

This page intentionally left blank

T e n t h E d i t i o n

MODERN DATABASE MANAGEMENT

Editorial Director: Sally Yagan
Editor in Chief: Eric Svendsen
Executive Editor: Bob Horan
Editorial Project Manager: Kelly Loftus
Editorial Assistant: Jason Calcano
Director of Marketing: Patrice Lumumba Jones
Marketing Manager: Anne Fahlgren
Marketing Assistant: Melinda Jensen
Senior Managing Editor: Judy Leale
Project Manager: Becca Richter
Senior Operations Supervisor: Arnold Vila
Operations Specialist: Ilene Kahn
Senior Art Director: Jayne Conte

Cover Designer: Suzanne Behnke
Cover Art: Fotolia © vuifah
Manager, Visual Research: Karen Sanatar
Permissions Project Manager: Shannon Barbe
Media Project Manager, Editorial: Denise Vaughn
Media Project Manager, Production: Lisa Rinaldi
Supplements Editor: Kelly Loftus
Full-Service Project Management: PreMediaGlobal
Composition: PreMediaGlobal
Printer/Binder: Edwards Brothers
Cover Printer: Lehigh-Phoenix Color/Hagerstown
Text Font: Palatino

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate
page within text.

Microsoft® and Windows® are registered trademarks of the Microsoft Corporation in the U.S.A. and other countries. Screen shots and icons
reprinted with permission from the Microsoft Corporation. This book is not sponsored or endorsed by or affiliated with the Microsoft Corporation.

Copyright © 2011, 2009, 2007, 2005, 2002 Pearson Education, Inc., publishing as Prentice Hall, One Lake Street, Upper Saddle River, New Jersey
07458. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright, and permission should be
obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means,
electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use material from this work, please submit a written
request to Pearson Education, Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458.

Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations appear in
this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data

Hoffer, Jeffrey A.
Modern database management / Jeffrey A. Hoffer, V. Ramesh, Heikki Topi. — 10th ed.

p. cm.
Includes index.
ISBN 0-13-608839-2 (alk. paper)

1. Database management. I. Ramesh, V. II. Topi, Heikki. III. Title.
QA76.9.D3M395 2011
005.74—dc22

2010017419

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-608839-2
ISBN 13: 978-0-13-608839-4

T e n t h E d i t i o n

MODERN DATABASE MANAGEMENT

Jeffrey A. Hoffer
University of Dayton

V. Ramesh
Indiana University

Heikki Topi
Bentley University

Prentice Hall
Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto
Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

To Patty, for her sacrifices, encouragement, and support for over 28 years of
being a textbook author widow. To my students and colleagues, for being

receptive and critical and for challenging me to be a better teacher.

—J.A.H.

To Gayathri, for her sacrifices and patience these past 20 years. To my parents
for letting me make the journey abroad, and to my cat, Raju, for being a

part of our family for almost 20 years.

—V.R.

To Anne-Louise, for her loving support, encouragement, and patience.
To Leila, whose laughter and joy of life continue to teach me about what

is truly important. To my teachers, colleagues, and students,
from whom I continue to learn every day.

—H.T.

Founding author of Modern Database
Management, Fred McFadden, passed away
on August 9, 2009. Fred was a dedicated
educator for 30 years in the College of
Business at the University of Colorado,
Colorado Springs. He received his bachelor’s
degree in Mechanical Engineering from
Michigan State University, his MBA from
the University of California, Los Angeles,
and his PhD in Industrial Engineering from
Stanford University. He began writing
Modern Database Management in 1980
and was considered a leading information
systems educator in database management,
systems analysis, and decision support, all
areas in which he was a scholarly author.
Fred’s work on the initial design of this
textbook was pioneering, as few books
existed then to present information
technology to business students.

Fred was an inspiration to his students and colleagues. An outstanding communicator
with a strong sense of clarity and the needs of students, he was a mentor to his
co-authors. Fred’s first concern was always what was best for the students using the
book, and he worked tirelessly to make passages succinct, readable, and motivating.
He taught through examples and imaginatively told stories with graphics. He was
skilled at blending the latest and best industry practices with leading research results
into material accessible to all readers, whether undergraduate or graduate students.
Fred was encouraging to his co-authors, always prepared to take on any writing
assignment, yet never so prideful of his writing as to not accept comments with
respect. Fred was actively involved in writing this text through the 8th edition, and he
remained a confidant and guide after he ceased active writing.

Besides his professional contributions, Fred more than anything else was a caring,
gentle, passionate person. Growing up on a farm in Michigan taught him to love
the outdoors and to have a strong sense of caring for his neighbor, whom Fred saw
as everyone.

The co-authors of Modern Database Management, 10th edition, are humbled to
dedicate this edition to Fred R. McFadden, our friend and colleague.

Fred R. McFadden
1933–2009

This page intentionally left blank

BRIEF CONTENTS

PART I The Context of Database Management 1

Chapter 1 The Database Environment and Development Process 2

PART II Database Analysis 55

Chapter 2 Modeling Data in the Organization 57

Chapter 3 The Enhanced E-R Model 113

PART III Database Design 153

Chapter 4 Logical Database Design and the Relational Model 155

Chapter 5 Physical Database Design and Performance 207

PART IV Implementation 241

Chapter 6 Introduction to SQL 243

Chapter 7 Advanced SQL 289

Chapter 8 Database Application Development 335

Chapter 9 Data Warehousing 375

PART V Advanced Database Topics 431

Chapter 10 Data Quality and Integration 433

Chapter 11 Data and Database Administration 461

Chapter 12 Overview: Distributed Databases 512

Chapter 13 Overview: Object-Oriented Data Modeling 516

Chapter 14 Overview: Using Relational Databases to
Provide Object Persistence 525

Appendices
Appendix A: Data Modeling Tools and Notation 535

Appendix B: Advanced Normal Forms 545

Appendix C: Data Structures 551

Glossary of Acronyms 563

Glossary of Terms 565

Index 573

Available Online at www.pearsonhighered.com/hoffer
Chapter 12 Distributed Databases 12-1

Chapter 13 Object-Oriented Data Modeling 13-1

Chapter 14 Using Relational Databases to Provide Object
Persistence 14-1

vii

www.pearsonhighered.com/hoffer

This page intentionally left blank

ix

CONTENTS

Preface xxv

Part I The Context of Database Management 1
An Overview of Part One 1

Chapter 1 The Database Environment and Development
Process 2

Learning Objectives 2

Data Matter! 2

Introduction 3

Basic Concepts and Definitions 5

Data 5

Data Versus Information 6

Metadata 7

Traditional File Processing Systems 8

File Processing Systems at Pine Valley Furniture Company 8

Disadvantages of File Processing Systems 9
PROGRAM-DATA DEPENDENCE 9
DUPLICATION OF DATA 9
LIMITED DATA SHARING 9
LENGTHY DEVELOPMENT TIMES 9
EXCESSIVE PROGRAM MAINTENANCE 9

The Database Approach 10

Data Models 10
ENTITIES 10
RELATIONSHIPS 10

Relational Databases 10

Database Management Systems 11

Advantages of the Database Approach 12
PROGRAM-DATA INDEPENDENCE 13
PLANNED DATA REDUNDANCY 13
IMPROVED DATA CONSISTENCY 13
IMPROVED DATA SHARING 13
INCREASED PRODUCTIVITY OF APPLICATION DEVELOPMENT 13
ENFORCEMENT OF STANDARDS 13
IMPROVED DATA QUALITY 14
IMPROVED DATA ACCESSIBILITY AND RESPONSIVENESS 14
REDUCED PROGRAM MAINTENANCE 14
IMPROVED DECISION SUPPORT 14

Cautions About Database Benefits 15

Costs and Risks of the Database Approach 15
NEW, SPECIALIZED PERSONNEL 15
INSTALLATION AND MANAGEMENT COST AND COMPLEXITY 15
CONVERSION COSTS 15
NEED FOR EXPLICIT BACKUP AND RECOVERY 15
ORGANIZATIONAL CONFLICT 16

Components of the Database Environment 16

x Contents

The Range of Database Applications 17

Personal Databases 18

Two-Tier Client/Server Databases 18

Multitier Client/Server Databases 19

Enterprise Applications 20

Evolution of Database Systems 21

1960s 21

1970s 23

1980s 23

1990s 23

2000 and Beyond 23

The Database Development Process 24

Systems Development Life Cycle 25
PLANNING—ENTERPRISE MODELING 26
PLANNING—CONCEPTUAL DATA MODELING 26
ANALYSIS—CONCEPTUAL DATA MODELING 26
DESIGN—LOGICAL DATABASE DESIGN 26
DESIGN—PHYSICAL DATABASE DESIGN AND DEFINITION 27
IMPLEMENTATION—DATABASE IMPLEMENTATION 27
MAINTENANCE—DATABASE MAINTENANCE 27

Alternative IS Development Approaches 28

Three-Schema Architecture for Database Development 29

Managing the People Involved in Database Development 31

Developing a Database Application for Pine Valley Furniture
Company 31

Simplified Project Data Model Example 33

A Current Pine Valley Furniture Company Project Request 35

Project Planning 36

Analyzing Database Requirements 37

Designing the Database 38

Using the Database 41

Administering the Database 42
Summary 42 • Key Terms 43 • Review Questions 44 •
Problems and Exercises 45 • Field Exercises 46 •
References 47 • Further Reading 47 • Web Resources 48

� CASE: Mountain View Community Hospital 49

Part II Database Analysis 55
An Overview of Part Two 55

Chapter 2 Modeling Data in the Organization 57
Learning Objectives 57

Introduction 57

The E-R Model: An Overview 59

Sample E-R Diagram 59

E-R Model Notation 61

Modeling the Rules of the Organization 62

Overview of Business Rules 63
THE BUSINESS RULES PARADIGM 63

Contents xi

Scope of Business Rules 64
GOOD BUSINESS RULES 64
GATHERING BUSINESS RULES 64

Data Names and Definitions 65
DATA NAMES 65
DATA DEFINITIONS 66
GOOD DATA DEFINITIONS 66

Modeling Entities and Attributes 68

Entities 68
ENTITY TYPE VERSUS ENTITY INSTANCE 68
ENTITY TYPE VERSUS SYSTEM INPUT, OUTPUT, OR USER 69
STRONG VERSUS WEAK ENTITY TYPES 69
NAMING AND DEFINING ENTITY TYPES 70

Attributes 72
REQUIRED VERSUS OPTIONAL ATTRIBUTES 72
SIMPLE VERSUS COMPOSITE ATTRIBUTES 73
SINGLE-VALUED VERSUS MULTIVALUED ATTRIBUTES 73
STORED VERSUS DERIVED ATTRIBUTES 74
IDENTIFIER ATTRIBUTE 74
NAMING AND DEFINING ATTRIBUTES 76

Modeling Relationships 77

Basic Concepts and Definitions in Relationships 78
ATTRIBUTES ON RELATIONSHIPS 79
ASSOCIATIVE ENTITIES 80

Degree of a Relationship 81
UNARY RELATIONSHIP 81
BINARY RELATIONSHIP 82
TERNARY RELATIONSHIP 83

Attributes or Entity? 84

Cardinality Constraints 86
MINIMUM CARDINALITY 87
MAXIMUM CARDINALITY 87

Some Examples of Relationships and Their
Cardinalities 87
A TERNARY RELATIONSHIP 88

Modeling Time-Dependent Data 89

Modeling Multiple Relationships Between Entity Types 92

Naming and Defining Relationships 93

E-R Modeling Example: Pine Valley Furniture Company 95

Database Processing at Pine Valley Furniture 97

Showing Product Information 97

Showing Product Line Information 98

Showing Customer Order Status 98

Showing Product Sales 100
Summary 100 • Key Terms 101 • Review Questions 101 •
Problems and Exercises 102 • Field Exercises 108 •
References 109 • Further Reading 109 • Web Resources 110

� CASE: Mountain View Community Hospital 111

Chapter 3 The Enhanced E-R Model 113
Learning Objectives 113

Introduction 113

xii Contents

Representing Supertypes and Subtypes 114

Basic Concepts and Notation 115
AN EXAMPLE OF A SUPERTYPE/SUBTYPE RELATIONSHIP 116
ATTRIBUTE INHERITANCE 117
WHEN TO USE SUPERTYPE/SUBTYPE RELATIONSHIPS 117

Representing Specialization and Generalization 118
GENERALIZATION 118
SPECIALIZATION 119
COMBINING SPECIALIZATION AND GENERALIZATION 120

Specifying Constraints in Supertype/Subtype Relationships 121

Specifying Completeness Constraints 121
TOTAL SPECIALIZATION RULE 121
PARTIAL SPECIALIZATION RULE 122

Specifying Disjointness Constraints 122
DISJOINT RULE 122
OVERLAP RULE 122

Defining Subtype Discriminators 123
DISJOINT SUBTYPES 123
OVERLAPPING SUBTYPES 124

Defining Supertype/Subtype Hierarchies 125
AN EXAMPLE OF A SUPERTYPE/SUBTYPE HIERARCHY 125
SUMMARY OF SUPERTYPE/SUBTYPE HIERARCHIES 126

EER Modeling Example: Pine Valley Furniture Company 127

Entity Clustering 130

Packaged Data Models 133

A Revised Data Modeling Process with Packaged Data
Models 135

Packaged Data Model Examples 137
Summary 142 • Key Terms 143 • Review Questions 143 •
Problems and Exercises 144 • Field Exercises 147 •
References 147 • Further Reading 147 • Web Resources 148

� CASE: Case: Mountain View Community Hospital 149

Part III Database Design 153
An Overview of Part Three 153

Chapter 4 Logical Database Design and the Relational
Model 155

Learning Objectives 155

Introduction 155

The Relational Data Model 156

Basic Definitions 156
RELATIONAL DATA STRUCTURE 157
RELATIONAL KEYS 157
PROPERTIES OF RELATIONS 158
REMOVING MULTIVALUED ATTRIBUTES FROM TABLES 158

Sample Database 158

Integrity Constraints 160

Domain Constraints 160

Entity Integrity 160

Referential Integrity 162

Contents xiii

Creating Relational Tables 163

Well-Structured Relations 164

Transforming EER Diagrams into Relations 165

Step 1: Map Regular Entities 166
COMPOSITE ATTRIBUTES 166
MULTIVALUED ATTRIBUTES 167

Step 2: Map Weak Entities 167
WHEN TO CREATE A SURROGATE KEY 169

Step 3: Map Binary Relationships 169
MAP BINARY ONE-TO-MANY RELATIONSHIPS 169
MAP BINARY MANY-TO-MANY RELATIONSHIPS 170
MAP BINARY ONE-TO-ONE RELATIONSHIPS 170

Step 4: Map Associative Entities 171
IDENTIFIER NOT ASSIGNED 171
IDENTIFIER ASSIGNED 172

Step 5: Map Unary Relationships 173
UNARY ONE-TO-MANY RELATIONSHIPS 173
UNARY MANY-TO-MANY RELATIONSHIPS 174

Step 6: Map Ternary (and n-ary) Relationships 175

Step 7: Map Supertype/Subtype Relationships 176

Summary of EER-to-Relational
Transformations 178

Introduction to Normalization 178

Steps in Normalization 179

Functional Dependencies and Keys 179
DETERMINANTS 181
CANDIDATE KEYS 181

Normalization Example: Pine Valley Furniture
Company 182

Step 0: Represent the View in Tabular Form 182

Step 1: Convert to First Normal Form 183
REMOVE REPEATING GROUPS 183
SELECT THE PRIMARY KEY 184
ANOMALIES IN 1NF 184

Step 2: Convert to Second Normal Form 185

Step 3: Convert to Third Normal Form 186
REMOVING TRANSITIVE DEPENDENCIES 186

Determinants and Normalization 187

Step 4: Further Normalization 188

Merging Relations 188

An Example 188

View Integration Problems 189
SYNONYMS 189
HOMONYMS 189
TRANSITIVE DEPENDENCIES 190
SUPERTYPE/SUBTYPE RELATIONSHIPS 190

A Final Step for Defining Relational Keys 190
Summary 192 • Key Terms 194 • Review Questions 194 •
Problems and Exercises 195 • Field Exercises 202 •
References 202 • Further Reading 202 • Web Resources 202

� CASE: Case: Mountain View Community Hospital 203

xiv Contents

Chapter 5 Physical Database Design and Performance 207
Learning Objectives 207

Introduction 207

The Physical Database Design Process 208

Physical Database Design as a Basis for Regulatory Compliance 209

Data Volume and Usage Analysis 210

Designing Fields 211

Choosing Data Types 212
CODING TECHNIQUES 212
HANDLING MISSING DATA 214

Denormalizing and Partitioning Data 214

Denormalization 214
OPPORTUNITIES FOR AND TYPES OF DENORMALIZATION 215
DENORMALIZE WITH CAUTION 217

Partitioning 218

Designing Physical Database Files 220

File Organizations 221
SEQUENTIAL FILE ORGANIZATIONS 222
INDEXED FILE ORGANIZATIONS 222
HASHED FILE ORGANIZATIONS 225

Clustering Files 227

Designing Controls for Files 228

Using and Selecting Indexes 229

Creating a Unique Key Index 229

Creating a Secondary (Nonunique) Key Index 229

When to Use Indexes 230

Designing a Database for Optimal Query Performance 231

Parallel Query Processing 231

Overriding Automatic Query Optimization 232
Summary 233 • Key Terms 233 • Review Questions 234 •
Problems and Exercises 234 • Field Exercises 237 •
References 237 • Further Reading 237 • Web Resources 237

� CASE: Mountain View Community Hospital 238

Part IV Implementation 241
An Overview of Part Four 241

Chapter 6 Introduction to SQL 243
Learning Objectives 243

Introduction 243

Origins of the SQL Standard 245

The SQL Environment 246

Defining A Database in SQL 251

Generating SQL Database Definitions 252

Creating Tables 252

Creating Data Integrity Controls 255

Changing Table Definitions 256

Removing Tables 257

Contents xv

Inserting, Updating, and Deleting Data 257

Batch Input 258

Deleting Database Contents 259

Updating Database Contents 259

Internal Schema Definition in RDBMSs 260

Creating Indexes 260

Processing Single Tables 261

Clauses of the SELECT Statement 261

Using Expressions 263

Using Functions 264

Using Wildcards 267

Using Comparison Operators 267

Using Null Values 268

Using Boolean Operators 268

Using Ranges for Qualification 271

Using Distinct Values 271

Using IN and NOT IN with Lists 273

Sorting Results: The ORDER BY Clause 274

Categorizing Results: The GROUP BY Clause 275

Qualifying Results by Categories: The HAVING
Clause 276

Using and Defining Views 278
MATERIALIZED VIEWS 281
Summary 281 • Key Terms 282 • Review Questions 282 •
Problems and Exercises 283 • Field Exercises 286 •
References 286 • Further Reading 287 • Web Resources 287

� CASE: Mountain View Community Hospital 288

Chapter 7 Advanced SQL 289
Learning Objectives 289

Introduction 289

Processing Multiple Tables 290

Equi-join 291

Natural Join 292

Outer Join 293

Union Join 295

Sample Join Involving Four Tables 295

Self-Join 297

Subqueries 298

Correlated Subqueries 303

Using Derived Tables 304

Combining Queries 305

Conditional Expressions 307

More Complicated SQL Queries 308

Tips for Developing Queries 310

Guidelines for Better Query Design 311

Ensuring Transaction Integrity 313

xvi Contents

Data Dictionary Facilities 314

SQL:200n Enhancements and Extensions
to SQL 317

Analytical and OLAP Functions 317

New Data Types 318

Other Enhancements 319

Programming Extensions 319

Triggers and Routines 320

Triggers 321

Routines 323

Embedded SQL and Dynamic SQL 326
Summary 328 • Key Terms 329 • Review Questions 329 •
Problems and Exercises 330 • Field Exercises 333 •
References 333 • Further Reading 333 •
Web Resources 333

� CASE: Mountain View Community Hospital 334

Chapter 8 Database Application Development 335
Learning Objectives 335

Location, Location, Location! 335

Introduction 336

Client/Server Architectures 336

Partitioning an Application 337

Databases in a Two-Tier Architecture 339

A VB.NET Example 341

A Java Example 343

Three-Tier Architectures 344

Web Application Components 346

Languages for Creating Web Pages 348

Databases in Three-Tier Applications 348

A JSP Web Application 349

A PHP Example 353

An ASP.NET Example 353

Key Considerations in Three-Tier
Applications 355

Stored Procedures 356

Transactions 357

Database Connections 359

Key Benefits of Three-Tier Applications 359

Extensible Markup Language (XML) 360

Storing XML Documents 362

Retrieving XML Documents 362

Displaying XML Data 365

XML and Web Services 365
Summary 369 • Key Terms 369 • Review Questions 370 •
Problems and Exercises 370 • Field Exercises 371 •
References 371 • Further Reading 371 •
Web Resources 371

� CASE: Mountain View Community Hospital 373

Contents xvii

Chapter 9 Data Warehousing 375
Learning Objectives 375

Introduction 375

Basic Concepts of Data Warehousing 377

A Brief History of Data Warehousing 378

The Need for Data Warehousing 378
NEED FOR A COMPANY-WIDE VIEW 378
NEED TO SEPARATE OPERATIONAL AND INFORMATIONAL SYSTEMS 380

Data Warehousing Success 381

Data Warehouse Architectures 382

Independent Data Mart Data Warehousing Environment 382

Dependent Data Mart and Operational Data Store Architecture:
A Three-Level Approach 384

Logical Data Mart and Real-Time Data Warehouse
Architecture 386

Three-Layer Data Architecture 389
ROLE OF THE ENTERPRISE DATA MODEL 390
ROLE OF METADATA 390

Some Characteristics of Data Warehouse Data 390

Status Versus Event Data 390

Transient Versus Periodic Data 391

An Example of Transient and Periodic Data 391
TRANSIENT DATA 391
PERIODIC DATA 393
OTHER DATA WAREHOUSE CHANGES 393

The Derived Data Layer 394

Characteristics of Derived Data 394

The Star Schema 395
FACT TABLES AND DIMENSION TABLES 395
EXAMPLE STAR SCHEMA 396
SURROGATE KEY 398
GRAIN OF THE FACT TABLE 398
DURATION OF THE DATABASE 399
SIZE OF THE FACT TABLE 399
MODELING DATE AND TIME 400

Variations of the Star Schema 401
MULTIPLE FACT TABLES 401
FACTLESS FACT TABLES 402

Normalizing Dimension Tables 403
MULTIVALUED DIMENSIONS 403
HIERARCHIES 404

Slowly Changing Dimensions 406

Determining Dimensions and Facts 408

Column Databases: A New Alternative for Data Warehouses 410

The User Interface 411

Role of Metadata 412

SQL OLAP Querying 412

Online Analytical Processing (OLAP) Tools 414
SLICING A CUBE 415
DRILL-DOWN 415
SUMMARIZING MORE THAN THREE DIMENSIONS 415

xviii Contents

Data Visualization 415

Business Performance Management and Dashboards 417

Data-Mining Tools 418
DATA-MINING TECHNIQUES 418
DATA-MINING APPLICATIONS 419
Summary 420 • Key Terms 420 • Review Questions 421 •
Problems and Exercises 421 • Field Exercises 425 •
References 426 • Further Reading 426 • Web Resources 426

� CASE: Mountain View Community Hospital 428

Part V Advanced Database Topics 431
An Overview of Part Five 431

Chapter 10 Data Quality and Integration 433
Learning Objectives 433

Introduction 433

Data Governance 434

Managing Data Quality 435

Characteristics of Quality Data 436
EXTERNAL DATA SOURCES 437
REDUNDANT DATA STORAGE AND INCONSISTENT METADATA 438
DATA ENTRY PROBLEMS 438
LACK OF ORGANIZATIONAL COMMITMENT 438

Data Quality Improvement 438
GET THE BUSINESS BUY-IN 438
CONDUCT A DATA QUALITY AUDIT 439
ESTABLISH A DATA STEWARDSHIP PROGRAM 440
IMPROVE DATA CAPTURE PROCESSES 441
APPLY MODERN DATA MANAGEMENT PRINCIPLES AND

TECHNOLOGY 441
APPLY TQM PRINCIPLES AND PRACTICES 441

Summary of Data Quality 442

Master Data Management 442

Data Integration: An Overview 443

General Approaches to Data Integration 444
DATA FEDERATION 444
DATA PROPAGATION 444

Data Integration for Data Warehousing: The Reconciled
Data Layer 445

Characteristics of Data After ETL 446

The ETL Process 446
MAPPING AND METADATA MANAGEMENT 447
EXTRACT 447
CLEANSE 448
LOAD AND INDEX 450

Data Transformation 452

Data Transformation Functions 452
RECORD-LEVEL FUNCTIONS 452
FIELD-LEVEL FUNCTIONS 453
Summary 455 • Key Terms 455 • Review Questions 456 •
Problems and Exercises 456 • Field Exercises 457 •
References 457 • Further Reading 458 • Web Resources 458

� CASE: Mountain View Community Hospital 459

Contents xix

Chapter 11 Data and Database Administration 461
Learning Objectives 461
Introduction 462

The Roles of Data and Database Administrators 463

Traditional Data Administration 463

Traditional Database Administration 465

Trends in Database Administration 466

Data Warehouse Administration 468

Summary of Evolving Data Administration Roles 469

The Open Source Movement and Database Management 469

Managing Data Security 471

Threats to Data Security 471

Establishing Client/Server Security 473
SERVER SECURITY 473
NETWORK SECURITY 473

Application Security Issues in Three-Tier Client/Server
Environments 473
DATA PRIVACY 475

Database Software Data Security Features 476
Views 476
Integrity Controls 477
Authorization Rules 479
User-Defined Procedures 480
Encryption 480
Authentication Schemes 481

PASSWORDS 481
STRONG AUTHENTICATION 482

Sarbanes-Oxley (SOX) and Databases 482
IT Change Management 483
Logical Access to Data 483

PERSONNEL CONTROLS 483
PHYSICAL ACCESS CONTROLS 483

IT Operations 484
Database Backup and Recovery 484

Basic Recovery Facilities 484
BACKUP FACILITIES 484
JOURNALIZING FACILITIES 485
CHECKPOINT FACILITY 485
RECOVERY MANAGER 486

Recovery and Restart Procedures 486
DISK MIRRORING 486
RESTORE/RERUN 487
MAINTAINING TRANSACTION INTEGRITY 487
BACKWARD RECOVERY 488
FORWARD RECOVERY 489

Types of Database Failure 490
ABORTED TRANSACTIONS 490
INCORRECT DATA 490
SYSTEM FAILURE 491
DATABASE DESTRUCTION 491

Disaster Recovery 491

xx Contents

Controlling Concurrent Access 492

The Problem of Lost Updates 492

Serializability 492

Locking Mechanisms 493
LOCKING LEVEL 493
TYPES OF LOCKS 494
DEADLOCK 495
MANAGING DEADLOCK 495

Versioning 496

Data Dictionaries and Repositories 498

Data Dictionary 498

Repositories 498

Overview of Tuning the Database for Performance 500

Installation of the DBMS 500

Memory and Storage Space Usage 501

Input/Output (I/O) Contention 501

CPU Usage 502

Application Tuning 502

Data Availability 503

Costs of Downtime 503

Measures to Ensure Availability 504
HARDWARE FAILURES 504
LOSS OR CORRUPTION OF DATA 504
HUMAN ERROR 504
MAINTENANCE DOWNTIME 504
NETWORK-RELATED PROBLEMS 505
Summary 505 • Key Terms 505 • Review Questions 506 •
Problems and Exercises 507 • Field Exercises 509 •
References 509 • Further Reading 510 •
Web Resources 510

� CASE: Mountain View Community Hospital 511

Chapter 12 Overview: Distributed Databases 512
Learning Objectives 512

Overview 512

Objectives and Trade-offs 513

Options for Distributing a Database 513

Distributed DBMS 514

Query Optimization 514
Chapter Review 515 • References 515 •
Further Reading 515 • Web Resources 515

Chapter 13 Overview: Object-Oriented Data Modeling 516
Learning Objectives 516

Overview 516

Unified Modeling Language 517

Object-Oriented Data Modeling 517

Representing Aggregation 523
Chapter Review 523 • References 523 •
Further Reading 524 • Web Resources 524

Contents xxi

Chapter 14 Overview: Using Relational Databases to Provide Object
Persistence 525

Learning Objectives 525

Overview 525

Providing Persistence for Objects Using Relational Databases 526
CALL-LEVEL APPLICATION PROGRAMMING INTERFACES 527
SQL QUERY MAPPING FRAMEWORKS 527
OBJECT-RELATIONAL MAPPING FRAMEWORKS 527
PROPRIETARY APPROACHES 527
SELECTING THE RIGHT APPROACH 528

Object-Relational Mapping Example 529
MAPPING FILES 529

Responsibilities of Object-Relational Mapping
Frameworks 532
Summary 533 • Chapter Review 534 •
References 534 • Further Reading 534 •
Web Resources 534

Appendix A Data Modeling Tools and Notation 535
Comparing E-R Modeling Conventions 535

Visio Professional 2003 Notation 535
ENTITIES 539
RELATIONSHIPS 539

CA ERwin Data Modeler r7.3 Notation 539
ENTITIES 539
RELATIONSHIPS 539

Sybase PowerDesigner 15 Notation 541
ENTITIES 542
RELATIONSHIPS 542

Oracle Designer Notation 542
ENTITIES 542
RELATIONSHIPS 542

Comparison of Tool Interfaces and E-R Diagrams 542

Appendix B Advanced Normal Forms 545
Boyce-Codd Normal Form 545

Anomalies in Student Advisor 545

Definition of Boyce-Codd Normal Form (BCNF) 546

Converting a Relation to BCNF 546

Fourth Normal Form 547

Multivalued Dependencies 549

Higher Normal Forms 549
Key Terms 550 • References 550 •
Web Resources 550

Appendix C Data Structures 551
Pointers 551

Data Structure Building Blocks 552

Linear Data Structures 554

Stacks 555

Queues 555

xxii Contents

Sorted Lists 556

Multilists 558

Hazards of Chain Structures 558

Trees 559

Balanced Trees 559
Reference 562

Glossary of Acronyms 563

Glossary 565

Index 573

www.pearsonhighered.com/hoffer

xxiii

ONLINE CHAPTERS

Chapter 12 Distributed Databases 12-1
Learning Objectives 12-1
Introduction 12-1

Objectives and Trade-offs 12-4

Options for Distributing a Database 12-6

Data Replication 12-6
SNAPSHOT REPLICATION 12-7
NEAR-REAL-TIME REPLICATION 12-8
PULL REPLICATION 12-8
DATABASE INTEGRITY WITH REPLICATION 12-8
WHEN TO USE REPLICATION 12-8

Horizontal Partitioning 12-9

Vertical Partitioning 12-10

Combinations of Operations 12-11

Selecting the Right Data Distribution Strategy 12-12

Distributed DBMS 12-13

Location Transparency 12-15

Replication Transparency 12-16

Failure Transparency 12-17

Commit Protocol 12-17

Concurrency Transparency 12-18
TIME-STAMPING 12-19

Query Optimization 12-19

Evolution of Distributed DBMSs 12-21

Remote Unit of Work 12-22

Distributed Unit of Work 12-22

Distributed Request 12-23

Distributed DBMS Products 12-23
Summary 12-24 • Key Terms 12-25 • Review
Questions 12-25 • Problems and Exercises 12-26 •
Field Exercises 12-27 • References 12-28 • Further
Reading 12-28 • Web Resources 12-28

Chapter 13 Object-Oriented Data Modeling 13-1
Learning Objectives 13-1
Introduction 13-1
Unified Modeling Language 13-3

Object-Oriented Data Modeling 13-4

Representing Objects and Classes 13-4

Types of Operations 13-6

Representing Associations 13-7

Representing Association Classes 13-10

Representing Derived Attributes, Derived Associations,
and Derived Roles 13-12

Representing Generalization 13-12

Interpreting Inheritance and Overriding 13-17

www.pearsonhighered.com/hoffer

xxiv Online Chapters

Representing Multiple Inheritance 13-18

Representing Aggregation 13-19

Business Rules 13-22

Object Modeling Example: Pine ValleyFurniture Company 13-23
Summary 13-25 • Key Terms 13-26 • Review
Questions 13-26 • Problems and Exercises 13-29 •
Field Exercises 13-35 • References 13-35 • Further
Reading 13-36 • Web Resources 13-36

Chapter 14 Using Relational Databases to Provide Object
Persistence 14-1

Learning Objectives 14-1
Introduction 14-1
Object-Relational Impedance Mismatch 14-3

Providing Persistence for Objects Using Relational Databases 14-6

Common Approaches 14-6
CALL-LEVEL APPLICATION PROGRAMMING INTERFACES 14-6
SQL QUERY MAPPING FRAMEWORKS 14-7
OBJECT-RELATIONAL MAPPING FRAMEWORKS 14-7
PROPRIETARY APPROACHES 14-7

Selecting the Right Approach 14-8
CALL-LEVEL APIS 14-8
SQL QUERY MAPPING FRAMEWORKS 14-9
ORM FRAMEWORKS 14-9

Object-Relational Mapping Example Using Hibernate 14-10

Foundation 14-10

Mapping Files 14-11

Hibernate Configuration 14-15

Mapping Object-Oriented Structures to a Relational Database 14-16

Class 14-16

Inheritance: Superclass–Subclass 14-17

One-to-One Association 14-17

Many-to-One and One-to-Many Associations 14-17

Aggregation and Composition 14-19

Many-to-Many Associations 14-19

Responsibilities of Object-Relational Mapping Frameworks 14-20

HQL 14-21
Summary 14-25 • Key Terms 14-25 • Review
Questions 14-26 • Problems and Exercises 14-26 •
Field Exercises 14-27 • References 14-27 •
Further Reading 14-27 • Web Resources 14-27

PREFACE

xxv

This text is designed to be used with an introductory course in database management.
Such a course is usually required as part of an information systems curriculum in
business schools, computer technology programs, and applied computer science
departments. The Association for Information Systems (AIS), the Association for
Computing Machinery (ACM), and the International Federation of Information
Processing Societies (IFIPS) curriculum guidelines (e.g., IS 2010) all outline this type of
database management course. Previous editions of this text have been used successfully
for more than 27 years at both the undergraduate and graduate levels, as well as in
management and professional development programs.

WHAT’S NEW IN THIS EDITION?

This 10th edition of Modern Database Management updates and expands materials in
areas undergoing rapid change due to improved managerial practices, database design
tools and methodologies, and database technology. Later we detail changes to each
chapter. The themes of this 10th edition reflect the major trends in the information
systems field and the skills required of modern information systems graduates:

• Data quality and database processing accuracy, which are extremely important
with the national and international regulations such as the Sarbanes-Oxley Act,
Basel II, COSI, and HIPAA that now require organizations to comply with stan-
dards for reporting accurate financial data and ensuring data privacy. Material
on data quality and master data management has been updated with a stronger
coverage of the people, process, and technology aspects and internationally
accepted best practices for information systems development and management
(specifically, ITIL).

• Integration of data from multiple internal and external databases and data
sources, which is now common for building data warehouses and other types of
enterprise systems, and dealing with the rapid organizational changes in informa-
tion systems brought on by corporate reorganizations, mergers, and acquisitions.
These first two bullets are implemented with the revised Chapter 10 on data
quality and integration, which updates and improves the focus of the material and
introduces the latest principles in these areas.

• Demonstrating knowledge of how to use databases in the context of developing
database applications in two and three-tier client/server environments. In this
10th edition (in Chapters 8 and 14), we provide examples of how to connect to
databases from popular programming languages such as Java and VB.NET as
well Web development languages such as Java Server Pages (JSP), ASP.NET, and
PHP. Coverage of XML has also been revised to emphasize the role of XML in data
storage and retrieval.

• Linking object-oriented information systems development environments (such as
Java Technology and Microsoft .NET) with mainstream technology for maintain-
ing organizational data—relational databases—and in the process dealing with
significant paradigm differences between object-oriented and relational frame-
works. This major change that was introduced for the ninth edition and has been
updated for the 10th edition reflects what is a rapidly changing environment for
database processing.

Also, we are very excited to now provide on the student Companion Web site sev-
eral new, custom-developed short videos that address key concepts and skills from dif-
ferent sections of the book. These videos, produced using Camtasia by the textbook au-
thors, help students to learn difficult material by using both the printed text and a mini
lecture or tutorial. Videos have been developed to support Chapters 1 (introduction to
database), 2 and 3 (conceptual data modeling), 4 (normalization), and 6 and 7 (SQL).

xxvi Preface

More will be produced with future editions. Look for special icons on the opening page
of these chapters to call attention to these videos, and go to www.pearsonhighered
.com/hoffer to find these videos.

Specific improvements to the textbook have been made in the following areas:

• Arranged the Problems and Exercises into roughly increasing order of difficulty to
make it easier for instructors and students to select problems and exercises for
practice and assignments.

• Applied standard data naming conventions throughout the book to make it easier
for students to distinguish data elements from conceptual to physical forms.

• Clarified system requirements through systems modeling and design and out-
lined a process to use the increasingly popular industry and business function
commercial data models to speed up the systems development process. The new
material focuses on changes to the database development process when an organ-
ization uses packaged data models. Students are now better prepared to
understand why these data models are important and how to read and work with
(tailor) them.

• Expanded coverage of SQL, with a few more frequently used components of the
language. We have also created new figures to graphically depict the set process-
ing logic of SQL queries, which gives students, especially visual learners, new
tools to use when writing queries.

• Included new screen captures to reflect the latest database technologies and an
updated Web Resources section in each chapter that lists Web sites that can pro-
vide the student with information on the latest database trends and expanded
background details on important topics covered in the text.

• Reduced the length of the printed book, which we began doing with the eighth
edition. The reduced length is more consistent with what our reviewers say can
be covered in a database course today, given the need for depth of coverage in
the most important topics. Specifically, for the 10th edition, we combined the
first two chapters from the ninth edition into one, so that students can more
quickly cover/review background topics and then dig into the material central
to database management. We have also combined the two chapters from the
ninth edition on client/server and Internet databases into one chapter address-
ing database issues in a multitier computing environment. We continue to
update the chapters on distributed databases, the object-oriented data model,
and using relational databases to provide object persistence, including an
overview in the printed textbook and full versions on the textbook’s Web site.
Care has been given to the layout of figures and tables to also reduce the length
of the book, while adding some new figures and figure elements to better link
the text narrative with the figures. The reduced length should encourage more
students to purchase and read the text, without any loss of coverage and learning.
The book is also now available through CourseSmart, an innovative e-book
delivery system.

MODERN DATABASE MANAGEMENT: A RETRO
AND FUTURE PERSPECTIVE

This 10th edition is a humbling milestone. We are extremely grateful for the support of
adopters, reviewers, students, colleagues, editors, and publisher staff who have been
with us for some or, in a few cases, all of the past 27 years. Database technology has
“grown up” over these years, from a resource for only the most sophisticated organiza-
tions to being a mainstay of almost any computing environment. Some topics, such as
relational databases, have been a central part of the text from the beginning; other top-
ics, such as data warehousing, business intelligence, object-oriented databases, and
databases on the Internet, are newer topics. Database management used to be able to
be explained in 531 pages that were about 80 percent the size of current pages, and
now it takes 624 larger pages (really, we aren’t just wordier). One of the original
authors of this text is still a co-author, while a newer generation of database academic

www.pearsonhighered.com/hoffer
www.pearsonhighered.com/hoffer

Preface xxvii

experts now contributes to these pages with zest and creativity. The original book
authors were educated in fields other than business information systems, whereas
today our newer authors are experienced and educated in this rich field central to the
success of modern organizations.

As a book that we believe has succeeded in leading the database management
textbook market, this book is positioned to continue (in some printed or electronic
form) for at least another 27 years. Writing this book has been and remains an awesome
responsibility. We authors realize that the course that this text supports will be the foun-
dation for student careers with databases. Over the years, we’ve seen students reading
our book on airplanes while traveling on business, and, believe it or not, reading it on a
Florida beach during spring break. The authors remain committed to presenting mate-
rial with sound pedagogy, including topics (both easy and difficult, traditional and
emerging) that are critical for the practical success of database professionals, and being
informed by research that reveals what will be the “next big thing” in database manage-
ment. It is in this spirit that we celebrate our milestone edition, and lay the foundation
for many more editions to come.

FOR THOSE NEW TO MODERN DATABASE MANAGEMENT

Modern Database Management has been a leading text since its first edition in 1983. In
spite of this market leadership position, some instructors have used other good data-
base management texts. Why might you want to switch at this time? There are several
good reasons to switch to Modern Database Management, including:

• One of our goals, in every edition, has been to lead other books in coverage of
the latest principles, concepts, and technologies. See what we have added for the
10th edition in “What’s New in This Edition.” In the past, we have led in coverage
of object-oriented data modeling and UML, Internet databases, data warehousing,
and the use of CASE tools in support of data modeling. For the 10th edition, we
are taking the lead on database development for Internet-based applications, data
quality and integration, the linking of object-oriented development environments
with relational databases, and the increasingly important role of packaged data-
base model as a component of agile, rapid development of information systems.
We also have for the first time Camtasia-produced tutorial videos to accompany
the book, with more to come for future editions.

• While remaining current, this text focuses on what leading practitioners say is
most important for database developers. We work with many practitioners,
including the professionals of the Data Management Association (DAMA) and
The Data Warehousing Institute (TDWI), leading consultants, technology leaders,
and authors of articles in the most widely read professional publications. We draw
on these experts to ensure that what the book includes is important and covers not
only important entry-level knowledge and skills, but also those fundamentals and
mindsets that lead to long-term career success.

• In this highly successful book in its 10th edition, material is presented in a way
that has been viewed as very accessible to students. Our methods have been re-
fined through continuous market feedback for over 27 years, as well as through
our own teaching. Overall, the pedagogy of the book is sound. We use many illus-
trations that help to make important concepts and techniques clear. We use the
most modern notations. The organization of the book is flexible, so you can use
chapters in whatever sequence makes sense for your students. We supplement
the book with data sets to facilitate hands-on, practical learning, and with new
media resources to make some of the more challenging topics more engaging.

• You may have particular interest in introducing SQL early in your course. Our
text can accommodate this. First, we cover SQL in depth, devoting two full
chapters to this core technology of the database field. Second, we include many
SQL examples in early chapters. Third, many instructors have successfully used
the two SQL chapters early in their course. Although logically appearing in the
life cycle of systems development as Chapters 6 and 7, part of the implementation
section of the text, many instructors have used these chapters immediately after

xxviii Preface

Chapter 1 or in parallel with other early chapters. Finally, we use SQL through-
out the book, for example, to illustrate Web application connections to rela-
tional databases in Chapter 8, online analytical processing in Chapter 9, and
accessing relational databases from object-oriented development environments
in Chapter 14.

• We have the latest in supplements and Web site support for the text. See the
supplement package for details on all the resources available to you and your
students.

• This text is written to be part of a modern information systems curriculum with a
strong business systems development focus. Topics are included and addressed so
as to reinforce principles from other typical courses, such as systems analysis and
design, networking, Web site design and development, MIS principles, and com-
puter programming. Emphasis is on the development of the database component
of modern information systems and on the management of the data resource.
Thus, the text is practical, supports projects and other hands-on class activities,
and encourages linking database concepts to concepts being learned throughout
the curriculum the student is taking.

SUMMARY OF ENHANCEMENTS TO EACH CHAPTER

The following sections present a chapter-by-chapter description of the major changes in
this edition. Each chapter description presents a statement of the purpose of that chap-
ter, followed by a description of the changes and revisions that have been made for the
10th edition. Each paragraph concludes with a description of the strengths that have
been retained from prior editions.

Part I: The Context of Database Management
CHAPTER 1: THE DATABASE ENVIRONMENT AND DEVELOPMENT PROCESS This chapter
discusses the role of databases in organizations and previews the major topics in the
remainder of the text. This chapter has undergone extensive reorganization for the 10th
edition because it is a consolidation of two previous chapters, allowing students to
more quickly cover material that previews the rest of the book. After presenting a brief
introduction to the basic terminology associated with storing and retrieving data, the
chapter presents a well organized comparison of traditional file-processing systems and
modern database technology. The chapter then introduces the core components of a
database environment and the range of database applications that are currently in
use within organizations—personal, two-tier, multitier, and enterprise applications.
The explanation of enterprise databases includes databases that are part of enterprise
resource planning systems and data warehouses. A brief history of the evolution of
database technology, from pre-database files to modern object-relational technologies,
is also presented. The chapter then goes on to explain the process of database develop-
ment in the context of structured life cycle, prototyping, and agile methodologies. The
presentation remains consistent with the companion systems analysis text by Hoffer,
George, and Valacich. The chapter also discusses important issues in database develop-
ment, including management of the diverse group of people involved in database
development and frameworks for understanding database architectures and technolo-
gies (e.g., the three-schema architecture). Reviewers frequently note the compatibility of
this chapter with what students learn in systems analysis and design classes.

Part II: Database Analysis
CHAPTER 2: MODELING DATA IN THE ORGANIZATION This chapter presents a thorough
introduction to conceptual data modeling with the entity-relationship (E-R) model. The
chapter title emphasizes the reason for the entity-relationship model: to unambiguously
document the rules of the business that influence database design. Specific subsections
explain in detail how to name and define elements of a data model, which are essential

Preface xxix

in developing an unambiguous E-R diagram. In the 10th edition, we have provided
some new problems and exercises, improved an example from Pine Valley Furniture
to show the relationship of conceptual database design with implementation, and
provided more annotations in figures to better highlight key elements and better link
text to figures. The chapter continues to proceed from simple to more complex exam-
ples, and it concludes with a comprehensive E-R diagram for the Pine Valley Furniture
Company.

CHAPTER 3: THE ENHANCED E-R MODEL This chapter presents a discussion of several
advanced E-R data model constructs, primarily supertype/subtype relationships.
A major change in this chapter is the elimination of the section on business rules, which
many adopters and reviewers said they did not have time to cover in class. The most
significant addition is a more thorough description of how to conduct a data modeling
project when using a packaged data model; this new material better prepares
students for working with commercial off-the-shelf (COTS) software and purchased
data models, which support major efforts to implement patterns and reusability for
application deployment in organizations. As in Chapter 2, figures have been improved
with more annotations to clarify important data modeling structures. The chapter
continues to present a thorough coverage of supertype/subtype relationships and
includes a comprehensive example of an extended E-R data model for the Pine Valley
Furniture Company.

Part III: Database Design
CHAPTER 4: LOGICAL DATABASE DESIGN AND THE RELATIONAL MODEL This chapter
describes the process of converting a conceptual data model to the relational data
model, as well as how to merge new relations into an existing normalized database. It
provides a conceptually sound and practically relevant introduction to normalization,
emphasizing the importance of the use of functional dependencies and determinants as
the basis for normalization. Concepts of normalization and normal forms are extended in
Appendix B. The chapter features a discussion of the characteristics of foreign keys and
introduces the important concept of a nonintelligent enterprise key. Enterprise keys
(also called surrogate keys for data warehouses) are being emphasized as some con-
cepts of object-orientation migrate into the relational technology world. A number of
new review questions and problems and exercises are included, and revision also has
further clarified the presentation of some of the key concepts. The chapter continues to
emphasize the basic concepts of the relational data model and the role of the database
designer in the logical design process.

CHAPTER 5: PHYSICAL DATABASE DESIGN AND PERFORMANCE This chapter describes
the steps that are essential in achieving an efficient database design, with a strong
focus on those aspects of database design and implementation that are typically with-
in the control of a database professional in a modern database environment. The
revised chapter is significantly shorter than the previous one, but we believe the
reduction in length has been achieved without loss of significant content. The cuts
are in areas that are either not relevant anymore because of changes in technology or
not directly related to database design (e.g., storage technologies). Consequently, the
chapter has a stronger and clearer focus on the core concepts. Several new review
questions and problems and exercises are included. The chapter contains an emphasis
on ways to improve database performance, with references to specific techniques
available in Oracle and other DBMSs to improve database processing performance.
The discussion of indexes includes descriptions of the types of indexes (primary and
secondary indexes, join index, hash index table) that are widely available in database
technologies as techniques to improve query processing speed. Appendix C provides
excellent background on fundamental data structures for programs of study that need
coverage of this topic. The chapter continues to emphasize the physical design
process and the goals of that process.

xxx Preface

Part IV: Implementation
CHAPTER 6: INTRODUCTION TO SQL This chapter presents a thorough introduction to the
SQL used by most DBMSs (SQL:1999) and introduces the changes that are included in the
latest proposed standard (SQL:200n). The coverage of SQL is extensive and divided into
this and the next chapter. This chapter includes examples of SQL code, using mostly
SQL:1999 and SQL:200n syntax, as well as some Oracle 11g and Microsoft SQL Server
syntax. Some unique features of MySQL are mentioned. Views, both dynamic and mate-
rialized, are also covered. Chapter 6 explains the SQL commands needed to create and
maintain a database and to program single-table queries. The history and SQL technology
environment sections have been streamlined for the 10th edition. Coverage of dual-table,
IS NULL/IS NOT NULL, more built-in functions, derived tables, and rules for aggregate
functions and the GROUP BY clause are included or improved. New problems and exer-
cises have been added to the chapter. It continues to use the Pine Valley Furniture
Company case to illustrate a wide variety of practical queries and query results.

CHAPTER 7: ADVANCED SQL This chapter continues the description of SQL, with a
careful explanation of multiple-table queries, transaction integrity, data dictionaries,
triggers and stored procedures (the differences between which are now more clearly ex-
plained), and embedded SQL in other programming language programs. All forms of
the OUTER JOIN command are covered. Standard SQL is also used in Chapter 7. This
chapter illustrates how to store the results of a query in a derived table, the CAST com-
mand to convert data between different data types, and the CASE command for doing
conditional processing in SQL. The chapter reduces its coverage of online analytical
processing (OLAP) features of SQL:200n, which are also covered in Chapter 9. A new
section on self-joins and an explanation of when to use EXISTS (NOT EXISTS) versus IN
(NOT IN) are now included. The explanation of cursors with embedded SQL is
enhanced. Emphasis continues on the set-processing style of SQL compared with the
record-processing of programming languages with which the student may be familiar.
New problems and exercises have been added to the chapter. The chapter continues to
contain a clear explanation of subqueries and correlated subqueries, two of the most
complex and powerful constructs in SQL.

CHAPTER 8: DATABASE APPLICATION DEVELOPMENT This chapter provides a modern
discussion of the concepts of client/server architecture and applications, middleware,
and database access in contemporary database environments. Technologies that are
commonly used to create two- and three-tier applications are presented. Many figures
are included to show the options in multitiered networks, including application and
database servers, database processing distribution alternatives among network tiers,
and browser (thin) clients. New to this edition is the presentation of sample application
programs that demonstrate how to access databases from popular programming lan-
guages such as, Java, VB.NET, ASP.NET, JSP, and PHP. This chapter lays the technology
groundwork for the Internet topics presented in the remainder of the text and high-
lights some of the key considerations in creating three-tier Internet-based applications.
The chapter also presents expanded coverage of the role of Extensible Markup
Language (XML) and related technologies in data storage and retrieval. Topics covered
include basics of XML schemas, XQuery, and XSLT. The chapter concludes with an
overview of Web services, associated standards and technologies, and their role in
seamless, secure movement of data in Web-based applications. A brief introduction
to service-oriented architecture (SOA) is also presented. Security topics, including Web
security, are covered in Chapter 11.

CHAPTER 9: DATA WAREHOUSING This chapter describes the basic concepts of data ware-
housing, the reasons data warehousing is regarded as critical to competitive advantage in
many organizations, and the database design activities and structures unique to data
warehousing. An updated section reviews best practices for determining requirements
for a dimensional model. A short new section introduces the emerging column databases
technology, which has been developed especially for data warehousing applications.

Preface xxxi

New exercises provide hands-on practice with a data mart, using SQL and a BI tool
called MicroStrategy that is supported on Teradata University Network. Topics include
alternative data warehouse architectures and the dimensional data model (or star
schema) for data warehouses. Coverage of architectures has been streamlined consistent
with trends in data warehousing, and a deep explanation of how to handle slowly
changing dimensional data is provided. Operational data store; independent, depend-
ent, and logical data marts; and various forms of online analytical processing (OLAP) are
defined (including the SAMPLE SQL command, which is useful for analyzing data from
market research activities). User interfaces, including OLAP, data visualization, business
performance management and dashboards, and data mining are also described.

Part V: Advanced Database Topics
CHAPTER 10: DATA QUALITY AND INTEGRATION This chapter, first introduced in the
ninth edition, has been reorganized to better reflect the nature of enterprise data man-
agement (EDM) activities in organizations. The principles of data governance, which are
at the core of EDM activities, are introduced first. This is followed by coverage of data
quality. This chapter describes the need for an active program to manage data quality in
organizations and outlines the steps that are considered today to be best practices for
data quality management. Quality data are defined, and reasons for poor-quality data
are identified. Methods for data quality improvement, such as data auditing, improving
data capturing (a key part of database design), data stewardship and governance, TQM
principles, modern data management technologies, and high-quality data models are all
discussed. The current hot topic of master data management, one approach to integrating
key business data, is motivated and explained. Different approaches to data integration
are overviewed, and the reasons for each are outlined. The ETL process for data ware-
housing is discussed in detail. The authors believe that the material covered in this
chapter continues to represent a major step forward in database management textbooks.

CHAPTER 11: DATA AND DATABASE ADMINISTRATION This chapter presents a thorough
discussion of the importance and roles of data and database administration and
describes a number of the key issues that arise when these functions are performed.
This chapter emphasizes the changing roles and approaches of data and database
administration, with emphasis on data quality and high performance. It contains a thor-
ough discussion of database backup procedures, as well as extensively expanded and
consolidated coverage of data security threats and responses, and data availability. The
data security topics include database security policies, procedures, and technologies
(including encryption and smart cards). New to this edition is expanded coverage of the
role of databases in Sarbanes-Oxley compliance. We have again added to our discussion
of open source DBMS to cover more on the benefits and hazards of this technology and
how to choose an open source DBMS. In addition, the topic of heartbeat queries is
included in the coverage of database performance improvements. The chapter contin-
ues to emphasize the critical importance of data and database management in manag-
ing data as a corporate asset.

CHAPTER 12: DISTRIBUTED DATABASES This chapter reviews the role, technologies, and
unique database design opportunities of distributed databases. The objectives and
trade-offs for distributed databases, data replication alternatives, factors in selecting a
data distribution strategy, and distributed database vendors and products are covered.
This chapter provides thorough coverage of database concurrency access controls. The
revision of the chapter introduces several technical updates that are related to the sig-
nificant advancements in both data management and networking technologies, which
form the context for distributed database. An overview of this chapter is included in the
printed textbook, and the full version of this chapter has been moved to the textbook’s
Web site. Many reviewers indicated that they seldom are able to cover this chapter in an
introductory course, but having the material available is critical for advanced students
or special topics. Having an overview in the printed text with the full chapter available
to students provides the greatest flexibility and economy.

xxxii Preface

CHAPTER 13: OBJECT-ORIENTED DATA MODELING This chapter presents an introduction
to object-oriented modeling using Object Management Group’s Unified Modeling
Language (UML). This chapter has been carefully reviewed to ensure consistency with
the latest UML notation and best industry practices. UML provides an industry-stan-
dard notation for representing classes and objects. The chapter continues to emphasize
basic object-oriented concepts, such as inheritance, encapsulation, composition, and
polymorphism. The revised version of the chapter also includes several brand-new
modeling exercises. As with Chapters 12 and 14, the full version of this chapter is avail-
able on the textbook’s Web site, with a brief overview included in the printed text.

CHAPTER 14: USING RELATIONAL DATABASES TO PROVIDE OBJECT PERSISTENCE This
chapter presents an up-to-date approach to how relational databases are used with
object-oriented development environments, such as Java EE and Microsoft .NET.
Object-oriented and relational approaches have critical design mismatches, which are
outlined in the chapter, along with ways database and application developers can deal
with these issues. The chapter reviews call-level application program interfaces, SQL
query mapping frameworks, and object-relational mapping frameworks as approaches
to providing object persistence, which is an essential need in modern development
environments that integrate object-oriented development and relational databases. The
chapter has been revised to take into account the changing landscape of object-relational
mapping (ORM) technologies and the strengthening of the Java Persistence API (JPA)
standard. Object-relational mapping is illustrated using the XML mapping files of
Hibernate, the most popular ORM framework and the most widely used implementa-
tion of the JPA standard. As with Chapters 12 and 13, the full version of this chapter is
available on the textbook’s Web site, with a brief overview included in the printed text.

Appendices
The 10th edition contains three appendices intended for those who wish to explore cer-
tain topics in greater depth.

APPENDIX A: DATA MODELING TOOLS AND NOTATION This appendix addresses a need
raised by many readers—how to translate the E-R notation in the text into the form
used by the CASE tool or DBMS used in class. Specifically, this appendix compares the
notations of CA ERwin Data Modeler r7.3, Oracle Designer 10g, Sybase PowerDesigner
15, and Microsoft Visio Pro 2003. Tables and illustrations show the notations used for
the same constructs in each of these popular software packages.

APPENDIX B: ADVANCED NORMAL FORMS This appendix presents a description (with
examples) of Boyce-Codd and fourth normal forms, including an example of BCNF to
show how to handle overlapping candidate keys. Other normal forms are briefly intro-
duced. The Web Resources section includes a reference for information on many
advanced normal form topics.

APPENDIX C: DATA STRUCTURES This appendix describes several data structures that
often underlie database implementations. Topics include the use of pointers, stacks,
queues, sorted lists, inverted lists, and trees.

PEDAGOGY

A number of additions and improvements have been made to chapter-end materials to
provide a wider and richer range of choices for the user. The most important of these
improvements are the following:

1. Review Questions Questions have been updated to support new and enhanced
chapter material.

2. Problems and Exercises This section has been reviewed in every chapter, and
many chapters contain new problems and exercises to support updated chapter
material. Of special interest are questions in many chapters that give students

Preface xxxiii

opportunities to use the data sets provided for the text. Also, Problems and
Exercises have be re-sequenced into roughly increasing order of difficulty, which
should help instructors and students to find exercises appropriate for what they
want to accomplish.

3. Field Exercises This section provides a set of “hands-on” minicases that can be
assigned to individual students or to small teams of students. Field exercises
range from directed field trips to Internet searches and other types of research
exercises.

4. Case The Mountain View Community Hospital (MVCH) case was updated for
the 10th edition only to the extent that chapters have been combined from the
ninth edition. In each chapter, the case begins with a description of a realistic,
modern hospital situation as it relates to that chapter. The case then presents a
series of case questions and exercises that focus on specific aspects of the case.
The final section includes project assignments, which tie together some issues
and activities across chapters. These project assignments can be completed by
individual students or by small project teams. This case provides an excellent
means for students to gain hands-on experience with the concepts and tools they
have studied.

5. Web Resources Each chapter contains a list of updated and validated URLs for
Web sites that contain information that supplements the chapter. These Web sites
cover online publication archives, vendors, electronic publications, industry stan-
dards organizations, and many other sources. These sites allow students and
instructors to find updated product information, innovations that have appeared
since the printing of the book, background information to explore topics in greater
depth, and resources for writing research papers.

We have also updated the pedagogical features that helped make the 10th edition
widely accessible to instructors and students. These features include the following:

1. Learning objectives appear at the beginning of each chapter, as a preview of the
major concepts and skills students will learn from that chapter. The learning objec-
tives also provide a great study review aid for students as they prepare for assign-
ments and examinations.

2. Chapter introductions and summaries both encapsulate the main concepts of each
chapter and link material to related chapters, providing students with a compre-
hensive conceptual framework for the course.

3. The chapter review includes the Review Questions, Problems and Exercises, and
Field Exercises discussed earlier, also contains a Key Terms list to test the student’s
grasp of important concepts, basic facts, and significant issues.

4. A running glossary defines key terms in the page margins as they are discussed in
the text. These terms are also defined at the end of the text, in the Glossary of
Terms. Also included is the end-of-book Glossary of Acronyms for abbreviations
commonly used in database management.

ORGANIZATION

We encourage instructors to customize their use of this book to meet the needs of both
their curriculum and student career paths. The modular nature of the text, its broad
coverage, extensive illustrations, and its inclusion of advanced topics and emerging
issues make customization easy. The many references to current publications and
Web sites can help instructors develop supplemental reading lists or expand classroom
discussion beyond material presented in the text. The use of appendices for several
advanced topics allows instructors to easily include or omit these topics.

The modular nature of the text allows the instructor to omit certain chapters or to
cover chapters in a different sequence. For example, an instructor who wishes to
emphasize data modeling may cover Chapter 13 on object-oriented data modeling
along with or instead of Chapters 2 and 3. An instructor who wishes to cover only basic
entity-relationship concepts (but not the enhanced E-R model) may skip Chapter 3
or cover it after Chapter 4 on the relational model. Three of the advanced topic

xxxiv Preface

chapters—Chapters 12 through 14—are provided in overview form in the printed text
and in full version on the book’s Companion Web site; this gives the instructor added
flexibility to cover these advanced topics at different levels.

We have contacted many adopters of Modern Database Management and asked
them to share with us their syllabi. Most adopters cover the chapters in sequence, but
several alternative sequences have also been successful. These alternatives include:

• Some instructors cover Chapter 11 on data and database administration immedi-
ately after Chapter 5 on physical database design and the relational model.

• To cover SQL as early as possible, instructors have effectively covered Chapters 6
and 7 immediately after Chapter 4; some have even covered Chapter 6 immedi-
ately after Chapter 1.

• Many instructors have students read appendices along with chapters, such
as reading Appendix A on data modeling notations with Chapters 2 or 3 on
E-R modeling, Appendix B on advanced normal forms with Chapter 4 on the
relational model, and Appendix C on data structures with Chapter 5.

CASE TOOLS

Modern Database Management, 10th edition, offers adopters the option of acquiring
outstanding CASE tools software packages from Microsoft and Oracle. Students can
purchase this book packaged with the full editions of Microsoft Visio Pro and Oracle
11g at a greatly reduced fee. We are proud to offer such highly valued, powerful soft-
ware packages to students at such a low cost. These packages can be used to draw data
models, generate normalized relations from conceptual data models, and generate
database definition code, among other tasks. These tools are also useful in other courses
on information systems development.

THE SUPPLEMENT PACKAGE: WWW.PEARSONHIGHERED.COM/HOFFER

A comprehensive and flexible technology support package is available to enhance the
teaching and learning experience. All instructor and student supplements are available
on the text Web site: www.pearsonhighered.com/hoffer.

FOR STUDENTS The following online resources are available to students:

• The Web Resources module includes the Web links referenced at the end of each
chapter in the text to help students further explore database management topics
on the Web.

• A full glossary is available, along with a glossary of acronyms.
• Links to sites where students can use our data sets are provided. Although our data

sets are provided in formats that are easily loaded on computers at your univer-
sity or on student PCs, some instructors will not want the responsibility of sup-
porting local data sets. The application service providers with whom we have
developed arrangements (e.g., www.teradatastudentnetwork.com) provide thin-
client interfaces to SQL coding environments. See the text’s Web site and the
inside front cover for more details.

• Complete chapters on distributed databases, object-oriented data modeling, and object-
oriented development with relational databases allow you to learn in depth about
topics that are overviewed in Chapters 12 through 14 of the textbook.

• Accompanying databases are also provided. Two versions of the Pine Valley Furniture
Company case have been created and populated for the 10th edition. One version
is scoped to match the textbook examples. A second version is fleshed out with
more data and tables, as well as sample forms, reports, and modules coded in
Visual Basic. This version is not complete, however, so that students can create miss-
ing tables and additional forms, reports, and modules. Databases are provided in
several formats (ASCII tables, Oracle script, and Microsoft Access), but formats vary
for the two versions. Some documentation of the databases is also provided. Both
versions of the PVFC database are also provided on Teradata University Network.

WWW.PEARSONHIGHERED.COM/HOFFER
www.pearsonhighered.com/hoffer
www.teradatastudentnetwork.com

Preface xxxv

• Several new, custom-developed short videos that address key concepts and skills from
different sections of the book help students to learn material that may be more diffi-
cult to understand by using both the printed text and a mini lecture.

FOR INSTRUCTORS The following online resources are available to instructors:

• The Instructor’s Resource Manual by Chelley Vician, University of St. Thomas, pro-
vides chapter-by-chapter instructor objectives, classroom ideas, and answers to
Review Questions, Problems and Exercises, Field Exercises, and Project Case
Questions. The Instructor’s Resource Manual is available for download on the in-
structor area of the text’s Web site.

• The Test Item File and TestGen by John P. Russo, Wentworth Institute of Technology,
includes a comprehensive set of test questions in multiple-choice, true/false, and
short-answer format, ranked according to level of difficulty and referenced with
page numbers and topic headings from the text. The Test Item File is available in
Microsoft Word and as the computerized TestGen. TestGen is a comprehensive
suite of tools for testing and assessment. It allows instructors to easily create and
distribute tests for their courses, either by printing and distributing through tradi-
tional methods or by online delivery via a local area network (LAN) server. Test
Manager features Screen Wizards to assist you as you move through the program,
and the software is backed with full technical support.

• PowerPoint presentation slides by Michel Mitri, James Madison University, feature
lecture notes that highlight key terms and concepts. Instructors can customize the
presentation by adding their own slides or editing existing ones.

• The Image Library is a collection of the text art organized by chapter. It includes all
figures, tables, and screenshots (as permission allows) and can be used to enhance
class lectures and PowerPoint slides.

• Accompanying databases are also provided. Two versions of the Pine Valley Furniture
Company case have been created and populated for the 10th edition. One version
is scoped to match the textbook examples. A second version is fleshed out with
more data and tables, and sample forms, reports, and modules coded in Visual
Basic. This version is not complete, however, so that students can create missing
tables and additional forms, reports, and modules. Databases are provided in sev-
eral formats (ASCII tables, Oracle script, and Microsoft Access), but formats vary
for the two versions. Some documentation of the databases is also provided. Both
versions of the PVFC database are also provided on Teradata University Network.

• A white paper by Willard Baird, Progress Telecom, Achieving Optimal Database
Performance, provides supplemental reading for students interested in tuning an
Oracle database. This paper provides a real-world perspective from a very experi-
enced database administrator. It offers students and instructors an opportunity to
consider the differences between material taught in classrooms and the hands-on
experience gained through professional database administration.

MATERIALS FOR YOUR ONLINE COURSE

Pearson Prentice Hall supports our adopters using online courses by providing files
ready for upload into Blackboard course management systems for our testing, quizzing,
and other supplements. Please contact your local Pearson Prentice Hall representative
for further information on your particular course.

COURSESMART eTEXTBOOK

CourseSmart is an exciting new choice for students looking to save money. As an alter-
native to purchasing the print textbook, students can purchase an electronic version of
the same content and save up to 50% off the suggested list price of the print text. With a
CourseSmart eTextbook, students can search the text, make notes online, print out read-
ing assignments that incorporate lecture notes, and bookmark important passages for
later review. For more information, or to purchase access to the CourseSmart eTextbook,
visit www.coursesmart.com.

www.coursesmart.com

xxxvi Preface

ACKNOWLEDGMENTS

We are grateful to numerous individuals who contributed to the preparation of Modern
Database Management, 10th edition. First, we wish to thank our reviewers for their
detailed suggestions and insights, characteristic of their thoughtful teaching style. As
always, analysis of topics and depth of coverage provided by the reviewers was crucial.
Our reviewers and others who gave us many useful comments to improve the text
include Tamara Babaian, Bentley University; Gary Baram, Temple University; Timothy
Bridges, University of Central Oklahoma; Bijoy Bordoloi, Southern Illinois University,
Edwardsville; Traci Carte, University of Oklahoma; Wingyan Chung, Santa Clara
University; Jon Gant, Syracuse University; Jinzhu Gao, University of the Pacific; Monica
Garfield, Bentley University; Rick Gibson, American University; William H.
Hochstettler III, Franklin University; Weiling Ke, Clarkson University; Dongwon Lee,
Pennsylvania State University; Ingyu Lee, Troy University; Brian Mennecke, Iowa State
University; Dat-Dao Nguyen, California State University, Northridge;Lara Preiser-
Houy, California State Polytechnic University, Pomona; John Russo, Wentworth
Institute of Technology; Ioulia Rytikova, George Mason University; Richard Segall,
Arkansas State University; Chelley Vician, University of St. Thomas; and Daniel S.
Weaver, Messiah College.

We received excellent input from people in industry, including Todd Walter,
Carrie Ballinger, Rob Armstrong, and Dave Schoeff (all of Teradata Corp); Chad
Gronbach and Philip DesAutels (Microsoft Corp.); Peter Gauvin (Ball Aerospace);
Mridvika Raisinghani (Ernst & Young); Nisha Subramanian (Cook Medical, Inc.); Paul
Longhurst (Overstock.com); Derek Strauss (Gavroshe International); Richard
Hackathorn (Bolder Technology); and Michael Alexander (Open Access Technology,
International).

We also thank Klara Nelson at the University of Tampa, who authored the
Mountain View Community Hospital case study. This extensive real-world situation is
a notable addition to the text. Linda Jayne, formerly operations manager of Suncoast
Hospital, Largo, Florida, provided many relevant stories and validation of the situa-
tions faced by Mountain View Community Hospital, introduced in the eighth edition.
We appreciate her taking the time to meet with us and to review the existing case.

Thanks are also due Willard Baird, Progress Telecom, a highly experienced Oracle
database administrator, who has co-authored the Web site piece Achieving Optimal
Database Performance with us. Willard is able to convey trends in database administra-
tion to us very clearly and in a timely fashion, and his experience with the trend toward
more holistic approaches to database optimization that have occurred over the past few
years have led to our decision to put up a piece on the Web site for students and instruc-
tors who desire a deeper understanding of this area.

We have special admiration for and gratitude to Chelley Vician of University of
St. Thomas, author of the Instructor’s Resource Manual. Chelley has been extremely careful
in preparing the Instructor’s Resource Manual and in the process has helped us clarify and
fix various parts of the text. Chelley has added great value to this book. Christina Cooper,
Indiana University, has been of considerable assistance to Chelley Vician, to ensure nota-
tional changes in the Instructor’s Resource Manual. We also thank Sven Aelterman, Troy
University, for his many excellent suggestions for improvements and clarifications
throughout the text. And we thank Pragya Seth, an MS in Information Systems (MSIS)
student at Indiana University, for help in reviewing material in several chapters.

We are also grateful to the staff and associates of Pearson Prentice Hall for their
support and guidance throughout this project. In particular, we wish to thank Executive
Editor Bob Horan, who coordinated the planning for the text, Editorial Project Manager
Kelly Loftus, who kept us on track and made sure everything was complete, Production
Project Manager Becca Richter, Senior Marketing Manager Anne Fahlgren, Media
Project Manager Denise Vaughn, and Marketing Assistant Melinda Jensen. We extend
special thanks to Jen Carley at PMG, whose supervision of the production process was
excellent.

Finally, we give immeasurable thanks to our spouses, who endured many
evenings and weekends of solitude for the thrill of seeing a book cover hang on a den

Preface xxxvii

wall. In particular, we marvel at the commitment of Patty Hoffer, who has lived the
lonely life of a textbook author’s spouse through 10 editions over more than 28 years of
late-night and weekend writing. Anne-Louise Klaus knew this time what to expect, and
we want to sincerely thank her for being willing to continue her wholehearted support
for Heikki’s involvement in the project. For Gayathri Mani, this was the first time, but
her unwavering support and understanding are equally appreciated. Much of the value
of this text is due to their patience, encouragement, and love, but we alone bear the
responsibility for any errors or omissions between the covers.

Jeffrey A. Hoffer

V. Ramesh

Heikki Topi

This page intentionally left blank

Chapter 1
The Database
Environment and
Development Process

IThe Context of Database
Management

P A R T

AN OVERVIEW OF PART ONE

In this chapter and opening part of the book, we set the context and provide basic
database concepts and definitions used throughout the text. In this part, we por-
tray database management as an exciting, challenging, and growing field that pro-
vides numerous career opportunities for information systems students. Databases
continue to become a more common part of everyday living and a more central
component of business operations. From the database that stores contact informa-
tion in your personal digital assistant (PDA) or smartphone to the very large data-
bases that support enterprise-wide information systems, databases have become
the central points of data storage that were envisioned decades ago. Customer
relationship management and Internet shopping are examples of two database-
dependent activities that have developed in recent years. The development of data
warehouses that provide managers the opportunity for deeper and broader histor-
ical analysis of data also continues to take on more importance.

We begin by providing basic definitions of data, database, metadata, database
management system, data warehouse, and other terms associated with this environ-
ment. We compare databases with the older file management systems they replaced
and describe several important advantages that are enabled by the carefully planned
use of databases. We describe the major components of the database environment
and the types of applications, as well as two-tier, multitier, and enterprise databases.
Enterprise databases include those that are used to support enterprise resource plan-
ning systems and data warehouses.

The chapter in this introductory part of the book also describes the general
steps followed in the analysis, design, implementation, and administration of data-
bases. Further, this chapter also illustrates how the database development process
fits into the overall information systems development process. Database develop-
ment for both structured life cycle and prototyping methodologies is explained. We
introduce enterprise data modeling, which sets the range and general contents of
organizational databases. This is often the first step in database development. We
introduce the concept of schemas and the three-schema architecture, which is the
dominant approach in modern database systems. Finally, we describe the roles of
the various people who are typically involved in a database development project.
The Pine Valley Furniture Company case is introduced and used to illustrate many
of the principles and concepts of database management. This case is used through-
out the text as a continuing example of the use of database management systems.

2

The Database Environment
and Development Process

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: data, database, database
management system, data model, information, metadata, enterprise data model,
entity, relational database, enterprise resource planning (ERP) system, database
application, data warehouse, data independence, repository, user view, enterprise
data modeling, systems development life cycle (SDLC), prototyping, agile
software development, computer-aided software engineering (CASE), conceptual
schema, logical schema, and physical schema.

� Name several limitations of conventional file processing systems.
� Explain at least ten advantages of the database approach, compared to traditional

file processing.
� Identify several costs and risks of the database approach.
� List and briefly describe nine components of a typical database environment.
� Identify four categories of applications that use databases and their key

characteristics.
� Describe the life cycle of a systems development project, with an emphasis on the

purpose of database analysis, design, and implementation activities.
� Explain the prototyping and agile-development approaches to database and

application development.
� Explain the roles of individuals who design, implement, use, and administer databases.
� Explain the differences between external, conceptual, and internal schemas and the

reasons for the three-schema architecture for databases.

DATA MATTER!

The world has become a very complex place. The advantage goes to people and
organizations that collect, manage, and interpret information effectively. To make
our point, let’s visit Continental Airlines. A little over a decade ago, Continental
was in real trouble, ranking at the bottom of U.S. airlines in on-time performance,
mishandled baggage, customer complaints, and overbooking. Speculation was
that Continental would have to file for bankruptcy for the third time. In the past

1
C H A P T E R

Visit www.pearsonhighered.com/
hoffer to view the accompanying
video for this chapter.

www.pearsonhighered.com/

Chapter 1 • The Database Environment and Development Process 3

10 years, Continental had had 10 CEOs. Could more effective collection,
management, and interpretation of Continental’s data and information help
Continental’s situation? The answer is a definite yes. Today Continental is one of
the most respected global airlines and has been named the Most Admired Global
Airline on Fortune magazine’s list of Most Admired Global Companies annually
since 2004. It was recognized as Best Airline Based in North America and the airline
with the Best Airline Finance Deal by the 2008 OAG Airline of the Year awards.

Continental’s former chairman of the board and CEO, Larry Kellner, points to the
use of real-time business intelligence as a significant factor in Continental’s
turnaround. How? Implementation of a real-time or “active” data warehouse has
supported the company’s business strategy, dramatically improving customer service
and operations, creating cost savings, and generating revenue. Fifteen years ago,
Continental could not even track a customer’s travel itinerary if more than one stop
was involved. Now, employees who deal with travelers know if a high-value customer
is currently experiencing a delay in a trip, where and when the customer will arrive at
the airport, and the gate where the customer must go to make the next airline
connection. High-value customers receive letters of apology if they experience travel
delays on Continental and sometimes a trial membership in the President’s Club.

Following is a list of some of the wins that came from integrating revenue,
flight schedule, customer, inventory, and security data as part of the data
warehousing project:

1. Better optimization of airfares using mathematical programming models that
are able to adjust the number of seats sold at a particular fare using real-time
sales data

2. Improvement of customer relationship management focused on Continental’s
most profitable customers

3. Immediate availability of customer profiles to sales personnel, marketing
managers, and flight personnel, such as ticket agents and flight attendants

4. Support for union negotiations, including analysis of pilot staffing that allows
management and union negotiators to evaluate the appropriateness of work
assignment decisions

5. Development of fraud profiles that can be run against the data to identify
transactions that appear to fit one of over 100 fraud profiles

To emphasize this last win, Continental’s ability to meet Homeland Security
requirements has been greatly aided by the real-time data warehouse. During the
period immediately following the terrorist attacks of September 11, 2001,
Continental was able to work with the FBI to determine whether any terrorists on
the FBI watch list were attempting to board Continental flights. The data
warehouse’s ability to identify fraudulent activity and monitor passengers
contributes significantly to Continental’s goal of keeping all its passengers and
crew members safe (Anderson-Lehman et al., 2004).

Continental’s turnaround has been based on its corporate culture, which places
a high value on customer service and the effective use of information through the
integration of data in the data warehouse. Data do, indeed, matter. The topics
covered in this textbook will equip you with a deeper understanding of data and
how to collect, organize, and manage data. This understanding will give you the
power to support any business strategy and the deep satisfaction that comes from
knowing how to organize data so that financial, marketing, or customer service
questions can be answered almost as soon as they are asked. Enjoy!

INTRODUCTION

Over the past two decades there has been enormous growth in the number and
importance of database applications. Databases are used to store, manipulate, and
retrieve data in nearly every type of organization, including business, health care,
education, government, and libraries. Database technology is routinely used by
individuals on personal computers, by workgroups accessing databases on network

4 Part I • The Context of Database Management

servers, and by employees using enterprise-wide distributed applications.
Databases are also accessed by customers and other remote users through diverse
technologies, such as automated teller machines, Web browsers, smartphones, and
intelligent living and office environments. Most Web-based applications depend
on a database foundation.

Following this period of rapid growth, will the demand for databases and
database technology level off? Very likely not! In the highly competitive
environment of the early 2000s, there is every indication that database technology
will assume even greater importance. Managers seek to use knowledge derived
from databases for competitive advantage. For example, detailed sales databases
can be mined to determine customer buying patterns as a basis for advertising and
marketing campaigns. Organizations embed procedures called alerts in databases to
warn of unusual conditions, such as impending stock shortages or opportunities to
sell additional products, and to trigger appropriate actions.

Although the future of databases is assured, much work remains to be done.
Many organizations have a proliferation of incompatible databases that were
developed to meet immediate needs rather than based on a planned strategy or a
well-managed evolution. Enormous amounts of data are trapped in older, “legacy”
systems, and the data are often of poor quality. New skills are required to design
and manage data warehouses and to integrate databases with Internet
applications. There is a shortage of skills in areas such as database analysis, database
design, data administration, and database administration. We address these and
other important issues in this textbook to equip you for the jobs of the future.

A course in database management has emerged as one of the most important
courses in the information systems curriculum today. Many schools have added an
additional elective course in data warehousing or database administration to
provide in-depth coverage of these important topics. As information systems
professionals, you must be prepared to analyze database requirements and design
and implement databases within the context of information systems development.
You also must be prepared to consult with end users and show them how they can
use databases (or data warehouses) to build decision support systems and
executive information systems for competitive advantage. And, the widespread
use of databases attached to Web sites that return dynamic information to users of
these sites requires that you understand not only how to link databases to the Web-
based applications but also how to secure those databases so that their contents
can be viewed but not compromised by outside users.

In this chapter, we introduce the basic concepts of databases and database
management systems (DBMSs). We describe traditional file management systems
and some of their shortcomings that led to the database approach. Next, we
consider the benefits, costs, and risks of using the database approach. We review
of the range of technologies used to build, use, and manage databases, describe
the types of applications that use databases—personal, two-tier, three-tier, and
enterprise—and describe how databases have evolved over the past five decades.

Because a database is one part of an information system, this chapter also
examines how the database development process fits into the overall information
systems development process. The chapter emphasizes the need to coordinate
database development with all the other activities in the development of a complete
information system. It includes highlights from a hypothetical database development
process at Pine Valley Furniture Company. Using this example, the chapter introduces
tools for developing databases on personal computers and the process of extracting
data from enterprise databases for use in stand-alone applications.

There are several reasons for discussing database development at this point. First,
although you may have used the basic capabilities of a database management system,
such as Microsoft Access, you may not yet have developed an understanding of how
these databases were developed. Using simple examples, this chapter briefly
illustrates what you will be able to do after you complete a database course using this
text. Thus, this chapter helps you to develop a vision and context for each topic
developed in detail in subsequent chapters.

