way	to	do	so	concisely.
As	of	this	writing,	coroutines	are	considered	experimental	(though	they	are
expected	to	become	a	permanent	feature	of	Kotlin),	so	to	use	them	you	must	opt
in	by	enabling	them.	You	also	need	a	coroutine	library	extension	to	use
coroutines	with	Android.	Click	the	Logcat	tab	again	to	hide	it,	and	open	your
app/build.gradle	file.	Enable	coroutines	and	add	the	new	dependency
there:

Listing	22.6		Enabling	coroutines	(app/build.gradle)
...

kotlin	{

				experimental	{

								coroutines	'enable'

				}

}

dependencies	{

				implementation	fileTree(dir:	'libs',	include:	['*.jar'])

				implementation	"org.jetbrains.kotlin:kotlin-stdlib-jre7:$kotlin_version"

				implementation	"org.jetbrains.kotlinx:kotlinx-coroutines-android:0.22.5"

				...

}

Once	you	add	the	entry	to	your	app/build.gradle	file,	click	the	Sync	Now
button	that	appears	at	the	top	right	of	the	screen	to	sync	the	Gradle	files.

Specifying	a	Coroutine	with	async
One	way	to	create	a	coroutine	is	to	use	the	async	function	provided	with	the
coroutine	library.	The	async	function	requires	one	argument:	a	lambda	that
specifies	the	work	you	want	to	happen	in	the	background.
In	fetchCharacterData,	move	the	blocking	readText	function	call	into
a	lambda	and	pass	it	to	the	async	function.	Also,	update	the	return	type	to	be	a
Deferred<CharacterGenerator.CharacterData>,	the	result	of	the
async	function:

Listing	22.7		Making	fetchCharacterData	async
(CharacterGenerator.kt)
				...

				fun	fetchCharacterData():	Deferred<CharacterGenerator.CharacterData>	{

								return	async	{

												val	apiData	=	URL(CHARACTER_DATA_API).readText()

												return	CharacterGenerator.fromAPIData(apiData)

								}

				}

Now,	instead	of	returning	CharacterData,	the	fetchCharacterData
function	returns	a
Deferred<CharacterGenerator.CharacterData>.	A	Deferred	is
like	a	promise	for	future	results:	No	data	is	returned	until	you	request	it.
Return	to	NewCharacterActivity.kt	and	add	the	following,	which
converts	the	deferred	web	API	results	into	CharacterData	and	displays	the
results.	(We	will	walk	through	this	code	after	you	enter	it.)

Listing	22.8		Awaiting	the	API	results	(NewCharacterActivity.kt)
...

class	NewCharacterActivity	:	AppCompatActivity()	{

				...

				override	fun	onCreate(savedInstanceState:	Bundle?)	{

								...

								generateButton.setOnClickListener	{

												launch(UI)	{

																characterData	=	fetchCharacterData().await()

																displayCharacterData()

												}

								}

								displayCharacterData()

				}

				...

}

Android	Studio	will	prompt	you	to	import	launch	and	UI.	Make	sure	to	import
the	kotlinx.coroutines.experimental	versions.

Run	your	new	and	improved	app	and	click	the	GENERATE	button.	This	time,	the
data	you	see	has	been	fetched	from	the	web	service	and	displayed	in	the	UI.
Let’s	take	a	closer	look	at	how	this	happens.
First,	you	created	a	new	coroutine	by	calling	the	launch	function.	launch
starts	the	work	that	you	specify	in	a	new	coroutine	immediately.
You	included	UI	as	the	first	argument	to	launch.	UI	specifies	the	coroutine
context	–	where	the	work	specified	within	the	lambda	will	be	performed	–	as
Android’s	UI	thread.
Why	the	UI	thread?	The	call	to	displayCharacterData	must	be	performed
on	the	UI	thread	because	it	contains	code	that	updates	the	UI.	That	call	will
happen	only	after	the	character	data	is	downloaded,	so	it	does	not	block	the	main
thread.
As	we	said	above,	networking	is	forbidden	on	the	main	thread.	The	default
argument	for	the	coroutine	context	is	CommonPool,	a	pool	of	background
threads	available	for	executing	coroutines.	This	is	the	argument	that	was	used,
by	default,	for	the	async	function	in	fetchCharacterData,	so	the	request
to	the	web	API	is	executed	using	the	thread	pool	when	you	call	await,	instead
of	the	Android	main	thread.

launch	vs	async/await
The	async	and	launch	functions	that	you	used	to	perform	the	request	and
update	the	UI	are	called	coroutine	builder	functions,	functions	that	set	up	a
coroutine	to	perform	work	in	a	certain	way.	launch	builds	a	coroutine	that
performs	the	work	you	specify	right	away	–	in	this	case,	calling
fetchCharacterData	and	updating	the	UI.
The	async	coroutine	builder	works	differently	than	launch	in	that	it	builds	a
coroutine	that	returns	a	Deferred,	a	type	that	represents	work	that	has	not
been	completed	yet.	Instead	of	starting	the	work	immediately,	a	Deferred	is	a
promise	of	work	to	be	completed	some	time	in	the	future.
The	Deferred	type	provides	a	function	called	await	that	you	call	when	you
would	like	the	work	to	be	performed.	await	also	suspends	execution	of	the
next	work	to	do	(the	UI	update)	until	the	deferred	work	has	completed.	This
means	that	you	call	displayCharacterData	after	the	response	from	the
web	service	has	been	returned.	If	you	are	familiar	with	the	concept	of	a	Java
Future,	a	Deferred	works	in	a	very	similar	manner.
Even	though	the	web	request	was	performed	in	the	background,	you	were	able	to
structure	the	code	imperatively	because	of	Deferred’s	await	function:	You
await	the	result	and	then	call	the	UI	update	function.	Compared	to	a	traditional
approach	(like	a	callbacks	interface),	you	were	able	to	structure	the	code	as	if	the
request	to	the	web	service	was	synchronous.	This	is	because	of	a	coroutine’s
ability	to	suspend	execution	and	resume	at	a	later	time	–	all	without	blocking	the
thread.

Suspending	Functions

Notice	the	 	icon	in	Android	Studio	next	to	where	you	called	the	await
function.	The	IDE	indicates	that	you	made	a	suspend	function	call	on	that
line.	What	does	this	mean?
Coroutines	are	said	to	“suspend,”	whereas	a	traditional	thread	is	said	to	“block.”
This	difference	in	terminology	hints	at	why	coroutines	offer	better	performance
than	threads:	When	a	thread	is	blocked,	it	can	no	longer	be	used	to	do	any	work
until	it	is	unblocked.	A	coroutine	is	executed	by	a	thread	–	for	example,	the
Android	UI	thread,	or	a	thread	in	the	common	pool	–	but	does	not	block	the
thread	that	executes	it.	Instead,	a	thread	executing	a	function	that	suspends	can
be	used	to	execute	other	coroutines.	This	is	why	a	coroutine	offers	significantly
better	performance	than	a	standard	thread.
Under	the	hood,	suspend	functions	are	marked	with	the	suspend	keyword.	Here
is	await’s	function	signature:
				public	suspend	fun	await():	T

In	this	chapter,	you	completed	the	Samodelkin	app	(Do	svidaniya,
Samodelkin!)	and	saw	that	Android’s	main	thread	is	reserved	for	processing	UI
events.	You	also	learned	the	basics	of	using	coroutines	to	perform	work	in	the
background	without	blocking	Android’s	main	thread.

Challenge:	Live	Data
Currently,	the	data	that	is	initially	shown	in	the	app	is	static	data	from	the
CharacterGenerator	object,	which	is	replaced	with	live	data	when	the
GENERATE	button	is	pressed.	For	this	challenge,	you	will	fix	that.	Make	the	initial
data	that	is	shown	in	the	application	live	data	from	the	web	service	instead.

Challenge:	Minimum	Strength
A	character	with	a	strength	value	lower	than	10	will	not	last	more	than	a	few
rounds	of	play	in	NyetHack.	For	this	challenge,	discard	any	response	with	a
strength	value	less	than	10.	Perform	new	requests	until	you	receive	a	response
with	a	value	of	10	or	greater.

23	
Afterword

That	is	it.	You	have	learned	the	fundamentals	of	the	Kotlin	programming
language.	Pat	yourself	on	the	back!
This	is	where	the	real	work	begins.

Where	to	Go	from	Here
Kotlin	is	a	language	that	can	be	used	in	many	contexts,	be	it	as	a	replacement	for
your	backend	server	code	or	as	the	language	driving	your	hot	new	Android	app.
At	this	point,	you	likely	have	an	idea	of	where	you	will	use	your	new
knowledge,	so	use	it.	That	is	the	key	to	making	the	most	of	this	book	and
writing	good	Kotlin	code.
If	you	are	looking	for	Kotlin	documentation	to	dig	into,	we	recommend
kotlinlang.org.	For	reference	material,	we	hold	Kotlin	in	Action
(manning.com/books/kotlin-in-action)	in	high	regard.
You	do	not	have	to	write	code	alone:	Kotlin’s	community	is	vibrant	and	excited
about	the	future	of	the	language.	Kotlin	is	open	source,	so	if	you	would	like	to
see	it	developed	in	real	time	(or	even	contribute),	you	can	find	it	on	GitHub:
github.com/jetbrains/kotlin.	We	encourage	you	to	reach	out	to	local
Kotlin	user	groups	or,	if	your	community	does	not	have	one,	start	one.

http://kotlinlang.org/
https://www.manning.com/books/kotlin-in-action
https://github.com/jetbrains/kotlin

Shameless	Plugs
If	you	would	like	to	follow	up	with	the	authors,	you	can	find	us	on	Twitter.	Josh
is	@mutexkid,	and	David	is	@drgreenhalgh.
If	you	would	like	to	know	more	about	Big	Nerd	Ranch,	take	a	look	at
bignerdranch.com.	We	offer	a	bevy	of	other	great	guides,	which	you	can
find	at	bignerdranch.com/books.	Might	we	suggest	Android
Programming:	The	Big	Nerd	Ranch	Guide?	Android	development	is	a	great
way	to	put	your	newfound	Kotlin	knowledge	to	use.
We	also	offer	intensive	training	courses	and	develop	apps	for	clients.	If	you	can
dream	up	a	way	to	use	some	great	code,	Big	Nerd	Ranch	can	help.

https://www.bignerdranch.com/
https://www.bignerdranch.com/books/

Thank	You
Lastly,	we	just	have	to	say	thank	you.	Without	you	–	yes,	you	–	this	book	would
not	be	possible.
We	hope	that	you	have	enjoyed	reading	it	as	much	as	we	have	enjoyed	writing	it.
Now	go	out	there	and	write	the	next	great	application	in	Kotlin.

Of	the	top	25	apps	in	the	U.S.,	19	are	built	by	companies	that
brought	in	Big	Nerd	Ranch	to	train	their	developers.
APP	&	PRODUCT	DEVELOPMENT
Big	Nerd	Ranch	designs,	develops	and	deploys	applications	for	clients	of	all
sizes—from	 small	 start-ups	 to	 large	 corporations.	Our	 in-house	 engineering
and	 design	 teams	 possess	 expertise	 in	 iOS,	 Android	 and	 full-stack	 web
application	development.

TEAM	TRAINING
For	companies	with	capable	engineering	teams,	Big	Nerd	Ranch	can	provide
on-site	corporate	 training	 in	 iOS,	Android,	Front-End	Web,	Back-End	Web,
macOS	and	Design.

CODING	BOOTCAMPS
Our	all-inclusive,	immersive	bootcamps	are	like	none	other.	As	soon	as	you
arrive,	we	take	care	of	everything,	from	the	airport	shuttle	to	hotels	to	meals.
Our	Georgia	and	California	retreats	are	perfect	for	 intermediate	 to	advanced
developers	who	can’t	spend	months	away	from	home.

FRONTIER	SCREENCASTS
Take	 advantage	 of	 bite-sized	 tutorials	 on	 a	 variety	 of	 topics,	 including
Converting	 Your	 Java	 Project	 to	 Kotlin.	 Our	 authors	 and	 developers	 have
prepared	a	variety	of	topics	to	keep	you	leveled	up.	New	screencasts	released
weekly.	Ask	about	our	free	trial.

www.bignerdranch.com

Appendix
More	Challenges

Now	that	you	have	completed	the	book,	you	may	be	wondering,	“OK,	what’s
next?”	This	section	is	for	you.

Leveling	Up	with	Exercism
The	Exercism	project	(exercism.io)	is	a	great	way	to	level	up	with	Kotlin
(and	over	30	other	languages).	Exercism	provides	a	command-line	interface
(CLI)	to	a	sizable	suite	of	challenges	and	puzzles	and	also	offers	community-
driven	code	reviews	of	your	solutions.
To	get	started	with	Exercism,	first	follow	the	CLI	setup	instructions	for	your
platform	at	exercism.io/clients/cli.	Exercism	also	requires	the
Gradle	build	tool.	If	you	have	not	installed	Gradle	already,	follow	the	installation
instructions	for	your	platform	at	gradle.org/install.	Finally,	you	will
need	a	GitHub	account	to	log	in	to	Exercism;	create	one	at	github.com	if	you
do	not	have	one	already.
Once	you	have	installed	and	configured	the	CLI,	you	can	begin	fetching
challenges	to	work	on.	You	can	fetch	challenges	from	a	particular	language	track
sequentially	or	by	name.	To	fetch	the	next	available	challenge	in	the	Kotlin
track,	for	example,	you	use	the	command-line	command	exercism	fetch
kotlin.	If	you	know	the	name	of	the	exercise	you	want	to	fetch,	add	it	to	the	end
of	the	command:	exercism	fetch	kotlin	name.
To	walk	you	through	the	process,	we	will	use	the	example	of	the	“two-fer”
challenge.	Fetch	the	two-fer	challenge	by	name:
				exercism	fetch	kotlin	two-fer

Once	the	challenge	has	been	fetched,	the	path	to	the	challenge	will	be	returned.
It	will	look	something	like:
				Not	Submitted:			1	problem

				kotlin	(Two	Fer)	/Users/joshskeen/exercism/kotlin/two-fer

Open	IntelliJ	and	select	File	→	Import.	Enter	the	path	to	the	challenge	in	the
import	dialog	(/Users/joshskeen/exercism/kotlin/two-fer,	in
our	example).	(You	can	use	the	...	button	to	the	right	to	select	it	rather	than	typing
it	in.)	Make	sure	to	select	the	Use	gradle	wrapper	task	configuration	option	in	the
import	dialog	(Figure	A.1),	and	click	OK.

http://www.exercism.io
http://www.exercism.io/clients/cli
https://gradle.org/install
https://github.com

Figure	A.1		Importing	the	two-fer	challenge

After	a	few	moments,	the	configured	challenge	will	open.	From	the	root
directory	of	the	project,	open	the	README.md	file	to	read	the	problem
description	(Figure	A.2):

Figure	A.2		Reading	the	problem	description

An	Exercism	challenge	is	provided	as	a	test	file.	Initially,	all	of	the	tests	defined
in	the	file	will	fail.	Your	objective	is	to	make	them	all	pass.	Open	the	test	file	by
opening	src/test/kotlin/TwoferTest.kt.	You	will	notice	the	test
currently	has	errors,	since	you	have	not	yet	defined	a	solution	file	(Figure	A.3):

Figure	A.3		Examining	the	test	file

To	define	a	solution	file,	open	src/main/kotlin	and	create	a	new	file	called
Twofer.kt.	It	is	helpful	to	open	this	file	alongside	the	test	file	in	a	split	pane
to	keep	track	of	which	test	you	are	solving,	which	you	can	do	by	right-clicking
in	either	tab	at	the	top	of	the	editor	and	selecting	Split	Vertically	(Figure	A.4).

Figure	A.4		Creating	the	solution	file

Looking	at	the	test	file,	it	appears	that	the	solution	should	be	a	function	called
twofer.	And	it	appears	that	two	different	version	of	the	twofer	function	are
required:	one	with	no	arguments	and	one	that	accepts	a	string.	Define	both
versions,	using	TODO	as	a	placeholder	for	the	implementation:

Listing	A.1		Defining	two	twofer	functions	(Twofer.kt)
fun	twofer():	String	{

				TODO()

}

fun	twofer(name:	String):	String	{

				TODO()

}

Now	that	the	test	file	is	runnable,	try	running	the	tests.	Run	TwoferTest.kt
by	clicking	on	the	circle	next	to	the	class	name	and	selecting	Run	'TwoferTest'
(Figure	A.5):

Figure	A.5		Running	the	tests

You	will	see	the	following	output,	since	your	solution	currently	uses	the	TODO
function:
				kotlin.NotImplementedError:	An	operation	is	not	implemented.

								at	TwoferKt.twofer(Twofer.kt:2)

								at	TwoferTest.noNameGiven(TwoferTest.kt:9)

Time	to	make	the	first	test	pass.	Go	back	and	look	at	the	first	test.	Notice	what
the	assertion	expects:
				@Test

				fun	noNameGiven()	{

								assertEquals("One	for	you,	one	for	me.",	twofer())

				}

				...

If	twofer	is	called,	the	string	"One	for	you,	one	for	me."	is	expected.
Update	the	twofer	function	in	your	solution	file	to	return	that	string:

Listing	A.2		Implementing	a	solution	for	the	first	test	(Twofer.kt)
fun	twofer():	String	{

				TODO()

				return	"One	for	you,	one	for	me."

}

...

Run	the	test	file	again.	This	time,	you	will	notice	that	the	run	pane	in	the	lower
left	shows	a	green	check	next	to	the	first	test,	noNameGiven	(Figure	A.6).

Figure	A.6		noNameGiven	passed

Proceed	to	the	next	test.	First,	remove	the	@Ignore	annotation	in	the	test	file:

Listing	A.3		Removing	@Ignore	(TwoferTest.kt)
...

@Test

@Ignore

fun	aNameGiven()	{

				assertEquals("One	for	Alice,	one	for	me.",	twofer("Alice"))

}

...

Run	the	test	file	again,	and	you	will	see	a	fail	for	the	second	test.	Update	your
solution	file	to	make	the	second	test	pass.	Continue	in	this	way	through	all	the
tests	in	the	file,	making	each	one	pass.
Once	you	have	completed	a	solution,	you	can	submit	it	to	be	peer	reviewed	via
the	command	line:
				exercism	submit	path_to_solution/file.kt

Once	the	command	completes,	a	URL	will	be	displayed	where	you	can	review
other	solutions	to	the	same	exercise.	You	will	find	the	community	input	for	your
solutions,	as	well	as	reviewing	the	solutions	of	others,	to	be	a	useful	way	to
acquire	new	techniques	with	Kotlin.
As	of	this	writing,	there	are	61	Kotlin	exercises	available.	You	can	view	them	at

exercism.io/languages/kotlin/exercises.	We	have	listed	our
favorites	in	Table	A.1,	along	with	our	rating	of	their	difficulty:

Table	A.1		Exercism	challenges

Challenge
Rating:
		1	=	easy
		5	=	hardest

kotlin	two-fer 1
bob 1.5
robot-name 1.5
sum-of-multiples 2
nucleotide-count 2
pig-latin 3
isogram 2.5
triangle 2.5
sieve 2.5
secret-handshake 2.5
binary 3
collatz-conjecture 3
diamond 3
bracket-push 3
roman-numerals IV
saddle-points 5
spiral-matrix 5

By	the	way,	you	can	find	Josh’s	solutions	at	exercism.io/mutexkid.

http://www.exercism.io/languages/kotlin/exercises
http://exercism.io/mutexkid

Glossary
addition	and	assignment	operator

Adds	or	appends	the	value	on	its	righthand	side	to	the	element	on	its
lefthand	side:	+=

algebraic	data	type
A	type	that	allows	the	representation	of	a	closed	set	of	possible	subtypes,
such	as	an	enumerated	class.
(See	also	class,	enumerated;	class,	sealed)

application	entry	point
The	starting	place	for	a	program.	In	Kotlin,	this	is	the	main	function.

argument
An	input	to	a	function.

argument,	default
A	value	assigned	to	a	function	argument	to	be	used	if	no	value	is
provided	by	the	caller.

argument,	named
A	function	argument	assigned	a	name	that	can	be	used	by	the	caller.

arrow	operator
Operator	used	in	lambda	expressions	to	separate	parameters	from	the
function	body,	in	when	expressions	to	separate	the	condition	from	the
result,	and	in	function	type	definitions	to	separate	parameter	types	from
result	types:	->

assignment	operator
Assigns	the	value	on	its	righthand	side	to	the	element	on	its	lefthand	side:
=

branch
A	set	of	code	executed	conditionally.

bytecode
The	lower-level	language	used	by	the	Java	Virtual	Machine.

called	on,	implicitly
Called	on	a	receiver	that	is	scoped	but	not	specified.
(See	also	scoping,	relative)

class
A	definition	of	a	category	of	objects	represented	in	code.

class	body
The	portion	of	a	class	definition,	designated	by	curly	braces,	that	holds
its	behavior	and	data	definitions.

class	function
A	function	defined	within	a	class.

class	property
An	attribute	required	to	represent	the	state	or	characteristics	of	an	object.

class,	abstract
A	class	that	is	never	instantiated	but	is	used	to	create	common	features
among	its	subclasses.

class,	data
A	class	with	special	features	for	data	management.

class,	enumerated
A	class	defining	a	collection	of	constants	called	enumerated	types;	all
instances	of	the	class	are	of	one	of	the	defined	types.	Compared	to	a
sealed	class,	an	enumerated	class	prohibits	inheritance,	and	its	subclasses
cannot	contain	different	states	or	have	multiple	instances.
(See	also	class,	sealed;	type,	enumerated)

class,	nested
A	named	class	defined	within	another	class.

class,	sealed
A	class	with	a	defined	set	of	subtypes,	allowing	the	compiler	to	check

whether	a	when	expression	contains	an	exhaustive	set	of	branches.
Compared	to	an	enumerated	class,	a	sealed	class	permits	inheritance,	and
its	subclasses	can	contain	different	states	and	can	have	multiple
instances.
(See	also	algebraic	data	type;	class,	enumerated)

closure
Another	term	for	a	Kotlin	anonymous	function.	Anonymous	functions	in
Kotlin	may	reference	local	variables	defined	in	the	scope	outside	of	the
anonymous	function	because	they	persist,	or	“close	over,”	local	variables
they	reference.
(See	also	function,	anonymous)

code	comment
A	note	in	code;	comments	are	ignored	by	the	compiler.

collection,	eager
A	collection	whose	values	are	accessible	when	it	is	instantiated.
(See	also	collection,	lazy)

collection,	lazy
A	collection	whose	values	are	produced	only	as	needed.
(See	also	collection,	eager;	function,	iterator)

comparison	operator
An	operator	that	compares	the	elements	on	its	lefthand	and	righthand
sides.

compilation
The	translation	of	source	code	into	a	lower-level	language	to	create	an
executable	program.

compile	time
See	compilation.

compile-time	error
An	error	that	occurs	during	compilation.
(See	also	compilation)

compiled	language
A	language	that	is	translated	into	machine-language	instructions	prior	to
processing	by	a	compiler.
(See	also	compilation;	compiler)

compiler
A	program	that	performs	compilation.
(See	also	compilation)

conditional	expression
A	conditional	statement	assigned	to	a	value	that	can	be	used	later.