Chapter 1 • The Database Environment and Development Process 5

Second, many students learn best from a text full of concrete examples.
Although all of the chapters in this text contain numerous examples, illustrations,
and actual database designs and code, each chapter concentrates on a specific
aspect of database management. We have designed this chapter to help you
understand, with minimal technical details, how all of these individual aspects of
database management are related and how database development tasks and
skills relate to what you are learning in other information systems courses.

Finally, many instructors want you to begin the initial steps of a database
development group or individual project early in your database course. This chapter
gives you an idea of how to structure a database development project sufficient to
begin a course exercise. Obviously, because this is only the first chapter, many of the
examples and notations we will use will be much simpler than those required for
your project, for other course assignments, or in a real organization.

One note of caution: You will not learn how to design or develop databases
just from this chapter. Sorry! We have purposely kept the content of this chapter
introductory and simplified. Many of the notations used in this chapter are not
exactly like the ones you will learn in subsequent chapters. Our purpose in this
chapter is to give you a general understanding of the key steps and types of skills,
not to teach you specific techniques. You will, however, learn fundamental
concepts and definitions and develop an intuition and motivation for the skills and
knowledge presented in later chapters.

BASIC CONCEPTS AND DEFINITIONS

We define a database as an organized collection of logically related data. Not many
words in the definition, but have you looked at the size of this book? There is a lot to do
to fulfill this definition.

A database may be of any size and complexity. For example, a salesperson may
maintain a small database of customer contacts—consisting of a few megabytes of
data—on her laptop computer. A large corporation may build a large database consist-
ing of several terabytes of data (a terabyte is a trillion bytes) on a large mainframe
computer that is used for decision support applications (Winter, 1997). Very large data
warehouses contain more than a petabyte of data. (A petabyte is a quadrillion bytes.) (We
assume throughout the text that all databases are computer based.)

Data

Historically, the term data referred to facts concerning objects and events that could be
recorded and stored on computer media. For example, in a salesperson’s database, the
data would include facts such as customer name, address, and telephone number. This
type of data is called structured data. The most important structured data types are nu-
meric, character, and dates. Structured data are stored in tabular form (in tables, rela-
tions, arrays, spreadsheets, etc.) and are most commonly found in traditional databases
and data warehouses.

The traditional definition of data now needs to be expanded to reflect a new re-
ality: Databases today are used to store objects such as documents, e-mails, maps,
photographic images, sound, and video segments in addition to structured data. For
example, the salesperson’s database might include a photo image of the customer
contact. It might also include a sound recording or video clip about the most recent
product. This type of data is referred to as unstructured data, or as multimedia data.
Today structured and unstructured data are often combined in the same database to
create a true multimedia environment. For example, an automobile repair shop can
combine structured data (describing customers and automobiles) with multimedia
data (photo images of the damaged autos and scanned images of insurance claim
forms).

An expanded definition of data that includes structured and unstructured types is
“a stored representation of objects and events that have meaning and importance in the
user’s environment.”

Database
An organized collection of logically
related data.

Data
Stored representations of objects
and events that have meaning and
importance in the user’s
environment.

6 Part I • The Context of Database Management

FIGURE 1-1 Converting data
to information
(a) Data in context

(b) Summarized data

Data Versus Information

The terms data and information are closely related, and in fact are often used interchange-
ably. However, it is useful to distinguish between data and information. We define
information as data that have been processed in such a way that the knowledge of the
person who uses the data is increased. For example, consider the following list of facts:

Baker, Kenneth D. 324917628
Doyle, Joan E. 476193248
Finkle, Clive R. 548429344
Lewis, John C. 551742186
McFerran, Debra R. 409723145

These facts satisfy our definition of data, but most people would agree that the
data are useless in their present form. Even if we guess that this is a list of people’s
names paired with their Social Security numbers, the data remain useless because we
have no idea what the entries mean. Notice what happens when we place the same data
in a context, as shown in Figure 1-1a.

By adding a few additional data items and providing some structure, we recog-
nize a class roster for a particular course. This is useful information to some users, such
as the course instructor and the registrar’s office. Of course, as general awareness of the
importance of strong data security has increased, few organizations still use Social
Security numbers as identifiers. Instead, most organizations use an internally generated
number for identification purposes.

Information
Data that have been processed in
such a way as to increase the
knowledge of the person who uses
the data.

MKT
(15%)

MGT
(20%)

ACCT
(25%)IS

(15%)

OTHER
(15%)

FIN
(10%)

Percent Enrollment by Major (2010)
Year

Enrollment Projections

N
um

be
r

of
 S

tu
de

nt
s

300

= actual
= estimated

200

100

2005 2006 2007 2008 2009 2010

Class Roster

Semester: Spring 2010Course: MGT 500
Business Policy

2Section:

Baker, Kenneth D.
Doyle, Joan E.
Finkle, Clive R.
Lewis, John C.
McFerran, Debra R.
Sisneros, Michael

Name ID
324917628
476193248
548429344
551742186
409723145
392416582

Major
MGT
MKT
PRM
MGT
IS
ACCT

GPA
2.9
3.4
2.8
3.7
2.9
3.3

Chapter 1 • The Database Environment and Development Process 7

TABLE 1-1 Example Metadata for Class Roster

Data Item Metadata

Name Type Length Min Max Description Source

Course Alphanumeric 30 Course ID and name Academic Unit

Section Integer 1 1 9 Section number Registrar

Semester Alphanumeric 10 Semester and year Registrar

Name Alphanumeric 30 Student name Student IS

ID Integer 9 Student ID (SSN) Student IS

Major Alphanumeric 4 Student major Student IS

GPA Decimal 3 0.0 4.0 Student grade point average Academic Unit

Another way to convert data into information is to summarize them or otherwise
process and present them for human interpretation. For example, Figure 1-1b shows
summarized student enrollment data presented as graphical information. This informa-
tion could be used as a basis for deciding whether to add new courses or to hire new
faculty members.

In practice, according to our definitions, databases today may contain either
data or information (or both). For example, a database may contain an image of the
class roster document shown in Figure 1-1a. Also, data are often preprocessed and
stored in summarized form in databases that are used for decision support.
Throughout this text we use the term database without distinguishing its contents as
data or information.

Metadata

As we have indicated, data become useful only when placed in some context. The
primary mechanism for providing context for data is metadata. Metadata are data
that describe the properties or characteristics of end-user data and the context of that
data. Some of the properties that are typically described include data names, defini-
tions, length (or size), and allowable values. Metadata describing data context in-
clude the source of the data, where the data are stored, ownership (or stewardship),
and usage. Although it may seem circular, many people think of metadata as “data
about data.”

Some sample metadata for the Class Rster (Figure 1-1a) are listed in Table 1-1. For
each data item that appears in the Class Roster, the metadata show the data item name,
the data type, length, minimum and maximum allowable values (where appropriate), a
brief description of each data item, and the source of the data (sometimes called the
system of record). Notice the distinction between data and metadata. Metadata are once
removed from data. That is, metadata describe the properties of data but are separate
from that data. Thus, the metadata shown in Table 1-1 do not include any sample data
from the Class Roster of Figure 1-1a. Metadata enable database designers and users to
understand what data exist, what the data mean, and how to distinguish between data
items that at first glance look similar. Managing metadata is at least as crucial as manag-
ing the associated data because data without clear meaning can be confusing, mis-
interpreted, or erroneous. Typically, much of the metadata are stored as part of the
database and may be retrieved using the same approaches that are used to retrieve data
or information.

Data can be stored in files or in databases. In the following sections we examine
the progression from file processing systems to databases and the advantages and dis-
advantages of each.

Metadata
Data that describe the properties or
characteristics of end-user data and
the context of those data.

8 Part I • The Context of Database Management

FIGURE 1-2 Old file processing systems at Pine Valley Furniture Company

TRADITIONAL FILE PROCESSING SYSTEMS

When computer-based data processing was first available, there were no databases. To
be useful for business applications, computers had to store, manipulate, and retrieve
large files of data. Computer file processing systems were developed for this purpose.
Although these systems have evolved over time, their basic structure and purpose have
changed little over several decades.

As business applications became more complex, it became evident that traditional
file processing systems had a number of shortcomings and limitations (described next).
As a result, these systems have been replaced by database processing systems in most
business applications today. Nevertheless, you should have at least some familiarity
with file processing systems since understanding the problems and limitations inherent
in file processing systems can help you avoid these same problems when designing
database systems.

File Processing Systems at Pine Valley Furniture Company

Early computer applications at Pine Valley Furniture (during the 1980s) used the tra-
ditional file processing approach. This approach to information systems design met
the data processing needs of individual departments rather than the overall informa-
tion needs of the organization. The information systems group typically responded to
users’ requests for new systems by developing (or acquiring) new computer pro-
grams for individual applications such as inventory control, accounts receivable, or
human resource management. No overall map, plan, or model guided application
growth.

Three of the computer applications based on the file processing approach are shown
in Figure 1-2. The systems illustrated are Order Filling, Invoicing, and Payroll. The figure
also shows the major data files associated with each application. A file is a collection of re-
lated records. For example, the Order Filling System has three files: Customer Master,
Inventory Master, and Back Order. Notice that there is duplication of some of the files
used by the three applications, which is typical of file processing systems.

Program BProgram A Program AProgram C Program B Program A Program B

Inventory
Master

File

Back
Order
File

Inventory
Pricing

File

Customer
Master

File

Employee
Master

File

Customer
Master

File

Orders Department Accounting Department Payroll Department

Order Filling
System

Invoicing
System

Payroll
System

Chapter 1 • The Database Environment and Development Process 9

Disadvantages of File Processing Systems

Several disadvantages associated with conventional file processing systems are listed in
Table 1-2 and described briefly below. It is important to understand these issues because
if we don’t follow the database management practices described in this book, some of
these disadvantages can also become issues for databases as well.

PROGRAM-DATA DEPENDENCE File descriptions are stored within each database
application program that accesses a given file. For example, in the Invoicing System in
Figure 1-2, Program A accesses the Inventory Pricing File and the Customer Master
File. Because the program contains a detailed file description for these files, any
change to a file structure requires changes to the file descriptions for all programs that
access the file.

Notice in Figure 1-2 that the Customer Master File is used in the Order Filling
System and the Invoicing System. Suppose it is decided to change the customer address
field length in the records in this file from 30 to 40 characters. The file descriptions in
each program that is affected (up to five programs) would have to be modified. It is
often difficult even to locate all programs affected by such changes. Worse, errors are
often introduced when making such changes.

DUPLICATION OF DATA Because applications are often developed independently in file
processing systems, unplanned duplicate data files are the rule rather than the excep-
tion. For example, in Figure 1-2 the Order Filling System contains an Inventory Master
File, whereas the Invoicing System contains an Inventory Pricing File. These files
contain data describing Pine Valley Furniture Company’s products, such as product
description, unit price, and quantity on hand. This duplication is wasteful because it
requires additional storage space and increased effort to keep all files up to date. Data
formats may be inconsistent or data values may not agree (or both). Reliable metadata
are very difficult to establish in file processing systems. For example, the same data
item may have different names in different files, or conversely, the same name may be
used for different data items in different files.

LIMITED DATA SHARING With the traditional file processing approach, each applica-
tion has its own private files, and users have little opportunity to share data outside
their own applications. Notice in Figure 1-2, for example, that users in the Accounting
Department have access to the Invoicing System and its files, but they probably do not
have access to the Order Filling System or to the Payroll System and their files.
Managers often find that a requested report requires a major programming effort
because data must be drawn from several incompatible files in separate systems. When
different organizational units own these different files, additional management barriers
must be overcome.

LENGTHY DEVELOPMENT TIMES With traditional file processing systems, each new ap-
plication requires that the developer essentially start from scratch by designing new file
formats and descriptions and then writing the file access logic for each new program.
The lengthy development times required are inconsistent with today’s fast-paced busi-
ness environment, in which time to market (or time to production for an information
system) is a key business success factor.

EXCESSIVE PROGRAM MAINTENANCE The preceding factors all combined to create a
heavy program maintenance load in organizations that relied on traditional file
processing systems. In fact, as much as 80 percent of the total information system’s
development budget might be devoted to program maintenance in such organizations.
This in turn means that resources (time, people, and money) are not being spent on
developing new applications.

TABLE 1-2 Disadvantages
of File Processing Systems

Program-data dependence

Duplication of data

Limited data sharing

Lengthy development times

Excessive program
maintenance

Database application
An application program (or set of
related programs) that is used to
perform a series of database
activities (create, read, update, and
delete) on behalf of database users.

10 Part I • The Context of Database Management

Data model
Graphical systems used to capture
the nature and relationships among
data.

It is important to note that many of the disadvantages of file processing we have men-
tioned can also be limitations of databases if an organization does not properly apply the
database approach. For example, if an organization develops many separately managed
databases (say, one for each division or business function) with little or no coordination of
the metadata, then uncontrolled data duplication, limited data sharing, lengthy develop-
ment time, and excessive program maintenance can occur. Thus, the database approach,
which is explained in the next section, is as much a way to manage organizational data as it
is a set of technologies for defining, creating, maintaining, and using these data.

THE DATABASE APPROACH

So, how do we overcome the flaws of file processing? No, we don’t call Ghostbusters,
but we do something better: We follow the database approach. We first begin by defin-
ing some core concepts that are fundamental in understanding the database approach
to managing data. We then describe how the database approach can overcome the limi-
tations of the file processing approach.

Data Models

Designing a database properly is fundamental to establishing a database that meets the
needs of the users. Data models capture the nature of and relationships among data
and are used at different levels of abstraction as a database is conceptualized and
designed. The effectiveness and efficiency of a database is directly associated with the
structure of the database. Various graphical systems exist that convey this structure and
are used to produce data models that can be understood by end users, systems analysts,
and database designers. Chapters 2 and 3 are devoted to developing your understand-
ing of data modeling, as is Chapter 13, which addresses a different approach using
object-oriented data modeling. A typical data model is made up entities, attributes, and
relationships and the most common data modeling representation is the entity-relationship
model. A brief description is presented below. More details will be forthcoming in
Chapters 2 and 3.

ENTITIES Customers and orders are objects about which a business maintains informa-
tion. They are referred to as “entities.” An entity is like a noun in that it describes a
person, a place, an object, an event, or a concept in the business environment for which
information must be recorded and retained. CUSTOMER and ORDER are entities in
Figure 1-3a. The data you are interested in capturing about the entity (e.g., Customer
Name) is called an attribute. Data are recorded for many customers. Each customer’s
information is referred to as an instance of CUSTOMER.

RELATIONSHIPS A well-structured database establishes the relationships between
entities that exist in organizational data so that desired information can be retrieved.
Most relationships are one-to-many (1:M) or many-to-many (M:N). A customer can
place (the Places relationship) more than one order with a company. However, each
order is usually associated with (the Is Placed By relationship) a particular customer.
Figure 1-3a shows the 1:M relationship of customers who may place one or more orders;
the 1:M nature of the relationship is marked by the crow’s foot attached to the rectangle
(entity) labeled ORDER. This relationship appears to be the same in Figures 1-3a and
1-3b. However, the relationship between orders and products is M:N. An order may be
for one or more products, and a product may be included on more than one order. It is
worthwhile noting that Figure 1-3a is an enterprise-level model, where it is necessary to
include only the higher-level relationships of customers, orders, and products. The proj-
ect-level diagram shown in Figure 1-3b includes additional level of details, such as the
further details of an order.

Relational Databases

Relational databases establish the relationships between entities by means of common
fields included in a file, called a relation. The relationship between a customer and the
customer’s order depicted in the data models in Figure 1-3 is established by including the

Entity
A person, a place, an object, an
event, or a concept in the user
environment about which the
organization wishes to maintain
data.

Relational database
A database that represents data as
a collection of tables in which all
data relationships are represented
by common values in related
tables.

Chapter 1 • The Database Environment and Development Process 11

Is Placed By

Contains

Is Contained In

Places

CUSTOMER

ORDER

PRODUCT

FIGURE 1-3 Comparison of
enterprise and project level
data models
(a) Segment of an enterprise
data model

(b) Segment of a project data
model

Is Contained In

Places

Is Placed By

Contains

CUSTOMER
Customer ID
Customer Name

ORDER
Order ID
Customer ID
Order Date

Has

Is For

PRODUCT
Product ID
Standard Price

ORDER LINE
Quantity

customer number with the customer’s order. Thus, a customer’s identification number is
included in the file (or relation) that holds customer information such as name, address,
and so forth. Every time the customer places an order, the customer identification number
is also included in the relation that holds order information. Relational databases use the
identification number to establish the relationship between customer and order.

Database Management Systems

A database management system (DBMS) is a software system that enables the use of a
database approach. The primary purpose of a DBMS is to provide a systematic method
of creating, updating, storing, and retrieving the data stored in a database. It enables
end users and application programmers to share data, and it enables data to be shared
among multiple applications rather than propagated and stored in new files for every
new application (Mullins, 2002). A DBMS also provides facilities for controlling data

Database management system
(DBMS)
A software system that is used to
create, maintain, and provide
controlled access to user databases.

12 Part I • The Context of Database Management

FIGURE 1-4 Enterprise model
for Figure 1-3 segments

access, enforcing data integrity, managing concurrency control, and restoring a data-
base. We describe these DBMS features in detail in Chapter 11.

Now that we understand the basic elements of a database approach, let us try to
understand the differences between a database approach and file-based approach. Let
us begin by comparing Figures 1-2 and 1-4. Figure 1-4 depicts a representation (entities)
of how the data can be considered to be stored in the database. Notice that unlike Figure
1-2, in Figure 1-4 there is only one place where the CUSTOMER information is stored
rather than the two Customer Master Files. Both the Order Filling System and the
Invoicing System will access the data contained in the single CUSTOMER entity.
Further, what CUSTOMER information is stored, how it is stored and how it is accessed
is likely not closely tied to either of the two systems. All of this enables us to achieve the
advantages listed in the next section. Of course, it is important to note that a real life
database will likely include thousands of entities and relationships among them.

Advantages of the Database Approach

The primary advantages of a database approach, enabled by DBMSs, are summarized
in Table 1-3 and described next.

CUSTOMER

Places

Is Placed By

Contains

Contains

Is Contained In

Is Contained In

Keeps Price Changes For

Has Price Changes Of

Generates

Completes

ORDER INVENTORY EMPLOYEE

BACKORDER

INVENTORY
PRICING
HISTORY

TABLE 1-3 Advantages of the Database Approach

Program-data independence

Planned data redundancy

Improved data consistency

Improved data sharing

Increased productivity of application development

Enforcement of standards

Improved data quality

Improved data accessibility and responsiveness

Reduced program maintenance

Improved decision support

Chapter 1 • The Database Environment and Development Process 13

PROGRAM-DATA INDEPENDENCE The separation of data descriptions (metadata) from
the application programs that use the data is called data independence. With the data-
base approach, data descriptions are stored in a central location called the repository.
This property of database systems allows an organization’s data to change and evolve
(within limits) without changing the application programs that process the data.

PLANNED DATA REDUNDANCY Good database design attempts to integrate previously
separate (and redundant) data files into a single, logical structure. Ideally, each primary
fact is recorded in only one place in the database. For example, facts about a product,
such as Pine Valley oak computer desk, its finish, price, and so forth are recorded to-
gether in one place in the Product table, which contains data about each of Pine Valley’s
products. The database approach does not eliminate redundancy entirely, but it enables
the designer to control the type and amount of redundancy. At other times it may be de-
sirable to include some limited redundancy to improve database performance, as we
will see in later chapters.

IMPROVED DATA CONSISTENCY By eliminating or controlling data redundancy, we
greatly reduce the opportunities for inconsistency. For example, if a customer’s address
is stored only once, we cannot disagree about the customer’s address. When the cus-
tomer’s address changes, recording the new address is greatly simplified because the
address is stored in a single place. Finally, we avoid the wasted storage space that re-
sults from redundant data storage.

IMPROVED DATA SHARING A database is designed as a shared corporate resource.
Authorized internal and external users are granted permission to use the database, and
each user (or group of users) is provided one or more user views into the database to fa-
cilitate this use. A user view is a logical description of some portion of the database that
is required by a user to perform some task. A user view is often developed by identify-
ing a form or report that the user needs on a regular basis. For example, an employee
working in human resources will need access to confidential employee data; a customer
needs access to the product catalog available on Pine Valley’s Web site. The views for
the human resources employee and the customer are drawn from completely different
areas of one unified database.

INCREASED PRODUCTIVITY OF APPLICATION DEVELOPMENT A major advantage of the
database approach is that it greatly reduces the cost and time for developing new busi-
ness applications. There are three important reasons that database applications can
often be developed much more rapidly than conventional file applications:

1. Assuming that the database and the related data capture and maintenance appli-
cations have already been designed and implemented, the application developer
can concentrate on the specific functions required for the new application, without
having to worry about file design or low-level implementation details.

2. The database management system provides a number of high-level productivity
tools, such as forms and report generators, and high-level languages that auto-
mate some of the activities of database design and implementation. We describe
many of these tools in subsequent chapters.

3. Significant improvement in application developer productivity, estimated to be as
high as 60 percent (Long, 2005), is currently being realized through the use of Web
services, based on the use of standard Internet protocols and a universally accepted
data format (XML). Web services and XML are covered in Chapter 8.

ENFORCEMENT OF STANDARDS When the database approach is implemented with full
management support, the database administration function should be granted single-
point authority and responsibility for establishing and enforcing data standards. These
standards will include naming conventions, data quality standards, and uniform proce-
dures for accessing, updating, and protecting data. The data repository provides database
administrators with a powerful set of tools for developing and enforcing these standards.
Unfortunately, the failure to implement a strong database administration function is

User view
A logical description of some
portion of the database that is
required by a user to perform some
task.

Data independence
The separation of data descriptions
from the application programs that
use the data.

14 Part I • The Context of Database Management

Constraint
A rule that cannot be violated by
database users.

perhaps the most common source of database failures in organizations. We describe the
database administration (and related data administration) functions in Chapter 11.

IMPROVED DATA QUALITY Concern with poor quality data is a common theme in
strategic planning and database administration today. In fact, a recent report by The
Data Warehousing Institute (TDWI) estimated that data quality problems currently cost
U.S. businesses some $600 billion each year (www.tdwi.org/research/display.asp?
ID=6589). The database approach provides a number of tools and processes to improve
data quality. Two of the more important are the following:

1. Database designers can specify integrity constraints that are enforced by the
DBMS. A constraint is a rule that cannot be violated by database users. We de-
scribe numerous types of constraints (also called “business rules”) in Chapters 2
and 3. If a customer places an order, the constraint that ensures that the customer
and the order remain associated is called a “relational integrity constraint,” and it
prevents an order from being entered without specifying who placed the order.

2. One of the objectives of a data warehouse environment is to clean up (or “scrub”)
operational data before they are placed in the data warehouse (Jordan, 1996). Do you
ever receive multiple copies of a catalog? The company that sends you three copies of
each of its mailings could recognize significant postage and printing savings if its
data were scrubbed, and its understanding of its customers would also be enhanced
if it could determine a more accurate count of existing customers. We describe data
warehouses in Chapter 9 and the potential for improving data quality in Chapter 10.

IMPROVED DATA ACCESSIBILITY AND RESPONSIVENESS With a relational database, end
users without programming experience can often retrieve and display data, even when it
crosses traditional departmental boundaries. For example, an employee can display infor-
mation about computer desks at Pine Valley Furniture Company with the following query:

SELECT *
FROM Product_T
WHERE ProductDescription = “Computer Desk”;

The language used in this query is called Structured Query Language, or SQL. (You will
study this language in detail in Chapters 6 and 7.) Although the queries constructed can
be much more complex, the basic structure of the query is easy for even novice, nonpro-
grammers to grasp. If they understand the structure and names of the data that fit
within their view of the database, they soon gain the ability to retrieve answers to new
questions without having to rely on a professional application developer. This can be
dangerous; queries should be thoroughly tested to be sure they are returning accurate
data before relying on their results, and novices may not understand that challenge.

REDUCED PROGRAM MAINTENANCE Stored data must be changed frequently for a va-
riety of reasons: new data item types are added, data formats are changed, and so on. A
celebrated example of this problem was the well-known “year 2000” problem, in which
common two-digit year fields were extended to four digits to accommodate the rollover
from the year 1999 to the year 2000.

In a file processing environment, the data descriptions and the logic for accessing
data are built into individual application programs (this is the program-data depend-
ence issue described earlier). As a result, changes to data formats and access methods
inevitably result in the need to modify application programs. In a database environ-
ment, data are more independent of the application programs that use them. Within
limits, we can change either the data or the application programs that use the data with-
out necessitating a change in the other factor. As a result, program maintenance can be
significantly reduced in a modern database environment.

IMPROVED DECISION SUPPORT Some databases are designed expressly for decision
support applications. For example, some databases are designed to support customer

www.tdwi.org/research/display.asp?ID=6589
www.tdwi.org/research/display.asp?ID=6589

Chapter 1 • The Database Environment and Development Process 15

relationship management, whereas others are designed to support financial analysis or
supply chain management. You will study how databases are tailored for different deci-
sion support applications and analytical styles in Chapter 9.

Cautions About Database Benefits

The previous section identified 10 major potential benefits of the database ap-
proach. However, we must caution you that many organizations have been frustrated
in attempting to realize some of these benefits. For example, the goal of data inde-
pendence (and, therefore, reduced program maintenance) has proven elusive due to
the limitations of older data models and database management software.
Fortunately, the relational model and the newer object-oriented model provide a
significantly better environment for achieving these benefits. Another reason for
failure to achieve the intended benefits is poor organizational planning and data-
base implementation; even the best data management software cannot overcome
such deficiencies. For this reason, we stress database planning and design through-
out this text.

Costs and Risks of the Database Approach

A database is not a silver bullet, and it does not have the magic power of Harry Potter.
As with any other business decision, the database approach entails some additional
costs and risks that must be recognized and managed when it is implemented (see
Table 1-4).

NEW, SPECIALIZED PERSONNEL Frequently, organizations that adopt the database ap-
proach need to hire or train individuals to design and implement databases, provide
database administration services, and manage a staff of new people. Further, because of
the rapid changes in technology, these new people will have to be retrained or upgraded
on a regular basis. This personnel increase may be more than offset by other productiv-
ity gains, but an organization should recognize the need for these specialized skills,
which are required to obtain the most from the potential benefits. We discuss the staff
requirements for database management in Chapter 11.

INSTALLATION AND MANAGEMENT COST AND COMPLEXITY A multiuser database
management system is a large and complex suite of software that has a high initial
cost, requires a staff of trained personnel to install and operate, and has substantial an-
nual maintenance and support costs. Installing such a system may also require up-
grades to the hardware and data communications systems in the organization.
Substantial training is normally required on an ongoing basis to keep up with new re-
leases and upgrades. Additional or more sophisticated and costly database software
may be needed to provide security and to ensure proper concurrent updating of
shared data.

CONVERSION COSTS The term legacy system is widely used to refer to older applica-
tions in an organization that are based on file processing and/or older database tech-
nology. The cost of converting these older systems to modern database technology—
measured in terms of dollars, time, and organizational commitment—may often seem
prohibitive to an organization. The use of data warehouses is one strategy for continu-
ing to use older systems while at the same time exploiting modern database technology
and techniques (Ritter, 1999).

NEED FOR EXPLICIT BACKUP AND RECOVERY A shared corporate database must be
accurate and available at all times. This requires that comprehensive procedures be de-
veloped and used for providing backup copies of data and for restoring a database
when damage occurs. These considerations have acquired increased urgency in today’s
security-conscious environment. A modern database management system normally au-
tomates many more of the backup and recovery tasks than a file system. We describe
procedures for security, backup, and recovery in Chapter 11.

TABLE 1-4 Costs and Risks
of the Database Approach

New, specialized personnel

Installation and management
cost and complexity

Conversion costs

Need for explicit backup and
recovery

Organizational conflict

16 Part I • The Context of Database Management

ORGANIZATIONAL CONFLICT A shared database requires a consensus on data defini-
tions and ownership, as well as responsibilities for accurate data maintenance.
Experience has shown that conflicts on data definitions, data formats and coding, rights
to update shared data, and associated issues are frequent and often difficult to resolve.
Handling these issues requires organizational commitment to the database approach,
organizationally astute database administrators, and a sound evolutionary approach to
database development.

If strong top management support of and commitment to the database approach is
lacking, end-user development of stand-alone databases is likely to proliferate. These
databases do not follow the general database approach that we have described, and
they are unlikely to provide the benefits described earlier. In the extreme, they may lead
to a pattern of inferior decision making that threatens the well-being or existence of an
organization.

COMPONENTS OF THE DATABASE ENVIRONMENT

Now that you have seen the advantages and risks of using the database approach to
managing data, let us examine the major components of a typical database environment
and their relationships (see Figure 1-5). You have already been introduced to some (but
not all) of these components in previous sections. Following is a brief description of the
nine components shown in Figure 1-5:

1. Computer-aided software engineering (CASE) tools CASE tools are automated
tools used to design databases and application programs. These tools help with
creation of data models and in some cases can also help automatically generate the
“code” needed to create the database. We reference the use of automated tools for
database design and development throughout the text.

2. Repository A repository is a centralized knowledge base for all data definitions,
data relationships, screen and report formats, and other system components. A
repository contains an extended set of metadata important for managing databases
as well as other components of an information system. We describe the repository
in Chapter 11.

Data and database
administrators

System
developers

End
users

User
interface

Application
programs

CASE
tools

DatabaseRepository DBMS

FIGURE 1-5 Components of
the database environment

Computer-aided software
engineering (CASE) tools
Software tools that provide
automated support for some portion
of the systems development process.

Repository
A centralized knowledge base of all
data definitions, data relationships,
screen and report formats, and
other system components.

Chapter 1 • The Database Environment and Development Process 17

3. DBMS A DBMS is a software system that is used to create, maintain, and pro-
vide controlled access to user databases. We describe the functions of a DBMS in
Chapter 11.

4. Database A database is an organized collection of logically related data, usually
designed to meet the information needs of multiple users in an organization. It is
important to distinguish between the database and the repository. The repository
contains definitions of data, whereas the database contains occurrences of data.
We describe the activities of database design in Chapters 4 and 5 and of imple-
mentation in Chapters 6 through 9.

5. Application programs Computer-based application programs are used to create
and maintain the database and provide information to users. Key database-related
application programming skills are described in Chapters 6 through 9 and
Chapter 14.

6. User interface The user interface includes languages, menus, and other facilities
by which users interact with various system components, such as CASE tools, ap-
plication programs, the DBMS, and the repository. User interfaces are illustrated
throughout this text.

7. Data and database administrators Data administrators are persons who are re-
sponsible for the overall management of data resources in an organization.
Database administrators are responsible for physical database design and for
managing technical issues in the database environment. We describe these func-
tions in detail in Chapter 11.

8. System developers System developers are persons such as systems analysts and
programmers who design new application programs. System developers often
use CASE tools for system requirements analysis and program design.

9. End users End users are persons throughout the organization who add, delete,
and modify data in the database and who request or receive information from it.
All user interactions with the database must be routed through the DBMS.

In summary, the database operational environment shown in Figure 1-5 is an inte-
grated system of hardware, software, and people, designed to facilitate the storage, re-
trieval, and control of the information resource and to improve the productivity of the
organization.

THE RANGE OF DATABASE APPLICATIONS

What can databases help us do? Figure 1-5 shows that there are several methods for
people to interact with the data in the database. First, users can interact directly with the
database using the user interface provided by the DBMS. In this manner users can is-
sues commands (called queries) against the database and examine the results or poten-
tially even store this inside a Microsoft Excel spreadsheet or Word document. This
method of interaction with the database is referred to ad-hoc querying and requires a
level of understanding the query language on the part of the user.

Because most business users do not possess this level of knowledge, the second
and more common mechanism for accessing the database is using application pro-
grams. An application program consists of two key components. A graphical user inter-
face that is used to accept the users’ request (e.g., to input, delete, or modify data)
and/or provide a mechanism for displaying the data retrieved from the database. The
business logic contains the programming logic necessary to act on the users’ com-
mands. The machine that runs the user interface (and sometimes the business logic) is
referred to as the client. The machine the runs the DBMS and contains the database is re-
ferred to as the database server.

It is important to understand that the applications and the database need not to re-
side on the same computer (and, in most cases, they don’t). In order to better under-
stand the range of database applications, we divide them into three categories, based on
the location of the client (application) and the database software itself: personal, two-
tier, and multitier databases. We introduce each category with a typical example, fol-
lowed by some issues that generally arise within that category of use.

18 Part I • The Context of Database Management

Personal Databases

Personal databases are designed to support one user. Personal databases have long
resided on personal computers (PCs), including laptops, and increasingly on smart-
phones and PDAs. The purpose of these databases is to provide the user with ability
to manage (store, update, delete, and retrieve) small amounts of data in an efficient
manner. Simple database applications that store customer information and the de-
tails of contacts with each customer can be used from a PC and easily transferred
from one device to the other for backup and work purposes. For example, consider a
company that has a number of salespersons who call on actual or prospective cus-
tomers. A database of customers and a pricing application can enable the salesperson
to determine the best combination of quantity and type of items for the customer to
order.

Personal databases are widely used because they can often improve personal pro-
ductivity. However, they entail a risk: The data cannot easily be shared with other users.
For example, suppose the sales manager wants a consolidated view of customer contacts.
This cannot be quickly or easily provided from an individual salesperson’s databases.
This illustrates a very common problem: If data are of interest to one person, they proba-
bly are or will soon become of interest to others as well. For this reason, personal databases
should be limited to those rather special situations (e.g., in a very small organization)
where the need to share the data among users of the personal database is unlikely to arise.

Two-Tier Client/Server Databases

As noted above, the utility of a personal (single-user) database is quite limited. Often,
what starts off as a single-user database evolves into something that needs to be shared
among several users. A workgroup is a relatively small team of people (typically fewer
than 25 persons) who collaborate on the same project or application or on a group of
similar projects or applications. These persons might be engaged (for example) with a
construction project or with developing a new computer application and need to share
data amongst the group.

The most common method of sharing data for this type of need is based on creating
a two-tier client/server application as shown in Figure 1-6. Each member of the work-
group has a computer, and the computers are linked by means of network (wired or
wireless LAN). In most cases, each computer has a copy of a specialized application
(client) which provides the user interface as well as the business logic through which the
data is manipulated. The database itself and the DBMS are stored on a central device

Workgroup
database

Local area network

Librarian
Project

Manager

Database
server

. . .Developer 1 Developer n

FIGURE 1-6 Two-tier
database with local area
network

Chapter 1 • The Database Environment and Development Process 19

called the “database server,” which is also connected to the network. Thus, each member
of the workgroup has access to the shared data. Different types of group members (e.g.,
developer or project manager) may have different user views of this shared database.
This arrangement overcomes the principal objection to PC databases, which is that the
data are not easily shared. This arrangement, however, introduces many data manage-
ment issues not present with personal (single-user) databases, such as data security and
data integrity when multiple users attempt to change and update data at the same time.

Multitier Client/Server Databases

One of the drawbacks of the two-tier database architecture is that the amount of func-
tionality that needs to be programmed into the application on the users’ computer can
be pretty significant because it needs to contain both the user interface logic as well as
the business logic. This, of course, means that the client computers need to be powerful
enough to handle the programmed application. Another drawback is that each time
there is a change to either the business logic or user interface, each client computer that
has the application needs to be updated.

To overcome these limitations, most modern applications that need to support a
large number of users are built using the concept of multitiered architecture. In most or-
ganizations, these applications are intended to support a department (such as market-
ing or accounting) or a division (such as a line of business), which is generally larger
than a workgroup (typically between 25 and 100 persons).

An example of a company that has several multitier applications is shown in
Figure 1-7. In a three-tiered architecture, the user interface is accessible on the individual
users’ computer. This user interface may either be Web browser based or written using
programming languages such as Visual Basic.NET, Visual C#, or Java. The application
layer/Web server layer contains the business logic required to accomplish the business
transactions requested by the users. This layer in turn talks to the database server. The

Client
tier

Application/Web
tier

Enterprise
tier

Transaction databases containing all organizational
data or summaries of data on department
servers

Enterprise server
with DBMS

A/P, A/R, order processing, inventory control,
and so forth; access and connectivity to DBMS.
Dynamic Web pages; management of session

Database of vendors,
purchase orders,
vendor invoices

Accounts payable processing Cash flow analyst

Database of
customer receipts
and our payments
to vendors

Browser Browser Browser

Customer service representative

No local
database

Application/Web server

FIGURE 1-7 Three-tiered client/server database architecture

20 Part I • The Context of Database Management

Enterprise resource planning
(ERP)
A business management system
that integrates all functions of the
enterprise, such as manufacturing,
sales, finance, marketing,
inventory, accounting, and human
resources. ERP systems are
software applications that provide
the data necessary for the
enterprise to examine and manage
its activities.

most significant implication for database development from the use of multitier
client/server architectures is the ease of separating the development of the database and
the modules that maintain the data from the information systems modules that focus on
business logic and/or presentation logic. In addition, this architecture allows us to im-
prove performance and maintainability of the application and database. We will consider
both two and multitier client/server architectures in more detail in Chapter 8.

Enterprise Applications

An enterprise (that’s small “e”, not capital “E,” as in Starship) application/database is one
whose scope is the entire organization or enterprise (or, at least, many different depart-
ments). Such databases are intended to support organization-wide operations and deci-
sion making. Note that an organization may have several enterprise databases, so such a
database is not inclusive of all organizational data. A single operational enterprise data-
base is impractical for many medium to large organizations due to difficulties in perform-
ance for very large databases, diverse needs of different users, and the complexity of
achieving a single definition of data (metadata) for all database users. An enterprise data-
base does, however, support information needs from many departments and divisions.
The evolution of enterprise databases has resulted in two major developments:

1. Enterprise resource planning (ERP) systems
2. Data warehousing implementations

Enterprise resource planning (ERP) systems have evolved from the material re-
quirements planning (MRP) and manufacturing resource planning (MRP-II) systems of
the 1970s and 1980s. These systems scheduled the raw materials, components, and sub-
assembly requirements for manufacturing processes, and also scheduled shop floor and
product distribution activities. Next, extension to the remaining business functions re-
sulted in enterprise-wide management systems, or ERP systems. All ERP systems are
heavily dependent on databases to store the integrated data required by the ERP appli-
cations. In addition to ERP systems, there are several specialized applications, such as
customer relationship management (CRM) systems and supply chain management
(SCM) systems, that also are dependent on data stored in databases.

Whereas ERP systems work with the current operational data of the enterprise,
data warehouses collect content from the various operational databases, including per-
sonal, workgroup, department, and ERP databases. Data warehouses provide users with
the opportunity to work with historical data to identify patterns and trends and answers
to strategic business questions. We describe data warehouses in detail in Chapter 9.

Finally, one change that has dramatically affected the database environment is the
ascendance of the Internet, and the subsequent development of applications that are used
by the masses. Acceptance of the Internet by businesses has resulted in important changes
in long-established business models. Very successful companies have been shaken by
competition from new businesses that have employed the Internet to provide improved
customer information and service, to eliminate traditional marketing channels and distri-
bution channels, and to implement employee relationship management. For example,
customers configure and order their personal computers directly from the computer man-
ufacturers. Bids are accepted for airline tickets and collectables within seconds of submis-
sion, sometimes resulting in substantial savings for the end consumer. Information about
open positions and company activities is readily available within many companies. Each
of these Web-based applications highlighted use databases extensively.

In the above examples, the Internet is used to facilitate interaction between busi-
ness and the customer (B2C) because the customers are necessarily external to the busi-
ness However, for other types of applications, the customers of the businesses are other
businesses. Those interactions are commonly referred to as B2B relationships and are
enabled by extranets. An extranet uses Internet technology, but access to the extranet is
not universal as is the case with an Internet application. Rather, access is restricted to
business suppliers and customers with whom an agreement has been reached about le-
gitimate access and use of each other’s data and information. Finally, an intranet is used
by employees’ of the firm to access applications and databases within the company.

Data warehouse
An integrated decision support
database whose content is derived
from the various operational
databases.

Chapter 1 • The Database Environment and Development Process 21

Allowing such access to a business database raises data security and integrity
issues that are new to the management of information systems, where data have tradi-
tionally been closely guarded and secured within each company. These issues are cov-
ered in more detail in Chapters 8 and 10.

Table 1-5 presents a brief summary of the different types of databases outlined in
this section.

EVOLUTION OF DATABASE SYSTEMS

Database management systems were first introduced during the 1960s and have contin-
ued to evolve during subsequent decades. Figure 1-8a sketches this evolution by high-
lighting the database technology (or technologies) that were dominant during each
decade. In most cases, the period of introduction was quite long, and the technology
was first introduced during the decade preceding the one shown in the figure. For ex-
ample, the relational model was first defined by E. F. Codd, an IBM research fellow, in a
paper published in 1970 (Codd, 1970). However, the relational model did not realize
widespread commercial success until the 1980s. For example, the challenge of the 1970s
where programmers needed to write complex programs to access data was addressed
by the introduction of the Structured Query Language (SQL) in the 1980s.

Figure 1-8b shows a visual depiction of the organizing principle underlying each
of the major database technologies. For example, in the hierarchical model, files are or-
ganized in a top-down structure that resembles a tree or genealogy chart, whereas in
the network model, each file can be associated with an arbitrary number of other files.
The relational model (the primary focus of this book) organizes data in the form of
tables and relationships among them. The object-oriented model is based on object
classes and relationships among them. As shown in Figure 1-8b, an object class encap-
sulates attributes and methods. Object-relational databases are a hybrid between object-
oriented and relational databases. Finally, multidimensional databases, which form the
basis for data warehouses, allow us to view data in the form of cubes or a star schema;
we discuss this in more detail in Chapter 9. Database management systems were devel-
oped to overcome the limitations of file processing systems, described in a previous
section. To summarize, some of the following four objectives generally drove the devel-
opment and evolution of database technology:

1. The need to provide greater independence between programs and data, thereby
reducing maintenance costs

2. The desire to manage increasingly complex data types and structures
3. The desire to provide easier and faster access to data for users who have neither a

background in programming languages nor a detailed understanding of how data
are stored in databases

4. The need to provide ever more powerful platforms for decision support applications

1960s

File processing systems were still dominant during this period. However, the first
database management systems were introduced during this decade and were used

TABLE 1-5 Summary of Database Applications

Type of Database / Application Typical Number of Users Typical Size of Database

Personal 1 Megabytes

Two-tier 5–100 Megabytes–gigabytes

Three-tier 100–1000 Gigabytes

Enterprise resource planning >100 Gigabytes–terabytes

Data warehousing >100 Terabytes–petabytes

Hierarchical database model Network database model

Relational database model Object-oriented database model

Object Class 1

Methods

Attributes

Methods

Attributes

Object Class 3

Object Class 2

Attributes

Methods

Multidimensional database model —
star-schema view

Dimension 4

Dimension 5

Dimension 6

Dimensions

Fact
Table

Facts

Dimension 1

Dimension 2

Dimension 3

Multidimensional database model —
multidimensional cube view

Southeast

Chair
Table
Desk

FebJanSales

New England

Mid-Atlantic

RELATION 1 (PRIMARY KEY, ATTRIBUTES...)

 RELATION 2 (PRIMARY KEY, FOREIGN KEY, ATTRIBUTES...)

1960 1970 1980 1990 2010

Flat files

Hierarchical

Network

Relational

Object-oriented

Object-relational

Data warehousing

Under active development Legacy systems still used

2000

FIGURE 1-8 The range of database technologies: past and present

22

(a) Evolution of database technologies

(b) Database architectures

Chapter 1 • The Database Environment and Development Process 23

primarily for large and complex ventures such as the Apollo moon-landing project. We
can regard this as an experimental “proof-of-concept” period in which the feasibility of
managing vast amounts of data with a DBMS was demonstrated. Also, the first efforts
at standardization were taken with the formation of the Data Base Task Group in the
late 1960s.

1970s

During this decade the use of database management systems became a commercial re-
ality. The hierarchical and network database management systems were developed,
largely to cope with increasingly complex data structures such as manufacturing bills of
materials that were extremely difficult to manage with conventional file processing
methods. The hierarchical and network models are generally regarded as first-generation
DBMS. Both approaches were widely used, and in fact many of these systems continue
to be used today. However, they suffered from the same key disadvantages as file
processing systems: limited data independence and lengthy development times for
application development.

1980s

To overcome these limitations, E. F. Codd and others developed the relational data
model during the 1970s. This model, considered second-generation DBMS, received
widespread commercial acceptance and diffused throughout the business world during
the 1980s. With the relational model, all data are represented in the form of tables.
Typically, SQL is used for data retrieval. Thus, the relational model provides ease of ac-
cess for nonprogrammers, overcoming one of the major objections to first-generation
systems. The relational model has also proven well suited to client/server computing,
parallel processing, and graphical user interfaces (Gray, 1996).

1990s

The 1990s ushered in a new era of computing, first with client/server computing, and
then with data warehousing and Internet applications becoming increasingly impor-
tant. Whereas the data managed by a DBMS during the 1980s were largely structured
(such as accounting data), multimedia data (including graphics, sound, images, and
video) became increasingly common during the 1990s. To cope with these increasingly
complex data, object-oriented databases (considered third generation) were introduced
during the late 1980s (Grimes, 1998).

Because organizations must manage a vast amount of structured and unstruc-
tured data, both relational and object-oriented databases are of great importance today.
In fact, some vendors are developing combined object-relational DBMSs that can man-
age both types of data. We describe object-relational databases in Chapter 13.

2000 and Beyond

Currently, the major type of database that is still most widely used is the relational
database. However, object-oriented and object-relational databases are also garnering
some attention, especially as the growth in unstructured content continues. This
growth is partially fueled by Web 2.0 applications such as blogs, wikis, and social
networking sites (Facebook, MySpace, Twitter, LinkedIn, etc.) and partially by how
easy it has become to create unstructured data such as pictures and images.
Developing effective database practices to deal with these diverse types of data is
going to continue to be of prime importance as we move into the next decade. As larger
computer memory chips become cheaper, new database technologies to manage
in-memory databases are emerging. This trend opens up new possibilities for even
faster database processing.

Recent regulations such as Sarbanes-Oxley, HIPAA, and the Basel Convention
have highlighted the importance of good data management practices and the ability to
reconstruct historical positions has gained prominence. This has led to developments in

24 Part I • The Context of Database Management

computer forensics with increased emphasis and expectations around discovery of
electronic evidence. The importance of good database administration capabilities also
continues to rise because effective disaster recovery and adequate security are mandated
by these regulations.

THE DATABASE DEVELOPMENT PROCESS

How do organizations start developing a database? In many organizations, database de-
velopment begins with enterprise data modeling, which establishes the range and gen-
eral contents of organizational databases. Its purpose is to create an overall picture or ex-
planation of organizational data, not the design for a particular database. A particular
database provides the data for one or more information systems, whereas an enterprise
data model, which may encompass many databases, describes the scope of data main-
tained by the organization. In enterprise data modeling, you review current systems, an-
alyze the nature of the business areas to be supported, describe the data needed at a very
high level of abstraction, and plan one or more database development projects.

Figure 1-3a showed a segment of an enterprise data model for Pine Valley
Furniture Company, using a simplified version of the notation you will learn in
Chapters 2 and 3. Besides such a graphical depiction of the entity types, a thorough en-
terprise data model would also include business-oriented descriptions of each entity
type and a compendium of various statements about how the business operates, called
business rules, which govern the validity of data. Relationships between business
objects (business functions, units, applications, etc.) and data are often captured using
matrixes and complement the information captured in the enterprise data model.
Figure 1-9 shows an example of such a matrix.

Enterprise data modeling as a component of a top-down approach to information
systems planning and development represents one source of database projects. Such
projects often develop new databases to meet strategic organizational goals, such as im-
proved customer support, better production and inventory management, or more accu-
rate sales forecasting. Many database projects arise, however, in a more bottom-up fash-
ion. In this case, projects are requested by information systems users, who need certain
information to do their jobs, or from other information systems professionals, who see a
need to improve data management in the organization.

A typical bottom-up database development project usually focuses on the creation of
one database. Some database projects concentrate only on defining, designing, and imple-
menting a database as a foundation for subsequent information systems development. In

Enterprise data modeling
The first step in database
development, in which the scope
and general contents of
organizational databases are
specified.

XXXXBusiness Planning

Product Development X X X X

Materials Management X X X X X X

Order Fulfillment X X X X X X X X X

Order Shipment X X X X X X

Sales Summarization X X X X X

Production Operations X X X X X X X

Finance and Accounting X X X X X X X X

X = data entity is used within business function

C
us

to
m

er

P
ro

du
ct

R
aw

 M
at

er
ia

l

O
rd

er

W
or

k
C

en
te

r

W
or

k
O

rd
er

In
vo

ic
e

E
qu

ip
m

en
t

E
m

pl
oy

ee

Data Entity
Types

Business
Functions

FIGURE 1-9 Example
business function-to-data
entity matrix

Chapter 1 • The Database Environment and Development Process 25

most cases, however, a database and the associated information processing functions are
developed together as part of a comprehensive information systems development project.

Systems Development Life Cycle

As you may know from other information systems courses you’ve taken, a traditional
process for conducting an information systems development project is called the
systems development life cycle (SDLC). The SDLC is a complete set of steps that a
team of information systems professionals, including database designers and program-
mers, follow in an organization to specify, develop, maintain, and replace information
systems. Textbooks and organizations use many variations on the life cycle and may
identify anywhere from 3 to 20 different phases.

The various steps in the SDLC and their associated purpose are depicted in Figure
1-10 (Hoffer et al., 2010). The process appears to be circular and is intended to convey
the iterative nature of systems development projects. The steps may overlap in time,
they may be conducted in parallel, and it is possible to backtrack to previous steps

Enterprise modeling
• Analyze current data processing
• Analyze the general business functions and their

database needs
• Justify need for new data and databases in support of

business

Conceptual data modeling
• Identify scope of database requirements for proposed

information system
• Analyze overall data requirements for business

function(s) supported by database

Conceptual data modeling, cont’d.
• Develop preliminary conceptual data

model, including entities and
relationships

• Compare preliminary conceptual data
model with enterprise data model

• Develop detailed conceptual data
model, including all entities,
relationships, attributes, and
business rules

• Make conceptual data model
consistent with other models of
information system

• Populate repository with all
conceptual database specifications

Logical database design
• Analyze in detail the transactions, forms, displays, and inquiries

(database views) required by the business functions supported by the
database

• Integrate database views into conceptual data model
• Identify data integrity and security requirements, and populate repository

Physical database design and definition
• Define database to DBMS (often generated from repository)
• Decide on physical organization of data
• Design database processing programs

Database maintenance
• Analyze database and

database applications to
ensure that evolving
information
requirements are met

• Tune database for
improved performance

• Fix errors in database
and database
applications and
recover database when
it is contaminated

Database implementation
• Code and test database

processing programs
• Complete database

documentation and training
materials

• Install database and convert
data from prior systems

Planning

Maintenance Analysis

Implementation Design
Purpose: To write programs,
build databases, test and install
the new system, train users,
and finalize documentation

Purpose: To elicit and structure all
information requirements; to develop all
technology and organizational
specifications

Purpose: To monitor the operation and
usefulness of the system, and to repair
and enhance the system

Purpose: To develop a preliminary
understanding of a business situation and
how information systems might help solve a
problem or make an opportunity possible

Purpose: To analyze the
business situation thoro-
ughly to determine
requirements, to structure
those requirements, and
to select among
competing system
features

FIGURE 1-10 Database development activities during the systems development life cycle (SDLC)

Systems development life cycle
(SDLC)
The traditional methodology used
to develop, maintain, and replace
information systems.

26 Part I • The Context of Database Management

when prior decisions need to be reconsidered. Some feel that the most common path
through the development process is to cycle through the steps depicted in Figure 1-10,
but at more detailed levels on each pass, as the requirements of the system become
more concrete.

Figure 1-10 also provides an outline of the database development activities typi-
cally included in each phase of the SDLC. Note that there is not always a one-to-one cor-
respondence between SDLC phases and database development steps. For example,
conceptual data modeling occurs in both the Planning and the Analysis phases. We will
briefly illustrate each of these database development steps for Pine Valley Furniture
Company later in this chapter.

PLANNING—ENTERPRISE MODELING The database development process begins with a
review of the enterprise modeling components that were developed during the infor-
mation systems planning process. During this step, analysts review current databases
and information systems, analyze the nature of the business area that is the subject of
the development project, and describe, in very general terms, the data needed for each
information system under consideration for development. They determine what data
are already available in existing databases and what new data will need to be added to
support the proposed new project. Only selected projects move into the next phase
based on the projected value of each project to the organization.

PLANNING—CONCEPTUAL DATA MODELING For an information systems project that is
initiated, the overall data requirements of the proposed information system must be
analyzed. This is done in two stages. First, during the Planning phase, the analyst de-
velops a diagram similar to Figure 1-3a, as well as other documentation, to outline the
scope of data involved in this particular development project without consideration of
what databases already exist. Only high-level categories of data (entities) and major re-
lationships are included at this point. This step in the SDLC is critical for improving
the chances of a successful development process. The better the definition of the specif-
ic needs of the organization, the closer the conceptual model should come to meeting
the needs of the organization, and the less recycling back through the SDLC should be
needed.

ANALYSIS—CONCEPTUAL DATA MODELING During the Analysis phase of the SDLC,
the analyst produces a detailed data model that identifies all the organizational data
that must be managed for this information system. Every data attribute is defined, all
categories of data are listed, every business relationship between data entities is rep-
resented, and every rule that dictates the integrity of the data is specified. It is also
during the analysis phase that the conceptual data model is checked for consistency
with other types of models developed to explain other dimensions of the target infor-
mation system, such as processing steps, rules for handling data, and the timing of
events. However, even this detailed conceptual data model is preliminary, because
subsequent SDLC activities may find missing elements or errors when designing spe-
cific transactions, reports, displays, and inquiries. With experience, the database de-
veloper gains mental models of common business functions, such as sales or financial
record keeping, but must always remain alert for the exceptions to common practices
followed by an organization. The output of the conceptual modeling phase is a
conceptual schema.

DESIGN—LOGICAL DATABASE DESIGN Logical database design approaches database
development from two perspectives. First, the conceptual schema must be transformed
into a logical schema, which describes the data in terms of the data management
technology that will be used to implement the database. For example, if relational tech-
nology will be used, the conceptual data model is transformed and represented using
elements of the relational model which include tables, columns, rows, primary keys,
foreign keys, and constraints. (You will learn how to conduct this important process in
Chapter 4.) This representation is referred to as the logical schema.

Logical schema
The representation of a database
for a particular data management
technology.

Conceptual schema
A detailed, technology-
independent specification of the
overall structure of organizational
data.

Chapter 1 • The Database Environment and Development Process 27

Then, as each application in the information system is designed, including the
program’s input and output formats, the analyst performs a detailed review of the
transactions, reports, displays, and inquiries supported by the database. During this so-
called bottom-up analysis, the analyst verifies exactly what data are to be maintained in
the database and the nature of those data as needed for each transaction, report, and so
forth. It may be necessary to refine the conceptual data model as each report, business
transaction, and other user view is analyzed. In this case, one must combine, or inte-
grate, the original conceptual data model along with these individual user views into a
comprehensive design during logical database design. It is also possible that additional
information processing requirements will be identified during logical information sys-
tems design, in which case these new requirements must be integrated into the previ-
ously identified logical database design.

The final step in logical database design is to transform the combined and recon-
ciled data specifications into basic, or atomic, elements following well-established
rules for well-structured data specifications. For most databases today, these rules
come from relational database theory and a process called normalization, which we
will describe in detail in Chapter 4. The result is a complete picture of the database
without any reference to a particular database management system for managing these
data. With a final logical database design in place, the analyst begins to specify the
logic of the particular computer programs and queries needed to maintain and report
the database contents.

DESIGN—PHYSICAL DATABASE DESIGN AND DEFINITION A physical schema is a set of
specifications that describe how data from a logical schema are stored in a computer’s
secondary memory by a specific database management system. There is one physical
schema for each logical schema. Physical database design requires knowledge of the spe-
cific DBMS that will be used to implement the database. In physical database design and
definition, an analyst decides on the organization of physical records, the choice of file
organizations, the use of indexes, and so on. To do this, a database designer needs to out-
line the programs to process transactions and to generate anticipated management infor-
mation and decision-support reports. The goal is to design a database that will efficiently
and securely handle all data processing against it. Thus, physical database design is
done in close coordination with the design of all other aspects of the physical informa-
tion system: programs, computer hardware, operating systems, and data communica-
tions networks.

IMPLEMENTATION—DATABASE IMPLEMENTATION In database implementation, a de-
signer writes, tests, and installs the programs/scripts that access, create, or modify the
database. The designer might do this using standard programming languages (e.g.,
Java, C#, or Visual Basic.NET), in special database processing languages (e.g., SQL), or
use special-purpose nonprocedural languages to produce stylized reports and displays,
possibly including graphs. Also, during implementation, the designer will finalize all
database documentation, train users, and put procedures into place for the ongoing
support of the information system (and database) users. The last step is to load data
from existing information sources (files and databases from legacy applications plus
new data now needed). Loading is often done by first unloading data from existing files
and databases into a neutral format (such as binary or text files) and then loading these
data into the new database. Finally, the database and its associated applications are put
into production for data maintenance and retrieval by the actual users. During production,
the database should be periodically backed up and recovered in case of contamination or
destruction.

MAINTENANCE—DATABASE MAINTENANCE The database evolves during database
maintenance. In this step, the designer adds, deletes, or changes characteristics of the
structure of a database in order to meet changing business conditions, to correct errors
in database design, or to improve the processing speed of database applications. The
designer might also need to rebuild a database if it becomes contaminated or de-
stroyed due to a program or computer system malfunction. This is typically the

Physical schema
Specifications for how data from a
logical schema are stored in a
computer’s secondary memory by
a database management system.

28 Part I • The Context of Database Management

longest step of database development, because it lasts throughout the life of the data-
base and its associated applications. Each time the database evolves, view it as an ab-
breviated database development process in which conceptual data modeling, logical
and physical database design, and database implementation occur to deal with pro-
posed changes.

Alternative IS Development Approaches

The systems development life cycle or slight variations on it are often used to guide
the development of information systems and databases. The SDLC is a methodical,
highly structured approach, which includes many checks and balances to ensure that
each step produces accurate results and the new or replacement information system is
consistent with existing systems with which it must communicate or for which there
needs to be consistent data definitions. Whew! That’s a lot of work! Consequently, the
SDLC is often criticized for the length of time needed until a working system is pro-
duced, which occurs only at the end of the process. Instead, organizations increasing-
ly use rapid application development (RAD) methods, which follow an iterative
process of rapidly repeating analysis, design, and implementation steps until they
converge on the system the user wants. These RAD methods work best when most of
the necessary database structures already exist, and hence for systems that primarily
retrieve data, rather than for those that populate and revise databases.

One of the most popular RAD methods is prototyping, which is an iterative
process of systems development in which requirements are converted to a working
system that is continually revised through close work between analysts and users.
Figure 1-11 shows the prototyping process. This figure includes annotations to indicate
roughly which database development activities occur in each prototyping phase.
Typically, you make only a very cursory attempt at conceptual data modeling when the
information system problem is identified. During the development of the initial
prototype, you simultaneously design the displays and reports the user wants while

Identify
problem

Convert to
operational

system

Revise and
enhance
prototype

Problems

Working
prototype

Next version

Develop
initial

prototype

Initial
requirements

If prototype
is inefficient

Conceptual data modeling
• Analyze requirements
• Develop preliminary
 data model

Database maintenance
• Tune database for
 improved performance
• Fix errors in database

Logical database design
• Analyze requirements in detail
• Integrate database views into
 conceptual data model

Physical database design
 and definition
• Define new database
 contents to DBMS
• Decide on physical
 organization for new data
• Design database processing
 programs

Database maintenance
• Analyze database to ensure it
 meets application needs
• Fix errors in database

Implement and
use prototype

New
requirements

Database implementation
• Code database processing
• Install new database
 contents, usually from
 existing data sources

FIGURE 1-11 The prototyping methodology and database development process

Prototyping
An iterative process of systems
development in which
requirements are converted to a
working system that is continually
revised through close work
between analysts and users.

Chapter 1 • The Database Environment and Development Process 29

understanding any new database requirements and defining a database to be used by
the prototype. This is typically a new database, which is a copy of portions of existing
databases, possibly with new content. If new content is required, it will usually come
from external data sources, such as market research data, general economic indicators, or
industry standards.

Database implementation and maintenance activities are repeated as new ver-
sions of the prototype are produced. Often security and integrity controls are minimal
because the emphasis is on getting working prototype versions ready as quickly as pos-
sible. Also, documentation tends to be delayed until the end of the project, and user
training occurs from hands-on use. Finally, after an accepted prototype is created, the
developer and the user decide whether the final prototype, and its database, can be put
into production as is. If the system, including the database, is too inefficient, the system
and database might need to be reprogrammed and reorganized to meet performance
expectations. Inefficiencies, however, have to be weighed against violating the core
principles behind sound database design.

With the increasing popularity of visual programming tools (such as Visual Basic,
Java, or C#) that make it easy to modify the interface between user and system, proto-
typing is becoming the systems development methodology of choice to develop new
applications internally. With prototyping, it is relatively easy to change the content and
layout of user reports and displays.

The benefits from iterative approaches to systems development demonstrated
by RAD and prototyping approaches have resulted in further efforts to create ever
more responsive development approaches. In February 2001, a group of 17 individu-
als interested in supporting these approaches and created “The Manifesto for Agile
Software Development.” For them, agile software development practices include
valuing (www.agilemanifesto.org):

Individuals and interactions over processes and tools
Working software over comprehensive documentation
Customer collaboration over contract negotiation, and
Responding to change over following a plan

Emphasis on the importance of people, both software developers and customers, is evi-
dent in their phrasing. This is in response to the turbulent environment within which
software development occurs, as compared to the more staid environment of most engi-
neering development projects from which the earlier software development method-
ologies came. The importance of the practices established in the SDLC continues to be
recognized and accepted by software developers including the creators of The
Manifesto for Agile Software Development. However, it is impractical to allow these
practices to stifle quick reactions to changes in the environment that change project
requirements.

The use of agile or adaptive processes should be considered when a project
involves unpredictable and/or changing requirements, responsible and collaborative
developers, and involved customers who understand and can contribute to the process
(Fowler, 2005). If you are interested in learning more about agile software development,
investigate agile methodologies such as eXtreme Programming, Scrum, the DSDM
Consortium, and feature-driven development.

Three-Schema Architecture for Database Development

The explanation earlier in this chapter of the database development process referred to
several different, but related, models of databases developed on a systems development
project. These data models and the primary phase of the SDLC in which they are devel-
oped are summarized below:

• Enterprise data model (during the Information Systems Planning phase)
• External schema or user view (during the Analysis and Logical Design phases)
• Conceptual schema (during the Analysis phase)

Agile software development
An approach to database and
software development that
emphasizes “individuals and
interactions over processes and
tools, working software over
comprehensive documentation,
customer collaboration over
contract negotiation, and response
to change over following a plan.”

www.agilemanifesto.org):

30 Part I • The Context of Database Management

• Logical schema (during the Logical Design phase)
• Physical schema (during the Physical Design phase)

In 1978, an industry committee commonly known as ANSI/SPARC published an
important document that described three-schema architecture—external, conceptual
and internal schemas—for describing the structure of data. Figure 1-12 shows the
relationship between the various schemas developed during the SDLC and the ANSI
three-schema architecture. It is important to keep in mind that all these schemas are just
different ways of visualizing structure of the same database by different stakeholders.

The three schemas as defined by ANSI (depicted down the center of Figure 1-12)
are as follows:

1. External schema This is the view (or views) of managers and other employees
who are the database users. As shown in Figure 1-12, the external schema can be
represented as a combination of the enterprise data model (a top-down view) and
a collection of detailed (or bottom-up) user views.

2. Conceptual schema This schema combines the different external views into a
single, coherent, and comprehensive definition of the enterprise’s data.
The conceptual schema represents the view of the data architect or data admin-
istrator.

3. Internal schema As shown in Figure 1-12, an internal schema today really con-
sists of two separate schemas: a logical schema and a physical schema. The logi-
cal schema is the representation of data for a type of data management technology

Enterprise
Data Model

External
Schema

Conceptual
Schema

Internal
Schema

User View 1
(report)

User View 2
(screen display)

User View n
(order form)

Database 1
(Order Processing)

Database 2
(Supply Chain)

Database m
(Customer Service)

Physical
Schema 1

Logical Schemas Physical Schemas

Physical
Schema 2

Physical
Schema m

FIGURE 1-12 Three-schema
architecture

Chapter 1 • The Database Environment and Development Process 31

Project
A planned undertaking of related
activities to reach an objective that
has a beginning and an end.

(e.g., relational). The physical schema describes how data are to be represented
and stored in secondary storage using a particular DBMS (e.g., Oracle).

Managing the People Involved in Database Development

Isn’t it always ultimately about people working together? As implied in Figure 1-10, a
database is developed as part of a project. A project is a planned undertaking of related
activities to reach an objective that has a beginning and an end. A project begins with
the first steps of the Project Initiation and Planning phase and ends with the last steps of
the Implementation phase. A senior systems or database analyst will be assigned to be
project leader. This person is responsible for creating detailed project plans as well as
staffing and supervising the project team.

A project is initiated and planned in the Planning phase, executed during
Analysis, Logical Design, Physical Design, and Implementation phases, and closed
down at the end of implementation. During initiation the project team is formed. A sys-
tems or database development team can include one or more of the following:

• Business analysts These individuals work with both management and users to
analyze the business situation and develop detailed system and program specifi-
cations for projects.

• Systems analysts These individuals may perform business analyst activities but
also specify computer systems requirements and typically have a stronger sys-
tems development background than business analysts.

• Database analysts and data modelers These individuals concentrate on deter-
mining the requirements and design for the database component of the informa-
tion system.

• Users Users provide assessments of their information needs and monitor that
the developed system meets their needs.

• Programmers These individuals design and write computer programs that have
commands to maintain and access data in the database embedded in them.

• Database architects These individuals establish standards for data in business
units, striving to attain optimum data location, currency, and quality.

• Data administrators These individuals have responsibility for existing and
future databases and ensure consistency and integrity across databases, and as
experts on database technology, provide consulting and training to other project
team members.

• Project managers Project managers oversee assigned projects, including team
composition, analysis, design, implementation, and support of projects.

• Other technical experts Other individuals are needed in areas such as network-
ing, operating systems, testing, data warehousing, and documentation.

It is the responsibility of the project leader to select and manage all of these people
as an effective team. See Hoffer et al. (2010) for details on how to manage a systems de-
velopment project team. See Henderson et al. (2005) for a more detailed description of
career paths and roles in data management. The emphasis on people rather than roles
when agile development processes are adopted means that team members will be less
likely to be constrained to a particular role. They will be expected to contribute and col-
laborate across these roles, thus using their particular skills, interests, and capabilities
more completely.

DEVELOPING A DATABASE APPLICATION FOR PINE VALLEY
FURNITURE COMPANY

Pine Valley Furniture Company was introduced earlier in this chapter. By the late
1990s, competition in furniture manufacturing had intensified, and competitors
seemed to respond more rapidly than Pine Valley Furniture to new business oppor-
tunities. While there were many reasons for this trend, managers felt that the com-
puter information systems they had been using (based on traditional file processing)

32 Part I • The Context of Database Management

had become outdated. After attending an executive development session led by Fred
McFadden and Jeff Hoffer (we wish!), the company started a development effort that
eventually led to adopting a database approach for the company. Figure 1-13 dis-
plays a general schematic of the computer network within Pine Valley Furniture
Company.

Data previously stored in separate files have been integrated into a single data-
base structure. Also, the metadata that describe these data reside in the same structure.
The DBMS provides the interface between the various database applications for organi-
zational users and the database (or databases). The DBMS allows users to share the data
and to query, access, and update the stored data.

Before addressing a request that has been received for direct access to sales data
from Helen Jarvis, product manager for home office furniture, let’s review the process
that Pine Valley Furniture Company followed as they originally moved into a database
environment. Pine Valley Furniture Company’s first step in converting to a database
approach was to develop a list of the high-level entities that support the business activ-
ities of the organization. You will recall that an entity is an object or concept that is im-
portant to the business. Some of the high-level entities identified at Pine Valley
Furniture were the following: CUSTOMER, PRODUCT, EMPLOYEE, CUSTOMER
ORDER, and DEPARTMENT. After these entities were identified and defined, the com-
pany proceeded to develop an enterprise data model. Remember that an enterprise
data model is a graphical model that shows the high-level entities for the organization
and associations among those entities.

The results of preliminary studies convinced management of the potential adv-
antages of the database approach. After additional data modeling steps had been

Database

Accounting

Database
Server

Sales

Customer

Internet

Purchasing

Web Server
Running TCP/IP

Web to Database
Middleware

FIGURE 1-13 Computer
System for Pine Valley
Furniture Company

Chapter 1 • The Database Environment and Development Process 33

completed, the company decided to implement a modern relational database
management system that views all data in the form of tables. (We cover relational data-
bases in more detail in Chapter 4.) A simplified segment of the project data model used
is discussed next.

Simplified Project Data Model Example

A segment of the project data model containing four entities and three pertinent asso-
ciations is shown in Figure 1-3b. The entities shown in this model segment are the
following:

CUSTOMER A person or an organization that buys or may potentially buy products from
Pine Valley Furniture

ORDER The purchase of one or more products by a customer

PRODUCT The items Pine Valley Furniture makes and sells

ORDER LINE Details about each product sold on a particular customer order (such as
quantity and price)

The three associations (called relationships in database terminology) shown in the
Figure 1-3b (represented by the three lines connecting entities) capture three fundamen-
tal business rules, as follows:

1. Each CUSTOMER Places any number of ORDERs. Conversely, each ORDER Is
Placed By exactly one CUSTOMER.

2. Each ORDER Contains any number of ORDER LINEs. Conversely, each ORDER
LINE Is Contained In exactly one ORDER.

3. Each PRODUCT Has any number of ORDER LINEs. Conversely, each ORDER
LINE Is For exactly one PRODUCT.

Places, Contains, and Has are called one-to-many relationships because, for exam-
ple, one customer places potentially many orders and one order is placed by exactly one
customer.

Notice the following characteristics of the project data model:

1. It is a model of the organization that provides valuable information about how the
organization functions, as well as important constraints.

2. The project data model focuses on entities, relationships, and business rules. It
also includes attribute labels for each piece of data that will be stored in each enti-
ty. Many entities would include more attributes than we list in Figure 1-3b, but we
have included a sufficient number to help you begin to understand how the data
will be stored in a database.

Figure 1-14 shows the following four tables with sample data: Customer, Product,
Order, and OrderLine. Notice that these tables represent the four entities shown in the proj-
ect data model (Figure 1-3b). Each column of a table represents an attribute (or characteris-
tic) of an entity. For example, the attributes shown for Customer are CustomerID and
CustomerName. Each row of a table represents an instance (or occurrence) of the entity. An
important property of the relational model is that it represents relationships between enti-
ties by values stored in the columns of the corresponding tables. For example, notice that
CustomerID is an attribute of both the Customer table and the Order table. As a result, we
can easily link an order to its associated customer. For example, we can determine that
OrderID 1003 is associated with CustomerID 1. Can you determine which ProductIDs are
associated with OrderID 1004? In subsequent chapters, you will learn how to retrieve data
from these tables by using a powerful query language, SQL, which exploits these linkages.

To facilitate the sharing of data and information, Pine Valley Furniture Company
uses a local area network (LAN) that links employee workstations in the various
departments to a database server, as shown in Figure 1-13. During the early 2000s, the
company mounted a two-phase effort to introduce Internet technology. First, to
improve intracompany communication and decision making, an intranet was installed

34 Part I • The Context of Database Management

that allows employees fast Web-based access to company information, including phone
directories, furniture design specifications, e-mail, and so forth. In addition, Pine Valley
Furniture Company also added a Web interface to some of its business applications,
such as order entry, so that more internal business activities that require access to data
in the database server can also be conducted by employees through its intranet.
However, most applications that use the database server still do not have a Web inter-
face and require that the application itself be stored on employees’ workstations.

FIGURE 1-14 Four relations (Pine Valley Furniture Company)

(a) Order and Order Line Tables

(b) Customer table

(c) Product table

Chapter 1 • The Database Environment and Development Process 35

Although the database quite adequately supports daily operations at Pine Valley
Furniture Company, managers soon learned that the same database is often inadequate
for decision support applications. For example, following are some types of questions
that cannot be easily answered:

1. What is the pattern of furniture sales this year, compared with the same period
last year?

2. Who are our 10 largest customers, and what are their buying patterns?
3. Why can’t we easily obtain a consolidated view of any customer who orders

through different sales channels, rather than viewing each contact as representing
a separate customer?

To answer these and other questions, an organization often needs to build a sepa-
rate database that contains historical and summarized information. Such a database is
usually called a data warehouse or, in some cases, a data mart. Also, analysts need special-
ized decision support tools to query and analyze the database. One class of tools used
for this purpose is called online analytical processing (OLAP) tools. We describe data
warehouses, data marts, and related decision support tools in Chapter 9. There you will
learn of the interest in building a data warehouse that is now growing within Pine
Valley Furniture Company.

A Current Pine Valley Furniture Company Project Request

A trait of a good database is that it does and can evolve! Helen Jarvis, product manager
for home office furniture at Pine Valley Furniture Company, knows that competition
has become fierce in this growing product line. Thus, it is increasingly important to Pine
Valley Furniture that Helen be able to analyze sales of her products more thoroughly.
Often these analyses are ad hoc, driven by rapidly changing and unanticipated business
conditions, comments from furniture store managers, trade industry gossip, or personal
experience. Helen has requested that she be given direct access to sales data with an
easy-to-use interface so that she can search for answers to the various marketing ques-
tions she will generate.

Chris Martin is a systems analyst in Pine Valley Furniture’s information systems
development area. Chris has worked at Pine Valley Furniture for five years, and has ex-
perience with information systems from several business areas within Pine Valley. With
this experience, his information systems education at Western Florida University, and
the extensive training Pine Valley has given him, he has become one of Pine Valley’s
best systems developers. Chris is skilled in data modeling and is familiar with several
relational database management systems used within the firm. Because of his experi-
ence, expertise, and availability, the head of information systems has assigned Chris to
work with Helen on her request for a marketing support system.

Because Pine Valley Furniture has been careful in the development of its systems,
especially since adopting the database approach, the company already has databases
that support its operational business functions. Thus, it is likely that Chris will be able
to extract the data Helen needs from existing databases. Pine Valley’s information sys-
tems architecture calls for such systems as Helen is requesting to be built on stand-alone
databases so that the unstructured and unpredictable use of data will not interfere with
the access to the operational databases needed to support efficient transaction process-
ing systems.

Further, because Helen’s needs are for data analysis, not creation and maintenance,
and are personal, not institutional, Chris decides to follow a combination of prototyping
and life-cycle approaches in developing the system Helen has requested. This means
that Chris will follow all the life-cycle steps, but focus his energy on the steps that are in-
tegral to prototyping. Thus, he will very quickly address project planning, then use an it-
erative cycle of analysis, design, and implementation to work closely with Helen to de-
velop a working prototype of the system she needs. Because the system will be personal
and likely will require a database with limited scope, Chris hopes the prototype will end
up being the actual system Helen will use. Chris has chosen to develop the system using
Microsoft Access, Pine Valley’s preferred technology for personal databases.

36 Part I • The Context of Database Management

Project Planning

Chris begins the project by interviewing Helen. Chris asks Helen about her business
area, taking notes about business area objectives, business functions, data entity types,
and other business objects with which she deals. At this point, Chris listens more than
he talks so that he can concentrate on understanding Helen’s business area; he interjects
questions and makes sure that Helen does not try to jump ahead to talk about what she
thinks she needs with regards to computer screens and reports from the information
system. Chris asks very general questions, using business and marketing terminology
as much as possible. For example, Chris asks Helen what issues she faces managing the
home office products; what people, places, and things are of interest to her in her job;
how far back in time she needs data to go to do her analyses; and what events occur in
the business that are of interest to her. Chris pays particular attention to Helen’s objec-
tives as well as the data entities that she is interested in.

Chris does two quick analyses before talking with Helen again. First, he identifies
all of the databases that contain data associated with the data entities Helen mentioned.
From these databases, Chris makes a list of all of the data attributes from these data enti-
ties that he thinks might be of interest to Helen in her analyses of the home office furniture
market. Chris’s previous involvement in projects that developed Pine Valley’s standard
sales tracking and forecasting system and cost accounting system helps him to speculate
on the kinds of data Helen might want. For example, the objective to exceed sales goals
for each product finish category of office furniture suggests that Helen wants product an-
nual sales goals in her system; also, the objective of achieving at least an 8 percent annual
sales growth means that the prior year’s orders for each product need to be included. He
also concludes that Helen’s database must include all products, not just those in the office
furniture line, because she wants to compare her line to others. However, he is able to
eliminate many of the data attributes kept on each data entity. For example, Helen does
not appear to need various customer data such as address, phone number, contact person,
store size, and salesperson. Chris does, though, include a few additional attributes, cus-
tomer type and zip code, which he feels might be important in a sales forecasting system.

Second, from this list, Chris draws a graphic data model that represents the
data entities with the associated data attributes, as well as the major relationships be-
tween these data entities. Chris’s hope is that he can reduce the time for the analysis
phase of the systems development process (and hence the time to do conceptual data
modeling) by presenting this data model to Helen. A graphic of the data model for
the preliminary database that Chris produces appears in Figure 1-15. The data attributes

FIGURE 1-15 Preliminary
data model for Home Office
product line marketing
support system CUSTOMER

ORDER

INVOICE PAYMENT

PRODUCT
LINE

PRODUCT

Places

Contains Has

Includes

Is Paid On

Is Billed On

ORDER
LINE

Chapter 1 • The Database Environment and Development Process 37

of each entity Chris thinks Helen wants for the system are listed in Table 1-6. Chris
lists in Table 1-6 only basic data attributes from existing databases, because Helen
will likely want to combine these data in various ways for the analyses she will want
to do.

Analyzing Database Requirements

Prior to their next meeting, Chris sends Helen a rough project schedule outlining
the steps he plans to follow and the estimated length of time each step will take.
Because prototyping is a user-driven process, in which the user says when to stop it-
erating on the new prototype versions, Chris can provide only rough estimates of

TABLE 1-6 Data Attributes for Entities in the
Preliminary Data Model (Pine Valley Furniture
Company)

Entity Type Attribute

Customer Customer Identifier

Customer Name

Customer Type

Customer Zip Code

Product Product Identifier

Product Description

Product Finish

Product Price

Product Cost

Product Annual Sales Goal

Product Line Name

Product Line Product Line Name

Product Line Annual Sales Goal

Order Order Number

Order Placement Date

Order Fulfillment Date

Customer Identifier

Ordered Product Order Number

Product Identifier

Order Quantity

Invoice Invoice Number

Order Number

Invoice Date

Payment Invoice Number

Payment Date

Payment Amount

38 Part I • The Context of Database Management

the duration of certain project steps. For this reason, Chris’s boss has decided that
this project should be billed to Helen’s department on a consulting time basis, not at
a fixed cost.

Chris does more of the talking at this second meeting, but he pays close attention
to Helen’s reactions to his initial ideas for the database application. He methodically
walks through each data entity in Figure 1-15, explaining what it means, what each data
attribute associated with it (in Table 1-6) means, and what business policies and proce-
dures are represented by each line between entities. For example, Chris explains that
each order is billed on one invoice and each invoice is a bill for exactly one order. An
Order Number uniquely identifies each order, and an order is placed by one customer.
Other data about an order Chris thinks Helen might want to know include the date
when the order was placed and the date when the order was filled. (This would be the
latest shipment date for the products on the order.) Chris also explains that the Payment
Date attribute represents the most recent date when the customer made any payments,
in full or partial, for the order.

Maybe because Chris was so well prepared or so enthusiastic, Helen is excited
about the possibilities, and this excitement leads her to tell Chris about some addi-
tional data she wants (the number of years a customer has purchased products from
Pine Valley Furniture Company and the number of shipments necessary to fill each
order). Helen also notes that Chris has only one year of sales goals indicated for a
product line. She reminds him that she wants these data for both the past and current
years. As she reacts to the data model, Chris asks her how she intends to use the data
she wants. Chris does not try to be thorough at this point, because he knows that
Helen has not worked with an information set like the one being developed; thus, she
may not yet be positive what data she wants or what she wants to do with the data.
Rather, Chris’s objective is to understand a few ways in which Helen intends to use
the data so he can develop an initial prototype, including the database and several
computer displays or reports. The final list of attributes that Helen agrees she needs
appears in Table 1-7.

Designing the Database

Because Chris is following a prototyping methodology, and because the first two
sessions with Helen quickly identified the data Helen might need, Chris is able to
immediately begin to build the prototype. First, Chris extracts from the corporate
databases the data entities and attributes that Helen suggested. Chris is able to create
all of these files using the SQL query language. Some of the data Helen wants are
computed from raw, operational data (e.g., Customer Years), but SQL makes it easy
for Chris to specify these calculations. This extracting results in a single ASCII file
for each data entity; each row in a file contains all of the data attributes associated
with that data entity in the data model, and the rows are different instances of the en-
tity. For example, each row of the ASCII file for the PRODUCT LINE data entity con-
tains data for product line names and the annual sales goals for the past and current
years.

Second, Chris translates the final data model from his discussion with Helen
into a set of tables for which the columns are data attributes and the rows are differ-
ent sets of values for those attributes. Tables are the basic building blocks of a
relational database, which is the database style for Microsoft Access. The definitions
of the ProductLine and Product tables Chris created, including associated data at-
tributes, are shown in Figures 1-16 and 1-17. The tables are defined using SQL. It is
customary to add the suffix _T to a table name. Also note that because relational
databases do not allow for spaces between names, the individual words in the attrib-
utes from the data model have now been concatenated. Hence, Product Description
in the data model has become ProductDescription in the table. Chris did this
translation so that each table had an attribute, called the table’s “primary key,”
which will be distinct for each row in the table. The other major properties of each

Chapter 1 • The Database Environment and Development Process 39

table are that there is only one value for each attribute in each row, and if we know
the value of the identifier, there can be only one value for each of the other attributes.
For example, for any product line, there can be only one value for the current year’s
sales goal.

The design of the database includes specifying the format, or properties, for each
attribute (MS Access calls attributes fields). These design decisions were easy in this

TABLE 1-7 Data Attributes for Entities in Final Data
Model (Pine Valley Furniture Company)

Entity Type Attribute

Customer Customer Identifier

Customer Name

Customer Type

Customer Zip Code

Customer Years

Product Product Identifier

Product Description

Product Finish

Product Price

Product Cost

Product Prior Year Sales Goal

Product Current Year Sales Goal

Product Line Name

Product Line Product Line Name

Product Line Prior Year Sales Goal

Product Line Current Year Sales Goal

Order Order Number

Order Placement Date

Order Fulfillment Date

Order Number of Shipments

Customer Identifier

Ordered Product Order Number

Product Identifier

Order Quantity

Invoice Invoice Number

Order Number

Invoice Date

Payment Invoice Number

Payment Date

Payment Amount

*Changes from preliminary list of attributes appear in italics.

40 Part I • The Context of Database Management

CREATE TABLE Product_T

(ProductID NUMBER(11,0) NOT NULL PRIMARY KEY

ProductDescription VARCHAR (50),

ProductFinish VARCHAR (20),

ProductStandardPrice DECIMAL(6,2),

ProductCost DECIMAL,

ProductPriorYearGoal DECIMAL,

ProductCurrentYearGoal DECIMAL,

ProductLineID VARCHAR (40),

FOREIGN KEY (ProductLineID) REFERENCES ProductLine_T (ProductLineID));

FIGURE 1-17 SQL definition
of Product table

case because most of the attributes were already specified in the corporate data
dictionary.

The other major decision Chris has to make about database design is how to
physically organize the database to respond fastest to the queries Helen will write.
Because the database will be used for decision support, neither Chris nor Helen can
anticipate all of the queries that will arise; thus, Chris must make the physical design
choices from experience rather than precise knowledge of the way the database will be
used. The key physical database design decision that SQL allows a database designer
to make is on which attributes to create indexes. (An index is like a card catalog in the
library, through which rows with common characteristics can be quickly located.) All
primary key attributes (like OrderNumber for the Order_T table)—those with unique
values across the rows of the table—are indexed. In addition to this, Chris uses a gen-
eral rule of thumb: Create an index for any attribute that has more than 10 different
values and that Helen might use to segment the database. For example, Helen indicated
that one of the ways she wants to use the database is to look at sales by product finish.
Thus, it might make sense to create an index on the Product_T table using the Product
Finish attribute.

However, Pine Valley uses only six product finishes, or types of wood, so this is
not a useful index candidate. On the other hand, OrderPlacementDate (called a second-
ary key because there may be more than one row in the Order_T table with the same
value of this attribute), which Helen also wants to use to analyze sales in different time
periods, is a good index candidate.

Figure 1-18 shows the prototype project data model developed by Chris for the
home office marketing database. Each box represents one table in the database; the
attributes of a table are listed inside the associated box. The project data model shows
how the relations will be linked by including common fields, or foreign keys. The for-
eign keys have a dashed underline in the model. For example, the attribute Product
Line is the primary identifier in the PRODUCT LINE relation, and is also included in
the PRODUCT relation. This linkage makes it possible to compare current sales to sales
goals by product line.

CREATE TABLE ProductLine_T

(ProductLineID VARCHAR (40) NOT NULL PRIMARY KEY,

PlPriorYearGoal DECIMAL,

PlCurrentYearGoal DECIMAL);

FIGURE 1-16 SQL definition
of ProductLine table

Chapter 1 • The Database Environment and Development Process 41

Using the Database

Helen will use the database Chris has built mainly for ad hoc questions, so Chris will
train her so that she can access the database and build queries to answer her ad hoc
questions. Helen has indicated a few standard questions she expects to ask periodically.
Chris will develop several types of prewritten routines (forms, reports, and queries)
that can make it easier for Helen to answer these standard questions (so she does not
have to program these questions from scratch).

During the prototyping development process, Chris may develop many examples
of each of these routines as Helen communicates more clearly what she wants the sys-
tem to be able to do. At this early stage of development, however, Chris wants to develop
one routine to create the first prototype. One of the standard sets of information Helen
says she wants is a list of each of the products in the Home Office line showing each
product’s total sales to date compared with its current year sales goal. Helen may want
the results of this query to be displayed in a more stylized fashion—an opportunity to
use a report—but for now Chris will present this feature to Helen only as a query.

The query to produce this list of products appears in Figure 1-19, with sample out-
put in Figure 1-20. The query in Figure 1-19 uses SQL. You can see three of the six stan-
dard SQL clauses in this query: SELECT, FROM, and WHERE. SELECT indicates which
attributes will be shown in the result. One calculation is also included and given the
label “Sales to Date.” FROM indicates which tables must be accessed to retrieve data.
WHERE defines the links between the tables and indicates that results from only the
Home Office product line are to be included. Only limited data are included for this ex-
ample, so the Total Sales results in Figure 1-20 are fairly small, but the format is the re-
sult of the query in Figure 1-19.

Chris is now ready to meet with Helen again to see if the prototype is beginning to
meet her needs. Chris shows Helen the system. As Helen makes suggestions, Chris is
able to make a few changes online, but many of Helen’s observations will have to wait
for more careful work at his desk.

FIGURE 1-18 Project data model for Home Office product line marketing support system

Places

Includes

Is billed on

HasContains

Is paid on

CUSTOMER
Customer ID
Customer Name
Customer Type
Customer Zip Code
Customer Years

ORDER
Order Number
Order Placement Date
Order Fulfillment Date
Order Number of Shipments

INVOICE
Invoice Number
Order Number
Invoice Date

PAYMENT
Invoice Number
Payment Date
Payment Amount

PRODUCT
Product ID
Product Description
Product Finish
Product Standard Price
Product Cost
PR Prior Years Sales Goal
PR Current Year Sales Goal

ORDER LINE
Order Number
Product ID
Order Quantity

PRODUCT LINE
Product Line Name
PL Prior Years Sales Goal
PL Current Years Sales Goal

42 Part I • The Context of Database Management

SELECT Product.ProductID, Product.ProductDescription, Product.PRCurrentYearSalesGoal,

 (OrderQuantity * ProductPrice) AS SalesToDate

FROM Order.OrderLine, Product.ProductLine

WHERE Order.OrderNumber = OrderLine.OrderNumber

AND Product.ProductID = OrderedProduct.ProductID

AND Product.ProductID = ProductLine.ProductID

AND Product.ProductLineName = “Home Office”;

FIGURE 1-19 SQL query for
Home Office sales-to-goal
comparison

Home Office Sales to Date : Select QueryHome Office Sales to Date : Select Query

3 Computer Desk $23,500.00 5625

4400

650

3750

2250

3900

$22,500.00

$26,500.00

$23,500.00

$17,000.00

$26,500.00

96" Bookcase

48" Bookcase

Writer’s Desk

Writer’s Desk

Computer Desk

10

5

3

7

5

Product ID Product Description PR Current Year Sales Goal Sales to Date

FIGURE 1-20 Home Office
product line sales comparison

Space does not permit us to review the whole project to develop the Home Office
marketing support system. Chris and Helen ended up meeting about a dozen times
before Helen was satisfied that all the attributes she needed were in the database; that the
standard queries, forms, and reports Chris wrote were of use to her; and that she knew
how to write queries for unanticipated questions. Chris will be available to Helen at any
time to provide consulting support when she has trouble with the system, including writ-
ing more complex queries, forms, or reports. One final decision that Chris and Helen
made was that the performance of the final prototype was efficient enough that the proto-
type did not have to be rewritten or redesigned. Helen was now ready to use the system.

Administering the Database

The administration of the Home Office marketing support system is fairly simple.
Helen decided that she could live with weekly downloads of new data from Pine
Valley’s operational databases into her Microsoft Access database. Chris wrote a C#
program with SQL commands embedded in it to perform the necessary extracts and
wrote an MS Access program in Visual Basic to rebuild the Access tables from these ex-
tracts; he scheduled these jobs to run every Sunday evening. Chris also updated the cor-
porate information systems architecture model to include the Home Office marketing
support system. This step was important so that when changes occurred to formats for
data included in Helen’s system, the corporate CASE tool could alert Chris that changes
might have to be made also in her system.

Over the past two decades there has been enormous
growth in the number and importance of database appli-
cations. Databases are used to store, manipulate, and re-
trieve data in every type of organization. In the highly
competitive environment of the 2000s, there is every indi-
cation that database technology will assume even greater

importance. A course in modern database management is
one of the most important courses in the information sys-
tems curriculum.

A database is an organized collection of logically re-
lated data. We define data as stored representations of ob-
jects and events that have meaning and importance in the

Summary

Chapter 1 • The Database Environment and Development Process 43

user’s environment. Information is data that have been
processed in such a way that the knowledge of the person
who uses the data increases. Both data and information
may be stored in a database.

Metadata are data that describe the properties or
characteristics of end-user data and the context of that
data. A database management system (DBMS) is a soft-
ware system that is used to create, maintain, and provide
controlled access to user databases. A DBMS stores meta-
data in a repository, which is a central storehouse for all
data definitions, data relationships, screen and report for-
mats, and other system components.

Computer file processing systems were developed
early in the computer era so that computers could store,
manipulate, and retrieve large files of data. These systems
(still in use today) have a number of important limitations
such as dependence between programs and data, data du-
plication, limited data sharing, and lengthy development
times. The database approach was developed to overcome
these limitations. This approach emphasizes the integration
and sharing of data across the organization. Advantages of
this approach include program-data independence, im-
proved data sharing, minimal data redundancy, and im-
proved productivity of application development.

Database applications can be arranged into the fol-
lowing categories: personal databases, two-tier databases,
multitier, and enterprise databases. Enterprise databases
include data warehouses and integrated decision sup-
port databases whose content is derived from the vari-
ous operational databases. Enterprise resource planning
(ERP) systems rely heavily on enterprise databases. A
modern database and the applications that use it may be
located on multiple computers. Although any number of
tiers may exist (from one to many), three tiers of comput-
ers relate to the client/server architecture for database
processing: (1) the client tier, where database contents
are presented to the user; (2) the application/Web server
tier, where analyses on database contents are made and
user sessions are managed; and (3) the enterprise server
tier, where the data from across the organization are
merged into an organizational asset.

Database development begins with enterprise data
modeling, during which the range and general contents
of organizational databases are established. In addition to
the relationships among the data entities themselves their
relationship to other organizational planning objects:

organizational units, locations, business functions, and
information systems, also need to be established.
Relationships between data entities and the other organi-
zational planning objects can be represented at a high
level by planning matrixes, which can be manipulated to
understand patterns of relationships. Once the need for a
database is identified, either from a planning exercise or
from a specific request (such as the one from Helen Jarvis
for a Home Office products marketing support system), a
project team is formed to develop all elements. The proj-
ect team follows a systems development process, such as
the systems development life cycle or prototyping. The
systems development life cycle can be represented by
five methodical steps: (1) planning, (2) analysis, (3) de-
sign, (4) implementation, and (5) maintenance. Database
development activities occur in each of these overlapping
phases, and feedback may occur that causes a project to
return to a prior phase. In prototyping, a database and its
applications are iteratively refined through a close inter-
action of systems developers and users. Prototyping
works best when the database application is small and
stand-alone, and a small number of users exist.

Those working on a database development project
deal with three views, or schemas, for a database: (1) a
conceptual schema, which provides a complete, technol-
ogy-independent picture of the database; (2) an internal
schema, which specifies the complete database as it will
be stored in computer secondary memory in terms of a
logical schema and a physical schema; and (3) an exter-
nal schema or user view, which describes the database
relevant to a specific set of users in terms of a set of user
views combined with the enterprise data model.

We closed the chapter with the review of a hypo-
thetical database development project at Pine Valley
Furniture Company. This system to support marketing a
Home Office furniture product line illustrated the use of
a personal database management system and SQL coding
for developing a retrieval-only database. The database in
this application contained data extracted from the enter-
prise databases and then stored in a separate database on
the client tier. Prototyping was used to develop this data-
base application because the user, Helen Jarvis, had
rather unstructured needs that could best be discovered
through an iterative process of developing and refining
the system. Also, her interest and ability to work closely
with Chris was limited.

Agile software
development 29

Computer-aided software
engineering (CASE)
tools 16

Conceptual schema 26
Constraint 14
Data 5

Data independence 13
Data model 10
Data warehouse 20
Database 5
Database application 9
Database management

system (DBMS) 11
Enterprise data modeling 24

Enterprise resource plan-
ning (ERP) 20

Entity 10
Information 6
Logical schema 26
Metadata 7
Physical schema 27
Project 31

Prototyping 28
Relational database 10
Repository 16
Systems development life

cycle (SDLC) 25
User view 13

Chapter Review

Key Terms

44 Part I • The Context of Database Management

Review Questions

1. Define each of the following terms:
a. data
b. information
c. metadata
d. database application
e. data warehouse
f. constraint
g. database
h. entity
i. database management system
j. client/server architecture
k. systems development life cycle (SDLC)
l. agile software development
m. enterprise data model
n. conceptual data model
o. logical data model
p. physical data model

2. Match the following terms and definitions:

3. Contrast the following terms:
a. data dependence; data independence
b. structured data; unstructured data
c. data; information
d. repository; database
e. entity; enterprise data model
f. data warehouse; ERP system
g. two-tier databases; multitier databases
h. systems development life cycle; prototyping
i. enterprise data model; conceptual data model
j. prototyping; agile software development

4. List five disadvantages of file processing systems.
5. List the nine major components in a database system envi-

ronment.
6. How are relationships between tables expressed in a rela-

tional database?
7. What does the term data independence mean, and why is it an

important goal?
8. List 10 potential benefits of the database approach over con-

ventional file systems.
9. List five costs or risks associated with the database approach.

10. Define a three-tiered database architecture.
11. In the three-tiered database architecture, is it possible for

there to be no database on a particular tier? If not, why? If
yes, give an example.

12. Name the five phases of the traditional systems develop-
ment life cycle, and explain the purpose and deliverables of
each phase.

13. In which of the five phases of the SDLC do database devel-
opment activities occur?

14. Are there procedures and processes that are common to
the use of SDLC, prototyping, and agile methodologies?
Explain any that you can identify and then indicate why
the methodologies are considered to be different even
though fundamental procedures and processes are still
included.

15. Explain the differences between user views, a conceptual
schema, and an internal schema as different perspectives of
the same database.

16. In the three-schema architecture:
a. The view of a manager or other type of user is called the

schema.
b. The view of the data architect or data administrator is

called the schema.
c. The view of the database administrator is called the

schema.
17. Why might Pine Valley Furniture Company need a data

warehouse?
18. As the ability to handle large amounts of data improves, de-

scribe three business areas where these very large databases
are being used effectively.

data

database
application

constraint

repository

metadata

data warehouse

information

user view

database
management
system

data
independence

database

enterprise
resource
planning (ERP)

systems
development life
cycle (SDLC)

prototyping

enterprise data
model

conceptual
schema

internal
schema

external schema

a. data placed in context or
summarized

b. application program(s)
c. facts, text, graphics, images, etc.
d. a graphical model that shows

the high-level entities for the
organization and the relation-
ships among those entities

e. organized collection of related
data

f. includes data definitions and
constraints

g. centralized storehouse for all
data definitions

h. separation of data description
from programs

i. a business management
system that integrates all
functions of the enterprise

j. logical description of portion
of database

k. a software application that is
used to create, maintain, and
provide controlled access to
user databases

l. a rule that cannot be violated
by database users

m. integrated decision support
database

n. consist of the enterprise data
model and multiple user
views

o. a rapid approach to systems
development

p. consists of two data models: a
logical model and a physical
model

q. a comprehensive description
of business data

r. a structured, step-by-step
approach to systems
development

Chapter 1 • The Database Environment and Development Process 45

FIGURE 1-21 Data model for Problem and Exercise 8

PET CUSTOMER

STORE

Has

Purchased By Buys

Sold By

1. For each of the following pairs of related entities, indicate
whether (under typical circumstances) there is a one-to-
many or a many-to-many relationship. Then, using the
shorthand notation introduced in the text, draw a diagram
for each of the relationships.
a. STUDENT and COURSE (students register for courses)
b. BOOK and BOOK COPY (books have copies)
c. COURSE and SECTION (courses have sections)
d. SECTION and ROOM (sections are scheduled in rooms)
e. INSTRUCTOR and COURSE

2. Reread the definitions for data and database in this chapter.
Database management systems only recently began to in-
clude the capability to store and retrieve more than numeric
and textual data. What special data storage, retrieval, and
maintenance capabilities do images, sound, video, and
other advanced data types require that are not required or
are simpler with numeric and textual data?

3. Table 1-1 shows example metadata for a set of data items.
Identify three other columns for these data (i.e., three other
metadata characteristics for the listed attributes) and com-
plete the entries of the table in Table 1-1 for these three addi-
tional columns.

4. In the section “Disadvantages of File Processing
Systems,” the statement is made that the disadvantages
of file processing systems can also be limitations of data-
bases, depending on how an organization manages its
databases. First, why do organizations create multiple
databases, not just one all-inclusive database supporting
all data processing needs? Second, what organizational
and personal factors are at work that might lead an or-
ganization to have multiple, independently managed
databases (and, hence, not completely follow the data-
base approach)?

5. Consider a student club or organization in which you are a
member. What are the data entities of this enterprise? List
and define each entity. Then, develop an enterprise data
model (such as Figure 1-3a) showing these entities and im-
portant relationships between them.

6. A driver’s license bureau maintains a database of licensed
drivers. State whether each of the following represents data
or metadata. If it represents data, state whether it is struc-
tured or unstructured data. If it represents metadata, state
whether it is a fact describing a property of data or a fact de-
scribing the context of data.
a. Driver’s name, address, and birth date
b. The fact that the driver’s name is a 30-character field
c. A photo image of the driver
d. An image of the driver’s fingerprint
e. The make and serial number of the scanning device that

was used to scan the fingerprint
f. The resolution (in megapixels) of the camera that was

used to photograph the driver
g. The fact that the driver’s birth date must precede

today’s date by at least 16 years
7. Great Lakes Insurance would like to implement a relational

database for both its in-house and outside agents. The out-
side agents will use notebook computers to keep track of
customers and policy information. Based on what you have

learned in this chapter, what type (or types) of database(s)
would you recommend for this application?

8. Figure 1-21 shows an enterprise data model for a pet store.
a. What is the relationship between Pet and Store (one-to-

one, many-to-many, or one-to-many)?
b. What is the relationship between Customer and Pet?
c. Do you think there should be a relationship between

Customer and Store?
9. Consider Figure 1-7, which depicts a hypothetical three-

tiered database architecture. Identify potential duplications
of data across all the databases listed on this figure. What
problems might arise because of this duplication? Does this
duplication violate the principles of the database approach
outlined in this chapter? Why or why not?

10. What is your reaction to the representation of the systems
development life cycle included in this chapter? Explain
any problems you have with it.

11. List three additional entities that might appear in an enterprise
data model for Pine Valley Furniture Company (Figure 1-3a).

12. Consider your business school or other academic unit as a
business enterprise.
a. Define several major data entity types and draw a pre-

liminary enterprise data model (similar in notation to
Figure 1-3a).

b. Would your business school or academic unit benefit from
a multiple-tiered architecture for data? Why or why not?

13. Contrast the top-down nature of database development dur-
ing conceptual data modeling with the bottom-up nature of
database development during logical database design. What
major differences exist in the type of information considered
in each of these two database development steps?

14. The objective of the prototyping systems development
methodology is to rapidly build and rebuild an information
system as the user and systems analyst learn from use of the
prototype what features should be included in the evolving
information system. Because the final prototype does not
have to become the working system, where do you think
would be an ideal location to develop a prototype: on a per-
sonal computer, department server, or enterprise server?
Does your answer depend on any assumptions?

15. Explain the differences between an enterprise data model
and a conceptual data model. How many databases does
each represent? What scope of the organization does each
address? What are other salient differences?

Problems and Exercises

46 Part I • The Context of Database Management

16. Is it possible that during the physical database design and
creation step of database development you might want to
return to the logical database design activity? Why or why
not? If it is possible, give an example of what might arise
during physical database design and creation that would
cause you to want to reconsider the conceptual and external
database designs from prior steps.

17. Consider an organization with which you frequently inter-
act, such as a bank, credit card company, university, or insur-
ance company, from which you receive several computer-
generated messages, such as monthly statements,
transaction slips, and so forth. Depict the data included in
each message you receive from the organization as its own
user view; use the notation of Figure 1-3a to represent these
views. Now, combine all of these user views together into one
conceptual data model, also using the notation of Figure 1-3a.
What did you observe about the process of combining the
different user views? Were there inconsistencies across the
user views? Once you have created the conceptual data
model, would you like to change anything about any of the
user views?

18. Consider Figure 1-15. Explain the meaning of the line that
connects ORDER to INVOICE and the line that connects
INVOICE to PAYMENT. What does this say about how Pine
Valley Furniture Company does business with its customers?

19. Answer the following questions concerning Figures 1-16
and 1-17:

a. What will be the field size for the ProductLineName
field in the Product table? Why?

b. In Figure 1-17, how is the ProductID field in the
Product table specified to be required? Why is it a re-
quired attribute?

c. In Figure 1-17, explain the function of the FOREIGN
KEY definition.

20. Consider the SQL query in Figure 1-19.
a. How is Sales to Date calculated?
b. How would the query have to change if Helen Jarvis

wanted to see the results for all of the product lines, not
just the Home Office product line?

21. Helen Jarvis wants to determine the most important cus-
tomers for Home Office products. She requests a listing of
total dollar sales year-to-date for each customer who bought
these products, as revealed by invoiced payments. The list is
to be sorted in descending order, so that the largest cus-
tomer heads the list.
a. Look at Figure 1-18 and determine what entities are re-

quired to produce this list.
b. Which entities will be involved in the SQL query that

will give Helen the information she needs?
22. In this chapter, we described four important data models

and their properties: enterprise, conceptual, logical, and
physical. In the following table, summarize the important
properties of these data models by entering a Y (for Yes) or
an N (for No) in each cell of the table.

Field Exercises
For Questions 1 through 7, choose an organization with a fairly exten-
sive information systems department and set of information system
applications. You should choose one which you are familiar, possibly
your employer, your university, or an organization where a friend
works. Use the same organization for each question.

1. Investigate whether the organization follows more of a tra-
ditional file processing approach or the database approach
to organizing data. How many different databases does the
organization have? Try to draw a figure, similar to Figure
1-2, to depict some or all of the files and databases in this
organization.

2. Talk with a database administrator or designer from the or-
ganization. What type of metadata does this organization
maintain about its databases? Why did the organization
choose to keep track of these and not other metadata? What
tools are used to maintain these metadata?

3. Determine the company’s use of intranet, extranet, or other
Web-enabled business processes. For each type of process,
determine its purpose and the database management system

that is being used in conjunction with the networks. Ask
what the company’s plans are for the next year with regard
to using intranets, extranets, or the Web in their business ac-
tivities. Ask what new skills they are looking for in order to
implement these plans.

4. Consider a major database in this organization, such as one
supporting customer interactions, accounting, or manufac-
turing. What is the architecture for this database? Is the
organization using some form of client/server architecture?
Interview information systems managers in this organiza-
tion to find out why they chose the architecture for this
database.

5. Interview systems and database analysts at this organiza-
tion. Ask them to describe their systems development
process. Does it resemble more the systems development
life cycle or prototyping? Do they use methodologies
similar to both? When do they use their different method-
ologies? Explore the methodology used for developing ap-
plications to be used through the Web. How have they

Table for Problem and Exercise 22

All Entities? All Attributes?
Technology

Independent?
DBMS

Independent?
Record

Layouts?

Enterprise

Conceptual

Logical

Physical

Chapter 1 • The Database Environment and Development Process 47

References
Anderson-Lehman, R., H. J. Watson, B. Wixom, and J. A. Hoffer.

2004. “Continental Airlines Flies High with Real-Time
Business Intelligence.” MIS Quarterly Executive 3,4
(December).

Codd, E. F. 1970. “A Relational Model of Data for Large Shared
Data Banks.” Communications of the ACM 13,6 (June):
377–87.

Fowler, M. 2005. “The New Methodology” available at www.
martinfowler.com/articles/newMethodology.html (ac-
cess verified February 20, 2010).

Gray, J. 1996. “Data Management: Past, Present, and Future.”
IEEE Computer 29,10: 38–46.

Grimes, S. 1998. “Object/Relational Reality Check.” Database
Programming & Design 11,7 (July): 26–33.

Henderson, D., B. Champlin, D. Coleman, P. Cupoli, J. Hoffer, L.
Howarth et al. 2005. “Model Curriculum Framework for
Post Secondary Education Programs in Data Resource

Management.” The Data Management Association Inter-
national Foundation Committee on the Advancement of
Data Management in Post Secondary Institutions Sub
Committee on Curriculum Framework Development.
DAMA International Foundation.

Hoffer, J. A., J. F. George, and J. S. Valacich. 2010. Modern Systems
Analysis and Design, 6th ed. Upper Saddle River, NJ:
Prentice Hall.

Jordan, A. 1996. “Data Warehouse Integrity: How Long and
Bumpy the Road?” Data Management Review 6,3 (March):
35–37.

Long, D. 2005. Presentation. “.Net Overview,” Tampa Bay
Technology Leadership Association, May 19, 2005.

Mullins, C. S. 2002. Database Administration: The Complete Guide
to Practices and Procedures. New York: Addison-Wesley.

Ritter, D. 1999. “Don’t Neglect Your Legacy.” Intelligent
Enterprise 2,5 (March 30): 70, 72.

Further Reading

Ballou, D. P., and G. K. Tayi. 1999. “Enhancing Data Quality in
Data Warehouse Environments.” Communications of the
ACM 42,1 (January): 73–78.

Date, C. J. 1998. “The Birth of the Relational Model, Part 3.”
Intelligent Enterprise 1,4 (December 10): 45–48.

Kimball, R., and M. Ross. 2002. The Data Warehouse Toolkit: The
Complete Guide to Dimensional Data Modeling, 2d ed. New
York: Wiley. Ritter, D. 1999. “The Long View.” Intelligent
Enterprise 2,12 (August 24): 58, 63, 67.

Silverston, L. 2001a. The Data Model Resource Book, Vol. 1: A Library
of Universal Data Models for all Enterprises. New York: Wiley.

Silverston, L. 2001b. The Data Model Resource Book, Vol 2: A
Library of Data Models for Specific Industries. New York:
Wiley.

Winter, R. 1997. “What, After All, Is a Very Large Database?”
Database Programming & Design 10,1 (January): 23–26.

adapted their methodology to fit this new systems develop-
ment process?

6. Interview a systems analyst or database analyst and ask
questions about the typical composition of an information
systems development team. Specifically, what role does a
database analyst play in project teams? Is a database analyst
used throughout the systems development process or is the
database analyst used only at selected points?

7. Interview a systems analyst or database analyst and ask
questions about how that organization uses CASE tools in
the systems development process. Concentrate your ques-
tions on how CASE tools are used to support data modeling
and database design and how the CASE tool’s repository
maintains the information collected about data, data charac-
teristics, and data usage. If multiple CASE tools are used on
one or many projects, ask how the organization attempts to
integrate data models and data definitions. Finally, inquire

how satisfied the systems and database analysts are with
CASE tool support for data modeling and database design.

8. You may want to keep a personal journal of ideas and ob-
servations about database management while you are
studying this book. Use this journal to record comments
you hear, summaries of news stories or professional arti-
cles you read, original ideas or hypotheses you create, uni-
form resource locators (URLs) for and comments about
Web sites related to databases, and questions that require
further analysis. Keep your eyes and ears open for any-
thing related to database management. Your instructor
may ask you to turn in a copy of your journal from time to
time in order to provide feedback and reactions. The jour-
nal is an unstructured set of personal notes that will sup-
plement your class notes and can stimulate you to think
beyond the topics covered within the time limitations of
most courses.

www.martinfowler.com/articles/newMethodology.html
www.martinfowler.com/articles/newMethodology.html

48 Part I • The Context of Database Management

Web Resources
www.dbazine.com An online portal for database issues and

solutions.
www.webopedia.com An online dictionary and search engine

for computer terms and Internet technology.
www.techrepublic.com A portal site for information technolo-

gy professionals that users can customize to their own
particular interests.

www.zdnet.com A portal site where users can review recent ar-
ticles on information technology subjects.

www.information-management.com DM Review magazine
Web site, with the tagline “Covering Business
Intelligence, Integration and Analytics.” Provides a
comprehensive list of links to relevant resource portals
in addition to providing many of the magazine articles
online.

www.dbta.com Data Base Trends & Applications magazine
Web site. Addresses enterprise-level information issues.

http://databases.about.com A comprehensive site with many
feature articles, links, interactive forum, chat rooms, and
so forth.

http://thecaq.aicpa.org/Resources/Sarbanes+Oxley AICPA
site for current information regarding Sarbanes-Oxley
legislation.

www.basel.int United Nations page offering an overview of the
Basel Convention, which addresses global waste issues.

www.usdoj.gov/jmd/irm/lifecycle/table.htm The Department
of Justice Systems Development Life Cycle Guidance
Document. This is an example of a systems methodology
that you may want to look over.

http://groups.google.com/group/comp.software-eng?lnk=gsch
&hl=en The software engineering archives for a Google
group that focuses on software engineering and related
topics. This site contains many links that you may want to
explore.

www.acinet.org/acinet America’s Career InfoNet, which pro-
vides information about careers, outlook, requirements,
and so forth.

www.collegegrad.com/salaries/index.shtml A site for finding
recent salary information for a wide range of careers, in-
cluding database-related careers.

www.essentialstrategies.com/publications/methodology/
zachman.htm David Hay’s Web site, which has consider-
able information on universal data models as well as how
database development fits into the Zachman information
systems architecture.

www.inmondatasystems.com Web site for one of the pioneers
of data warehousing.

www.agilemanifesto.org Web site that explains the viewpoints
of those who created The Manifesto for Agile Software
Development

www.dbazine.com
www.webopedia.com
www.techrepublic.com
www.zdnet.com
www.information-management.com
www.dbta.com
http://databases.about.com
http://thecaq.aicpa.org/Resources/Sarbanes+Oxley
www.basel.int
www.usdoj.gov/jmd/irm/lifecycle/table.htm
http://groups.google.com/group/comp.software-eng?lnk=gsch&hl=en
www.acinet.org/acinet
www.collegegrad.com/salaries/index.shtml
www.essentialstrategies.com/publications/methodology/zachman.htm
www.essentialstrategies.com/publications/methodology/zachman.htm
www.inmondatasystems.com
www.agilemanifesto.org
http://groups.google.com/group/comp.software-eng?lnk=gsch&hl=en

Chapter 1 • The Database Environment and Development Process 49

CASE
Mountain View Community Hospital

Introduction

This case is included to provide you an opportunity to apply
the concepts and techniques you will learn in each chapter. The
case can also be used to support a semester-long database proj-
ect built throughout the term that results in a complete applica-
tion. We have selected a hospital for this case because it is a type
of organization that is at least somewhat familiar to most per-
sons and because health-care institutions are of such impor-
tance in our society today. A segment of the case is included at
the end of each chapter in this text. Each segment includes a
brief description of the case as it relates to the material in the
chapter followed by questions and exercises related to the mate-
rial. Additional requirements, assignments, and project deliver-
ables are provided in support of a semester project.

Case Description

Mountain View Community Hospital (MVCH) is a not-for-profit,
short-term, acute care general hospital. It is a relatively small hos-
pital, with some 150 beds. Mountain View Community Hospital
strives to meet the needs of a community of about 60,000 with an
annual growth rate of 10 percent, a trend that is expected to con-
tinue since the surrounding area is attracting many retirees. To
serve the health-care needs of this growing community, Mountain
View Community Hospital plans to expand its capacity by adding
another 50 beds over the next five years, and opening a managed
care retirement center with independent apartments and assisted
living facilities. The basic goal is to provide high-quality, cost-
effective health-care services for the surrounding community in a
compassionate, caring, and personalized manner.

Within the last fiscal year, the hospital performed more
than one million laboratory procedures and over 110,000 radiol-
ogy procedures. During that time, the hospital had 9,192 admis-
sions and 112,230 outpatient visits, brought 1,127 babies into the
world, and performed 2,314 inpatient and 1,490 outpatient sur-
geries. Patients who receive outpatient surgeries do not remain
in the hospital overnight. With an average of 2,340 patients a
month, the emergency department experienced approximately
28,200 visits throughout the year. Approximately 30 percent of
the patients admitted to the hospital were first treated in the
emergency room, and about 13 percent of emergency room vis-
its resulted in hospital admission. The hospital employs 740
full-time and 439 part-time personnel, among them 264 full-
time and 176 part-time registered nurses, and 10 full-time and 6
part-time licensed practical nurses. The hospital’s active med-
ical staff includes over 250 primary physicians, specialists, and
subspecialists. Volunteers are an integral part of MVCH’s cul-
ture and contribute greatly to the well-being of patients and
their families. Approximately 300 volunteers from different
backgrounds and of all ages devote their time, energy, and tal-
ents to many areas of the hospital. They greet visitors and pa-
tients and help them find their way through the hospital, deliv-
er mail and flowers to patient rooms, escort patients, aid staff
with clerical duties, work in the gift shop, assist at community
and fund-raising events, and help out in a host of other areas.

Mountain View Community Hospital provides a number
of key services, including general medical and surgical care,

general intensive care, a cardiology department, open-heart
surgery, a neurology department, pediatric medical and surgi-
cal care, obstetrics, an orthopedics department, oncology, and a
24-hour emergency department. The hospital also offers a wide
range of diagnostic services. A specialty service within the neu-
rology department is the recently opened Multiple Sclerosis
(MS) Center, which provides comprehensive and expert care for
patients with multiple sclerosis in order to improve their quali-
ty of life. Using an interdisciplinary team approach, the center
emphasizes all aspects of MS care from diagnosis and treatment
of MS symptoms and secondary complications, to individual
and family counseling, rehabilitation therapy, and social servic-
es. Headed by Dr. Zequida, called Dr. “Z” by staff and patients,
the MS Center is a member of a consortium of MS centers.

The current organizational chart for Mountain View
Community Hospital is shown in MVCH Figure 1-1. Like most
other general hospitals, Mountain View Community is divided
into two primary organizational groups. The physicians,
headed by Dr. Browne (chief of staff), are responsible for the
quality of medical care provided to their patients. The group
headed by Ms. Baker (CEO and president) provides the nurs-
ing, clinical, and administrative support the physicians need
to serve their patients. According to Ms. Baker, the most press-
ing issues affecting the hospital within the last year have been
financial challenges such as bad debt, personnel shortages
(particularly registered nurses and imaging technicians), and
malpractice insurance. Other critical issues are the quality of
care, patient safety, compliance with HIPAA, and technologi-
cal innovation, which is seen as a major enabler for decreasing
costs and improving quality. The trend toward managed care
and the need to maintain costs while maintaining/improving
clinical outcomes requires the hospital to track and analyze
both clinical and financial data related to patient care services.

Goals and Critical Success Factors

In response to the steady growth and expansion plans at
Mountain View Community Hospital, a special study team in-
cluding Mr. Heller, Mr. Lopez, Dr. Jefferson, and a consultant
has been developing a long-term strategic plan, including an in-
formation systems plan for the hospital. Their work is not com-
plete, but they have begun to identify many of the elements nec-
essary to build the plan. To meet the goals of high-quality health
care, cost containment, and expansion into new services, the
team concluded that the hospital has four critical success factors
(CSFs): quality of medical care, control of operating costs, con-
trol of capital costs, and recruitment and retention of skilled
personnel. The development of improved information systems
is viewed as an enabler in dealing with each of these CSFs.

The team is currently at work to generate two to four
short- or long-term objectives for each CSF. So far they have
developed the following four objectives related to the control of
the operating costs CSF:

1. Reduce costs for purchased items
2. More efficiently schedule staff
3. Lower cost of liability insurance
4. Expand volunteer services

50 Part I • The Context of Database Management

The study team has developed a preliminary list of busi-
ness functions that describe the administrative and medical
activities within the hospital. These functions consider the or-
ganizational goals and CSFs explained in the prior section. At
this point, the study team has identified five major business
functions that cut across all of the organizational units:

1. Patient care administration Manage the logistical and
record-keeping aspects of patient care

2. Clinical services Provide laboratory testing and proce-
dures, and patient monitoring and screening

3. Patient care services Provide patients with medical care
and support services

4. Financial management Manage the financial resources
and operations of the hospital

5. Administrative services Provide general management
and support services not directly related to patient care

The study team has been able to break each of these high-
level business functions into lists of more detailed functions
(see MVCH Figure 1-2), but the team knows that these lists are
not complete nor well defined at this point.

Mountain View Community Hospital has computer
applications that support the following areas (among others):
patient care administration, clinical services, financial manage-
ment, and administrative services. Many of these applications
have been purchased from outside vendors, but a few have
been developed internally. Most of the computer applications
are implemented using relational database and client/server
technology. In the client/server environment, the client runs
the database applications that request the data. The server runs
the DBMS software, which fulfills the requests and handles the
functions required for concurrent, shared data access to the
database. Most of the databases (as well as the applications) are
two tier, using the classification introduced in this chapter.

Patient care Patient care Financial Administrative
administration Clinical services services management services

Patient scheduling

Patient registration
• Admit patient
• Assign patient to bed
• Transfer patient
• Discharge patient

Physician orders

Laboratory reporting

Electrodiagnosis

Psychiatric testing

Patient monitoring

Multiphasic screening

Radiology
• Perform X-rays

Laboratory
• Perform blood tests

Dietary/Nutrition

Nursing Surgery

Rehabilitation
• Perform physical therapy

Blood banking

Patient accounting
• Bill patient
• Account for receivables

Cost accounting

Payroll

General accounting

Risk management

Purchasing

Inventory control

Housekeeping

Personnel

Volunteering
• Recruit volunteers
• Schedule volunteers
• Evaluate volunteers

MVCH FIGURE 1-2 Business functions

Board of Directors

Ms. Baker
CEO

Dr. Browne
Chief of Staff

Ms. Price
VP

Clinical Services

Mr. Heller
CIO

Mr. Thomas
Spiritual Care

Mr. Lopez
Chief

Financial Officer

Ms. Alvarez
Accounting

Ms. Baddeck
Chief Administrative

Officer

Mr. Davis
Volunteer
Services

Mr. Clay
Admissions &

Patient Accounts

Ms. Crowley
Assistant

Dr. Redfern
Chief of Medicine

Dr. Jefferson
Chief of Surgery

Ms. Stevens
Personnel

Ms. Knight
Chief Nursing

Officer

MVCH FIGURE 1-1 Organizational chart

Chapter 1 • The Database Environment and Development Process 51

Enterprise Modeling

The study team identified a preliminary set of 11 entity types
that describe the data required by the hospital in support of the
various business functions: FACILITY, PHYSICIAN, PATIENT,
DIAGNOSTIC UNIT, WARD, STAFF, ORDER, SERVICE/DRUG,
MEDICAL/SURGICAL ITEM, SUPPLY ITEM, and VENDOR.
From discussions with hospital staff, reviewing hospital docu-
ments, and studying existing information systems, the study
team developed a list of business rules describing the policies of
the hospital and nature of the hospital’s operation that govern
the relationships between these entities. Some of these rules are:

1. A FACILITY maintains one or more DIAGNOSTIC UNITS
(radiology, clinical laboratory, cardiac diagnostic unit, etc.).

2. A FACILITY contains a number of WARDs (obstetrics, on-
cology, geriatrics, etc.).

3. Each WARD is assigned a certain number of STAFF mem-
bers (nurses, secretaries, etc.); a STAFF member may be
assigned to multiple WARDs.

4. A FACILITY staffs its medical team with a number of
PHYSICIANs. A PHYSICIAN may be on the staff of more
than one FACILITY.

5. A PHYSICIAN treats PATIENTs, and a PATIENT is treat-
ed by any number of PHYSICIANs.

6. A PHYSICIAN diagnoses PATIENTs, and a PATIENT is
diagnosed by any number of PHYSICIANs.

7. A PATIENT may be assigned to a WARD (outpatients are
not assigned to a WARD). The hospital cares only about the
current WARD a patient is assigned to (if assigned at all).

8. A PATIENT uses MEDICAL/SURGICAL ITEMS, which
are supplied by VENDORs. A VENDOR also provides
SUPPLY ITEMs that are used for housekeeping and main-
tenance purposes.

9. A PHYSICIAN writes one or more ORDERS for a PA-
TIENT. Each ORDER is for a given PATIENT, and a PA-
TIENT may have many ORDERs.

10. An ORDER can be for a diagnostic test (lab tests such as
lipid profile, CBC, liver function tests; diagnostic imaging
such as MRIs and X-rays) or a drug.

They recognized that certain business functions, such as
risk management and volunteering, were not adequately repre-
sented in the set of data entities and business rules, but they de-
cided to deal with these and other areas later. The study team
stored descriptions of these data entities and the business rules
in the CASE repository for later analysis. Using the identified
entities and business rules, the study team developed a prelim-
inary enterprise data model (see MVCH Figure 1-3). Again, this
conceptual model is preliminary and does not follow all the
conventions used in the information systems department for
drawing data models, but the purpose of this enterprise model
is to give only a general overview of organizational data.

Case Questions

1. The goal of Mountain View Community Hospital is to pro-
vide high-quality, cost-effective health-care services for the
surrounding community in a compassionate, caring, and
personalized manner. Give some examples of how the use
of databases in the hospital might improve health-care
quality or contain costs. How else could a well-managed
database help the hospital achieve its mission?

2. How can database technology be used to help Mountain
View Community Hospital comply with the security stan-
dards of the Health Insurance Portability and
Accountability Act of 1996 (HIPAA)? HIPAA requires
health-care providers to maintain reasonable and appropri-
ate administrative, technical, and physical safeguards to
ensure that the integrity, confidentiality, and availability of
electronic health information they collect, maintain, use, or
transmit is protected. (For more details on HIPAA, visit
www.hhs.gov/ocr/privacy.)

3. What are some of the costs and risks of using databases
that the hospital must manage carefully?

4. How critical are data quality requirements in the hospital
environment? For which applications might quality re-
quirements be more restrictive?

5. At present, Mountain View Community Hospital is using
relational database technology. Although this technology is

Is Assigned To

Uses

FACILITY

WARD

Contains

PHYSICIAN

PATIENT

MEDICAL/
SURGICAL

 ITEM

STAFF

SUPPLY
ITEM

VENDOR

ORDER

TEST/
DRUG

Diagnoses Treats

Staffs

Is For

Is Written By
Works At

Is Provided
By

Is Supplied By

Is Given To

MVCH FIGURE 1-3 Preliminary
enterprise data model

www.hhs.gov/ocr/privacy

52 Part I • The Context of Database Management

appropriate for structured data, such as patient or account-
ing data, it is less well-suited to unstructured data, such as
graphical data and images. Can you think of some types of
data maintained by a hospital that fit this latter category?
What types of database technology rather than relational
might be better suited to these data types?

6. How could the hospital use Web-based applications? What
are some of the benefits and risks associated with Web-
based applications for the hospital?

7. The case description lists 10 business rules. The study team
used these rules to develop MVCH Figure 1-3. Are there
any other business rules implied by or depicted in that fig-
ure? What are they?

Case Exercises

1. The relational databases at Mountain View Community
Hospital contain a number of tables. Two of these tables,
with some sample data, are shown in MVCH Figure 1-4.
The PATIENT table contains data concerning current or re-
cent patients at the hospital, whereas the PATIENT
CHARGES table contains data describing charges that have
been incurred by those patients. Interestingly, the PATIENT
CHARGES table is not captured in the preliminary enter-
prise data model shown in Figure 1-3.

a. Using the notation introduced in this chapter, draw a di-
agram showing the relationship between the entities
PATIENT and PATIENT CHARGES.

b. Develop a metadata chart for the data attributes in the
PATIENT and PATIENT CHARGES tables using (at
minimum) the columns shown in Table 1-1. You may in-
clude other metadata characteristics that you think are
appropriate for the management of data at Mountain
View Community Hospital.

2. One of the important outputs from the “bill patient” busi-
ness function is the Patient Bill. Following is a highly sim-
plified version of this bill (MVCH Figure 1-5).
a. Using the data from MVCH Figure 1-4, add missing

data that would typically appear on a patient bill.
b. Using your result from part a), verify that the enterprise

data model in MVCH Figure 1-3 contains the data nec-
essary to generate a patient bill. Explain what you have
to do to perform this verification. What did you discov-
er from your analysis?

3. Using the notation introduced in this chapter, draw a single
diagram that represents the following relationships in the
hospital environment.

• A HOSPITAL has on its staff one or more PHYSICIANs. A
PHYSICIAN is on the staff of only one HOSPITAL.

• A PHYSICIAN may admit one or more PATIENTs. A PA-
TIENT is admitted by only one PHYSICIAN.

• A HOSPITAL has one or more WARDs. Each WARD is lo-
cated in exactly one HOSPITAL.

• A WARD has any number of EMPLOYEEs. An EMPLOY-
EE may work in one or more WARDs.

4. Using a DBMS suggested by your instructor, such as
Microsoft Access or SQL Server, you may begin to prototype
a database for Mountain View Community Hospital. Here
are some suggestions to guide you:

a. Develop a metadata chart for an EMPLOYEE table simi-
lar to Table 1-1.

b. What types of relationships (1:1, 1:M, or M:N) are likely to
exist between your PATIENT table and other tables in the
database? How did you determine that?

c. MVCH hospital administrators regularly need informa-
tion about their patient population. Based on the distinc-
tion between data and information discussed in this

PATIENT

Patient Number

8379

4238

3047

5838

6143

Dimas

Dolan

Larreau

Wiggins

Thomas

Patient Last Name

Selena

Mark

Annette

Brian

Wendell

Patient First Name

617 Valley Vista

818 River Run

127 Sandhill

431 Walnut

928 Logan

Patient Address

PATIENT CHARGES

Item Description

Room Semi-Priv

Speech Therapy

Radiology

Physical Therapy

EKG Test

Room Semi-Priv

Standard IV

EEG Test

200

350

275

409

500

200

470

700

Item Code

4238

3047

4238

5838

8379

3047

8379

4238

Patient Number

1600

750

150

600

200

800

150

200

Amount

MVCH FIGURE 1-4 Two
database tables from
Mountain View Community
Hospital

Chapter 1 • The Database Environment and Development Process 53

chapter, explain why a printout of a PATIENT table will
not satisfy these information needs.

d. Create a report that organizes the data from your PA-
TIENT table to provide hospital administrators with use-
ful information about the patient population at MVCH.

5. Earlier in this chapter, we showed an SQL query that dis-
plays information about computer desks at Pine Valley
Furniture Company:

SELECT *
FROM Product
WHERE ProductDescription=“Computer Desk”;

Following this example, create an SQL query for your PA-
TIENT table that displays information about the outpatients.

6. The manager of the risk management area, Ms. Jamieson, is
anxious to receive computerized support for her activities.
The hospital is increasingly facing malpractice claims and lit-
igation, and she does not believe she can wait for improved
information services until the information systems and data-
base plans are set. Specifically, Ms. Jamieson wants a system
that will track claims, legal suits, lawyers, judges, medical
staff, disbursements against claims, and judgments. How
would you proceed to deal with this request for improved
information services? What methodology would you apply
to design or acquire the systems and databases she needs?
Why?

7. Consider again the request of the manager of risk manage-
ment from Case Exercise 6. On what tier or tiers would you

recommend the system and database she needs be devel-
oped? Why?

Project Assignments

P1. The study team’s activities described in this case study are
still in the very early stages of information system and
database development. Outline the next steps that should
be followed within the Information Systems unit to align
current systems and databases to the future information
systems needs of the hospital.

P2. The patient bill is an example of a view that would be of in-
terest in a hospital environment. Identify and list other user
views that could occur in a hospital environment.

P3. Carefully read through the case description, exercises, and
questions again and:

a. Modify the enterprise data model shown in MVCH
Figure 1-3 to include any additional entities and rela-
tionships that you identify.

b. Modify the list of business rules from the case descrip-
tion to include the additional entities and relationships
you identified.

c. Draw a context diagram of MVCH’s improved informa-
tion system similar to the one for a burger restaurant
shown in MVCH Figure 1-6. A context diagram pro-
vides the highest-level view of a system and shows the
system boundaries, external entities that interact with
the system, and major information flows between the
entities and the system.

Patient Name: Dolan, Mark

Patient Number:

Patient Address:

Item Code Item Description Amount

MVCH FIGURE 1-5 Partial
patient bill

Food
Ordering
System

CUSTOMER

Customer Order

RESTAURANT
MANAGER

Management
Reports

Receipt

KITCHEN

Food Order

MVCH FIGURE 1-6 Context
diagram example

Source: Adapted from Hoffer et al.
(2010).

This page intentionally left blank

Chapter 2
Modeling Data in the
Organization

Chapter 3
The Enhanced
E-R Model

IIDatabase Analysis

P A R T

AN OVERVIEW OF PART TWO

The first step in database development is database analysis, in which we determine
user requirements for data and develop data models to represent those require-
ments. The two chapters in Part II describe in depth the de facto standard for
conceptual data modeling—entity-relationship diagramming. A conceptual data
model represents data from the viewpoint of the organization, independent of
any technology that will be used to implement the model.

Chapter 2 (“Modeling Data in the Organization”) begins by describing busi-
ness rules, which are the policies and rules about the operation of a business that a
data model represents. Characteristics of good business rules are described, and
the process of gathering business rules is discussed. General guidelines for naming
and defining elements of a data model are presented within the context of busi-
ness rules.

Chapter 2 introduces the notations and main constructs of this modeling tech-
nique, including entities, relationships, and attributes; for each construct, we pro-
vide specific guidelines for naming and defining these elements of a data model.
We distinguish between strong and weak entity types and the use of identifying
relationships. We describe different types of attributes, including required versus
optional attributes, simple versus composite attributes, single-valued versus multi-
valued attributes, derived attributes, and identifiers. We contrast relationship
types and instances and introduce associative entities. We describe and illustrate
relationships of various degrees, including unary, binary, and ternary relationships.
We also describe the various relationship cardinalities that arise in modeling situa-
tions. We discuss the common problem of how to model time-dependent data.
Finally, we describe the situation in which multiple relationships are defined
between a given set of entities. The E-R modeling concepts are illustrated with an
extended example for Pine Valley Furniture Company. This final example, as well as
a few other examples throughout the chapter, is presented using Microsoft Visio,
which shows how many data modeling tools represent data models.

Chapter 3 (“The Enhanced E-R Model”) presents advanced concepts in
E-R modeling; these additional modeling features are often required to cope with
the increasingly complex business environment encountered in organizations today.

The most important modeling construct incorporated in the enhanced
entity-relationship (EER) diagram is supertype/subtype relationships. This facility
allows us to model a general entity type (called a supertype) and then subdivide
it into several specialized entity types called subtypes. For example, sports cars
and sedans are subtypes of automobiles. We introduce a simple notation for rep-
resenting supertype/subtype relationships and several refinements. We also

56 Part II • Database Analysis

introduce generalization and specialization as two contrasting techniques for
identifying supertype/subtype relationships. Supertype/subtype notation is neces-
sary for the increasingly popular universal data model, which is motivated and
explained in Chapter 3. The comprehensiveness of a well-documented relation-
ship can be overwhelming, so we introduce a technique called entity clustering
for simplifying the presentation of an E-R diagram to meet the needs of a given
audience.

The concept of patterns has become a central element of many information
systems development methodologies. The notion is that there are reusable compo-
nent designs that can be combined and tailored to meet new information system
requests. In the database world, these patterns are called universal data models,
prepackaged data models, or logical data models. These patterns can be purchased
or may be inherent in a commercial off-the-shelf package, such as an ERP or CRM
application. Increasingly, it is from these patterns that new databases are designed.
In Chapter 3 we describe the usefulness of such patterns and outline a modification
of the database development process when such patterns are the starting point.
Universal industry or business function data models extensively use the extended
entity-relationship diagramming notations introduced in this chapter.

There is another, alternative notation for data modeling: the Unified
Modeling Language class diagrams for systems developed using object-oriented
technologies. This technique is presented later in the book, in Chapter 13. It is pos-
sible to read Chapter 13 immediately after Chapter 3 if you want to compare these
alternative, but conceptually similar, approaches.

The conceptual data modeling concepts presented in the two chapters in Part II
provide the foundation for your career in database analysis and design. As a data-
base analyst you will be expected to apply the E-R notation in modeling user
requirements for data and information.

57

Modeling Data in the
Organization

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: business rule, term, fact, entity-
relationship model (E-R model), entity-relationship diagram (E-R diagram), entity,
entity type, entity instance, strong entity type, weak entity type, identifying owner,
identifying relationship, attribute, required attribute, optional attribute, composite
attribute, simple attribute, multivalued attribute, derived attribute, identifier,
composite identifier, relationship type, relationship instance, associative entity,
degree, unary relationship, binary relationship, ternary relationship, cardinality
constraint, minimum cardinality, maximum cardinality, and time stamp.

� State reasons why many system developers believe that data modeling is the most
important part of the systems development process.

� Write good names and definitions for entities, relationships, and attributes.
� Distinguish unary, binary, and ternary relationships and give a common example

of each.
� Model each of the following constructs in an E-R diagram: composite attribute,

multivalued attribute, derived attribute, associative entity, identifying relationship,
and minimum and maximum cardinality constraints.

� Draw an E-R diagram to represent common business situations.
� Convert a many-to-many relationship to an associative entity type.
� Model simple time-dependent data using time stamps and relationships in an

E-R diagram.

INTRODUCTION

You have already been introduced to modeling data and the entity-relationship
(E-R) data model through simplified examples in Chapter 1. (You may want to
review, for example, the E-R models in Figures 1-3 and 1-4.) In this chapter, we
formalize data modeling based on the powerful concept of business rules and
describe the E-R data model in detail. This chapter begins your journey of learning
how to design and use databases. It is exciting to create information systems that
run organizations and help people do their jobs well.

2
C H A P T E R

Visit www.pearsonhighered.com/
hoffer to view the accompanying
video for this chapter.

www.pearsonhighered.com/

58 Part II • Database Analysis

Business rules, the foundation of data models, are derived from policies,
procedures, events, functions, and other business objects, and they state constraints
on the organization. Business rules represent the language and fundamental
structure of an organization (Hay, 2003). Business rules formalize the understanding
of the organization by organization owners, managers, and leaders with that of
information systems architects.

Business rules are important in data modeling because they govern how data
are handled and stored. Examples of basic business rules are data names and
definitions. This chapter explains guidelines for the clear naming and definition
of data objects in a business. In terms of conceptual data modeling, names
and definitions must be provided for the main data objects: entity types
(e.g., Customer), attributes (Customer Name), and relationships (Customer Places
Orders). Other business rules may state constraints on these data objects. These
constraints can be captured in a data model, such as an entity-relationship
diagram, and associated documentation. Additional business rules govern
the people, places, events, processes, networks, and objectives of the organi-
zation, which are all linked to the data requirements through other system
documentation.

After decades of use, the E-R model remains the mainstream approach for
conceptual data modeling. Its popularity stems from factors such as relative ease
of use, widespread computer-aided software engineering (CASE) tool support,
and the belief that entities and relationships are natural modeling concepts in the
real world.

The E-R model is most used as a tool for communications between database
designers and end users during the analysis phase of database development
(described in Chapter 1). The E-R model is used to construct a conceptual data
model, which is a representation of the structure and constraints of a database
that is independent of software (such as a database management system).

Some authors introduce terms and concepts peculiar to the relational data
model when discussing E-R modeling; the relational data model is the basis for
most database management systems in use today. In particular, they recommend
that the E-R model be completely normalized, with full resolution of primary and
foreign keys. However, we believe that this forces a premature commitment to the
relational data model. In today’s database environment, the database may be
implemented with object-oriented technology or with a mixture of object-oriented
and relational technology. Therefore, we defer discussion of normalization
concepts to Chapter 4.

The E-R model was introduced in a key article by Chen (1976), in which he
described the main constructs of the E-R model—entities and relationships—and
their associated attributes. The model has subsequently been extended to include
additional constructs by Chen and others; for example, see Teorey et al. (1986) and
Storey (1991). The E-R model continues to evolve, but unfortunately there is not yet
a standard notation for E-R modeling. Song et al. (1995) present a side-by-side
comparison of 10 different E-R modeling notations, explaining the major
advantages and disadvantages of each approach. Because data modeling software
tools are now commonly used by professional data modelers, we adopt for use in
this text a variation of the notation used in professional modeling tools. Appendix
A will help you translate between our notation and other popular E-R diagramming
notations.

As said in a popular travel service TV commercial, “we are doing important
stuff here.” Many systems developers believe that data modeling is the most
important part of the systems development process for the following reasons
(Hoffer et al., 2010):

1. The characteristics of data captured during data modeling are crucial in the
design of databases, programs, and other system components. The facts and
rules captured during the process of data modeling are essential in assuring
data integrity in an information system.

Chapter 2 • Modeling Data in the Organization 59

2. Data rather than processes are the most complex aspect of many modern
information systems and hence require a central role in structuring system
requirements. Often the goal is to provide a rich data resource that might
support any type of information inquiry, analysis, and summary.

3. Data tend to be more stable than the business processes that use that data.
Thus, an information system design that is based on a data orientation should
have a longer useful life than one based on a process orientation.

In an actual work environment, you may not have to develop a data model
from scratch. Because of the increased acceptance of packaged software (for
example, enterprise resource planning with a predefined data model) and
purchased business area or industry data models (which we discuss in Chapter 3),
your job of data modeling has a jump start. This is good because such components
and patterns give you a starting point based on generally accepted practices.
However, your job is not done for several reasons:

1. There are still many times when a new, custom-built application is being
developed along with the associated database. The business rules for the
business area supported by this application need to be modeled.

2. Purchased applications and data models need to be customized for your par-
ticular setting. Predefined data models tend to be very extensive and com-
plex; hence, they require significant data modeling skill to tailor the models to
be effective and efficient in a given organization. Although this effort can be
much faster, thorough, and accurate than starting from scratch, the ability to
understand a particular organization to match the data model to its business
rules is an essential task.

In this chapter, we present the main features of E-R modeling, using common
notation and conventions. We begin with a sample E-R diagram, including the
basic constructs of the E-R model—entities, attributes, and relationships—and then
we introduce the concept of business rules, which is the foundation for all the data
modeling constructs. We define three types of entities that are common in
E-R modeling: strong entities, weak entities, and associative entities; a few more
entity types are defined in Chapter 3. We also define several important types of
attributes, including required and optional attributes, single- and multivalued
attributes, derived attributes, and composite attributes. We then introduce three
important concepts associated with relationships: the degree of a relationship,
the cardinality of a relationship, and participation constraints in a relationship. We
conclude with an extended example of an E-R diagram for Pine Valley Furniture
Company.

THE E-R MODEL: AN OVERVIEW

An entity-relationship model (E-R model) is a detailed, logical representation of the
data for an organization or for a business area. The E-R model is expressed in terms of
entities in the business environment, the relationships (or associations) among those
entities, and the attributes (or properties) of both the entities and their relationships. An
E-R model is normally expressed as an entity-relationship diagram (E-R diagram, or
ERD), which is a graphical representation of an E-R model.

Sample E-R Diagram

To jump-start your understanding of E-R diagrams, Figure 2-1 presents a simplified E-R
diagram for a small furniture manufacturing company, Pine Valley Furniture Company.
(This figure, which does not include attributes, is often called an enterprise data model,
which we introduced Chapter 1.) A number of suppliers supply and ship different items
to Pine Valley Furniture. The items are assembled into products that are sold to cus-
tomers who order the products. Each customer order may include one or more lines
corresponding to the products appearing on that order.

Entity-relationship model
(E-R model)
A logical representation of the
data for an organization or for a
business area, using entities for
categories of data and relationships
for associations between entities.

Entity-relationship diagram
(E-R diagram, or ERD)
A graphical representation of an
entity-relationship model.

60 Part II • Database Analysis

The diagram in Figure 2-1 shows the entities and relationships for this com-
pany. (Attributes are omitted to simplify the diagram for now.) Entities (the objects
of the organization) are represented by the rectangle symbol, whereas relationships
between entities are represented by lines connecting the related entities. The entities
in Figure 2-1 are:

CUSTOMER A person or an organization that has ordered or might order products.
Example: L. L. Fish Furniture.

PRODUCT A type of furniture made by Pine Valley Furniture that may be ordered by
customers. Note that a product is not a specific bookcase, because individual
bookcases do not need to be tracked. Example: A 6-foot, 5-shelf, oak
bookcase called O600.

ORDER The transaction associated with the sale of one or more products to a
customer and identified by a transaction number from sales or accounting.
Example: The event of L. L. Fish buying one product O600 and four products
O623 on September 10, 2010.

ITEM A type of component that goes into making one or more products and can be
supplied by one or more suppliers. Example: A 4-inch ball-bearing caster called
I-27–4375.

SUPPLIER Another company that may provide items to Pine Valley Furniture. Example:
Sure Fasteners, Inc.

SHIPMENT The transaction associated with items received in the same package by Pine
Valley Furniture from a supplier. All items in a shipment appear on one bill-of-
lading document. Example: The receipt of 300 I-27-4375 and 200 I-27-4380
items from Sure Fasteners, Inc., on September 9, 2010.

SUPPLIER ORDER

PRODUCTSHIPMENT

ENTITY
TYPE

CUSTOMER

ITEM

Relationship

Key

Sends

Supplies Submits

Submitted By

Requests

Requested On

Used In

Uses

Sent By

Supplied By

Includes

Included On

Cardinalities

Mandatory One Optional One

Mandatory Many Optional Many

may

many

is/must

FIGURE 2-1 Sample E-R diagram

Chapter 2 • Modeling Data in the Organization 61

Note that it is important to clearly define, as metadata, each entity. For example, it is
important to know that the CUSTOMER entity includes persons or organizations that
have not yet purchased products from Pine Valley Furniture. It is common for different
departments in an organization to have different meanings for the same term
(homonyms). For example, Accounting may designate as customers only those persons or
organizations who have ever made a purchase, thus excluding potential customers,
whereas Marketing designates as customers anyone they have contacted or who has pur-
chased from Pine Valley Furniture or any known competitor. An accurate and thorough
ERD without clear metadata may be interpreted in different ways by different people. We
outline good naming and definition conventions as we formally introduce E-R modeling
throughout this chapter.

The symbols at the end of each line on an ERD specify relationship cardinalities,
which represent how many entities of one kind relate to how many entities of another
kind. On examining Figure 2-1, we can see that these cardinality symbols express the
following business rules:

1. A SUPPLIER may supply many ITEMs (by “may supply,” we mean the supplier
may not supply any items). Each ITEM is supplied by any number of SUPPLIERs
(by “is supplied,” we mean that the item must be supplied by at least one sup-
plier). See annotations in Figure 2-1 that correspond to underlined words.

2. Each ITEM must be used in the assembly of at least one PRODUCT and may be
used in many products. Conversely, each PRODUCT must use one or more
ITEMs.

3. A SUPPLIER may send many SHIPMENTs. However, each shipment must be sent
by exactly one SUPPLIER. Notice that sends and supplies are separate concepts.
A SUPPLIER may be able to supply an item, but may not yet have sent any
shipments of that item.

4. A SHIPMENT must include one (or more) ITEMs. An ITEM may be included on
several SHIPMENTs.

5. A CUSTOMER may submit any number of ORDERs. However, each ORDER must
be submitted by exactly one CUSTOMER. Given that a CUSTOMER may not have
submitted any ORDERs, some CUSTOMERs must be potential, inactive, or some
other customer possibly without any related ORDERs.

6. An ORDER must request one (or more) PRODUCTs. A given PRODUCT may not
be requested on any ORDER, or may be requested on one or more orders.

There are actually two business rules for each relationship, one for each direction
from one entity to the other. Note that each of these business rules roughly follows a
certain grammar:

<entity> <minimum cardinality> <relationship> <maximum cardinality> <entity>

For example, rule 5 is:

<CUSTOMER> <may> <Submit> <any number> <ORDER>

This grammar gives you a standard way to put each relationship into a natural
English business rule statement.

E-R Model Notation

The notation we use for E-R diagrams is shown in Figure 2-2. As indicated in the previ-
ous section, there is no industry-standard notation (in fact, you saw a slightly simpler
notation in Chapter 1). The notation in Figure 2-2 combines most of the desirable fea-
tures of the different notations that are commonly used in E-R drawing tools today and
also allows us to model accurately most situations that are encountered in practice.

62 Part II • Database Analysis

We introduce additional notation for enhanced entity-relationship models (including
class-subclass relationships) in Chapter 3.

In many situations, however, a simpler E-R notation is sufficient. Most drawing
tools, either stand-alone ones such as Microsoft Visio or those in CASE tools such as
Oracle Designer, CA ERwin, or PowerDesigner, do not show all the entity and attribute
types we use. It is important to note that any notation requires special annotations, not
always present in a diagramming tool, to show all the business rules of the organiza-
tional situation you are modeling. We will use the Visio notation for a few examples
throughout the chapter and at the end of the chapter so that you can see the differences.
Appendix A llustrates the E-R notation from several commonly used guidelines and
diagramming tools. This appendix may help you translate between the notations in the
text and the notations you use in classes.

MODELING THE RULES OF THE ORGANIZATION

Now that you have an example of a data model in mind, let’s step back and consider
more generally what a data model is representing. We will see in this and the next chap-
ter how to use data models, in particular the entity-relationship notation, to document
rules and policies of an organization. In fact, documenting rules and policies of an organiza-
tion that govern data is exactly what data modeling is all about. Business rules and policies
govern creating, updating, and removing data in an information processing and storage
system; thus they must be described along with the data to which they are related. For
example, the policy “every student in the university must have a faculty adviser” forces
data (in a database) about each student to be associated with data about some student
adviser. Also, the statement “a student is any person who has applied for admission or

Mandatory one Mandatory many Optional one Optional many

Identifier
Partial identifier

ENTITY NAME
Strong

Associative

Entity types

Relationship degrees

Relationship cardinality

Unary
Binary

Weak

Attributes

Ternary

Optional
[Derived]
{Multivalued}
Composite(, ,)

FIGURE 2-2 Basic E-R notation

Chapter 2 • Modeling Data in the Organization 63

Business rule
A statement that defines or
constrains some aspect of the
business. It is intended to assert
business structure or to control
or influence the behavior of the
business.

taken a course or training program from any credit or noncredit unit of the university”
not only defines the concept of “student” but also states a policy of the university (e.g.,
implicitly, alumni are students, and a high school student who attended a college fair
but has not applied is not a student, assuming the college fair is not a noncredit training
program).

Business rules and policies are not universal; different universities may have dif-
ferent policies for student advising and may include different types of people as stu-
dents. Also, the rules and policies of an organization may change (usually slowly) over
time; a university may decide that a student does not have to be assigned a faculty
adviser until the student chooses a major.

Your job as a database analyst is to

• Identify and understand those rules that govern data
• Represent those rules so that they can be unambiguously understood by informa-

tion systems developers and users
• Implement those rules in database technology

Data modeling is an important tool in this process. Because the purpose of data
modeling is to document business rules about data, we introduce the discussion of
data modeling and the entity-relationship notation with an overview of business
rules. Data models cannot represent all business rules (and do not need to, because
not all business rules govern data); data models along with associated documentation
and other types of information system models (e.g., models that document the pro-
cessing of data) represent all business rules that must be enforced through informa-
tion systems.

Overview of Business Rules

A business rule is “a statement that defines or constrains some aspect of the business. It
is intended to assert business structure or to control or influence the behavior of the
business . . . rules prevent, cause, or suggest things to happen” (GUIDE Business Rules
Project, 1997). For example, the following two statements are common expressions of
business rules that affect data processing and storage:

• “A student may register for a section of a course only if he or she has successfully
completed the prerequisites for that course.”

• “A preferred customer qualifies for a 10 percent discount, unless he has an over-
due account balance.”

Most organizations (and their employees) today are guided by thousands of com-
binations of such rules. In the aggregate, these rules influence behavior and determine
how the organization responds to its environment (Gottesdiener, 1997; von Halle, 1997).
Capturing and documenting business rules is an important, complex task. Thoroughly
capturing and structuring business rules, then enforcing them through database tech-
nologies, helps to ensure that information systems work right and that users of the
information understand what they enter and see.

THE BUSINESS RULES PARADIGM The concept of business rules has been used in infor-
mation systems for some time. There are many software products that help organiza-
tions manage their business rules (for example, JRules from ILOG, an IBM company).
In the database world, it has been more common to use the related term integrity con-
straint when referring to such rules. The intent of this term is somewhat more limited
in scope, usually referring to maintaining valid data values and relationships in the
database.

A business rules approach is based on the following premises:

• Business rules are a core concept in an enterprise because they are an expression of
business policy and guide individual and aggregate behavior. Well-structured
business rules can be stated in natural language for end users and in a data model
for systems developers.

64 Part II • Database Analysis

• Business rules can be expressed in terms that are familiar to end users. Thus, users
can define and then maintain their own rules.

• Business rules are highly maintainable. They are stored in a central repository, and
each rule is expressed only once, then shared throughout the organization. Each
rule is discovered and documented only once, to be applied in all systems devel-
opment projects.

• Enforcement of business rules can be automated through the use of software that
can interpret the rules and enforce them using the integrity mechanisms of the
database management system (Moriarty, 2000).

Although much progress has been made, the industry has not realized all of
these objectives to date (Owen, 2004). Possibly the premise with greatest potential
benefit is “Business rules are highly maintainable.” The ability to specify and main-
tain the requirements for information systems as a set of rules has considerable
power when coupled with an ability to generate automatically information systems
from a repository of rules. Automatic generation and maintenance of systems will
not only simplify the systems development process but also will improve the quality
of systems.

Scope of Business Rules

In this chapter and the next, we are concerned with business rules that impact only an
organization’s databases. Most organizations have a host of rules and/or policies that
fall outside this definition. For example, the rule “Friday is business casual dress day”
may be an important policy statement, but it has no immediate impact on databases. In
contrast, the rule “A student may register for a section of a course only if he or she has
successfully completed the prerequisites for that course” is within our scope because it
constrains the transactions that may be processed against the database. In particular, it
causes any transaction to be rejected that attempts to register a student who does not
have the necessary prerequisites. Some business rules cannot be represented in com-
mon data modeling notation; those rules that cannot be represented in a variation of an
entity-relationship diagram are stated in natural language, and some can be repre-
sented in the relational data model, which we describe in Chapter 4.

GOOD BUSINESS RULES Whether stated in natural language, a structured data model,
or other information systems documentation, a business rule will have certain charac-
teristics if it is to be consistent with the premises outlined previously. These characteris-
tics are summarized in Table 2-1. These characteristics will have a better chance of being
satisfied if a business rule is defined, approved, and owned by business, not technical,
people. Businesspeople become stewards of the business rules. You, as the database
analyst, facilitate the surfacing of the rules and the transformation of ill-stated rules into
ones that satisfy the desired characteristics.

GATHERING BUSINESS RULES Business rules appear (possibly implicitly) in descrip-
tions of business functions, events, policies, units, stakeholders, and other objects.
These descriptions can be found in interview notes from individual and group informa-
tion systems requirements collection sessions, organizational documents (e.g., person-
nel manuals, policies, contracts, marketing brochures, and technical instructions), and
other sources. Rules are identified by asking questions about the who, what, when,
where, why, and how of the organization. Usually, a data analyst has to be persistent in
clarifying initial statements of rules because initial statements may be vague or impre-
cise (what some people have called “business ramblings”). Thus, precise rules are for-
mulated from an iterative inquiry process. You should be prepared to ask such
questions as “Is this always true?” “Are there special circumstances when an alternative
occurs?” “Are there distinct kinds of that person?” “Is there only one of those or are
there many?” and “Is there a need to keep a history of those, or is the current data all
that is useful?” Such questions can be useful for surfacing rules for each type of data
modeling construct we introduce in this chapter and the next.

Chapter 2 • Modeling Data in the Organization 65

TABLE 2-1 Characteristics of a Good Business Rule

Characteristic Explanation

Declarative A business rule is a statement of policy, not how policy is enforced or
conducted; the rule does not describe a process or implementation,
but rather describes what a process validates.

Precise With the related organization, the rule must have only one interpretation
among all interested people, and its meaning must be clear.

Atomic A business rule marks one statement, not several; no part of the rule can
stand on its own as a rule (that is, the rule is indivisible, yet sufficient).

Consistent A business rule must be internally consistent (that is, not contain
conflicting statements) and must be consistent with (and not contradict)
other rules.

Expressible A business rule must be able to be stated in natural language, but it
will be stated in a structured natural language so that there is no
misinterpretation.

Distinct Business rules are not redundant, but a business rule may refer to
other rules (especially to definitions).

Business-oriented A business rule is stated in terms businesspeople can understand,
and because it is a statement of business policy, only businesspeople
can modify or invalidate a rule; thus, a business rule is owned by the
business.

Source: Based on Gottesdiener (1999) and Plotkin (1999).

Data Names and Definitions

Fundamental to understanding and modeling data are naming and defining data
objects. Data objects must be named and defined before they can be used unambigu-
ously in a model of organizational data. In the entity-relationship notation you will
learn in this chapter, you have to give entities, relationships, and attributes clear and
distinct names and definitions.

DATA NAMES We will provide specific guidelines for naming entities, relationships, and
attributes as we develop the entity-relationship data model, but there are some general
guidelines about naming any data object. Data names should (Salin, 1990; ISO/IEC, 2005)

• Relate to business, not technical (hardware or software), characteristics; so,
Customer is a good name, but File10, Bit7, and Payroll Report Sort Key are not
good names.

• Be meaningful, almost to the point of being self-documenting (i.e., the definition
will refine and explain the name without having to state the essence of the object’s
meaning); you should avoid using generic words such as has, is, person, or it.

• Be unique from the name used for every other distinct data object; words should
be included in a data name if they distinguish the data object from other similar
data objects (e.g., Home Address versus Campus Address).

• Be readable, so that the name is structured as the concept would most naturally
be said (e.g., Grade Point Average is a good name, whereas Average Grade
Relative To A, although possibly accurate, is an awkward name).

• Be composed of words taken from an approved list; each organization often
chooses a vocabulary from which significant words in data names must be chosen
(e.g., maximum is preferred, never upper limit, ceiling, or highest); alternative, or
alias names, also can be used as can approved abbreviations (e.g., CUST for
CUSTOMER), and you may be encouraged to use the abbreviations so that data
names are short enough to meet maximum length limits of database technology.

• Be repeatable, meaning that different people or the same person at different
times should develop exactly or almost the same name; this often means that there
is a standard hierarchy or pattern for names (e.g., the birth date of a student

66 Part II • Database Analysis

would be Student Birth Date and the birth date of an employee would be
Employee Birth Date).

• Follow a standard syntax, meaning that the parts of the name should follow a
standard arrangement adopted by the organization.

Salin (1990) suggests that you develop data names by

1. Preparing a definition of the data. (We talk about definitions next.)
2. Removing insignificant or illegal words (words not on the approved list for

names); note that the presence of AND and OR in the definition may imply that
two or more data objects are combined, and you may want to separate the objects
and assign different names.

3. Arranging the words in a meaningful, repeatable way.
4. Assigning a standard abbreviation for each word.
5. Determining whether the name already exists, and if so, adding other qualifiers

that make the name unique.

We will see examples of good data names as we develop a data modeling notation
in this chapter.

DATA DEFINITIONS A definition (sometimes called a structural assertion) is considered a
type of business rule (GUIDE Business Rules Project, 1997). A definition is an explanation
of a term or a fact. A term is a word or phrase that has a specific meaning for the business.
Examples of terms are course, section, rental car, flight, reservation, and passenger. Terms are
often the key words used to form data names. Terms must be defined carefully and con-
cisely. However, there is no need to define common terms such as day, month, person, or
television, because these terms are understood without ambiguity by most persons.

A fact is an association between two or more terms. A fact is documented as a sim-
ple declarative statement that relates terms. Examples of facts that are definitions are
the following (the defined terms are underlined):

• “A course is a module of instruction in a particular subject area.” This definition
associates two terms: module of instruction and subject area. We assume that these
are common terms that do not need to be further defined.

• “A customer may request a model of car from a rental branch on a particular date.”
This fact, which is a definition of model rental request, associates the four underlined
terms (GUIDE Business Rules Project, 1997). Three of these terms are business- spe-
cific terms that would need to be defined individually (date is a common term).

A fact statement places no constraints on instances of the fact. For example, it is
inappropriate in the second fact statement to add that a customer may not request two
different car models on the same date. Such constraints are separate business rules.

GOOD DATA DEFINITIONS We will illustrate good definitions for entities, relationships,
and attributes as we develop the entity-relationship notation in this and the next chapters.
There are, however, some general guidelines to follow (Aranow, 1989; ISO/IEC, 2004):

• Definitions (and all other types of business rules) are gathered from the same
sources as all requirements for information systems. Thus, systems and data ana-
lysts should be looking for data objects and their definitions as these sources of
information systems requirements are studied.

• Definitions will usually be accompanied by diagrams, such as entity-relationship
diagrams. The definition does not need to repeat what is shown on the diagram
but rather supplement the diagram.

• Definitions will be stated in the singular and explain what the data is, not what it
is not. A definition will use commonly understood terms and abbreviations and
stand alone in its meaning and not embed other definitions within it. It should be
concise and concentrate on the essential meaning of the data, but it may also state
such characteristics of a data object as
• Subtleties
• Special or exceptional conditions

Term
A word or phrase that has a
specific meaning for the business.

Fact
An association between two
or more terms.

Chapter 2 • Modeling Data in the Organization 67

• Examples
• Where, when, and how the data are created or calculated in the organization
• Whether the data are static or changes over time
• Whether the data are singular or plural in its atomic form
• Who determines the value for the data
• Who owns the data (i.e., who controls the definition and usage)
• Whether the data are optional or whether empty (what we will call null) values

are allowed
• Whether the data can be broken down into more atomic parts or are often com-

bined with other data into some more composite or aggregate form
If not included in a data definition, these characteristics need to be documented
elsewhere, where other metadata are stored.

• A data object should not be added to a data model, such as an entity-relationship
diagram, until after it has been carefully defined (and named) and there is agree-
ment on this definition. But expect the definition of the data to change once you
place the object on the diagram because the process of developing a data model
tests your understanding of the meaning of data. (In other words, modeling data is
an iterative process.)

There is an unattributed phrase in data modeling that highlights the importance
of good data definitions: “He who controls the meaning of data controls the data.” It
might seem that obtaining concurrence in an organization on the definitions to be used
for the various terms and facts should be relatively easy. However, this is usually far
from the case. In fact, it is likely to be one of the most difficult challenges you will face
in data modeling or, for that matter, in any other endeavor. It is not unusual for an
organization to have multiple definitions (perhaps a dozen or more) for common terms
such as customer or order.

To illustrate the problems inherent in developing definitions, consider a data
object of Student found in a typical university. A sample definition for Student is “a per-
son who has been admitted to the school and who has registered for at least one course
during the past year.” This definition is certain to be challenged, because it is probably
too narrow. A person who is a student typically proceeds through several stages in rela-
tionship with the school, such as the following:

1. Prospect—some formal contact, indicating an interest in the school
2. Applicant—applies for admission
3. Admitted applicant—admitted to the school and perhaps to a degree program
4. Matriculated student—registers for at least one course
5. Continuing student—registers for courses on an ongoing basis (no substantial gaps)
6. Former student—fails to register for courses during some stipulated period (now

may reapply)
7. Graduate—satisfactorily completes some degree program (now may apply for an-

other program)

Imagine the difficulty of obtaining consensus on a single definition in this situation!
It would seem you might consider three alternatives:

1. Use multiple definitions to cover the various situations. This is likely to be
highly confusing if there is only one entity type, so this approach is not recom-
mended (multiple definitions are not good definitions). It might be possible to cre-
ate multiple entity types, one for each student situation. However, because there is
likely considerable similarity across the entity types, the fine distinctions between
the entity types may be confusing, and the data model will show many constructs.