console
A	pane	in	the	IntelliJ	IDEA	window	that	displays	information	about	what
happened	when	a	program	was	executed,	along	with	any	outputs	from	the
program.	Also	called	the	run	tool	window.

constant
An	element	that	holds	a	value	that	cannot	be	changed.

constructor
A	special	function	that	prepares	a	class	for	use	during	instantiation.

constructor,	primary
A	class	constructor	defined	in	the	class	header.

consumer
A	generic	parameter	that	is	writeable	but	not	readable.

contravariance
Marking	a	generic	parameter	as	a	consumer.

control	flow
Rules	for	when	code	should	be	executed.

coroutine
Experimental	Kotlin	feature	that	allows	work	to	be	performed	in	the
background.

covariance

Marking	a	generic	parameter	as	a	producer.

delegate
A	way	of	defining	a	template	for	property	initialization.

destructuring
Declaring	and	assigning	multiple	variables	in	a	single	expression.

dot	syntax
Syntax	that	connects	two	elements	with	a	dot	(.);	used	when	calling	a
function	defined	on	a	type	and	when	referring	to	a	class	property.

editor
The	main	area	of	the	IntelliJ	IDEA	window,	where	code	can	be	entered
and	edited.

encapsulation
The	principle	that	an	object's	functions	and	properties	should	be	visible
to	other	objects	only	as	needed.	Also	the	process	of	hiding	function	and
property	implementations	using	visibility	modifiers.

equality,	referential
Of	two	variables:	referring	to	the	same	type	instance.
(See	also	equality,	structural)

equality,	structural
Of	two	variables:	having	the	same	value.
(See	also	equality,	referential)

escape	character
Distinguishes	characters	that	have	special	meaning	to	the	compiler:	\

event	log	tool	window
A	pane	in	the	IntelliJ	IDEA	window	that	displays	information	about	what
IntelliJ	did	to	make	a	program	ready	to	run.

exception
A	disruption	to	the	execution	of	a	program;	an	error.

exception,	unchecked

An	exception	generated	by	code	that	is	not	wrapped	in	a	try/catch
statement.

exception,	unhandled
An	exception	that	is	not	managed	in	the	codebase.

expression
A	combination	of	values,	operators,	and	functions	that	produces	another
value.

extend
Gain	functionality	through	inheritance	or	interface	implementation.

extension
A	property	or	function	added	to	an	object	without	inheritance.

field
Storage	for	the	data	associated	with	a	property.

floating	point
A	number	represented	using	a	decimal	that	can	be	positioned	at	an
arbitrary	place	based	on	its	significant	digits.

function
A	reusable	portion	of	code	that	accomplishes	a	specific	task.

function	body
The	portion	of	a	function	definition,	designated	by	curly	braces,	that
holds	its	behavior	definitions	and	return	type.

function	call
A	line	of	code	that	triggers	a	function	and	passes	it	any	necessary
arguments.

function	call,	chainable
A	function	call	that	returns	its	receiver	or	another	object	that	a
subsequent	function	can	be	called	on.

function	header
The	part	of	a	function	definition	that	includes	the	visibility	modifier,
function	declaration	keyword,	name,	parameters,	and	return	type.

function	inlining
A	compiler	optimization	commonly	used	to	reduce	the	memory	overhead
for	functions	that	accept	anonymous	functions	as	arguments.

function	overloading
Defining	two	or	more	function	implementations	with	the	same	name	and
scope	but	different	parameters.

function	reference
A	named	function	converted	to	a	value	that	can	be	passed	as	an
argument.

function	type
The	type	of	an	anonymous	function,	defined	by	its	input,	output,	and
parameters.

function,	abstract
A	function	declared	without	an	implementation	in	an	abstract	class.
(See	also	class,	abstract)

function,	anonymous
A	function	defined	without	a	name;	often	used	as	an	argument	to	another
function.
(See	also	function,	named)

function,	combining
A	function	that	takes	multiple	collections	and	combines	them	into	a
single	new	collection.

function,	composable
A	function	that	can	be	combined	with	other	functions.

function,	extension
A	function	that	adds	functionality	to	a	particular	type.

function,	filter
A	function	that	works	on	the	contents	of	a	collection	by	applying	a
predicate	function	to	check	a	condition	for	each	element;	elements	for
which	the	predicate	returns	true	are	added	to	a	new	collection	returned	by

the	filter	function.

function,	iterator
A	function	referred	to	each	time	a	value	is	requested	from	a	lazy
collection.

function,	mutator
A	function	that	changes	the	contents	of	a	mutable	collection.

function,	named
A	function	defined	with	a	name.
(See	also	function,	anonymous)

function,	precondition
A	Kotlin	standard	library	function	that	defines	conditions	that	must	be
met	before	some	code	is	executed.

function,	single-expression
A	function	with	a	single	expression.
(See	also	expression)

function,	transform
In	functional	programming,	a	function	that	works	on	the	contents	of	a
collection	by	transforming	each	element	using	its	transformer	function;
transform	functions	return	a	modified	copy	of	the	collection	they	are
called	on.
(See	also	functional	programming)

function,	transformer
In	functional	programming,	the	anonymous	function	passed	to	a
transform	function	that	specifies	the	action	to	be	taken	on	each	element
in	the	collection	the	transform	is	called	on.
(See	also	functional	programming)

functional	programming
A	style	of	programming	that	relies	on	higher-order	functions,	designed	to
work	on	collections,	that	are	chained	to	create	complex	behavior.

generic	type

A	class	that	accepts	a	generic	input	-	i.e.,	an	input	of	any	type.

generic	type	parameter
The	parameter	specified	for	a	generic	type,	such	as	<T>.

generics
A	type	system	feature	that	allows	functions	and	types	to	work	with
unknown	types.

getter
A	function	defining	how	a	property	is	read.

higher-order	function
A	function	that	takes	another	function	as	an	argument.

imperative	programming
The	programming	paradigm	that	includes	object-oriented	programming.

increment	operator
Adds	1	to	the	value	of	the	element	it	is	affixed	to:	++

index
An	integer	corresponding	to	the	position	of	an	element	in	a	series.

indexed	access	operator
Gets	the	element	at	a	particular	index	from	a	collection:	[]

inheritance
An	object-oriented	programming	principle	in	which	the	properties	and
behavior	of	classes	are	shared	by	their	subclasses.

initialization
Preparation	of	a	variable,	property,	or	class	instance	for	use.

initialization,	late
Initialization	of	a	variable	that	is	delayed	until	its	value	is	assigned.

initialization,	lazy
Initialization	of	a	variable	that	is	delayed	until	it	is	first	accessed.

initializer	block

A	block	of	code,	prefixed	with	init,	that	will	be	executed	during
initialization	of	an	object	instance.

instance
A	particular	occurrence	of	an	object.

instantiate
Create	an	instance	of.

interface
A	set	of	abstract	functions	and	properties	used	to	create	common	features
among	objects	not	related	by	inheritance.

interoperate
Interact	with	another	programming	language	natively.

iteration
Repeating	a	process,	as	for	each	element	in	a	range	or	collection.

Kotlin	REPL
A	tool	in	IntelliJ	IDEA	that	allows	code	to	be	tested	without	creating	a
file	or	running	a	complete	program.

Kotlin	standard	library	functions
A	set	of	extension	functions	available	for	use	with	any	Kotlin	type.

lambda
Another	term	for	an	anonymous	function.
(See	also	function,	anonymous)

lambda	expression
Another	term	for	an	anonymous	function's	definition.
(See	also	function,	anonymous)

lambda	result
Another	term	for	an	anonymous	function's	return.
(See	also	function,	anonymous)

logical	operator
A	function	or	operator	symbol	that	performs	a	logical	operation	on	its

input(s).

logical	‘and’	operator
Returns	true	if	and	only	if	the	elements	on	its	lefthand	and	righthand
sides	are	both	true:	&&

logical	‘or’	operator
Returns	true	if	either	of	the	elements	on	its	lefthand	and	righthand	sides
is	true:	||

method
Java	terminology	for	a	function.
(See	also	function)

module
A	discrete	unit	of	functionality	that	can	be	run,	tested,	and	debugged
independently.

modulus	operator
Returns	the	remainder	when	one	number	is	divided	by	another;	also
called	the	remainder	operator:	%

mutable
Able	to	be	changed.
(See	also	read-only)

non-null	assertion	operator
Calls	a	function	on	a	nullable	element,	returning	an	exception	if	the
element	it	is	called	on	is	null:	!!

non-nullable
Unable	to	be	assigned	a	null	value.

null
Nonexistent.

null	coalescing	operator
Returns	the	element	on	its	lefthand	side	if	it	is	non-null;	otherwise	returns
the	element	on	its	righthand	side:	?:

nullable
Able	to	be	assigned	a	null	value.

object	declaration
A	named	singleton	created	with	the	object	keyword.
(See	also	object,	companion;	object	expression;	singleton)

object	expression
An	unnamed	singleton	created	with	the	object	keyword.
(See	also	object,	companion;	object	declaration;	singleton)

object,	companion
An	object	defined	within	a	class	and	marked	with	the	companion
modifier;	companion	objects	allow	their	members	to	be	accessed	by
referencing	the	outer	class	name	only.
(See	also	object	declaration;	object	expression;	singleton)

operator	overloading
Defining	an	implementation	for	an	operator	function	on	a	custom	type.

override
Provide	a	custom	implementation	for	an	inherited	function	or	property.

parameter
An	input	required	by	a	function.

parameterized	type
The	type	defined	for	the	contents	of	a	collection.

pass	an	argument
Provide	an	input	to	a	function.

platform	type
Ambiguous	types	returned	to	Kotlin	from	Java	code;	they	may	be
nullable	or	non-nullable.

polymorphism
The	ability	to	use	the	same	named	entity	(such	as	a	function)	to	produce
different	results.

predicate
A	true/false	condition	provided	to	a	function	as	a	lambda	to	define	how
work	should	be	performed.

producer
A	generic	parameter	that	is	readable	but	not	writeable.

project
All	the	source	code	for	a	program,	along	with	information	about
dependencies	and	configurations.

project	tool	window
The	pane	on	the	left	of	the	IntelliJ	IDEA	window	that	shows	a	project's
structure	and	files.

property,	computed
A	property	defined	such	that	its	value	is	computed	each	time	it	is
accessed.

property,	inline
A	class	property	defined	in	the	primary	constructor.

race	condition
A	condition	that	occurs	when	some	state	is	modified	simultaneously	by
two	or	more	elements	in	a	program.

range
A	sequential	series	of	values	or	characters.

read-only
Able	to	be	read	but	not	changed.
(See	also	mutable)

receiver
The	subject	of	an	extension	function.

receiver	type
The	type	an	extension	adds	functionality	to.

refactor

Change	the	presentation	or	location	of	code	without	changing	its
functionality.

referential	equality	operator
Evaluates	whether	the	variable	on	its	lefthand	side	points	to	the	same
type	instance	as	the	value	on	its	righthand	side:	===
(See	also	equality,	referential)

reflection
Learning	the	name	or	type	of	a	property	at	runtime.
(See	also	type	erasure)

regular	expression,	regex
A	defined	character	search	pattern.

remainder	operator
See	modulus	operator.

reserved	keyword
A	word	that	cannot	be	used	as	a	function	name.

return	type
The	type	of	output	data	a	function	returns	after	completing	its	work.

return,	implicit
Data	that	is	returned	without	an	explicit	return	statement.

run	tool	window
A	pane	in	the	IntelliJ	IDEA	window	that	displays	information	about	what
happened	when	a	program	was	executed	along	with	any	outputs	from	the
program.	Also	called	the	console.

runtime
When	a	program	is	executed.

runtime	error
An	error	that	occurs	after	compilation,	during	program	execution.