2. Use a very general definition that will cover most situations. This approach
may necessitate adding additional data about students to record a given student’s
actual status. For example, data for a student’s status, with values of prospect,
applicant, and so forth might be sufficient. On the other hand, if the same student
could hold multiple statuses (e.g., prospect for one degree and matriculated for
another degree), this might not work.

68 Part II • Database Analysis

Entity type: EMPLOYEE

Attributes Attribute Data Type Example Instance Example Instance

Employee Number CHAR (10) 642-17-8360 534-10-1971

Name CHAR (25) Michelle Brady David Johnson

Address CHAR (30) 100 Pacific Avenue 450 Redwood Drive

City CHAR (20) San Francisco Redwood City

State CHAR (2) CA CA

Zip Code CHAR (9) 98173 97142

Date Hired DATE 03-21-1992 08-16-1994

Birth Date DATE 06-19-1968 09-04-1975

FIGURE 2-3 Entity type EMPLOYEE with two instances

3. Consider using multiple, related, data objects for Student. For example, we
could create a general entity type for Student and then other specific entity types
for kinds of students with unique characteristics. We describe the conditions that
suggest this approach in Chapter 3.

MODELING ENTITIES AND ATTRIBUTES

The basic constructs of the E-R model are entities, relationships, and attributes. As
shown in Figure 2-2, the model allows numerous variations for each of these constructs.
The richness of the E-R model allows designers to model real-world situations accu-
rately and expressively, which helps account for the popularity of the model.

Entities

An entity is a person, a place, an object, an event, or a concept in the user environment
about which the organization wishes to maintain data. Thus, an entity has a noun name.
Some examples of each of these kinds of entities follow:

Person: EMPLOYEE, STUDENT, PATIENT
Place: STORE, WAREHOUSE, STATE
Object: MACHINE, BUILDING, AUTOMOBILE
Event: SALE, REGISTRATION, RENEWAL
Concept: ACCOUNT, COURSE, WORK CENTER

ENTITY TYPE VERSUS ENTITY INSTANCE There is an important distinction between
entity types and entity instances. An entity type is a collection of entities that share
common properties or characteristics. Each entity type in an E-R model is given a name.
Because the name represents a collection (or set) of items, it is always singular. We use
capital letters for names of entity type(s). In an E-R diagram, the entity name is placed
inside the box representing the entity type (see Figure 2-1).

An entity instance is a single occurrence of an entity type. Figure 2-3 illustrates
the distinction between an entity type and two of its instances. An entity type is
described just once (using metadata) in a database, whereas many instances of that
entity type may be represented by data stored in the database. For example, there is one
EMPLOYEE entity type in most organizations, but there may be hundreds (or even
thousands) of instances of this entity type stored in the database. We often use the sin-
gle term entity rather than entity instance when the meaning is clear from the context of
our discussion.

Entity
A person, a place, an object,
an event, or a concept in the
user environment about which
the organization wishes to
maintain data.

Entity type
A collection of entities that
share common properties or
characteristics.

Entity instance
A single occurrence of an
entity type.

Chapter 2 • Modeling Data in the Organization 69

TREASURER

ACCOUNT

EXPENSE
REPORT

Receives

Is Charged

SummarizesManages

EXPENSE

FIGURE 2-4 Example of
inappropriate entities
(a) System user (Treasurer)
and output (Expense Report)
shown as entities

ENTITY TYPE VERSUS SYSTEM INPUT, OUTPUT, OR USER A common mistake people
make when they are learning to draw E-R diagrams, especially if they are already famil-
iar with data process modeling (such as data flow diagramming), is to confuse data
entities with other elements of an overall information systems model. A simple rule
to avoid such confusion is that a true data entity will have many possible instances,
each with a distinguishing characteristic, as well as one or more other descriptive pieces
of data.

Consider Figure 2-4a, which might be drawn to represent a database needed for a
college sorority’s expense system. (For simplicity in this and some other figures, we show
only one name for a relationship.) In this situation, the sorority treasurer manages
accounts, receives expense reports, and records expense transactions against each account.
However, do we need to keep track of data about the Treasurer (the TREASURER entity
type) and her supervision of accounts (the Manages relationship) and receipt of reports
(the Receives relationship)? The Treasurer is the person entering data about accounts and
expenses and receiving expense reports. That is, she is a user of the database. Because there
is only one Treasurer, TREASURER data do not need to be kept. Further, is the EXPENSE
REPORT entity necessary? Because an expense report is computed from expense transac-
tions and account balances, it is the result of extracting data from the database and received
by the Treasurer. Even though there will be multiple instances of expense reports given to
the Treasurer over time, data needed to compute the report contents each time are already
represented by the ACCOUNT and EXPENSE entity types.

Another key to understanding why the ERD in Figure 2-4a might be in error is the
nature of the relationship names, Receives and Summarizes. These relationship names
refer to business activities that transfer or translate data, not to simply the association of
one kind of data with another kind of data. The simple E-R diagram in Figure 2-4b
shows entities and a relationship that would be sufficient to handle the sorority expense
system as described here. See Problem and Exercise 19 for a variation on this situation.

STRONG VERSUS WEAK ENTITY TYPES Most of the basic entity types to identify in an organ-
ization are classified as strong entity types. A strong entity type is one that exists independ-
ently of other entity types. (Some data modeling software, in fact, use the term independent
entity.) Examples include STUDENT, EMPLOYEE, AUTOMOBILE, and COURSE.

Strong entity type
An entity that exists independently
of other entity types.

ACCOUNT EXPENSE
Is Charged

(b) E-R diagram with only
the necessary entities

70 Part II • Database Analysis

Carries

DEPENDENT
Dependent Name
 (First Name,
 Middle Initial,
 Last Name)
Date of Birth

EMPLOYEE
Employee ID
Employee Name

D
Carries

Weak Entity T
e

Weak E

Identifying
Owner

Partial
Identifier

Identifying
Relationship

FIGURE 2-5 Example
of a weak entity and its
identifying relationship

Instances of a strong entity type always have a unique characteristic (called an
identifier)—that is, an attribute or a combination of attributes that uniquely distinguish
each occurrence of that entity.

In contrast, a weak entity type is an entity type whose existence depends on some
other entity type. (Some data modeling software, in fact, use the term dependent entity.)
A weak entity type has no business meaning in an E-R diagram without the entity on
which it depends. The entity type on which the weak entity type depends is called the
identifying owner (or simply owner for short). A weak entity type does not typically
have its own identifier. Generally, on an E-R diagram, a weak entity type has an attrib-
ute that serves as a partial identifier. During a later design stage (described in Chapter 4),
a full identifier will be formed for the weak entity by combining the partial identifier
with the identifier of its owner or by creating a surrogate identifier attribute.

An example of a weak entity type with an identifying relationship is shown in
Figure 2-5. EMPLOYEE is a strong entity type with identifier Employee ID (we note the
identifier attribute by underlining it). DEPENDENT is a weak entity type, as indicated
by the double-lined rectangle. The relationship between a weak entity type and its
owner is called an identifying relationship. In Figure 2-5, Carries is the identifying
relationship (indicated by the double line). The attribute Dependent Name serves as a
partial identifier. (Dependent Name is a composite attribute that can be broken into
component parts, as we describe later.) We use a double underline to indicate a partial
identifier. During a later design stage, Dependent Name will be combined with
Employee ID (the identifier of the owner) to form a full identifier for DEPENDENT.

NAMING AND DEFINING ENTITY TYPES In addition to the general guidelines for nam-
ing and defining data objects, there are a few special guidelines for naming entity types,
which follow:

• An entity type name is a singular noun (such as CUSTOMER, STUDENT, or
AUTOMOBILE); an entity is a person, a place, an object, an event, or a concept,
and the name is for the entity type, which represents a set of entity instances
(i.e., STUDENT represents students Hank Finley, Jean Krebs, and so forth). It is
common to also specify the plural form (possibly in a CASE tool repository
accompanying the E-R diagram), because sometimes the E-R diagram is read best
by using plurals. For example, in Figure 2-1, we would say that a SUPPLIER may
supply ITEMs. Because plurals are not always formed by adding an s to the singu-
lar noun, it is best to document the exact plural form.

• An entity type name should be specific to the organization. Thus, one organization
may use the entity type name CUSTOMER and another organization may use the
entity type name CLIENT (this is one task, for example, done to customize a pur-
chased data model). The name should be descriptive for everyone in the organiza-
tion and distinct from all other entity type names within that organization. For
example, a PURCHASE ORDER for orders placed with suppliers is distinct from
CUSTOMER ORDER for orders placed with us by our customers. Both of these
entity types cannot be named ORDER.

Weak entity type
An entity type whose existence
depends on some other entity type.

Identifying owner
The entity type on which the weak
entity type depends.

Identifying relationship
The relationship between a weak
entity type and its owner.

Chapter 2 • Modeling Data in the Organization 71

• An entity type name should be concise, using as few words as possible. For example,
in a university database, an entity type REGISTRATION for the event of a student
registering for a class is probably a sufficient name for this entity type; STUDENT
REGISTRATION FOR CLASS, although precise, is probably too wordy because the
reader will understand REGISTRATION from its use with other entity types.

• An abbreviation, or a short name, should be specified for each entity type name, and
the abbreviation may be sufficient to use in the E-R diagram; abbreviations must
follow all of the same rules as do the full entity names.

• Event entity types should be named for the result of the event, not the activity or
process of the event. For example, the event of a project manager assigning an
employee to work on a project results in an ASSIGNMENT, and the event of a
student contacting his or her faculty adviser seeking some information is a
CONTACT.

• The name used for the same entity type should be the same on all E-R diagrams on
which the entity type appears. Thus, as well as being specific to the organiza-
tion, the name used for an entity type should be a standard, adopted by the or-
ganization for all references to the same kind of data. However, some entity
types will have aliases, or alternative names, which are synonyms used in dif-
ferent parts of the organization. For example, the entity type ITEM may have
aliases of MATERIAL (for production) and DRAWING (for engineering).
Aliases are specified in documentation about the database, such as the repository
of a CASE tool.

There are also some specific guidelines for defining entity types, which follow:

• An entity type definition usually starts with “An X is. . . .” This is the most direct and
clear way to state the meaning of an entity type.

• An entity type definition should include a statement of what the unique characteristic
is for each instance of the entity type. In many cases, stating the identifier for an entity
type helps to convey the meaning of the entity. An example for Figure 2-4b is “An
expense is a payment of the purchase of some good or service. An expense is iden-
tified by a journal entry number.”

• An entity type definition should make it clear what entity instances are included and
not included in the entity type; often, it is necessary to list the kinds of entities that
are excluded. For example, “A customer is a person or organization that has
placed an order for a product from us or one that we have contacted to advertise
or promote our products. A customer does not include persons or organizations
that buy our products only through our customers, distributors, or agents.”

• An entity type definition often includes a description of when an instance of the
entity type is created and deleted. For example, in the previous bullet point, a cus-
tomer instance is implicitly created when the person or organization places its
first order; because this definition does not specify otherwise, implicitly a cus-
tomer instance is never deleted, or it is deleted based on general rules that are
specified about the purging of data from the database. A statement about when
to delete an entity instance is sometimes referred to as the retention of the entity
type. A possible deletion statement for a customer entity type definition might
be “A customer ceases to be a customer if it has not placed an order for more
than three years.”

• For some entity types, the definition must specify when an instance might change
into an instance of another entity type. For example, consider the situation of a
construction company for which bids accepted by potential customers become
contracts. In this case, a bid might be defined by “A bid is a legal offer by our
organization to do work for a customer. A bid is created when an officer of our
company signs the bid document; a bid becomes an instance of contract when we
receive a copy of the bid signed by an officer of the customer.” This definition is
also a good example to note how one definition can use other entity type names
(in this case, the definition of bid uses the entity type name CUSTOMER).

• For some entity types, the definition must specify what history is to be kept about in-
stances of the entity type. For example, the characteristics of an ITEM in Figure 2-1

72 Part II • Database Analysis

may change over time, and we may need to keep a complete history of the indi-
vidual values and when they were in effect. As we will see in some examples later,
such statements about keeping history may have ramifications about how we
represent the entity type on an E-R diagram and eventually how we store data for
the entity instances.

Attributes

Each entity type has a set of attributes associated with it. An attribute is a property or
characteristic of an entity type that is of interest to the organization. (Later we will see
that some types of relationships may also have attributes.) Thus, an attribute has a noun
name. Following are some typical entity types and their associated attributes:

Attribute
A property or characteristic of an
entity or relationship type that is of
interest to the organization.

Entity type: STUDENT

Attributes Attribute Required or Example Instance Example Instance
Data Type Optional

Student ID CHAR (10) Required 876-24-8217 822-24-4456

Student Name CHAR (40) Required Michael Grant Melissa Kraft

Home Address CHAR (30) Required 314 Baker St. 1422 Heft Ave

Home City CHAR (20) Required Centerville Miami

Home State CHAR (2) Required OH FL

Home Zip Code CHAR (9) Required 45459 33321

Major CHAR (3) Optional MIS

FIGURE 2-6 Entity type
STUDENT with required and
optional attributes

STUDENT Student ID, Student Name, Home Address, Phone Number, Major

AUTOMOBILE Vehicle ID, Color, Weight, Horsepower

EMPLOYEE Employee ID, Employee Name, Payroll Address, Skill

Required attribute
An attribute that must have a
value for every entity (or
relationship) instance with
which it is associated.

Optional attribute
An attribute that may not have
a value for every entity (or
relationship) instance with
which it is associated.

In naming attributes, we use an initial capital letter followed by lowercase letters.
If an attribute name consists of more than one words, we use a space between the words
and we start each word with a capital letter; for example Employee Name or Student
Home Address. In E-R diagrams, we represent an attribute by placing its name in the
entity it describes. Attributes may also be associated with relationships, as described
later. Note that an attribute is associated with exactly one entity or relationship.

Notice in Figure 2-5 that all of the attributes of DEPENDENT are characteristics
only of an employee’s dependent, not characteristics of an employee. In traditional E-R
notation, an entity type (not just weak entities but any entity) does not include attrib-
utes of entities to which it is related (what might be called foreign attributes). For exam-
ple, DEPENDENT does not include any attribute that indicates to which employee this
dependent is associated. This nonredundant feature of the E-R data model is consistent
with the shared data property of databases. Because of relationships, which we discuss
shortly, someone accessing data from a database will be able to associate attributes from
related entities (e.g., show on a display screen a Dependent Name and the associated
Employee Name).

REQUIRED VERSUS OPTIONAL ATTRIBUTES Each entity (or instance of an entity type)
potentially has a value associated with each of the attributes of that entity type. An
attribute that must be present for each entity instance is called a required attribute,
whereas an attribute that may not have a value is called an optional attribute. For
example, Figure 2-6 shows two STUDENT entities (instances) with their respective

Chapter 2 • Modeling Data in the Organization 73

attribute values. The only optional attribute for STUDENT is Major. (Some students,
specifically Melissa Kraft in this example, have not chosen a major yet; MIS would, of
course, be a great career choice!) However, every student must, by the rules of the
organization, have values for all the other attributes; that is, we cannot store any data
about a student in a STUDENT entity instance unless there are values for all the required
attributes. In various E-R diagramming notations, a symbol might appear in front of
each attribute to indicate whether it is required (e.g., *) or optional (e.g., o), or
required attributes will be in boldface, whereas optional attributes will be in normal
font (the format we use in this text); in many cases, required or optional is indicated
within supplemental documentation. In Chapter 3, when we consider entity super-
types and subtypes, we will see how sometimes optional attributes imply that there
are different types of entities. (For example, we may want to consider students who
have not declared a major as a subtype of the student entity type.) An attribute with-
out a value is said to be null. Thus, each entity has an identifying attribute, which we
discuss in a subsequent section, plus one or more other attributes. If you try to create
an entity that has only an identifier, that entity is likely not legitimate. Such a data
structure may simply hold a list of legal values for some attribute, which is better kept
outside the database.

SIMPLE VERSUS COMPOSITE ATTRIBUTES Some attributes can be broken down into
meaningful component parts (detailed attributes). A common example is Name, which
we saw in Figure 2-5; another is Address, which can usually be broken down into the
following component attributes: Street Address, City, State, and Postal Code. A
composite attribute is an attribute, such as Address, that has meaningful component
parts, which are more detailed attributes. Figure 2-7 shows the notation that we use for
composite attributes applied to this example. Most drawing tools do not have a nota-
tion for composite attributes, so you simply list all the component parts.

Composite attributes provide considerable flexibility to users, who can either refer
to the composite attribute as a single unit or else refer to individual components of that
attribute. Thus, for example, a user can either refer to Address or refer to one of its com-
ponents, such as Street Address. The decision about whether to subdivide an attribute
into its component parts depends on whether users will need to refer to those individ-
ual components, and hence, they have organizational meaning. Of course, the designer
must always attempt to anticipate possible future usage patterns for the database.

A simple (or atomic) attribute is an attribute that cannot be broken down into
smaller components that are meaningful for the organization. For example, all the
attributes associated with AUTOMOBILE are simple: Vehicle ID, Color, Weight, and
Horsepower.

SINGLE-VALUED VERSUS MULTIVALUED ATTRIBUTES Figure 2-6 shows two entity
instances with their respective attribute values. For each entity instance, each of the
attributes in the figure has one value. It frequently happens that there is an attribute
that may have more than one value for a given instance. For example, the EMPLOYEE
entity type in Figure 2-8 has an attribute named Skill, whose values record the skill (or
skills) for that employee. Of course, some employees may have more than one skill,

Composite attribute
An attribute that has meaningful
component parts (attributes).

Simple (or atomic) attribute
An attribute that cannot be broken
down into smaller components that
are meaningful to the organization.

EMPLOYEE
. . .
Employee Address
(Street Address, City,

ate, Postal Code)
.

Composite
Attribute

Component
Attributes

FIGURE 2-7 A composite
attribute

74 Part II • Database Analysis

EMPLOYEE
Employee ID

mployee Name(. . .)
ayroll Address(.
ate Employed

Skill}
[Years Employed]

Derived
Attribute

Multivalued
Attribute

FIGURE 2-8 Entity with
multivalued attribute (Skill)
and derived attribute (Years
Employed)

such as PHP Programmer and C++ Programmer. A multivalued attribute is an attrib-
ute that may take on more than one value for a given entity (or relationship) instance. In
this text we indicate a multivalued attribute with curly brackets around the attribute
name, as shown for the Skill attribute in the EMPLOYEE example in Figure 2-8. In
Microsoft Visio, once an attribute is placed in an entity, you can edit that attribute (col-
umn), select the Collection tab, and choose one of the options. (Typically, MultiSet will
be your choice, but one of the other options may be more appropriate for a given situa-
tion.) Other E-R diagramming tools may use an asterisk (*) after the attribute name, or
you may have to use supplemental documentation to specify a multivalued attribute.

Multivalued and composite are different concepts, although beginner data model-
ers often confuse these terms. Skill, a multivalued attribute, may occur multiple times
for each employee; Employee Name and Payroll Address are both likely composite
attributes, each of which occurs once for each employee, but which have component,
more atomic attributes, which are not shown in Figure 2-8 for simplicity. See Problem
and Exercise 14 to review the concepts of composite and multivalued attributes.

STORED VERSUS DERIVED ATTRIBUTES Some attribute values that are of interest to users
can be calculated or derived from other related attribute values that are stored in the
database. For example, suppose that for an organization, the EMPLOYEE entity type has
a Date Employed attribute. If users need to know how many years a person has been
employed, that value can be calculated using Date Employed and today’s date. A
derived attribute is an attribute whose values can be calculated from related attribute
values (plus possibly data not in the database, such as today’s date, the current time, or a
security code provided by a system user). We indicate a derived attribute in an E-R dia-
gram by using square brackets around the attribute name, as shown in Figure 2-8 for the
Years Employed attribute. Some E-R diagramming tools use a notation of a forward
slash (/) in front of the attribute name to indicate that it is derived. (This notation is bor-
rowed from UML for a virtual attribute.)

In some situations, the value of an attribute can be derived from attributes in
related entities. For example, consider an invoice created for each customer at Pine
Valley Furniture Company. Order Total would be an attribute of the INVOICE entity,
which indicates the total dollar amount that is billed to the customer. The value of
Order Total can be computed by summing the Extended Price values (unit price times
quantity sold) for the various line items that are billed on the invoice. Formulas for
computing values such as this are one type of business rule.

IDENTIFIER ATTRIBUTE An identifier is an attribute (or combination of attributes)
whose value distinguishes individual instances of an entity type. That is, no two
instances of the entity type may have the same value for the identifier attribute. The
identifier for the STUDENT entity type introduced earlier is Student ID, whereas
the identifier for AUTOMOBILE is Vehicle ID. Notice that an attribute such as Student
Name is not a candidate identifier, because many students may potentially have the
same name, and students, like all people, can change their names. To be a candidate
identifier, each entity instance must have a single value for the attribute and the attribute
must be associated with the entity. We underline identifier names on the E-R diagram, as

Multivalued attribute
An attribute that may take on more
than one value for a given entity
(or relationship) instance.

Derived attribute
An attribute whose values
can be calculated from related
attribute values.

Identifier
An attribute (or combination
of attributes) whose value
distinguishes instances of
an entity type.

Chapter 2 • Modeling Data in the Organization 75

STUDENT
Student ID
Student Name(. . .)
. . .

TUDENT
D
ame(. . .)

Identifier and
Required

FIGURE 2-9 Simple and
composite identifier attributes
(a) Simple identifier attribute

shown in the STUDENT entity type example in Figure 2-9a. To be an identifier, the attrib-
uted is also required (so the distinguishing value must exist), so an identifier is also in
bold. Some E-R drawing software will place a symbol, called a stereotype, in front of the
identifier (e.g., <<ID>> or <<PK>>).

For some entity types, there is no single (or atomic) attribute that can serve as
the identifier (i.e., that will ensure uniqueness). However, two (or more) attributes
used in combination may serve as the identifier. A composite identifier is an identi-
fier that consists of a composite attribute. Figure 2-9b shows the entity FLIGHT with
the composite identifier Flight ID. Flight ID in turn has component attributes Flight
Number and Date. This combination is required to identify uniquely individual
occurrences of FLIGHT. We use the convention that the composite attribute (Flight
ID) is underlined to indicate it is the identifier, while the component attributes
are not underlined. Some data modelers think of a composite identifier as “breaking a
tie” created by a simple identifier. Even with Flight ID, a data modeler would ask
a question, such as “Can two flights with the same number occur on the same date?”
If so, yet another attribute is needed to form the composite identifier and to break
the tie.

Some entities may have more than one candidate identifier. If there is more than
one candidate identifier, the designer must choose one of them as the identifier. Bruce
(1992) suggests the following criteria for selecting identifiers:

1. Choose an identifier that will not change its value over the life of each instance of
the entity type. For example, the combination of Employee Name and Payroll
Address (even if unique) would be a poor choice as an identifier for EMPLOYEE
because the values of Employee Name and Payroll Address could easily change
during an employee’s term of employment.

2. Choose an identifier such that for each instance of the entity, the attribute is guar-
anteed to have valid values and not be null (or unknown). If the identifier is a
composite attribute, such as Flight ID in Figure 2-9b, make sure that all parts of the
identifier will have valid values.

3. Avoid the use of so-called intelligent identifiers (or keys), whose structure indi-
cates classifications, locations, and so on. For example, the first two digits of an
identifier value may indicate the warehouse location. Such codes are often
changed as conditions change, which renders the identifier values invalid.

4. Consider substituting single-attribute surrogate identifiers for large composite
identifiers. For example, an attribute called Game Number could be used for
the entity type GAME instead of the combination of Home Team and Visiting
Team.

Composite identifier
An identifier that consists
of a composite attribute.

Flight ID
(Flight

Number
. . .

FLIGHT

Composite
Identifier

(b) Composite identifier
attribute

76 Part II • Database Analysis

NAMING AND DEFINING ATTRIBUTES In addition to the general guidelines for naming
data objects, there are a few special guidelines for naming attributes, which follow:

• An attribute name is a singular noun or noun phrase (such as Customer ID, Age,
Product Minimum Price, or Major). Attributes, which materialize as data values,
are concepts or physical characteristics of entities. Concepts and physical charac-
teristics are described by nouns.

• An attribute name should be unique. No two attributes of the same entity type
may have the same name, and it is desirable, for clarity purposes, that no two
attributes across all entity types have the same name.

• To make an attribute name unique and for clarity purposes, each attribute name
should follow a standard format. For example, your university may establish Student
GPA, as opposed to GPA of Student, as an example of the standard format for
attribute naming. The format to be used will be established by each organization. A
common format is [Entity type name { [Qualifier] }] Class, where [. . .] is an
optional clause, and { . . . } indicates that the clause may repeat. Entity type name is
the name of the entity with which the attribute is associated. The entity type name
may be used to make the attribute name explicit. It is almost always used for the
identifier attribute (e.g., Customer ID) of each entity type. Class is a phrase from a
list of phrases defined by the organization that are the permissible characteristics or
properties of entities (or abbreviations of these characteristics). For example, per-
missible values (and associated approved abbreviations) for Class might be Name
(Nm), Identifier (ID), Date (Dt), or Amount (Amt). Class is, obviously, required.
Qualifier is a phrase from a list of phrases defined by the organization that are used
to place constraints on classes. One or more qualifiers may be needed to make each
attribute of an entity type unique. For example, a qualifier might be Maximum
(Max), Hourly (Hrly), or State (St). A qualifier may not be necessary: Employee Age
and Student Major are both fully explicit attribute names. Sometimes a qualifier is
necessary. For example, Employee Birth Date and Employee Hire Date are two
attributes of Employee that require one qualifier. More than one qualifier may be
necessary. For example, Employee Residence City Name (or Emp Res Cty Nm) is
the name of an employee’s city of residence, and Employee Tax City Name (or Emp
Tax Cty Nm) is the name of the city in which an employee pays city taxes.

• Similar attributes of different entity types should use the same qualifiers and classes, as
long as those are the names used in the organization. For example, the city of resi-
dence for faculty and students should be, respectively, Faculty Residence City
Name and Student Residence City Name. Using similar names makes it easier for
users to understand that values for these attributes come from the same possible
set of values, what we will call domains. Users may want to take advantage of com-
mon domains in queries (e.g., find students who live in the same city as their
adviser), and it will be easier for users to recognize that such a matching may be
possible if the same qualifier and class phrases are used.

There are also some specific guidelines for defining attributes, which follow:

• An attribute definition states what the attribute is and possibly why it is important.
The definition will often parallel the attribute’s name; for example, Student
Residence City Name could be defined as “The name of the city in which a stu-
dent maintains his or her permanent residence.”

• An attribute definition should make it clear what is included and not included in the
attribute’s value; for example, “Employee Monthly Salary Amount is the amount of
money paid each month in the currency of the country of residence of the employee
exclusive of any benefits, bonuses, reimbursements, or special payments.”

• Any aliases, or alternative names, for the attribute can be specified in the defini-
tion, or may be included elsewhere in documentation about the attribute, possibly
stored in the repository of a CASE tool used to maintain data definitions.

• It may also be desirable to state in the definition the source of values for the attribute.
Stating the source may make the meaning of the data clearer. For example,
“Customer Standard Industrial Code is an indication of the type of business for

Chapter 2 • Modeling Data in the Organization 77

the customer. Values for this code come from a standard set of values provided by
the Federal Trade Commission and are found on a CD we purchase named SIC
provided annually by the FTC.”

• An attribute definition (or other specification in a CASE tool repository) also
should indicate if a value for the attribute is required or optional. This business rule
about an attribute is important for maintaining data integrity. The identifier attrib-
ute of an entity type is, by definition, required. If an attribute value is required,
then to create an instance of the entity type, a value of this attribute must be pro-
vided. Required means that an entity instance must always have a value for this
attribute, not just when an instance is created. Optional means that a value may
not exist for an instance of an entity instance to be stored. Optional can be further
qualified by stating whether once a value is entered, a value must always exist. For
example, “Employee Department ID is the identifier of the department to which
the employee is assigned. An employee may not be assigned to a department
when hired (so this attribute is initially optional), but once an employee is assigned
to a department, the employee must always be assigned to some department.”

• An attribute definition (or other specification in a CASE tool repository) may also
indicate whether a value for the attribute may change once a value is provided and
before the entity instance is deleted. This business rule also controls data integrity.
Nonintelligent identifiers may not change values over time. To assign a new non-
intelligent identifier to an entity instance, that instance must first be deleted and
then re-created.

• For a multivalued attribute, the attribute definition should indicate the maximum
and minimum number of occurrences of an attribute value for an entity instance. For
example, “Employee Skill Name is the name of a skill an employee possesses.
Each employee must possess at least one skill, and an employee can choose to list
at most 10 skills.” The reason for a multivalued attribute may be that a history of
the attribute needs to be kept. For example, “Employee Yearly Absent Days
Number is the number of days in a calendar year the employee has been absent
from work. An employee is considered absent if he or she works less than 50 per-
cent of the scheduled hours in the day. A value for this attribute should be kept for
each year in which the employee works for our company.”

• An attribute definition may also indicate any relationships that attribute has with other
attributes. For example, “Employee Vacation Days Number is the number of days of
paid vacation for the employee. If the employee has a value of ‘Exempt’ for
Employee Type, then the maximum value for Employee Vacation Days Number is
determined by a formula involving the number of years of service for the employee.”

MODELING RELATIONSHIPS

Relationships are the glue that holds together the various components of an E-R model.
Intuitively, a relationship is an association representing an interaction among the
instances of one or more entity types that is of interest to the organization. Thus, a rela-
tionship has a verb phrase name. Relationships and their characteristics (degree and
cardinality) represent business rules, and usually relationships represent the most com-
plex business rules shown in an ERD. In other words, this is where data modeling gets
really interesting and fun, as well as crucial for controlling the integrity of a database.

To understand relationships more clearly, we must distinguish between relation-
ship types and relationship instances. To illustrate, consider the entity types EMPLOYEE
and COURSE, where COURSE represents training courses that may be taken by employ-
ees. To track courses that have been completed by particular employees, we define a
relationship called Completes between the two entity types (see Figure 2-10a). This is
a many-to-many relationship, because each employee may complete any number
of courses (zero, one, or many courses), whereas a given course may be completed by
any number of employees (nobody, one employee, many employees). For example, in
Figure 2-10b, the employee Melton has completed three courses (C++, COBOL, and Perl).
The SQL course has been completed by two employees (Celko and Gosling), and the
Visual Basic course has not been completed by anyone.

78 Part II • Database Analysis

pl
EMPLOYEE

Employee ID
Employee Name(. . .)
Birth Date

COURSE
Course ID
Course Title
{Topic}

manymany

FIGURE 2-10 Relationship
type and instances
(a) Relationship type
(Complete)

In this example, there are two entity types (EMPLOYEE and COURSE) that partic-
ipate in the relationship named Completes. In general, any number of entity types
(from one to many) may participate in a relationship.

We frequently use in this and subsequent chapters the convention of a single verb
phrase label to represent a relationship. Because relationships often occur due to an orga-
nizational event, entity instances are related because an action was taken; thus a verb
phrase is appropriate for the label. This verb phrase should be in the present tense and
descriptive. There are, however, many ways to represent a relationship. Some data mod-
elers prefer the format with two relationship names, one to name the relationship in each
direction. One or two verb phrases have the same structural meaning, so you may use
either format as long as the meaning of the relationship in each direction is clear.

Basic Concepts and Definitions in Relationships

A relationship type is a meaningful association between (or among) entity types. The
phrase meaningful association implies that the relationship allows us to answer questions
that could not be answered given only the entity types. A relationship type is denoted by
a line labeled with the name of the relationship, as in the example shown in Figure 2-10a,
or with two names, as in Figure 2-1. We suggest you use a short, descriptive verb phrase
that is meaningful to the user in naming the relationship. (We say more about naming
and defining relationships later in this section.)

A relationship instance is an association between (or among) entity instances,
where each relationship instance associates exactly one entity instance from each partic-
ipating entity type (Elmasri and Navathe, 1994). For example, in Figure 2-10b, each of
the 10 lines in the figure represents a relationship instance between one employee and
one course, indicating that the employee has completed that course. For example, the
line between Employee Ritchie to Course Perl is one relationship instance.

Relationship type
A meaningful association between
(or among) entity types.

Relationship instance
An association between (or among)
entity instances where each
relationship instance associates
exactly one entity instance from
each participating entity type.

C++

Java

COBOL

Perl

SQL

Chen

Melton

Ritchie

Celko

Gosling

Employee Completes Course

Visual Basic

Each line represents an
instance (10 in all) of the

Completes relationship type

(b) Relationship instances

Chapter 2 • Modeling Data in the Organization 79

TABLE 2-2 Instances Showing Date Completed

Employee Name Course Title Date Completed

Chen C++ 06/2009

Chen Java 09/2009

Melton C++ 06/2009

Melton COBOL 02/2010

Melton SQL 03/2009

Ritchie Perl 11/2009

Celko Java 03/2009

Celko SQL 03/2010

Gosling Java 09/2009

Gosling Perl 06/2009

ATTRIBUTES ON RELATIONSHIPS It is probably obvious to you that entities have attrib-
utes, but attributes may be associated with a many-to-many (or one-to-one) relation-
ship, too. For example, suppose the organization wishes to record the date (month and
year) when an employee completes each course. This attribute is named Date
Completed. For some sample data, see Table 2-2.

Where should the attribute Date Completed be placed on the E-R diagram?
Referring to Figure 2-10a, you will notice that Date Completed has not been associated
with either the EMPLOYEE or COURSE entity. That is because Date Completed is a
property of the relationship Completes, rather than a property of either entity. In other
words, for each instance of the relationship Completes, there is a value for Date
Completed. One such instance (for example) shows that the employee named Melton
completed the course titled C++ in 06/2009.

A revised version of the ERD for this example is shown in Figure 2-11a. In this dia-
gram, the attribute Date Completed is in a rectangle connected to the Completes rela-
tionship line. Other attributes might be added to this relationship if appropriate, such
as Course Grade, Instructor, and Room Location.

It is interesting to note that an attribute cannot be associated with a one-to-many
relationship, such as Carries in Figure 2-5. For example, consider Dependent Date, similar
to Date Completed above, for when the DEPENDENT begins to be carried by the
EMPLOYEE. Because each DEPENDENT is associated with only one EMPLOYEE, such a
date is unambiguously a characteristic of the DEPENDENT (i.e., for a given DEPEN-
DENT, Dependent Date cannot vary by EMPLOYEE). So, if you ever have the urge to
associate an attribute with a one-to-many relationship, “step away from the relationship!”

B A
EMPLOYEE

Completes

Employee ID
Employee Name(. . .)
Birth Date

COURSE
Course ID
Course Title
{Topic}

Date Completed

FIGURE 2-11 An associative entity

(a) Attribute on a relationship

(continued)

80 Part II • Database Analysis

ASSOCIATIVE ENTITIES The presence of one or more attributes on a relationship sug-
gests to the designer that the relationship should perhaps instead be represented as an
entity type. To emphasize this point, most E-R drawing tools require that such attrib-
utes be placed in an entity type. An associative entity is an entity type that associates
the instances of one or more entity types and contains attributes that are peculiar to the
relationship between those entity instances. The associative entity CERTIFICATE is rep-
resented with the rectangle with rounded corners, as shown in Figure 2-11b. Most E-R
drawing tools do not have a special symbol for an associative entity. Associative entities
are sometimes referred to as gerunds, because the relationship name (a verb) is usually
converted to an entity name that is a noun. Note in Figure 2-11b that there are no rela-
tionship names on the lines between an associative entity and a strong entity. This is
because the associative entity represents the relationship. Figure 2-11c shows how asso-
ciative entities are drawn using Microsoft Visio, which is representative of how you
would draw an associative entity with most E-R diagramming tools. In Visio, the rela-
tionship lines are dashed because CERTIFICATE does not include the identifiers of the
related entities in its identifier. (Certificate Number is sufficient.)

How do you know whether to convert a relationship to an associative entity type?
Following are four conditions that should exist:

1. All the relationships for the participating entity types are “many” relationships.
2. The resulting associative entity type has independent meaning to end users and,

preferably, can be identified with a single-attribute identifier.
3. The associative entity has one or more attributes in addition to the identifier.
4. The associative entity participates in one or more relationships independent of the

entities related in the associated relationship.

Figure 2-11b shows the relationship Completes converted to an associative entity
type. In this case, the training department for the company has decided to award a certifi-
cate to each employee who completes a course. Thus, the entity is named CERTIFICATE,
which certainly has independent meaning to end users. Also, each certificate has a num-
ber (Certificate Number) that serves as the identifier. The attribute Date Completed is also
included. Note also in Figure 2-11b and the Visio version of Figure 2-11c that both
EMPLOYEE and COURSE are mandatory participants in the two relationships with
CERTIFICATE. This is exactly what occurs when you have to represent a many-to-many

A BEMPLOYEE
Employee ID
Employee Name(. . .)
Birth Date

COURSE
Course ID
Course Title
{Topic}

Certificate Number
Date Completed

CERTIFICATE

FIGURE 2-11 (continued)

Employee IDPK

Employee Name

EMPLOYEE

Certificate NumberPK

Date Completed

CERTIFICATE

Course IDPK

Course Title

COURSE

(b) An associative entity (CERTIFICATE)

(c) An associative entity using Microsoft VISIO

Associative entity
An entity type that associates the
instances of one or more entity
types and contains attributes that
are peculiar to the relationship
between those entity instances.

Chapter 2 • Modeling Data in the Organization 81

Degree
The number of entity types that
participate in a relationship.

relationship (Completes in Figure 2-11a) as two one-to-many relationships (the ones asso-
ciated with CERTIFICATE in Figures 2-11b and 2-11c).

Notice that converting a relationship to an associative entity has caused the rela-
tionship notation to move. That is, the “many” cardinality now terminates at the associa-
tive entity, rather than at each participating entity type. In Figure 2-11, this shows that an
employee, who may complete one or more courses (notation A in Figure 2-11a), may be
awarded more than one certificate (notation A in Figure 2-11b); and that a course, which
may have one or more employees complete it (notation B in Figure 2-11a), may have
many certificates awarded (notation B in Figure 2-11b). See Problem and Exercise 18 for
an interesting variation on Figure 2-11a, which emphasizes the rules for when to convert
a many-to-many relationship, such as Completes, into an associative entity.

Degree of a Relationship

The degree of a relationship is the number of entity types that participate in that relation-
ship. Thus, the relationship Completes in Figure 2-11 is of degree 2, because there are two
entity types: EMPLOYEE and COURSE. The three most common relationship degrees in
E-R models are unary (degree 1), binary (degree 2), and ternary (degree 3). Higher-
degree relationships are possible, but they are rarely encountered in practice, so we
restrict our discussion to these three cases. Examples of unary, binary, and ternary rela-
tionships appear in Figure 2-12. (Attributes are not shown in some figures for simplicity.)

As you look at Figure 2-12, understand that any particular data model represents
a specific situation, not a generalization. For example, consider the Manages relation-
ship in Figure 2-12a. In some organizations, it may be possible for one employee to be
managed by many other employees (e.g., in a matrix organization). It is important
when you develop an E-R model that you understand the business rules of the particu-
lar organization you are modeling.

UNARY RELATIONSHIP A unary relationship is a relationship between the instances of a
single entity type. (Unary relationships are also called recursive relationships.) Three exam-
ples are shown in Figure 2-12a. In the first example, Is Married To is shown as a one-to-one
relationship between instances of the PERSON entity type. Because this is a one-to-one
relationship, this notation indicates that only the current marriage, if one exists, needs to be
kept about a person. What would change if we needed to retain the history of marriages
for each person? See Review Question 20 and Problem and Exercise 10 for other business
rules and their effect on the Is Married To relationship representation. In the second
example, Manages is shown as a one-to-many relationship between instances of the
EMPLOYEE entity type. Using this relationship, we could identify, for example, the
employees who report to a particular manager. The third example is one case of using a
unary relationship to represent a sequence, cycle, or priority list. In this example, sports
teams are related by their standing in their league (the Stands After relationship). (Note: In
these examples, we ignore whether these are mandatory- or optional-cardinality relation-
ships or whether the same entity instance can repeat in the same relationship instance; we
will introduce mandatory and optional cardinality in a later section of this chapter.)

Figure 2-13 shows an example of another unary relationship, called a bill-of-materials
structure. Many manufactured products are made of assemblies, which in turn are com-
posed of subassemblies and parts, and so on. As shown in Figure 2-13a, we can represent
this structure as a many-to-many unary relationship. In this figure, the entity type ITEM
is used to represent all types of components, and we use Has Components for the name
of the relationship type that associates lower-level items with higher-level items.

Two occurrences of this bill-of-materials structure are shown in Figure 2-13b. Each of
these diagrams shows the immediate components of each item as well as the quantities of
that component. For example, item TX100 consists of item BR450 (quantity 2) and item
DX500 (quantity 1). You can easily verify that the associations are in fact many-to-many.
Several of the items have more than one component type (e.g., item MX300 has three imme-
diate component types: HX100, TX100, and WX240). Also, some of the components are
used in several higher-level assemblies. For example, item WX240 is used in both item
MX300 and item WX340, even at different levels of the bill-of-materials. The many-to-many
relationship guarantees that, for example, the same subassembly structure of WX240 (not
shown) is used each time item WX240 goes into making some other item.

Unary relationship
A relationship between instances
of a single entity type.

82 Part II • Database Analysis

Binary relationship
A relationship between the
instances of two entity types.

PERSON

One-to-one One-to-many One-to-one

Is Married To Manages Stands After

EMPLOYEE TEAM

EMPLOYEE
PARKING
SPACE

STUDENT COURSE

PRODUCT
LINE

PRODUCT

One-to-one

Many-to-many

One-to-many

Is Assigned

Registers For

Contains

VENDOR

PART

WAREHOUSE
Supplies

Mode

For example, an instance is:
 Vendor X Supplies Part C to

 Warehouse Y with a
 Shipping Mode of "next-day air"

and a Unit Cost of $5

FIGURE 2-12 Examples of relationships of different degrees

(b) Binary relationships

(a) Unary relationships

(c) Ternary relationship

The presence of the attribute Quantity on the relationship suggests that the ana-
lyst consider converting the relationship Has Components to an associative entity.
Figure 2-13c shows the entity type BOM STRUCTURE, which forms an association
between instances of the ITEM entity type. A second attribute (named Effective Date)
has been added to BOM STRUCTURE to record the date when this component was first
used in the related assembly. Effective dates are often needed when a history of values
is required. Other data model structures can be used for unary relationships involving
such hierarchies; we show some of these other structures in Chapter 9.

BINARY RELATIONSHIP A binary relationship is a relationship between the instances
of two entity types and is the most common type of relationship encountered in data

Chapter 2 • Modeling Data in the Organization 83

Quantity

Has Components

ITEM

FIGURE 2-13 Representing a bill-of-materials structure

Ternary relationship
A simultaneous relationship among
the instances of three entity types.

modeling. Figure 2-12b shows three examples. The first (one-to-one) indicates that an
employee is assigned one parking place, and that each parking place is assigned to one
employee. The second (one-to-many) indicates that a product line may contain several
products, and that each product belongs to only one product line. The third (many-to-
many) shows that a student may register for more than one course, and that each course
may have many student registrants.

TERNARY RELATIONSHIP A ternary relationship is a simultaneous relationship among
the instances of three entity types. A typical business situation that leads to a ternary
relationship is shown in Figure 2-12c. In this example, vendors can supply various
parts to warehouses. The relationship Supplies is used to record the specific parts that
are supplied by a given vendor to a particular warehouse. Thus there are three entity

Mountain Bike
MX300

Transmission
System TX100

Qty: 1

Handle Bars
HX100
Qty: 1

Brakes
BR450
Qty: 2

Wheels
WX240
Qty: 2

Derailer
DX500
Qty: 1

Tandem Bike
TR425

Transmission
System TX101

Handle Bars
HT200
Qty: 2

Derailer
DX500
Qty: 1

Wheels
WX340
Qty: 2

Brakes
BR250
Qty: 2

Wheels
WX240
Qty: 2

Wheel Trim
WT100
Qty: 2

ITEM

Has Components

Used In Assemblies

BOM STRUCTURE
Effective Date
Quantity

(b) Two ITEM bill-of-materials structure instances

(c) Associative entity

(a) Many-to-many relationship

84 Part II • Database Analysis

types: VENDOR, PART, and WAREHOUSE. There are two attributes on the relation-
ship Supplies: Shipping Mode and Unit Cost. For example, one instance of Supplies
might record the fact that vendor X can ship part C to warehouse Y, that the shipping
mode is next-day air, and that the cost is $5 per unit.

Don’t be confused: A ternary relationship is not the same as three binary relation-
ships. For example, Unit Cost is an attribute of the Supplies relationship in Figure 2-12c.
Unit Cost cannot be properly associated with any one of the three possible binary rela-
tionships among the three entity types, such as that between PART and WAREHOUSE.
Thus, for example, if we were told that vendor X can ship part C for a unit cost of $8, those
data would be incomplete because they would not indicate to which warehouse the parts
would be shipped.

As usual, the presence of an attribute on the relationship Supplies in Figure 2-12c sug-
gests converting the relationship to an associative entity type. Figure 2-14 shows an alterna-
tive (and preferable) representation of the ternary relationship shown in Figure 2-12c.
In Figure 2-14, the (associative) entity type SUPPLY SCHEDULE is used to replace the
Supplies relationship from Figure 2-12c. Clearly the entity type SUPPLY SCHEDULE is of
independent interest to users. However, notice that an identifier has not yet been assigned
to SUPPLY SCHEDULE. This is acceptable. If no identifier is assigned to an associative
entity during E-R modeling, an identifier (or key) will be assigned during logical modeling
(discussed in Chapter 4). This will be a composite identifier whose components will consist
of the identifier for each of the participating entity types (in this example, PART, VENDOR,
and WAREHOUSE). Can you think of other attributes that might be associated with
SUPPLY SCHEDULE?

As noted earlier, we do not label the lines from SUPPLY SCHEDULE to the three
entities. This is because these lines do not represent binary relationships. To keep the
same meaning as the ternary relationship of Figure 2-12c, we cannot break the Supplies
relationship into three binary relationships, as we have already mentioned.

So, here is a guideline to follow: Convert all ternary (or higher) relationships to asso-
ciative entities, as in this example. Song et al. (1995) show that participation constraints
(described in a following section on cardinality constraints) cannot be accurately repre-
sented for a ternary relationship, given the notation with attributes on the relationship line.
However, by converting to an associative entity, the constraints can be accurately repre-
sented. Also, many E-R diagram drawing tools, including most CASE tools, cannot repre-
sent ternary relationships. So, although not semantically accurate, you must use these tools
to represent the ternary relationship with an associative entity and three binary relation-
ships, which have a mandatory association with each of the three related entity types.

Attributes or Entity?

Sometimes you will wonder if you should represent data as an attribute or an entity;
this is a common dilemma. Figure 2-15 includes three examples of situations when an
attribute could be represented via an entity type. We use this textbook’s E-R notation in

PART

VENDOR

SUPPLY SCHEDULE
Shipping Mode
Unit Cost

WAREHOUSE

FIGURE 2-14 Ternary
relationship as an
associative entity

Chapter 2 • Modeling Data in the Organization 85

RELATIONSHIP & ENTITYATTRIBUTE

Course ID
Pre-Req Course ID

PK
PK

Prerequisite
Has Prerequisites

Is Prerequisite For

Course IDPK

Course Title

COURSECOURSE
Course ID
Course Title
{Prerequisite}

FIGURE 2-15 Using relationships and entities to link related attributes

Employee IDPK

Employee Name

EMPLOYEE
Skill CodePK

Skill Title
Skill Type

SKILL

Employee ID
Skill Code

PK,FK1
PK,FK2

PossessesEMPLOYEE
Employee ID
Employee Name
{Skill (Skill Code,
Skill Title, Skill Type)}

Employee IDPK

Employee Name

EMPLOYEE
Department NumberPK

Department Name
Budget

DEPARTMENT

ORGANIZATIONAL UNIT PROJECT

Employs

EMPLOYEE

Employee Name
Department
 (Department Number,
 Department Name,
 Budget)

Employee ID

(a) Multivalued attribute versus relationships via bill-of-materials structure

(b) Composite, multivalued attribute versus relationship

(c) Composite attribute of data shared with other entity types

86 Part II • Database Analysis

the left column and the notation from Microsoft Visio in the right column; it is impor-
tant that you learn how to read ERDs in several notations because you will encounter
various styles in different publications and organizations. In Figure 2-15a, the poten-
tially multiple prerequisites of a course (shown as a multivalued attribute in the
Attribute cell) are also courses (and a course may be a prerequisite for many other
courses). Thus, prerequisite could be viewed as a bill-of-materials structure (shown in
the Relationship & Entity cell) between courses, not a multivalued attribute of
COURSE. Representing prerequisites via a bill-of-materials structure also means that
finding the prerequisites of a course and finding the courses for which a course is pre-
requisite both deal with relationships between entity types. When a prerequisite is a
multivalued attribute of COURSE, finding the courses for which a course is a prerequi-
site means looking for a specific value for a prerequisite across all COURSE instances.
As was shown in Figure 2-13a, such a situation could also be modeled as a unary rela-
tionship among instances of the COURSE entity type. In Visio, this specific situation
requires creating the equivalent of an associative entity (see the Relationship & Entity
cell in Figure 2-15a; Visio does not use the rectangle with rounded corners symbol). By
creating the associative entity, it is now easy to add characteristics to the relationship,
such as a minimum grade required. Also note that Visio shows the identifier (in this
case compound) with a PK stereotype symbol and boldface on the component attribute
names, signifying these are required attributes.

In Figure 2-15b, employees potentially have multiple skills (shown in the
Attribute cell), but skill could be viewed instead as an entity type (shown in the
Relationship & Entity cell as the equivalent of an associative entity) about which
the organization wants to maintain data (the unique code to identify each skill, a
descriptive title, and the type of skill, for example technical or managerial). An
employee has skills, which are not viewed as attributes, but rather as instances of a
related entity type. In the cases of Figures 2-15a and 2-15b, representing the data as a
multivalued attribute rather than via a relationship with another entity type may, in the
view of some people, simplify the diagram. On the other hand, the right-hand drawings
in these figures are closer to the way the database would be represented in a standard
relational database management system, the most popular type of DBMS in use today.
Although we are not concerned with implementation during conceptual data model-
ing, there is some logic for keeping the conceptual and logical data models similar.
Further, as we will see in the next example, there are times when an attribute, whether
simple, composite, or multivalued, should be in a separate entity.

So, when should an attribute be linked to an entity type via a relationship? The
answer is: when the attribute is the identifier or some other characteristic of an entity
type in the data model and multiple entity instances need to share these same attrib-
utes. Figure 2-15c represents an example of this rule. In this example, EMPLOYEE has a
composite attribute of Department. Because Department is a concept of the business,
and multiple employees will share the same department data, department data could
be represented (nonredundantly) in a DEPARTMENT entity type, with attributes for
the data about departments that all other related entity instances need to know. With
this approach, not only can different employees share the storage of the same depart-
ment data, but projects (which are assigned to a department) and organizational units
(which are composed of departments) also can share the storage of this same depart-
ment data.

Cardinality Constraints

There is one more important data modeling notation for representing common and
important business rules. Suppose there are two entity types, A and B, that are con-
nected by a relationship. A cardinality constraint specifies the number of instances of
entity B that can (or must) be associated with each instance of entity A. For example,
consider a video store that rents DVDs of movies. Because the store may stock more
than one DVD for each movie, this is intuitively a one-to-many relationship, as shown
in Figure 2-16a. Yet it is also true that the store may not have any DVDs of a given
movie in stock at a particular time (e.g., all copies may be checked out). We need a

Cardinality constraint
A rule that specifies the number
of instances of one entity that can
(or must) be associated with each
instance of another entity.

Chapter 2 • Modeling Data in the Organization 87

more precise notation to indicate the range of cardinalities for a relationship. This nota-
tion was introduced in Figure 2-2, which you may want to review at this time.

MINIMUM CARDINALITY The minimum cardinality of a relationship is the minimum
number of instances of entity B that may be associated with each instance of entity A. In
our DVD example, the minimum number of DVDs for a movie is zero. When the mini-
mum number of participants is zero, we say that entity type B is an optional participant
in the relationship. In this example, DVD (a weak entity type) is an optional participant
in the Is Stocked As relationship. This fact is indicated by the symbol zero through the
line near the DVD entity in Figure 2-16b.

MAXIMUM CARDINALITY The maximum cardinality of a relationship is the maximum
number of instances of entity B that may be associated with each instance of entity A.
In the video example, the maximum cardinality for the DVD entity type is “many”—
that is, an unspecified number greater than one. This is indicated by the “crow’s foot”
symbol on the line next to the DVD entity symbol in Figure 2-16b. (You might find
interesting the explanation of the origin of the crow’s foot notation found in the
Wikipedia entry about the entity-relationship model; this entry also shows the wide
variety of notation used to represent cardinality; see http://en.wikipedia.org/wiki/
Entity-relationship_model.)

A relationship is, of course, bidirectional, so there is also cardinality notation
next to the MOVIE entity. Notice that the minimum and maximum are both one (see
Figure 2-16b). This is called a mandatory one cardinality. In other words, each DVD of a
movie must be a copy of exactly one movie. In general, participation in a relationship
may be optional or mandatory for the entities involved. If the minimum cardinality is
zero, participation is optional; if the minimum cardinality is one, participation is
mandatory.

In Figure 2-16b, some attributes have been added to each of the entity types.
Notice that DVD is represented as a weak entity. This is because a DVD cannot exist
unless the owner movie also exists. The identifier of MOVIE is Movie Name. DVD does
not have a unique identifier. However, Copy Number is a partial identifier, which,
together with Movie Name, would uniquely identify an instance of DVD.

Some Examples of Relationships and Their Cardinalities

Examples of three relationships that show all possible combinations of minimum and
maximum cardinalities appear in Figure 2-17. Each example states the business rule for
each cardinality constraint and shows the associated E-R notation. Each example also
shows some relationship instances to clarify the nature of the relationship. You should

Is Stocked As
DVDMOVIE

FIGURE 2-16 Introducing
cardinality constraints
(a) Basic relationship

MOVIE
Movie Name

DVD
Copy Number

MAX one,
MIN one

MIN zero,
MAX many

(b) Relationship with
cardinality constraints

Minimum cardinality
The minimum number of
instances of one entity that may
be associated with each instance
of another entity.

Maximum cardinality
The maximum number of
instances of one entity that may
be associated with each instance
of another entity.

http:/en.wikipedia.org/wiki/Entity-relationship_model
http:/en.wikipedia.org/wiki/Entity-relationship_model

88 Part II • Database Analysis

Mark

Sarah

Elsie

Visit 1

Visit 1

Visit 1
Visit 2

PATIENT
PATIENT
HISTORY

Has Recorded

Mandatory

FIGURE 2-17 Examples
of cardinality constraints
(a) Mandatory cardinalities

Rose

Pete

Debbie

Tom

Heidi

BPR

TQM

OO

CR

EMPLOYEE
Is Assigned To

PROJECT

Mandatory Optional

Shirley

Mack

Dawn

Kathy

Ellis

Fred

PERS

Is Married To

Optional

(b) One optional, one
mandatory cardinality

(c) Optional cardinalities

study each of these examples carefully. Following are the business rules for each of the
examples in Figure 2-17:

1. PATIENT Has Recorded PATIENT HISTORY (Figure 2-17a) Each patient has one
or more patient histories. (The initial patient visit is always recorded as an
instance of PATIENT HISTORY.) Each instance of PATIENT HISTORY “belongs
to” exactly one PATIENT.

2. EMPLOYEE Is Assigned To PROJECT (Figure 2-17b) Each PROJECT has at least
one EMPLOYEE assigned to it. (Some projects have more than one.) Each
EMPLOYEE may or (optionally) may not be assigned to any existing PROJECT
(e.g., employee Pete), or may be assigned to one or more PROJECTs.

3. PERSON Is Married To PERSON (Figure 2-17c) This is an optional zero or one
cardinality in both directions, because a person may or may not be married at a
given point in time.

It is possible for the maximum cardinality to be a fixed number, not an arbitrary
“many” value. For example, suppose corporate policy states that an employee may
work on at most five projects at the same time. We could show this business rule by
placing a 5 above or below the crow’s foot next to the PROJECT entity in Figure 2-17b.

A TERNARY RELATIONSHIP We showed the ternary relationship with the associative
entity type SUPPLY SCHEDULE in Figure 2-14. Now let’s add cardinality constraints
to this diagram, based on the business rules for this situation. The E-R diagram,
with the relevant business rules, is shown in Figure 2-18. Notice that PART and

Chapter 2 • Modeling Data in the Organization 89

Time stamp
A time value that is associated with
a data value, often indicating when
some event occurred that affected
the data value.

WAREHOUSE must relate to some SUPPLY SCHEDULE instance, and a VENDOR
optionally may not participate. The cardinality at each of the participating entities is
a mandatory one, because each SUPPLY SCHEDULE instance must be related to
exactly one instance of each of these participating entity types. (Remember, SUPPLY
SCHEDULE is an associative entity.)

As noted earlier, a ternary relationship is not equivalent to three binary relation-
ships. Unfortunately, you are not able to draw ternary relationships with many CASE
tools; instead, you are forced to represent ternary relationships as three binaries (i.e., an
associative entity with three binary relationships). If you are forced to draw three
binary relationships, then do not draw the binary relationships with names, and be sure
that the cardinality next to the three strong entities is a mandatory one.

Modeling Time-Dependent Data

Database contents vary over time. With renewed interest today in traceability and
reconstruction of a historical picture of the organization for various regulatory require-
ments, such as HIPAA and Sarbanes-Oxley, the need to include a time series of data has
become essential. For example, in a database that contains product information, the unit
price for each product may be changed as material and labor costs and market condi-
tions change. If only the current price is required, Price can be modeled as a single-
valued attribute. However, for accounting, billing, financial reporting, and other
purposes, we are likely to need to preserve a history of the prices and the time period
during which each was in effect. As Figure 2-19 shows, we can conceptualize this
requirement as a series of prices and the effective date for each price. This results in the
(composite) multivalued attribute named Price History, with components Price and
Effective Date. An important characteristic of such a composite, multivalued attribute is
that the component attributes go together. Thus, in Figure 2-19, each Price is paired with
the corresponding Effective Date.

In Figure 2-19, each value of the attribute Price is time stamped with its effec-
tive date. A time stamp is simply a time value, such as date and time, that is associ-
ated with a data value. A time stamp may be associated with any data value that
changes over time when we need to maintain a history of those data values. Time
stamps may be recorded to indicate the time the value was entered (transaction
time), the time the value becomes valid or stops being valid, or the time when critical
actions were performed, such as updates, corrections, or audits. This situation is sim-
ilar to the employee skill diagrams in Figure 2-15b; thus, an alternative, not shown in
Figure 2-19, is to make Price History a separate entity type, as was done with Skill
using Microsoft Visio.

Each vendor can supply many
parts to any number of ware-
houses but need not supply
any parts.

Each part can be supplied by
any number of vendors to
more than one warehouse, but
each part must be supplied by
at least one vendor to a
warehouse.

Each warehouse can be
supplied with any number of
parts from more than one
vendor, but each warehouse
must be supplied with at least
one part.

Business Rules

1

2

3

PART

VENDOR

SUPPLY SCHEDULE
Shipping Mode
Unit Cost

WAREHOUSE

31

2

FIGURE 2-18 Cardinality constraints in a ternary relationship

90 Part II • Database Analysis

The use of simple time stamping (as in the preceding example) is often adequate
for modeling time-dependent data. However, time can introduce subtler complexities
to data modeling. For example, consider again Figure 2-17c. This figure is drawn for a
given point in time, not to show history. If, on the other hand, we needed to record the
full history of marriages for individuals, the Is Married To relationship would be an
optional many-to-many relationship. Further, we might want to know the beginning
and ending date (optional) of each marriage; these dates would be, similar to the bill-of-
materials structure in Figure 2-13c, attributes of the relationship or associative entity.

Financial and other compliance regulations, such as Sarbanes-Oxley and Basel II,
require that a database maintain history rather than just current status of critical data. In
addition, some data modelers will argue that a data model should always be able to rep-
resent history, even if today users say they need only current values. These factors suggest
that all relationships should be modeled as many-to-many (which is often done in pur-
chased data model). Thus, for most databases, this will necessitate forming an associative
entity along every relationship. There are two obvious negatives to this approach. First,
many additional (associative) entities are created, thus cluttering ERDs. Second, a many-
to-many (M:N) relationship is less restrictive than a one-to-many (1:M). So, if initially you
want to enforce only one associated entity instance for some entity (i.e., the “one” side of
the relationships), this cannot be enforced by the data model with an M:N relationship. It
would seem likely that some relationships would never be M:N; for example, would a 1:M
relationship between customer and order ever become M:N (but, of course, maybe some-
day our organization would sell items that would allow and often have joint purchasing,
like vehicles or houses)? The conclusion is that if history or a time series of values might
ever be desired or required by regulation, you should consider using an M:N relationship.

An even more subtle situation of the effect of time on data modeling is illustrated
in Figure 2-20a, which represents a portion of an ERD for Pine Valley Furniture
Company. Each product is assigned (i.e., current assignment) to a product line (or
related group of products). Customer orders are processed throughout the year, and
monthly summaries are reported by product line and by product within product line.

Suppose that in the middle of the year, due to a reorganization of the sales func-
tion, some products are reassigned to different product lines. The model shown in
Figure 2-20a is not designed to track the reassignment of a product to a new product
line. Thus, all sales reports will show cumulative sales for a product based on its current
product line rather than the one at the time of the sale. For example, a product may have
total year-to-date sales of $50,000 and be associated with product line B, yet $40,000 of
those sales may have occurred while the product was assigned to product line A. This
fact will be lost using the model in Figure 2-20a. The simple design change shown in
Figure 2-20b will correctly recognize product reassignments. A new relationship, called
Sales For Product Line, has been added between ORDER and PRODUCT LINE. As cus-
tomer orders are processed, they are credited to both the correct product (via Sales For
Product) and the correct product line (via Sales For Product Line) as of the time of the
sale. The approach of Figure 2-20b is similar to what is done in a data warehouse to
retain historical records of the precise situation at any point in time. (We will return to
dealing with the time dimension in Chapter 9.)

Another aspect of modeling time is recognizing that although the requirements
of the organization today may be to record only the current situation, the design of

PRODUCT
Product ID
{Price History
(Effective Date, Price)}Effective Date,

Time Stamp

FIGURE 2-19 Simple example
of time stamping

Chapter 2 • Modeling Data in the Organization 91

the database may need to change if the organization ever decides to keep history. In
Figure 2-20b, we know the current product line for a product and the product line for
the product each time it is ordered. But what if the product were ever reassigned to a
product line during a period of zero sales for the product? Based on this data model in
Figure 2-20b, we would not know of these other product line assignments. A common
solution to this need for greater flexibility in the data model is to consider whether

PRODUCT
LINE

PRODUCT

Assigne

Placed
ORDER

Current Product Line,
not necessarily same as

at the time the order
was placed

FIGURE 2-20 Example of time in Pine Valley Furniture product database

PRODUCT

Assigned

Sales For Product
OR

Sales For Product Line

PRODUCT
LINE

Product Line for each
Product on the Order as

of the time the order was Placed;
does not change as current

assignment of Product to Product
Line might change

ASSIGNMENT
From Date
To Date

PRODUCT
LINE

PRODUCT
Sales For Product

Sales For Product Line

ORDER

(a) E-R diagram not recognizing product reassignment

(b) E-R diagram recognizing product reassignment

(c) E-R diagram with associative entity for product assignment to product line over time

92 Part II • Database Analysis

a one-to-many relationship, such as Assigned, should become a many-to-many relation-
ship. Further, to allow for attributes on this new relationship, this relationship should
actually be an associative entity. Figure 2-20c shows this alternative data model with the
ASSIGNMENT associative entity for the Assigned relationship. The advantage of
the alternative is that we now will not miss recording any product line assignment, and
we can record information about the assignment (such as the from and to effective dates
of the assignment); the disadvantage is that the data model no longer has the restriction
that a product may be assigned to only one product line at a time.

We have discussed the problem of time-dependent data with managers in several
organizations who are considered leaders in the use of data modeling and database man-
agement. Before the recent wave of financial reporting disclosure regulations, these dis-
cussions revealed that data models for operational databases were generally inadequate
for handing time-dependent data, and that organizations often ignored this problem and
hoped that the resulting inaccuracies balanced out. However, with these new regulations,
you need to be alert to the complexities posed by time-dependent data as you develop
data models in your organization. For a thorough explanation of time as a dimension of
data modeling, see a series of articles by T. Johnson and R. Weis beginning in May 2007 in
DM Review (now Information Management) and accessible from the Magazine Archives
section of the Information Center at of www.information-management.com.

Modeling Multiple Relationships Between Entity Types

There may be more than one relationship between the same entity types in a given
organization. Two examples are shown in Figure 2-21. Figure 2-21a shows two relation-
ships between the entity types EMPLOYEE and DEPARTMENT. In this figure we use the
notation with names for the relationship in each direction; this notation makes explicit
what the cardinality is for each direction of the relationship (which becomes important
for clarifying the meaning of the unary relationship on EMPLOYEE). One relationship
associates employees with the department in which they work. This relationship is
one-to-many in the Has Workers direction and is mandatory in both directions. That is, a
department must have at least one employee who works there (perhaps the department
manager), and each employee must be assigned to exactly one department. (Note: These

Supervises

Supervised By

EMPLOYEE DEPARTMENT

Works In Has Workers

Manages Is Managed By

FIGURE 2-21 Examples
of multiple relationships
(a) Employees and
departments

PROFESSOR
Is Qualified

COURSE
2

SCHEDULE
Semester

(b) Professors and courses
(fixed lower limit constraint)

www.information-management.com

Chapter 2 • Modeling Data in the Organization 93

are specific business rules we assume for this illustration. It is crucial when you develop an
E-R diagram for a particular situation that you understand the business rules that apply
for that setting. For example, if EMPLOYEE were to include retirees, then each employee
may not be currently assigned to exactly one department; further, the E-R model in
Figure 2-21a assumes that the organization needs to remember in which DEPARTMENT
each EMPLOYEE currently works, rather than remembering the history of department
assignments. Again, the structure of the data model reflects the information the organi-
zation needs to remember.)

The second relationship between EMPLOYEE and DEPARTMENT associates each
department with the employee who manages that department. The relationship from
DEPARTMENT to EMPLOYEE (called Is Managed By in that direction) is a mandatory
one, indicating that a department must have exactly one manager. From EMPLOYEE to
DEPARTMENT, the relationship (Manages) is optional because a given employee either
is or is not a department manager.

Figure 2-21a also shows the unary relationship that associates each employee with
his or her supervisor, and vice versa. This relationship records the business rule that
each employee may have exactly one supervisor (Supervised By). Conversely, each
employee may supervise any number of employees, or may not be a supervisor.

The example in Figure 2-21b shows two relationships between the entity types
PROFESSOR and COURSE. The relationship Is Qualified associates professors with the
courses they are qualified to teach. A given course must have at a minimum two quali-
fied instructors (an example of how to use a fixed value for a minimum or maximum
cardinality). This might happen, for example, so that a course is never the “property” of
one instructor. Conversely, each instructor must be qualified to teach at least one course
(a reasonable expectation).

The second relationship in this figure associates professors with the courses
they are actually scheduled to teach during a given semester. Because Semester is a
characteristic of the relationship, we place an associative entity, SCHEDULE, between
PROFESSOR and COURSE.

One final point about Figure 2-21b: Have you figured out what the identifier is for
the SCHEDULE associative entity? Notice that Semester is a partial identifier; thus, the
full identifier will be the identifier of PROFESSOR along with the identifier of COURSE
as well as Semester. Because such full identifiers for associative entities can become
long and complex, it is often recommended that surrogate identifiers be created for each
associative entity; so, Schedule ID would be created as the identifier of SCHEDULE,
and Semester would be an attribute. What is lost in this case is the explicit business rule
that the combination of the PROFESSOR identifier, COURSE identifier, and Semester
must be unique for each SCHEDULE instance (because this combination is the identi-
fier of SCHEDULE). Of course, this can be added as another business rule.

Naming and Defining Relationships

In addition to the general guidelines for naming data objects, there are a few special
guidelines for naming relationships, which follow:

• A relationship name is a verb phrase (such as Assigned To, Supplies, or Teaches).
Relationships represent actions being taken, usually in the present tense, so transi-
tive verbs (an action on something) are the most appropriate. A relationship name
states the action taken, not the result of the action (e.g., use Assigned To, not
Assignment). The name states the essence of the interaction between the partici-
pating entity types, not the process involved (e.g., use an Employee is Assigned To
a project, not an Employee is Assigning a project).

• You should avoid vague names, such as Has or Is Related To. Use descriptive, pow-
erful verb phrases, often taken from the action verbs found in the definition of the
relationship.

There are also some specific guidelines for defining relationships, which follow:

• A relationship definition explains what action is being taken and possibly why it is
important. It may be important to state who or what does the action, but it is not

94 Part II • Database Analysis

important to explain how the action is taken. Stating the business objects involved
in the relationship is natural, but because the E-R diagram shows what entity
types are involved in the relationship and other definitions explain the entity
types, you do not have to describe the business objects.

• It may also be important to give examples to clarify the action. For example, for a rela-
tionship of Registered For between student and course, it may be useful to explain
that this covers both on-site and online registration and includes registrations
made during the drop/add period.

• The definition should explain any optional participation. You should explain what
conditions lead to zero associated instances, whether this can happen only when
an entity instance is first created, or whether this can happen at any time. For
example, “Registered For links a course with the students who have signed up to
take the course, and the courses a student has signed up to take. A course will
have no students registered for it before the registration period begins and may
never have any registered students. A student will not be registered for any
courses before the registration period begins and may not register for any classes
(or may register for classes and then drop any or all classes).”

• A relationship definition should also explain the reason for any explicit maximum cardi-
nality other than many. For example, “Assigned To links an employee with the proj-
ects to which that employee is assigned and the employees assigned to a project.
Due to our labor union agreement, an employee may not be assigned to more than
four projects at a given time.” This example, typical of many upper-bound business
rules, suggests that maximum cardinalities tend not to be permanent. In this exam-
ple, the next labor union agreement could increase or decrease this limit. Thus, the
implementation of maximum cardinalities must be done to allow changes.

• A relationship definition should explain any mutually exclusive relationships.
Mutually exclusive relationships are ones for which an entity instance can partici-
pate in only one of several alternative relationships. We will show examples of this
situation in Chapter 3. For now, consider the following example: “Plays On links
an intercollegiate sports team with its student players and indicates on which
teams a student plays. Students who play on intercollegiate sports teams cannot
also work in a campus job (i.e., a student cannot be linked to both an intercolle-
giate sports team via Plays On and a campus job via the Works On relationship).”
Another example of a mutually exclusive restriction is when an employee cannot
both be Supervised By and be Married To the same employee.

• A relationship definition should explain any restrictions on participation in the rela-
tionship. Mutual exclusivity is one restriction, but there can be others. For example,
“Supervised By links an employee with the other employees he or she supervises
and links an employee with the other employee who supervises him or her. An
employee cannot supervise him- or herself, and an employee cannot supervise
other employees if his or her job classification level is below 4.”

• A relationship definition should explain the extent of history that is kept in the rela-
tionship. For example, “Assigned To links a hospital bed with a patient. Only the
current bed assignment is stored. When a patient is not admitted, that patient is
not assigned to a bed, and a bed may be vacant at any given point in time.”
Another example of describing history for a relationship is “Places links a cus-
tomer with the orders they have placed with our company and links an order with
the associated customer. Only two years of orders are maintained in the database,
so not all orders can participate in this relationship.”

• A relationship definition should explain whether an entity instance involved in a rela-
tionship instance can transfer participation to another relationship instance. For exam-
ple, “Places links a customer with the orders they have placed with our company
and links an order with the associated customer. An order is not transferable to an-
other customer.” Another example is “Categorized As links a product line with
the products sold under that heading and links a product to its associated product
line. Due to changes in organization structure and product design features, prod-
ucts may be recategorized to a different product line. Categorized As keeps track
of only the current product line to which a product is linked.”

Chapter 2 • Modeling Data in the Organization 95

E-R MODELING EXAMPLE: PINE VALLEY FURNITURE COMPANY

Developing an E-R diagram can proceed from one (or both) of two perspectives. With a
top-down perspective, the designer proceeds from basic descriptions of the business,
including its policies, processes, and environment. This approach is most appropriate
for developing a high-level E-R diagram with only the major entities and relationships
and with a limited set of attributes (such as just the entity identifiers). With a bottom-up
approach, the designer proceeds from detailed discussions with users, and from a
detailed study of documents, screens, and other data sources. This approach is neces-
sary for developing a detailed, “fully attributed” E-R diagram.

In this section, we develop a high-level ERD for Pine Valley Furniture Company,
based largely on the first of these approaches (see Figure 2-22 for a Microsoft Visio ver-
sion). For simplicity, we do not show any composite or multivalued attributes (e.g., skill is
shown as a separate entity type associated with EMPLOYEE via an associative entity,
which allows an employee to have many skills and a skill to be held by many employees).

Figure 2-22 provides many examples of common E-R modeling notations, and
hence, it can be used as an excellent review of what you have learned in this chapter. In a
moment, we will explain the business rules that are represented in this figure. However,
before you read that explanation, one way to use Figure 2-22 is to search for typical
E-R model constructs in it, such as one-to-many, binary, or unary relationships. Then,
ask yourself why the business data was modeled this way. For example, ask yourself

• Where is a unary relationship, what does it mean, and for what reasons might the
cardinalities on it be different in other organizations?

• Why is Includes a one-to many relationship, and why might this ever be different
in some other organization?

• Does Includes allow for a product to be represented in the database before it is
assigned to a product line (e.g., while the product is in research and development)?

• If there were a different customer contact person for each sales territory in which a
customer did business, where in the data model would we place this person’s name?

• What is the meaning of the Does Business In associative entity, and why does each
Does Business In instance have to be associated with exactly one SALES TERRI-
TORY and one CUSTOMER?

• In what way might Pine Valley change the way it does business that would cause
the Supplies associative entity to be eliminated and the relationships around it
change?

Each of these questions is included in Problem and Exercise 1 at the end of the
chapter, but we suggest you use these now as a way to review your understanding of
E-R diagramming.

From a study of the business processes at Pine Valley Furniture Company, we
have identified the following entity types. An identifier is also suggested for each entity,
together with selected important attributes:

• The company sells a number of different furniture products. These products are
grouped into several product lines. The identifier for a product is Product ID,
whereas the identifier for a product line is Product Line ID. We identify the follow-
ing additional attributes for product: Product Description, Product Finish, and
Product Standard Price. Another attribute for product line is Product Line Name.
A product line may group any number of products but must group at least one
product. Each product must belong to exactly one product line.

• Customers submit orders for products. The identifier for an order is Order ID, and
another attribute is Order Date. A customer may submit any number of orders,
but need not submit any orders. Each order is submitted by exactly one customer.
The identifier for a customer is Customer ID. Other attributes include Customer
Name, Customer Address, and Customer Postal Code.

• A given customer order must request at least one product and only one product
per order line item. Any product sold by Pine Valley Furniture may not appear on
any order line item or may appear on one or more order line items. An attribute
associated with each order line item is Ordered Quantity.

96 Part II • Database Analysis

Salesperson ID

Salesperson Name
Salesperson Telephone
Salesperson Fax

PK

SALESPERSON

Customer ID

Customer Name
Customer Address
Customer Postal Code

PK

CUSTOMER

Product ID

Product Description
Product Finish
Product Standard Price

PK

PRODUCT

Material ID

Material Name
Material Standard Cost
Unit Of Measure

PK

RAW MATERIAL

Order ID

Order Date

PK

ORDER

SkillPK

SKILL

Ordered Quantity

ORDER LINE

Product Line ID

Product Line Name

PK

PRODUCT LINE

Serves

Submits

Includes

Is Supervised By

Supervises

Territory IDPK

Territory Name

TERRITORY DOES BUSINESS IN

Vendor ID

Vendor Name
Vendor Address

PK

VENDOR

Employee ID

Employee Name
Employee Address

PK

EMPLOYEE

Work Center ID

Work Center Location

PK

WORK CENTER

Goes Into Quantity

USES PRODUCED IN

WORKS IN

HAS SKILL

Supply Unit Price

SUPPLIES

FIGURE 2-22 Data model for Pine Valley Furniture Company in Microsoft Visio notation

Chapter 2 • Modeling Data in the Organization 97

• Pine Valley Furniture has established sales territories for its customers. Each cus-
tomer may do business in any number of these sales territories or may not do
business in any territory. A sales territory has one to many customers. The identi-
fier for a sales territory is Territory ID and an attribute of a Territory Name.

• Pine Valley Furniture Company has several salespersons. The identifier for a
salesperson is Salesperson ID. Other attributes include Salesperson Name,
Salesperson Telephone, and Salesperson Fax. A salesperson serves exactly one
sales territory. Each sales territory is served by one or more salespersons.

• Each product is assembled from a specified quantity of one or more raw materials.
The identifier for the raw material entity is Material ID. Other attributes include
Unit Of Measure, Material Name, and Material Standard Cost. Each raw material
is assembled into one or more products, using a specified quantity of the raw
material for each product.

• Raw materials are supplied by vendors. The identifier for a vendor is Vendor ID.
Other attributes include Vendor Name and Vendor Address. Each raw material can
be supplied by one or more vendors. A vendor may supply any number of raw
materials or may not supply any raw materials to Pine Valley Furniture. Supply
Unit Price is the unit price a particular vendor supplies a particular raw material.

• Pine Valley Furniture has established a number of work centers. The identifier
for a work center is Work Center ID. Another attribute is Work Center Location.
Each product is produced in one or more work centers. A work center may be
used to produce any number of products or may not be used to produce any
products.

• The company has more than 100 employees. The identifier for employee is
Employee ID. Other attributes include Employee Name, Employee Address, and
Skill. An employee may have more than one skill. Each employee may work in
one or more work centers. A work center must have at least one employee work-
ing in that center, but may have any number of employees. A skill may be pos-
sessed by more than one employee or possibly no employees.

• Each employee has exactly one supervisor; however, a manager has no supervisor.
An employee who is a supervisor may supervise any number of employees, but
not all employees are supervisors.

DATABASE PROCESSING AT PINE VALLEY FURNITURE

The purpose of the data model diagram in Figure 2-22 is to provide a conceptual design
for the Pine Valley Furniture Company database. It is important to check the quality of
such a design through frequent interaction with the persons who will use the database
after it is implemented. An important and often performed type of quality check is to
determine whether the E-R model can easily satisfy user requests for data and/or infor-
mation. Employees at Pine Valley Furniture have many data retrieval and reporting
requirements. In this section, we show how a few of these information requirements can
be satisfied by database processing against the database shown in Figure 2-22.

We use the SQL database processing language (explained in Chapters 6 and 7) to
state these queries. To fully understand these queries, you will need to understand con-
cepts introduced in Chapter 4. However, a few simple queries in this chapter should
help you to understand the capabilities of a database to answer important organiza-
tional questions and give you a jump-start toward understanding SQL queries in
Chapter 6 as well as in later chapters.

Showing Product Information

Many different users have a need to see data about the products Pine Valley Furniture
produces (e.g., salespersons, inventory managers, and product managers). One specific
need is for a salesperson who wants to respond to a request from a customer for a list of
products of a certain type. An example of this query is

List all details for the various computer desks that are stocked by the company.

98 Part II • Database Analysis

The data for this query are maintained in the PRODUCT entity (see Figure 2-22).
The query scans this entity and displays all the attributes for products that contain the
description Computer Desk.

The SQL code for this query is

SELECT *
FROM Product
WHERE ProductDescription LIKE “Computer Desk%”;

Typical output for this query is

PRODUCTID PRODUCTDESCRIPTION PRODUCTFINISH PRODUCTSTANDARDPRICE

3 Computer Desk 48” Oak 375.00

8 Computer Desk 64” Pine 450.00

SELECT * FROM Product says display all attributes of PRODUCT entities. The WHERE
clause says to limit the display to only products whose description begins with the
phrase Computer Desk.

Showing Product Line Information

Another common information need is to show data about Pine Valley Furniture product
lines. One specific type of person who needs this information is a product manager. The
following is a typical query from a territory sales manager:

List the details of products in product line 4.

The data for this query are maintained in the PRODUCT entity. As we explain in
Chapter 4, the attribute Product Line ID will be added to the PRODUCT entity when a
data model in Figure 2-22 is translated into a database that can be accessed via SQL. The
query scans the PRODUCT entity and displays all attributes for products that are in the
selected product line.

The SQL code for this query is

SELECT *
FROM Product
WHERE ProductLineID = 4;

Typical output for this query is

PRODUCTID PRODUCTDESCRIPTION PRODUCTFINISH PRODUCTSTANDARDPRICE PRODUCTONHAND PRODUCTLINEID

18 Grandfather Clock Oak 890.0000 0 4

19 Grandfather Clock Oak 1100.0000 0 4

The explanation of this SQL query is similar to the explanation of the previous one.

Showing Customer Order Status

The previous two queries are relatively simple, involving data from only one table in
each case. Often, data from multiple tables are needed in one information request.
Although the previous query is simple, we did have to look through the whole database
to find the entity and attributes needed to satisfy the request.

To simplify query writing and for other reasons, many database management
systems support creating restricted views of a database suitable for the information needs

Chapter 2 • Modeling Data in the Organization 99

of a particular user. For queries related to customer order status, Pine Valley utilizes
such a user view called “Orders for customers,” which is created from the segment of
an E-R diagram for PVFC shown in Figure 2-23a. This user view allows users to see only
CUSTOMER and ORDER entities in the database, and only the attributes of these
entities shown in the figure. For the user, there is only one (virtual) table, ORDERS FOR
CUSTOMERS, with the listed attributes. As we explain in Chapter 4, the attribute
Customer ID will be added to the ORDER entity (as shown in Figure 2-23a). A typical
order status query is

How many orders have we received from Value Furniture?

Assuming that all the data we need are pulled together into this one user view, or
virtual entity, called OrdersForCustomers, we can simply write the query as follows:

SELECT COUNT(Order ID)
FROM OrdersForCustomers
WHERE CustomerName = “Value Furniture”;

Without the user view, we can write the SQL code for this query in several ways.
The way we have chosen is to compose a query within a query, called a subquery. (We
will explain subqueries in Chapter 7, with some diagramming techniques to assist you
in composting the query.) The query is performed in two steps. First, the subquery (or
inner query) scans the CUSTOMER entity to determine the Customer ID for the cus-
tomer named Value Furniture. (The ID for this customer is 5, as shown in the output for
the previous query.) Then the query (or outer query) scans the ORDER entity and
counts the order instances for this customer.

The SQL code for this query without the “Orders for customer” user view is as
follows:

SELECT COUNT (OrderID)
FROM Order
WHERE CustomerID =

(SELECT CustomerID
FROM Customer
WHERE CustomerName = “Value Furniture”);

For this example query, using a subquery rather than a view did not make writing
the query much more complex.

Typical output for this query using either of the query approaches above is

COUNT(ORDERID)
4

CUSTOMER
Customer ID
Customer Name

ORDER
Order ID
Customer ID

Submits

FIGURE 2-23 Two user views
for Pine Valley Furniture
(a) User View 1: Orders for
customers

PRODUCT
Product ID
Standard Price

ORDER
Order ID
Order Date

ORDER LINE

Ordered Quantity

(b) User View 2: Orders
for products

100 Part II • Database Analysis

Showing Product Sales

Salespersons, territory managers, product managers, production managers, and others
have a need to know the status of product sales. One kind of sales question is what
products are having an exceptionally strong sales month. Typical of this question is the
following query:

What products have had total sales exceeding $25,000 during the past
month (June, 2009)?

This query can be written using the user view “Orders for products,” which is cre-
ated from the segment of an E-R diagram for PVFC shown in Figure 2-23b. Data to
respond to the query are obtained from the following sources:

• Order Date from the ORDER entity (to find only orders in the desired month)
• Ordered Quantity for each product on each order from the associative entity

ORDER LINE for an ORDER entity in the desired month
• Standard Price for the product ordered from the PRODUCT entity associated with

the ORDER LINE entity

For each item ordered during the month of June 2009, the query needs to multiply
Ordered Quantity by Product Standard Price to get the dollar value of a sale. For the
user, there is only one (virtual) table, ORDERS FOR PRODUCTS, with the listed attrib-
utes. The total amount is then obtained for that item by summing all orders. Data are
displayed only if the total exceeds $25,000.

The SQL code for this query is beyond the scope of this chapter, because it requires
techniques introduced in Chapter 7. We introduce this query now only to suggest the
power that a database such as the one shown in Figure 2-22 has to find information for
management from detailed data. In many organizations today, users can use a Web
browser to obtain the information described here. The programming code associated with
a Web page then invokes the required SQL commands to obtain the requested information.

Summary
This chapter has described the fundamentals of modeling
data in the organization. Business rules, derived from
policies, procedures, events, functions, and other business
objects, state constraints that govern the organization and,
hence, how data are handled and stored. Using business
rules is a powerful way to describe the requirements for
an information system, especially a database. The power
of business rules results from business rules being core
concepts of the business, being able to be expressed in
terms familiar to end users, being highly maintainable,
and being able to be enforced through automated means,
mainly through a database. Good business rules are ones
that are declarative, precise, atomic, consistent, express-
ible, distinct, and business oriented.

Examples of basic business rules are data names and
definitions. This chapter explained guidelines for the clear
naming and definition of data objects in a business. In terms
of conceptual data modeling, names and definitions must
be provided for entity types, attributes, and relationships.
Other business rules may state constraints on these data
objects. These constraints can be captured in a data model
and associated documentation.

The data modeling notation most frequently used
today is the entity-relationship data model. An E-R model
is a detailed, logical representation of the data for an

organization. An E-R model is usually expressed in the
form of an E-R diagram, which is a graphical representa-
tion of an E-R model. The E-R model was introduced by
Chen in 1976. However, at the present time there is no stan-
dard notation for E-R modeling. Notations such as those
found in Microsoft Visio are used in many CASE tools.

The basic constructs of an E-R model are entity types,
relationships, and related attributes. An entity is a person, a
place, an object, an event, or a concept in the user environ-
ment about which the organization wishes to maintain data.
An entity type is a collection of entities that share common
properties, whereas an entity instance is a single occurrence
of an entity type. A strong entity type is an entity that has its
own identifier and can exist without other entities. A weak
entity type is an entity whose existence depends on the exis-
tence of a strong entity type. Weak entities do not have their
own identifier, although they normally have a partial identi-
fier. Weak entities are identified through an identifying rela-
tionship with their owner entity type.

An attribute is a property or characteristic of an
entity or relationship that is of interest to the organization.
There are several types of attributes. A required attribute
must have a value for an entity instance, whereas an
optional attribute value may be null. A simple attribute is
one that has no component parts. A composite attribute is

Chapter 2 • Modeling Data in the Organization 101

Chapter Review

Key Terms
Associative entity 80
Attribute 72
Binary relationship 82
Business rule 63
Cardinality constraint 86
Composite attribute 73
Composite identifier 75
Degree 81
Derived attribute 74

Entity 68
Entity instance 68
Entity-relationship diagram

(E-R diagram) 59
Entity-relationship model

(E-R model) 59
Entity type 68
Fact 66
Identifier 74

Identifying owner 70
Identifying

relationship 70
Maximum cardinality 87
Minimum cardinality 87
Multivalued attribute 74
Optional attribute 72
Relationship instance 78
Relationship type 78

Required attribute 72
Simple (or atomic)

attribute 73
Strong entity type 69
Term 66
Ternary relationship 83
Time stamp 89
Unary relationship 81
Weak entity type 70

an attribute that can be broken down into component
parts. For example, Person Name can be broken down
into the parts First Name, Middle Initial, and Last Name.

A multivalued attribute is one that can have multiple
values for a single instance of an entity. For example, the attrib-
ute College Degree might have multiple values for an individ-
ual. A derived attribute is one whose values can be calculated
from other attribute values. For example, Average Salary can
be calculated from values of Salary for all employees.

An identifier is an attribute that uniquely identifies
individual instances of an entity type. Identifiers should
be chosen carefully to ensure stability and ease of use.
Identifiers may be simple attributes, or they may be com-
posite attributes with component parts.

A relationship type is a meaningful association
between (or among) entity types. A relationship instance
is an association between (or among) entity instances.
The degree of a relationship is the number of entity types
that participate in the relationship. The most common
relationship types are unary (degree 1), binary (degree 2),
and ternary (degree 3).

In developing E-R diagrams, we sometimes encounter
many-to-many (and one-to-one) relationships that have
one or more attributes associated with the relationship,
rather than with one of the participating entity types. In
such cases, we might consider converting the relation-
ship to an associative entity. This type of entity associates

the instances of one or more entity types and contains
attributes that are peculiar to the relationship. Associative
entity types may have their own simple identifier, or they
may be assigned a composite identifier during logical
design.

A cardinality constraint is a constraint that specifies
the number of instances of entity B that may (or must) be
associated with each instance of entity A. Cardinality
constraints normally specify the minimum and maxi-
mum number of instances. The possible constraints are
mandatory one, mandatory many, optional one, optional
many, and a specific number. The minimum cardinality
constraint is also referred to as the participation con-
straint. A minimum cardinality of zero specifies optional
participation, whereas a minimum cardinality of one
specifies mandatory participation.

Because many databases need to store the value of
data over time, modeling time-dependent data is an
important part of data modeling. Data that repeat over
time may be modeled as multivalued attributes or as sepa-
rate entity instances; in each case, a time stamp is neces-
sary to identify the relevant date and time for the data
value. Sometimes separate relationships need to be
included in the data model to represent associations at dif-
ferent points in time. The recent wave of financial report-
ing disclosure regulations have made it more important to
include time-sensitive and historical data in databases.

Review Questions

1. Define each of the following terms:
a. entity type
b. entity-relationship model
c. entity instance
d. attribute
e. relationship type
f. identifier
g. multivalued attribute
h. associative entity
i. cardinality constraint
j. weak entity
k. identifying relationship
l. derived attribute
m. business rule

2. Match the following terms and definitions.
composite attribute
associative entity
unary relationship
weak entity
attribute
entity
relationship type
cardinality
constraint
degree
identifier
entity type
ternary
bill-of-materials

a. uniquely identifies entity instances
b. relates instances of a single entity type
c. specifies maximum and minimum number of

instances
d. relationship modeled as an entity type
e. association between entity types
f. collection of similar entities
g. number of participating entity types in relationship
h. property of an entity
i. can be broken into component parts
j. depends on the existence of another entity type
k. relationship of degree 3
l. many-to-many unary relationship
m. person, place, object, concept, event

102 Part II • Database Analysis

3. Contrast the following terms:
a. stored attribute; derived attribute
b. simple attribute; composite attribute
c. entity type; relationship type
d. strong entity type; weak entity type
e. degree; cardinality
f. required attribute; optional attribute
g. composite attribute; multivalued attribute
h. ternary relationship; three binary relationships

4. Give three reasons why many system designers believe that
data modeling is the most important part of the systems
development process.

5. Give four reasons why a business rules approach is advo-
cated as a new paradigm for specifying information systems
requirements.

6. Explain where you can find business rules in an organization.
7. State six general guidelines for naming data objects in a

data model.
8. State four criteria for selecting identifiers for entities.
9. Why must some identifiers be composite rather than simple?

10. State three conditions that suggest the designer should
model a relationship as an associative entity type.

11. List the four types of cardinality constraints, and draw an
example of each.

12. Give an example, other than those described in this chapter,
of a weak entity type. Why is it necessary to indicate an
identifying relationship?

13. What is the degree of a relationship? List the three types of
relationship degrees described in the chapter and give an
example of each.

14. Give an example (other than those described in this chapter)
for each of the following, and justify your answer:
a. derived attribute
b. multivalued attribute
c. atomic attribute
d. composite attribute
e. required attribute
f. optional attribute

15. Give an example of each of the following, other than those
described in this chapter, and clearly explain why your exam-
ple is this type of relationship and not of some other degree.
a. ternary relationship
b. unary relationship

16. Give an example of the use of effective (or effectivity) dates
as attributes of an entity.

17. State a rule that says when to extract an attribute from one
entity type and place it in a linked entity type.

18. What are the special guidelines for naming relationships?
19. In addition to explaining what action is being taken, what

else should a relationship definition explain?
20. For the Manages relationship in Figure 2-12a, describe one

or more situations that would result in different cardinali-
ties on the two ends of this unary relationship. Based on
your description for this example, do you think it is always
clear simply from an E-R diagram what the business rule is
that results in certain cardinalities? Justify your answer.

21. Explain the distinction between entity type and entity
instance.

22. Why is it recommended that all ternary relationships be
converted into an associative entity?

Problems and Exercises

1. Answer the following questions concerning Figure 2-22:
a. Where is a unary relationship, what does it mean, and

for what reasons might the cardinalities on it be differ-
ent in other organizations?

b. Why is Includes a one-to many relationship, and why
might this ever be different in some other organization?

c. Does Includes allow for a product to be represented in
the database before it is assigned to a product line (e.g.,
while the product is in research and development)?

d. If there is a rating of the competency for each skill an
employee possesses, where in the data model would we
place this rating?

e. What is the meaning of the DOES BUSINESS IN associa-
tive entity, and why does each DOES BUSINESS IN
instance have to be associated with exactly one TERRI-
TORY and one CUSTOMER?

f. In what way might Pine Valley change the way it does
business that would cause the Supplies associative

entity to be eliminated and the relationships around it to
change?

2. There is a bulleted list associated with Figure 2-22 that
describes the entities and their relationships in Pine Valley
Furniture. For each of the 10 points in the list, identify the
subset of Figure 2-22 described by that point.

3. You may have been assigned a CASE or a drawing tool to
develop conceptual data models. Using this tool, attempt
to redraw all the E-R diagrams in this chapter. What diffi-
culties did you encounter? What E-R notations did not
translate well to your tool? How did you incorporate the
E-R notation that did not directly translate into the tool’s
notation?

4. Consider the two E-R diagrams in Figure 2-24, which repre-
sent a database of community service agencies and volun-
teers in two different cities (A and B). For each of the
following three questions, place a check mark under City A,
City B, or Can’t Tell for the choice that is the best answer.

City A

Assists Assists

City B

VOLUNTEERAGENCY AGENCY VOLUNTEER

FIGURE 2-24 Diagram
for Problem and Exercise 4

Chapter 2 • Modeling Data in the Organization 103

City A City B Can’t Tell

a. Which city maintains
data about only those
volunteers who currently
assist agencies?

b. In which city would it be
possible for a volunteer
to assist more than one
agency?

c. In which city would it be
possible for a volunteer to
change which agency or
agencies he or she assists?

5. The entity type STUDENT has the following attributes:
Student Name, Address, Phone, Age, Activity, and No of
Years. Activity represents some campus-based student
activity, and No of Years represents the number of years the
student has engaged in this activity. A given student may
engage in more than one activity. Draw an ERD for this situ-
ation. What attribute or attributes did you designate as the
identifier for the STUDENT entity? Why?

6. Are associative entities also weak entities? Why or why not?
If yes, is there anything special about their “weakness”?

7. Because Visio does not explicitly show associative entities, it
is not clear in Figure 2-22 which entity types are associative.
List the associative entities in this figure. Why are there so
many associative entities in Figure 2-22?

8. Figure 2-25 shows a grade report that is mailed to students at
the end of each semester. Prepare an ERD reflecting the data
contained in the grade report. Assume that each course is
taught by one instructor. Also, draw this data model using
the tool you have been told to use in the course. Explain what
you chose for the identifier of each entity type on your ERD.

9. Add minimum and maximum cardinality notation to each
of the following figures, as appropriate:
a. Figure 2-5
b. Figure 2-10a
c. Figure 2-11b
d. Figure 2-12 (all parts)
e. Figure 2-13c
f. Figure 2-14

10. The Is Married To relationship in Figure 2-12a would seem
to have an obvious answer in Problem and Exercise 9d—
that is, until time plays a role in modeling data. Draw a data
model for the PERSON entity type and the Is Married To
relationship for each of the following variations by showing
the appropriate cardinalities and including, if necessary,
any attributes:
a. All we need to know is who a person is currently mar-

ried to, if anyone. (This is likely what you represented in
your answer to Problem and Exercise 9d.)

b. We need to know who a person has ever been married
to, if anyone.

c. We need to know who a person has ever been married
to, if anyone, as well as the date of their marriage and
the date, if any, of the dissolution of their marriage.

d. The same situation as in c, but now assume (which you
likely did not do in c) that the same two people can
remarry each other after a dissolution of a prior mar-
riage to each other.

e. In history, and even in some cultures today, there may
be no legal restriction on the number of people to
whom one can be currently married. Does your answer
to part c of this Problem and Exercise handle this situa-
tion or must you make some changes (if so, draw a
new ERD).

11. Figure 2-26 represents a situation of students who attend
and work in schools and who also belong to certain clubs
that are located in different schools. Study this diagram care-
fully to try to discern what business rules are represented.
a. You will notice that cardinalities are not included on the

Works For relationship. State a business rule for this
relationship and then represent this rule with the cardi-
nalities that match your rule.

b. State a business rule that would make the Located In
relationship redundant (i.e., where the school in which a
club is located can be surmised or derived in some way
from other relationships).

c. Suppose a student could work for only a school that stu-
dent attends but might not work. Would the Works For
relationship still be necessary, or could you represent
whether a student works for the school she attends in
some other way (if so, how)?

12. Figure 2-27 shows two diagrams (A and B), both of which
are legitimate ways to represent that a stock has a history of

MILLENNIUM COLLEGE
GRADE REPORT
FALL SEMESTER 200X

NAME: Emily Williams ID: 268300458
CAMPUS ADDRESS: 208 Brooks Hall
MAJOR: Information Systems

COURSE
ID

INSTRUCTOR
NAME

TITLE GRADE

IS 350 Database Mgt. Codd B104 A
BIS 465 System Analysis Parsons B317

INSTRUCTOR
LOCATION

FIGURE 2-25 Grade report

104 Part II • Database Analysis

many prices. Which of the two diagrams do you consider a
better way to model this situation and why?

13. Modify Figure 2-11a to model the following additional
information requirements: The training director decides, for
each employee who completes each class, who (what
employees) should be notified of the course completion.
The training director needs to keep track of which employ-
ees are notified about each course completion by a student.
The date of notification is the only attribute recorded about
this notification.

14. Review Figure 2-8 and Figure 2-22.
a. Identify any attributes in Figure 2-22 that might be com-

posite attributes but are not shown that way. Justify
your suggestions. Redraw the ERD to reflect any
changes you suggest.

b. Identify any attributes in Figure 2-22 that might be mul-
tivalued attributes but are not shown that way. Justify
your suggestions. Redraw the ERD to reflect any
changes you suggest.

c. Is it possible for the same attribute to be both composite
and multivalued? If no, justify your answer; if yes, give
an example (Hint: Consider the CUSTOMER attributes
in Figure 2-22).

15. Draw an ERD for each of the following situations. (If you
believe that you need to make additional assumptions,
clearly state them for each situation.) Draw the same

situation using the tool you have been told to use in
the course.
a. A company has a number of employees. The attributes

of EMPLOYEE include Employee ID (identifier), Name,
Address, and Birthdate. The company also has several
projects. Attributes of PROJECT include Project ID
(identifier), Project Name, and Start Date. Each
employee may be assigned to one or more projects, or
may not be assigned to a project. A project must have at
least one employee assigned and may have any number
of employees assigned. An employee’s billing rate may
vary by project, and the company wishes to record the
applicable billing rate (Billing Rate) for each employee
when assigned to a particular project. Do the attribute
names in this description follow the guidelines for nam-
ing attributes? If not, suggest better names. Do you have
any associative entities on your ERD? If so, what are the
identifiers for those associative entities? Does your ERD
allow a project to be created before it has any employees
assigned to it? Explain. How would you change your
ERD if the Billing Rate could change in the middle of a
project?

b. A laboratory has several chemists who work on one or
more projects. Chemists also may use certain kinds of
equipment on each project. Attributes of CHEMIST
include Employee ID (identifier), Name, and Phone No.
Attributes of PROJECT include Project ID (identifier)
and Start Date. Attributes of EQUIPMENT include
Serial No and Cost. The organization wishes to record
Assign Date—that is, the date when a given equipment
item was assigned to a particular chemist working on a
specified project. A chemist must be assigned to at least
one project and one equipment item. A given equipment
item need not be assigned, and a given project need not
be assigned either a chemist or an equipment item.
Provide good definitions for all of the relationships in
this situation.

c. A college course may have one or more scheduled sec-
tions, or may not have a scheduled section. Attributes
of COURSE include Course ID, Course Name, and
Units. Attributes of SECTION include Section Number

STUDENT

CLUB

Attends

Works For

Belongs To

Located In
SCHOOL

FIGURE 2-26 E-R diagram for Problem and Exercise 11

B

STOCK

STOCK PRICE
Effective Date
Price

Stock ID

A

STOCK
Stock ID
{Price History
(Price, Effective
Date)}

FIGURE 2-27 E-R diagram for
Problem and Exercise 12

Chapter 2 • Modeling Data in the Organization 105

and Semester ID. Semester ID is composed of two
parts: Semester and Year. Section Number is an integer
(such as 1 or 2) that distinguishes one section from
another for the same course but does not uniquely
identify a section. How did you model SECTION?
Why did you choose this way versus alternative ways
to model SECTION?

d. A hospital has a large number of registered physi-
cians. Attributes of PHYSICIAN include Physician ID
(the identifier) and Specialty. Patients are admitted to
the hospital by physicians. Attributes of PATIENT
include Patient ID (the identifier) and Patient Name.
Any patient who is admitted must have exactly one
admitting physician. A physician may optionally
admit any number of patients. Once admitted, a given
patient must be treated by at least one physician. A
particular physician may treat any number of patients,
or may not treat any patients. Whenever a patient is
treated by a physician, the hospital wishes to record
the details of the treatment (Treatment Detail).
Components of Treatment Detail include Date, Time,
and Results. Did you draw more than one relationship
between physician and patient? Why or why not? Did
you include hospital as an entity type? Why or why
not? Does your ERD allow for the same patient to be
admitted by different physicians over time? How
would you include on the ERD the need to represent
the date on which a patient is admitted for each time
they are admitted?

e. The loan office in a bank receives from various parties
requests to investigate the credit status of a customer.
Each credit request is identified by a Request ID and is
described by a Request Date and Requesting Party
Name. The loan office also received results of credit
checks. A credit check is identified by a Credit Check ID
and is described by the Credit Check Date and the
Credit Rating. The loan office matches credit requests
with credit check results. A credit request may be
recorded before its result arrives; a particular credit
result may be used in support of several credit requests.
Draw an ERD for this situation. Now, assume that
credit results may not be reused for multiple credit
requests. Redraw the ERD for this new situation using
two entity types, and then redraw it again using one
entity type. Which of these two versions do you prefer,
and why?

f. Companies, identified by Company ID and described
by Company Name and Industry Type, hire consult-
ants, identified by Consultant ID and described by
Consultant Name, Consultant Specialty, which is multi-
valued. Assume that a consultant can work for only one
company at a time, and we need to track only current
consulting engagements. Draw an ERD for this situa-
tion. Now, consider a new attribute, Hourly Rate, which
is the rate a consultant charges a company for each hour
of his or her services. Redraw the ERD to include this
new attribute. Now, consider that each time a consultant
works for a company, a contract is written describing
the terms for this consulting engagement. Contract is
identified by a composite identifier of Company ID,
Consultant ID, and Contract Date. Assuming that a con-
sultant can still work for only one company at a time,

redraw the ERD for this new situation. Did you move
any attributes to different entity types in this latest situ-
ation? As a final situation, now consider that although a
consultant can work for only one company at a time, we
now need to keep the complete history of all consulting
engagements for each consultant and company. Draw
an ERD for this final situation. Explain why these differ-
ent changes to the situation led to different data models,
if they did.

g. An art museum owns a large volume of works of art.
Each work of art is described by an item code (identi-
fier), title, type, and size; size is further composed of
height, width, and weight. A work of art is developed
by an artist, but the artist for some works is unknown.
An artist is described by an artist ID (identifier), name,
date of birth, and date of death (which is null for still
living artists). Only data about artists for works cur-
rently owned by the museum are kept in the database.
At any point in time, a work of art is either on display at
the museum, held in storage, away from the museum
as part of a traveling show, or on loan to another
gallery. If on display at the museum, a work of art is
also described by its location within the museum. A
traveling show is described by a show ID (identifier),
the city in which the show is currently appearing, and
the start and end dates of the show. Many of the
museum works may be part of a given show, and only
active shows with at least one museum work of art
need be represented in the database. Finally, another
gallery is described by a gallery ID (identifier), name,
and city. The museum wants to retain a complete his-
tory of loaning a work of art to other galleries, and each
time a work is loaned, the museum wants to know the
date the work was loaned and the date it was returned.
As you develop the ERD for this problem, follow good
data naming guidelines.

h. Each case handled by the law firm of Dewey, Cheetim,
and Howe has a unique case number; a date opened,
date closed, and judgment description are also kept on
each case. A case is brought by one or more plaintiffs,
and the same plaintiff may be involved in many cases.
A plaintiff has a requested judgment characteristic. A
case is against one or more defendants, and the same
defendant may be involved in many cases. A plaintiff
or defendant may be a person or an organization. Over
time, the same person or organization may be a defen-
dant or a plaintiff in cases. In either situation, such
legal entities are identified by an entity number, and
other attributes are name and net worth. As you
develop the ERD for this problem, follow good data
naming guidelines.

i. Each publisher has a unique name; a mailing address
and telephone number are also kept on each pub-
lisher. A publisher publishes one or more books; a
book is published by exactly one publisher. A book is
identified by its ISBN, and other attributes are title,
price, and number of pages. Each book is written by
one or more authors; an author writes one or more
books, potentially for different publishers. Each
author is uniquely described by an author ID, and we
know each author’s name and address. Each author is
paid a certain royalty rate on each book he or she

106 Part II • Database Analysis

authors, which potentially varies for each book and
for each author. An author receives a separate royalty
check for each book he or she writes. Each check is
identified by its check number, and we also keep track
of the date and amount of each check. As you develop
the ERD for this problem, follow good data naming
guidelines.

16. Assume that at Pine Valley Furniture each product
(described by product number, description, and cost) com-
prises at least three components (described by component
number, description, and unit of measure), and components
are used to make one or many products. In addition, assume
that components are used to make other components and
that raw materials are also considered to be components. In
both cases of components, we need to keep track of how
many components go into making something else. Draw an
ERD for this situation, and place minimum and maximum
cardinalities on the diagram. Also, draw a data model for
this situation using the tool you have been told to use in
your course.

17. Emerging Electric wishes to create a database with the fol-
lowing entities and attributes:
• Customer, with attributes Customer ID, Name, Address

(Street, City, State, Zip Code), and Telephone
• Location, with attributes Location ID, Address (Street,

City, State, Zip Code), and Type (values of Business or
Residential)

• Rate, with attributes Rate Class and RatePerKWH
After interviews with the owners, you have come up with
the following business rules:
• Customers can have one or more locations.
• Each location can have one or more rates, depending on

the time of day.
Draw an ERD for this situation and place minimum and
maximum cardinalities on the diagram. Also, draw a data
model for this situation using the tool you have been told
to use in your course. State any assumptions that you
have made.

18. Each semester, each student must be assigned an adviser
who counsels students about degree requirements and
helps students register for classes. Each student must
register for classes with the help of an adviser, but if the
student’s assigned adviser is not available, the student
may register with any adviser. We must keep track of stu-
dents, the assigned adviser for each, and the name of the
adviser with whom the student registered for the current
term. Represent this situation of students and advisers

with an E-R diagram. Also, draw a data model for this sit-
uation using the tool you have been told to use in your
course.

19. In the chapter, when describing Figure 2-4a, it was argued
that the Received and Summarizes relationships and TREA-
SURER entity were not necessary. Within the context of this
explanation, this is true. Now, consider a slightly different
situation. Suppose it is necessary, for compliance purposes
(e.g., Sarbanes-Oxley compliance), to know when each
expense report was produced and which officers (not just
the treasurer) received each expense report and when they
each signed off on that report. Redraw Figure 2-4a, now
including any attributes and relationships required for this
revised situation.

20. Prepare an ERD for a real estate firm that lists property for
sale. Also prepare a definition for each entity type, attrib-
ute, and relationship on your diagram. In addition, draw a
data model for this situation using the tool you have been
told to use in your course. The following describes this
organization:
• The firm has a number of sales offices in several states.

Attributes of sales office include Office Number (identi-
fier) and Location.

• Each sales office is assigned one or more employees.
Attributes of employee include Employee ID (identifier)
and Employee Name. An employee must be assigned to
only one sales office.

• For each sales office, there is always one employee
assigned to manage that office. An employee may
manage only the sales office to which he or she is
assigned.

• The firm lists property for sale. Attributes of prop-
erty include Property ID (identifier) and Location.
Components of Location include Address, City, State,
and Zip Code.

• Each unit of property must be listed with one (and only
one) of the sales offices. A sales office may have any num-
ber of properties listed or may have no properties listed.

• Each unit of property has one or more owners.
Attributes of owners are Owner ID (identifier) and
Owner Name. An owner may own one or more units of
property. An attribute of the relationship between prop-
erty and owner is Percent Owned.

21. After completing a course in database management, you are
asked to develop a preliminary ERD for a symphony
orchestra. You discover the following entity types that
should be included:

CONCERT SEASON The season during which a series of concerts will be performed. Identifier is Opening Date, which includes
Month, Day, and Year.

CONCERT A given performance of one or more compositions. Identifier is Concert Number. Another important attribute
is Concert Date, which consists of the following: Month, Day, Year, and Time. Each concert typically has more
than one concert date.

COMPOSITION Compositions to be performed at each concert. Identifier is Composition ID, which consists of the following:
Composer Name and Composition Name. Another attribute is Movement ID, which consists of two parts:
Movement Number and Movement Name. Many, but not all, compositions have multiple movements.

CONDUCTOR Person who will conduct the concert. Identifier is Conductor ID. Another attribute is Conductor Name.

SOLOIST Solo artist who performs a given composition on a particular concert. Identifier is Soloist ID. Another
attribute is Soloist Name.

Chapter 2 • Modeling Data in the Organization 107

During further discussions you discover the following:
• A concert season schedules one or more concerts. A par-

ticular concert is scheduled for only one concert season.
• A concert includes the performance of one or more com-

positions. A composition may be performed at one or
more concerts or may not be performed.

• For each concert there is one conductor. A conductor
may conduct any number of concerts or may not con-
duct any concerts.

• Each composition may require one or more soloists or
may not require a soloist. A soloist may perform one or
more compositions at a given concert or may not per-
form any composition. The symphony orchestra wishes
to record the date when a soloist last performed a given
composition (Date Last Performed).

Draw an ERD to represent what you have discovered.
Identify a business rule in this description and explain how
this business rule is modeled on the E-R diagram. Also
draw a data model for this situation using the tool you have
been told to use in your course.

22. Obtain several common user views such as a credit card
receipt, credit card statement, and annual summary, or
some other common document from one organization with
which you interact.
a. Prepare an ERD for one of these documents. Also pre-

pare a data model for this document, using the tool you
have been told to use in your course.

b. Prepare an ERD for another of these documents. Also
prepare a data model for this document, using the tool
you have been told to use in your course.

c. Do you find the same entities, attributes, and relation-
ships in the two ERDs you developed for parts a and b?
What differences do you find in modeling the same
data entities, attributes, and relationships between the
two ERDs? Can you combine the two ERDs into one
ERD for which the original two are subsets? Do you
encounter any issues in trying to combine the ERDs?
Suggest some issues that might arise if two different
data modelers had independently developed the two
data models.

d. How might you use data naming and definition stan-
dards to overcome the issues you identified in part c?

23. Draw an ERD for the following situation (Batra et al., 1988).
Also, develop the list of words for qualifiers and classes
that you use to form attribute names. Explain why you
chose the words on your list. Also, draw a data model for
this situation using the tool you have been told to use in
your course.

Projects, Inc., is an engineering firm with approximately
500 employees. A database is required to keep track of
all employees, their skills, projects assigned, and depart-
ments worked in. Every employee has a unique number
assigned by the firm and is required to store his or her
name and date of birth. If an employee is currently mar-
ried to another employee of Projects, Inc., the date of
marriage and who is married to whom must be stored;
however, no record of marriage is required if an
employee’s spouse is not also an employee. Each
employee is given a job title (e.g., engineer, secretary,
and so on). An employee does only one type of job at
any given time, and we only need to retain information
for an employee’s current job.

There are 11 different departments, each with a
unique name. An employee can report to only 1 depart-
ment. Each department has a phone number.

To procure various kinds of equipment, each depart-
ment deals with many vendors. A vendor typically sup-
plies equipment to many departments. We are required
to store the name and address of each vendor and the
date of the last meeting between a department and a
vendor.

Many employees can work on a project. An employee
can work on many projects (e.g., Southwest Refinery,
California Petrochemicals, and so on) but can only be
assigned to at most one project in a given city. For each city,
we are interested in its state and population. An employee
can have many skills (preparing material requisitions,
checking drawings, and so on), but she or he may use only
a given set of skills on a particular project. (For example, an
employee MURPHY may prepare requisitions for the
Southwest Refinery project and prepare requisitions as
well as check drawings for California Petrochemicals.)
Employees use each skill that they possess in at least one
project. Each skill is assigned a number, and we must store
a short description of each skill. Projects are distinguished
by project numbers, and we must store the estimated cost
of each project.

24. Draw an ERD for the following situation. (State any
assumptions you believe you have to make in order to
develop a complete diagram.) Also, draw a data model for
this situation using the tool you have been told to use in
your course: Stillwater Antiques buys and sells one-of-a-
kind antiques of all kinds (e.g., furniture, jewelry, china, and
clothing). Each item is uniquely identified by an item num-
ber and is also characterized by a description, asking price,
condition, and open-ended comments. Stillwater works
with many different individuals, called clients, who sell
items to and buy items from the store. Some clients only sell
items to Stillwater, some only buy items, and some others
both sell and buy. A client is identified by a client number
and is also described by a client name and client address.
When Stillwater sells an item in stock to a client, the owners
want to record the commission paid, the actual selling price,
sales tax (tax of zero indicates a tax exempt sale), and date
sold. When Stillwater buys an item from a client, the owners
want to record the purchase cost, date purchased, and con-
dition at time of purchase.

25. Draw an ERD for the following situation. (State any assump-
tions you believe you have to make in order to develop a
complete diagram.) Also, draw a data model for this situation
using the tool you have been told to use in your course: The
H. I. Topi School of Business operates international business
programs in 10 locations throughout Europe. The school had
its first class of 9,000 graduates in 1965. The school keeps
track of each graduate’s student number, name when a stu-
dent, country of birth, current country of citizenship, current
name, and current address, as well as the name of each major
the student completed. (Each student has one or two majors.)
To maintain strong ties to its alumni, the school holds various
events around the world. Events have a title, date, location,
and type (e.g., reception, dinner, or seminar). The school
needs to keep track of which graduates have attended which
events. For an attendance by a graduate at an event, a com-
ment is recorded about information school officials learned

108 Part II • Database Analysis

from that graduate at that event. The school also keeps in
contact with graduates by mail, e-mail, telephone, and fax
interactions. As with events, the school records information
learned from the graduate from each of these contacts. When
a school official knows that he or she will be meeting or talk-
ing to a graduate, a report is produced showing the latest
information about that graduate and the information learned
during the past two years from that graduate from all con-
tacts and events the graduate attended.

26. Wally Los Gatos, owner of Wally’s Wonderful World of
Wallcoverings, has hired you as a consultant to design a
database management system for his chain of three stores
that sell wallpaper and accessories. He would like to track
sales, customers, and employees. After an initial meeting
with Wally, you have developed a list of business rules and
specifications to begin the design of an E-R model:
• Customers place orders through a branch.
• Wally would like to track the following about customers:

Name, Address, City, State, Zip Code, Telephone, Date of
Birth, and Primary Language.

• A customer may place many orders.
• A customer does not always have to order through the

same branch all the time.
• Customers may have one or more accounts, although

they may also have no accounts.
• The following information needs to be recorded about

accounts: Balance, Last payment date, Last payment
amount, and Type.

• A branch may have many customers.
• The following information about each branch needs to

be recorded: Branch Number, Location (Address, City,
State, Zip Code), and Square Footage.

• A branch may sell all items or may only sell certain
items.

• Orders are composed of one or more items.
• The following information about each order needs to be

recorded: Order Date and Credit Authorization Status.
• Items may be sold by one or more branches.
• We wish to record the following about each item:

Description, Color, Size, Pattern, and Type.
• An item can be composed of multiple items; for exam-

ple, a dining room wallcovering set (item 20) may con-
sist of wallpaper (item 22) and borders (item 23).

• Wally employs 56 employees.
• He would like to track the following information about

employees: Name, Address (Street, City, State, Zip Code),
Telephone, Date of Hire, Title, Salary, Skill, and Age.

• Each employee works in one and only one branch.

• Each employee may have one or more dependents. We
wish to record the name of the dependent as well as the
age and relationship.

• Employees can have one or more skills.
Based upon this information, draw an E-R model. Please
indicate any assumptions that you have made. Also, draw a
data model for this situation using the tool you have been
told to use in your course.

27. Our friend Wally Los Gatos (see Problem and Exercise 26),
realizing that his wallcovering business had a few wrin-
kles in it, decided to pursue a law degree at night. After
graduating, he has teamed up with Lyla El Pàjaro to form
Peck and Paw, Attorneys at Law. Wally and Lyla have
hired you to design a database system based upon the
following set of business rules. It is in your best interest
to perform a thorough analysis, to avoid needless litiga-
tion. Please create an ERD based upon the following set
of rules:
• An ATTORNEY is retained by one or more CLIENTS for

each CASE.
• Attributes of ATTORNEY are Attorney ID, Name,

Address, City, State, Zip Code, Specialty (may be more
than one), and Bar (may be more than one).

• A CLIENT may have more than one ATTORNEY for
each CASE.

• Attributes of CLIENT are Client ID, Name, Address,
City, State, Zip Code, Telephone, and Date of Birth.

• A CLIENT may have more than one CASE.
• Attributes of CASE are Case ID, Case Description, and

Case Type.
• An ATTORNEY may have more than one CASE.
• Each CASE is assigned to one and only one COURT.
• Attributes of COURT are Court ID, Court Name, City,

State, and Zip Code.
• Each COURT has one or more JUDGES assigned to it.
• Attributes of JUDGE are Judge ID, Name, and Years In

Practice.
• Each JUDGE is assigned to exactly one court.
Please state any assumptions that you have made. Also,
draw a data model for this situation using the tool you have
been told to use in your course.

28. Review your answer to Problem and Exercise 25; if neces-
sary, change the names of the entities, attributes, and rela-
tionships to conform to the naming guidelines presented in
this chapter. Then, using the definition guidelines, write a
definition for each entity, attribute, and relationship. If nec-
essary, state assumptions so that each definition is as
complete as possible.

Field Exercises

1. Interview a database analyst or systems analyst and docu-
ment how he or she decides on names for data objects in
data models. Does the organization in which this person
works have naming guidelines? If so, describe the pattern
used. If there are no guidelines, ask whether your contact
has ever had any problems because guidelines did not exist.
Does the organization use any tool to help management
metadata, including data names?

2. Visit two local small businesses, one in the service sector (e.g.,
dry cleaner, auto repair shop, veterinarian, or bookstore) and

one that manufactures tangible goods. Interview employees
from these organizations to elicit from them the entities,
attributes, and relationships that are commonly encountered
in these organizations. Use this information to construct
E-R diagrams. What differences and similarities are there
between the diagrams for the service- and the product-
oriented companies? Does the E-R diagramming technique
handle both situations equally well? Why or why not?

3. Ask a database or systems analyst to give you examples of
unary, binary, and ternary relationships that the analyst has

Chapter 2 • Modeling Data in the Organization 109

dealt with personally at his or her company. Ask which is
most common and why.

4. Ask a database or systems analyst in a local company to
show you an E-R diagram for one of the organization’s pri-
mary databases. Ask questions to be sure you understand
what each entity, attribute, and relationship means. Does
this organization use the same E-R notation used in this
text? If not, what other or alternative symbols are used and
what do these symbols mean? Does this organization model
associative entities on the E-R diagram? If not, how are asso-
ciative entities modeled? What metadata are kept about the
objects on the E-R diagram?

5. For the same E-R diagram used in Field Exercise 4 or for a
different database in the same or a different organization,
identify any uses of time stamping or other means to model
time- dependent data. Why are time-dependent data neces-
sary for those who use this database? Would the E-R dia-
gram be much simpler if it were not necessary to represent
the history of attribute values?

6. Search on the Internet for products that help document and
manage business rules, standards, and procedures. One
such site is www.axisboulder.com. Choose a couple tools
and summarize their capabilities and discuss how they
would be useful in managing business rules.

References

Aranow, E. B. 1989. “Developing Good Data Definitions.”
Database Programming & Design 2,8 (August): 36–39.

Batra, D., J. A. Hoffer, and R. B. Bostrom. 1988. “A Comparison of
User Performance Between the Relational and Extended
Entity Relationship Model in the Discovery Phase of
Database Design.” Proceedings of the Ninth International
Conference on Information Systems. Minneapolis, November
30–December 3: 295–306.

Bruce, T. A. 1992. Designing Quality Databases with IDEF1X
Information Models. New York: Dorset House.

Chen, P. P.-S. 1976. “The Entity-Relationship Model—Toward a
Unified View of Data.” ACM Transactions on Database
Systems 1,1(March): 9–36.

Elmasri, R., and S. B. Navathe. 1994. Fundamentals of Database
Systems. 2d ed. Menlo Park, CA: Benjamin/Cummings.

Gottesdiener, E. 1997. “Business Rules Show Power, Promise.”
Application Development Trends 4,3 (March): 36–54.

Gottesdiener, E. 1999. “Turning Rules into Requirements.”
Application Development Trends 6,7 (July): 37–50.

Hay, D. C. 2003. “What Exactly IS a Data Model?” Parts 1, 2, and
3. DM Review Vol 13, Issues 2 (February: 24–26), 3 (March:
48–50), and 4 (April: 20–22, 46).

GUIDE. 1997 (October).“GUIDE Business Rules Project.” Final
Report, revision 1.2.

Hoffer, J. A., J. F. George, and J. S. Valacich. 2010. Modern Systems
Analysis and Design. 6th ed. Upper Saddle River, NJ:
Prentice Hall.

ISO/IEC. 2004. “Information Technology—Metadata Registries
(MDR)—Part 4: Formulation of Data Definitions.” July.
Switzerland. Available at http://metadata-standards.org/
11179.

ISO/IEC. 2005. “Information Technology—Metadata Registries
(MDR)—Part 5: Naming and Identification Principles.”
September. Switzerland. Available at http://metadata-
standards.org/11179.

Johnson, T. and R. Weis. 2007. “Time and Time Again:
Managing Time in Relational Databases, Part 1.” May.
DM Review. Available from Magazine Archives section in
the Information Center of www.information-manage-
ment.com. See whole series of articles called “Time and
Time Again” in subsequent issues.

Moriarty, T. 2000. “The Right Tool for the Job.” Intelligent
Enterprise 3,9 (June 5): 68, 70–71.

Owen, J. 2004. “Putting Rules Engines to Work.” InfoWorld (June
28): 35–41.

Plotkin, D. 1999. “Business Rules Everywhere.” Intelligent
Enterprise 2,4 (March 30): 37–44.

Salin, T. 1990. “What’s in a Name?” Database Programming &
Design 3,3 (March): 55–58.

Song, I.-Y., M. Evans, and E. K. Park. 1995. “A Comparative
Analysis of Entity-Relationship Diagrams.” Journal of
Computer & Software Engineering 3,4: 427–59.

Storey, V. C. 1991. “Relational Database Design Based on the
Entity-Relationship Model.” Data and Knowledge
Engineering 7: 47–83.

Teorey, T. J., D. Yang, and J. P. Fry. 1986. “A Logical Design
Methodology for Relational Databases Using the
Extended Entity- Relationship Model.” Computing
Surveys 18, 2 (June): 197–221.

von Halle, B. 1997. “Digging for Business Rules.” Database
Programming & Design 8,11: 11–13.

Further Reading

Batini, C., S. Ceri, and S. B. Navathe. 1992. Conceptual Database
Design: An Entity-Relationship Approach. Menlo Park, CA:
Benjamin/Cummings.

Bodart, F., A. Patel, M. Sim, and R. Weber. 2001. “Should
Optional Properties Be Used in Conceptual Modelling? A
Theory and Three Empirical Tests.” Information Systems
Research 12,4 (December): 384–405.

Carlis, J., and J. Maguire. 2001. Mastering Data Modeling: A User-
Driven Approach. Upper Saddle River, NJ: Prentice Hall.

Keuffel, W. 1996. “Battle of the Modeling Techniques.” DBMS
9,8 (August): 83, 84, 86, 97.

Moody, D. 1996. “The Seven Habits of Highly Effective Data
Modelers.” Database Programming & Design 9,10 (October):
57, 58, 60–62, 64.

Teorey, T. 1999. Database Modeling & Design. 3d ed. San
Francisco, CA: Morgan Kaufman.

Tillman, G. 1994. “Should You Model Derived Data?” DBMS
7,11 (November): 88, 90.

Tillman, G. 1995. “Data Modeling Rules of Thumb.” DBMS 8,8
(August): 70, 72, 74, 76, 80–82, 87.

www.axisboulder.com
http://metadata-standards.org/11179
http://metadata-standards.org/11179
http://metadata-standards.org/11179
http://metadata-standards.org/11179
www.information-manage-ment.com
www.information-manage-ment.com

110 Part II • Database Analysis

Web Resources
http://dwr.ais.columbia.edu/info/Data%20Naming%20Standards

.html Web site that provides guidelines for naming enti-
ties, attributes, and relationships similar to those suggested
in this chapter.

www.adtmag.com Web site of Application Development Trends, a
leading publication on the practice of information sys-
tems development.

www.axisboulder.com Web site for one vendor of business
rules software.

www.businessrulesgroup.org Web site of the Business Rules
Group, formerly part of GUIDE International, which for-
mulates and supports standards about business rules.

http://en.wikipedia.org/wiki/Entity-relationship_model The
Wikipedia entry for entity-relationship model, with an

explanation of the origins of the crow’s foot notation,
which is used in this book.

www.intelligententerprise.com Web site of Intelligent Enterprise,
a leading publication on database management and
related areas. This magazine is the result of combining two
previous publications, Database Programming & Design and
DBMS.

http://ss64.com/ora/syntax-naming.html Web site that sug-
gests naming conventions for entities, attributes, and rela-
tionships within an Oracle database environment.

www.tdan.com Web site of The Data Administration Newsletter, is
an online journal that includes articles on a wide variety of
data management topics. This Web site is considered a
“must follow” Web site for data management professionals.

http://dwr.ais.columbia.edu/info/Data%20Naming%20Standards.html
http://dwr.ais.columbia.edu/info/Data%20Naming%20Standards.html
www.adtmag.com
www.axisboulder.com
www.businessrulesgroup.org
http://en.wikipedia.org/wiki/Entity-relationship_model
www.intelligententerprise.com
http://ss64.com/ora/syntax-naming.html
www.tdan.com

Chapter 2 • Modeling Data in the Organization 111

CASE
Mountain View Community Hospital

Case Description

After completing a course in database management, you have
been hired as a summer intern by Mountain View Community
Hospital. Your first assignment is to work as part of a team of
three people to develop a high-level E-R diagram for the hospi-
tal. You conduct interviews with a number of hospital adminis-
trators and staff to identify the key entity types for the hospital.
You have also seen the preliminary enterprise-level diagram
shown in MVCH Figure 1-3 and subsequent revisions. As a
result, your team has identified the following entity types:

• Care Center—a treatment center within the hospital.
Examples of care centers are maternity, emergency care,
or multiple sclerosis center. Each care center has a care
center ID (identifier) and a care center name.

• Patient—a person who is either admitted to the hospital
or is registered as an outpatient. Each patient has an iden-
tifier, the medical record number (MRN), and a name.

• Physician—a member of the hospital medical staff who
may admit patients to the hospital and who may adminis-
ter medical treatments. Each physician has a physician ID
(identifier) and name.

• Bed—a hospital bed that may be assigned to a patient
who is admitted to the hospital. Each bed has a bed num-
ber (identifier), a room number, and a care center ID.

• Item—any medical or surgical item that may be used in
treating a patient. Each item has an item number (identi-
fier), description, and unit cost.

• Employee—any person employed as part of the hospital
staff. Each employee has an employee number (identifier)
and name.

• Diagnosis—a patient’s medical condition diagnosed by a
physician. Each diagnosis has a diagnosis ID/code and
diagnosis name. Mountain View Community Hospital is
using the HIPAA-mandated ICD-9-CM Volume 1 diagno-
sis codes1 for patient conditions (e.g., 00.50, STAPH
FOOD POISONING, 173.3, BASAL CELL CARCINOMA,
200.2, MALIGNANT MELANOMA, BURKITT’S TYPE,
or 776.5. CONGENITAL ANEMIA).

• Treatment—any test or procedure ordered by and/or per-
formed by a physician for a patient. Each treatment has a
treatment ID/treatment code and treatment name using
standard codes. HIPAA-mandated ICD-9-CM Volume 3
Procedure Codes are used for diagnostic and therapeutic
procedures (e.g., 03.31, SPINAL TAP, 14.3, REPAIR OF
RETINAL TEAR, 87.44, ROUTINE CHEST X-RAY, or 90.5,
MICROSCOPIC EXAMINATION OF BLOOD).

• Order—any order issued by a physician for treatment
and/or services such as diagnostic tests (radiology, labo-
ratory) and therapeutic procedures (physical therapy, diet

orders), or drugs and devices (prescriptions). Each order
has an order ID, order date, and order time.

The team next recorded the following information concerning
relationships:

• Each hospital employee is assigned to work in one or
more care centers. Each care center has at least one
employee and may have any number of employees. The
hospital records the number of hours per week that a
given employee works in a particular care center.

• Each care center has exactly one employee who is desig-
nated nurse-in-charge for that care center.

• A given patient may or may not be assigned to a bed
(since some patients are outpatients). Occupancy rates are
seldom at 100 percent, so a bed may or may not be
assigned to a patient.

• A patient may be referred to the hospital by exactly one
physician. A physician may refer any number of patients
or may not refer any patients.

• A patient must be admitted to the hospital by exactly one
physician. A physician may admit any number of patients
or may not admit any patients.

• Prior to a patient being seen by a physician, a nurse typi-
cally obtains and records relevant information about the
patient. This includes the patient’s weight, blood pres-
sure, pulse, and temperature. The nurse who assesses the
vital signs also records the date and time. Finally, the rea-
sons for the visit and any symptoms the patient describes
are recorded.

• Physicians diagnose any number of conditions affecting a
patient, and a diagnosis may apply to many patients. The
hospital records the following information: date and time
of diagnosis, diagnosis code, and description.

• Physicians may order and perform any number of serv-
ices/treatments for a patient or may not perform any
treatment. A treatment or service may be performed on
any number of patients, and a patient may have treat-
ments performed or ordered by any number of physi-
cians. For each treatment or service rendered, the hospital
records the following information: physician ordering the
treatment, treatment date, treatment time, and results.

• A patient may also consume any number of items. A
given item may be consumed by one or more patients, or
may not be consumed. For each item consumed by a
patient, the hospital records the following: date, time,
quantity, and total cost (which can be computed by multi-
plying quantity times unit cost).

Case Questions

1. Why would Mountain View Community Hospital want to
use E-R modeling to understand its data requirements?
What other ways might the hospital want to model its
information requirements?

2. Is Mountain View Community Hospital itself an entity
type in the data model? Why or why not?

1 Note: ICD refers to the International Classification of Diseases, which,
in the United States, is the HIPAA-mandated coding system used in
medical billing. More information can be found at www.cms.hhs.
gov/medlearn/icd9code.asp.

www.cms.hhs.gov/medlearn/icd9code.asp
www.cms.hhs.gov/medlearn/icd9code.asp

112 Part II • Database Analysis

3. Do there appear to be any of the following in the descrip-
tion of the Mountain View Community Hospital data
requirements? If so, what are they?
a. weak entities
b. multivalued attributes
c. multiple relationships

4. When developing an E-R diagram for Mountain View
Community Hospital, what is the significance of the busi-
ness rule that states that some patients are assigned to a
bed, but outpatients are not assigned to a bed?

5. Do you think that Items should be split into two separate
entities, one for nonreusable and one for reusable items?
Why or why not?

6. What quality check(s) would you perform to determine
whether the E-R model you developed can easily satisfy
user requests for data and/or information?

Case Exercises

1. Study the case description very closely. What other ques-
tions would you like to ask to understand the data require-
ments at Mountain View Community Hospital?

2. Develop an E-R diagram for Mountain View Community
Hospital. State any assumptions you made in developing
the diagram. If you have been assigned a particular data
modeling tool, redraw your E-R diagram using this tool.

3. The case describes an entity type called Item. Given your
answer to Case Exercise 2, will this entity type also be able
to represent in-room TVs as a billable item to patients?
Why or why not?

4. Suppose the attribute bed number were a composite attrib-
ute, composed of care center ID, room number, and indi-
vidual bed number. Redraw any parts of your answer to
Case Exercise 2 that would have to change to handle this
composite attribute.

5. Consider your new E-R diagram for Case Exercise 4. Now,
additionally assume that a care center contains many
rooms, and each room may contain items that are billed to
patients assigned to that room. Redraw your E-R diagram
to accommodate this new assumption.

6. Does your answer to Case Exercise 2 allow more than
one physician to perform a treatment on a patient at the
same time? If not, redraw your answer to Case Exercise 2
to accommodate this situation. Make any additional
assumptions you consider necessary to represent this
situation.

7. Does your answer to Case Exercise 2 allow the same treat-
ment to be performed more than once on the same patient
by the same physician? If not, redraw your answer to Case
Exercise 2 to accommodate this situation. Make any addi-
tional assumptions you consider necessary in order to rep-
resent this situation.

Project Assignments

P1. Develop an E-R diagram for Mountain View Community
Hospital, based on the enterprise data model you developed
in Chapter 1 and the case description, questions, and exer-
cises presented previously. Using the notation described in
this chapter, clearly indicate the different types of entities,
attributes (identifiers, multivalued attributes, composite
attributes, derived attributes) and relationships that apply in
this case.

P2. Develop a list of well-stated business rules for your E-R
diagram.

P3. Prepare a list of questions that have arisen as a result
of your E-R modeling efforts, and that need to be an-
swered to clarify your understanding of Mountain
View Community Hospital’s business rules and data
requirements.

113

C H A P T E R

3
The Enhanced E-R Model

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: enhanced entity-relationship (EER)
model, subtype, supertype, attribute inheritance, generalization, specialization,
completeness constraint, total specialization rule, partial specialization rule,
disjointness constraint, disjoint rule, overlap rule, subtype discriminator, supertype/
subtype hierarchy, entity cluster, and universal data model.

� Recognize when to use supertype/subtype relationships in data modeling.
� Use both specialization and generalization as techniques for defining

supertype/subtype relationships.
� Specify both completeness constraints and disjointness constraints in modeling

supertype/subtype relationships.
� Develop a supertype/subtype hierarchy for a realistic business situation.
� Develop an entity cluster to simplify presentation of an E-R diagram.
� Explain the major features and data modeling structures of a universal (packaged)

data model.
� Describe the special features of a data modeling project when using a packaged

data model.

INTRODUCTION

The basic E-R model described in Chapter 2 was first introduced during the mid-
1970s. It has been suitable for modeling most common business problems and has
enjoyed widespread use. However, the business environment has changed
dramatically since that time. Business relationships are more complex, and as a
result, business data are much more complex as well. For example, organizations
must be prepared to segment their markets and to customize their products, which
places much greater demands on organizational databases.

To cope better with these changes, researchers and consultants have continued
to enhance the E-R model so that it can more accurately represent the complex
data encountered in today’s business environment. The term enhanced entity-
relationship (EER) model is used to identify the model that has resulted from
extending the original E-R model with these new modeling constructs. These
extensions make the EER model semantically similar to object-oriented data
modeling, which we cover in Chapter 13.

Enhanced entity-relationship
(EER) model
A model that has resulted from
extending the original E-R model
with new modeling constructs.

Visit www.pearsonhighered.com/
hoffer to view the accompanying
video for this chapter.

www.pearsonhighered.com/

114 Part II • Database Analysis

The most important modeling construct incorporated in the EER model is
supertype/subtype relationships. This facility enables us to model a general entity type
(called the supertype) and then subdivide it into several specialized entity types (called
subtypes). Thus, for example, the entity type CAR can be modeled as a supertype, with
subtypes SEDAN, SPORTS CAR, COUPE, and so on. Each subtype inherits attributes
from its supertype and in addition may have special attributes and be involved in
relationships of its own. Adding new notation for modeling supertype/subtype
relationships has greatly improved the flexibility of the basic E-R model.

E-R, and especially EER, diagrams can become large and complex, requiring
multiple pages (or very small font) for display. Some commercial databases include
hundreds of entities. Many users and managers specifying requirements for or
using a database do not need to see all the entities, relationships, and attributes to
understand the part of the database with which they are most interested. Entity
clustering is a way to turn a part of an entity-relationship data model into a more
macro-level view of the same data. Entity clustering is a hierarchical decomposition
technique (a nesting process of breaking a system into further and further
subparts), which can make E-R diagrams easier to read and databases easier to
design. By grouping entities and relationships, you can lay out an E-R diagram in
such a way that you to give attention to the details of the model that matter most
in a given data modeling task.

As introduced in Chapter 2, universal and industry-specific generalizable data
models, which extensively utilized EER capabilities, have become very important for
contemporary data modelers. These packaged data models and data model patterns
have made data modelers more efficient and produce data models of higher quality.
The EER features of supertypes/subtypes are essential to create generalizable data
models; additional generalizing constructs, such as typing entities and relationships,
are also employed. It has become very important for data modelers to know how to
customize a data model pattern or data model for a major software package (e.g.,
enterprise resource planning or customer relationship management), just as it has
become commonplace for information system builders to customize off-the-shelf
software packages and software components.

REPRESENTING SUPERTYPES AND SUBTYPES

Recall from Chapter 2 that an entity type is a collection of entities that share common
properties or characteristics. Although the entity instances that compose an entity type
are similar, we do not expect them to have exactly the same attributes. For example,
recall required and optional attributes from Chapter 2. One of the major challenges in
data modeling is to recognize and clearly represent entities that are almost the same;
that is, entity types that share common properties but also have one or more distinct
properties that are of interest to the organization.

For this reason, the E-R model has been extended to include supertype/subtype
relationships. A subtype is a subgrouping of the entities in an entity type that is mean-
ingful to the organization. For example, STUDENT is an entity type in a university. Two
subtypes of STUDENT are GRADUATE STUDENT and UNDERGRADUATE STU-
DENT. In this example, we refer to STUDENT as the supertype. A supertype is a
generic entity type that has a relationship with one or more subtypes.

In the E-R diagramming we have done so far, supertypes and subtypes have been
hidden. For example, consider again Figure 2-22, which is the E-R diagram (in
Microsoft Visio) for Pine Valley Furniture Company. Notice that it is possible for a cus-
tomer to not do business in any territory (i.e., no associated instances of the DOES
BUSINESS IN associative entity). Why is this? One possible reason is that there are two
types of customers—national account customers and regular customers—and only reg-
ular customers are assigned to a sales territory. Thus, in Figure 2-22, the reason for the
optional cardinality next to the DOES BUSINESS IN associative entity coming from
CUSTOMER is obscured. Explicitly drawing a customer entity supertype and several
entity subtypes will help us to make the E-R diagram more meaningful. Later in this
chapter, we show a revised E-R diagram for Pine Valley Furniture, which demonstrates
several EER notations to make vague aspects of Figure 2-22 more explicit.

Subtype
A subgrouping of the entities in an
entity type that is meaningful to
the organization and that shares
common attributes or relationships
distinct from other subgroupings.

Supertype
A generic entity type that has a
relationship with one or more
subtypes.

Chapter 3 • The Enhanced E-R Model 115

Basic Concepts and Notation

The notation that is used for supertype/subtype relationships in this text is shown in
Figure 3-1a. The supertype is connected with a line to a circle, which in turn is con-
nected with a line to each subtype that has been defined. The U-shaped symbol on each
line connecting a subtype to the circle emphasizes that the subtype is a subset of the
supertype. It also indicates the direction of the subtype/supertype relationship. (This U
is optional because the meaning and direction of the supertype/subtype relationship is
usually obvious; in most examples, we will not include this symbol). Figure 3-1b shows
the type of EER notation used by Microsoft Visio (which is very similar to that used in
this text), and Figure 3-1c shows the type of EER notation used by some CASE tools
(e.g., Oracle Designer); the notation in Figure 3-1c is also the form often used for univer-
sal and industry-specific data models. These different formats have identical basic
features, and you should easily become comfortable using any of these forms. We pri-
marily use the text notation for examples in this chapter because advanced EER features
are more standard with this format.

and so forth

SUPERTYPE

Attributes shared
by all entities

(including identifier)

SUBTYPE 1

Attributes unique
to subtype 1

SUBTYPE 2

Attributes unique
to subtype 2

SUPERTYPE

Attributes shared
by all entities

Relationships in which all
instances participate

SUBTYPE 1

Attributes unique

Relationships in which
only specialized versions

participate

)

General
entity type

Specialized
versions of
supertype

FIGURE 3-1 Basic notation
for supertype/subtype
relationships

(a) EER notation

Shared attributes

and so forth

Attributes unique to subtype 1

E 1

Attributes unique to subtype 2

SUBTYPE 2

Relationships in which
only specialized versions

participate

Relationships in which all
instances participate

General
entity type

Specialized
versions of
supertype

(b) Microsoft Visio notation

(continued)

116 Part II • Database Analysis

SUPERTYPE

Identifier
Shared attributes

SUBTYPE 1

Attributes unique
to subtype 1

SUBTYPE 2

Attributes unique
to subtype 2

.

. and so forth

.

Relationships in which all
instances participate

Relationships in which
only specialized versions

participate

Specialized
versions of
supertype

FIGURE 3-1 (continued)
(c) Subtypes inside
supertypes notation

Attributes that are shared by all entities (including the identifier) are associated with
the supertype. Attributes that are unique to a particular subtype are associated with that
subtype. The same is true for relationships. Other components will be added to this
notation to provide additional meaning in supertype/subtype relationships as we
proceed through the remainder of this chapter.

AN EXAMPLE OF A SUPERTYPE/SUBTYPE RELATIONSHIP Let us illustrate supertype/
subtype relationships with a simple yet common example. Suppose that an organiza-
tion has three basic types of employees: hourly employees, salaried employees, and
contract consultants. The following are some of the important attributes for each of
these types of employees:

• Hourly employees Employee Number, Employee Name, Address, Date Hired,
Hourly Rate

• Salaried employees Employee Number, Employee Name, Address, Date Hired,
Annual Salary, Stock Option

• Contract consultants Employee Number, Employee Name, Address, Date
Hired, Contract Number, Billing Rate

Notice that all of the employee types have several attributes in common:
Employee Number, Employee Name, Address, and Date Hired. In addition, each type
has one or more attributes distinct from the attributes of other types (e.g., Hourly Rate
is unique to hourly employees). If you were developing a conceptual data model in this
situation, you might consider three choices:

1. Define a single entity type called EMPLOYEE. Although conceptually simple, this
approach has the disadvantage that EMPLOYEE would have to contain all of
the attributes for the three types of employees. For an instance of an hourly
employee (for example), attributes such as Annual Salary and Contract Number
would not apply (optional attributes) and would be null or not used. When taken
to a development environment, programs that use this entity type would neces-
sarily need to be quite complex to deal with the many variations.

2. Define a separate entity type for each of the three entities. This approach would
fail to exploit the common properties of employees, and users would have to be
careful to select the correct entity type when using the system.

3. Define a supertype called EMPLOYEE with subtypes HOURLY EMPLOYEE,
SALARIED EMPLOYEE, and CONSULTANT. This approach exploits the common
properties of all employees, yet recognizes the distinct properties of each type.

Chapter 3 • The Enhanced E-R Model 117

Figure 3-2 shows a representation of the EMPLOYEE supertype with its three sub-
types, using enhanced E-R notation. Attributes shared by all employees are associated
with the EMPLOYEE entity type. Attributes that are peculiar to each subtype are
included with that subtype only.

ATTRIBUTE INHERITANCE A subtype is an entity type in its own right. An entity in-
stance of a subtype represents the same entity instance of the supertype. For example, if
“Therese Jones” is an occurrence of the CONSULTANT subtype, then this same person
is necessarily an occurrence of the EMPLOYEE supertype. As a consequence, an entity
in a subtype must possess not only values for its own attributes, but also values for its
attributes as a member of the supertype, including the identifier.

Attribute inheritance is the property by which subtype entities inherit values of
all attributes and instance of all relationships of the supertype. This important prop-
erty makes it unnecessary to include supertype attributes or relationships redundantly
with the subtypes (remember, when it comes to data modeling, redundancy = bad,
simplicity = good). For example, Employee Name is an attribute of EMPLOYEE
(Figure 3-2) but not of the subtypes of EMPLOYEE. Thus, the fact that the employee’s
name is “Therese Jones” is inherited from the EMPLOYEE supertype. However, the
Billing Rate for this same employee is an attribute of the subtype CONSULTANT.

We have established that a member of a subtype must be a member of the super-
type. Is the converse also true—that is, is a member of the supertype also a member of
one (or more) of the subtypes? This may or may not be true, depending on the business
situation. (Sure, “it depends” is the classic academic answer, but it’s true in this case.)
We discuss the various possibilities later in this chapter.

WHEN TO USE SUPERTYPE/SUBTYPE RELATIONSHIPS So, how do you know when to use
a supertype/subtype relationship? You should consider using subtypes when either (or
both) of the following conditions are present:

1. There are attributes that apply to some (but not all) instances of an entity type. For
example, see the EMPLOYEE entity type in Figure 3-2.

2. The instances of a subtype participate in a relationship unique to that subtype.

Figure 3-3 is an example of the use of subtype relationships that illustrates both of
these situations. The hospital entity type PATIENT has two subtypes: OUTPATIENT
and RESIDENT PATIENT. (The identifier is Patient ID.) All patients have an Admit

CONSULTANT

EMPLOYEE

Employee Number
Employee Name
Address
Date Hired

SALARIED
EMPLOYEE

Annual Salary
Stock Option

Contract Number
Billing RateHourly Rate

HOURLY
EMPLOYEE

FIGURE 3-2 Employee
supertype with three
subtypes

Attribute inheritance
A property by which subtype
entities inherit values of all
attributes and instances of all
relationships of their supertype.

118 Part II • Database Analysis

Date attribute, as well as a Patient Name. Also, every patient is cared for by a RESPON-
SIBLE PHYSICIAN who develops a treatment plan for the patient.

Each subtype has an attribute that is unique to that subtype. Outpatients have
Checkback Date, whereas resident patients have Date Discharged. Also, resident
patients have a unique relationship that assigns each patient to a bed. (Notice that this
is a mandatory relationship; it would be optional if it were attached to PATIENT.) Each
bed may or may not be assigned to a patient.

Earlier we discussed the property of attribute inheritance. Thus, each outpatient
and each resident patient inherits the attributes of the parent supertype PATIENT:
Patient ID, Patient Name, and Admit Date. Figure 3-3 also illustrates the principle of
relationship inheritance. OUTPATIENT and RESIDENT PATIENT are also instances of
PATIENT; therefore, each Is Cared For by a RESPONSIBLE PHYSICIAN.

Representing Specialization and Generalization

We have described and illustrated the basic principles of supertype/subtype relation-
ships, including the characteristics of “good” subtypes. But in developing real-world
data models, how can you recognize opportunities to exploit these relationships? There
are two processes—generalization and specialization—that serve as mental models in
developing supertype/subtype relationships.

GENERALIZATION A unique aspect of human intelligence is the ability and propensity
to classify objects and experiences and to generalize their properties. In data modeling,
generalization is the process of defining a more general entity type from a set of more
specialized entity types. Thus generalization is a bottom-up process.

An example of generalization is shown in Figure 3-4. In Figure 3-4a, three entity
types have been defined: CAR, TRUCK, and MOTORCYCLE. At this stage, the data
modeler intends to represent these separately on an E-R diagram. However, on closer
examination, we see that the three entity types have a number of attributes in com-
mon: Vehicle ID (identifier), Vehicle Name (with components Make and Model),
Price, and Engine Displacement. This fact (reinforced by the presence of a common
identifier) suggests that each of the three entity types is really a version of a more
general entity type.

This more general entity type (named VEHICLE) together with the resulting
supertype/subtype relationships is shown in Figure 3-4b. The entity CAR has the spe-
cific attribute No Of Passengers, whereas TRUCK has two specific attributes: Capacity
and Cab Type. Thus, generalization has allowed us to group entity types along with

Generalization
The process of defining a more
general entity type from a set of
more specialized entity types.

Checkback Date

OUTPATIENT RESIDENT
PATIENT

Date Discharged

Is Cared For

Is Assigned
BED

Bed ID

PATIENT

Patient ID
Patient Name
Admit Date

RESPONSIBLE
PHYSICIAN

Physician ID

FIGURE 3-3 Supertype/
subtype relationships in a
hospital

Chapter 3 • The Enhanced E-R Model 119

their common attributes and at the same time preserve specific attributes that are pecu-
liar to each subtype.

Notice that the entity type MOTORCYCLE is not included in the relationship. Is
this simply an omission? No. Instead, it is deliberately not included because it does not
satisfy the conditions for a subtype discussed earlier. Comparing Figure 3-4 parts a and b,
you will notice that the only attributes of MOTORCYCLE are those that are common to
all vehicles; there are no attributes specific to motorcycles. Furthermore, MOTORCY-
CLE does not have a relationship to another entity type. Thus there is no need to create
a MOTORCYCLE subtype.

The fact that there is no MOTORCYCLE subtype suggests that it must be possible
to have an instance of VEHICLE that is not a member of any of its subtypes. We discuss
this type of constraint in the section on specifying constraints.

SPECIALIZATION As we have seen, generalization is a bottom-up process.
Specialization is a top-down process, the direct reverse of generalization. Suppose
that we have defined an entity type with its attributes. Specialization is the process
of defining one or more subtypes of the supertype and forming supertype/subtype
relationships. Each subtype is formed based on some distinguishing characteristic,
such as attributes or relationships specific to the subtype.

An example of specialization is shown in Figure 3-5. Figure 3-5a shows an entity
type named PART, together with several of its attributes. The identifier is Part No, and
other attributes are Description, Unit Price, Location, Qty On Hand, Routing Number,

CAR

Vehicle ID
Price
Engine Displacement
Vehicle Name
 (Make, Model)
No Of Passengers

TRUCK

Vehicle ID
Price
Engine Displacement
Vehicle Name
 (Make, Model)
Capacity
Cab Type

MOTORCYCLE

Vehicle ID
Price
Engine Displacement
Vehicle Name
 (Make, Model)

No Of Passengers

CAR TRUCK

Capacity
Cab Type

VEHICLE

Vehicle ID
Price
Engine Displacement
Vehicle Name
 (Make, Model)

FIGURE 3-4 Example of
generalization
(a) Three entity types: CAR,
TRUCK, and MOTORCYCLE

(b) Generalization to VEHICLE
supertype

Specialization
The process of defining one or
more subtypes of the supertype
and forming supertype/subtype
relationships.

120 Part II • Database Analysis

and Supplier. (The last attribute is multivalued and composite because there may be
more than one supplier with an associated unit price for a part.)

In discussions with users, we discover that there are two possible sources for
parts: Some are manufactured internally, whereas others are purchased from outside
suppliers. Further, we discover that some parts are obtained from both sources. In this
case, the choice depends on factors such as manufacturing capacity, unit price of the
parts, and so on.

Some of the attributes in Figure 3-5a apply to all parts, regardless of source.
However, others depend on the source. Thus Routing Number applies only to manufac-
tured parts, whereas Supplier ID and Unit Price apply only to purchased parts. These
factors suggest that PART should be specialized by defining the subtypes MANUFAC-
TURED PART and PURCHASED PART (Figure 3-5b).

In Figure 3-5b, Routing Number is associated with MANUFACTURED PART. The
data modeler initially planned to associate Supplier ID and Unit Price with PUR-
CHASED PART. However, in further discussions with users, the data modeler sug-
gested instead that they create a SUPPLIER entity type and an associative entity linking
PURCHASED PART with SUPPLIER. This associative entity (named SUPPLIES in
Figure 3-5b) allows users to more easily associate purchased parts with their suppliers.
Notice that the attribute Unit Price is now associated with the associative entity, so that
the unit price for a part may vary from one supplier to another. In this example, special-
ization has permitted a preferred representation of the problem domain.

COMBINING SPECIALIZATION AND GENERALIZATION Specialization and generaliza-
tion are both valuable techniques for developing supertype/subtype relationships.
The technique you use at a particular time depends on several factors, such as the nature

PART

Part No
Description
Qty On Hand
Location
Routing Number
{Supplier
 (Supplier ID, Unit Price)}

Routing Number

MANUFACTURED
PART

PURCHASED
PART

PART

Part No
Description
Location
Qty On Hand

SUPPLIER

Supplier ID

SUPPLIES

Unit Price

FIGURE 3-5 Example of
specialization
(a) Entity type PART

(b) Specialization to
MANUFACTURED PART
and PURCHASED PART

Chapter 3 • The Enhanced E-R Model 121

of the problem domain, previous modeling efforts, and personal preference. You should
be prepared to use both approaches and to alternate back and forth as dictated by the
preceding factors.

SPECIFYING CONSTRAINTS IN SUPERTYPE/SUBTYPE RELATIONSHIPS

So far we have discussed the basic concepts of supertype/subtype relationships and
introduced some basic notation to represent these concepts. We have also described the
processes of generalization and specialization, which help a data modeler recognize
opportunities for exploiting these relationships. In this section, we introduce additional
notation to represent constraints on supertype/subtype relationships. These constraints
allow us to capture some of the important business rules that apply to these relation-
ships. The two most important types of constraints that are described in this section are
completeness and disjointness constraints (Elmasri and Navathe, 1994).

Specifying Completeness Constraints

A completeness constraint addresses the question of whether an instance of a super-
type must also be a member of at least one subtype. The completeness constraint has
two possible rules: total specialization and partial specialization. The total speciali-
zation rule specifies that each entity instance of the supertype must be a member of
some subtype in the relationship. The partial specialization rule specifies that an entity
instance of the supertype is allowed not to belong to any subtype. We illustrate each of
these rules with earlier examples from this chapter (see Figure 3-6).

TOTAL SPECIALIZATION RULE Figure 3-6a repeats the example of PATIENT (Figure 3-3)
and introduces the notation for total specialization. In this example, the business rule is
the following: A patient must be either an outpatient or a resident patient. (There are no
other types of patient in this hospital.) Total specialization is indicated by the double line
extending from the PATIENT entity type to the circle. (In the Microsoft Visio notation,
total specialization is called “Category is complete” and is shown also by a double line
under the category circle between the supertype and associated subtypes.)

In this example, every time a new instance of PATIENT is inserted into the super-
type, a corresponding instance is inserted into either OUTPATIENT or RESIDENT
PATIENT. If the instance is inserted into RESIDENT PATIENT, an instance of the
relationship Is Assigned is created to assign the patient to a hospital bed.

Checkback Date

OUTPATIENT RESIDENT
PATIENT

Date Discharged

Is Cared For

Is Assigned
BED

Bed ID

PATIENT

Patient ID
Patient Name
Admit Date

RESPONSIBLE
PHYSICIAN

Physician ID

Total Specialization:
a Patient has to be

either an Outpatient
or a Resident Patient

FIGURE 3-6 Examples of
completeness constraints
(a) Total specialization rule

Completeness constraint
A type of constraint that addresses
whether an instance of a supertype
must also be a member of at least
one subtype.

Total specialization rule
A rule that specifies that each
entity instance of a supertype must
be a member of some subtype in
the relationship.

Partial specialization rule
A rule that specifies that an entity
instance of a supertype is allowed
not to belong to any subtype.

(continued)

122 Part II • Database Analysis

PARTIAL SPECIALIZATION RULE Figure 3-6b repeats the example of VEHICLE and its
subtypes CAR and TRUCK from Figure 3-4. Recall that in this example, motorcycle is a
type of vehicle, but it is not represented as a subtype in the data model. Thus, if a vehi-
cle is a car, it must appear as an instance of CAR, and if it is a truck, it must appear as an
instance of TRUCK. However, if the vehicle is a motorcycle, it cannot appear as an in-
stance of any subtype. This is an example of partial specialization, and it is specified by
the single line from the VEHICLE supertype to the circle.

Specifying Disjointness Constraints

A disjointness constraint addresses whether an instance of a supertype may simultane-
ously be a member of two (or more) subtypes. The disjointness constraint has two pos-
sible rules: the disjoint rule and the overlap rule. The disjoint rule specifies that if an
entity instance (of the supertype) is a member of one subtype, it cannot simultaneously
be a member of any other subtype. The overlap rule specifies that an entity instance can
simultaneously be a member of two (or more) subtypes. An example of each of these
rules is shown in Figure 3-7.

DISJOINT RULE Figure 3-7a shows the PATIENT example from Figure 3-6a. The business
rule in this case is the following: At any given time, a patient must be either an outpatient
or a resident patient, but cannot be both. This is the disjoint rule, as specified by the let-
ter d in the circle joining the supertype and its subtypes. Note in this figure, the subclass
of a PATIENT may change over time, but at a given time, a PATIENT is of only one type.
(The Microsoft Visio notation does not have a way to designate disjointness or overlap;
however, you can place a d or an o inside the category circle using the Text tool.)

OVERLAP RULE Figure 3-7b shows the entity type PART with its two subtypes, MANU-
FACTURED PART and PURCHASED PART (from Figure 3-5b). Recall from our discus-
sion of this example that some parts are both manufactured and purchased. Some clari-
fication of this statement is required. In this example, an instance of PART is a particular
part number (i.e., a type of part), not an individual part (indicated by the identifier,
which is Part No). For example, consider part number 4000. At a given time, the quantity
on hand for this part might be 250, of which 100 are manufactured and the remaining
150 are purchased parts. In this case, it is not important to keep track of individual

No Of Passengers

CAR TRUCK

Capacity
Cab Type

VEHICLE

Vehicle ID
Price
Engine Displacement
Vehicle Name
 (Make, Model)

Partial Specialization: a
Vehicle can be a Car, or

a Truck, but does not
have to be either

FIGURE 3-6 (continued)
(b) Partial specialization rule

Disjointness constraint
A constraint that addresses
whether an instance of a supertype
may simultaneously be a member
of two (or more) subtypes.

Disjoint rule
A rule that specifies that an
instance of a supertype may not
simultaneously be a member of
two (or more) subtypes.

Chapter 3 • The Enhanced E-R Model 123

parts. When tracking individual parts is important, each part is assigned a serial num-
ber identifier, and the quantity on hand is one or zero, depending on whether that indi-
vidual part exists or not.

The overlap rule is specified by placing the letter o in the circle, as shown in
Figure 3-7b. Notice in this figure that the total specialization rule is also specified, as
indicated by the double line. Thus, any part must be either a purchased part or a
manufactured part, or it may simultaneously be both of these.

Defining Subtype Discriminators

Given a supertype/subtype relationship, consider the problem of inserting a new
instance of a supertype. Into which of the subtypes (if any) should this instance be
inserted? We have already discussed the various possible rules that apply to this situa-
tion. We need a simple mechanism to implement these rules, if one is available. Often
this can be accomplished by using a subtype discriminator. A subtype discriminator is
an attribute of a supertype whose values determine the target subtype or subtypes.

DISJOINT SUBTYPES An example of the use of a subtype discriminator is shown in
Figure 3-8. This example is for the EMPLOYEE supertype and its subtypes, intro-
duced in Figure 3-2. Notice that the following constraints have been added to this

Overlap rule
A rule that specifies that an
instance of a supertype may
simultaneously be a member of
two (or more) subtypes.

Subtype discriminator
An attribute of a supertype whose
values determine the target
subtype or subtypes.

Checkback Date

OUTPATIENT RESIDENT
PATIENT

Date Discharged

Is Cared For

Is Assigned
BED

Bed ID

RESPONSIBLE
PHYSICIAN

Physician ID

d

PATIENT

Patient ID
Patient Name
Admit Date

Disjoint rule: a Patient can be
either an Outpatient or a

Resident Patient, but not both at
the same time

Routing Number

MANUFACTURED
PART

PURCHASED
PART

PART

Part No
Description
Location

Hand

SUPPLIER

Supplier ID

O

SUPPLIES

Unit Price

Overlap rule: a Part may be both a
Manufactured Part and a Purchased
Part at the same time, but must be

one or the other due to Total
Specialization (double line)

FIGURE 3-7 Examples of
disjointness constraints
(a) Disjoint rule

(b) Overlap rule

124 Part II • Database Analysis

figure: total specialization and disjoint subtypes. Thus, each employee must be either
hourly, salaried, or a consultant.

A new attribute (Employee Type) has been added to the supertype, to serve as a
subtype discriminator. When a new employee is added to the supertype, this attribute
is coded with one of three values, as follows: “H” (for Hourly), “S” (for Salaried), or “C”
(for Consultant). Depending on this code, the instance is then assigned to the appropri-
ate subtype. (An attribute of the supertype may be selected in the Microsoft Visio nota-
tion as a discriminator, which is shown similarly next to the category symbol.)