safe	call	operator
Calls	a	function	only	if	the	element	it	is	called	on	is	non-null:	?.

scope
The	portion	of	a	program	in	which	an	entity,	such	as	a	variable,	can	be
referred	to	by	name.

scoping,	relative
The	scoping	of	standard	function	calls	within	a	lambda	to	the	receiver	the
lambda	is	called	on.
(See	also	called	on,	implicitly)

setter
A	function	defining	how	a	property's	value	is	assigned.

signed	numeric	type
A	numeric	type	that	includes	both	positive	and	negative	values.

singleton
An	object	declared	with	the	object	keyword;	singletons	are	limited	to	a
single	instance	throughout	program	execution.

smart	casting
The	tracking	by	the	compiler	of	information	that	has	been	checked	for	a
branch	of	code,	such	as	whether	a	variable	has	a	null	value.

statement
An	instruction	in	code.

string
A	sequence	of	characters.

string	concatenation
Combining	two	or	more	strings	in	a	single	output.

string	interpolation
Using	a	string	template.

string	template
Syntax	that	allows	a	variable	name	to	stand	in	for	its	value	in	a	string.

structural	equality	operator
Evaluates	whether	the	value	on	its	lefthand	side	is	equal	to	the	value	on

its	righthand	side:	==
(See	also	equality,	structural)

subclass
A	class	defined	as	inheriting	properties	from	another	class.

superclass
The	class	that	a	subclass	inherits	from.

target	(a	platform)
Design	a	program	to	run	on	a	platform.

throw	(an	exception)
Generate	an	exception.

type
A	classification	of	data;	a	variable's	type	determines	the	nature	of	the
values	it	can	hold.

type	casting
Treating	an	object	as	though	it	were	an	instance	of	a	different	type.

type	checking
Confirmation	by	the	compiler	that	the	value	assigned	to	a	variable	is	of
the	correct	type.

type	checking,	static
Type	checking	performed	as	code	is	entered	or	edited.

type	erasure
The	loss	of	type	information	for	generics	at	runtime.

type	inference
The	ability	of	the	compiler	to	recognize	a	variable's	type	based	on	the
value	assigned	to	it.

type	system,	static
A	system	in	which	the	compiler	labels	source	code	with	type	information
for	checking.

type,	enumerated

A	type	defined	as	one	of	the	elements	of	an	enumerated	class.
(See	also	class,	enumerated)

types,	collection
Data	types	that	represent	groups	of	data	elements,	such	as	lists.

Unicode	character
A	character	defined	in	the	Unicode	system.

variable
An	element	that	holds	a	value;	variables	may	be	read-only	or	mutable.

variable,	file-level
A	variable	defined	outside	of	any	function	or	class.

variable,	local
A	variable	defined	within	a	function's	scope.

visibility
The	accessibility	of	an	element	from	other	code	elements.

visibility	modifier
A	modifier	added	to	function	and	property	declarations	to	set	their
visibility.

zero-indexed
Using	the	value	0	for	the	first	index	(in	a	series	or	collection).

Index
A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	R	S	T	U	V	W	X	Z

Symbols

!
for	platform	types,	Interoperability	and	Nullity
logical	‘not’	operator,	Logical	operators

!!.	(double-bang/non-null	assertion	operator),	Option	two:	the	double-bang	operator
!=	(non-equality	operator),	if/else	Statements
!==	(referential	non-equality	operator),	if/else	Statements
$	(for	string	interpolation/templating),	String	Templates
%	(modulus/remainder	operator),	Converting	a	Double	to	an	Int
&&	(logical	‘and’	operator),	Logical	operators
+	(addition	operator),	if/else	Statements,	Operator	Overloading
++	(increment	operator),	while	Loops
+=	(addition	and	assignment	operator),	Declaring	a	Variable,	Operator	Overloading
+=	(plus	assign	operator),	Changing	a	list’s	contents,	Adding	elements	to	a	set,	Creating	a	Map,
Adding	Entries	to	a	Map

-	(minus	operator),	Adding	Entries	to	a	Map
-=	(minus	assign	operator),	Changing	a	list’s	contents,	Adding	elements	to	a	set,	Adding	Entries	to	a
Map

->	(arrow	operator)
in	anonymous	function	definitions,	Function	arguments
in	function	type	definitions,	The	function	type
in	when	expressions,	when	Expressions

.	(dot)
for	class	property	references,	Class	Properties
for	function	calls,	Anonymous	Functions

..	(range	operator),	Ranges,	Operator	Overloading
:	operator

for	interface	implementation,	Implementing	an	Interface
for	subclassing,	Creating	a	Subclass

::	operator,	for	function	references,	Function	References
<	(less-than	operator),	if/else	Statements

<=	(less-than-or-equal-to	operator),	if/else	Statements
<>	(for	parameterized	type	definitions),	Lists
=	(assignment	operator)

for	maps,	Adding	Entries	to	a	Map
for	variable	values,	Declaring	a	Variable
in	single-expression	function	syntax,	Single-Expression	Functions

==	(structural	equality	operator),	if/else	Statements,	Operator	Overloading
===	(referential	equality	operator),	if/else	Statements
>	(greater-than	operator),	if/else	Statements,	Operator	Overloading
>=	(greater-than-or-equal-to	operator),	if/else	Statements
?.	(safe	call	operator),	Option	one:	the	safe	call	operator
?:	(null	coalescing	operator),	The	null	coalescing	operator
@JvmField	annotation,	Beyond	Classes
@JvmName	annotation,	Beyond	Classes
@JvmOverloads	annotation,	Beyond	Classes
@JvmStatic	annotation,	Beyond	Classes
@NotNull	annotation	(Java),	For	the	More	Curious:	How	Is	Nullability	Enforced?,	Interoperability	and
Nullity

@Nullable	annotation	(Java),	Interoperability	and	Nullity
@Throws	annotation,	Exceptions	and	Interoperability
[]	(get/index	operator),	split,	Accessing	a	list’s	elements,	Accessing	Map	Values,	Operator	Overloading
[]=	(set	operator),	Changing	a	list’s	contents
\	(escape	character),	substring
_,	for	temporary	variables,	Primary	constructors
||	(logical	‘or’	operator),	Logical	operators

A

abstract	classes
about,	Interfaces	and	Abstract	Classes,	Abstract	Classes
abstract	functions,	Abstract	Classes
interface	implementation,	Abstract	Classes
subclassing,	Abstract	Classes
vs	interfaces,	Abstract	Classes

abstract	functions,	Abstract	Classes
abstract	keyword,	Abstract	Classes
add	function,	Changing	a	list’s	contents,	Adding	elements	to	a	set
addAll	function,	Changing	a	list’s	contents,	Adding	elements	to	a	set
addition	and	assignment	operator	(+=),	Declaring	a	Variable,	Operator	Overloading

addition	operator	(+),	if/else	Statements,	Operator	Overloading
algebraic	data	types,	For	the	More	Curious:	Algebraic	Data	Types
also	function,	also,	Using	Standard	Library	Functions,	For	the	More	Curious:	Guarding	Against	Race	Conditions
and(number)	function,	For	the	More	Curious:	Bit	Manipulation
Android

accessing	view	elements,	Wiring	Up	Views,	Kotlin	Android	Extensions	Synthetic	Properties
activities,	Android	Studio
Android	KTX	Kotlin	extensions	library,	For	the	More	Curious:	Android	KTX	and	Anko

Libraries

Anko	Kotlin	enhancements	library,	For	the	More	Curious:	Android	KTX	and	Anko
Libraries

click	listeners,	Setting	a	Click	Listener
creating	a	project,	Android	Studio
Gradle	build	automation	tool,	Gradle	configuration
importing	classes,	Wiring	Up	Views

Kotlin	library	dependencies,	Gradle	configuration
Kotlin	plug-ins,	Gradle	configuration
Kotlin	single	abstract	method	conversions,	Setting	a	Click	Listener
Kotlin	synthetic	properties,	Kotlin	Android	Extensions	Synthetic	Properties
lifecycle	functions,	The	Activity	Class
manifest,	Fetching	Live	Data
project	organization,	Project	organization
saved	instance	state,	Saved	Instance	State
SDK	packages,	Android	Studio
threads,	The	Android	Main	Thread
user	interfaces,	Defining	a	UI
using	coroutines
(see	also	coroutines)

view	element	ids,	Defining	a	UI
widgets,	Defining	a	UI

Android	Studio
about,	Android	Studio
application	logs,	Fetching	Live	Data
emulators,	Running	the	App	on	an	Emulator

anonymous	functions
about,	Anonymous	Functions	and	the	Function	Type
and	function	references,	Function	References
and	Kotlin	standard	library	functions,	Anonymous	Functions,	Standard	Functions
arguments,	Function	arguments

as	closures,	Function	Type	as	Return	Type,	For	the	More	Curious:	Kotlin’s	Lambdas	Are	Closures
as	function	arguments,	Defining	a	Function	That	Accepts	a	Function
calling,	Anonymous	Functions
defining,	Anonymous	Functions
implicit	returns,	Implicit	returns
inlining,	Function	Inlining
it	keyword,	The	it	keyword
lambda	terminology,	Defining	a	Function	That	Accepts	a	Function
memory	use,	Function	Inlining
parameters,	Function	arguments
vs	Java	anonymous	inner	classes,	For	the	More	Curious:	Lambdas	vs	Anonymous	Inner

Classes

Any	class
about,	The	Kotlin	Type	Hierarchy
and	platform	independence,	For	the	More	Curious:	Any
default	function	implementations,	Data	Classes

application	entry	point,	Creating	your	first	Kotlin	file
apply	function,	apply,	Using	Standard	Library	Functions
arguments

(see	also	functions)
in	class	constructors,	default,	Default	arguments
in	class	constructors,	named,	Named	arguments
in	functions,	default,	Default	Arguments
in	functions,	named,	Named	Function	Arguments
to	anonymous	functions,	Function	arguments
vs	parameters,	Calling	a	Function

Array	type,	For	the	More	Curious:	Array	Types
ArrayIndexOutOfBoundsException,	Index	boundaries	and	safe	index	access
arrow	operator	(->)

in	anonymous	function	definitions,	Function	arguments
in	function	type	definitions,	The	function	type
in	when	expressions,	when	Expressions

as	operator
for	renaming	imported	extensions,	classes,	Renaming	an	Extension
for	type	casting,	Type	casting

assert	function,	Preconditions
assignment	operator	(=)

for	maps,	Adding	Entries	to	a	Map
for	variable	values,	Declaring	a	Variable

in	single-expression	function	syntax,	Single-Expression	Functions
async	function,	Specifying	a	Coroutine	with	async
await	function,	launch	vs	async/await

B

bitwise	operations,	For	the	More	Curious:	Bit	Manipulation
Boolean	type,	Kotlin’s	Built-In	Types
break	expression,	The	break	Expression
by	keyword,	Lazy	initialization
Byte	type,	Numeric	Types
bytecode

about,	For	the	More	Curious:	Targeting	the	JVM
decompiling,	Inspecting	Kotlin	Bytecode
inspecting,	Inspecting	Kotlin	Bytecode

C

Char	type,	Kotlin’s	Built-In	Types,	For	the	More	Curious:	Unicode
checkNotNull	function,	Preconditions
class	keyword,	For	the	More	Curious:	Algebraic	Data	Types
classes

about,	Defining	Classes
abstract,	Abstract	Classes
(see	also	abstract	classes)