The notation we use to specify the subtype discriminator is also shown in Figure 3-8.
The expression Employee Type= (which is the left side of a condition statement) is placed
next to the line leading from the supertype to the circle. The value of the attribute that
selects the appropriate subtype (in this example, either “H,” “S,” or “C”) is placed adjacent
to the line leading to that subtype. Thus, for example, the condition Employee Type=“S”
causes an entity instance to be inserted into the SALARIED EMPLOYEE subtype.

OVERLAPPING SUBTYPES When subtypes overlap, a slightly modified approach must
be applied for the subtype discriminator. The reason is that a given instance of the
supertype may require that we create an instance in more than one subtype.

An example of this situation is shown in Figure 2-9 for PART and its overlapping
subtypes. A new attribute named Part Type has been added to PART. Part Type is a
composite attribute with components Manufactured? and Purchased? Each of these
attributes is a Boolean variable (i.e., it takes on only the values yes, “Y,” and no, “N”).
When a new instance is added to PART, these components are coded as follows:

EMPLOYEE

Employee Number
Employee Name
Address
Date Hired
Employee Type

SALARIED
EMPLOYEE

Annual Salary
Stock Option

Hourly Rate

HOURLY
EMPLOYEE

CONSULTANT

Contract Number
Billing Rate

Emp

“H”
“S”

“C”
d

Subtype discriminator
with values of H, S, or C

for disjoint subtypes

FIGURE 3-8 Introducing a
subtype discriminator
(disjoint rule)

Type of Part Manufactured? Purchased?

Manufactured only “Y” “N”

Purchased only “N” “Y”

Purchased and manufactured “Y” “Y”

The method for specifying the subtype discriminator for this example is shown in
Figure 3-9. Notice that this approach can be used for any number of overlapping
subtypes.

Chapter 3 • The Enhanced E-R Model 125

Defining Supertype/Subtype Hierarchies

We have considered a number of examples of supertype/subtype relationships in this
chapter. It is possible for any of the subtypes in these examples to have other subtypes
defined on it (in which case, the subtype becomes a supertype for the newly defined
subtypes). A supertype/subtype hierarchy is a hierarchical arrangement of supertypes
and subtypes, where each subtype has only one supertype (Elmasri and Navathe, 1994).

We present an example of a supertype/subtype hierarchy in this section in
Figure 3-10. (For simplicity, we do not show subtype discriminators in this and most
subsequent examples. See Problem and Exercise 2 and 3.) This example includes most
of the concepts and notation we have used in this chapter to this point. It also presents
a methodology (based on specialization) that you can use in many data modeling
situations.

AN EXAMPLE OF A SUPERTYPE/SUBTYPE HIERARCHY Suppose that you are asked to
model the human resources in a university. Using specialization (a top-down ap-
proach), you might proceed as follows. Starting at the top of a hierarchy, model the
most general entity type first. In this case, the most general entity type is PERSON. List
and associate all attributes of PERSON. The attributes shown in Figure 3-10 are SSN
(identifier), Name, Address, Gender, and Date Of Birth. The entity type at the top of a
hierarchy is sometimes called the root.

Next, define all major subtypes of the root. In this example, there are three subtypes
of PERSON: EMPLOYEE (persons who work for the university), STUDENT (persons
who attend classes), and ALUMNUS (persons who have graduated). Assuming that
there are no other types of persons of interest to the university, the total specialization
rule applies, as shown in the figure. A person might belong to more than one subtype
(e.g., ALUMNUS and EMPLOYEE), so the overlap rule is used. Note that overlap allows
for any overlap. (A PERSON may be simultaneously in any pair or in all three subtypes.)
If certain combinations are not allowed, a more refined supertype/subtype hierarchy
would have to be developed to eliminate the prohibited combinations.

Attributes that apply specifically to each of these subtypes are shown in the figure.
Thus, each instance of EMPLOYEE has a value for Date Hired and Salary. Major Dept

Routing Number

MANUFACTURED
PART

Purchased?=“Y”Manufactured?=“Y”

O

PART

Part Type

Part No
Description
Location
Qty On Hand
Part Type(Manufactured
 Purchased?)

PURCHASED
PART

SUPPLIES

Unit Price

Subtype discriminator is a
composite attribute when

there is an overlap rule

FIGURE 3-9 Subtype
discriminator (overlap rule)

Supertype/subtype hierarchy
A hierarchical arrangement of
supertypes and subtypes in
which each subtype has only
one supertype.

126 Part II • Database Analysis

is an attribute of STUDENT, and Degree (with components Year, Designation, and Date)
is a multivalued, composite attribute of ALUMNUS.

The next step is to evaluate whether any of the subtypes already defined qualify
for further specialization. In this example, EMPLOYEE is partitioned into two subtypes:
FACULTY and STAFF. FACULTY has the specific attribute Rank, whereas STAFF has
the specific attribute Position. Notice that in this example the subtype EMPLOYEE
becomes a supertype to FACULTY and STAFF. Because there may be types of employ-
ees other than faculty and staff (such as student assistants), the partial specialization
rule is indicated. However, an employee cannot be both faculty and staff at the same
time. Therefore, the disjoint rule is indicated in the circle.

Two subtypes are also defined for STUDENT: GRADUATE STUDENT and
UNDERGRAD STUDENT. UNDERGRAD STUDENT has the attribute Class Standing,
whereas GRADUATE STUDENT has the attribute Test Score. Notice that total special-
ization and the disjoint rule are specified; you should be able to state the business rules
for these constraints.

SUMMARY OF SUPERTYPE/SUBTYPE HIERARCHIES We note two features concerning the
attributes contained in the hierarchy shown in Figure 3-10:

1. Attributes are assigned at the highest logical level that is possible in the hierarchy.
For example, because SSN (i.e., Social Security Number) applies to all persons, it is
assigned to the root. In contrast, Date Hired applies only to employees, so it
is assigned to EMPLOYEE. This approach ensures that attributes can be shared
by as many subtypes as possible.

PERSON

SSN
Name
Address
Gender
Date Of Birth

ALUMNUS

{Degree(Year,
Designation,
Date)}

Salary
Date Hired

EMPLOYEE STUDENT

Major Dept

STAFF

PositionRank

FACULTY UNDERGRAD
STUDENT

Class StandingTest Score

GRADUATE
STUDENT

dd

O

FIGURE 3-10 Example of supertype/subtype hierarchy

Chapter 3 • The Enhanced E-R Model 127

2. Subtypes that are lower in the hierarchy inherit attributes not only from their
immediate supertype, but from all supertypes higher in the hierarchy, up to the
root. Thus, for example, an instance of faculty has values for all of the following
attributes: SSN, Name, Address, Gender, and Date Of Birth (from PERSON); Date
Hired and Salary (from EMPLOYEE); and Rank (from FACULTY).

In the student case at the end of this chapter, we ask you to develop an enhanced
E-R diagram for Mountain View Community Hospital using the same procedure we
outlined in this section.

EER MODELING EXAMPLE: PINE VALLEY FURNITURE COMPANY

In Chapter 2, we presented a sample E-R diagram for Pine Valley Furniture. (This
diagram, developed using Microsoft Visio, is repeated in Figure 3-11.) After studying
this diagram, you might use some questions to help you clarify the meaning of entities
and relationships. Three such areas of questions are (see annotations in Figure 3-11 that
indicate the source of each question):

1. Why do some customers not do business in one or more sales territories?
2. Why do some employees not supervise other employees, and why are they not all

supervised by another employee? And, why do some employees not work in a
work center?

3. Why do some vendors not supply raw materials to Pine Valley Furniture?

You may have other questions, but we will concentrate on these three to illustrate
how supertype/subtype relationships can be used to convey a more specific (semanti-
cally rich) data model.

After some investigation into these three questions, we discover the following
business rules that apply to how Pine Valley Furniture does business:

1. There are two types of customers: regular and national account. Only regular cus-
tomers do business in sales territories. A sales territory exists only if it has at least
one regular customer associated with it. A national account customer is associated
with an account manager. It is possible for a customer to be both a regular and a
national account customer.

2. Two special types of employees exist: management and union. Only union
employees work in work centers, and a management employee supervises union
employees. There are other kinds of employees besides management and union. A
union employee may be promoted into management, at which time that employee
stops being a union employee.

3. Pine Valley Furniture keeps track of many different vendors, not all of which
have ever supplied raw materials to the company. A vendor is associated with
a contract number once that vendor becomes an official supplier of raw
materials.

These business rules have been used to modify the E-R diagram in Figure 3-11 into
the EER diagram in Figure 3-12. (We have left most attributes off this diagram except for
those that are essential to see the changes that have occurred.) Rule 1 means that there is
a total, overlapping specialization of CUSTOMER into REGULAR CUSTOMER and
NATIONAL ACCOUNT CUSTOMER. A composite attribute of CUSTOMER, Customer
Type (with components National and Regular), is used to designate whether a customer
instance is a regular customer, a national account, or both. Because only regular cus-
tomers do business in sales territories, only regular customers are involved in the Does
Business In relationship (associative entity).

Rule 2 means that there is a partial, disjoint specialization of EMPLOYEE into
MANAGEMENT EMPLOYEE and UNION EMPLOYEE. An attribute of EMPLOYEE,
Employee Type, discriminates between the two special types of employees.
Specialization is partial because there are other kinds of employees besides these two
types. Only union employees are involved in the Works In relationship, but all union
employees work in some work center, so the minimum cardinality of next to Works In

Salesperson ID

Salesperson Name
Salesperson Telephone
Salesperson Fax

PK

SALESPERSON

Customer ID

Customer Name
Customer Address
Customer Postal Code

PK

CUSTOMER

Product ID

Product Description
Product Finish
Product Standard Price

PK

PRODUCT

Material ID

Material Name
Material Standard Cost

PK

RAW MATERIAL

Order ID

Order Date

PK

ORDER

SkillPK

SKILL

Ordered Quantity

ORDER LINE

Product Line ID

Product Line Name

PK

PRODUCT LINE

Serves

Submits

Includes

Is Supervised By

Supervises

Territory IDPK

Territory Name

TERRITORY DOES BUSINESS IN

Vendor ID

Vendor Name
Vendor Address

PK

VENDOR

Employee Name
Employee Address

Work Center ID

Work Center Location

PK

WORK CENTER

Goes into Quantity

USES PRODUCED IN

WORKS IN

HAS SKILL

Supply Unit Price

SUPPLIES

Question 1

Question 3

Question 2

FIGURE 3-11 E-R diagram for Pine Valley Furniture Company

128 Part II • Database Analysis

SALESPERSON

USTOMER NATIONAL CUSTOMER

CUSTOMER

Customer Type
National?
Regular?

Account Manager

RAW MATERIAL

ORDER

SKILL

ORDER LINE

PRODUCT LINE

PRODUCT

USES

VENDOR

Serves
Customer Type

Submits

Includes

SALES TERRITORY DOES BUSINE

Contract Number

SUPPLIER

EMPLOYEE

“M”

MANAGEMENT EMPLOYEE

WORK CENTER

Produced In

WORKS IN
HAS SKILL

SUPPLIES

Supervises

O

Rule 3

Rule 1

Rule 2

FIGURE 3-12 EER diagram for Pine Valley Furniture Company using Microsoft Visio

129

130 Part II • Database Analysis

from UNION EMPLOYEE is now mandatory. Because an employee cannot be both
management and union at the same time (although they can change status over time),
the specialization is disjoint.

Rule 3 means that there is a partial specialization of VENDOR into SUPPLIER
because only some vendors become suppliers. A supplier, not a vendor, has a contract
number. Because there is only one subtype of VENDOR, there is no reason to specify a
disjoint or overlap rule. Because all suppliers supply some raw material, the minimum
cardinality next to RAW MATERIAL in the Supplies relationship (associative entity in
Visio) now is one.

This example shows how an E-R diagram can be transformed into an EER dia-
gram once generalization/specialization of entities is understood. Not only are super-
type and subtype entities now in the data model, but additional attributes, including
discriminating attributes, also are added, minimum cardinalities change (from optional
to mandatory), and relationships move from the supertype to a subtype.

This is a good time to emphasize a point made earlier about data modeling. A data
model is a conceptual picture of the data required by an organization. A data model
does not map one-for-one to elements of an implemented database. For example, a
database designer may choose to put all customer instances into one database table, not
separate ones for each type of customer. Such details are not important now. The pur-
pose now is to explain all the rules that govern data, not how data will be stored and
accessed to achieve efficient, required information processing. We will address technol-
ogy and efficiency issues in subsequent chapters when we cover database design and
implementation.

Although the EER diagram in Figure 3-12 clarifies some questions and makes the
data model in Figure 3-11 more explicit, it still can be difficult for some people to com-
prehend. Some people will not be interested in all types of data, and some may not need
to see all the details in the EER diagram to understand what the database will cover.
The next section addresses how we can simplify a complete and explicit data model for
presentation to specific user groups and management.

ENTITY CLUSTERING

Some enterprise-wide information systems have more than 1,000 entity types and rela-
tionships. How do we present such an unwieldy picture of organizational data to devel-
opers and users? With a really big piece of paper? On the wrap-around walls of a large
conference room? (Don’t laugh about that one; we’ve seen it done!) Well, the answer is,
we don’t have to. In fact, there would be very few people who need to see the whole
ERD in detail. If you are familiar with the principles of systems analysis and design
(see, e.g., Hoffer et al., 2010), you know about the concept of functional decomposition.
Briefly, functional decomposition is an iterative approach to breaking a system down
into related components so that each component can be redesigned by itself without
destroying the connections with other components. Functional decomposition is pow-
erful because it makes redesign easier and allows people to focus attention on the part
of the system in which they are interested. In data modeling, a similar approach is to
create multiple, linked E-R diagrams, each showing the details of different (possibly
overlapping) segments or subsets of the data model (e.g., different segments that apply
to different departments, information system applications, business processes, or cor-
porate divisions).

Entity clustering (Teorey, 1999) is a useful way to present a data model for a large
and complex organization. An entity cluster is a set of one or more entity types and
associated relationships grouped into a single abstract entity type. Because an entity
cluster behaves like an entity type, entity clusters and entity types can be further
grouped to form a higher-level entity cluster. Entity clustering is a hierarchical decom-
position of a macro-level view of the data model into finer and finer views, eventually
resulting in the full, detailed data model.

Figure 3-13 illustrates one possible result of entity clustering for the Pine Valley
Furniture Company data model of Figure 3-12. Figure 3-13a shows the complete data

Entity cluster
A set of one or more entity types
and associated relationships
grouped into a single abstract
entity type.

SELLING UNIT

SALESPERSON

REGULAR CUSTOMER NATIONAL CUSTOMER

CUSTOMER CUSTOMER

ITEM
SALE

MANUFACTURING

ITEM

MATERIAL

Customer Type
National?
Regular?

Account Manager

RAW MATERIAL

ORDER

SKILL

ORDER LINE

PRODUCT LINE

PRODUCT

USES

VENDOR

Serves
Customer Type

Submits
o

d

Includes

SALES TERRITORY DOES BUSINESS IN

Contract Number

SUPPLIER

EMPLOYEE

UNION EMPLOYEE

“U”“M”

MANAGEMENT EMPLOYEE

WORK CENTER

PRODUCED IN

WORKS IN
HAS SKILL

SUPPLIES

Employee Type

Employee Type

Supervises

FIGURE 3-13 Entity clustering for Pine Valley Furniture Company
(a) Possible entity clusters (using Microsoft Visio)

131

(continued)

132 Part II • Database Analysis

SELLING UNIT
CUSTOMER

Customer Type
National?
Regular?

MATERIAL USES ITEM

PRODUCED IN

MANUFACTURING

ITEM SALE

Submits

DOES BUSINESS IN

FIGURE 3-13 (continued)
(b) EER diagram for entity clusters (using Microsoft Visio)

model with shaded areas around possible entity clusters; Figure 3-13b shows the final
result of transforming the detailed EER diagram into an EER diagram of only entity
clusters and relationships. (An EER diagram may include both entity clusters and
entity types, but this diagram includes only entity clusters.) In this figure, the entity
cluster

• SELLING UNIT represents the SALESPERSON and SALES TERRITORY entity
types and the Serves relationship

• CUSTOMER represents the CUSTOMER entity supertype, its subtypes, and the
relationship between supertype and subtypes

• ITEM SALE represents the ORDER entity type and ORDER LINE associative
entity as well as the relationship between them

• ITEM represents the PRODUCT LINE and PRODUCT entity types and the
Includes relationship

• MANUFACTURING represents the WORK CENTER and EMPLOYEE supertype
entity and its subtypes as well as the Works In associative entity and Supervises
relationships and the relationship between the supertype and its subtypes.
(Figure 3-14 shows an explosion of the MANUFACTURING entity cluster into its
components.)

• MATERIAL represents the RAW MATERIAL and VENDOR entity types, the SUP-
PLIER subtype, the Supplies associative entity, and the supertype/subtype rela-
tionship between VENDOR and SUPPLIER.

Chapter 3 • The Enhanced E-R Model 133

The E-R diagrams in Figures 3-13 and 3-14 can be used to explain details to people
most concerned with assembly processes and the information needed to support this
part of the business. For example, an inventory control manager can see in Figure 3-13b
that the data about manufacturing can be related to item data (the Produced In relation-
ship). Furthermore, Figure 3-14 shows what detail is kept about the production process
involving work centers and employees. This person probably does not need to see the
details about, for example, the selling structure, which is embedded in the SELLING
UNIT entity cluster.

Entity clusters in Figure 3-13 were formed (1) by abstracting a supertype and its
subtype (see the CUSTOMER entity cluster) and (2) by combining directly related entity
types and their relationships (see the SELLING UNIT, ITEM, MATERIAL, and MANU-
FACTURING entity clusters). An entity cluster can also be formed by combining a strong
entity and its associated weak entity types (not illustrated here). Because entity cluster-
ing is hierarchical, if it were desirable, we could draw another EER diagram in which we
combine the SELLING UNIT and CUSTOMER entity clusters with the DOES BUSINESS
IN associative entity one entity cluster, because these are directly related entity clusters.

An entity cluster should focus on an area of interest to some community of users,
developers, or managers. Which entity types and relationships are grouped to form an
entity cluster depends on your purpose. For example, the ORDER entity type could be
grouped in with the CUSTOMER entity cluster and the ORDER LINE entity type could
be grouped in with the ITEM entity cluster in the example of entity clustering for the
Pine Valley Furniture data model. This regrouping would eliminate the ITEM SALE
cluster, which might not be of interest to any group of people. Also, you can do several
different entity clusterings of the full data model, each with a different focus.

PACKAGED DATA MODELS

According to Len Silverston (1998), “The age of the data modeler as artisan is passing.
Organizations can no longer afford the labor or time required for handcrafting data
models from scratch. In response to these constraints, the age of the data modeler
as engineer is dawning.” As one executive explained to us, “the acquisition of a
[packaged data model] was one of the key strategic things his organization did to gain

d

EMPLOYEE

UNION EMPLOYEE

“U”“M”

MANAGEMENT EMPLOYEE

WORK CENTER

WORKS INSKILL HAS SKILL

Employee Type

Employee Type

Supervises

FIGURE 3-14 MANUFACTURING entity cluster

134 Part II • Database Analysis

quick results and long-term success” for the business. Packaged data models are a
game-changer for data modeling.

As introduced in Chapter 2, an increasingly popular approach of beginning a data
modeling project is by acquiring a packaged or predefined data model, either a so-
called universal model or an industry-specific model (some providers call these logical
data models [LDMs], but these are really EER diagrams as explained in this chapter; the
data model may also be part of a purchased software package, such as an enterprise
resource planning or customer relationship management system). These packaged data
models are not fixed, rather, the data modeler customizes the predefined model to fit
the business rules of his or her organization based on a best-practices data model for
their industry (e.g., transportation or communications) or chosen functional area (e.g.,
finance or manufacturing). The key assumption of this data modeling approach is that
underlying structures or patterns of enterprises in the same industry or functional area
are similar. Packaged data models are available from various consultants and database
technology vendors. Although packaged data models are not inexpensive, many
believe the total cost is lower and the quality of data modeling is better by using such
resources. Some generic data models can be found in publications (e.g., see articles and
books by Hay and by Silverston listed at the end of this chapter).

A universal data model is a generic or template data model that can be reused as
a starting point for a data modeling project. Some people call these data model patterns,
similar to the notion of patterns of reusable code for programming. A universal data
model is not the “right” data model, but it is a successful starting point for developing
an excellent data model for an organization.

Why has this approach of beginning from a universal data model for conducting a
data modeling project become so popular? The following are some of the most com-
pelling reasons professional data modelers are adopting this approach (we have devel-
oped this reasoning from Hoberman, 2006, and from an in-depth study we have
conducted at the leading online retailer Overstock.com, which has adopted several
packaged data models from Teradata Corporation):

• Data models can be developed using proven components evolved from cumu-
lative experiences (as stated by the data administrator in the company we stud-
ied, “why reinvent when you can adapt?”). These data models are kept
up-to-date by the provider as new kinds of data are recognized in an industry
(e.g., RFID).

• Projects take less time and cost because the essential components and structures
are already defined and only need to be quickly customized to the particular situ-
ation. The company we studied stated that the purchased data model was about
80 percent right before customization and that the cost of the package was about
equal to the cost of one database modeler for one year.

• Data models are less likely to miss important components or make modeling
errors due to not recognizing common possibilities. For example, the company we
studied reported that their packaged data models helped them to avoid the temp-
tation of simply mirroring existing databases, with all the historical “warts” of
poor naming conventions, data structures customized for some historical pur-
pose, and the inertia of succumbing to the pressure to simply duplicate the inade-
quate past practices. As another example, one vendor of packaged data models,
Teradata, claims that one of its data models was scoped using more than 1,000
business questions and key performance indicators.

• Because of a holistic, enterprise view and development from best practices of data
modeling experts found in a universal data model, the resulting data model for a
particular enterprise tends to be easier to evolve as additional data requirements
are identified for the given situation. A purchased model results in reduced
rework in the future because the package gets it correct right out of the box and
anticipates the future needs.

• The generic model provides a starting point for asking requirements questions
so that most likely all areas of the model are addressed during requirements

Universal data model
A generic or template data model
that can be reused as a starting
point for a data modeling project.

Chapter 3 • The Enhanced E-R Model 135

determination. In fact, the company we studied said that their staff was
“intrigued by all the possibilities” to meet even unspoken requirements from the
capabilities of the prepackaged data models.

• Data models of an existing database are easier to read by data modelers and other
data management professionals the first time because they are based on common
components seen in similar situations.

• Extensive use of supertype/subtype hierarchies and other structures in universal
data models promotes reusing data and taking a holistic, rather than narrow, view
of data in an organization.

• Extensive use of many-to-many relationships and associative entities even where
a data modeler might place a one-to-many relationship gives the data model
greater flexibility to fit any situation, and naturally handles time stamping and
retention of important history of relationships, which can be important to comply
with regulations and financial record-keeping rules.

• Adaptation of a data model from your DBMS vendor usually means that your
data model will easily work with other applications from this same vendor or
their software partners.

• If multiple companies in the same industry use the same universal data model as
the basis for their organizational databases, it may be easier to share data for interor-
ganizational systems (e.g., reservation systems between rental car and airline firms).

A Revised Data Modeling Process with Packaged Data Models

Data modeling from a packaged data model requires no less skill than data modeling
from scratch. Packaged data models are not going to put data modelers out of work (or
keep you from getting that job as an entry-level data analyst you want now that you’ve
started studying database management!). In fact, working with a package requires
advanced skills, like those you are learning in this chapter and Chapter 2. As we will
see, the packaged data models are rather complex because they are thorough and devel-
oped to cover all possible circumstances. A data modeler has to be very knowledgeable
of the organization as well as the package to customize the package to fit the specific
rules of that organization.

What do you get when you purchase a data model? What you are buying is meta-
data. You receive, usually on a CD, a fully populated description of the data model,
usually specified in a structured data modeling tool, such as ERwin from Computer
Associates or Oracle Designer from Oracle Corporation. The supplier of the data model
has drawn the EER diagram, named and defined all the elements of the data model, and
given all the attributes characteristics of data type (character, numeric, image), length,
format, and so forth. You can print the data model and various reports about its
contents to support the customization process. Once you customize the model, you can
then use the data modeling tool to automatically generate the SQL commands to define
the database to a variety of database management systems.

How is the data modeling process different when starting with a purchased solu-
tion? The following are the key differences (our understanding of these differences are
enhanced by the interviews we conducted at Overstock.com):

• Because a purchased data model is extensive, you begin by identifying the parts of
the data model that apply to your data modeling situation. Concentrate on these
parts first and in the most detail. Start, as with most data modeling activities, first
with entities, then attributes, and finally relationships. Consider how your organ-
ization will operate in the future, not just today.

• You then rename the identified data elements to terms local to the organization
rather than the generic names used in the package.

• In many cases, the packaged data model will be used in new information systems
that replace existing databases as well as to extend into new areas. So the next step
is to map the data to be used from the package to data in current databases. One
way this mapping will be used is to design migration plans to convert existing

136 Part II • Database Analysis

databases to the new structures. The following are some key points about this
mapping process:
• There will be data elements from the package that are not in current systems,

and there will be some data elements in current databases not in the package.
Thus, some elements won’t map between the new and former environments.
This is to be expected because the package anticipates information needs you
have not, yet, satisfied by your current databases and because you do some spe-
cial things in your organization that you want to retain but that are not standard
practices. However, be sure that each non-mapped data element is really unique
and needed. For example, it is possible that a data element in a current database
may actually be derived from other more atomic data in the purchased data
model. Also, you need to decide if data elements unique to the purchased data
model are needed now or can be added on when you are ready to take advan-
tage of these capabilities in the future.

• In general, the business rules embedded in the purchased data model cover all
possible circumstances (e.g., the maximum number of customers associated
with a customer order). The purchased data model allows for great flexibility,
but a general-purpose business rule may be too weak for your situation (e.g.,
you are sure you will never allow more than one customer per customer order).
As you will see in the next section, the flexibility and generalizability of a pur-
chased data model results in complex relationships and many entity types.
Although the purchased model alerts you to what is possible, you need to
decide if you really need this flexibility and if the complexity is worthwhile.

• Because you are starting with a prototypical data model, it is possible to engage
users and managers to be supported by the new database early and often in the
data modeling project. Interviews, JAD sessions, and other requirements gather-
ing activities are based on concrete ERDs rather than wish lists. The purchased
data model essentially suggests specific questions to be asked or issues to dis-
cuss (e.g., “Would we ever have a customer order with more than one customer
associated with it?” or “Might an employee also be a customer?”). The pur-
chased model in a sense provides a visual checklist of items to discuss (e.g., Do
we need these data? Is this business rule right for us?); further, it is comprehen-
sive, so it is less likely that an important requirement will be missed.

• Because the purchased data model is comprehensive, there is no way you will be
able to build and populate the full database or even customize the whole data
model in one project. However, you don’t want to miss the opportunity to visu-
alize future requirements shown in the full data model. Thus, you will get to a
point where you have to make a decision on what will be built first and possible
future phases to build out as much of the purchased data model as will make
sense. One approach to explaining the build-out schedule is to use entity cluster-
ing to show segments of the full data model that will be built in different phases.
Future mini-projects will address detailed customization for new business needs
and other segments of the data model not developed in the initial project.

You will learn in subsequent chapters of this book important database modeling and
design concepts and skills that are important in any database development effort, includ-
ing those based on purchased data models. There are, however, some important things to
note about projects involving purchased data models. Some of these involve using existing
databases to guide how to customize a purchased data model, including the following:

• Over time the same attribute may have been used for different purposes—what
people call overloaded columns in current systems. This means that the data val-
ues in existing databases may not have uniform meaning for the migration to the
new database. Oftentimes these multiple uses are not documented and are not
known until the migration begins. Some data may no longer be needed (maybe
used for a special business project), or there may be hidden requirements that
were not formally incorporated into the database design. More on how to deal
with this in a moment.

Chapter 3 • The Enhanced E-R Model 137

• Similarly, some attributes may be empty (i.e., have no values), at least for some
periods of time. For example, some employee home addresses could be missing,
or product engineering attributes for a given product line might be absent for
products developed a few years ago. This could have occurred because of applica-
tion software errors, human data entry mistakes, or other reasons. As we have
studied, missing data may suggest optional data, and the need for entity subtypes.
So missing data need to be studied to understand why the data are sparse.

• A good method for understanding hidden meaning and identifying inconsisten-
cies in existing data models, and hence data and business rules that need to be
included in the customized purchased data model, is data profiling. Profiling is a
way to statistically analyze data to uncover hidden patterns and flaws. Profiling
can find outliers, identify shifts in data distribution over time, and identify other
phenomenon. Each perturbation of the distribution of data may tell a story, such
as showing when major application system changes occurred, or when business
rules changed. Often these patterns suggest poorly designed databases (e.g., data
for separate entities were combined to improve processing speed for a special set
of queries but the better structure was never restored). Data profiling can also be
used to assess how accurate current data are and anticipate the clean-up effort that
will be needed to populate the purchased data model with high-quality data.

• Arguably the most important challenge of customizing a purchased data model is
determining the business rules that will be established through the data model. A
purchased data model will anticipate the vast majority of the needed rules, but
each rule must be verified for your organization. Fortunately, you don’t have to
guess which ones to address; each is laid out by the entities, attributes, and rela-
tionships with their metadata (names, definitions, data types, formats, lengths,
etc.) in the purchased model. It simply takes time to go through each of these data
elements with the right subject matter experts to make sure you have the relation-
ship cardinalities and all other aspects of the data model right.

Packaged Data Model Examples

What, then, do packaged or universal data models look like? Central to the universal
data model approach are supertype/subtype hierarchies. For example, a core structure
of any universal data model is the entity type PARTY, which generalizes persons or
organizations as actors for the enterprise, and an associated entity type PARTY ROLE,
which generalizes various roles parties can play at different times. A PARTY ROLE
instance is a situation in which a PARTY acts in a particular ROLE TYPE. These notions
of PARTY, PARTY ROLE, and ROLE TYPE supertypes and their relationship are shown
in Figure 3-15a. We use the supertype/subtype notation from Figure 3-1c because this is
the notation most frequently used in publically available universal data models. (Most
packaged data models are proprietary intellectual property of the vendor, and, hence,
we cannot show them in this textbook.) This is a very generic data model (albeit simple
to begin our discussion). This type of structure allows a specific party to serve in differ-
ent roles during different time periods. It allows attribute values of a party to be “over-
ridden” (if necessary in the organization) by values pertinent to the role being played
during the given time period (e.g., although a PERSON of the PARTY supertype has a
Current Last Name as of now, when in the party role of BILL TO CUSTOMER a differ-
ent Current Last Name could apply during the particular time period [From Date to
Thru Date] of that role). Note that even for this simple situation, the data model is try-
ing to capture the most general circumstances. For example, an instance of the
EMPLOYEE subtype of the PERSON ROLE subtype of PARTY ROLE would be associ-
ated with an instance of the ROLE TYPE that describes the employee-person role-party
role. Thus, one description of a role type explains all the instances of the associated
party roles of that role type.

An interesting aspect of Figure 3-15a is that PARTY ROLE actually simplifies what
could be a more extensive set of subtypes of PARTY. Figure 3-15b shows one PARTY
supertype with many subtypes covering many party roles. With partial specialization
and overlap of subtypes, this alternative would appear to accomplish the same data

SON ROLE
ent First Name

Current Last NameThru Date
EMPLOYEE CONTACT

ORGANIZATION
ROLE ORGAN

DEPAR

Used
to
Identify

Of

For

Acting

ROLE TYPE
Role Type ID
Description

PERSON
Current First Nam
Current Last Nam
Social Security Number

PARTY
Party ID

SUPPLIER

Attributes of all types
of PARTY ROLEs

Override attribute of
same name in the

entity PERSON
ROLE higher in the

hierarchy

A PERSON has names but may
have different names when acting in

a PERSON ROLE

FIGURE 3-15 PARTY, PARTY ROLE, and ROLE TYPE in a universal data model

EMPLOYEE

CONTACT

ORGANIZATION UNIT

DEPARTMENT

CUSTOMER

PERSON
Current First Name
Current Last Name
Social Security Number

PARTY
Party ID

ORGANIZATION
Organization Name

SUPPLIER

BILL TO CUSTOMER
Current Last Name

CUSTOMER

BILL TO CUSTOMER
Current Last Name

138

(a) Basic PARTY universal data model

(b) PARTY supertype/subtype hierarchy

Chapter 3 • The Enhanced E-R Model 139

ORG CONTACT

EMPLOYMENT

PERSON-TO-ORG
RELATIONSHIP

ORG CUSTOMER

PARTNERSHIP

ORG-TO-ORG
RELATIONSHIP

PARTY RELATIONSHIP
From Date

PERSON ROLEE
EMPLOYEE CONTACT

ORGANIZATION
ROLE ORGANIZATION UNIT

DEPARTMENT

Used
to
Identify

Of

For

Acting As

PERSON
PARTY
Party ID ORGANIZATION

o

Involves

From

Involved In

SUPPLIER

CUSTOMER

BILL TO CUSTOMER
Current Last Name

ROLE TYPE
Role Type ID

Indicates when a
RELATIONSHIP or
ROLE is in effect

FIGURE 3-16 Extension of a universal data model to include PARTY RELATIONSHIPs

modeling semantics as Figure 3-15a. However, Figure 3-15a recognizes the important
distinction between enterprise actors (PARTYs) and the roles each plays from time to
time (PARTY ROLEs). Thus, the PARTY ROLE concept actually adds to the generaliza-
tion of the data model and the universal applicability of the predefined data model.

The next basic construct of most universal data models is the representation of rela-
tionships between parties in the roles they play. Figure 3-16 shows this next extension of
the basic universal data model. PARTY RELATIONSHIP is an associative entity, which
hence allows any number of parties to be related as they play particular roles. Each
instance of a relationship between PARTYs in PARTY ROLEs would be a separate
instance of a PARTY RELATIONSHIP subtype. For example, consider the employment
of a person by some organization unit during some time span, which over time is a
many-to-many association. In this case, the EMPLOYMENT subtype of PARTY RELA-
TIONSHIP would (for a given time period) likely link one PERSON playing the role of
an EMPLOYEE subtype of PARTY ROLE with one ORGANIZATION ROLE playing
some pertinent party role, such as ORGANIZATION UNIT. (That is, a person is

140 Part II • Database Analysis

employed in an organization unit during a period of From Date to Thru Date in PARTY
RELATIONSHIP.)

PARTY RELATIONSHIP is represented very generally, so it really is an associative
entity for a unary relationship among PARTY ROLE instances. This makes for a very
general, flexible pattern of relationships. What might be obscured, however, are which
subtypes might be involved in a particular PARTY RELATIONSHIP, and stricter rela-
tionships that are not many-to-many, probably because we don’t need to keep track of
the relationship over time. For example, because the Involves and Involved In relation-
ships link the PARTY ROLE and PARTY RELATIONSHIP supertypes, this does not
restrict EMPLOYMENT to an EMPLOYEE with an ORGANIZATION UNIT. Also, if the
enterprise needs to track only current employment associations, the data model in
Figure 3-16 will not enforce that a PERSON PARTY in an EMPLOYEE PARTY ROLE can
be associated with only one ORGANIZATION UNIT at a time. We will see in the next
section how we can include additional business rule notation on an EER diagram to
make this specific. Alternatively, we could draw specific relationships from just the
EMPLOYEE PARTY ROLE and the ORGANIZATION UNIT PARTY ROLE to the
EMPLOYMENT PARTY RELATIONSHIP to represent this particular one-to-many asso-
ciation. As you can imagine, to handle very many special cases like this would create a
diagram with a large number of relationships between PARTY ROLE and PARTY RELA-
TIONSHIP, and, hence, a very busy diagram. Thus, more restrictive cardinality rules (at
least most of them) would likely be implemented outside the data model (e.g., in data-
base stored procedures or application programs) when using a packaged data model.

We could continue introducing various common, reusable building blocks of
universal data models. However, Silverston in a two-volume set (2001a, 2001b) and Hay
(1996) provide extensive coverage. To bring our discussion of packaged, universal data
models to a conclusion, we show in Figure 3-17, a universal data model for a relation-
ship development organization. In this figure, we use the original notation of Silverston
(see several references at the end of the chapter), which is pertinent to Oracle data mod-
eling tools. Now that you have studied EER concepts and notations and have been
introduced to universal data models, you can understand more about the power of this
data model.

To help you better understand the EER diagram in Figure 3-17, consider the
definitions of the highest-level entity type in each supertype/subtype hierarchy:

PARTY Persons and organizations independent of the roles they play

PARTY ROLE Information about a party for an associated role, thus allowing a party to
act in multiple roles

PARTY
RELATIONSHIP

Information about two parties (those in the “to” and “from” roles) within
the context of a relationship

EVENT Activities that may occur within the context of relationships (e.g., a
CORRESPONDENCE can occur within the context of a PERSON-CUSTOMER
relationship in which the “to” party is a CUSTOMER role for an
ORGANIZATION and the from party is an EMPLOYEE role for a PERSON)

PRIORITY TYPE Information about a priority that may set the priority for a given PARTY
RELATIONSHIP

STATUS TYPE Information about the status (e.g., active, inactive, pending) of events or
party relationships

EVENT ROLE Information about all of the PARTYs involved in an EVENT

ROLE TYPE Information about the various PARTY ROLEs and EVENT ROLEs

In Figure 3-17, supertype/subtype hierarchies are used extensively. For example,
in the PARTY ROLE entity type, the hierarchy is as many as four levels deep (e.g.,
PARTY ROLE to PERSON ROLE to CONTACT to CUSTOMER CONTACT). Attributes
can be located with any entity type in the hierarchy [e.g., PARTY has the identifier
PARTY ID (# means identifier), PERSON has three optional attributes (o means
optional), and ORGANIZATION has a required attribute (* means required)].

within the context of
the context for

to

Involved In

from

setting
status
for

Involved In

in the state of

prioritized
by

setting
priority
for

defined
by

EVENT

EVENT ID

o FROM DATETIME

o THRU DATETIME

o NOTE

COMMUNICATION EVENT

CORRESPONDENCE

TELECOMMUNICATION

INTERNET COMMUNICATION

IN-PERSON COMMUNICATION

OTHER COMMUNICATION EVENT

TRANSACTION EVENT
COMMITMENT TRANSACTION
 RESERVATION ORDER OTHER
 COMMITMENT

 FULFILLMENT TRANSACTION
 SHIPMENT PAYMENT OTHER
 FULFILLMENT

 OTHER TRANSACTION EVENT

PARTY
RELATIONSHIP
FROM DATE
o THRU DATE
• THRU DATEPERSON-TO-ORG
RELATIONSHIP

PERSON-
CUSTOMER
RELATIONSHIP

ORGANIZATION
CONTACT
RELATIONSHIP

EMPLOYMENT

ORG-TO-ORG
RELATIONSHIP

ORG-CUSTOMER
RELATIONSHIP

SUPPLIER
RELATIONSHIP

DISTRIBUTION
CHANNEL
RELATIONSHIP

PARTNERSHIP

PERSON-TO-
PERSON
RELATIONSHIP

BUSINESS
ASSOCIATION

FAMILY
ASSOCIATION

PARTY ROLE
FROM DATE
o THRU DATE
 PERSON ROLE

 EMPLOYEE CONTRACTOR

 CONTACT

 CUSTOMER CONTACT

 SUPPLIER CONTACT

 PARTNER CONTACT

 FAMILY MEMBER

 PROSPECT SHAREHOLDER

 CUSTOMER

 BILL-TO CUSTOMER
 o CURRENT CREDIT LIMIT AMT

 SHIP-TO CUSTOMER

 END-USER CUSTOMER

for

Acting As

PARTY
PARTY ID

 ORGANIZATION ROLE

 DISTRIBUTION CHANNEL

 AGENT DISTRIBUTOR

 PARTNER COMPETITOR

 HOUSEHOLD REGULATORY

 SUPPLIER
AGENCY

 ASSOCIATION

 ORGANIZATION UNIT

 DEPARTMENT OTHER

 DIVISION
ORGANIZATION

 SUBSIDIARY
UNIT

 PARENT ORGANIZATION

 INTERNAL ORGANIZATION

PRIORITY TYPE
PRIORITY TYPE ID
* DESCRIPTION

STATUS TYPE
STATUS ID
* DESCRIPTION

PARTY
RELATIONSHIP
STATUS TYPE

EVENT
STATUS
TYPE

PERSON
o CURRENT FIRST NAME
o CURRENT LAST NAME
o SOCIAL SECURITY NUMBER

ORGANIZATION
* NAME

for

EVENT ROLE
FROM DATE
o THRU DATE

ROLE TYPE
ROLE TYPE ID
* DESCRIPTION

for

of

Used to Identify

of

used
within

involvinginvolving

involvinginvolvinginvolving

involved ininvolved in

involving

Involved In

FIGURE 3-17 A universal data model for relationship development

141

142 Part II • Database Analysis

Relationships can be between entity types anywhere in the hierarchy. For example, any
EVENT is “in the state of” an EVENT STATUS TYPE, a subtype, whereas any EVENT is
“within the context of” a PARTY RELATIONSHIP, a supertype.

As stated previously, packaged data models are not meant to be exactly right
straight out of the box for a given organization; they are meant to be customized. To be
the most generalized, such models have certain properties before they are customized
for a given situation:

1. Relationships are connected to the highest-level entity type in a hierarchy that
makes sense. Relationships can be renamed, eliminated, added, and moved as
needed for the organization.

2. Strong entities almost always have M:N relationships between them (e.g., EVENT
and PARTY), so at least one, and sometimes many, associative entities are used.
Consequently, all relationships are 1:M, and there is an entity type in which to
store intersection data. Intersection data are often dates, showing over what span
of time the relationship was valid. Thus, the packaged data model is designed to
allow tracking of relationships over time. (Recall that this is a common issue that
was discussed with Figure 2-20.) 1:M relationships are optional, at least on the
many side (e.g., the dotted line next to EVENT for the “involving” relationship
signifies that an EVENT may involve an EVENT ROLE, as is done with Oracle
Designer).

3. Although not clear on this diagram, all supertype/subtype relationships follow
the total specialization and overlap rules, which makes the diagram as thorough
and flexible as possible.

4. Most entities on the many side of a relationship are weak, thus inheriting the
identifier of the entity on the one side (e.g., the ~ on the “acting as” relationship
from PARTY to PARTY ROLE signifies that PARTY ROLE implicitly includes
PARTY ID).

This chapter has described how the basic E-R model has
been extended to include supertype/subtype relation-
ships. A supertype is a generic entity type that has a rela-
tionship with one or more subtypes. A subtype is a
grouping of the entities in an entity type that is meaning-
ful to the organization. For example, the entity type PER-
SON is frequently modeled as a supertype. Subtypes of
PERSON may include EMPLOYEE, VOLUNTEER, and
CLIENT. Subtypes inherit the attributes and relationships
associated with their supertype.

Supertype/subtype relationships should normally
be considered in data modeling with either (or both) of
the following conditions present: First, there are attrib-
utes that apply to some (but not all) of the instances of an
entity type. Second, the instances of a subtype participate
in a relationship unique to that subtype.

The techniques of generalization and specialization
are important guides in developing supertype/subtype
relationships. Generalization is the bottom-up process of
defining a generalized entity type from a set of more spe-
cialized entity types. Specialization is the top-down
process of defining one or more subtypes of a supertype
that has already been defined.

The EER notation allows us to capture the impor-
tant business rules that apply to supertype/subtype rela-
tionships. The completeness constraint allows us to
specify whether an instance of a supertype must also be a
member of at least one subtype. There are two cases: With

total specialization, an instance of the supertype must be
a member of at least one subtype. With partial specializa-
tion, an instance of a supertype may or may not be a
member of any subtype. The disjointness constraint
allows us to specify whether an instance of a supertype
may simultaneously be a member of two or more sub-
types. Again, there are two cases. With the disjoint rule,
an instance can be a member of only one subtype at a
given time. With the overlap rule, an entity instance can
simultaneously be a member of two (or more) subtypes.

A subtype discriminator is an attribute of a super-
type whose values determine to which subtype (or sub-
types) a supertype instance belongs. A supertype/subtype
hierarchy is a hierarchical arrangement of supertypes and
subtypes, where each subtype has only one supertype.

There are extensions to the E-R notation other than
supertype/subtype relationships. One of the other useful
extensions is aggregation, which represents how some
entities are part of other entities (e.g., a PC is composed of
a disk drive, RAM, a motherboard, etc.). Due to space
limitations we have not discussed these extensions here.
Most of these extensions, like aggregation, are also a part
of object-oriented data modeling, which is explained in
Chapters 13 and 14.

E-R diagrams can become large and complex,
including hundreds of entities. Many users and man-
agers do not need to see all the entities, relationships, and
attributes to understand the part of the database with

Summary

Chapter 3 • The Enhanced E-R Model 143

Attribute inheritance 117
Completeness constraint 121
Disjoint rule 122
Disjointness constraint 122
Enhanced entity-relationship

(EER) model 113

Chapter Review

Key Terms

Entity cluster 130
Generalization 118
Overlap rule 123
Partial specialization

rule 121
Specialization 119

Subtype 114
Subtype discriminator

123
Supertype 114
Supertype/subtype

hierarchy 125

Total specialization
rule 121

Universal data
model 134

Review Questions

1. Define each of the following terms:
a. supertype
b. subtype
c. specialization
d. entity cluster
e. completeness constraint
f. enhanced entity-relationship

(EER) model
g. subtype discriminator
h. total specialization rule
i. generalization
j. disjoint rule
k. overlap rule
l. partial specialization rule
m. universal data model

2. Match the following terms and definitions:
supertype
entity cluster
subtype
specialization
subtype
discriminator
attribute
inheritance
overlap rule

3. Contrast the following terms:
a. supertype; subtype
b. generalization; specialization
c. disjoint rule; overlap rule
d. total specialization rule; partial specialization rule
e. PARTY; PARTY ROLE
f. entity; entity cluster

4. State two conditions that indicate when a database designer
should consider using supertype/subtype relationships.

5. State the reason for entity clustering.
6. Give an example (other than those discussed in the chapter)

of a supertype/subtype relationship.
7. What is attribute inheritance? Why is it important?
8. Give an example of each of the following:

a. a supertype/subtype relationship where the disjoint rule
applies

b. a supertype/subtype relationship where the overlap
rule applies

9. What types of business rules are normally captured in an
EER diagram?

10. What is the purpose of a subtype discriminator?
11. When would a packaged data model be useful?
12. In what ways is starting a data modeling project with a

packaged data model different from starting a data modeling
project with a clean sheet of paper?

which they are most interested. Entity clustering is a way
to turn a part of an entity-relationship data model into a
more macro-level view of the same data. An entity cluster
is a set of one or more entity types and associated rela-
tionships grouped into a single abstract entity type.
Several entity clusters and associated relationships can be
further grouped into even a higher entity cluster, so
entity clustering is a hierarchical decomposition tech-
nique. By grouping entities and relationships, you can lay
out an E-R diagram to allow you to give attention to the
details of the model that matter most in a given data
modeling task.

Packaged data models, so called universal and
industry-specific data models, extensively utilize EER
features. These generalizable data models often use mul-
tiple level supertype/subtype hierarchies and associative
entities. Subjects and the roles subjects play are sepa-
rated, creating many entity types; this complexity can be
simplified when customized for a given organization,
and entity clusters can be used to present simpler views
of the data model to different audiences.

The use of packaged data models can save consider-
able time and cost in data modeling. The skills required
for a data modeling project with a packaged data model
are quite advanced and are built on the data modeling
principles covered in this text. You have to consider not
only current needs but also future requirements to cus-
tomize the general-purpose package. Data elements must
be renamed to local terms, and current data need to be
mapped to the target database design. This mapping can
be challenging due to various forms of mismatches
between the data in current databases with those found
in the best-practices purchased database model.
Fortunately, having actual data models “right out of the
box” helps to structure the customization process for
completeness and ease of communication with subject
matter experts. Overloaded columns, poor metadata, and
abuses of the structure of current databases can make the
customization and migration processes challenging. Data
profiling can be used to understand the current data and
uncover hidden meanings and business rules in data for
your organization.

a. subset of supertype
b. entity belongs to two subtypes
c. subtype gets supertype attributes
d. generalized entity type
e. creating subtypes for an entity

type
f. a group of associated entity types

and relationships
g. locates target subtype for an entity

144 Part II • Database Analysis

13. How can data profiling be used during a data modeling
project, especially one using a packaged data model?

14. Does a data modeling project using a packaged data model
require less or greater skill than a project not using a pack-
aged data model? Why or why not?

15. What do you purchase when you acquire a packaged data
model?

16. When might a supertype/subtype hierarchy be useful?
17. When is a member of a supertype always a member of at

least one subtype?

Problems and Exercises

1. Examine the hierarchy for the university EER diagram
(Figure 3-10). As a student, you are an instance of one of the
subtypes: either UNDERGRAD STUDENT or GRADUATE
STUDENT. List the names of all the attributes that apply to
you. For each attribute, record the data value that applies
to you.

2. Add a subtype discriminator for each of the supertypes
shown in Figure 3-10. Show the discriminator values that
assign instances to each subtype. Use the following subtype
discriminator names and values:
a. PERSON: Person Type (Employee? Alumnus?

Student?)
b. EMPLOYEE: Employee Type (Faculty, Staff)
c. STUDENT: Student Type (Grad, Undergrad)

3. For simplicity, subtype discriminators were left off many
figures in this chapter. Add subtype discriminator notation
in each figure listed below. If necessary, create a new attrib-
ute for the discriminator.
a. Figure 3-2
b. Figure 3-3
c. Figure 3-4b
d. Figure 3-7a
e. Figure 3-7b

4. Refer to the employee EER diagram in Figure 3-2. Make any
assumptions that you believe are necessary. Develop a
sample definition for each entity type, attribute, and rela-
tionship in the diagram.

5. Refer to the EER diagram for patients in Figure 3-3. Make
any assumptions you believe are necessary. Develop sample
definitions for each entity type, attribute, and relationship
in the diagram.

6. Figure 3-13 shows the development of entity clusters for the
Pine Valley Furniture E-R diagram. In Figure 3-13b, explain
the following:
a. Why is the minimum cardinality next to the DOES

BUSINESS IN associative entity coming from CUS-
TOMER zero?

b. What would be the attributes of ITEM (refer to
Figure 2-22)?

c. What would be the attributes of MATERIAL (refer to
Figure 2-22)?

7. A rental car agency classifies the vehicles it rents into four cat-
egories: compact, midsize, full-size, and sport utility. The
agency wants to record the following data for all vehicles:
Vehicle ID, Make, Model, Year, and Color. There are no unique
attributes for any of the four classes of vehicle. The entity type
vehicle has a relationship (named Rents) with a customer
entity type. None of the four vehicle classes has a unique rela-
tionship with an entity type. Would you consider creating
a supertype/subtype relationship for this problem? Why
or why not?

8. At a weekend retreat, the entity type PERSON has three
subtypes: CAMPER, BIKER, and RUNNER. Draw a

separate EER diagram segment for each of the following
situations:
a. At a given time, a person must be exactly one of these

subtypes.
b. A person may or may not be one of these subtypes.

However, a person who is one of these subtypes cannot
at the same time be one of the other subtypes.

c. A person may or may not be one of these subtypes. On
the other hand, a person may be any two (or even three)
of these subtypes at the same time.

d. At a given time, a person must be at least one of these
subtypes.

9. A bank has three types of accounts: checking, savings, and
loan. Following are the attributes for each type of account:

CHECKING: Acct No, Date Opened, Balance, Service
Charge

SAVINGS: Acct No, Date Opened, Balance, Interest Rate
LOAN: Acct No, Date Opened, Balance, Interest Rate,

Payment
Assume that each bank account must be a member of
exactly one of these subtypes. Using generalization,
develop an EER model segment to represent this situation
using the traditional EER notation, the Visio notation, or the
subtypes inside supertypes notation, as specified by your
instructor. Remember to include a subtype discriminator.

10. Refer to your answer to Problem and Exercise 20 in Chapter 2.
Develop entity clusters for this E-R diagram and redraw the
diagram using the entity clusters. Explain why you chose the
entity clusters you used.

11. Refer to your answer to Problem and Exercise 23 in Chapter 2.
Develop entity clusters for this E-R diagram and redraw the
diagram using the entity clusters. Explain why you chose
the entity clusters you used.

12. Draw an EER diagram for the following problem using this
textbook’s EER notation, the Visio notation, or the subtypes
inside supertypes notation, as specified by your instructor.

A nonprofit organization depends on a number of
different types of persons for its successful operation. The
organization is interested in the following attributes for all
of these persons: SSN, Name, Address, City/State/Zip,
and Telephone. Three types of persons are of greatest
interest: employees, volunteers, and donors. Employees
have only a Date Hired attribute, and volunteers have
only a Skill attribute. Donors have only a relationship
(named Donates) with an Item entity type. A donor must
have donated one or more items, and an item may have
no donors, or one or more donors.

There are persons other than employees, volunteers,
and donors who are of interest to the organization, so that
a person need not belong to any of these three groups. On
the other hand, at a given time a person may belong to
two or more of these groups (e.g., employee and donor).

Chapter 3 • The Enhanced E-R Model 145

13. Add a subtype discriminator (named Person Type) to the
diagram you created in Problem and Exercise 12.

14. Develop an EER model for the following situation, using
the traditional EER notation, the Visio notation, or the sub-
types inside supertypes notation, as specified by your
instructor:

A person may be employed by one or more organiza-
tions, and each organization may be the employer of
one or more persons. An organization can be an internal
organizational unit or an external organization. For per-
sons and organizations, we want to know their ID,
name, address, and phone number. For persons, we
want to know their birth date, and for organizations, we
want to know their budget number. For each employ-
ment, we want to know the employment date, termina-
tion date, and bonus.

Employment of a person by an organization may
result in the person holding many positions over time.
For each position, we want to know its title, and each
time someone holds that position, we need to know the
start date and termination date and salary. An organiza-
tion is responsible for each position. It is possible for a
person to be employed by one organization and hold a
position for which another organization is responsible.

15. Draw an EER diagram for the following description of a
law firm:

Each case handled by the firm has a unique case num-
ber; a date opened, date closed, and judgment descrip-
tion are also kept on each case. A case is brought by one
or more plaintiffs, and the same plaintiff may be
involved in many cases. A plaintiff has a requested judg-
ment characteristic. A case is against one or more defen-
dants and the same defendant may be involved in many
cases. A plaintiff or defendant may be a person or an
organization. Over time, the same person or organiza-
tion may be a defendant or a plaintiff in cases. In either
situation, such legal entities are identified by an entity
number, and other attributes are name and net worth.

16. Develop an EER model for the following situation using
the traditional EER notation, the Visio notation, or the
subtypes inside supertypes notation, as specified by your
instructor:

An international school of technology has hired you to
create a database management system to assist in sched-
uling classes. After several interviews with the presi-
dent, you have come up with the following list of
entities, attributes, and initial business rules:

• Room is identified by Building ID and Room No
and also has a Capacity. A room can be either a lab
or a classroom. If it is a classroom, it has an addi-
tional attribute called Board Type.

• Media is identified by MType ID and has attributes
of Media Type and Type Description. Note: Here we
are tracking type of media (such as a VCR, projector,
etc.), not the individual piece of equipment. Tracking
of equipment is outside of the scope of this project.

• Computer is identified by CType ID and has attrib-
utes Computer Type, Type Description, Disk
Capacity, and Processor Speed. Please note: As with
Media Type, we are tracking only the type of

computer, not an individual computer. You can think
of this as a class of computers (e.g., PIII 900MHZ).

• Instructor has identifier Emp ID and has attributes
Name, Rank, and Office Phone.

• Timeslot has identifier TSIS and has attributes Day
Of Week, Start Time, and End Time.

• Course has identifier Course ID and has attributes
Course Description and Credits. Courses can have
one, none, or many prerequisites. Courses also have
one or more sections.

• Section has identifier Section ID and attribute
Enrollment Limit.

After some further discussions, you have come up with
some additional business rules to help you create the
initial design:

• An instructor teaches one, none, or many sections of
a course in a given semester.

• An instructor specifies preferred time slots.
• Scheduling data are kept for each semester,

uniquely identified by semester and year.
• A room can be scheduled for one section or no section

during one time slot in a given semester of a given
year. However, one room can participate in many
schedules, one schedule, or no schedules; one time slot
can participate in many schedules, one schedule, or no
schedules; one section can participate in many sched-
ules, one schedule, or no schedules. Hint: Can you
associate this to anything that you have seen before?

• A room can have one type of media, several types of
media, or no media.

• Instructors are trained to use one, none, or many
types of media.

• A lab has one or more computer types. However, a
classroom does not have any computers.

• A room cannot be both a classroom and a lab. There
also are no other room types to be incorporated into
the system.

17. Develop an EER model for the following situation using
the traditional EER notation, the Visio notation, or the sub-
types inside supertypes notation, as specified by your
instructor:

Wally Los Gatos and his partner Henry Chordate have
formed a new limited partnership, Fin and Finicky
Security Consultants. Fin and Finicky consults with cor-
porations to determine their security needs. You have
been hired by Wally and Henry to design a database
management system to help them manage their business.

Due to a recent increase in business, Fin and Finicky
has decided to automate their client tracking system.
You and your team have done a preliminary analysis
and come up with the following set of entities, attrib-
utes, and business rules:

Consultant
There are two types of consultants: business consult-
ants and technical consultants. Business consultants
are contacted by a business in order to first determine
security needs and provide an estimate for the actual
services to be performed. Technical consultants per-
form services according to the specifications devel-
oped by the business consultants.

146 Part II • Database Analysis

Attributes of business consultant are the following:
Employee ID (identifier), Name, Address (which is com-
posed of Street, City, State, and Zip Code), Telephone,
Date Of Birth, Age, Business Experience (which is com-
posed of Number of Years, Type of Business [or busi-
nesses], and Degrees Received).

Attributes of technical consultant are the following:
Employee ID (identifier), Name, Address (which is com-
posed of Street, City, State, and Zip Code), Telephone, Date
Of Birth, Age, Technical Skills, and Degrees Received.

Customer
Customers are businesses that have asked for consulting
services. Attributes of customer are Customer ID (iden-
tifier), Company Name, Address (which is composed of
Street, City, State, and Zip Code), Contact Name,
Contact Title, Contact Telephone, Business Type, and
Number Of Employees.

Location
Customers can have multiple locations. Attributes of
location are Customer ID (identifier), Location ID
(which is unique only for each Customer ID), Address
(which is composed of Street, City, State, and Zip
Code), Telephone, and Building Size.

Service
A security service is performed for a customer at one or
more locations. Before services are performed, an esti-
mate is prepared. Attributes of service are Service ID
(identifier), Description, Cost, Coverage, and Clearance
Required.

Additional Business Rules
In addition to the entities outlined previously, the fol-
lowing information will need to be stored to tables and
should be shown in the model. These may be entities,
but they also reflect a relationship between more than
one entity:

• Estimates, which have characteristics of Date, Amount,
Business Consultant, Services, and Customer

• Services Performed, which have characteristics of
Date, Amount, Technical Consultant, Services, and
Customer

In order to construct the EER diagram, you may assume
the following:

A customer can have many consultants providing
many services. You wish to track both actual serv-
ices performed as well as services offered. Therefore,
there should be two relationships between cus-
tomer, service, and consultant, one to show services
performed and one to show services offered as part
of the estimate.

18. Based on the EER diagram constructed for Problem and
Exercise 17, develop a sample definition for each entity
type, attribute, and relationship in the diagram.

19. You are working for a large country club. This country
club wants to keep a database on its members and their
guests. For each member, the club keeps mail and tele-
phone contact information, name, and membership num-
ber. When you join this club, you can join as a social
member (which allows you two rounds of golf a year as
well as privileges to the swimming pool and weight

room), a tennis member (which allows you all the privi-
leges of a social member as well as use of the tennis courts
and four rounds of golf), or a golfing member (which
allows you all the privileges of a tennis member and
unlimited use of the golf course). This database needs to
track how often a member (who has limited use of the golf
course; all golfing members have unlimited use of the golf
course) has used the golf course, and how many guests
any and each member has brought to the club. All mem-
bers have guest privileges. The club also wants to attract
new members by mailing to all those who came to the club
as guests and live in the state. The mailing includes infor-
mation about their visits (i.e., date of visit and which mem-
ber was their host for each visit). Once a person becomes a
member of any type, information about them as guests is
no longer important to retain. Develop an EER diagram for
this situation.

20. Draw an EER diagram for the following situation:

TomKat Entertainment is a chain of theaters owned
by former husband and wife actors/entertainers
who, for some reason, can’t get a job performing any-
more. The owners want a database to track what is
playing or has played on each screen in each theater
of their chain at different times of the day. A theater
(identified by a Theater ID and described by a theater
name and location) contains one or more screens for
viewing various movies. Within each theater each
screen is identified by its number and is described by
the seating capacity for viewing the screen. Movies
are scheduled for showing in time slots each day.
Each screen can have different time slots on different
days (i.e., not all screens in the same theater have
movies starting at the same time, and even on differ-
ent days the same movie may play at different times
on the same screen). For each time slot, the owners
also want to know the end time of the time slot (assume
all slots end on the same day the slot begins), atten-
dance during that time slot, and the price charged for
attendance in that time slot. Each movie (which can
be either a trailer, feature, or commercial) is identi-
fied by a Movie ID and further described by its title,
duration, and type (i.e., trailer, feature, or commer-
cial). In each time slot, one or more movies are
shown. The owners want to also keep track of in
what sequence the movies are shown (e.g., in a time
slot there might be two trailers, followed by two
commercials, followed by a feature film, and closed
with another commercial).

21. Add the following to Figure 3-16: an EMPLOYMENT party
relationship is further explained by the positions and
assignments to positions during the time a person is
employed. A position is defined by an organization unit,
and a unit may define many positions over time. Over time,
positions are assigned to various employment relationships
(i.e., somebody employed by some organization unit is
assigned a particular position). For example, a position of
Business Analyst is defined by the Systems Development
organization unit. Carl Gerber, while employed by the Data
Warehousing organization unit, is assigned the position of
Systems Analyst. In the spirit of universal data modeling,
enhance Figure 3-16 for the most general case consistent
with this description.

Chapter 3 • The Enhanced E-R Model 147

Field Exercises

1. Interview a friend or family member to elicit common
examples of supertype/subtype relationships they may
come into contact with at work. You will have to explain the
meaning of this term to the person you are interviewing and
provide a common example, such as PROPERTY: RESI-
DENTIAL, COMMERCIAL or BONDS: CORPORATE,
MUNICIPAL. Use the information the person provides to
construct an EER diagram segment and present it to the per-
son. Revise, if necessary, until it seems appropriate to you
and your friend or family member.

2. Visit two local small businesses, one in the service sector
and one in manufacturing. Interview employees from these
organizations to obtain examples of both supertype/subtype
relationships and business rules (such as “A customer can
return merchandise only with a valid sales slip”). In which
of these environments is it easier to find examples of these
constructs? Why?

3. Ask a database administrator or database or system analyst
in a local company to show you an EER (or E-R) diagram for
one of the organization’s primary databases. Does this

organization model have supertype/subtype relationships?
If so, what notation is used, and does the CASE tool the
company uses support these relationships? Also, what
types of business rules are included during the EER model-
ing phase? How are business rules represented, and how
and where are they stored?

4. Read the summary of business rules published by the
GUIDE Business Rules Project (1997) and the article by
Gottesdiener (1997). Search the Web for additional infor-
mation on business rules. Then write a three-page execu-
tive summary of current directions in business rules and
their potential impact on systems development and
maintenance.

5. Research universal data models. Find articles on universal
(or packaged, industry, or functional area) data models, or
find information on some commercial offerings. Identify
common features across these models as well as different
ways to model the same concepts. Discuss what you think
are the advantages and disadvantages of the different ways
used to model the same concepts.

References

Elmasri, R., and S. B. Navathe. 1994. Fundamentals of Database
Systems. Menlo Park, CA: Benjamin/Cummings.

Gottesdiener, E. 1997. “Business Rules Show Power, Promise.”
Application Development Trends 4,3 (March): 36–54.

GUIDE. 1997 (October). “GUIDE Business Rules Project.” Final
Report, revision 1.2.

Hay, D. C. 1996. Data Model Patterns: Conventions of Thought.
New York: Dorset House Publishing.

Hoberman, S. 2006. “Industry Logical Data Models.” Teradata
Magazine. Available at www.teradata.com.

Hoffer, J. A., J. F. George, and J. S. Valacich. 2010. Modern Systems
Analysis and Design, 6th ed. Upper Saddle River, NJ:
Prentice Hall.

Silverston, L. 1998. “Is Your Organization Too Unique to Use
Universal Data Models?” DM Review 8,8 (September),
accessed at www.information-management.com/issues/
19980901/425-1.html.

Silverston, L. 2001a. The Data Model Resource Book, Volume 1,
Rev. ed. New York: Wiley.

Silverston, L. 2001b. The Data Model Resource Book, Volume 2,
Rev. ed. New York: Wiley.

Silverston, L. 2002. “A Universal Data Model for
Relationship Development.” DM Review 12,3 (March):
44–47, 65.

Teorey, T. 1999. Database Modeling & Design. San Francisco:
Morgan Kaufman Publishers.

Further Reading

Frye, C. 2002. “Business Rules Are Back.” Application Development
Trends 9, 7 (July): 29–35.

Moriarty, T. “Using Scenarios in Information Modeling:
Bringing Business Rules to Life.” Database Programming &
Design 6, 8 (August): 65–67.

Ross, R. G. 1997. The Business Rule Book. Version 4. Boston:
Business Rule Solutions, Inc.

Ross, R. G. 1998. Business Rule Concepts: The New Mechanics of
Business Information Systems. Boston: Business Rule
Solutions, Inc.

Ross, R. G. 2003. Principles of the Business Rule Approach. Boston:
Addison-Wesley.

Schmidt, B. 1997. “A Taxonomy of Domains.” Database
Programming & Design 10, 9 (September): 95, 96, 98, 99.

Silverston, L. 2002. Silverston has a series of articles in DM Review
that discuss universal data models in different settings. See
in particular Vol. 12 issues 1 (January) on clickstream
analysis, 5 (May) on health care, 7 (July) on financial serv-
ices, and 12 (December) on manufacturing.

von Halle, B. 1996. “Object-Oriented Lessons.” Database
Programming & Design 9,1 (January): 13–16.

von Halle, B. 2001. von Halle has a series of articles in DM
Review on building a business rules system. These articles
are in Vol. 11, issues 1–5 (January–May).

von Halle, B., and R. Kaplan. 1997. “Is IT Falling Short?”
Database Programming & Design 10, 6 (June): 15–17.

www.teradata.com
www.information-management.com/issues/19980901/425-1.html
www.information-management.com/issues/19980901/425-1.html

148 Part II • Database Analysis

Web Resources

www.adtmag.com Web site of Application Development Trends,
a leading publication on the practice of information sys-
tems development.

www.brsolutions.com Web site of Business Rule Solutions, the
consulting company of Ronald Ross, a leader in the devel-
opment of a business rule methodology. Or you can check
out www.BRCommunity.com, which is a virtual commu-
nity site for people interested in business rules (spon-
sored by Business Rule Solutions).

www.businessrulesgroup.org Web site of the Business Rules
Group, formerly part of GUIDE International, which for-
mulates and supports standards about business rules.

www.databaseanswers.org/data_models A fascinating site that
shows over 100 sample E-R diagrams for a wide variety of
applications and organizations. A variety of notations are
used, so this a good site to also learn about variations in
E-R diagramming.

www.intelligententerprise.com Web site of Intelligent Enterprise,
a leading publication on database management and
related areas. This magazine is the result of combining
two previous publications, Database Programming & Design
and DBMS.

www.kpiusa.com The homepage for Knowledge Partners
International, founded by Barbara von Halle. This site has
some interesting case studies and white papers about
business rules.

http://researchlibrary.theserverside.net/detail/RES/1214505974_136
.html Link to the white paper “Modeling Unstructured
Data” by Steve Hoberman. Unstructured data (e.g., e-mails,
images, sounds) is an emerging area for databases, and
there are some special issues in data modeling for
unstructured data.

www.tdan.com Web site of The Data Administration Newsletter,
which regularly publishes new articles, special reports,
and news on a variety of data modeling and administra-
tion topics.

www.teradatastudentnetwork.com Web site for Teradata
Student Network, a free resource for a wide variety of
information about database management and related top-
ics. Go to this site and search on “entity relationship” to
see many articles and assignments related to EER data
modeling.

www.adtmag.com
www.brsolutions.com
www.BRCommunity.com
www.businessrulesgroup.org
www.databaseanswers.org/data_models
www.intelligententerprise.com
www.kpiusa.com
http://researchlibrary.theserverside.net/detail/RES/1214505974_136.html
http://researchlibrary.theserverside.net/detail/RES/1214505974_136.html
www.tdan.com
www.teradatastudentnetwork.com

Chapter 3 • The Enhanced E-R Model 149

CASE
Mountain View Community Hospital

Case Description

After developing a preliminary E-R model and discussing it
with the rest of your team, you realize that you need to delve
deeper into the interview notes and documentation you
obtained to add more detail to the model and possibly add enti-
ties and relationships you had overlooked. Several issues need
to be addressed.

As a large service organization, Mountain View
Community Hospital (MVCH) depends on four major groups
of persons for its continued success: employees, physicians,
patients, and volunteers. A small number of persons in the
hospital community do not belong to any of these four groups.
A particular person may belong to two (or more) of these
groups at a given time. For example, a volunteer or employee
may also be a patient at the hospital at some point in time.

The four groups of people listed previously share many
common characteristics such as a unique identifier, Name,
Address, City/State/Zip, Birth Date, Phone, and E-mail. Then
there are characteristics that apply to only one of these groups.
For example, a hire date (Date Hired) is recorded for employees
only. Volunteer Services records skills and interests of their vol-
unteers in order to place them appropriately. Physicians have
a pager number (Pager#) and a DEA number (a physician needs
a DEA registration number from the Drug Enforcement
Administration to be able to prescribe controlled substances).
For patients, the hospital records the date of first contact with
the hospital (Contact Date). There are also characteristics that
apply to some, but not all of the groups. For example, both
physicians and nurses have a specialty (e.g., pediatrics, oncol-
ogy, etc.).

In addition to the characteristics already mentioned, the
hospital records a number of other characteristics about its
patients: emergency contact information (last and first name,
relationship to patient, address, and phone), insurance informa-
tion (insurance company name, policy number, group number,
and insurance phone number), information about the insurance
subscriber in case the patient is not the insurance subscriber
(last and first name, relationship to patient, address, and
phone), and contact information for the patient’s primary care
physician or other physician who referred the patient to the
hospital.

At MVCH, each patient has one (and only one) physi-
cian responsible for that patient. A given physician may not
be responsible for a patient at a given time or may be respon-
sible for one or more patients. The primary patient segments
are resident patients and outpatients. Outpatients may come
in for many reasons, including routine examinations at an
outpatient care center (e.g., the MS Center), ambulatory/out-
patient surgery, diagnostic services, or emergency room care.
Each outpatient is scheduled for zero or more visits. A visit
has several attributes: a unique identifier (Visit#), date, and
time. Notice that an instance of visit cannot exist without an
outpatient owner entity. Some patients that are seen as outpa-
tients, for example, in the emergency room, are subsequently
admitted to the hospital and become resident patients. Each

resident patient has a Date Admitted attribute as well as a
Discharge Date.

The volunteer application form in MVCH Figure 3-1
shows all the information that Volunteer Services under Mr.
Davis requires from persons interested in volunteering.
Volunteers work in many areas of the hospital based on their
interests and skills. Volunteer Services keeps track of a person’s
time of service (begin and end date), work unit where a person
works as a volunteer, and the volunteer’s supervisor. Each vol-
unteer is supervised by an employee or physician, but not all
employees and physicians supervise volunteers. Volunteer
Services also keep track of a volunteer’s number of hours
worked and recognizes outstanding volunteers at an annual
awards ceremony.

Employees fall into three categories: nurses, technicians,
and staff. Each nurse has a certificate/degree indicating his or
her qualification as an RN or LPN. (LPNs work under the direc-
tion of RNs at MVCH.) Each nurse must also have a current
Colorado nursing license and may hold certifications in special
fields such as dialysis, pediatrics, anesthesia, critical care, pain
management, and so on. Most nurses are assigned to one (and
only one) care center at a time, although over time, they may be
working in more than one care center. Some nurses are floaters
who are not assigned to a specific care center but instead work
wherever they are needed. As described earlier, one of the
nurses assigned to a care center is appointed nurse-in-charge
(Nurse In Charge). Only nurses with an RN certificate can
be appointed nurse-in-charge.

Specific job-related competency skills are recorded for the
hospital’s technicians. A cardiovascular technician for example
may be skilled in specific equipment, such as setting up and
getting readings from a Holter monitor, a portable device that
monitors a patient’s EKG for a period of 24 to 48 hours during
routine activities. Medical laboratory technicians need to be
able to set up, operate, and control equipment, perform a vari-
ety of tests, analyze the test data, and summarize test results for
physicians who use them to diagnose and treat patients.
Emergency room technicians’ skills include the ability to per-
form CPR, or set up an IV. Dialysis technicians, who may be
skilled in different types of dialysis, (e.g., pediatric dialysis, out-
patient dialysis) need a variety of skills related to setting up
treatment, assessing the patient during dialysis, and assessing
and troubleshooting equipment problems during dialysis. Each
technician is assigned to a work unit in the hospital (a care cen-
ter, the central medical laboratory, radiology, etc.).

Staff members have a job classification (Job Class), such as
secretary, administrative assistant, admitting specialist, collec-
tion specialist, and so on. Like the technicians, each staff mem-
ber is assigned to a work unit in the hospital (a care center, the
central medical laboratory, radiology, etc.).

Work units such as a care center have a Name (identifier)
and Location. The location denotes the facility (e.g., main build-
ing) and floor (e.g., 3 West, 2 South). A care center often has one
or more beds (up to any number) assigned to it, but there are
also care centers without assigned beds. The only attribute of bed
is the identifier Bed ID, which consists of two components: Bed#

150 Part II • Database Analysis

and Room#. Each resident patient must be assigned to a bed.
Because MVCH doesn’t always fill all its beds, a bed may or
may not have a resident patient assigned to it at a given time.

Case Questions

1. Is the ability to model supertype/subtype relationships
important in a hospital environment such as MVCH? Why
or why not?

Mountain View Community Hospital

VOLUNTEER APPLICATION

Last Name First Name Date of Birth

Street Address City State Zip

Home Phone: Work Phone E-Mail

Have you been convicted of a felony within the past seven years?

 NO YES If YES, please explain

Emergency Contact Last Name First Name

Relationship Phone:

References (Not Relatives)

Last Name Last Name

First Name First Name

Relationship Phone Relationship Phone

Address: Address

City State Zip City State Zip

Current or Last Employment

Name of Employer

Employer Address

Position (Type of work) Dates of Employment

Prior Volunteer Service

Have you volunteered at Mountain Valley Community Hospital before?

Do you have previous volunteer experience elsewhere?

Interests & Preferences

Why do you want to become a volunteer?

What are your hobbies, skills, other interests?

Which languages do you speak?

What do you envision yourself doing as a volunteer?

Mon Tues Wed Thur Fri Sat Sun
Morning

Afternoon

Please indicate days and
times when you are
available to volunteer.

Evening

Applicant’s Signature Date

: ()()

()

() ()

If YES, please list NO YES

If YES, please list NO YES

MVCH FIGURE 3-1 Volunteer application form

2. Are there any weak entities, multivalued attributes, or mul-
tiple relationships in the description of the data require-
ments in this case segment? If so, what are they?

3. Can you think of any other business rules (other than the
one explicitly described in the case) that are likely to be
used in a hospital environment? Can these be represented
on an EER diagram for MVCH?

4. Are there any universal data models that can be reused as a
starting point for modeling MVCH’s data requirements?

Would you recommend using such as model for the MVCH
project? Why or why not?

Case Exercises

1. Draw an EER diagram to represent the requirements
described in this case segment carefully following the nota-
tion from this chapter.

2. Suppose each care center had two nurses-in-charge, one for
the day shift, and another one for the evening shift. How
would that change the diagram you developed in Case
Exercise 1?

3. Develop definitions for each of the following types of
objects in your EER diagram from Case Exercise 1. Consult
with some member of the hospital or health-care commu-
nity (if one is available); do some research on the Internet,
or otherwise make reasonable assumptions based on your
own knowledge and experience.
a. Entity types
b. Attributes
c. Relationships

4. Figure 3-17 shows the following entity types in a universal
data model: PARTY, PARTY ROLE, PARTY RELATIONSHIP,

EVENT, PRIORITY TYPE, STATUS TYPE, EVENT ROLE,
and ROLE TYPE. How would these apply to the MVCH
case? Give examples of each entity type based on the infor-
mation provided in the case descriptions up to this point.

5. Derive and clearly state the business rules that are
implicit in the volunteer application form shown in
MVCH Figure 3-1.

6. Compare the EER diagram that you developed in this
chapter with the E-R diagram you developed in Chapter 2.
What are the differences between these two diagrams?
Why are there differences?

Project Assignments

P1. Revise the list of business rules you developed in Chapter 2
in light of the information provided in this case segment
and your insights from the Case Exercises.

P2. Following the notation from this chapter, merge your
Chapter 2 E-R diagram with the EER diagram you devel-
oped for Case Exercises 1 and 2 to represent the data
requirements for MVCH’s new system.

P3. Document and explain the decisions you made during
merging.

Chapter 3 • The Enhanced E-R Model 151

This page intentionally left blank

Chapter 4
Logical Database
Design and the
Relational Model

Chapter 5
Physical Database
Design and
Performance

III
P A R T

Database Design

AN OVERVIEW OF PART THREE

By the end of the database analysis phase of database development, systems and
database analysts have a fairly clear understanding of data storage and access
requirements. However, the data model developed during analysis explicitly avoids
any ties to database technologies. Before we can implement a database, the con-
ceptual data model must be mapped into a data model that is compatible with the
database management system to be used.

The activities of database design transform the requirements for data storage
developed during database analysis into specifications to guide database imple-
mentation. There are two forms of specifications:

1. Logical specifications, which map the conceptual requirements into the data
model associated with a specific database management system

2. Physical specifications, which indicate all the parameters for data storage that
are then input to database implementation, during which a database is actually
defined using a data definition language

In Chapter 4 (“Logical Database Design and the Relational Model”), we
describe logical database design, with special emphasis on the relational data model.
Logical database design is the process of transforming the conceptual data model
(described in Chapters 2 and 3) into a logical data model. Most database manage-
ment systems in use today use the relational data model, so this data model is the
basis for our discussion of logical database design.

In Chapter 4, we first define the important terms and concepts for this model,
including relation, primary key and surrogate primary key, foreign key, anomaly,
normal form, normalization, functional dependency, partial functional dependency,
and transitive dependency. We next describe and illustrate the process of trans-
forming an E-R model to the relational model. Many modeling tools support this
transformation; however, it is important that you understand the underlying
principles and procedures. We then describe and illustrate in detail the important
concepts of normalization (the process of designing well-structured relations).
Appendix B includes further discussion of normalization. Finally, we describe how
to merge relations from separate logical design activities (e.g., different groups
within a large project team) while avoiding common pitfalls that may occur in this
process. We end this discussion with a presentation of enterprise keys, which make
relational keys distinct across relations.

The purpose of physical database design, the topic of Chapter 5 (“Physical
Database Design and Performance”), is to translate the logical description of data
into the technical specifications for storing and retrieving data. The goal is to create

154 Part III • Database Design

a design for storing data that will provide adequate performance and ensure
database integrity, security, and recoverability. Physical database design produces
the technical specifications that programmers and others involved in information
systems construction will use during the implementation phase, which we discuss in
Chapters 6 through 9.

In Chapter 5, you will learn key terms and concepts for physical database
design, including data type, page, pointer, denormalization, partitioning, indexed
file organization, and hashed file organization. You will study the basic steps in
developing an efficient physical database design. You will learn about choices for
storing attribute values and how to select among these choices. You will also learn
why normalized tables do not always form the best physical data files and how you
can, if necessary, denormalize the data to achieve data retrieval speed improve-
ments. You will learn about different file organizations and different types of
indexes, which are important in speeding the retrieval of data. Appendix C
addresses some additional constructs for physical data storage. In addition, you will
learn how physical database design choices that improve data quality affect the
process of validating the accuracy of financial reporting. These are essential issues
today because of government regulations, such as Sarbanes-Oxley, and because of
the growing realization that ensuring high data quality makes business sense.

You must carefully perform physical database design because decisions made
during this stage have a major impact on data accessibility, response times, security,
user friendliness, information quality, and similarly important information system
design factors. Database administration (described in Chapter 11) plays a major
role in physical database design, so we will return to some advanced design issues
in that chapter, and Chapter 12 addresses distributed database design issues.

155

Logical Database Design
and the Relational Model

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: relation, primary key, composite
key, foreign key, null, entity integrity rule, referential integrity constraint,
well-structured relation, anomaly, surrogate primary key, recursive foreign key,
normalization, normal form, functional dependency, determinant, candidate key,
first normal form, second normal form, partial functional dependency, third normal
form, transitive dependency, synonyms, alias, homonym, and enterprise key.

� List five properties of relations.
� State two essential properties of a candidate key.
� Give a concise definition of each of the following: first normal form, second normal

form, and third normal form.
� Briefly describe four problems that may arise when merging relations.
� Transform an E-R (or EER) diagram into a logically equivalent set of relations.
� Create relational tables that incorporate entity integrity and referential integrity

constraints.
� Use normalization to decompose a relation with anomalies into well-structured

relations.

INTRODUCTION

In this chapter, we describe logical database design, with special emphasis on the
relational data model. Logical database design is the process of transforming the
conceptual data model (described in Chapters 2 and 3) into a logical data model—
one that is consistent and compatible with a specific type of database technology. An
experienced database designer often will do logical database design in parallel with
conceptual data modeling if he or she knows the type of database technology that
will be used. It is, however, important to treat these as separate steps so that you
concentrate on each important part of database development. Conceptual data
modeling is about understanding the organization—getting the right requirements.
Logical database design is about creating stable database structures—correctly
expressing the requirements in a technical language. Both are important steps that
must be performed carefully.

C H A P T E R

4

Visit www.pearsonhighered.com/
hoffer to view the accompanying
video for this chapter.

www.pearsonhighered.com/

156 Part III • Database Design

Although there are other data models, we have two reasons for emphasizing
the relational data model in this chapter. First, the relational data model is by far
the one most commonly used in contemporary database applications. Second,
some of the principles of logical database design for the relational model apply to
the other logical models as well.

We have introduced the relational data model informally through simple
examples in earlier chapters. It is important, however, to note that the relational
data model is a form of logical data model, and as such it is different from the
conceptual data models. Thus, an E-R data model is not a relational data model, and
an E-R model may not obey the rules for a well-structured relational data model,
called normalization, which we explain in this chapter. That is okay, because the
E-R model was developed for other purposes—understanding data requirements
and business rules about the data—not structuring the data for sound database
processing, which is the goal of logical database design.

In this chapter, we first define the important terms and concepts for the
relational data model. (We often use the abbreviated term relational model when
referring to the relational data model.) We next describe and illustrate the process of
transforming an EER model into the relational model. Many CASE tools support this
transformation today at the technical level; however, it is important that you
understand the underlying principles and procedures. We then describe the concepts
of normalization in detail. Normalization, which is the process of designing well-
structured relations, is an important component of logical design for the relational
model. Finally, we describe how to merge relations while avoiding common pitfalls
that may occur in this process.

The objective of logical database design is to translate the conceptual design
(which represents an organization’s requirements for data) into a logical database
design that can be implemented via a chosen database management system. The
resulting databases must meet user needs for data sharing, flexibility, and ease of
access. The concepts presented in this chapter are essential to your understanding
of the database development process.

THE RELATIONAL DATA MODEL

The relational data model was first introduced in 1970 by E. F. Codd, then of IBM
(Codd, 1970). Two early research projects were launched to prove the feasibility of the
relational model and to develop prototype systems. The first of these, at IBM’s San Jose
Research Laboratory, led to the development of System R (a prototype relational DBMS
[RDBMS]) during the late 1970s. The second, at the University of California at Berkeley,
led to the development of Ingres, an academically oriented RDBMS. Commercial
RDBMS products from numerous vendors started to appear about 1980. (See the Web
site for this book for links to RDBMS and other DBMS vendors.) Today RDBMSs have
become the dominant technology for database management, and there are literally
hundreds of RDBMS products for computers ranging from smartphones and personal
computers to mainframes.

Basic Definitions

The relational data model represents data in the form of tables. The relational model is
based on mathematical theory and therefore has a solid theoretical foundation. However, we
need only a few simple concepts to describe the relational model. Therefore, it can be easily
understood and used even by those unfamiliar with the underlying theory. The relational
data model consists of the following three components (Fleming and von Halle, 1989):

1. Data structure Data are organized in the form of tables, with rows and columns.
2. Data manipulation Powerful operations (using the SQL language) are used to

manipulate data stored in the relations.
3. Data integrity The model includes mechanisms to specify business rules that

maintain the integrity of data when they are manipulated.

Chapter 4 • Logical Database Design and the Relational Model 157

EMPLOYEE1

EmpID Name DeptName Salary

100 Margaret Simpson Marketing 48,000
140 Allen Beeton Accounting 52,000
110 Chris Lucero Info Systems 43,000
190 Lorenzo Davis Finance 55,000
150 Susan Martin Marketing 42,000

FIGURE 4-1 EMPLOYEE1
relation with sample data

We discuss data structure and data integrity in this section. Data manipulation is
discussed in Chapters 6, 7, and 8.

RELATIONAL DATA STRUCTURE A relation is a named, two-dimensional table of data.
Each relation (or table) consists of a set of named columns and an arbitrary number of
unnamed rows. An attribute, consistent with its definition in Chapter 2, is a named
column of a relation. Each row of a relation corresponds to a record that contains data
(attribute) values for a single entity. Figure 4-1 shows an example of a relation named
EMPLOYEE1. This relation contains the following attributes describing employees:
EmpID, Name, DeptName, and Salary. The five rows of the table correspond to five
employees. It is important to understand that the sample data in Figure 4-1 are intended
to illustrate the structure of the EMPLOYEE1 relation; they are not part of the relation
itself. Even if we add another row of data to the figure or change any of the data in
the existing rows, it is still the same EMPLOYEE1 relation. Nor does deleting a row
change the relation. In fact, we could delete all of the rows shown in Figure 4-1, and the
EMPLOYEE1 relation would still exist. In other words, Figure 4-1 is an instance of the
EMPLOYEE1 relation.

We can express the structure of a relation by using a shorthand notation in which
the name of the relation is followed (in parentheses) by the names of the attributes in
that relation. For EMPLOYEE1 we would have

EMPLOYEE1(EmpID, Name, DeptName, Salary)

RELATIONAL KEYS We must be able to store and retrieve a row of data in a relation, based
on the data values stored in that row. To achieve this goal, every relation must have a pri-
mary key. A primary key is an attribute or a combination of attributes that uniquely identi-
fies each row in a relation. We designate a primary key by underlining the attribute name(s).
For example, the primary key for the relation EMPLOYEE1 is EmpID. Notice that this attrib-
ute is underlined in Figure 4-1. In shorthand notation, we express this relation as follows:

EMPLOYEE1(EmpID, Name, DeptName, Salary)

The concept of a primary key is related to the term identifier defined in Chapter 2.
The same attribute or a collection of attributes indicated as an entity’s identifier in an
E-R diagram may be the same attributes that compose the primary key for the relation
representing that entity. There are exceptions: For example, associative entities do not
have to have an identifier, and the (partial) identifier of a weak entity forms only part of
a weak entity’s primary key. In addition, there may be several attributes of an entity
that may serve as the associated relation’s primary key. All of these situations will be
illustrated later in this chapter.

A composite key is a primary key that consists of more than one attribute. For
example, the primary key for a relation DEPENDENT would likely consist of the
combination EmpID and DependentName. We show several examples of composite
keys later in this chapter.

Relation
A named two-dimensional
table of data.

Primary key
An attribute or a combination of
attributes that uniquely identifies
each row in a relation.

Composite key
A primary key that consists
of more than one attribute.

158 Part III • Database Design

Often we must represent the relationship between two tables or relations. This is
accomplished through the use of foreign keys. A foreign key is an attribute (possibly
composite) in a relation that serves as the primary key of another relation. For example,
consider the relations EMPLOYEE1 and DEPARTMENT:

EMPLOYEE1(EmpID, Name, DeptName, Salary)
DEPARTMENT(DeptName, Location, Fax)

The attribute DeptName is a foreign key in EMPLOYEE1. It allows a user to
associate any employee with the department to which he or she is assigned. Some
authors emphasize the fact that an attribute is a foreign key by using a dashed under-
line, like this:

EMPLOYEE1(EmpID, Name, DeptName, Salary)

We provide numerous examples of foreign keys in the remainder of this chapter
and discuss the properties of foreign keys under the heading “Referential Integrity.”

PROPERTIES OF RELATIONS We have defined relations as two-dimensional tables of
data. However, not all tables are relations. Relations have several properties that distin-
guish them from non-relational tables. We summarize these properties next:

1. Each relation (or table) in a database has a unique name.
2. An entry at the intersection of each row and column is atomic (or single valued).

There can be only one value associated with each attribute on a specific row of a
table; no multivalued attributes are allowed in a relation.

3. Each row is unique; no two rows in a relation can be identical.
4. Each attribute (or column) within a table has a unique name.
5. The sequence of columns (left to right) is insignificant. The order of the

columns in a relation can be changed without changing the meaning or use of
the relation.

6. The sequence of rows (top to bottom) is insignificant. As with columns, the order
of the rows of a relation may be changed or stored in any sequence.

REMOVING MULTIVALUED ATTRIBUTES FROM TABLES The second property of relations
listed in the preceding section states that no multivalued attributes are allowed in a rela-
tion. Thus, a table that contains one or more multivalued attributes is not a relation. For
example, Figure 4-2a shows the employee data from the EMPLOYEE1 relation extended to
include courses that may have been taken by those employees. Because a given employee
may have taken more than one course, the attributes CourseTitle and DateCompleted are
multivalued attributes. For example, the employee with EmpID 100 has taken two courses.
If an employee has not taken any courses, the CourseTitle and DateCompleted attribute
values are null. (See the employee with EmpID 190 for an example.)

We show how to eliminate the multivalued attributes in Figure 4-2b by filling the
relevant data values into the previously vacant cells of Figure 4-2a. As a result, the table in
Figure 4-2b has only single-valued attributes and now satisfies the atomic property of re-
lations. The name EMPLOYEE2 is given to this relation to distinguish it from EMPLOYEE1.
However, as you will see, this new relation does have some undesirable properties.

Sample Database

A relational database may consist of any number of relations. The structure of the
database is described through the use of a schema (defined in Chapter 1), which is a
description of the overall logical structure of the database. There are two common
methods for expressing a schema:

a. Short text statements, in which each relation is named and the names of its attrib-
utes follow in parentheses. (See the EMPLOYEE1 and DEPARTMENT relations
defined earlier in this chapter.)

Foreign key
An attribute in a relation
that serves as the primary key
of another relation in the
same database.

Chapter 4 • Logical Database Design and the Relational Model 159

EmpID Name DeptName Salary CourseTitle DateCompleted

100 Margaret Simpson Marketing 48,000 SPSS 6/19/201X

Surveys 10/7/201X

140 Alan Beeton Accounting 52,000 Tax Acc 12/8/201X

110 Chris Lucero Info Systems 43,000 Visual Basic 1/12/201X

C++ 4/22/201X

190 Lorenzo Davis Finance 55,000
150 Susan Martin Marketing 42,000 SPSS 6/16/201X

Java 8/12/201X

FIGURE 4-2 Eliminating multivalued attributes

b. A graphical representation, in which each relation is represented by a rectangle
containing the attributes for the relation

Text statements have the advantage of simplicity. However, a graphical represen-
tation provides a better means of expressing referential integrity constraints (as you will
see shortly). In this section, we use both techniques for expressing a schema so that you
can compare them.

A schema for four relations at Pine Valley Furniture Company is shown in
Figure 4-3. The four relations shown in this figure are CUSTOMER, ORDER, ORDER
LINE, and PRODUCT. The key attributes for these relations are underlined, and other
important attributes are included in each relation. We show how to design these rela-
tions using the techniques of normalization later in this chapter.

Following is a text description of these relations:

CUSTOMER(CustomerID, CustomerName, CustomerAddress,
CustomerCity, CustomerState, CustomerPostalCode)

ORDER(OrderID, OrderDate, CustomerID)
ORDER LINE(OrderID, ProductID, OrderedQuantity)
PRODUCT(ProductID, ProductDescription, ProductFinish,

ProductStandardPrice, ProductLineID)

Notice that the primary key for ORDER LINE is a composite key consisting of
the attributes OrderID and ProductID. Also, CustomerID is a foreign key in the
ORDER relation; this allows the user to associate an order with the customer who
submitted the order. ORDER LINE has two foreign keys: OrderID and ProductID.
These keys allow the user to associate each line on an order with the relevant order
and product.

EMPLOYEE2

EmpID Name DeptName Salary CourseTitle DateCompleted

100 Margaret Simpson Marketing 48,000 SPSS 6/19/201X

100 Margaret Simpson Marketing 48,000 Surveys 10/7/201X

140 Alan Beeton Accounting 52,000 Tax Acc 12/8/201X

110 Chris Lucero Info Systems 43,000 Visual Basic 1/12/201X

110 Chris Lucero Info Systems 43,000 C++ 4/22/201X

190 Lorenzo Davis Finance 55,000
150 Susan Martin Marketing 42,000 SPSS 6/19/201X

150 Susan Martin Marketing 42,000 Java 8/12/201X

(a) Table with repeating groups

(b) EMPLOYEE2 relation

160 Part III • Database Design

An instance of this database is shown in Figure 4-4. This figure shows four tables
with sample data. Notice how the foreign keys allow us to associate the various tables.
It is a good idea to create an instance of your relational schema with sample data for
four reasons:

1. The sample data allow you to test your assumptions regarding the design.
2. The sample data provide a convenient way to check the accuracy of your design.
3. The sample data help improve communications with users in discussing your

design.
4. You can use the sample data to develop prototype applications and to test queries.

INTEGRITY CONSTRAINTS

The relational data model includes several types of constraints, or rules limiting accept-
able values and actions, whose purpose is to facilitate maintaining the accuracy and
integrity of data in the database. The major types of integrity constraints are domain
constraints, entity integrity, and referential integrity.

Domain Constraints

All of the values that appear in a column of a relation must be from the same domain.
A domain is the set of values that may be assigned to an attribute. A domain definition
usually consists of the following components: domain name, meaning, data type, size (or
length), and allowable values or allowable range (if applicable). Table 4-1 (page 162) shows
domain definitions for the domains associated with the attributes in Figures 4-3 and 4-4.

Entity Integrity

The entity integrity rule is designed to ensure that every relation has a primary key and
that the data values for that primary key are all valid. In particular, it guarantees that
every primary key attribute is non-null.

In some cases, a particular attribute cannot be assigned a data value. There are two
situations in which this is likely to occur: Either there is no applicable data value or the
applicable data value is not known when values are assigned. Suppose, for example, that
you fill out an employment form that has a space reserved for a fax number. If you have
no fax number, you leave this space empty because it does not apply to you. Or suppose
that you are asked to fill in the telephone number of your previous employer. If you do
not recall this number, you may leave it empty because that information is not known.

CustomerID CustomerName CustomerAddress CustomerPostalCode

CUSTOMER

CustomerState*CustomerCity*

ProductID ProductFinishProductDescription ProductStandardPrice ProductLineID

* Not in Figure 2-22 for simplicity.

PRODUCT

OrderID ProductID

ORDER LINE

OrderedQuantity

OrderID

ORDER

OrderDate CustomerID

FIGURE 4-3 Schema for four
relations (Pine Valley
Furniture Company)

Chapter 4 • Logical Database Design and the Relational Model 161

FIGURE 4-4 Instance of a relational schema (Pine Valley Furniture Company)

The relational data model allows us to assign a null value to an attribute in the just
described situations. A null is a value that may be assigned to an attribute when no
other value applies or when the applicable value is unknown. In reality, a null is not a
value but rather it indicates the absence of a value. For example, it is not the same as a
numeric zero or a string of blanks. The inclusion of nulls in the relational model is
somewhat controversial, because it sometimes leads to anomalous results (Date, 2003).
However, Codd, the inventor of the relational model, advocates the use of nulls for
missing values (Codd, 1990).

Everyone agrees that primary key values must not be allowed to be null. Thus, the
entity integrity rule states the following: No primary key attribute (or component of a
primary key attribute) may be null.

Null
A value that may be assigned to an
attribute when no other value
applies or when the applicable
value is unknown.

Entity integrity rule
A rule that states that no primary
key attribute (or component of a
primary key attribute) may be null.

162 Part III • Database Design

Referential Integrity

In the relational data model, associations between tables are defined through the use of
foreign keys. For example, in Figure 4-4, the association between the CUSTOMER and
ORDER tables is defined by including the CustomerID attribute as a foreign key in
ORDER. This of course implies that before we insert a new row in the ORDER table, the
customer for that order must already exist in the CUSTOMER table. If you examine the
rows in the ORDER table in Figure 4-4, you will find that every customer number for an
order already appears in the CUSTOMER table.

A referential integrity constraint is a rule that maintains consistency among the
rows of two relations. The rule states that if there is a foreign key in one relation, either
each foreign key value must match a primary key value in another relation or the for-
eign key value must be null. You should examine the tables in Figure 4-4 to check
whether the referential integrity rule has been enforced.

The graphical version of the relational schema provides a simple technique for
identifying associations where referential integrity must be enforced. Figure 4-5 shows
the schema for the relations introduced in Figure 4-3. An arrow has been drawn from
each foreign key to the associated primary key. A referential integrity constraint must be
defined for each of these arrows in the schema.

How do you know whether a foreign key is allowed to be null? If each order must
have a customer (a mandatory relationship), then the foreign key CustomerID cannot
be null in the ORDER relation. If the relationship is optional, then the foreign key could
be null. Whether a foreign key can be null must be specified as a property of the foreign
key attribute when the database is defined.

Actually, whether a foreign key can be null is more complex to model on an E-R di-
agram and to determine than we have shown so far. For example, what happens to
order data if we choose to delete a customer who has submitted orders? We may want to
see sales even if we do not care about the customer any more. Three choices are possible:

1. Delete the associated orders (called a cascading delete), in which case we lose not
only the customer but also all the sales history

2. Prohibit deletion of the customer until all associated orders are first deleted
(a safety check)

TABLE 4-1 Domain Definitions for INVOICE Attributes

Attribute Domain Name Description Domain

CustomerID Customer IDs Set of all possible customer IDs character: size 5

CustomerName Customer Names Set of all possible customer names character: size 25

CustomerAddress Customer Addresses Set of all possible customer addresses character: size 30

CustomerCity Cities Set of all possible cities character: size 20

CustomerState States Set of all possible states character: size 2

CustomerPostalCode Postal Codes Set of all possible postal zip codes character: size 10

OrderID Order IDs Set of all possible order IDs character: size 5

OrderDate Order Dates Set of all possible order dates date: format mm/dd/yy

ProductID Product IDs Set of all possible product IDs character: size 5

ProductDescription Product Descriptions Set of all possible product descriptions character: size 25

ProductFinish Product Finishes Set of all possible product finishes character: size 15

ProductStandardPrice Unit Prices Set of all possible unit prices monetary: 6 digits

ProductLineID Product Line IDs Set of all possible product line IDs integer: 3 digits

OrderedQuantity Quantities Set of all possible ordered quantities integer: 3 digits

Referential integrity constraint
A rule that states that either each
foreign key value must match a
primary key value in another
relation or the foreign key value
must be null.

Chapter 4 • Logical Database Design and the Relational Model 163

PRODUCT

ORDER LINE

CustomerID CustomerName CustomerAddress CustomerCity CustomerState CustomerPostalCode

CUSTOMER

ProductID ProductFinishProductDescription ProductStandardPrice ProductLineID

OrderID

ORDER

OrderDate

OrderID ProductID OrderedQuantity

CustomerID

FIGURE 4-5 Referential
integrity constraints (Pine
Valley Furniture Company)

3. Place a null value in the foreign key (an exception that says although an order
must have a CustomerID value when the order is created, CustomerID can be-
come null later if the associated customer is deleted)

We will see how each of these choices is implemented when we describe the SQL
database query language in Chapter 6. Please note that in practice, organizational rules
and various regulations regarding data retention often determine what data can be deleted
and when, and they therefore govern the choice between various deletion options.

Creating Relational Tables

In this section, we create table definitions for the four tables shown in Figure 4-5. These
definitions are created using CREATE TABLE statements from the SQL data definition
language. In practice, these table definitions are actually created during the implemen-
tation phase later in the database development process. However, we show these sam-
ple tables in this chapter for continuity and especially to illustrate the way the integrity
constraints described previously are implemented in SQL.

The SQL table definitions are shown in Figure 4-6. One table is created for each of the
four relations shown in the relational schema (Figure 4-5). Each attribute for a table is then
defined. Notice that the data type and length for each attribute is taken from the domain
definitions (Table 4-1). For example, the attribute CustomerName in the Customer_T table
is defined as VARCHAR (variable character) data type with length 25. By specifying NOT
NULL, each attribute can be constrained from being assigned a null value.

The primary key is specified for each table using the PRIMARY KEY clause at the
end of each table definition. The OrderLine_T table illustrates how to specify a primary
key when that key is a composite attribute. In this example, the primary key of
OrderLine_T is the combination of OrderID and ProductID. Each primary key attribute
in the four tables is constrained with NOT NULL. This enforces the entity integrity con-
straint described in the previous section. Notice that the NOT NULL constraint can also
be used with non-primary-key attributes.

Referential integrity constraints are easily defined, using the graphical schema
shown in Figure 4-5. An arrow originates from each foreign key and points to the related
primary key in the associated relation. In the SQL table definition, a FOREIGN KEY
REFERENCES statement corresponds to each of these arrows. Thus, for the table
Order_T, the foreign key CustomerID references the primary key of Customer_T, which
is also called CustomerID. Although in this case the foreign key and primary keys have
the same name, this need not be the case. For example, the foreign key attribute could
be named CustNo instead of CustomerID. However, the foreign and primary keys must
be from the same domain.

164 Part III • Database Design

The OrderLine_T table provides an example of a table that has two foreign keys.
Foreign keys in this table reference both the Order_T and Product_T tables.

Well-Structured Relations

To prepare for our discussion of normalization, we need to address the following ques-
tion: What constitutes a well-structured relation? Intuitively, a well-structured relation
contains minimal redundancy and allows users to insert, modify, and delete the rows in
a table without errors or inconsistencies. EMPLOYEE1 (Figure 4-1) is such a relation.
Each row of the table contains data describing one employee, and any modification to
an employee’s data (such as a change in salary) is confined to one row of the table. In
contrast, EMPLOYEE2 (Figure 4-2b) is not a well-structured relation. If you examine the
sample data in the table, you will notice considerable redundancy. For example, values
for EmpID, Name, DeptName, and Salary appear in two separate rows for employees
100, 110, and 150. Consequently, if the salary for employee 100 changes, we must record
this fact in two rows (or more, for some employees).

Redundancies in a table may result in errors or inconsistencies (called anomalies)
when a user attempts to update the data in the table. We are typically concerned about
three types of anomalies:

1. Insertion anomaly Suppose that we need to add a new employee to EMPLOYEE2.
The primary key for this relation is the combination of EmpID and CourseTitle
(as noted earlier). Therefore, to insert a new row, the user must supply values for both
EmpID and CourseTitle (because primary key values cannot be null or nonexistent).
This is an anomaly because the user should be able to enter employee data
without supplying course data.

2. Deletion anomaly Suppose that the data for employee number 140 are delet-
ed from the table. This will result in losing the information that this employee

CREATE TABLE Customer_T
(CustomerID NUMBER(11,0) NOT NULL,
CustomerName VARCHAR2(25) NOT NULL,
CustomerAddress VARCHAR2(30),
CustomerCity VARCHAR2(20),
CustomerState CHAR(2),
CustomerPostalCode VARCHAR2(9),

CONSTRAINT Customer_PK PRIMARY KEY (CustomerID));

CREATE TABLE Order_T
(OrderID NUMBER(11,0) NOT NULL,
OrderDate DATE DEFAULT SYSDATE,
CustomerID NUMBER(11,0),

CONSTRAINT Order_PK PRIMARY KEY (OrderID),
CONSTRAINT Order_FK FOREIGN KEY (CustomerID) REFERENCES Customer_T (CustomerID));

CREATE TABLE Product_T
(ProductID NUMBER(11,0) NOT NULL,
ProductDescription VARCHAR2(50),
ProductFinish VARCHAR2(20),
ProductStandardPrice DECIMAL(6,2),
ProductLineID NUMBER(11,0),

CONSTRAINT Product_PK PRIMARY KEY (ProductID));

CREATE TABLE OrderLine_T
(OrderID NUMBER(11,0) NOT NULL,
ProductID NUMBER(11,0) NOT NULL,
OrderedQuantity NUMBER(11,0),

CONSTRAINT OrderLine_PK PRIMARY KEY (OrderID, ProductID),
CONSTRAINT OrderLine_FK1 FOREIGN KEY (OrderID) REFERENCES Order_T (OrderID),
CONSTRAINT OrderLine_FK2 FOREIGN KEY (ProductID) REFERENCES Product_T (ProductID));

FIGURE 4-6 SQL table
definitions

Well-structured relation
A relation that contains minimal
redundancy and allows users to
insert, modify, and delete the rows
in a table without errors or
inconsistencies.

Anomaly
An error or inconsistency that
may result when a user attempts
to update a table that contains
redundant data. The three types
of anomalies are insertion, deletion,
and modification anomalies.

Chapter 4 • Logical Database Design and the Relational Model 165

EmpID CourseTitle DateCompleted

100 SPSS 6/19/201X
100 Surveys 10/7/201X
140 Tax Acc 12/8/201X
110 Visual Basic 1/12/201X
110 C++ 4/22/201X
150 SPSS 6/19/201X
150 Java 8/12/201X

FIGURE 4-7 EMP COURSE

completed a course (Tax Acc) on 12/8/201X. In fact, it results in losing the
information that this course had an offering that completed on that date.

3. Modification anomaly Suppose that employee number 100 gets a salary
increase. We must record the increase in each of the rows for that employee (two
occurrences in Figure 4-2); otherwise, the data will be inconsistent.

These anomalies indicate that EMPLOYEE2 is not a well-structured relation. The
problem with this relation is that it contains data about two entities: EMPLOYEE
and COURSE. We will use normalization theory (described later in this chapter) to divide
EMPLOYEE2 into two relations. One of the resulting relations is EMPLOYEE1 (Figure 4-1).
The other we will call EMP COURSE, which appears with sample data in Figure 4-7. The
primary key of this relation is the combination of EmpID and CourseTitle, and we under-
line these attribute names in Figure 4-7 to highlight this fact. Examine Figure 4-7 to verify
that EMP COURSE is free of the types of anomalies described previously and is therefore
well structured.

TRANSFORMING EER DIAGRAMS INTO RELATIONS

During logical design, you transform the E-R (and EER) diagrams that were developed
during conceptual design into relational database schemas. The inputs to this process
are the entity-relationship (and enhanced E-R) diagrams that you studied in Chapters 2
and 3. The outputs are the relational schemas described in the first two sections of this
chapter.

Transforming (or mapping) EER diagrams into relations is a relatively straightfor-
ward process with a well-defined set of rules. In fact, many CASE tools can automatically
perform many of the conversion steps. However, it is important that you understand
the steps in this process for four reasons:

1. CASE tools often cannot model more complex data relationships such as ternary
relationships and supertype/subtype relationships. In these situations, you may
have to perform the steps manually.

2. There are sometimes legitimate alternatives where you will need to choose a par-
ticular solution.

3. You must be prepared to perform a quality check on the results obtained with
a CASE tool.

4. Understanding the transformation process helps you understand why conceptual
data modeling (modeling the real-world domain) is truly a different activity from
representing the results of the conceptual data modeling process in a form that can
be implemented using a DBMS.

In the following discussion, we illustrate the steps in the transformation with ex-
amples taken from Chapters 2 and 3. It will help for you to recall that we discussed
three types of entities in those chapters:

1. Regular entities are entities that have an independent existence and generally
represent real-world objects, such as persons and products. Regular entity types
are represented by rectangles with a single line.

166 Part III • Database Design

Customer ID
Customer Name
Customer Address
 (Customer Street, Customer City, Customer State)
Customer Postal Code

CUSTOMER

FIGURE 4-9 Mapping a
composite attribute
(a) CUSTOMER entity type
with composite attribute

2. Weak entities are entities that cannot exist except with an identifying relationship
with an owner (regular) entity type. Weak entities are identified by a rectangle with
a double line.

3. Associative entities (also called gerunds) are formed from many-to-many
relationships between other entity types. Associative entities are represented by a
rectangle with rounded corners.

Step 1: Map Regular Entities

Each regular entity type in an E-R diagram is transformed into a relation. The name
given to the relation is generally the same as the entity type. Each simple attribute of the
entity type becomes an attribute of the relation. The identifier of the entity type becomes
the primary key of the corresponding relation. You should check to make sure that this
primary key satisfies the desirable properties of identifiers outlined in Chapter 2.

Figure 4-8a shows a representation of the CUSTOMER entity type for Pine Valley
Furniture Company from Chapter 2 (see Figure 2-22). The corresponding CUSTOMER
relation is shown in graphical form in Figure 4-8b. In this figure and those that follow in
this section, we show only a few key attributes for each relation to simplify the figures.

COMPOSITE ATTRIBUTES When a regular entity type has a composite attribute, only the
simple components of the composite attribute are included in the new relation as its at-
tributes. Figure 4-9 shows a variation on the example in Figure 4-8, where Customer
Address is represented as a composite attribute with components Street, City, and State
(see Figure 4-9a). This entity is mapped to the CUSTOMER relation, which contains the
simple address attributes, as shown in Figure 4-9b. Although Customer Name is modeled

CUSTOMER
Customer ID
Customer Name
Customer Address
Customer Postal Code

FIGURE 4-8 Mapping the
regular entity CUSTOMER
(a) CUSTOMER entity type

CustomerID

CUSTOMER

CustomerName CustomerAddress CustomerPostalCode

(b) CUSTOMER relation

CustomerID CustomerName CustomerStreet CustomerCity CustomerState CustomerPostalCode

CUSTOMER
(b) CUSTOMER relation with
address detail

Chapter 4 • Logical Database Design and the Relational Model 167

EMPLOYEE
Employee ID
Employee Name
Employee Address
{Skill}

FIGURE 4-10 Mapping an
entity with a multivalued
attribute
(a) EMPLOYEE entity type
with multivalued attribute

as a simple attribute in Figure 4-9a, you are aware that it instead could have been modeled
as a composite attribute with components Last Name, First Name, and Middle Initial.
In designing the CUSTOMER relation (Figure 4-9b), you may choose to use these simple
attributes instead of CustomerName. Compared to composite attributes, simple attributes
improve data accessibility and facilitate maintaining data quality.

MULTIVALUED ATTRIBUTES When the regular entity type contains a multivalued attrib-
ute, two new relations (rather than one) are created. The first relation contains all of the
attributes of the entity type except the multivalued attribute. The second relation con-
tains two attributes that form the primary key of the second relation. The first of these
attributes is the primary key from the first relation, which becomes a foreign key in the
second relation. The second is the multivalued attribute. The name of the second rela-
tion should capture the meaning of the multivalued attribute.

An example of this procedure is shown in Figure 4-10. This is the EMPLOYEE entity
type for Pine Valley Furniture Company. As shown in Figure 4-10a, EMPLOYEE has
Skill as a multivalued attribute. Figure 4-10b shows the two relations that are created. The
first (called EMPLOYEE) has the primary key EmployeeID. The second relation (called
EMPLOYEE SKILL) has the two attributes, EmployeeID and Skill, which form the pri-
mary key. The relationship between foreign and primary keys is indicated by the arrow in
the figure.

The relation EMPLOYEE SKILL contains no nonkey attributes (also called descriptors).
Each row simply records the fact that a particular employee possesses a particular skill.
This provides an opportunity for you to suggest to users that new attributes can be added
to this relation. For example, the attributes YearsExperience and/or CertificationDate
might be appropriate new values to add to this relation. See Figure 2-15b for another vari-
ation on employee skills.

If an entity type contains multiple multivalued attributes, each of them will be
converted to a separate relation.

Step 2: Map Weak Entities

Recall that a weak entity type does not have an independent existence but exists only
through an identifying relationship with another entity type called the owner. A weak
entity type does not have a complete identifier but must have an attribute called a par-
tial identifier that permits distinguishing the various occurrences of the weak entity for
each owner entity instance.

EmployeeID

EMPLOYEE SKILL

Skill

EmployeeID

EMPLOYEE

EmployeeAddressEmployeeName

(b) Mapping a multivalued
attribute

168 Part III • Database Design

The following procedure assumes that you have already created a relation corre-
sponding to the identifying entity type during Step 1. If you have not, you should cre-
ate that relation now, using the process described in Step 1.

For each weak entity type, create a new relation and include all of the simple
attributes (or simple components of composite attributes) as attributes of this
relation. Then include the primary key of the identifying relation as a foreign key
attribute in this new relation. The primary key of the new relation is the combina-
tion of this primary key of the identifying and the partial identifier of the weak
entity type.

An example of this process is shown in Figure 4-11. Figure 4-11a shows the
weak entity type DEPENDENT and its identifying entity type EMPLOYEE, linked
by the identifying relationship Claims (see Figure 2-5). Notice that the attribute
Dependent Name, which is the partial identifier for this relation, is a composite at-
tribute with components First Name, Middle Initial, and Last Name. Thus, we assume
that, for a given employee, these items will uniquely identify a dependent (a notable
exception being the case of prizefighter George Foreman, who has named all his sons
after himself).

Figure 4-11b shows the two relations that result from mapping this E-R seg-
ment. The primary key of DEPENDENT consists of four attributes: EmployeeID,
FirstName, MiddleInitial, and LastName. DateOfBirth and Gender are the nonkey
attributes. The foreign key relationship with its primary key is indicated by the
arrow in the figure.

In practice, an alternative approach is often used to simplify the primary key of
the DEPENDENT relation: Create a new attribute (called Dependent#), which will
be used as a surrogate primary key in Figure 4-11b. With this approach, the relation
DEPENDENT has the following attributes:

DEPENDENT(Dependent#, EmployeeID, FirstName, MiddleInitial,
LastName, DateOfBirth, Gender)

Dependent# is simply a serial number that is assigned to each dependent of an
employee. Notice that this solution will ensure unique identification for each depend-
ent (even for those of George Foreman!).

EMPLOYEE
Employee ID
Employee Name

DEPENDENT
Dependent Name

 (First Name,
 Middle Initial,
 Last Name)
Date of Birth
Gender

Claims

FIGURE 4-11 Example of
mapping a weak entity
(a) Weak entity DEPENDENT

EmployeeID

EMPLOYEE

EmployeeName

DateOfBirthFirstName MiddleInitial LastName EmployeeID

DEPENDENT

Gender

(b) Relations resulting from
weak entity

Surrogate primary key
A serial number or other system-
assigned primary key for a relation.

Chapter 4 • Logical Database Design and the Relational Model 169

Submits

CUSTOMER
Customer ID
Customer Name
Customer Address
Customer Postal Code

ORDER
ORDER ID
Order Date

FIGURE 4-12 Example of
mapping a 1:M relationship
(a) Relationship between
customers and orders

WHEN TO CREATE A SURROGATE KEY A surrogate key is usually created to simplify the
key structures. According to Hoberman (2006), a surrogate key should be created when
any of the following conditions hold:

• There is a composite primary key, as in the case of the DEPENDENT relation
shown previously with the four component primary key.

• The natural primary key (i.e., the key used in the organization and identified in
conceptual data modeling as the identifier) is inefficient (e.g., it may be very long
and hence costly for database software to handle if it is used as a foreign key that
references other tables).

• The natural primary key is recycled (i.e., the key is reused or repeated periodically,
so it may not actually be unique over time); a more general statement of this con-
dition is when the natural primary key cannot, in fact, be guaranteed to be unique
over time (e.g., there could be duplicates, such as with names or titles).

Whenever a surrogate key is created, the natural key is always kept as nonkey data
in the same relation because the natural key has organizational meaning. In fact, surro-
gate keys mean nothing to users, so they are usually never displayed; rather, the natural
keys are shown to the user as the primary keys and used as identifiers in searches.

Step 3: Map Binary Relationships

The procedure for representing relationships depends on both the degree of the rela-
tionships (unary, binary, or ternary) and the cardinalities of the relationships. We
describe and illustrate the important cases in the following discussion.

MAP BINARY ONE-TO-MANY RELATIONSHIPS For each binary 1:M relationship, first cre-
ate a relation for each of the two entity types participating in the relationship, using the
procedure described in Step 1. Next, include the primary key attribute (or attributes) of
the entity on the one-side of the relationship as a foreign key in the relation that is on the
many-side of the relationship. (A mnemonic you can use to remember this rule is this:
The primary key migrates to the many side.)

To illustrate this simple process, we use the Submits relationship between customers
and orders for Pine Valley Furniture Company (see Figure 2-22). This 1:M relationship
is illustrated in Figure 4-12a. (Again, we show only a few attributes for simplicity.)
Figure 4-12b shows the result of applying this rule to map the entity types with the
1:M relationship. The primary key CustomerID of CUSTOMER (the one side) is included
as a foreign key in ORDER (the many side). The foreign key relationship is indicated with
an arrow.

OrderDateOrderID

ORDER

CustomerID

CustomerID

CUSTOMER

CustomerAddress CustomerPostalCodeCustomerName

(b) Mapping the relationship

170 Part III • Database Design

MAP BINARY MANY-TO-MANY RELATIONSHIPS Suppose that there is a binary many-to-
many (M:N) relationship between two entity types, A and B. For such a relationship,
create a new relation, C. Include as foreign key attributes in C the primary key for each
of the two participating entity types. These attributes together become the primary key
of C. Any nonkey attributes that are associated with the M:N relationship are included
with the relation C.

Figure 4-13 shows an example of applying this rule. Figure 4-13a shows the
Completes relationship between the entity types EMPLOYEE and COURSE from
Figure 2-11a. Figure 4-13b shows the three relations (EMPLOYEE, COURSE, and CER-
TIFICATE) that are formed from the entity types and the Completes relationship. If
Completes had been represented as an associative entity, as is done in Figure 2-11b, a
similar result would occur, but we will deal with associative entities in a subsequent
section. In the case of an M:N relationship, first, a relation is created for each of the two
regular entity types EMPLOYEE and COURSE. Then a new relation (named CERTIFI-
CATE in Figure 4-13b) is created for the Completes relationship. The primary key of
CERTIFICATE is the combination of EmployeeID and CourseID, which are the respec-
tive primary keys of EMPLOYEE and COURSE. As indicated in the diagram, these
attributes are foreign keys that “point to” the respective primary keys. The nonkey
attribute DateCompleted also appears in CERTIFICATE. Although not shown here, it
might be wise to create a surrogate primary key for the CERTIFICATE relation.

MAP BINARY ONE-TO-ONE RELATIONSHIPS Binary one-to-one relationships can be
viewed as a special case of one-to-many relationships. The process of mapping such a
relationship to relations requires two steps. First, two relations are created, one for each
of the participating entity types. Second, the primary key of one of the relations is in-
cluded as a foreign key in the other relation.

In a 1:1 relationship, the association in one direction is nearly always an optional
one, whereas the association in the other direction is mandatory one. (You can review
the notation for these terms in Figure 2-1.) You should include in the relation on the

Completes

EMPLOYEE
Employee ID
Employee Name
Employee Birth Date

Date Completed

COURSE
Course ID
Course Title

FIGURE 4-13 Example of
mapping a M:N relationship
(a) Completes relationship
(M:N)

CERTIFICATE

EmployeeName EmployeeBirthDateEmployeeID

CourseID DateCompletedEmployeeID

EMPLOYEE

CourseTitleCourseID

COURSE

(b) Three resulting relations

Chapter 4 • Logical Database Design and the Relational Model 171

In charge

NURSE
Nurse ID
Nurse Name
Nurse Birth Date

Date Assigned

CARE CENTER
Center ID
Center Location

FIGURE 4-14 Example of
mapping a binary 1:1
relationship
(a) In Charge relationship
(binary 1:1)

optional side of the relationship the foreign key of the entity type that has the mandatory
participation in the 1:1 relationship. This approach will prevent the need to store null
values in the foreign key attribute. Any attributes associated with the relationship itself
are also included in the same relation as the foreign key.

An example of applying this procedure is shown in Figure 4-14. Figure 4-14a
shows a binary 1:1 relationship between the entity types NURSE and CARE CENTER.
Each care center must have a nurse who is in charge of that center. Thus, the associa-
tion from CARE CENTER to NURSE is a mandatory one, whereas the association
from NURSE to CARE CENTER is an optional one (since any nurse may or may not
be in charge of a care center). The attribute Date Assigned is attached to the In Charge
relationship.

The result of mapping this relationship to a set of relations is shown in Figure 4-14b.
The two relations NURSE and CARE CENTER are created from the two entity types.
Because CARE CENTER is the optional participant, the foreign key is placed in this rela-
tion. In this case, the foreign key is NurseInCharge. It has the same domain as NurseID,
and the relationship with the primary key is shown in the figure. The attribute
DateAssigned is also located in CARE CENTER and would not be allowed to be null.

Step 4: Map Associative Entities

As explained in Chapter 2, when a data modeler encounters a many-to-many relation-
ship, he or she may choose to model that relationship as an associative entity in the
E-R diagram. This approach is most appropriate when the end user can best visualize
the relationship as an entity type rather than as an M:N relationship. Mapping the asso-
ciative entity involves essentially the same steps as mapping an M:N relationship, as
described in Step 3.

The first step is to create three relations: one for each of the two participating entity
types and a third for the associative entity. We refer to the relation formed from the
associative entity as the associative relation. The second step then depends on whether on
the E-R diagram an identifier was assigned to the associative entity.

IDENTIFIER NOT ASSIGNED If an identifier was not assigned, the default primary key
for the associative relation consists of the two primary key attributes from the other two
relations. These attributes are then foreign keys that reference the other two relations.

CenterID CenterLocation

CARE CENTER

DateAssigned

NURSE

NurseID NurseName NurseBirthDate

NurseInCharge

(b) Resulting relations

172 Part III • Database Design

An example of this case is shown in Figure 4-15. Figure 4-15a shows the associa-
tive entity ORDER LINE that links the ORDER and PRODUCT entity types at Pine
Valley Furniture Company (see Figure 2-22). Figure 4-15b shows the three relations that
result from this mapping. Note the similarity of this example to that of an M:N relation-
ship shown in Figure 4-13.

IDENTIFIER ASSIGNED Sometimes a data modeler will assign a single-attribute identifier
to the associative entity type on the E-R diagram. There are two reasons that may have
motivated the data modeler to assign a single-attribute key during conceptual data
modeling:

1. The associative entity type has a natural single-attribute identifier that is familiar
to end users.

2. The default identifier (consisting of the identifiers for each of the participating
entity types) may not uniquely identify instances of the associative entity.

These motivations are in addition to the reasons mentioned earlier in this chapter to
create a surrogate primary key.

The process for mapping the associative entity in this case is now modified as fol-
lows. As before, a new (associative) relation is created to represent the associative entity.
However, the primary key for this relation is the identifier assigned on the E-R diagram
(rather than the default key). The primary keys for the two participating entity types are
then included as foreign keys in the associative relation.

ORDER
Order ID
Order Date

PRODUCT
Product ID
Product Description
Product Finish
Product Standard Price
Product Line ID

ORDER LINE

Ordered Quantity

Note: Product Line ID is included here
because it is a foreign key into the
PRODUCT LINE entity, not because
it would normally be included as an
attribute of PRODUCT

FIGURE 4-15 Example of mapping an associative entity

ProductID ProductDescription

PRODUCT

ProductFinish ProductStandardPrice ProductLineID

OrderID

ORDER

OrderDate

OrderID ProductID

ORDER LINE

OrderedQuantity

(a) An associative entity

(b) Three resulting relations

Chapter 4 • Logical Database Design and the Relational Model 173

Recursive foreign key
A foreign key in a relation that
references the primary key values
of the same relation.

An example of this process is shown in Figure 4-16. Figure 4-16a shows the asso-
ciative entity type SHIPMENT that links the CUSTOMER and VENDOR entity types.
Shipment ID has been chosen as the identifier for SHIPMENT for two reasons:

1. Shipment ID is a natural identifier for this entity that is very familiar to end users.
2. The default identifier consisting of the combination of Customer ID and Vendor

ID does not uniquely identify the instances of SHIPMENT. In fact, a given vendor
typically makes many shipments to a given customer. Even including the attribute
Date does not guarantee uniqueness, since there may be more than one shipment
by a particular vendor on a given date. The surrogate key ShipmentID will, how-
ever, uniquely identify each shipment.

Two nonkey attributes associated with SHIPMENT are Shipment Date and Shipment
Amount.

The result of mapping this entity to a set of relations is shown in Figure 4-16b. The
new associative relation is named SHIPMENT. The primary key is ShipmentID.
CustomerID and VendorID are included as foreign keys in this relation, and
ShipmentDate and ShipmentAmount are nonkey attributes.

Step 5: Map Unary Relationships

In Chapter 2, we defined a unary relationship as a relationship between the instances of
a single entity type. Unary relationships are also called recursive relationships. The two
most important cases of unary relationships are one-to-many and many-to-many rela-
tionships. We discuss these two cases separately because the approach to mapping is
somewhat different for the two types.

UNARY ONE-TO-MANY RELATIONSHIPS The entity type in the unary relationship is
mapped to a relation using the procedure described in Step 1. Then a foreign key attrib-
ute is added to the same relation; this attribute references the primary key values in the
same relation. (This foreign key must have the same domain as the primary key.) This
type of a foreign key is called a recursive foreign key.

CUSTOMER
Customer ID
Customer Name

SHIPMENT
Shipment ID
Shipment Date
Shipment Amount

VENDOR
Vendor ID
Vendor Address

FIGURE 4-16 Example of
mapping an associative
entity with an identifier
(a) SHIPMENT associative
entity

VendorID VendorAddress

VENDOR

CustomerID

CUSTOMER

CustomerName

ShipmentID CustomerID

SHIPMENT

VendorID ShipmentDate ShipmentAmount

(b) Three resulting relations

174 Part III • Database Design

Figure 4-17a shows a unary one-to-many relationship named Manages that associ-
ates each employee of an organization with another employee who is his or her manager.
Each employee may have one manager; a given employee may manage zero to many
employees.

The EMPLOYEE relation that results from mapping this entity and relationship
is shown in Figure 4-17b. The (recursive) foreign key in the relation is named ManagerID.
This attribute has the same domain as the primary key EmployeeID. Each row of this
relation stores the following data for a given employee: EmployeeID, EmployeeName,
EmployeeDateOfBirth, and ManagerID (i.e., EmployeeID for this employee’s manager).
Notice that because it is a foreign key, ManagerID references EmployeeID.

UNARY MANY-TO-MANY RELATIONSHIPS With this type of relationship, two relations
are created: one to represent the entity type in the relationship and an associative rela-
tion to represent the M:N relationship itself. The primary key of the associative relation
consists of two attributes. These attributes (which need not have the same name) both
take their values from the primary key of the other relation. Any nonkey attribute of the
relationship is included in the associative relation.

An example of mapping a unary M:N relationship is shown in Figure 4-18.
Figure 4-18a shows a bill-of-materials relationship among items that are assembled
from other items or components. (This structure was described in Chapter 2, and an
example appears in Figure 2-13.) The relationship (called Contains) is M:N because a
given item can contain numerous component items, and, conversely, an item can be
used as a component in numerous other items.

The relations that result from mapping this entity and its relationship are shown
in Figure 4-18b. The ITEM relation is mapped directly from the same entity type. COM-
PONENT is an associative relation whose primary key consists of two attributes that
are arbitrarily named ItemNo and ComponentNo. The attribute Quantity is a nonkey
attribute of this relation that, for a given item, records the quantity of a particular com-
ponent item used in that item. Notice that both ItemNo and ComponentNo reference
the primary key (ItemNo) of the ITEM relation.

We can easily query these relations to determine, for example, the components of
a given item. The following SQL query will list the immediate components (and their
quantity) for item number 100:

SELECT ComponentNo, Quantity
FROM Component_T
WHERE ItemNo = 100;

EMPLOYEE
Employee ID
Employee Name
Employee Date of Birth

Is Managed By

Manages

FIGURE 4-17 Mapping a
unary 1:N relationship
(a) EMPLOYEE entity with
unary relationship

EmployeeID EmployeeName

EMPLOYEE

EmployeeDateOfBirth ManagerID

(b) EMPLOYEE relation with
recursive foreign key

Chapter 4 • Logical Database Design and the Relational Model 175

Step 6: Map Ternary (and n-ary) Relationships

Recall from Chapter 2 that a ternary relationship is a relationship among three entity
types. In that chapter, we recommended that you convert a ternary relationship to an
associative entity to represent participation constraints more accurately.

To map an associative entity type that links three regular entity types, we create a
new associative relation. The default primary key of this relation consists of the three
primary key attributes for the participating entity types. (In some cases, additional at-
tributes are required to form a unique primary key.) These attributes then act in the role
of foreign keys that reference the individual primary keys of the participating entity
types. Any attributes of the associative entity type become attributes of the new relation.

An example of mapping a ternary relationship (represented as an associative
entity type) is shown in Figure 4-19. Figure 4-19a is an E-R segment (or view) that
represents a patient receiving a treatment from a physician. The associative entity type
PATIENT TREATMENT has the attributes PTreatment Date, PTreatment Time, and
PTreatment Results; values are recorded for these attributes for each instance of
PATIENT TREATMENT.

The result of mapping this view is shown in Figure 4-19b. The primary key attrib-
utes PatientID, PhysicianID, and TreatmentCode become foreign keys in PATIENT
TREATMENT. The foreign key into TREATMENT is called PTreatmentCode in
PATIENT TREATMENT. We are using this column name to illustrate that the foreign key
name does not have to be the same as the name of the primary key to which it refers, as
long as the values come from the same domain. These three attributes are components
of the primary key of PATIENT TREATMENT. However, they do not uniquely identify
a given treatment, because a patient may receive the same treatment from the same
physician on more than one occasion. Does including the attribute Date as part of the
primary key (along with the other three attributes) result in a primary key? This would
be so if a given patient receives only one treatment from a particular physician on a
given date. However, this is not likely to be the case. For example, a patient may receive
a treatment in the morning, then the same treatment again in the afternoon. To resolve
this issue, we include PTreatmentDate and PTreatmentTime as part of the primary key.
Therefore, the primary key of PATIENT TREATMENT consists of the five attributes

ITEM
Item No
Item Description
Item Unit Cost

Quantity

Contains

FIGURE 4-18 Mapping a
unary M:N relationship
(a) Bill-of-materials
relationship Contains (M:N)

ItemNo

ITEM

ItemDescription ItemUnitCost

ItemNo ComponentNo

COMPONENT

Quantity

(b) ITEM and COMPONENT
relations

176 Part III • Database Design

shown in Figure 4-19b: PatientID, PhysicianID, TreatmentCode, PTreatmentDate, and
PTreatmentTime. The only nonkey attribute in the relation is PTreatmentResults.

Although this primary key is technically correct, it is complex and therefore diffi-
cult to manage and prone to errors. A better approach is to introduce a surrogate key,
such as Treatment#, that is a serial number that uniquely identifies each treatment. In
this case, each of the former primary key attributes except for PTreatmentDate and
PTreatmentTime becomes a foreign key in the PATIENT TREATMENT relation. Another
similar approach is to use an enterprise key, as described at the end of this chapter.

Step 7: Map Supertype/Subtype Relationships

The relational data model does not yet directly support supertype/subtype relationships.
Fortunately, there are various strategies that database designers can use to represent these
relationships with the relational data model (Chouinard, 1989). For our purposes, we use
the following strategy, which is the one most commonly employed:

1. Create a separate relation for the supertype and for each of its subtypes.
2. Assign to the relation created for the supertype the attributes that are common to

all members of the supertype, including the primary key.
3. Assign to the relation for each subtype the primary key of the supertype and only

those attributes that are unique to that subtype.
4. Assign one (or more) attributes of the supertype to function as the subtype dis-

criminator. (The role of the subtype discriminator was discussed in Chapter 3.)

PATIENT
Patient ID
Patient Name

TREATMENT
Treatment Code
Treatment Description

PATIENT TREATMENT

PTreatment Date
PTreatment Time
PTreatment Results

PHYSICIAN
Physician ID
Physician Name

FIGURE 4-19 Mapping a ternary relationship

PatientID

PATIENT

PatientName PhysicianID

PHYSICIAN

PhysicianName TreatmentCode

TREATMENT

TreatmentDescription

PATIENT TREATMENT

PhysicianIDPatientID PTreatmentTime PTreatmentResultsTreatmentCode PTreatmentDate

(a) PATIENT TREATMENT ternary relationship with associative entity

(b) Mapping the ternary relationship PATIENT TREATMENT

Chapter 4 • Logical Database Design and the Relational Model 177

An example of applying this procedure is shown in Figures 4-20 and 4-21.
Figure 4-20 shows the supertype EMPLOYEE with subtypes HOURLY EMPLOYEE,
SALARIED EMPLOYEE, and CONSULTANT. (This example is described in Chapter 3,
and Figure 4-20 is a repeat of Figure 3-8.) The primary key of EMPLOYEE is Employee
Number, and the attribute Employee Type is the subtype discriminator.

The result of mapping this diagram to relations using these rules is shown in
Figure 4-21. There is one relation for the supertype (EMPLOYEE) and one for each of
the three subtypes. The primary key for each of the four relations is EmployeeNumber.
A prefix is used to distinguish the name of the primary key for each subtype. For exam-
ple, SEmployeeNumber is the name for the primary key of the relation SALARIED
EMPLOYEE. Each of these attributes is a foreign key that references the supertype
primary key, as indicated by the arrows in the diagram. Each subtype relation contains
only those attributes unique to the subtype.

For each subtype, a relation can be produced that contains all of the attributes of
that subtype (both specific and inherited) by using an SQL command that joins the
subtype with its supertype. For example, suppose that we want to display a table that

EMPLOYEE
Employee Number
Employee Name
Employee Address
Employee Date Hired
Employee Type

SALARIED
EMPLOYEE

Annual Salary
Stock Option

Hourly Rate

HOURLY
EMPLOYEE

CONSULTANT

Contract Number
Billing Rate

Employee Type =

“H”

d

“S”
“C”

FIGURE 4-20 Supertype/
subtype relationships

EmployeeNumber EmployeeName

EMPLOYEE

EmployeeAddress EmployeeDateHired EmployeeType

CEmployeeNumber

CONSULTANT

ContractNumber BillingRate

HEmployeeNumber

HOURLY_EMPLOYEE

HourlyRate

SEmployeeNumber

SALARIED_EMPLOYEE

AnnualSalary StockOption

FIGURE 4-21 Mapping supertype/subtype relationships to relations

178 Part III • Database Design

contains all of the attributes for SALARIED EMPLOYEE. The following command
is used:

SELECT *
FROM Employee_T, SalariedEmployee_T
WHERE EmployeeNumber = SEmployeeNumber;

Summary of EER-to-Relational Transformations

The steps provide a comprehensive explanation of how each element of an EER dia-
gram is transformed into parts of a relational data model. Table 4-2 is a quick reference
to these steps and the associated figures that illustrate each type of transformation.

INTRODUCTION TO NORMALIZATION

Following the steps outlined previously for transforming EER diagrams into relations
often results in well-structured relations. However, there is no guarantee that all
anomalies are removed by following these steps. Normalization is a formal process for
deciding which attributes should be grouped together in a relation so that all anomalies
are removed. For example, we used the principles of normalization to convert the
EMPLOYEE2 table (with its redundancy) to EMPLOYEE1 (Figure 4-1) and EMP COURSE

TABLE 4-2 Summary of EER to Relational Transformations

EER Structure Relational Representation (Sample Figure)

Regular entity Create a relation with primary key and nonkey attributes (Figure 4-8)

Composite attribute Each component of a composite attribute becomes a separate attribute in the target
relation (Figure 4-9)

Multivalued attribute Create a separate relation for multivalued attribute with composite primary key,
including the primary key of the entity (Figure 4-10)

Weak entity Create a relation with a composite primary key (which includes the primary key of
the entity on which this entity depends) and nonkey attributes (Figure 4-11)

Binary or unary 1:N relationship Place the primary key of the entity on the one side of the relationship as a foreign
key in the relation for the entity on the many side (Figure 4-12; Figure 4-17 for
unary relationship)

Binary or unary M:N relationship or
associative entity without its own key

Create a relation with a composite primary key using the primary keys of the
related entities plus any nonkey attributes of the relationship or associative
entity (Figure 4-13; Figure 4-15 for associative entity; Figure 4-18 for unary
relationship)

Binary or unary 1:1 relationship Place the primary key of either entity in the relation for the other entity; if one side
of the relationship is optional, place the foreign key of the entity on the mandatory
side in the relation for the entity on the optional side (Figure 4-14)

Binary or unary M:N relationship or
associative entity with its own key

Create a relation with the primary key associated with the associative entity plus any
nonkey attributes of the associative entity and the primary keys of the related
entities as foreign keys (Figure 4-16)

Ternary and n-ary relationships Same as binary M:N relationships above; without its own key, include as part of
primary key of relation for the relationship or associative entity the primary keys
from all related entities; with its own surrogate key, the primary keys of the
associated entities are included as foreign keys in the relation for the relationship
or associative entity (Figure 4-19)

Supertype/subtype relationship Create a relation for the superclass, which contains the primary and all nonkey
attributes in common with all subclasses, plus create a separate relation for each
subclass with the same primary key (with the same or local name) but with only
the nonkey attributes related to that subclass (Figure 4-20 and 4-21)

Chapter 4 • Logical Database Design and the Relational Model 179

(Figure 4-7). There are two major occasions during the overall database development
process when you can usually benefit from using normalization:

1. During logical database design (described in this chapter) You should use nor-
malization concepts as a quality check for the relations that are obtained from
mapping E-R diagrams.

2. When reverse-engineering older systems Many of the tables and user views for
older systems are redundant and subject to the anomalies we describe in this chapter.

So far we have presented an intuitive discussion of well-structured relations;
however, we need formal definitions of such relations, together with a process for de-
signing them. Normalization is the process of successively reducing relations with
anomalies to produce smaller, well-structured relations. Following are some of the
main goals of normalization:

1. Minimize data redundancy, thereby avoiding anomalies and conserving storage
space

2. Simplify the enforcement of referential integrity constraints
3. Make it easier to maintain data (insert, update, and delete)
4. Provide a better design that is an improved representation of the real world and a

stronger basis for future growth

Normalization makes no assumptions about how data will be used in displays,
queries, or reports. Normalization, based on what we will call normal forms and functional
dependencies, defines rules of the business, not data usage. Further, remember that data
are normalized by the end of logical database design. Thus, normalization, as we will see
in Chapter 5, places no constraints on how data can or should be physically stored or,
therefore, on processing performance. Normalization is a logical data modeling tech-
nique used to ensure that data are well structured from an organization-wide view.

Steps in Normalization

Normalization can be accomplished and understood in stages, each of which corre-
sponds to a normal form (see Figure 4-22). A normal form is a state of a relation that
requires that certain rules regarding relationships between attributes (or functional
dependencies) are satisfied. We describe these rules briefly in this section and illustrate
them in detail in the following sections:

1. First normal form Any multivalued attributes (also called repeating groups) have
been removed, so there is a single value (possibly null) at the intersection of each
row and column of the table (as in Figure 4-2b).

2. Second normal form Any partial functional dependencies have been removed
(i.e., nonkey attributes are identified by the whole primary key).

3. Third normal form Any transitive dependencies have been removed (i.e., non-
key attributes are identified by only the primary key).

4. Boyce-Codd normal form Any remaining anomalies that result from functional
dependencies have been removed (because there was more than one possible pri-
mary key for the same nonkeys).

5. Fourth normal form Any multivalued dependencies have been removed.
6. Fifth normal form Any remaining anomalies have been removed.

We describe and illustrate the first through the third normal forms in this chapter.
The remaining normal forms are described in Appendix B. These other normal forms
are in an appendix only to save space in this chapter, not because they are less impor-
tant. In fact, you can easily continue with Appendix B immediately after the section on
the third normal form.

Functional Dependencies and Keys

Up to the Boyce-Codd normal form, normalization is based on the analysis of
functional dependencies. A functional dependency is a constraint between two
attributes or two sets of attributes. For any relation R, attribute B is functionally

Normalization
The process of decomposing
relations with anomalies to
produce smaller, well-structured
relations.

Normal form
A state of a relation that requires
that certain rules regarding
relationships between attributes
(or functional dependencies)
are satisfied.

Functional dependency
A constraint between two
attributes in which the value of one
attribute is determined by the
value of another attribute.

180 Part III • Database Design

dependent on attribute A if, for every valid instance of A, that value of A uniquely
determines the value of B (Dutka and Hanson, 1989). The functional dependency of
B on A is represented by an arrow, as follows: A → B. A functional dependency is not
a mathematical dependency: B cannot be computed from A. Rather, if you know the
value of A, there can be only one value for B. An attribute may be functionally
dependent on a combination of two (or more) attributes rather than on a single
attribute. For example, consider the relation EMP COURSE (EmpID, CourseTitle,
DateCompleted) shown in Figure 4-7. We represent the functional dependency in this
relation as follows:

EmpID, CourseTitle → DateCompleted

The comma between EmpID and CourseTitle stands for the logical AND opera-
tor, because DateCompleted is functionally dependent on EmpID and CourseTitle in
combination.

The functional dependency in this statement implies that the date a course is com-
pleted is determined by the identity of the employee and the title of the course. Typical
examples of functional dependencies are the following:

1. SSN → Name, Address, Birthdate A person’s name, address, and birth date are
functionally dependent on that person’s Social Security number (in other words,
there can be only one Name, one Address, and one Birthdate for each SSN).

2. VIN → Make, Model, Color The make, model, and color of a vehicle are func-
tionally dependent on the vehicle identification number (as above, there can be
only one value of Make, Model, and Color associated with each VIN).

3. ISBN → Title, FirstAuthorName, Publisher The title of a book, the name of the
first author, and the publisher are functionally dependent on the book’s interna-
tional standard book number (ISBN).

Table with
multivalued
attributes

First
normal
form

Second
normal
form

Third
normal
form

Remove
multivalued
attributes

Remove
partial

dependencies

Remove
transitive

dependencies

Remove remaining
anomalies resulting

from multiple candidate
keys

Boyce-Codd
normal
form

Fourth
normal
form

Fifth
normal
form

Remove
multivalued

dependencies

Remove
remaining
anomalies

FIGURE 4-22 Steps in normalization

Chapter 4 • Logical Database Design and the Relational Model 181

DETERMINANTS The attribute on the left side of the arrow in a functional dependency
is called a determinant. SSN, VIN, and ISBN are determinants (respectively) in the pre-
ceding three examples. In the EMP COURSE relation (Figure 4-7), the combination of
EmpID and CourseTitle is a determinant.

CANDIDATE KEYS A candidate key is an attribute, or combination of attributes, that
uniquely identifies a row in a relation. A candidate key must satisfy the following prop-
erties (Dutka and Hanson, 1989), which are a subset of the six properties of a relation
previously listed:

1. Unique identification For every row, the value of the key must uniquely identi-
fy that row. This property implies that each nonkey attribute is functionally de-
pendent on that key.

2. Nonredundancy No attribute in the key can be deleted without destroying the
property of unique identification.

Let’s apply the preceding definition to identify candidate keys in two of the rela-
tions described in this chapter. The EMPLOYEE1 relation (Figure 4-1) has the following
schema: EMPLOYEE1(EmpID, Name, DeptName, Salary). EmpID is the only determi-
nant in this relation. All of the other attributes are functionally dependent on EmpID.
Therefore, EmpID is a candidate key and (because there are no other candidate keys)
also is the primary key.

We represent the functional dependencies for a relation using the notation shown
in Figure 4-23. Figure 4-23a shows the representation for EMPLOYEE1. The horizontal
line in the figure portrays the functional dependencies. A vertical line drops from the
primary key (EmpID) and connects to this line. Vertical arrows then point to each of the
nonkey attributes that are functionally dependent on the primary key.

For the relation EMPLOYEE2 (Figure 4-2b), notice that (unlike EMPLOYEE1)
EmpID does not uniquely identify a row in the relation. For example, there are two
rows in the table for EmpID number 100. There are two types of functional dependen-
cies in this relation:

1. EmpID → Name, DeptName, Salary
2. EmpID, CourseTitle → DateCompleted

Determinant
The attribute on the left side of the
arrow in a functional dependency.

Candidate key
An attribute, or combination of
attributes, that uniquely identifies
a row in a relation.

EMPLOYEE1

EmpID Name DeptName Salary

FIGURE 4-23 Representing functional dependencies

EMPLOYEE2

EmpID Name DeptName Salary DateCompletedCourseTitle

(a) Functional dependencies in EMPLOYEE1

(b) Functional dependencies in EMPLOYEE2

182 Part III • Database Design

The functional dependencies indicate that the combination of EmpID and
CourseTitle is the only candidate key (and therefore the primary key) for EMPLOYEE2.
In other words, the primary key of EMPLOYEE2 is a composite key. Neither EmpID nor
CourseTitle uniquely identifies a row in this relation and therefore (according to prop-
erty 1) cannot by itself be a candidate key. Examine the data in Figure 4-2b to verify that
the combination of EmpID and CourseTitle does uniquely identify each row of
EMPLOYEE2. We represent the functional dependencies in this relation in Figure 4-23b.
Notice that DateCompleted is the only attribute that is functionally dependent on the
full primary key consisting of the attributes EmpID and CourseTitle.

We can summarize the relationship between determinants and candidate keys as
follows: A candidate key is always a determinant, whereas a determinant may or may
not be a candidate key. For example, in EMPLOYEE2, EmpID is a determinant but not a
candidate key. A candidate key is a determinant that uniquely identifies the remaining
(nonkey) attributes in a relation. A determinant may be a candidate key (such as EmpID
in EMPLOYEE1), part of a composite candidate key (such as EmpID in EMPLOYEE2),
or a nonkey attribute. We will describe examples of this shortly.

As a preview to the following illustration of what normalization accomplishes,
normalized relations have as their primary key the determinant for each of the nonkeys,
and within that relation there are no other functional dependencies.

NORMALIZATION EXAMPLE: PINE VALLEY FURNITURE COMPANY

Now that we have examined functional dependencies and keys, we are ready to
describe and illustrate the steps of normalization. If an EER data model has been trans-
formed into a comprehensive set of relations for the database, then each of these rela-
tions needs to be normalized. In other cases in which the logical data model is being
derived from user interfaces, such as screens, forms, and reports, you will want to
create relations for each user interface and normalize those relations.

For a simple illustration, we use a customer invoice from Pine Valley Furniture
Company (see Figure 4-24.)

Step 0: Represent the View in Tabular Form

The first step (preliminary to normalization) is to represent the user view (in this case,
an invoice) as a single table, or relation, with the attributes recorded as column head-
ings. Sample data should be recorded in the rows of the table, including any repeating

Customer ID

Product ID

7 Dining Table

5 Writer’s Desk

4

2

2

1

$800.00

$325.00

$650.00

Total

$1,600.00

$650.00

$650.00

$2,900.00

Entertainment Center

Natural Ash

Cherry

Natural Maple

Product Description Finish Quantity Unit Price Extended Price

PVFC Customer Invoice

2

Customer Name Value Furniture

Order ID

Order Date

1006

10/24/2010

Address 15145 S.W. 17th St.
Plano TX 75022

FIGURE 4-24 Invoice (Pine
Valley Furniture Company)

Chapter 4 • Logical Database Design and the Relational Model 183

groups that are present in the data. The table representing the invoice is shown
in Figure 4-25. Notice that data for a second order (OrderID 1007) are included in
Figure 4-25 to clarify further the structure of this data.

Step 1: Convert to First Normal Form

A relation is in first normal form (1NF) if the following two constraints both apply:

1. There are no repeating groups in the relation (thus, there is a single fact at the in-
tersection of each row and column of the table).

2. A primary key has been defined, which uniquely identifies each row in the relation.

REMOVE REPEATING GROUPS As you can see, the invoice data in Figure 4-25 contain
a repeating group for each product that appears on a particular order. Thus, OrderID
1006 contains three repeating groups, corresponding to the three products on
that order.

In a previous section, we showed how to remove repeating groups from a table by
filling relevant data values into previously vacant cells of the table (see Figures 4-2a and
4-2b). Applying this procedure to the invoice table yields the new table (named IN-
VOICE) shown in Figure 4-26.

OrderID Order Customer Customer Customer ProductID Product Product Product Ordered
Date ID Name Address Description Finish StandardPrice Quantity

1006 10/24/2010 Value Plano, TX Dining Natural 800.00 2
Furniture Table Ash

1006 10/24/2010 Value Plano, TX Writer’s Cherry 325.00 2
Furniture Desk

1006 10/24/2010 Value Plano, TX Entertainment Natural 650.00 1
Furniture Center Maple

1007 10/25/2010 Furniture Boulder, 4–Dr Oak 500.00 4
Gallery CO Dresser

1007 10/25/2010 6

6

2

2

2

4

11

4

5

7

Furniture Boulder, Entertainment Natural 650.00 3
Gallery CO Center Maple

FIGURE 4-25 INVOICE data (Pine Valley Furniture Company)

OrderID Order Customer Customer Customer ProductID Product Product Product Ordered
Date ID Name Address Description Finish StandardPrice Quantity

1006 10/24/2010 2 Value Plano, TX 7 Dining Natural 800.00 2
Furniture Table Ash

5 Writer’s Cherry 325.00 2
Desk

4 Entertainment Natural 650.00 1
Center Maple

1007 10/25/2010 6 Furniture Boulder, 11 4–Dr Oak 500.00 4
Gallery CO Dresser

4 Entertainment Natural 650.00 3
Center Maple

FIGURE 4-26 INVOICE relation (1NF) (Pine Valley Furniture Company)

First normal form (1NF)
A relation that has a primary
key and in which there are no
repeating groups.

184 Part III • Database Design

SELECT THE PRIMARY KEY There are four determinants in INVOICE, and their func-
tional dependencies are the following:

OrderID → OrderDate, CustomerID, CustomerName, CustomerAddress
CustomerID → CustomerName, CustomerAddress
ProductID → ProductDescription, ProductFinish, ProductStandardPrice
OrderID, ProductID → OrderedQuantity

Why do we know these are the functional dependencies? These business rules come
from the organization. We know these from studying the nature of the Pine Valley
Furniture Company business. We can also see that no data in Figure 4-26 violates any of
these functional dependencies. But, because we don’t see all possible rows of this table,
we cannot be sure that there wouldn’t be some invoice that would violate one of these
functional dependencies. Thus, we must depend on our understanding of the rules of
the organization.

As you can see, the only candidate key for INVOICE is the composite key consist-
ing of the attributes OrderID and ProductID (because there is only one row in the table
for any combination of values for these attributes). Therefore, OrderID and ProductID
are underlined in Figure 4-26, indicating that they comprise the primary key.

When forming a primary key, you must be careful not to include redundant (and
therefore unnecessary) attributes. Thus, although CustomerID is a determinant in IN-
VOICE, it is not included as part of the primary key because all of the nonkey attributes
are identified by the combination of OrderID and ProductID. We will see the role of
CustomerID in the normalization process that follows.

A diagram that shows these functional dependencies for the INVOICE relation is
shown in Figure 4-27. This diagram is a horizontal list of all the attributes in INVOICE, with
the primary key attributes (OrderID and ProductID) underlined. Notice that the only at-
tribute that depends on the full key is OrderedQuantity. All of the other functional depend-
encies are either partial dependencies or transitive dependencies (both are defined next).

ANOMALIES IN 1NF Although repeating groups have been removed, the data in
Figure 4-26 still contain considerable redundancy. For example, CustomerID,
CustomerName, and CustomerAddress for Value Furniture are recorded in three rows
(at least) in the table. As a result of these redundancies, manipulating the data in the
table can lead to anomalies such as the following:

1. Insertion anomaly With this table structure, the company is not able to intro-
duce a new product (say, Breakfast Table with ProductID 8) and add it to the data-
base before it is ordered the first time: No entries can be added to the table without
both ProductID and OrderID. As another example, if a customer calls and requests
another product be added to his OrderID 1007, a new row must be inserted in
which the order date and all of the customer information must be repeated. This
leads to data replication and potential data entry errors (e.g., the customer name
may be entered as “Valley Furniture”).

CustomerAddressOrderID OrderDate CustomerID CustomerName

Full Dependency

Transitive Dependencies

Partial Dependencies Partial Dependencies

ProductID ProductDescription ProductFinish Product
StandardPrice

OrderedQuantity

FIGURE 4-27 Functional dependency diagram for INVOICE

Chapter 4 • Logical Database Design and the Relational Model 185

2. Deletion anomaly If a customer calls and requests that the Dining Table be deleted
from her OrderID 1006, this row must be deleted from the relation, and we lose
the information concerning this item’s finish (Natural Ash) and price ($800.00).

3. Update anomaly If Pine Valley Furniture (as part of a price adjustment) increas-
es the price of the Entertainment Center (ProductID 4) to $750.00, this change
must be recorded in all rows containing that item. (There are two such rows in
Figure 4-26.)

Step 2: Convert to Second Normal Form

We can remove many of the redundancies (and resulting anomalies) in the INVOICE re-
lation by converting it to second normal form. A relation is in second normal form
(2NF) if it is in first normal form and contains no partial functional dependencies.
A partial functional dependency exists when a nonkey attribute is functionally
dependent on part (but not all) of the primary key. As you can see, the following partial
dependencies exist in Figure 4-27:

OrderID → OrderDate, CustomerID, CustomerName, CustomerAddress
ProductID → ProductDescription, ProductFinish, ProductStandardPrice

The first of these partial dependencies (for example) states that the date on an order is
uniquely determined by the order number and has nothing to do with the ProductID.

To convert a relation with partial dependencies to second normal form, the follow-
ing steps are required:

1. Create a new relation for each primary key attribute (or combination of attributes)
that is a determinant in a partial dependency. That attribute is the primary key in
the new relation.

2. Move the nonkey attributes that are dependent on this primary key attribute
(or attributes) from the old relation to the new relation.

The results of performing these steps for the INVOICE relation are shown in Figure 4-28.
Removal of the partial dependencies results in the formation of two new relations:
PRODUCT and CUSTOMER ORDER. The INVOICE relation is now left with just the
primary key attributes (OrderID and ProductID) and OrderedQuantity, which is func-
tionally dependent on the whole key. We rename this relation ORDER LINE, because
each row in this table represents one line item on an order.

As indicated in Figure 4-28, the relations ORDER LINE and PRODUCT are in
third normal form. However, CUSTOMER ORDER contains transitive dependencies
and therefore (although in second normal form) is not yet in third normal form.

OrderID

Transitive Dependencies

ProductID Ordered Quantity ORDERLINE (3NF)

ProductID ProductDescription ProductFinish
Product

StandardPrice PRODUCT (3NF)

OrderID OrderDate CustomerID CustomerName CustomerAddress CUSTOMER ORDER (2NF)

FIGURE 4-28 Removing partial dependencies

Second normal form (2NF)
A relation in first normal form
in which every nonkey attribute
is fully functionally dependent on
the primary key.

Partial functional dependency
A functional dependency in which
one or more nonkey attributes are
functionally dependent on part
(but not all) of the primary key.

186 Part III • Database Design

A relation that is in first normal form will be in second normal form if any one of
the following conditions applies:

1. The primary key consists of only one attribute (e.g., the attribute ProductID in the
PRODUCT relation in Figure 4-28). By definition, there cannot be a partial de-
pendency in such a relation.

2. No nonkey attributes exist in the relation (thus all of the attributes in the relation
are components of the primary key). There are no functional dependencies in such
a relation.

3. Every nonkey attribute is functionally dependent on the full set of primary key at-
tributes (e.g., the attribute OrderedQuantity in the ORDER LINE relation in
Figure 4-28).

Step 3: Convert to Third Normal Form

A relation is in third normal form (3NF) if it is in second normal form and no transitive
dependencies exist. A transitive dependency in a relation is a functional dependency
between the primary key and one or more nonkey attributes that are dependent on the
primary key via another nonkey attribute . For example, there are two transitive de-
pendencies in the CUSTOMER ORDER relation shown in Figure 4-28:

OrderID → CustomerID → CustomerName
OrderID → CustomerID → CustomerAddress

In other words, both customer name and address are uniquely identified by CustomerID,
but CustomerID is not part of the primary key (as we noted earlier).

Transitive dependencies create unnecessary redundancy that may lead to the type
of anomalies discussed earlier. For example, the transitive dependency in CUSTOMER
ORDER (Figure 4-28) requires that a customer’s name and address be reentered every
time a customer submits a new order, regardless of how many times they have been
entered previously. You have no doubt experienced this type of annoying requirement
when ordering merchandise online, visiting a doctor’s office, or any number of similar
activities.

REMOVING TRANSITIVE DEPENDENCIES You can easily remove transitive dependencies
from a relation by means of a three-step procedure:

1. For each nonkey attribute (or set of attributes) that is a determinant in a relation,
create a new relation. That attribute (or set of attributes) becomes the primary key
of the new relation.

2. Move all of the attributes that are functionally dependent on the primary key of
the new relation from the old to the new relation.

3. Leave the attribute that serves as a primary key in the new relation in the old rela-
tion to serve as a foreign key that allows you to associate the two relations.

The results of applying these steps to the relation CUSTOMER ORDER are shown
in Figure 4-29. A new relation named CUSTOMER has been created to receive the
components of the transitive dependency. The determinant CustomerID becomes the

Third normal form (3NF)
A relation that is in second normal
form and has no transitive
dependencies.

Transitive dependency
A functional dependency between
the primary key and one or more
nonkey attributes that are
dependent on the primary key via
another nonkey attribute.

FIGURE 4-29 Removing
transitive dependencies

OrderID OrderDate CustomerID ORDER (3NF)

CustomerID CustomerName CustomerAddress CUSTOMER (3NF)

Chapter 4 • Logical Database Design and the Relational Model 187

primary key of this relation, and the attributes CustomerName and CustomerAddress
are moved to the relation. CUSTOMER ORDER is renamed ORDER, and the attribute
CustomerID remains as a foreign key in that relation. This allows us to associate an
order with the customer who submitted the order. As indicated in Figure 4-29, these
relations are now in third normal form.

Normalizing the data in the INVOICE view has resulted in the creation of four
relations in third normal form: CUSTOMER, PRODUCT, ORDER, and ORDER LINE.
A relational schema showing these four relations and their associations (developed
using Microsoft Visio) is shown in Figure 4-30. Note that CustomerID is a foreign key
in ORDER, and OrderID and ProductID are foreign keys in ORDER LINE. (Foreign
keys are shown in Visio for logical, but not conceptual, data models.) Also note that
minimum cardinalities are shown on the relationships even though the normalized
relations provide no evidence of what the minimum cardinalities should be. Sample
data for the relations might include, for example, a customer with no orders, thus pro-
viding evidence of the optional cardinality for the relationship Places. However, even
if there were an order for every customer in a sample data set, this would not prove
mandatory cardinality. Minimum cardinalities must be determined from business
rules, not illustrations of reports, screens, and transactions. The same statement is
true for specific maximum cardinalities (e.g., a business rule that no order may
contain more than 10 line items).

Determinants and Normalization

We demonstrated normalization through 3NF in steps. There is an easy shortcut, how-
ever. If you look back at the original set of four determinants and the associated func-
tional dependencies for the invoice user view, each of these corresponds to one of the
relations in Figure 4-30, with each determinant being the primary key of a relation, and
the nonkeys of each relation are those attributes functionally dependent on each deter-
minant. There is a subtle but important difference: Because OrderID determines
CustomerID, CustomerName, and CustomerAddress and CustomerID determines its
dependent attributes, CustomerID becomes a foreign key in the ORDER relation, which
is where CustomerName and CustomerAddress are represented. The point is, if you
can determine determinants that have no overlapping dependent attributes, then you
have defined the relations. Thus, you can do normalization step by step as illustrated
for the Pine Valley Furniture invoice, or you can create relations in 3NF straight from
determinants’ functional dependencies.

Customer IDPK

Customer Name
Customer Address

CUSTOMER

Order IDPK

FK1
Order Date
Customer ID

ORDER
Places

Product IDPK

Product Description
Product Finish
Product Standard Price

PRODUCT

Order ID
Product ID

PK,FK1
PK,FK2

Ordered Quantity

ORDER LINE
Is ordered

Includes

FIGURE 4-30 Relational
schema for INVOICE data
(Microsoft Visio notation)

188 Part III • Database Design

Step 4: Further Normalization

After completing steps 0 through 3, all nonkeys will be dependent on the primary
key, the whole primary key, and nothing but the primary key (“so help you Codd!”).
Actually, normal forms are rules about functional dependencies and, hence, are
the result of finding determinants and their associated nonkeys. The steps we out-
lined above are an aid in creating a relation for each determinant and its associated
nonkeys.

You will recall from the beginning of our discussion of normalization that we identi-
fied additional normal forms beyond 3NF. The most commonly enforced of these addition-
al normal forms are explained in Appendix B, which you might want to read or scan now.