Any
(see	also	Any	class)

class	bodies,	Class	Functions
class	functions,	Class	Functions
companion	objects,	Companion	objects
constructors,	Constructing	Instances
(see	also	constructors)

data	classes
(see	also	data	classes)

declared	with	object
(see	also	companion	objects,	object	declarations,	object	expressions)

defining,	Defining	a	Class
enumerated	classes	(enums),	Enumerated	Classes,	Exploring	the	World	of	NyetHack

instantiating,	Constructing	Instances
Kotlin	type	hierarchy,	The	Kotlin	Type	Hierarchy
nested,	Nested	Classes
object	declarations,	Object	declarations
object	expressions,	Object	expressions
properties	(see	properties)
renaming	imported	classes,	Renaming	an	Extension
scope,	Refactoring	NyetHack
sealed	classes,	For	the	More	Curious:	Algebraic	Data	Types
subclasses,	Creating	a	Subclass
superclasses,	Creating	a	Subclass

clear	function,	Changing	a	list’s	contents,	Adding	elements	to	a	set
closures,	Function	Type	as	Return	Type,	For	the	More	Curious:	Kotlin’s	Lambdas	Are	Closures
code	comments

about,	Logical	operators
IntelliJ	IDEA	shortcut,	Kotlin’s	Explicit	Null	Type

collection	types
(see	also	List	type,	Map	type,	Sequence	type,	Set	type)
compared,	Modifying	Map	Values
creating	instances,	Lists
eager	vs	lazy,	Sequences

companion	modifier,	Companion	objects
companion	objects,	Companion	objects
compareTo	function,	Operator	Overloading
comparison	operators

about,	if/else	Statements
order	of	operator	precedence,	Logical	operators

compilation,	Compilation	and	execution	of	Kotlin/JVM	code
compile-time	constants,	Compile-Time	Constants
compile-time	errors,	Compile	Time	vs	Runtime
compiler,	Compile	Time	vs	Runtime
computed	properties,	Computed	properties
conditional	expressions

about,	Conditional	expressions
omitting	curly	braces	in,	Removing	braces	from	if/else	expressions

console,	Running	your	Kotlin	file
const	modifier,	Compile-Time	Constants
constants,	Variables,	Constants,	and	Types
constructors

about,	Constructors
calling,	Primary	constructors,	Secondary	constructors
default	values	for	parameters,	Secondary	constructors,	Default	arguments
defining	class	properties	in,	Defining	properties	in	a	primary	constructor
defining	initialization	logic	in,	Secondary	constructors
for	subclassing,	Creating	a	Subclass
named	arguments,	Named	arguments
parameters,	Primary	constructors
primary,	Primary	constructors,	Secondary	constructors
secondary,	Secondary	constructors

consumer	role,	in	and	out
contains	function,	Checking	the	contents	of	a	list,	Creating	a	set,	Operator	Overloading
containsAll	function,	Checking	the	contents	of	a	list,	Creating	a	set
control	flow,	Conditionals
copy	function,	copy
coroutines

about,	Enabling	Coroutines
async	function,	Specifying	a	Coroutine	with	async
await	function,	launch	vs	async/await
coroutine	builder	functions,	launch	vs	async/await
enabling,	Enabling	Coroutines
launch	function,	Specifying	a	Coroutine	with	async
suspending	functions,	Suspending	Functions

count	function,	Anonymous	Functions
covariance,	contravariance,	in	and	out

D

data	classes
about,	Data	Classes
benefits	and	limitations,	Destructuring	declarations
destructuring,	Destructuring	declarations
implementation	of	library	functions,	toString

Deferred	type,	Specifying	a	Coroutine	with	async
delegates

about,	Lazy	initialization
lazy,	Lazy	initialization

destructuring
about,	split,	Destructuring

using	split,	split
distinct	function,	Collection	Conversion
dot	syntax

for	class	property	references,	Class	Properties
for	function	calls,	Anonymous	Functions

Double	type
about,	Kotlin’s	Built-In	Types,	Numeric	Types,	Decimal	Numbers
converting	from	Int,	Converting	an	Int	to	a	Double
converting	to	Int,	Converting	a	Double	to	an	Int

double-bang/non-null	assertion	operator	(!!.),	Option	two:	the	double-bang	operator

E

editor,	Your	First	Kotlin	Project
elementAt	function,	Creating	a	set
encapsulation	(see	visibility)
enumerated	classes	(enums),	Enumerated	Classes,	Exploring	the	World	of	NyetHack

enumerated	types,	Enumerated	Classes
equality	(see	referential	equality,	structural	equality)
equals	function

in	data	classes,	equals
overriding,	Operator	Overloading,	For	the	More	Curious:	Defining	Structural	Comparison

error	function,	Preconditions
errors

compile-time,	Compile	Time	vs	Runtime
runtime,	Compile	Time	vs	Runtime

escape	character	(\),	substring
escape	sequences,	substring
event	log	tool	window,	Running	your	Kotlin	file
exceptions

about,	Exceptions
ArrayIndexOutOfBoundsException,	Index	boundaries	and	safe	index	access
custom,	Custom	exceptions
Exception	type,	Handling	exceptions
IllegalStateException,	Throwing	an	exception
KotlinNullPointerException,	Option	two:	the	double-bang	operator
throwing,	Throwing	an	exception
unchecked,	For	the	More	Curious:	Checked	vs	Unchecked	Exceptions
unhandled,	Exceptions

Exercism	project,	Leveling	Up	with	Exercism
exitProcess	function,	Combat	in	NyetHack
extensions

about,	Extensions
bytecode	representation,	Extensions,	Under	the	Hood
defining	extension	functions,	Defining	Extension	Functions
extension	files,	Defining	an	Extensions	File
extension	packages,	Defining	an	Extensions	File
extension	properties,	Extension	Properties
generic	extension	functions,	Generic	Extension	Functions
in	the	Kotlin	standard	library,	Extensions	in	the	Kotlin	Standard	Library
on	nullable	types,	Extensions	on	Nullable	Types
on	superclasses,	Defining	an	extension	on	a	superclass
renaming	imported	extensions,	Renaming	an	Extension
visibility,	Defining	an	Extensions	File

extracting	functions	using	IntelliJ	IDEA	command,	Extracting	Code	to	Functions

F

field	keyword,	Property	getters	and	setters
files

creating,	Creating	your	first	Kotlin	file
running,	Running	your	Kotlin	file

filter	function,	Filters
final	keyword,	Creating	a	Subclass
first	function,	Accessing	a	list’s	elements
flatMap	function,	Transforms
Float	type,	Numeric	Types
floating	points,	Converting	an	Int	to	a	Double
fold	function,	Combines
for	loops,	Iteration
forEach	function,	Iteration
forEachIndexed	function,	Iteration
format	function,	Formatting	a	Double
fun	keyword,	Function	name	declaration
function	types

about,	The	function	type
as	return	types,	Function	Type	as	Return	Type
type	inference	with,	Type	Inference	Support

vs	Java	anonymous	inner	classes,	For	the	More	Curious:	Lambdas	vs	Anonymous	Inner
Classes

functional	programming
about,	Functional	Programming	Basics
Arrow.kt	library,	For	the	More	Curious:	Arrow.kt
categories	of	functions,	Function	Categories
combines,	Combines
composable	functions,	Transforms
filters,	Filters
higher-order	functions,	Transforms
immutability	of	variables,	Transforms
transforms,	Transforms

functions
(see	also	function	types)
about,	Creating	your	first	Kotlin	file,	Functions
add,	Changing	a	list’s	contents,	Adding	elements	to	a	set
addAll,	Changing	a	list’s	contents,	Adding	elements	to	a	set
also,	also,	Using	Standard	Library	Functions,	For	the	More	Curious:	Guarding	Against	Race	Conditions
alternative	syntax,	Single-Expression	Functions
and(number),	For	the	More	Curious:	Bit	Manipulation
anonymous
(see	also	anonymous	functions)

apply,	apply,	Using	Standard	Library	Functions
arguments,	Calling	a	Function
assert,	Preconditions
async,	Specifying	a	Coroutine	with	async
await,	launch	vs	async/await
backtick	naming	syntax,	For	the	More	Curious:	Function	Names	in	Backticks
body,	Anatomy	of	a	Function,	Function	body
calling,	Calling	a	Function
chaining	calls,	Generic	Extension	Functions
checkNotNull,	Preconditions
class	functions,	Class	Functions,	Refactoring	NyetHack
clear,	Changing	a	list’s	contents,	Adding	elements	to	a	set
combining	functions,	Combines
compareTo,	Operator	Overloading
composable,	Transforms
contains,	Checking	the	contents	of	a	list,	Creating	a	set,	Operator	Overloading
containsAll,	Checking	the	contents	of	a	list,	Creating	a	set

copy,	copy
count,	Anonymous	Functions
default	arguments,	Default	Arguments
distinct,	Collection	Conversion
dot	syntax,	Anonymous	Functions
elementAt,	Creating	a	set
equals,	equals,	Operator	Overloading,	For	the	More	Curious:	Defining	Structural	Comparison
error,	Preconditions
exitProcess,	Combat	in	NyetHack
file-level,	For	the	More	Curious:	File-Level	Functions	in	Java
filter,	Filters
filter	functions,	Filters
first,	Accessing	a	list’s	elements
flatMap,	Transforms
fold,	Combines
forEach,	Iteration
forEachIndexed,	Iteration
format,	Formatting	a	Double
from	Kotlin	standard	library,	Standard	Functions,	Using	Standard	Library	Functions
function	references,	Function	References,	run
generateSequence,	Sequences
get,	Operator	Overloading
getOrDefault,	Accessing	Map	Values
getOrElse,	Index	boundaries	and	safe	index	access,	Accessing	Map	Values
getOrNull,	Index	boundaries	and	safe	index	access
getOrPut,	Adding	Entries	to	a	Map
getValue,	Accessing	Map	Values
hashCode,	For	the	More	Curious:	Defining	Structural	Comparison
header,	Anatomy	of	a	Function
higher-order	functions,	Function	Type	as	Return	Type
implicitly	called,	apply
in	Java	bytecode,	For	the	More	Curious:	File-Level	Functions	in	Java
indexOf,	substring
inlining,	Function	Inlining
intArrayOf,	For	the	More	Curious:	Array	Types
inv(),	For	the	More	Curious:	Bit	Manipulation
isInitialized,	Late	initialization
iterator	functions,	Sequences
last,	Accessing	a	list’s	elements

launch,	Specifying	a	Coroutine	with	async
let,	Using	safe	calls	with	let,	The	null	coalescing	operator,	let,	Using	Standard	Library	Functions
listOf,	Lists
main,	Creating	your	first	Kotlin	file,	Types
map,	Transforms
mapOf,	Creating	a	Map
measureNanoTime,	For	the	More	Curious:	Profiling
measureTimeInMillis,	For	the	More	Curious:	Profiling
mutableListOf,	Changing	a	list’s	contents
mutableMapOf,	Creating	a	Map
mutableSetOf,	Adding	elements	to	a	set
mutator	functions,	Changing	a	list’s	contents,	Adding	elements	to	a	set
named,	Anonymous	Functions	and	the	Function	Type
named	arguments,	Named	Function	Arguments
naming	conventions,	Function	name	declaration
operator	overloading,	Operator	Overloading
overloading,	For	the	More	Curious:	Function	Overloading
overriding,	Property	getters	and	setters
parameters,	Function	parameters,	Calling	a	Function
plus,	Operator	Overloading
plusAssign,	Operator	Overloading
precondition	functions,	Preconditions
predicate	functions,	Filters
println,	Creating	your	first	Kotlin	file
put,	Adding	Entries	to	a	Map
putAll,	Adding	Entries	to	a	Map
rangeTo,	Operator	Overloading
readText,	Fetching	Live	Data
remove,	Changing	a	list’s	contents,	Adding	elements	to	a	set,	Adding	Entries	to	a	Map
removeAll,	Adding	elements	to	a	set
removeIf,	Changing	a	list’s	contents
replace,	String	Manipulation
require,	Preconditions
requireNotNull,	Preconditions
return	statement,	Function	body,	Single-Expression	Functions
return	type,	Function	return	type,	Single-Expression	Functions
roundToInt,	Converting	a	Double	to	an	Int
run,	run,	Using	Standard	Library	Functions,	Generic	Functions
scope,	Function	scope

setOf,	Creating	a	set
shl(bitcount),	For	the	More	Curious:	Bit	Manipulation
shr(bitcount),	For	the	More	Curious:	Bit	Manipulation
single-expression,	Single-Expression	Functions
split,	split
structure	of,	Anatomy	of	a	Function
substring,	substring
takeIf,	takeIf,	Using	Standard	Library	Functions
takeUnless,	takeUnless
test	function	naming,	For	the	More	Curious:	Function	Names	in	Backticks
Thread.sleep,	Combat	in	NyetHack
to,	Creating	a	Map
toBigDecimal,	Converting	a	String	to	a	Numeric	Type
toBinaryString,	For	the	More	Curious:	Bit	Manipulation
toDouble,	Converting	a	String	to	a	Numeric	Type
toDoubleOrNull,	Converting	a	String	to	a	Numeric	Type
toFloat,	Converting	a	String	to	a	Numeric	Type
toInt,	Converting	a	Double	to	an	Int
toIntOrNull,	Converting	a	String	to	a	Numeric	Type
toList,	Changing	a	list’s	contents,	Collection	Conversion
toLong,	Converting	a	String	to	a	Numeric	Type
toMutableList,	Changing	a	list’s	contents,	Collection	Conversion
toMutableSet,	Collection	Conversion
toSet,	Collection	Conversion
toString,	For	the	More	Curious:	Any,	toString
transform	functions,	Transforms
transformer	functions,	Transforms
Unit	functions,	Unit	Functions
valueOf,	Exploring	the	World	of	NyetHack

visibility,	Visibility	modifier
with,	with,	Using	Standard	Library	Functions
xor(number),	For	the	More	Curious:	Bit	Manipulation
zip,	Combines

G

generateSequence	function,	Sequences
generic	type	parameters,	Defining	Generic	Types,	Multiple	Generic	Type	Parameters
generics

about,	Generics
defining	a	generic	function,	Generic	Functions
defining	a	generic	type,	Defining	Generic	Types
producers	and	consumers,	in	and	out
type	constraints,	Generic	Constraints
type	erasure,	For	the	More	Curious:	The	reified	Keyword
type	inference	with,	Defining	Generic	Types
with	vararg,	vararg	and	get

get	function,	Operator	Overloading
get/index	operator	([]),	split,	Accessing	a	list’s	elements,	Accessing	Map	Values,	Operator	Overloading
getOrDefault	function,	Accessing	Map	Values
getOrElse	function,	Index	boundaries	and	safe	index	access,	Accessing	Map	Values
getOrNull	function,	Index	boundaries	and	safe	index	access
getOrPut	function,	Adding	Entries	to	a	Map
getValue	function,	Accessing	Map	Values
greater-than	operator	(>),	if/else	Statements,	Operator	Overloading
greater-than-or-equal-to	operator	(>=),	if/else	Statements

H

hashCode	function,	overriding,	For	the	More	Curious:	Defining	Structural	Comparison

I

if/else	statements
comparison	operators	in,	if/else	Statements
defining,	if/else	Statements
else	if	branches,	Adding	more	conditions,	when	Expressions
logical	operators	in,	Logical	operators
nested,	Nested	if/else	statements
omitting	curly	braces	in,	Removing	braces	from	if/else	expressions
order	of	conditions,	Adding	more	conditions

IllegalStateException,	Throwing	an	exception
immutable,	problems	with	terminology,	For	the	More	Curious:	Read-Only	vs	Immutable,	For	the
More	Curious:	A	Closer	Look	at	var	and	val	Properties

imperative	programming,	Why	Functional	Programming?

implicit	returns,	Implicit	returns
in	keyword

for	collections,	Operator	Overloading

for	generic	consumers,	in	and	out
for	ranges,	Ranges
in	for	loops,	Iteration

increment	operator	(++),	while	Loops
indexes	(see	indices)
indexOf	function,	substring
indices

about,	substring
forEachIndexed	function,	Iteration
in	lists,	Accessing	a	list’s	elements
in	strings,	substring
out	of	bounds,	Index	boundaries	and	safe	index	access

infix	keyword,	Extensions	on	Nullable	Types
inheritance

about,	Inheritance
adding	functionality	in	subclasses,	Creating	a	Subclass
creating	subclasses,	Creating	a	Subclass
Kotlin	type	hierarchy,	The	Kotlin	Type	Hierarchy
overriding	superclass	functionality	in	subclasses,	Creating	a	Subclass

init	keyword,	Initializer	Blocks
initialization

about,	Initialization
delegates,	Lazy	initialization
initialization	order,	Initialization	Order,	For	the	More	Curious:	Initialization	Gotchas
initializer	blocks,	Initializer	Blocks,	For	the	More	Curious:	Initialization	Gotchas
late,	Late	initialization
lazy,	Lazy	initialization
properties,	Property	Initialization

inline	keyword,	Function	Inlining
Int	type

about,	Declaring	a	Variable,	Kotlin’s	Built-In	Types,	Numeric	Types,	Integers
converting	from	Double,	Converting	a	Double	to	an	Int
converting	to	Double,	Converting	an	Int	to	a	Double

IntArray	type,	For	the	More	Curious:	Array	Types
intArrayOf	function,	For	the	More	Curious:	Array	Types
IntelliJ	IDEA

about,	Installing	IntelliJ	IDEA
benefits,	For	the	More	Curious:	Why	Use	IntelliJ?

commenting	code,	Kotlin’s	Explicit	Null	Type

console,	Running	your	Kotlin	file
displaying	function	return	types,	Unit	Functions
editor,	Your	First	Kotlin	Project
error	indicator,	Declaring	a	Variable
event	log	tool	window,	Running	your	Kotlin	file
extracting	functions,	Extracting	Code	to	Functions
Kotlin	bytecode	tool	window,	Inspecting	Kotlin	Bytecode
opening	a	project,	Types
overriding	equals	and	hashCode,	For	the	More	Curious:	Defining	Structural	Comparison
project	tool	window,	Your	First	Kotlin	Project
refactoring	code,	Extracting	Code	to	Functions
run	tool	window,	Running	your	Kotlin	file
running	a	project,	Running	your	Kotlin	file
Search	Everywhere	dialog,	Inspecting	Kotlin	Bytecode
shortcut	for	adding	main	function,	Types

interface	keyword,	Defining	an	Interface
interfaces

about,	Interfaces	and	Abstract	Classes
default	property	getters	and	functions,	Default	Implementations
defining,	Defining	an	Interface
implementing,	Implementing	an	Interface
vs	abstract	classes,	Abstract	Classes

interoperating	with	Java
about,	Java	Interoperability
@JvmField	annotation,	Beyond	Classes
@JvmName	annotation,	Beyond	Classes
@JvmOverloads	annotation,	Beyond	Classes
@JvmStatic	annotation,	Beyond	Classes
@NotNull	annotation,	Interoperability	and	Nullity
@Nullable	annotation,	Interoperability	and	Nullity
@Throws	annotation,	Exceptions	and	Interoperability
Android	platform,	Wiring	Up	Views

arrays,	For	the	More	Curious:	Array	Types
backtick	function	naming	syntax,	For	the	More	Curious:	Function	Names	in	Backticks
exceptions,	Exceptions	and	Interoperability
Java	classes,	Interoperating	with	a	Java	Class
Java	fields	and	properties,	Getters,	Setters,	and	Interoperability,	Wiring	Up	Views

Java	method	overloading,	Beyond	Classes
Kotlin	anonymous	functions,	Function	Types	in	Java

Kotlin	companion	objects,	Beyond	Classes
Kotlin	default	parameters,	Beyond	Classes
Kotlin	file-level	functions,	Beyond	Classes
Kotlin	function	types,	Function	Types	in	Java
Kotlin	functions	defined	on	companion	objects,	Beyond	Classes
null	safety,	For	the	More	Curious:	How	Is	Nullability	Enforced?,	Interoperability	and	Nullity
platform	types,	Interoperability	and	Nullity
type	mapping,	Type	Mapping
using	function	literals	vs	anonymous	inner	classes,	Setting	a	Click	Listener

IntRange	type
about,	substring
as	an	Iterable,	Iteration

inv()	function,	For	the	More	Curious:	Bit	Manipulation
is	operator,	Type	Checking
isInitialized	function,	Late	initialization
it	keyword

with	also,	For	the	More	Curious:	Guarding	Against	Race	Conditions
with	anonymous	functions,	The	it	keyword
with	forEach,	Adding	Entries	to	a	Map
with	let,	Using	safe	calls	with	let,	let

Iterable	types,	Iteration
iteration

about,	Iteration
break	expression,	The	break	Expression
with	for,	Iteration
with	forEach,	Iteration
with	forEachIndexed,	Iteration
with	while,	while	Loops

J

Java
(see	also	interoperating	with	Java)
@NotNull	annotation,	For	the	More	Curious:	How	Is	Nullability	Enforced?,	Interoperability	and

Nullity

@Nullable	annotation,	Interoperability	and	Nullity
anonymous	inner	classes,	For	the	More	Curious:	Lambdas	vs	Anonymous	Inner	Classes
arrays,	For	the	More	Curious:	Array	Types
benefits	of	Kotlin,	Why	Kotlin?

checked	exceptions,	For	the	More	Curious:	Checked	vs	Unchecked	Exceptions
class-level	variables,	Getters,	Setters,	and	Interoperability
decompiled	Kotlin	bytecode,	Inspecting	Kotlin	Bytecode
exceptions,	Exceptions	and	Interoperability
getters	and	setters,	Getters,	Setters,	and	Interoperability
null	safety,	For	the	More	Curious:	How	Is	Nullability	Enforced?
nullable	types,	Nullability
NullPointerException,	Nullability
package	private	visibility,	For	the	More	Curious:	Package	Private
primitive	types,	For	the	More	Curious:	Java	Primitive	Types	in	Kotlin,	Type	Mapping
referential	and	structural	equality,	String	Comparison

Java	Development	Kit	(JDK),	Your	First	Kotlin	Project
Java	Virtual	Machine	(JVM),	targeting,	Your	First	Kotlin	Project,	For	the	More	Curious:	Targeting
the	JVM

K

Kotlin	bytecode	tool	window,	Inspecting	Kotlin	Bytecode
Kotlin	language,	history,	Introducing	Kotlin
Kotlin	REPL,	The	Kotlin	REPL
KotlinNullPointerException,	Option	two:	the	double-bang	operator

L

lambda,	lambda	expression,	lambda	result	(see	anonymous	functions)
last	function,	Accessing	a	list’s	elements
lateinit	keyword,	Late	initialization
launch	function,	Specifying	a	Coroutine	with	async
less-than	operator	(<),	if/else	Statements
less-than-or-equal-to	operator	(<=),	if/else	Statements
let	function,	Using	safe	calls	with	let,	The	null	coalescing	operator,	let,	Using	Standard	Library	Functions
List	type

(see	also	lists)
about,	Kotlin’s	Built-In	Types,	Lists,	Modifying	Map	Values
as	an	Iterable,	Iteration
possibility	of	changing	contents,	For	the	More	Curious:	Read-Only	vs	Immutable
size	property,	Transforms
vs	MutableList,	Changing	a	list’s	contents

listOf	function,	Lists

lists
(see	also	List	type,	MutableList	type)
about,	Lists,	Modifying	Map	Values
accessing	elements	by	index,	Accessing	a	list’s	elements
checking	for	elements,	Checking	the	contents	of	a	list
converting	to	sequences,	Sequences
converting	to/from	sets,	Collection	Conversion
creating,	Lists
mutable,	Changing	a	list’s	contents
read-only,	Lists
var	vs	val,	Changing	a	list’s	contents

logical	operators
about,	Logical	operators
order	of	operator	precedence,	Logical	operators

logical	‘and’	operator	(&&),	Logical	operators
logical	‘not’	operator	(!),	Logical	operators
logical	‘or’	operator	(||),	Logical	operators
Long	type,	Numeric	Types

M

main	function
as	application	entry	point,	Creating	your	first	Kotlin	file
IntelliJ	shortcut,	Types

map	function,	Transforms
Map	type

(see	also	maps)
about,	Kotlin’s	Built-In	Types,	Maps
as	an	Iterable,	Iteration
size	property,	Transforms
vs	MutableMap,	Adding	Entries	to	a	Map

mapOf	function,	Creating	a	Map
maps

(see	also	Map	type,	MutableMap	type)
about,	Maps
accessing	values	by	key,	Accessing	Map	Values
adding	entries,	Adding	Entries	to	a	Map
creating,	Creating	a	Map

measureNanoTime	function,	For	the	More	Curious:	Profiling

measureTimeInMillis	function,	For	the	More	Curious:	Profiling
minus	assign	operator	(-=),	Changing	a	list’s	contents,	Adding	elements	to	a	set,	Adding	Entries	to	a
Map

minus	operator	(-),	Adding	Entries	to	a	Map
modules,	Your	First	Kotlin	Project,	For	the	More	Curious:	Package	Private
modulus/remainder	operator	(%),	Converting	a	Double	to	an	Int
MutableList	type

(see	also	lists)
about,	Changing	a	list’s	contents
mutator	functions,	Changing	a	list’s	contents
size	property,	Transforms
vs	List,	Changing	a	list’s	contents

mutableListOf	function,	Changing	a	list’s	contents
MutableMap	type

(see	also	maps)
mutator	functions,	Adding	Entries	to	a	Map
size	property,	Transforms
vs	Map,	Adding	Entries	to	a	Map

mutableMapOf	function,	Creating	a	Map
MutableSet	type

(see	also	sets)
mutator	functions,	Adding	elements	to	a	set
size	property,	Transforms
vs	Set,	Adding	elements	to	a	set

mutableSetOf	function,	Adding	elements	to	a	set
mutator	functions

for	lists,	Changing	a	list’s	contents
for	maps,	Adding	Entries	to	a	Map
for	sets,	Adding	elements	to	a	set

N

non-equality	operator	(!=),	if/else	Statements
Nothing	type,	For	the	More	Curious:	The	Nothing	Type
null	coalescing	operator	(?:),	The	null	coalescing	operator
null	safety

about,	Null	Safety	and	Exceptions
assert	precondition	function,	Preconditions
checking	values	with	!=	null,	Option	three:	checking	whether	a	value	is	null	with	if

checkNotNull	precondition	function,	Preconditions
double-bang	(non-null	assertion)	operator	(!!.),	Option	two:	the	double-bang

operator

error	precondition	function,	Preconditions
IllegalStateException,	Throwing	an	exception
KotlinNullPointerException,	Option	two:	the	double-bang	operator
non-null	types,	Nullability
null	coalescing	operator	(?:),	The	null	coalescing	operator
null	safety	using	conditionals,	Option	three:	checking	whether	a	value	is	null	with	if
nullable	types,	Kotlin’s	Explicit	Null	Type
require	precondition	function,	Preconditions
requireNotNull	precondition	function,	Preconditions
safe	call	operator	(?.),	Option	one:	the	safe	call	operator
try/catch	statements,	Handling	exceptions
with	let,	let

numeric	types
(see	also	individual	types)
about,	Numbers
bitwise	operations,	For	the	More	Curious:	Bit	Manipulation
compared,	Numeric	Types
converting	from	strings,	Converting	a	String	to	a	Numeric	Type
for	decimal	values,	Decimal	Numbers
for	integers,	Integers
maximum	and	minimum	values,	Numeric	Types
precision,	Converting	an	Int	to	a	Double

O

object	declarations
about,	Object	declarations
calling,	Object	declarations
initializing,	Object	declarations

object	expressions,	Object	expressions
object	keyword,	The	object	Keyword,	For	the	More	Curious:	Algebraic	Data	Types
object-oriented	programming

about,	Defining	Classes
benefits,	Refactoring	NyetHack
encapsulation,	Visibility	and	Encapsulation
inheritance,	Inheritance

polymorphism,	Creating	a	Subclass
open	keyword,	Creating	a	Subclass
operator	modifier,	Operator	Overloading
operator	overloading,	Operator	Overloading,	For	the	More	Curious:	Defining	Structural	Comparison
out	keyword,	vararg	and	get,	in	and	out
override	keyword,	Creating	a	Subclass,	Implementing	an	Interface

P

packages,	Using	Packages
Pair	type,	Creating	a	Map
parameterized	types,	Lists
parameters

(see	also	functions)
about,	Function	parameters
it	keyword,	The	it	keyword
of	anonymous	functions,	Function	arguments
vs	arguments,	Calling	a	Function

platform	independence,	For	the	More	Curious:	Targeting	the	JVM,	For	the	More	Curious:	Any
plus	assign	operator	(+=),	Changing	a	list’s	contents,	Adding	elements	to	a	set,	Creating	a	Map,
Adding	Entries	to	a	Map

plus	function,	Operator	Overloading
plusAssign	function,	Operator	Overloading
polymorphism,	Creating	a	Subclass
precondition	functions,	Preconditions
println	function,	Creating	your	first	Kotlin	file
private	visibility,	Visibility	and	Encapsulation
producer	role,	in	and	out
project	tool	window,	Your	First	Kotlin	Project
projects

about,	Your	First	Kotlin	Project
creating,	Your	First	Kotlin	Project
opening,	Types
organizing	with	modules,	For	the	More	Curious:	Package	Private
organizing	with	packages,	Using	Packages
running,	Running	your	Kotlin	file

properties
about,	Class	Properties,	For	the	More	Curious:	A	Closer	Look	at	var	and	val	Properties
accessibility	to	class	functions,	Refactoring	NyetHack

computed,	Computed	properties
defined	with	val	or	var,	Class	Properties,	For	the	More	Curious:	A	Closer	Look	at	var	and	val

Properties

defining	in	constructors,	Defining	properties	in	a	primary	constructor
dot	syntax,	Class	Properties
extension	properties,	Extension	Properties
fields,	Property	getters	and	setters,	Computed	properties
getters,	Property	getters	and	setters
initialization,	Class	Properties,	Property	Initialization
nullable,	For	the	More	Curious:	Guarding	Against	Race	Conditions
overriding	getters	and	setters,	Property	getters	and	setters
race	conditions,	For	the	More	Curious:	Guarding	Against	Race	Conditions
setters,	Property	getters	and	setters
visibility,	Property	visibility
vs	local	variables,	Property	Initialization

protected	visibility,	Creating	a	Subclass
public	visibility,	Visibility	modifier
put	function,	Adding	Entries	to	a	Map
putAll	function,	Adding	Entries	to	a	Map

R

race	conditions,	For	the	More	Curious:	Guarding	Against	Race	Conditions
range	operator	(..),	Ranges,	Operator	Overloading
ranges,	Ranges
rangeTo	function,	Operator	Overloading
readText	function,	Fetching	Live	Data
refactoring	using	IntelliJ	IDEA	command,	Extracting	Code	to	Functions
referential	equality,	String	Comparison
referential	equality	operator	(===),	if/else	Statements
referential	non-equality	operator	(!==),	if/else	Statements
reified	keyword,	For	the	More	Curious:	The	reified	Keyword
remove	function,	Changing	a	list’s	contents,	Adding	elements	to	a	set,	Adding	Entries	to	a	Map
removeAll	function,	Adding	elements	to	a	set
removeIf	function,	Changing	a	list’s	contents
REPL,	The	Kotlin	REPL
replace	function,	String	Manipulation
require	function

about,	Preconditions

for	parameter	requirements,	Preconditions
requireNotNull	function,	Preconditions
reserved	keywords,	For	the	More	Curious:	Function	Names	in	Backticks
return	keyword

about,	Function	body
absent	from	anonymous	functions,	Implicit	returns
absent	from	Unit	functions,	Unit	Functions

return	type,	Function	return	type,	Single-Expression	Functions
roundToInt	function,	Converting	a	Double	to	an	Int
run	function,	run,	Using	Standard	Library	Functions,	Generic	Functions
run	tool	window,	Running	your	Kotlin	file
runtime	errors,	Compile	Time	vs	Runtime

S

safe	call	operator	(?.),	Option	one:	the	safe	call	operator
scope

functions,	Function	scope
relative	scoping,	apply

sealed	classes,	For	the	More	Curious:	Algebraic	Data	Types
Sequence	type

(see	also	sequences)
sequences

about,	Sequences
converting	from	lists,	Sequences
iterator	functions,	Sequences

set	operator	([]=),	Changing	a	list’s	contents
Set	type

(see	also	sets)
about,	Kotlin’s	Built-In	Types,	Sets,	Modifying	Map	Values
as	an	Iterable,	Iteration
possibility	of	changing	contents,	For	the	More	Curious:	Read-Only	vs	Immutable
size	property,	Transforms
vs	MutableSet,	Adding	elements	to	a	set

setOf	function,	Creating	a	set
sets

(see	also	Set	type,	MutableSet	type)
about,	Sets,	Modifying	Map	Values
converting	to/from	lists,	Collection	Conversion

creating,	Creating	a	set
index-based	access,	Creating	a	set
mutable,	Adding	elements	to	a	set

shl(bitcount)	function,	For	the	More	Curious:	Bit	Manipulation
Short	type,	Numeric	Types
shr(bitcount)	function,	For	the	More	Curious:	Bit	Manipulation
single-expression	functions,	Single-Expression	Functions
singletons,	The	object	Keyword
smart	casting,	Option	three:	checking	whether	a	value	is	null	with	if,	Smart	casting
split	function,	split
standard	functions,	Standard	Functions,	Using	Standard	Library	Functions
static	type	checking,	Declaring	a	Variable
string	concatenation,	if/else	Statements
string	interpolation/templating

about,	String	Templates
interpolating	an	expression,	String	Templates

String	type
(see	also	strings)
about,	Kotlin’s	Built-In	Types,	Strings

strings
about,	Strings
accessing	characters	by	index,	substring
converting	to	numeric	types,	Converting	a	String	to	a	Numeric	Type
extracting	substrings,	Extracting	Substrings
immutability,	Strings	are	immutable

structural	equality,	String	Comparison
structural	equality	operator	(==),	if/else	Statements,	Operator	Overloading
substring	function,	substring
super	keyword,	Creating	a	Subclass

T

takeIf	function,	takeIf,	Using	Standard	Library	Functions
takeUnless	function,	takeUnless
this	keyword

in	class	constructors,	Secondary	constructors
in	extension	functions,	Defining	Extension	Functions

Thread.sleep	function,	Combat	in	NyetHack
throw	operator,	Throwing	an	exception,	Custom	exceptions

to	function,	Creating	a	Map
toBigDecimal	function,	Converting	a	String	to	a	Numeric	Type
toBinaryString	function,	For	the	More	Curious:	Bit	Manipulation
toDouble	function,	Converting	a	String	to	a	Numeric	Type
toDoubleOrNull	function,	Converting	a	String	to	a	Numeric	Type
toFloat	function,	Converting	a	String	to	a	Numeric	Type
toInt	function,	Converting	a	Double	to	an	Int
toIntOrNull	function,	Converting	a	String	to	a	Numeric	Type
toList	function,	Changing	a	list’s	contents,	Collection	Conversion
toLong	function,	Converting	a	String	to	a	Numeric	Type
toMutableList	function,	Changing	a	list’s	contents,	Collection	Conversion
toMutableSet	function,	Collection	Conversion
toSet	function,	Collection	Conversion
toString	function,	For	the	More	Curious:	Any,	toString
try/catch	statements,	Handling	exceptions
type	casting,	Type	casting
type	checking,	Declaring	a	Variable
type	inference

about,	Type	Inference
with	function	types,	Type	Inference	Support
with	generics,	Defining	Generic	Types

types
(see	also	individual	types)
Array,	For	the	More	Curious:	Array	Types
Boolean,	Kotlin’s	Built-In	Types
Byte,	Numeric	Types
Char,	Kotlin’s	Built-In	Types,	For	the	More	Curious:	Unicode
collection	types,	Lists	and	Sets
commonly	used,	Kotlin’s	Built-In	Types
Deferred,	Specifying	a	Coroutine	with	async
Double,	Kotlin’s	Built-In	Types,	Numeric	Types,	Decimal	Numbers
Float,	Numeric	Types
generic	(see	generics)
Int,	Declaring	a	Variable,	Kotlin’s	Built-In	Types,	Numeric	Types,	Integers
IntArray,	For	the	More	Curious:	Array	Types
IntRange,	substring
Iterable,	Iteration
Kotlin	vs	Java,	For	the	More	Curious:	Java	Primitive	Types	in	Kotlin
List,	Kotlin’s	Built-In	Types,	Lists,	Modifying	Map	Values

Long,	Numeric	Types
Map,	Kotlin’s	Built-In	Types,	Maps
MutableList,	Changing	a	list’s	contents
MutableMap,	Adding	Entries	to	a	Map
MutableSet,	Adding	elements	to	a	set
non-null,	Nullability
Nothing,	For	the	More	Curious:	The	Nothing	Type
nullable,	Kotlin’s	Explicit	Null	Type
numeric	(see	numeric	types,	individual	type	names)
Pair,	Creating	a	Map
platform	types,	Interoperability	and	Nullity
Sequence,	Sequences
Set,	Kotlin’s	Built-In	Types,	Sets,	Modifying	Map	Values
Short,	Numeric	Types
String,	Kotlin’s	Built-In	Types,	Strings
Unit,	Unit	Functions

U

Unicode	characters,	For	the	More	Curious:	Unicode
Unit	type,	Unit	Functions

V

val	keyword,	Read-Only	Variables
valueOf	function,	Exploring	the	World	of	NyetHack

var	keyword,	Declaring	a	Variable
vararg	keyword,	vararg	and	get
variables

about,	Variables,	Constants,	and	Types
declaring,	Declaring	a	Variable
file-level,	Function	scope
initialization	requirements,	Function	scope
local,	Function	scope
read-only	variables	vs	compile-time	constants,	Compile-Time	Constants
temporary,	Primary	constructors
val	keyword,	Read-Only	Variables
var	keyword,	Declaring	a	Variable

visibility
about,	Visibility	modifier,	Visibility	and	Encapsulation
and	encapsulation,	Visibility	and	Encapsulation
class	functions,	Visibility	and	Encapsulation
default,	Visibility	and	Encapsulation
internal,	Visibility	and	Encapsulation,	For	the	More	Curious:	Package	Private
modifiers,	Visibility	modifier,	Visibility	and	Encapsulation
private,	Visibility	and	Encapsulation
properties,	Property	visibility
protected,	Visibility	and	Encapsulation,	Creating	a	Subclass
public,	Visibility	and	Encapsulation

W

when	expressions
about,	when	Expressions
scoping	conditions	to	arguments,	when	Expressions
vs	if/else	expressions,	when	Expressions

while	loops,	while	Loops
with	function,	with,	Using	Standard	Library	Functions

X

xor(number)	function,	For	the	More	Curious:	Bit	Manipulation

Z

zip	function,	Combines

	Title Page
	Dedication
	Acknowledgments
	Table of Contents
	Introducing Kotlin
	Why Kotlin?
	Who Is This Book For?
	How to Use This Book
	For the More Curious
	Challenges
	Typographical conventions
	Using an eBook

	Looking Forward

	1. Your First Kotlin Application
	Installing IntelliJ IDEA
	Your First Kotlin Project
	Creating your first Kotlin file
	Running your Kotlin file
	Compilation and execution of Kotlin/JVM code

	The Kotlin REPL
	For the More Curious: Why Use IntelliJ?
	For the More Curious: Targeting the JVM
	Challenge: REPL Arithmetic

	2. Variables, Constants, and Types
	Types
	Declaring a Variable
	Kotlin’s Built-In Types
	Read-Only Variables
	Type Inference
	Compile-Time Constants
	Inspecting Kotlin Bytecode
	For the More Curious: Java Primitive Types in Kotlin
	Challenge: hasSteed
	Challenge: The Unicorn’s Horn
	Challenge: Magic Mirror

	3. Conditionals
	if/else Statements
	Adding more conditions
	Nested if/else statements
	More elegant conditionals
	Logical operators
	Conditional expressions
	Removing braces from if/else expressions

	Ranges
	when Expressions
	String Templates
	Challenge: Trying Out Some Ranges
	Challenge: Enhancing the Aura
	Challenge: Configurable Status Format

	4. Functions
	Extracting Code to Functions
	Anatomy of a Function
	Function header
	Visibility modifier
	Function name declaration
	Function parameters
	Function return type

	Function body
	Function scope

	Calling a Function
	Refactoring to Functions
	Writing Your Own Functions
	Default Arguments
	Single-Expression Functions
	Unit Functions
	Named Function Arguments
	For the More Curious: The Nothing Type
	For the More Curious: File-Level Functions in Java
	For the More Curious: Function Overloading
	For the More Curious: Function Names in Backticks
	Challenge: Single-Expression Functions
	Challenge: Fireball Inebriation Level
	Challenge: Inebriation Status

	5. Anonymous Functions and the Function Type
	Anonymous Functions
	The function type
	Implicit returns
	Function arguments
	The it keyword
	Accepting multiple arguments

	Type Inference Support
	Defining a Function That Accepts a Function
	Shorthand syntax

	Function Inlining
	Function References
	Function Type as Return Type
	For the More Curious: Kotlin’s Lambdas Are Closures
	For the More Curious: Lambdas vs Anonymous Inner Classes

	6. Null Safety and Exceptions
	Nullability
	Kotlin’s Explicit Null Type
	Compile Time vs Runtime
	Null Safety
	Option one: the safe call operator
	Using safe calls with let

	Option two: the double-bang operator
	Option three: checking whether a value is null with if
	The null coalescing operator

	Exceptions
	Throwing an exception
	Custom exceptions
	Handling exceptions

	Preconditions
	Null: What Is It Good For?
	For the More Curious: Checked vs Unchecked Exceptions
	For the More Curious: How Is Nullability Enforced?

	7. Strings
	Extracting Substrings
	substring
	split

	String Manipulation
	Strings are immutable

	String Comparison
	For the More Curious: Unicode
	For the More Curious: Traversing a String’s Characters
	Challenge: Improving DragonSpeak

	8. Numbers
	Numeric Types
	Integers
	Decimal Numbers
	Converting a String to a Numeric Type
	Converting an Int to a Double
	Formatting a Double
	Converting a Double to an Int
	For the More Curious: Bit Manipulation
	Challenge: Remaining Pints
	Challenge: Handling a Negative Balance
	Challenge: Dragoncoin

	9. Standard Functions
	apply
	let
	run
	with
	also
	takeIf
	takeUnless

	Using Standard Library Functions

	10. Lists and Sets
	Lists
	Accessing a list’s elements
	Index boundaries and safe index access
	Checking the contents of a list

	Changing a list’s contents

	Iteration
	Reading a File into a List
	Destructuring
	Sets
	Creating a set
	Adding elements to a set

	while Loops
	The break Expression
	Collection Conversion
	For the More Curious: Array Types
	For the More Curious: Read-Only vs Immutable
	Challenge: Formatted Tavern Menu
	Challenge: Advanced Formatted Tavern Menu

	11. Maps
	Creating a Map
	Accessing Map Values
	Adding Entries to a Map
	Modifying Map Values
	Challenge: Tavern Bouncer

	12. Defining Classes
	Defining a Class
	Constructing Instances
	Class Functions
	Visibility and Encapsulation
	Class Properties
	Property getters and setters
	Property visibility
	Computed properties

	Refactoring NyetHack
	Using Packages
	For the More Curious: A Closer Look at var and val Properties
	For the More Curious: Guarding Against Race Conditions
	For the More Curious: Package Private

	13. Initialization
	Constructors
	Primary constructors
	Defining properties in a primary constructor
	Secondary constructors
	Default arguments
	Named arguments

	Initializer Blocks
	Property Initialization
	Initialization Order
	Delaying Initialization
	Late initialization
	Lazy initialization

	For the More Curious: Initialization Gotchas
	Challenge: The Riddle of Excalibur

	14. Inheritance
	Defining the Room Class
	Creating a Subclass
	Type Checking
	The Kotlin Type Hierarchy
	Type casting
	Smart casting

	For the More Curious: Any

	15. Objects
	The object Keyword
	Object declarations
	Object expressions
	Companion objects

	Nested Classes
	Data Classes
	toString
	equals
	copy
	Destructuring declarations

	Enumerated Classes
	Operator Overloading
	Exploring the World of NyetHack
	For the More Curious: Defining Structural Comparison
	For the More Curious: Algebraic Data Types
	Challenge: “Quit” Command
	Challenge: Implementing a World Map
	Challenge: Ring the Bell

	16. Interfaces and Abstract Classes
	Defining an Interface
	Implementing an Interface
	Default Implementations
	Abstract Classes
	Combat in NyetHack

	17. Generics
	Defining Generic Types
	Generic Functions
	Multiple Generic Type Parameters
	Generic Constraints
	vararg and get
	in and out
	For the More Curious: The reified Keyword

	18. Extensions
	Defining Extension Functions
	Defining an extension on a superclass

	Generic Extension Functions
	Extension Properties
	Extensions on Nullable Types
	Extensions, Under the Hood
	Extracting to Extensions
	Defining an Extensions File
	Renaming an Extension
	Extensions in the Kotlin Standard Library
	For the More Curious: Function Literals with Receivers
	Challenge: toDragonSpeak Extension
	Challenge: Frame Extension

	19. Functional Programming Basics
	Function Categories
	Transforms
	Filters
	Combines

	Why Functional Programming?
	Sequences
	For the More Curious: Profiling
	For the More Curious: Arrow.kt
	Challenge: Reversing the Values in a Map
	Challenge: Applying Functional Programming to Tavern.kt
	Challenge: Sliding Window

	20. Java Interoperability
	Interoperating with a Java Class
	Interoperability and Nullity
	Type Mapping
	Getters, Setters, and Interoperability
	Beyond Classes
	Exceptions and Interoperability
	Function Types in Java

	21. Building Your First Android Application with Kotlin
	Android Studio
	Gradle configuration
	Project organization

	Defining a UI
	Running the App on an Emulator
	Generating a Character
	The Activity Class
	Wiring Up Views
	Kotlin Android Extensions Synthetic Properties
	Setting a Click Listener
	Saved Instance State
	Reading from the saved instance state

	Refactoring to an Extension
	For the More Curious: Android KTX and Anko Libraries

	22. Introduction to Coroutines
	Parsing Character Data
	Fetching Live Data
	The Android Main Thread
	Enabling Coroutines
	Specifying a Coroutine with async
	launch vs async/await
	Suspending Functions
	Challenge: Live Data
	Challenge: Minimum Strength

	23. Afterword
	Where to Go from Here
	Shameless Plugs
	Thank You

	A. More Challenges
	Leveling Up with Exercism

	Glossary
	Index