MERGING RELATIONS

In a previous section, we described how to transform EER diagrams into relations. This
transformation occurs when we take the results of a top-down analysis of data require-
ments and begin to structure them for implementation in a database. We then described
how to check the resulting relations to determine whether they are in third (or higher)
normal form and perform normalization steps if necessary.

As part of the logical design process, normalized relations may have been created
from a number of separate EER diagrams and (possibly) other user views (i.e., there
may be bottom-up or parallel database development activities for different areas of
the organization as well as top-down ones). For example, besides the invoice used in the
prior section to illustrate normalization, there may be an order form, an account balance
report, production routing, and other user views, each of which have been normalized
separately. The three-schema architecture for databases (see Chapter 1) encourages the
simultaneous use of both top-down and bottom-up database development processes. In
reality, most medium to large organizations have many reasonably independent sys-
tems development activities that at some point need to come together to create a shared
database. The result is that some of the relations generated from these various processes
may be redundant; that is, they may refer to the same entities. In such cases, we should
merge those relations to remove the redundancy. This section describes merging rela-
tions (also called view integration). An understanding of how to merge relations is
important for three reasons:

1. On large projects, the work of several subteams comes together during logical
design, so there is often a need to merge relations.

2. Integrating existing databases with new information requirements often leads to
the need to integrate different views.

3. New data requirements may arise during the life cycle, so there is a need to merge
any new relations with what has already been developed.

An Example

Suppose that modeling a user view results in the following 3NF relation:

EMPLOYEE1(EmployeeID, Name, Address, Phone)

Modeling a second user view might result in the following relation:

EMPLOYEE2(EmployeeID, Name, Address, Jobcode, NoYears)

Because these two relations have the same primary key (EmployeeID), they likely
describe the same entity and may be merged into one relation. The result of merging the
relations is the following relation:

EMPLOYEE(EmployeeID, Name, Address, Phone, Jobcode, NoYears)

Chapter 4 • Logical Database Design and the Relational Model 189

Notice that an attribute that appears in both relations (e.g., Name in this example)
appears only once in the merged relation.

View Integration Problems

When integrating relations as in the preceding example, a database analyst must under-
stand the meaning of the data and must be prepared to resolve any problems that may
arise in that process. In this section, we describe and briefly illustrate four problems that
arise in view integration: synonyms, homonyms, transitive dependencies, and supertype/
subtype relationships.

SYNONYMS In some situations, two (or more) attributes may have different names but
the same meaning (e.g., when they describe the same characteristic of an entity). Such
attributes are called synonyms. For example, EmployeeID and EmployeeNo may be
synonyms. When merging the relations that contain synonyms, you should obtain
agreement (if possible) from users on a single, standardized name for the attribute and
eliminate any other synonyms. (Another alternative is to choose a third name to replace
the synonyms.) For example, consider the following relations:

STUDENT1(StudentID, Name)
STUDENT2(MatriculationNo, Name, Address)

In this case, the analyst recognizes that both StudentID and MatriculationNo
are synonyms for a person’s student identity number and are identical attributes.
(Another possibility is that these are both candidate keys, and only one of
them should be selected as the primary key.) One possible resolution would be to
standardize on one of the two attribute names, such as StudentID. Another option
is to use a new attribute name, such as StudentNo, to replace both synonyms.
Assuming the latter approach, merging the two relations would produce the follow-
ing result:

STUDENT(StudentNo, Name, Address)

Often when there are synonyms, there is a need to allow some database users to
refer to the same data by different names. Users may need to use familiar names that
are consistent with terminology in their part of the organization. An alias is an alterna-
tive name used for an attribute. Many database management systems allow the defini-
tion of an alias that may be used interchangeably with the primary attribute label.

HOMONYMS An attribute name that may have more than one meaning is called a
homonym. For example, the term account might refer to a bank’s checking account, sav-
ings account, loan account, or other type of account (and therefore account refers to
different data, depending on how it is used).

You should be on the lookout for homonyms when merging relations. Consider
the following example:

STUDENT1(StudentID, Name, Address)
STUDENT2(StudentID, Name, PhoneNo, Address)

In discussions with users, an analyst may discover that the attribute Address in
STUDENT1 refers to a student’s campus address, whereas in STUDENT2 the same attrib-
ute refers to a student’s permanent (or home) address. To resolve this conflict, we would
probably need to create new attribute names, so that the merged relation would become

STUDENT(StudentID, Name, PhoneNo, CampusAddress, PermanentAddress)

Synonyms
Two (or more) attributes that have
different names but the same
meaning.

Alias
An alternative name used
for an attribute.

Homonym
An attribute that may have
more than one meaning.

190 Part III • Database Design

TRANSITIVE DEPENDENCIES When two 3NF relations are merged to form a single rela-
tion, transitive dependencies (described earlier in this chapter) may result. For example,
consider the following two relations:

STUDENT1(StudentID, Major)
STUDENT2(StudentID, Advisor)

Because STUDENT1 and STUDENT2 have the same primary key, the two rela-
tions can be merged:

STUDENT(StudentID, Major, Advisor)

However, suppose that each major has exactly one advisor. In this case, Advisor is
functionally dependent on Major:

Major → Advisor

If the preceding functional dependency exists, then STUDENT is in 2NF but
not in 3NF, because it contains a transitive dependency. The analyst can create 3NF
relations by removing the transitive dependency. Major becomes a foreign key in
STUDENT:

STUDENT(StudentID, Major)
MAJOR ADVISOR(Major, Advisor)

SUPERTYPE/SUBTYPE RELATIONSHIPS These relationships may be hidden in user views
or relations. Suppose that we have the following two hospital relations:

PATIENT1(PatientID, Name, Address)
PATIENT2(PatientID, RoomNo)

Initially, it appears that these two relations can be merged into a single PATIENT
relation. However, the analyst correctly suspects that there are two different types of pa-
tients: resident patients and outpatients. PATIENT1 actually contains attributes com-
mon to all patients. PATIENT2 contains an attribute (RoomNo) that is a characteristic
only of resident patients. In this situation, the analyst should create supertype/subtype
relationships for these entities:

PATIENT(PatientID, Name, Address)
RESIDENT PATIENT(PatientID, RoomNo)
OUTPATIENT(PatientID, DateTreated)

We have created the OUTPATIENT relation to show what it might look like if it
were needed, but it is not necessary, given only PATIENT1 and PATIENT2 user views.
For an extended discussion of view integration in database design, see Navathe,
Elmasri, and Larson (1986).

A FINAL STEP FOR DEFINING RELATIONAL KEYS

In Chapter 2, we provided some criteria for selecting identifiers: They do not change
values over time and must be unique and known, nonintelligent, and use a single at-
tribute surrogate for composite identifier. Actually, none of these criteria must apply
until the database is implemented (i.e., when the identifier becomes a primary key
and is defined as a field in the physical database). Before the relations are defined as
tables, the primary keys of relations should, if necessary, be changed to conform to
these criteria.

Chapter 4 • Logical Database Design and the Relational Model 191

Recently database experts (e.g., Johnston, 2000) have strengthened the criteria for
primary key specification. Experts now also recommend that a primary key be unique
across the whole database (a so-called enterprise key), not just unique within the relational
table to which it applies. This criterion makes a primary key more like what in object-
oriented databases is called an object identifier (see Chapters 13 and 14). With this recom-
mendation, the primary key of a relation becomes a value internal to the database system
and has no business meaning.

A candidate primary key, such as EmpID in the EMPLOYEE1 relation of Figure 4-1
or CustomerID in the CUSTOMER relation (Figure 4-29), if ever used in the organization,
is called a business key or natural key and would be included in the relation as a nonkey at-
tribute. The EMPLOYEE1 and CUSTOMER relations (and every other relation in the
database) then have a new enterprise key attribute (called, say, ObjectID), which has no
business meaning.

Why create this extra attribute? One of the main motivations for using an enter-
prise key is database evolvability—merging new relations into a database after the
database is created. For example, consider the following two relations:

EMPLOYEE(EmpID, EmpName, DeptName, Salary)
CUSTOMER(CustID, CustName, Address)

In this example, without an enterprise key, EmpID and CustID may or may not
have the same format, length, and data type, whether they are intelligent or nonintel-
ligent. Suppose the organization evolves its information processing needs and recog-
nizes that employees can also be customers, so employee and customer are simply
two subtypes of the same PERSON supertype. (You saw this in Chapter 3, when
studying universal data modeling.) Thus, the organization would then like to have
three relations:

PERSON(PersonID, PersonName)
EMPLOYEE(PersonID, DeptName, Salary)
CUSTOMER(PersonID, Address)

In this case, PersonID is supposed to be the same value for the same person
throughout all roles. But if values for EmpID and CustID were selected before relation
PERSON was created, the values for EmpID and CustID probably will not match.
Moreover, if we change the values of EmpID and CustID to match the new PersonID,
how do we ensure that all EmpIDs and CustIDs are unique if another employee or cus-
tomer already has the associated PersonID value? Even worse, if there are other tables
that relate to, say, EMPLOYEE, then foreign keys in these other tables have to change,
creating a ripple effect of foreign key changes. The only way to guarantee that each pri-
mary key of a relation is unique across the database is to create an enterprise key from
the very beginning so primary keys never have to change.

In our example, the original database (without PERSON) with an enterprise
key is shown in Figures 4-31a (the relations) and 4-31b (sample data). In this figure,
EmpID and CustID are now business keys, and OBJECT is the supertype of all other
relations. OBJECT can have attributes such as the name of the type of object (included
in this example as attribute ObjectType), date created, date last changed, or any other
internal system attributes for an object instance. Then, when PERSON is needed, the
database evolves to the design shown in Figures 4-31c (the relations) and 4-31d (sam-
ple data). Evolution to the database with PERSON still requires some alterations to
existing tables, but not to primary key values. The name attribute is moved to PER-
SON because it is common to both subtypes, and a foreign key is added to EMPLOY-
EE and CUSTOMER to point to the common person instance. As you will see in
Chapter 6, it is easy to add and delete nonkey columns, even foreign keys, to table
definitions. In contrast, changing the primary key of a relation is not allowed by
most database management systems because of the extensive cost of the foreign key
ripple effect.

Enterprise key
A primary key whose value is
unique across all relations.

192 Part III • Database Design

OBJECT (OID, ObjectType)
EMPLOYEE (OID, EmpID, EmpName, DeptName, Salary)
CUSTOMER (OID, CustID, CustName, Address)

1

2

3

4

5

6

7

OID

OBJECT

ObjectType

EMPLOYEE

CUSTOMER

CUSTOMER

EMPLOYEE

EMPLOYEE

CUSTOMER

CUSTOMER

1

4

5

OID

EMPLOYEE

EmpID

100

101

102

EmpName

Jennings, Fred

Hopkins, Dan

Huber, Ike

DeptName

Marketing

Purchasing

Accounting

Salary

50000

45000

45000

2

3

6

7

OID

CUSTOMER

CustID

100

101

102

103

CustName

Fred’s Warehouse

Bargain Bonanza

Jasper’s

Desks ’R Us

Address

Greensboro, NC

Moscow, ID

Tallahassee, FL

Kettering, OH

OBJECT (OID, ObjectType)
EMPLOYEE (OID, EmpID, DeptName, Salary, PersonID)
CUSTOMER (OID, CustID, Address, PersonID)
PERSON (OID, Name)

FIGURE 4-31 Enterprise key

(a) Relations with enterprise key

(b) Sample data with enterprise key

(c) Relations after adding the PERSON relation

Summary

Logical database design is the process of transforming
the conceptual data model into a logical data model.
The emphasis in this chapter has been on the relational
data model, because of its importance in contempo-
rary database systems. The relational data model repre-
sents data in the form of tables called relations. A relation
is a named, two-dimensional table of data. A key prop-
erty of relations is that they cannot contain multivalued
attributes.

In this chapter, we described the major steps in the
logical database design process. This process is based
on transforming EER diagrams into normalized rela-
tions. This process has three steps: Transform EER
diagrams into relations, normalize the relations, and
merge the relations. The result of this process is a set of
relations in third normal form that can be implemented
using any contemporary relational database manage-
ment system.

(continued)

(inconsistencies or errors) that would otherwise
result when the relations are updated or modified.
Normalization is based on the analysis of functional
dependencies, which are constraints between two at-
tributes (or two sets of attributes). It may be accom-
plished in several stages. Relations in first normal form
(1NF) contain no multivalued attributes or repeating
groups. Relations in second normal form (2NF) contain
no partial dependencies, and relations in third normal
form (3NF) contain no transitive dependencies. We can
use diagrams that show the functional dependencies in
a relation to help decompose that relation (if necessary)
to obtain relations in third normal form. Higher normal
forms (beyond 3NF) have also been defined; we discuss
these normal forms in Appendix B.

We must be careful when combining relations to
deal with problems such as synonyms, homonyms, tran-
sitive dependencies, and supertype/subtype relation-
ships. In addition, before relations are defined to the
database management system, all primary keys should
be described as single-attribute nonintelligent keys and,
preferably, as enterprise keys.

Chapter 4 • Logical Database Design and the Relational Model 193

Each entity type in the EER diagram is trans-
formed into a relation that has the same primary key as
the entity type. A one-to-many relationship is represented
by adding a foreign key to the relation that represents
the entity on the many side of the relationship. (This for-
eign key is the primary key of the entity on the one side
of the relationship.) A many-to-many relationship is
represented by creating a separate relation. The primary
key of this relation is a composite key, consisting of the
primary key of each of the entities that participate in the
relationship.

The relational model does not directly support
supertype/subtype relationships, but we can model these
relationships by creating a separate table (or relation) for
the supertype and for each subtype. The primary key of
each subtype is the same (or at least from the same do-
main) as for the supertype. The supertype must have an
attribute called the subtype discriminator that indicates
to which subtype (or subtypes) each instance of the su-
pertype belongs.

The purpose of normalization is to derive
well-structured relations that are free of anomalies

8

9

10

11

12

13

14

OID

PERSON

Name

Jennings, Fred

Fred’s Warehouse

Bargain Bonanza

Hopkins, Dan

Huber, Ike

Jasper’s

Desks ‘R Us

1

2

3

4

5

6

7

8

9

10

11

12

13

14

OID

OBJECT

ObjectType

EMPLOYEE

CUSTOMER

CUSTOMER

EMPLOYEE

EMPLOYEE

CUSTOMER

CUSTOMER

PERSON

PERSON

PERSON

PERSON

PERSON

PERSON

PERSON

1

4

5

OID

EMPLOYEE

EmpID

100

101

102

DeptName

Marketing

Purchasing

Accounting

Salary

50000

45000

45000

PersonID

8

11

12

2

3

6

7

OID

CUSTOMER

CustID

100

101

102

103

PersonID

9

10

13

14

Address

Greensboro, NC

Moscow, ID

Tallahassee, FL

Kettering, OH

FIGURE 4-31 (continued)

(d) Sample data after adding the PERSON relation

194 Part III • Database Design

Review Questions

1. Define each of the following terms:
a. determinant
b. functional dependency
c. transitive dependency
d. recursive foreign key
e. normalization
f. composite key
g. relation
h. normal form
i. partial functional dependency
j. enterprise key
k. surrogate primary key

2. Match the following terms to the appropriate definitions:
well-structured
relation

anomaly

functional
dependency

determinant

composite key

1NF

2NF

3NF

recursive
foreign key

relation

transitive
dependency

5. Summarize six important properties of relations.
6. Describe two properties that each candidate key must satisfy.
7. Describe three types of anomalies that can arise in a table

and the negative consequences of each.
8. Fill in the blanks in each of the following statements:

a. A relation that has no partial functional dependencies is
in _____ normal form.

b. A relation that has no transitive dependencies is in _____
normal form.

c. A relation that has no multivalued attributes is in _____
normal form.

9. What is a well-structured relation? Why are well-structured
relations important in logical database design?

10. Describe the primary way in which relationships in an E-R di-
agram are expressed in a corresponding relational data model.

11. Describe how the following components of an E-R diagram
are transformed into relations:
a. regular entity type
b. relationship (1:M)
c. relationship (M:N)
d. relationship (supertype/subtype)
e. multivalued attribute
f. weak entity
g. composite attribute

12. What is the primary purpose of normalization?
13. Briefly describe four typical problems that often arise in

merging relations and common techniques for addressing
those problems.

14. List three conditions that you can apply to determine
whether a relation that is in first normal form is also in sec-
ond normal form.

15. Explain how each of the following types of integrity con-
straints is enforced in the SQL CREATE TABLE commands:
a. entity integrity
b. referential integrity

16. What are the benefits of enforcing the integrity constraints
as part of the database design and implementation process
(instead of doing it in application design)?

17. How are relationships between entities represented in the
relational data model?

18. How do you represent a 1:M unary relationship in a rela-
tional data model?

Chapter Review

Key Terms

Alias 189
Anomaly 164
Candidate key 181
Composite key 157
Determinant 181
Enterprise key 191
Entity integrity rule 161
First normal form

(1NF) 183

Foreign key 158
Functional dependency

179
Homonym 189
Normal form 179
Normalization 179
Null 161
Partial functional

dependency 185

Primary key 157
Recursive foreign key 173
Referential integrity

constraint 162
Relation 157
Second normal form

(2NF) 185
Surrogate primary key

168

Synonyms 189
Third normal form

(3NF) 186
Transitive dependency

186
Well-structured relation

164

a. constraint between two attributes
b. functional dependency between

the primary key and a nonkey
attribute via another nonkey
attribute

c. references the primary key in
the same relation

d. multivalued attributes removed
e. inconsistency or error
f. contains little redundancy
g. contains two (or more) attributes
h. contains no partial functional

dependencies
i. transitive dependencies

eliminated
j. attribute on left side of func-

tional dependency
k. named two-dimensional table

of data
3. Contrast the following terms:

a. normal form; normalization
b. candidate key; primary key
c. partial dependency; transitive dependency
d. composite key; recursive foreign key
e. determinant; candidate key
f. foreign key; primary key
g. enterprise key; surrogate key

4. Describe the primary differences between the conceptual
and logical data models.

Chapter 4 • Logical Database Design and the Relational Model 195

19. How do you represent an M:N ternary relationship in a rela-
tional data model?

20. How do you represent an associative entity in a relational
data model?

21. What is the relationship between the primary key of a rela-
tion and the functional dependencies among all attributes
within that relation?

22. Under what conditions must a foreign key not be null?

23. Explain what can be done with primary keys to eliminate
key ripple effects as a database evolves.

24. Describe the difference between how a 1:M unary relation-
ship and an M:N unary relationship are implemented in a
relational data model.

25. Explain three conditions that suggest a surrogate key
should be created for the primary key of a relation.

Problems and Exercises
1. For each of the following E-R diagrams from Chapter 2:

I. Transform the diagram to a relational schema that
shows referential integrity constraints (see Figure 4-5 for
an example of such a schema).

II. For each relation, diagram the functional dependencies
(see Figure 4-23 for an example).

III. If any of the relations are not in 3NF, transform them
to 3NF.
a. Figure 2-8
b. Figure 2-9b
c. Figure 2-11a
d. Figure 2-11b
e. Figure 2-15a (relationship version)
f. Figure 2-15b (attribute version)
g. Figure 2-16b
h. Figure 2-19

2. For each of the following EER diagrams from Chapter 3:
I. Transform the diagram into a relational schema that

shows referential integrity constraints (see Figure 4-5 for
an example of such a schema).

II. For each relation, diagram the functional dependencies
(see Figure 4-23 for an example).

III. If any of the relations are not in 3NF, transform them
to 3NF.
a. Figure 3-6b
b. Figure 3-7a
c. Figure 3-9
d. Figure 3-10
e. Figure 3-11

3. For each of the following relations, indicate the normal form
for that relation. If the relation is not in third normal form,
decompose it into 3NF relations. Functional dependencies
(other than those implied by the primary key) are shown
where appropriate.
a. CLASS(CourseNo, SectionNo)
b. CLASS(CourseNo, SectionNo, Room)
c. CLASS(CourseNo, SectionNo, Room, Capacity)

[FD: Room → Capacity]
d. CLASS(CourseNo, SectionNo, CourseName, Room,

Capacity) [FD: CourseNo → CourseName; FD: Room →
Capacity]

4. For your answers to the following Problems and
Exercises from prior chapters, transform the EER dia-
grams into a set of relational schemas, diagram the func-
tional dependencies, and convert all the relations to third
normal form:
a. Chapter 2, Problem and Exercise 15b
b. Chapter 2, Problem and Exercise 15g
c. Chapter 2, Problem and Exercise 15h

d. Chapter 2, Problem and Exercise 15i
e. Chapter 2, Problem and Exercise 21
f. Chapter 2, Problem and Exercise 24

5. Figure 4-32 shows a class list for Millennium College.
Convert this user view to a set of 3NF relations using an en-
terprise key. Assume the following:
• An instructor has a unique location.
• A student has a unique major.
• A course has a unique title.

6. Figure 4-33 (page 196) shows an EER diagram for a simpli-
fied credit card environment. There are two types of card ac-
counts: debit cards and credit cards. Credit card accounts
accumulate charges with merchants. Each charge is identi-
fied by the date and time of the charge as well as the pri-
mary keys of merchant and credit card.
a. Develop a relational schema.
b. Show the functional dependencies.
c. Develop a set of 3NF relations using an enterprise key.

7. Table 4-3 (page 196) contains sample data for parts and for
vendors who supply those parts. In discussing these data
with users, we find that part numbers (but not descriptions)
uniquely identify parts and that vendor names uniquely
identify vendors.
a. Convert this table to a relation (named PART SUPPLI-

ER) in first normal form. Illustrate the relation with the
sample data in the table.

b. List the functional dependencies in PART SUPPLIER
and identify a candidate key.

c. For the relation PART SUPPLIER, identify each of the
following: an insert anomaly, a delete anomaly, and a
modification anomaly.

MILLENNIUM COLLEGE
CLASS LIST
FALL SEMESTER 201X

COURSE NO.: IS 460
COURSE T ITLE: DATABASE
INSTRUCTOR NAME: NORMA L. FORM
INSTRUCTOR LOCATION: B 104

STUDENT NO. STUDENT NAME MAJOR GRADE

38214 Bright IS A
40875 Cortez CS B
51893 Edwards IS A

FIGURE 4-32 Class list (Millennium College)

196 Part III • Database Design

Holds

Card Type =

“D” “C”

CARD ACCOUNT
Account ID
Exp Date
Card Type

CUSTOMER
Customer ID
Cust Name
Cust Address

MERCHANT
Merch ID
Merch Addr

d

CHARGES
Charge Date
Charge Time
Amount

Bank No
DEBIT CARD CREDIT CARD

Cur Bal

FIGURE 4-33 EER diagram
for bank cards

TABLE 4-3 Sample Data for Parts and Vendors

Part No Description Vendor Name Address Unit Cost

1234 Logic chip Fast Chips Cupertino 10.00

Smart Chips Phoenix 8.00

5678 Memory chip Fast Chips Cupertino 3.00

Quality Chips Austin 2.00

Smart Chips Phoenix 5.00

d. Draw a relational schema for PART SUPPLIER and
show the functional dependencies.

e. In what normal form is this relation?
f. Develop a set of 3NF relations from PART SUPPLIER.
g. Show the 3NF relations using Microsoft Visio (or any

other tool specified by your instructor).
8. Table 4-4 shows a relation called GRADE REPORT for a uni-

versity. Your assignment is as follows:
a. Draw a relational schema and diagram the functional

dependencies in the relation.
b. In what normal form is this relation?
c. Decompose GRADE REPORT into a set of 3NF relations.
d. Draw a relational schema for your 3NF relations and

show the referential integrity constraints.
e. Draw your answer to part d using Microsoft Visio (or

any other tool specified by your instructor).

9. Table 4-5 shows a shipping manifest. Your assignment is as
follows:
a. Draw a relational schema and diagram the functional

dependencies in the relation.
b. In what normal form is this relation?
c. Decompose MANIFEST into a set of 3NF relations.
d. Draw a relational schema for your 3NF relations and

show the referential integrity constraints.
e. Draw your answer to part d using Microsoft Visio (or

any other tool specified by your instructor).
10. Transform the relational schema developed in Problem and

Exercise 9 into an EER diagram. State any assumptions that
you have made.

11. For your answers to the following Problems and Exercises
from prior chapters, transform the EER diagrams into
a set of relational schemas, diagram the functional

Chapter 4 • Logical Database Design and the Relational Model 197

dependencies, and convert all the relations to third
normal form.
a. Chapter 3, Problem and Exercise 15
b. Chapter 3, Problem and Exercise 20

12. Transform Figure 2-15b, attribute version, to 3NF rela-
tions. Transform Figure 2-15b, relationship version, to
3NF relations. Compare these two sets of 3NF relations
with those in Figure 4-10. What observations and conclu-
sions do you reach by comparing these different sets of
3NF relations?

13. The Public Safety office at Millennium College maintains a list
of parking tickets issued to vehicles parked illegally on the
campus. Table 4-6 shows a portion of this list for the fall se-
mester. (Attribute names are abbreviated to conserve space.)
a. Convert this table to a relation in first normal form by

entering appropriate data in the table. What are the de-
terminants in this relation?

b. Draw a dependency diagram that shows all functional
dependencies in the relation, based on the sample data
shown.

TABLE 4-4 Grade Report Relation

Grade Report

StudentID StudentName CampusAddress Major CourseID CourseTitle
Instructor
Name

Instructor
Location Grade

168300458 Williams 208 Brooks IS IS 350 Database Mgt Codd B 104 A

168300458 Williams 208 Brooks IS IS 465 Systems Analysis Parsons B 317 B

543291073 Baker 104 Phillips Acctg IS 350 Database Mgt Codd B 104 C

543291073 Baker 104 Phillips Acctg Acct 201 Fund Acctg Miller H 310 B

543291073 Baker 104 Phillips Acctg Mkgt 300 Intro Mktg Bennett B 212 A

TABLE 4-5 Shipping Manifest

Shipment ID: 00-0001 Shipment Date: 01/10/2010

Origin: Boston Expected Arrival: 01/14/2010

Destination: Brazil

Ship Number: 39 Captain: 002-15

Henry Moore

Item Number Type Description Weight Quantity TOTALWEIGHT

3223 BM Concrete 500 100 50,000

Form

3297 BM Steel 87 2,000 174,000

Beam

Shipment Total: 224,000

TABLE 4-6 Parking Tickets at Millennium College

Parking Ticket Table

St ID L Name F Name Phone No St Lic Lic No Ticket # Date Code Fine

38249 Brown Thomas 111-7804 FL BRY 123 15634 10/17/10 2 $25

16017 11/13/10 1 $15

82453 Green Sally 391-1689 AL TRE 141 14987 10/05/10 3 $100

16293 11/18/10 1 $15

17892 12/13/10 2 $25

198 Part III • Database Design

c. Give an example of one or more anomalies that can re-
sult in using this relation.

d. Develop a set of relations in third normal form. Include
a new column with the heading Violation in the appro-
priate table to explain the reason for each ticket. Values
in this column are: expired parking meter (ticket code
1), no parking permit (ticket code 2), and handicap vio-
lation (ticket code 3).

e. Develop an E-R diagram with the appropriate cardinali-
ty notations.

14. The materials manager at Pine Valley Furniture Company
maintains a list of suppliers for each of the material items
purchased by the company from outside vendors. Table 4-7
shows the essential data required for this application.
a. Draw a dependency diagram for this data. You may as-

sume the following:

• Each material item has one or more suppliers. Each
supplier may supply one or more items or may not
supply any items.

• The unit price for a material item may vary from one
vendor to another.

• The terms code for a supplier uniquely identifies the
terms of the sale (e.g., code 2 means 10 percent net
30 days, etc.). The terms for a supplier are the same
for all material items ordered from that supplier.

b. Decompose this diagram into a set of diagrams in 3NF.
c. Draw an E-R diagram for this situation.

15. Table 4-8 shows a portion of a shipment table for a large manu-
facturing company. Each shipment (identified by Shipment#)
uniquely identifies the shipment Origin, Destination, and
Distance. The shipment Origin and Destination pair also
uniquely identifies the Distance.
a. Develop a diagram that shows the functional dependen-

cies in the SHIPMENT relation.
b. In what normal form is SHIPMENT? Why?
c. Convert SHIPMENT to third normal form if necessary.

Show the resulting table(s) with the sample data pre-
sented in SHIPMENT.

16. Figure 4-34 shows an EER diagram for Vacation Property
Rentals. This organization rents preferred properties in

TABLE 4-7 Pine Valley Furniture Company Purchasing Data

Attribute Name Sample Value

Material ID 3792

Material Name Hinges 3” locking

Unit of Measure each

Standard Cost $5.00

Vendor ID V300

Vendor Name Apex Hardware

Unit Price $4.75

Terms Code 1

Terms COD

TABLE 4-8 Shipment Relation

Shipment# Origin Destination Distance

409 Seattle Denver 1,537

618 Chicago Dallas 1,058

723 Boston Atlanta 1,214

824 Denver Los Angeles 975

629 Seattle Denver 1,537

Signs Books

RENTER
Renter ID
First Name
Middle Initial
Last Name
Address
Phone#
E Mail

RENTAL AGREEMENT
Agreement ID
Begin Date
End Date
Rental Amount

Property Type =

“B” “M”

Blocks to Beach

BEACH
PROPERTY

MOUNTAIN
PROPERTY

{Activity}

PROPERTY
Property ID
Street Address
City State
Zip
Nbr Rooms
Base Rate
Property Type

d

FIGURE 4-34 EER diagram for Vacation Property Rentals

Chapter 4 • Logical Database Design and the Relational Model 199

several states. As shown in the figure, there are two basic types
of properties: beach properties and mountain properties.
a. Transform the EER diagram to a set of relations and de-

velop a relational schema.
b. Diagram the functional dependencies and determine

the normal form for each relation.
c. Convert all relations to third normal form, if necessary,

and draw a revised relational schema.
d. Suggest an integrity constraint that would ensure that no

property is rented twice during the same time interval.
17. For your answers to Problem and Exercise 16 from Chapter 3,

transform the EER diagrams into a set of relational schemas,
diagram the functional dependencies, and convert all the
relations to third normal form.

18. Figure 4-35 includes an EER diagram describing a car racing
league. Transform the diagram into a relational schema that
shows referential integrity constraints (see Figure 4-5 for an
example of such a schema). In addition, verify that the re-
sulting relations are in 3NF.

19. Figure 4-36 includes an EER diagram for a medium-size
software vendor. Transform the diagram into a relational
schema that shows referential integrity constraints (see
Figure 4-5 for an example of such a schema). In addition,
verify that the resulting relations are in 3NF.

20. Examine the set of relations in Figure 4-37. What normal
form are these in? How do you know this? If they are in
3NF, convert the relations into an EER diagram. What as-
sumptions did you have to make to answer these questions?

21. A pet store currently uses a legacy flat file system to store all
of its information. The owner of the store, Peter Corona,
wants to implement a Web-enabled database application.
This would enable branch stores to enter data regarding in-
ventory levels, ordering, and so on. Presently, the data for in-
ventory and sales tracking are stored in one file that has the
following format:

StoreName, PetName, Pet Description, Price, Cost,
SupplierName, ShippingTime, QuantityOnHand,
DateOfLastDelivery, DateOfLastPurchase,
DeliveryDate1, DeliveryDate2, DeliveryDate3,
DeliveryDate4, PurchaseDate1, PurchaseDate2,
PurchaseDate3, PurchaseDate4,
LastCustomerName, CustomerName1,
CustomerName2, CustomerName3,
CustomerName4

Assume that you want to track all purchase and inventory
data, such as who bought the fish, the date that it was
purchased, the date that it was delivered, and so on. The
present file format allows only the tracking of the last pur-
chase and delivery as well as four prior purchases and
deliveries. You can assume that a type of fish is supplied by
one supplier.
a. Show all functional dependencies.
b. What normal form is this table in?
c. Design a normalized data model for these data. Show

that it is in 3NF.
22. For Problem and Exercise 21, draw the ER diagram based

on the normalized relations.
23. How would Problems and Exercises 21 and 22 change if a

type of fish could be supplied by multiple suppliers?
24. Figure 4-38 shows an EER diagram for a university dining

service organization that provides dining services to a
major university.
a. Transform the EER diagram to a set of relations and de-

velop a relational schema.
b. Diagram the functional dependencies and determine

the normal form for each relation.
c. Convert all relations to third normal form, if necessary,

and draw a revised relational schema.

RACE
Race ID
Race Title
Race Location
Race Date

RACE COMPONENT
RC ID
RC Type

PARTICIPATION

Points Earned FINISH

Position
Result

TEAM
Team ID
Team Name
Team Manager

DRIVERBelongs To

Consists Of

Driver ID
Driver Age
Driver Name

FIGURE 4-35 EER diagram
for a car racing league

200 Part III • Database Design

o

REGION
Region ID
Region Name

PROJECT
Proj ID
Proj Start Date
Proj End Date

TEAM
Team ID
Team Name
Team Start Date
Team End Date

COUNTRY
Belongs

To

Supervises

Supervises

Manages

Is Responsible For

Leads

Is Deputy

Mentors

Country ID
Country Name

EMPLOYEE
Emp ID
Emp Name
Emp Type

COUNTRY
MANAGER

DEVELOPMENT
MANAGER

DEVELOPER
Developer Type

ASSIGNMENT

Score
Hours
Rate MEMBERSHIP

Joined
Left

SENIOR WIZARD

JUNIOR

d

FIGURE 4-36 EER diagram for a middle-size software vendor

CaseID Description CaseType CourtID

Attorney

Speciality

Bar

Client

Case

Retains

Court

Judge

AttorneyID Name Address City State ZipCode

ClientID Name Address City State ZipCode Telephone DOB

AttorneyID Speciality

AttorneyID Bar

AttorneyID CaseID ClientID Date

CourtID CourtName City State ZipCode

JudgeID Name Years CourtID

FIGURE 4-37 Relations for Problem and Exercise 20

Chapter 4 • Logical Database Design and the Relational Model 201

25. The following attributes form a relation that includes informa-
tion about individual computers, their vendors, software pack-
ages running on the computers, computer users, and user
authorizations. Users are authorized to use a specific
software package on a specific computer during a specific
timeframe (characterized with attributes UserAuthorization
Starts and UserAuthorizationEnds and secured with
UserAuthorizationPassword). Software is licensed to be
used on specific computers (potentially multiple software
packages at the same time) until an expiration time
(SoftwareLicenceExpires) at a specific price. Computers
are sold by vendors, and each vendor has a support person
with an ID, name, and phone extension. Each individual
computer has a specific purchase price. The attributes are as
follows:

ComputerSerialNbr, VendorID, VendorName,
VendorPhone, VendorSupportID,
VendorSupportName, VendorSupportExtension,
SoftwareID, SoftwareName, SoftwareVendor,
SoftwareLicenceExpires, SoftwareLicencePrice,
UserID, UserName, UserAuthorizationStarts,
UserAuthorizationEnds,
UserAuthorizationPassword, PurchasePrice

Based on this information,
a. Identify the functional dependencies between the

attributes.
b. Identify the reasons why this relation is not in 3NF.
c. Present the attributes organized so that the resulting

relations are in 3NF.
26. The following attributes represent data about a movie copy

at a video rental store. Each movie is identified by a movie
number and has a title and information about the director
and the studio that produced the movie. Each movie has
one or several characters, and there is exactly one actor
playing the role of each of the characters (but one actor can

play multiple roles in each of the movies). A video store has
multiple copies of the same movie, and the store differenti-
ates copies with a movie copy number, which is unique
within a single movie but not unique between different
movies. Each movie copy has a rental status and return
date; in addition, each copy has a type (VHS, DVD, or Blu-
ray). The rental price depends on the movie and the copy
type, but the price is the same for all copies of the same
type. The attributes are as follows:

Movie Nbr, Title, Director ID, Director Name, Studio
ID, Studio Name, Studio Location, Studio CEO,
Character, Actor ID, Name, Movie Copy Nbr, Movie
Copy Type, Movie Rental Price, Copy Rental Status,
Copy Return Date

A sample data set regarding a movie would be as follows
(the data in the curly brackets are character/actor data, in
this case for four different characters):

567, ”It’s a Wonderful Life”, 25, “Frank Capra”,
234, “Liberty Films”, “Hollywood, CA”, “Orson
Wells”, {“George Bailey”, 245, “James Stewart” |
“Mary Bailey”, 236, “Donna Reed” | “Clarence
Oddbody”, 765, “Henry Travers” | “Henry F.
Potter”, 325, “Lionel Barrymore” }, 5434, “DVD”,
2.95, “Rented”, “12/15/2010”

Based on this information,
a. Identify the functional dependencies between the

attributes.
b. Identify the reasons why this set of data items is not in

3NF and tell what normal form (if any) it is in.
c. Present the attributes organized into 3NF relations that

have been named appropriately.

Supervises
Contains

Served at

STAFF
Emp ID
Name
Salary
{Skill}

WORK SCHEDULE
Start Time
End Time
Position

DISH
Dish ID
Dish Name
Prep Time
{Ingredient}

EVENT
Event ID
Event Date
Event Location
Event Time

Menu ID
Menu Description
Menu Type

MENU

FIGURE 4-38 EER diagram for university dining services

202 Part III • Database Design

Field Exercises

1. Interview system designers and database designers at sev-
eral organizations. Ask them to describe the process they
use for logical design. How do they transform their concep-
tual data models (e.g., E-R diagrams) to relational schema?
What is the role of CASE tools in this process? Do they use
normalization? If they do, how far in the process do they go,
and for what purpose?

2. Obtain a common document such as a sales slip, customer
invoice from an auto repair shop, credit card statement, etc.
Use the normalization steps (steps 0 through 4) described in
this chapter to convert this user view to a set of relations in

third normal form. Also draw a relational schema. List sev-
eral integrity rules that you would recommend to ensure
the quality of the data in this application.

3. Using Appendix B as a resource, interview a database
analyst/designer to determine whether he or she normal-
izes relations to higher than 3NF. Why or why not does he
or she use normal forms beyond 3NF?

4. Find a form or report from a business organization, possibly
a statement, bill, or document you have received. Draw an
EER diagram of the data in this form or report. Transform
the diagram into a set of 3NF relations.

References

Chouinard, P. 1989. “Supertypes, Subtypes, and DB2.” Database
Programming & Design 2,10 (October): 50–57.

Codd, E. F. 1970. “A Relational Model of Data for Large Shared
Data Banks.” Communications of the ACM 13,6 (June): 77–87.

Codd, E. F. 1990. The Relational Model for Database Management,
Version 2. Reading, MA: Addison-Wesley.

Date, C. J. 2003. An Introduction to Database Systems, 8th ed.
Reading, MA: Addison-Wesley.

Dutka, A. F., and H. H. Hanson. 1989. Fundamentals of Data
Normalization. Reading, MA: Addison-Wesley.

Fleming, C. C., and B. von Halle. 1989. Handbook of Relational
Database Design. Reading, MA: Addison-Wesley.

Hoberman, S. 2006. “To Surrogate Key or Not.” DM Review 16,8
(August): 29.

Johnston, T. 2000. “Primary Key Reengineering Projects: The
Problem” and “Primary Key Reengineering Projects: The
Solution.” Available at www.information-management.com.

Navathe, S., R. Elmasri, and J. Larson. 1986. “Integrating User
Views in Database Design.” Computer 19,1 (January): 50–62.

Further Reading

Elmasri, R., and S. Navathe. 2006. Fundamentals of Database
Systems, 5th ed. Menlo Park, CA: Benjamin Cummings.

Hoffer, J. A., J. F. George, and J. S. Valacich. 2010. Modern Systems
Analysis and Design, 6th ed. Upper Saddle River, NJ:
Prentice Hall.

Russell, T., and R. Armstrong. 2002. “13 Reasons Why Normalized
Tables Help Your Business.” Database Administrator,

April 20, 2002. Available at http://searchoracle.techtarget.
com/tip/13-reasons-why-normalized-tables-help-your-
business

Storey, V. C. 1991. “Relational Database Design Based on the
Entity-Relationship Model.” Data and Knowledge Engineering
7,1 (November): 47–83.

Web Resources

http://en.wikipedia.org/wiki/Database_normalization Wikipedia
entry that provides a thorough explanation of first, sec-
ond, third, fourth, fifth, and Boyce-Codd normal forms.

www.bkent.net/Doc/simple5.htm Web site that presents a
summary paper by William Kent titled “A Simple Guide
to Five Normal Forms in Relational Database Theory.”

www.stevehoberman.com/challenges.htm Web site where
Steve Hoberman, a leading consultant and lecturer on

database design, periodically creates database design
(conceptual and logical) problems and posts them. These
are practical (based on real experiences or questions sent
to him) situations that make for nice puzzles to solve.

www.troubleshooters.com/codecorn/norm.htm Web page on
normalization on Steve Litt’s site that contains various
troubleshooting tips for avoiding programming and sys-
tems development problems.

www.information-management.com
http://searchoracle.techtarget.com/tip/13-reasons-why-normalized-tables-help-your-business
http://searchoracle.techtarget.com/tip/13-reasons-why-normalized-tables-help-your-business
www.bkent.net/Doc/simple5.htm
www.stevehoberman.com/challenges.htm
www.troubleshooters.com/codecorn/norm.htm
http://searchoracle.techtarget.com/tip/13-reasons-why-normalized-tables-help-your-business
http://en.wikipedia.org/wiki/Database_normalization

Chapter 4 • Logical Database Design and the Relational Model 203

CASE
Mountain View Community Hospital

Case Description

You have been introduced to the Mountain View Community
Hospital (MVCH) case in the preceding chapters. This chapter
continues the case, with special emphasis on logical design for
the relational data model. Although the hospital will continue
to evaluate newer technology (e.g., object-oriented databases,
XML, and XML databases), it is expected that relational technol-
ogy will continue to dominate its systems development over the
next few years.

Case Questions

1. Should MVCH continue to use relational technology for its
systems development? Why or why not?

2. Should MVCH use normalization in designing its relational
databases? Why or why not?

3. Why are entity integrity constraints of importance to the hos-
pital? Based on the case description from previous chapters,
which attributes have you encountered that may be null?

4. Why are referential integrity constraints of importance to
the hospital?

5. Physicians at MVCH can be uniquely identified by their
Social Security number, their license number, their DEA
registration number, or hospital-assigned PhysicianID.

Which attribute would you suggest using as the primary
key for a PHYSICIAN relation? Why? What specific con-
cerns are related to those attributes that you do not recom-
mend be used?

6. The chapter describes the importance of using an enterprise
key, which is a primary key that is unique across the whole
database. Why might this be important in a hospital setting
such as MVCH? Explain.

7. Why might you need to revisit and potentially modify the
EER model you developed earlier, during the logical
design phase?

Case Exercises

1. The assistant administrator at MVCH has asked you to re-
view the data used in the patient billing and accounting sys-
tems. Occasional errors have been discovered in patient
statements and the patient records maintained by the hospi-
tal. As part of this effort, you have selected four user views
for analysis. Simplified versions of these views are shown in
MVCH Figures 4-1 through 4-4 and described briefly here:

• Patient bill (MVCH Figure 4-1) This statement is pre-
sented to the patient (or patient representative) when the
patient is discharged. Assume that each item on the bill

MOUNTAIN VIEW COMMUNITY HOSPITAL
200 Forest Dr.

Mountain View, CO 80638

INVOICE

PATIENT NAME PATIENT # DATE ADMITTED DATE DISCHARGED

Mary Baker
200 Oak St.
Mountain View, CO 806338

Mary Baker 3249 10/15/2010 10/18/2010

INVOICE DATE:
ACCOUNT NUMBER:
DUE DATE:

10/24/2010
000976555
11/14/2010

CODE

200
205
307
413

DESCRIPTION

Room semi-pr
Television
X-ray
Lab tests

 TOTAL CHARGE

 TOTAL CHARGES DUE 2,225.00

1,800.00
75.00

150.00
200.00

MVCH FIGURE 4-1 Patient bill

204 Part III • Database Design

ROOM UTILIZATION REPORT
Short Stay Surgical Ward

10/15/2010

LOCATION

100-1
101-1
102-1
102-2
103-1
104-1
105-1

ACCOM

PR
PR
SP
SP
PR
PR
SP

PATIENT #

6213
1379

1239
7040

3249

PATIENT NAME

Rose, David
Cribbs, Ron

Miller, Ruth
Ortega, Juan

Baker, Mary

EXP DISCHARGE DATE

10/17/2010
10/16/2010

10/16/2010

10/19/2010
10/18/2010

MVCH FIGURE 4-2 Room
utilization report (excerpt)

MVCH PATIENT DISPLAY

10/16/2010 12:41 AM

PATIENT #: 3249

PATIENT NAME: Mary Baker

PATIENT ADDRESS: 300 Oak St.

CITY-STATE-ZIP: Mountain View, CO 80638

DATE ADMITTED: 10-15-10

DATE DISCHARGED:

LOCATION: 437-2

EXTENSION: 529

INSURANCE: Blue Cross/Blue Shield

MVCH FIGURE 4-3 Patient
display

has a unique description and that the charge for a particu-
lar item may vary from one patient to another.

• Room utilization report (MVCH Figure 4-2) This is a
daily report that is distributed to qualified personnel. The
information can also be retrieved online by a qualified
staff member. It shows the status of each room and bed
location in the hospital and is used primarily for schedul-
ing and tracking the utilization of facilities. The Location
column in this report records the room number and bed
location in the room. The Accom column indicates the
type of accommodation (PR = private, SP = semiprivate).

• Patient display (MVCH Figure 4-3) This display is pre-
sented on demand to any qualified doctor, nurse, or other
staff member. Assume that for each location there is a
unique telephone number.

• Daily physician report (MVCH Figure 4-4) This report is
prepared daily for each physician on the staff of MVCH. It
shows the patients who have been treated on that day by
the physician and the name of the treatment (or procedure).
To simplify the analysis, assume that each patient may re-
ceive only one treatment from a given physician on a given
day. (We ask you to comment on this assumption later.)

a. Using the normalization steps described in this chap-
ter, develop a set of 3NF relations for each of the four
user views.

b. For each user view, draw a relational schema for the
3NF relations you developed in Case Exercise 1a. Be
sure to show the functional dependencies and referen-
tial integrity constraints for each schema.

c. Merge the relations for the four user views into a sin-
gle set of 3NF relations, using the guidelines presented
in this chapter. Draw a single relational schema for
the four user views and show the referential integrity
constraints.

d. Suggest any refinements to the design in Case Exercise
1c that would promote data quality and integrity.

e. How would you change your approach to accommo-
date the rule that a patient may receive multiple treat-
ments from a given physician on a given day?

2. The Multiple Sclerosis (MS) Center, headed by Dr. “Z,” has
been using a spreadsheet to keep track of information that
patients provide upon signing in for a clinic visit. One of the
staff members thought it would be better to use a relational
database for recording this information and imported the

Chapter 4 • Logical Database Design and the Relational Model 205

spreadsheet as a table into a Microsoft Access database
(MVCH Figure 4-5).

a. What would you suggest as the primary key for this table?
b. Is this table a relation? Why or why not?
c. Can you identify any problems with this table structure?

Are there any insertion, deletion, or update anomalies?
d. Diagram the functional dependencies for this table.
e. Using the normalization steps described in this chapter,

develop a set of 3NF relations.
f. Using a tool such as Microsoft Visio, draw the relational

schema, clearly indicating referential integrity constraints.
g. Write CREATE TABLE commands for all relations in

your schema. Make reasonable assumptions concerning
the data type for each attribute in each of the relations.

3. Dr. Z in the MS Center is using the MS Clinic
Management System from an external vendor to keep

track of clinical information regarding his patients. The
application uses a relational database. Before seeing a pa-
tient, Dr. Z reviews a printout of the worksheet shown in
MVCH Figure 4-6.

a. Diagram the functional dependencies for this worksheet
and develop a set of 3NF relations for the data on this
worksheet.

b. Draw the relational schema and clearly show the refer-
ential integrity constraints.

c. Draw your answer to part b using Microsoft Visio (or
any other tool specified by your instructor).

Project Assignments

After developing conceptual data models for MVCH’s new sys-
tem and reviewing them with your team and key stakeholders

MOUNTAIN VIEW COMMUNITY HOSPITAL
 DAILY PHYSICIAN REPORT

10/17/2010

PHYSICIAN ID: Gerald Wilcox PHYSICIAN PHONE: 329-1848

PATIENT #

6083
1239
4139
9877
1277

PATIENT NAME

Brown, May
Miller, Ruth
Major, Carl
Carlos, Juan
Pace, Charles

LOCATION

184-2
102-2
107-3
188-2
187-8

PROCEDURE

Tonsillectomy
Observation
Appendectomy
Herniorrhaphy
Cholecystectomy

MVCH FIGURE 4-4 Daily
physician report (excerpt)

Patient # Name First Seen Social Worker Visit Date Visit Time Reason for Visit New symptoms Level of Pain

9844 John Miller 10/1/2008 Matt Baker 10/11/2009 2:30 pm Severe leg
pain

Severe leg pain
for past 2 days

4

10/18/2009 11:30 am Follow-up, also
need flu shot

None

None

None

None

2

1/3/2010 10 am Routine

Routine

0

3/15/2010

1/3/2010

10:30 am 0

4211 Sheryl
Franz

1/3/2009 Lynn Riley 2 pm Referred by
Primary
care physician
Physical

0

2/11/2010 9 am 0

3/22/2010 4:00 pm Routine and
B12 Shot

Greater difficulties
with writing &
buttoning shirts

1

8766 Juan Ortega 2/2/2009 Matt Baker 2/2/2010 9:30 am Blurred vision
in right eye
Follow-up

0

2/14/2010 9:30 am 0

3/18/2010 ???? New symptoms Pins/needles in both
legs; trouble with
balance

1

MVCH FIGURE 4-5 MS Center patient sign-in data

206 Part III • Database Design

Mountain View Community Hospital

MS CENTER PATIENT WORKSHEET

MRN# PATIENT NAME Sex DOB STAGE DATE PRINTED
7885 Michael J Olsen M June 16, 1949 Secondary Progressive MS 07 July 2010

Presenting Symptoms
Tingling and numbness in both hands;spasticity in both legs, primarily the left one;significant loss of
mobility, relies on wheelchair most days;episodes of severe muscular pain, primarily in left leg.

Active Medications

1. Aspirin, 325 mg, QD
2. Simvastatin, 40 mg, QHS
3. Baclofen, 10 mg, TID
4. Betaseron (interferon beta-1b), 250 mcg QOD, sc
5. Amantadine, 100 mg, BID
6. Plendil, 5 mg, QD

Clinical Laboratory Data

Lipid Profile LDL(�100) Trig(�200) HDL(�35) CHOL(�200)

06/23/2010 54 214 27 183
03/16/2010 54 325 24 217
12/13/2010 62 200 24 166

Radiology Data

Last Brain MRI: 05/23/2010 No new lesions;no expanding lesions

Clinic Data

Blood Pressure (��120/80) Weight Last neurological assessment:

07/07/2010 135/80mmHg 07/07/2010 188 03/05 No change
06/07/2010 124/75 mmHg 06/07/2010 190 Last Expanded Disability Status Scale (EDSS)
05/20/2010 140/90 mmHg 05/20/2010 189 Score:
03/15/2010 135/86 mmHg 03/15/2010 188 03/05 5.5 (scale:0–10)
01/17/2010 131/80 mmHg 01/17/2010 191 Last Fatigue Severity Scale (FSS) Score:

03/05 2 (scale:1–7)

Advisories

06/07/2010 Suggested follow-up lipid profile in 2 weeks
05/20/2010 Suggested follow-up for Triglycerides > 300, consider titrating Simvastatin up to 60 mg before initi-

ating other therapies
03/15/2010 Discontinued Tizanidine;suggested follow-up for medication Baclofen

MVCH FIGURE 4-6 MS Center patient worksheet

at the hospital, you are ready to move on to the logical design
for the relational database. Your next deliverable is the relational
schema. You may also have to modify the EER model you created
in Chapter 3.
P1. Map the EER diagram you developed in Chapter 3 to a re-

lational schema, using the techniques described in this
chapter. Be sure to underline all primary keys, include all
necessary foreign keys, and clearly indicate referential in-
tegrity constraints.

P2. Analyze and diagram the functional dependencies in
each relation. If any relation is not in 3NF, decompose
that relation into 3NF relations, using the steps de-
scribed in this chapter. Revise the relational schema
accordingly.

P3. Create enterprise keys for all relations and redefine all rela-
tions. Revise the relational schema accordingly.

P4. If necessary, revisit and modify the EER model you devel-
oped in Chapter 3 and explain the changes you made.

Physical Database Design
and Performance

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: field, data type, denormalization,
horizontal partitioning, vertical partitioning, physical file, tablespace, extent, file
organization, sequential file organization, indexed file organization, index,
secondary key, join index, hashed file organization, hashing algorithm, pointer,
and hash index table.

� Describe the physical database design process, its objectives, and its deliverables.
� Choose storage formats for attributes from a logical data model.
� Select an appropriate file organization by balancing various important design factors.
� Describe three important types of file organization.
� Describe the purpose of indexes and the important considerations in selecting

attributes to be indexed.
� Translate a relational data model into efficient database structures, including

knowing when and how to denormalize the logical data model.

INTRODUCTION

In Chapters 2 through 4, you learned how to describe and model organizational
data during the conceptual data modeling and logical database design phases of
the database development process. You learned how to use EER notation, the
relational data model, and normalization to develop abstractions of organizational
data that capture the meaning of data. However, these notations do not explain
how data will be processed or stored. The purpose of physical database design is to
translate the logical description of data into the technical specifications for storing
and retrieving data. The goal is to create a design for storing data that will provide
adequate performance and ensure database integrity, security, and recoverability.

Physical database design does not include implementing files and databases
(i.e., creating them and loading data into them). Physical database design produces
the technical specifications that programmers, database administrators, and others
involved in information systems construction will use during the implementation
phase, which we discuss in Chapters 6 through 9.

C H A P T E R

5

207

208 Part III • Database Design

In this chapter, you study the basic steps required to develop an efficient and
high-integrity physical database design; security and recoverability are addressed in
Chapter 11. We concentrate in this chapter on the design of a single, centralized
database. Later, in Chapter 12, you learn about the design of databases that are
stored at multiple, distributed sites. In this chapter, you learn how to estimate the
amount of data that users will require in the database and determine how data
are likely to be used. You learn about choices for storing attribute values and how to
select from among these choices to achieve efficiency and data quality. Because of
recent U.S. and international regulations (e.g., Sarbanes-Oxley) on financial reporting
by organizations, proper controls specified in physical database design are required as
a sound foundation for compliance. Hence, we place special emphasis on data quality
measures you can implement within the physical design. You will also learn why
normalized tables are not always the basis for the best physical data files and how
you can denormalize the data to improve the speed of data retrieval. Finally, you
learn about the use of indexes, which are important in speeding up the retrieval of
data. In essence, you learn in this chapter how to made databases really “hum.”

You must carefully perform physical database design, because the decisions made
during this stage have a major impact on data accessibility, response times, data
quality, security, user friendliness, and similarly important information system design
factors. Database administration (described in Chapter 11) plays a major role in phy-
sical database design, so we return to some advanced design issues in that chapter.

THE PHYSICAL DATABASE DESIGN PROCESS

To make life a little easier for you, many physical database design decisions are implicit or
eliminated when you choose the database management technologies to use with the infor-
mation system you are designing. Because many organizations have standards for operat-
ing systems, database management systems, and data access languages, you must deal
only with those choices not implicit in the given technologies. Thus, we will cover only
those decisions that you will make most frequently, as well as other selected decisions that
may be critical for some types of applications, such an online data capture and retrieval.

The primary goal of physical database design is data processing efficiency. Today,
with ever-decreasing costs for computer technology per unit of measure (both speed
and space measures), it is typically very important to design a physical database to min-
imize the time required by users to interact with the information system. Thus, we con-
centrate on how to make processing of physical files and databases efficient, with less
attention on minimizing the use of space.

Designing physical files and databases requires certain information that should
have been collected and produced during prior systems development phases. The infor-
mation needed for physical file and database design includes these requirements:

• Normalized relations, including estimates for the range of the number of rows
in each table

• Definitions of each attribute, along with physical specifications such as maximum
possible length

• Descriptions of where and when data are used in various ways (entered,
retrieved, deleted, and updated, including typical frequencies of these events)

• Expectations or requirements for response time and data security, backup, recovery,
retention, and integrity

• Descriptions of the technologies (database management systems) used for imple-
menting the database

Physical database design requires several critical decisions that will affect the
integrity and performance of the application system. These key decisions include the
following:

• Choosing the storage format (called data type) for each attribute from the logical
data model. The format and associated parameters are chosen to maximize data
integrity and to minimize storage space.

Chapter 5 • Physical Database Design and Performance 209

• Giving the database management system guidance regarding how to group
attributes from the logical data model into physical records. You will discover that
although the columns of a relational table as specified in the logical design are a
natural definition for the contents of a physical record, this does not always form
the foundation for the most desirable grouping of attributes.

• Giving the database management system guidance regarding how to arrange sim-
ilarly structured records in secondary memory (primarily hard disks), using a
structure (called a file organization) so that individual and groups of records can be
stored, retrieved, and updated rapidly. Consideration must also be given to
protecting data and recovering data if errors are found.

• Selecting structures (including indexes and the overall database architecture) for
storing and connecting files to make retrieving related data more efficient.

• Preparing strategies for handling queries against the database that will optimize
performance and take advantage of the file organizations and indexes that you
have specified. Efficient database structures will be of benefit only if queries and
the database management systems that handle those queries are tuned to intelli-
gently use those structures.

Physical Database Design as a Basis for Regulatory Compliance

One of the primary motivations for strong focus on physical database design is that it
forms a foundation for compliance with new national and international regulations
on financial reporting. Without careful physical design, an organization cannot
demonstrate that its data are accurate and well protected. Laws and regulations such
as the Sarbanes-Oxley Act (SOX) in the United States and Basel II for international
banking are reactions to recent cases of fraud and deception by executives in major
corporations and partners in public accounting firms. The purpose of SOX is to
protect investors by improving the accuracy and reliability of corporate disclosures
made pursuant to the securities laws, and for other purposes. SOX requires that every
annual financial report include an internal control report. This is designed to show
that not only are the company’s financial data accurate, but the company has confi-
dence in them because adequate controls (e.g., database integrity controls) are in
place to safeguard financial data.

SOX is the most recent regulation in a stream of efforts to improve financial data
reporting. The Committee of Sponsoring Organizations (COSO) of the Treadway
Commission is a voluntary private-sector organization dedicated to improving the
quality of financial reporting through business ethics, effective internal controls, and
corporate governance. COSO was originally formed in 1985 to sponsor the National
Commission on Fraudulent Financial Reporting, an independent private sector initiative
that studied the causal factors that can lead to fraudulent financial reporting and devel-
oped recommendations for public companies and their independent auditors, for the
SEC and other regulators, and for educational institutions. The Control Objectives for
Information and Related Technology (COBIT) is an open standard published by the IT
Governance Institute and the Information Systems Audit and Control Association. It is
an IT control framework built in part upon the COSO framework. The IT Infrastructure
Library (ITIL), published by the Office of Government Commerce in Great Britain, focuses
on IT services and is often used to complement the COBIT framework.

These standards, guidelines, and rules focus on corporate governance, risk assess-
ment, and security and controls of data. Although laws such as SOX and Basel II require
comprehensive audits of all procedures that deal with financial data, compliance can be
greatly enhanced by a strong foundation of basic data integrity controls. Because such
preventive controls are applied consistently and thoroughly, if designed into the data-
base and enforced by the DBMS, field-level data integrity controls can be viewed very
positively in compliance audits. Other DBMS features, such as triggers and stored pro-
cedures, discussed in Chapter 7, as well as audit trails and activity logs, discussed in
Chapter 11, provide even further ways to ensure that only legitimate data values are
stored in the database. However, even these control mechanisms are only as good as the
underlying field data controls. Further, for full compliance, all data integrity controls

210 Part III • Database Design

must be thoroughly documented; defining these controls for the DBMS is a form of
documentation. Further, changes to these controls must occur through well-documented
change control procedures (so that temporary changes cannot be used to bypass well-
designed controls).

Data Volume and Usage Analysis

As mentioned previously, data volume and frequency-of-use statistics are important
inputs to the physical database design process, particularly in the case of very large-scale
database implementations. Thus, you have to maintain a good understanding of the size
and usage patterns of the database throughout its life cycle. In this section, we discuss
data volume and usage analysis as if it were a one-time static activity, but in practice, you
should continuously monitor significant changes in usage and data volumes.

An easy way to show the statistics about data volumes and usage is by adding no-
tation to the EER diagram that represents the final set of normalized relations from log-
ical database design. Figure 5-1 shows the EER diagram (without attributes) for a sim-
ple inventory database in Pine Valley Furniture Company. This EER diagram represents
the normalized relations constructed during logical database design for the original
conceptual data model of this situation depicted in Figure 3-5b.

Both data volume and access frequencies are shown in Figure 5-1. For example,
there are 3,000 PARTs in this database. The supertype PART has two subtypes, MANU-
FACTURED (40 percent of all PARTs are manufactured) and PURCHASED (70 percent
are purchased; because some PARTs are of both subtypes, the percentages sum to more
than 100 percent). The analysts at Pine Valley estimate that there are typically 150
SUPPLIERs, and Pine Valley receives, on average, 40 SUPPLIES instances from each
SUPPLIER, yielding a total of 6,000 SUPPLIES. The dashed arrows represent access fre-
quencies. So, for example, across all applications that use this database, there are on
average 20,000 accesses per hour of PART data, and these yield, based on subtype per-
centages, 14,000 accesses per hour to PURCHASED PART data. There are an additional
6,000 direct accesses to PURCHASED PART data. Of this total of 20,000 accesses to

MANUFACTURED
PART

1,200

PURCHASED
PART

2,100

4,000

7,000

SUPPLIER

150

7,500

SUPPLIES

6,000

o

20,000

PART

3,000

40% 70%

14,000

6,000

8,0004,000

FIGURE 5-1 Composite usage map (Pine Valley Furniture Company)

Chapter 5 • Physical Database Design and Performance 211

PURCHASED PART, 8,000 accesses then also require SUPPLIES data and of these 8,000
accesses to SUPPLIES, there are 7,000 subsequent accesses to SUPPLIER data. For on-
line and Web-based applications, usage maps should show the accesses per second.
Several usage maps may be needed to show vastly different usage patterns for different
times of day. Performance will also be affected by network specifications.

The volume and frequency statistics are generated during the systems analysis phase
of the systems development process when systems analysts are studying current and pro-
posed data processing and business activities. The data volume statistics represent the size
of the business and should be calculated assuming business growth over at least a several-
year period. The access frequencies are estimated from the timing of events, transaction
volumes, the number of concurrent users, and reporting and querying activities. Because
many databases support ad hoc accesses, and such accesses may change significantly over
time, and known database access can peak and dip over a day, week, or month, the access
frequencies tend to be less certain and even than the volume statistics. Fortunately, precise
numbers are not necessary. What is crucial is the relative size of the numbers, which will
suggest where the greatest attention needs to be given during physical database design in
order to achieve the best possible performance. For example, in Figure 5-1, notice that

• There are 3,000 PART instances, so if PART has many attributes and some, like
description, would be quite long, then the efficient storage of PART might be
important.

• For each of the 4,000 times per hour that SUPPLIES is accessed via SUPPLIER,
PURCHASED PART is also accessed; thus, the diagram would suggest possibly
combining these two co-accessed entities into a database table (or file). This act of
combining normalized tables is an example of denormalization, which we discuss
later in this chapter.

• There is only a 10 percent overlap between MANUFACTURED and PURCHASED
parts, so it might make sense to have two separate tables for these entities and re-
dundantly store data for those parts that are both manufactured and purchased;
such planned redundancy is okay if purposeful. Further, there are a total of 20,000
accesses an hour of PURCHASED PART data (14,000 from access to PART and
6,000 independent access of PURCHASED PART) and only 8,000 accesses of
MANUFACTURED PART per hour. Thus, it might make sense to organize tables
for MANUFACTURED and PURCHASED PART data differently due to the signif-
icantly different access volumes.

It can be helpful for subsequent physical database design steps if you can also ex-
plain the nature of the access for the access paths shown by the dashed lines. For example,
it can be helpful to know that of the 20,000 accesses to PART data, 15,000 ask for a part or
a set of parts based on the primary key, PartNo (e.g., access a part with a particular num-
ber); the other 5,000 accesses qualify part data for access by the value of QtyOnHand.
(These specifics are not shown in Figure 5-1.) This more precise description can help in se-
lecting indexes, one of the major topics we discuss later in this chapter. It might also be
helpful to know whether an access results in data creation, retrieval, update, or deletion.
Such a refined description of access frequencies can be handled by additional notation on
a diagram such as in Figure 5-1, or by text and tables kept in other documentation.

DESIGNING FIELDS

A field is the smallest unit of application data recognized by system software, such as a
programming language or database management system. A field corresponds to a sim-
ple attribute in the logical data model, and so in the case of a composite attribute, a field
represents a single component.

The basic decisions you must make in specifying each field concern the type of
data (or storage type) used to represent values of this field, data integrity controls built
into the database, and the mechanisms that the DBMS uses to handle missing values for
the field. Other field specifications, such as display format, also must be made as part
of the total specification of the information system, but we will not be concerned here
with those specifications that are often handled by applications rather than the DBMS.

Field
The smallest unit of application
data recognized by system
software.

212 Part III • Database Design

Choosing Data Types

A data type is a detailed coding scheme recognized by system software, such as a
DBMS, for representing organizational data. The bit pattern of the coding scheme is
usually transparent to you, but the space to store data and the speed required to access
data are of consequence in physical database design. The specific DBMS you will use
will dictate which choices are available to you. For example, Table 5-1 lists some of the
data types available in the Oracle 11g DBMS, a typical DBMS that uses the SQL data
definition and manipulation language. Additional data types might be available for
currency, voice, image, and user defined for some DBMSs.

Selecting a data type involves four objectives that will have different relative levels
of importance for different applications:

1. Represent all possible values.
2. Improve data integrity.
3. Support all data manipulations.
4. Minimize storage space.

An optimal data type for a field can, in minimal space, represent every possible value
(while eliminating illegal values) for the associated attribute and can support the required
data manipulation (e.g., numeric data types for arithmetic operations and character data
types for string manipulation). Any attribute domain constraints from the conceptual data
model are helpful in selecting a good data type for that attribute. Achieving these four
objectives can be subtle. For example, consider a DBMS for which a data type has a
maximum width of 2 bytes. Suppose this data type is sufficient to represent a QuantitySold
field. When QuantitySold fields are summed, the sum may require a number larger than
2 bytes. If the DBMS uses the field’s data type for results of any mathematics on that field,
the 2-byte length will not work. Some data types have special manipulation capabilities;
for example, only the DATE data type allows true date arithmetic.

CODING TECHNIQUES Some attributes have a sparse set of values or are so large that,
given data volumes, considerable storage space will be consumed. A field with a limited
number of possible values can be translated into a code that requires less space.
Consider the example of the ProductFinish field illustrated in Figure 5-2. Products at

Data type
A detailed coding scheme
recognized by system software,
such as a DBMS, for representing
organizational data.

TABLE 5-1 Commonly Used Data Types in Oracle 11g

Data Type Description

VARCHAR2 Variable-length character data with a maximum length of 4,000 characters; you
must enter a maximum field length (e.g., VARCHAR2(30) specifies a field with a
maximum length of 30 characters). A value less than 30 characters will consume
only the required space.

CHAR Fixed-length character data with a maximum length of 2,000 characters;
default length is 1 character (e.g., CHAR(5) specifies a field with a fixed length
of 5 characters, capable of holding a value from 0 to 5 characters long).

CLOB Character large object, capable of storing up to 4 gigabytes of one variable-length
character data field (e.g., to hold a medical instruction or a customer comment).

NUMBER Positive or negative number in the range 10–130 to 10126; can specify the precision
(total number of digits to the left and right of the decimal point) and the scale
(the number of digits to the right of the decimal point) (e.g., NUMBER(5) specifies
an integer field with a maximum of 5 digits, and NUMBER(5,2) specifies a field
with no more than 5 digits and exactly 2 digits to the right of the decimal point).

INTEGER Positive or negative integer with up to 38 digits (same as SMALL INT).

DATE Any date from January 1, 4712 B.C., to December 31, 9999 A.D.; DATE stores
the century, year, month, day, hour, minute, and second.

BLOB Binary large object, capable of storing up to 4 gigabytes of binary data
(e.g., a photograph or sound clip).

Chapter 5 • Physical Database Design and Performance 213

PRODUCT Table PRODUCT FINISH Look-up Table

ProductNo

B100

B120

M128

T100

…

Value

Birch

Maple

Oak

Description

Chair

Desk

Table

Bookcase

…

ProductFinish …

C

A

C

Code

A

B

C

B

…

FIGURE 5-2 Example of a code lookup table (Pine Valley Furniture Company)

Pine Valley Furniture come in only a limited number of woods: Birch, Maple, and Oak.
By creating a code or translation table, each ProductFinish field value can be replaced
by a code, a cross-reference to the lookup table, similar to a foreign key. This will
decrease the amount of space for the ProductFinish field and hence for the PRODUCT
file. There will be additional space for the PRODUCT FINISH lookup table, and when
the ProductFinish field value is needed, an extra access (called a join) to this lookup
table will be required. If the ProductFinish field is infrequently used or if the number of
distinct ProductFinish values is very large, the relative advantages of coding may out-
weigh the costs. Note that the code table would not appear in the conceptual or logical
model. The code table is a physical construct to achieve data processing performance
improvements, not a set of data with business value.

Controlling Data Integrity For many DBMSs, data integrity controls (i.e., controls on
the possible value a field can assume) can be built into the physical structure of the fields
and controls enforced by the DBMS on those fields. The data type enforces one form of
data integrity control because it may limit the type of data (numeric or character) and the
length of a field value. The following are some other typical integrity controls that
a DBMS may support:

• Default value A default value is the value a field will assume unless a user
enters an explicit value for an instance of that field. Assigning a default value to a
field can reduce data entry time because entry of a value can be skipped. It can
also help to reduce data entry errors for the most common value.

• Range control A range control limits the set of permissible values a field may
assume. The range may be a numeric lower-to-upper bound or a set of specific
values. Range controls must be used with caution because the limits of the range
may change over time. A combination of range controls and coding led to the
year 2000 problem that many organizations faced, in which a field for year was
represented by only the numbers 00 to 99. It is better to implement any range
controls through a DBMS because range controls in applications may be inconsis-
tently enforced. It is also more difficult to find and change them in applications
than in a DBMS.

• Null value control A null value was defined in Chapter 4 as an empty value.
Each primary key must have an integrity control that prohibits a null value. Any
other required field may also have a null value control placed on it if that is the
policy of the organization. For example, a university may prohibit adding a course
to its database unless that course has a title as well as a value of the primary key,
CourseID. Many fields legitimately may have a null value, so this control should
be used only when truly required by business rules.

214 Part III • Database Design

• Referential integrity The term referential integrity was defined in Chapter 4.
Referential integrity on a field is a form of range control in which the value of that
field must exist as the value in some field in another row of the same or (most
commonly) a different table. That is, the range of legitimate values comes from the
dynamic contents of a field in a database table, not from some pre-specified set
of values. Note that referential integrity guarantees that only some existing cross-
referencing value is used, not that it is the correct one. A coded field will have
referential integrity with the primary key of the associated lookup table.

HANDLING MISSING DATA When a field may be null, simply entering no value may be
sufficient. For example, suppose a customer zip code field is null and a report summa-
rizes total sales by month and zip code. How should sales to customers with unknown
zip codes be handled? Two options for handling or preventing missing data have
already been mentioned: using a default value and not permitting missing (null) values.
Missing data are inevitable. According to Babad and Hoffer (1984), the following are
some other possible methods for handling missing data:

• Substitute an estimate of the missing value. For example, for a missing sales value
when computing monthly product sales, use a formula involving the mean of the
existing monthly sales values for that product indexed by total sales for that
month across all products. Such estimates must be marked so that users know that
these are not actual values.

• Track missing data so that special reports and other system elements cause people
to resolve unknown values quickly. This can be done by setting up a trigger in the
database definition. A trigger is a routine that will automatically execute when
some event occurs or time period passes. One trigger could log the missing entry
to a file when a null or other missing value is stored, and another trigger could run
periodically to create a report of the contents of this log file.

• Perform sensitivity testing so that missing data are ignored unless knowing a
value might significantly change results (e.g., if total monthly sales for a particular
salesperson are almost over a threshold that would make a difference in that per-
son’s compensation). This is the most complex of the methods mentioned and
hence requires the most sophisticated programming. Such routines for handling
missing data may be written in application programs. All relevant modern DBMSs
now have more sophisticated programming capabilities, such as case expressions,
user-defined functions, and triggers, so that such logic can be available in the
database for all users without application-specific programming.

DENORMALIZING AND PARTITIONING DATA

Modern database management systems have an increasingly important role in deter-
mining how the data are actually stored on the storage media. The efficiency of database
processing is, however, significantly affected by how the logical relations are structured
as database tables. The purpose of this section is to discuss denormalization as a mecha-
nism that is often used to improve efficient processing of data and quick access to stored
data. It first describes the best-known denormalization approach: combining several
logical tables into one physical table to avoid the need to bring related data back together
when they are retrieved from the database. Then the section will discuss another form of
denormalization called partitioning, which also leads to differences between the logical
data model and the physical tables, but in this case one relation is implemented as
multiple tables.

Denormalization

With the rapid decline in the costs of secondary storage per unit of data, the efficient use
of storage space (reducing redundancy), while still a relevant consideration, has be-
come less important than it has been in the past. In most cases, the primary goal
of physical record design—efficient data processing—dominates the design process.

Chapter 5 • Physical Database Design and Performance 215

Denormalization
The process of transforming
normalized relations into
non-normalized physical
record specifications.

In other words, speed, not style, matters. As in your dorm room, as long as you can find
your favorite sweat shirt when you need it, it doesn’t matter how tidy the room looks.
(We won’t tell your Mom.)

Efficient processing of data, just like efficient accessing of books in a library,
depends on how close together related data (books or indexes) are. Often all the attrib-
utes that appear within a relation are not used together, and data from different rela-
tions are needed together to answer a query or produce a report. Thus, although
normalized relations solve data maintenance anomalies and minimize redundancies
(and storage space), normalized relations, if implemented one for one as physical
records, may not yield efficient data processing.

A fully normalized database usually creates a large number of tables. For a fre-
quently used query that requires data from multiple, related tables, the DBMS can
spend considerable computer resources each time the query is submitted in matching
up (called joining) related rows from each table required to build the query result.
Because this joining work is so time-consuming, the processing performance difference
between totally normalized and partially normalized databases can be dramatic. Inmon
(1988) reports on a study to quantify fully and partially normalized databases. A fully
normalized database contained eight tables with about 50,000 rows each; another
partially normalized database had four tables with roughly 25,000 rows each; and yet
another partially normalized database had two tables. The result showed that the
less-than-fully normalized databases could be as much as an order of magnitude faster
than the fully normalized one. Although such results depend greatly on the database
and the type of processing against it, these results suggest that you should carefully
consider whether the physical structure should exactly match the normalized relations
for a database.

Denormalization is the process of transforming normalized relations into non-
normalized physical record specifications. We will review various forms of, reasons for,
and cautions about denormalization in this section. In general, denormalization may
partition a relation into several physical records, may combine attributes from several
relations together into one physical record, or may do a combination of both.

OPPORTUNITIES FOR AND TYPES OF DENORMALIZATION Rogers (1989) introduces sev-
eral common denormalization opportunities (Figures 5-3 through Figure 5-5 show
examples of normalized and denormalized relations for each of these three situations):

1. Two entities with a one-to-one relationship Even if one of the entities is an
optional participant, if the matching entity exists most of the time, then it may be
wise to combine these two relations into one record definition (especially if the
access frequency between these two entity types is high). Figure 5-3 shows stu-
dent data with optional data from a standard scholarship application a student
may complete. In this case, one record could be formed with four fields from the
STUDENT and SCHOLARSHIP APPLICATION normalized relations (assuming
that ApplicationID is no longer needed). (Note: In this case, fields from the optional
entity must have null values allowed.)

2. A many-to-many relationship (associative entity) with nonkey attributes
Rather than join three files to extract data from the two basic entities in the rela-
tionship, it may be advisable to combine attributes from one of the entities into the
record representing the many-to-many relationship, thus avoiding one of the join
operations. Again, this would be most advantageous if this joining occurs fre-
quently. Figure 5-4 shows price quotes for different items from different vendors.
In this case, fields from ITEM and PRICE QUOTE relations might be combined
into one record to avoid having to join all three tables together. (Note: This may
create considerable duplication of data; in the example, the ITEM fields, such as
Description, would repeat for each price quote. This would necessitate excessive
updating if duplicated data changed. Careful analysis of a composite usage map
to study access frequencies and the number of occurrences of PRICE QUOTE per
associated VENDOR or ITEM would be essential to understand the consequences
of such denormalization.)

216 Part III • Database Design

Submits
STUDENT

Student ID
Campus Address

APPLICATION
Application ID
Application Date
Qualifications

APPLICATION

StudentID

STUDENT

CampusAddress ApplicationID ApplicationDate Qualifications

Normalized relations:

StudentID

STUDENT

CampusAddress ApplicationDate Qualifications

Denormalized relation:

and ApplicationDate and Qualifications may be null

StudentID

FIGURE 5-3 A possible denormalization situation: two entities with a one-to-one relationship

ITEM
Item ID
Description

VENDOR
Vendor ID
Address
Contact Name

PRICE QUOTE

Price

VENDOR ITEM

Normalized relations:

VendorID Address ContactName

VendorID ItemID

PRICE QUOTE

Price

ItemID Description

VendorID

VENDOR

ContactNameAddress VendorID ItemID

ITEM QUOTE

Description Price

Denormalized relations:

FIGURE 5-4 A possible denormalization situation: a many-to-many relationship with nonkey attributes

(Note: We assume that ApplicationID is not necessary when all fields are stored in one record, but this field can be included if it is
required application data.)

Chapter 5 • Physical Database Design and Performance 217

3. Reference data Reference data exist in an entity on the one side of a one-to-many
relationship, and this entity participates in no other database relationships. You
should seriously consider merging the two entities in this situation into one record
definition when there are few instances of the entity on the many side for each en-
tity instance on the one side. See Figure 5-5, in which several ITEMs have the same
STORAGE INSTRUCTIONS, and STORAGE INSTRUCTIONS relates only to
ITEMs. In this case, the storage instructions data could be stored in the ITEM
record to create, of course, redundancy and potential for extra data maintenance.
(InstrID is no longer needed.)

DENORMALIZE WITH CAUTION Denormalization has it critics. As Finkelstein (1988)
points out, denormalization can increase the chance of errors and inconsistencies
(caused by reintroducing anomalies into the database) and can force the reprogram-
ming of systems if business rules change. For example, redundant copies of the same
data caused by a violation of second normal form are often not updated in a synchro-
nized way. And, if they are, extra programming is required to ensure that all copies of
exactly the same business data are updated together. Further, denormalization opti-
mizes certain data processing at the expense of other data processing, so if the frequen-
cies of different processing activities change, the benefits of denormalization may no
longer exist. Denormalization almost always also leads to more storage space for raw
data and maybe more space for database overhead (e.g., indexes). Thus, denormaliza-
tion should be an explicit act to gain significant processing speed when other physical
design actions are not sufficient to achieve processing expectations.

Pascal (2002a, 2002b) passionately reports of the many dangers of denormaliza-
tion. The motivation for denormalization is that a normalized database often creates
many tables, and joining tables slows database processing. Pascal argues that this is not
necessarily true, so the motivation for denormalization may be without merit in some

Control For

ITEM

Item ID
Description

STORAGE
INSTRUCTIONS

Instr ID
Where Store
Container Type

FIGURE 5-5 A possible denormalization situation: reference data

Normalized relations:

InstrID

STORAGE

WhereStore ContainerType

ItemID

ITEM

Description InstrID

Denormalized relation:

ItemID

ITEM

ContainerTypeDescription WhereStore

218 Part III • Database Design

cases. Overall, performance does not depend solely on the number of tables accessed
but rather also on how the tables are organized in the database (what we later call file
organizations and clustering), the proper design and implementation of queries, and the
query optimization capabilities of the DBMS. Thus, to avoid problems associated with
the data anomalies in denormalized databases, Pascal recommends first attempting to
use these other means to achieve the necessary performance. This often will be suffi-
cient, but in cases when further steps are needed, you must understand the opportuni-
ties for applying denormalization.

Hoberman (2002) has written a very useful two-part “denormalization survival
guide,” which summarizes the major factors (those outlined previously and a few others)
in deciding whether to denormalize.

Partitioning

The opportunities just listed all deal with combining tables to avoid doing joins.
Another form of denormalization involves the creation of more tables by partitioning
a relation into multiple physical tables. Either horizontal or vertical partitioning, or a
combination, is possible. Horizontal partitioning implements a logical relation as mul-
tiple physical tables by placing different rows into different tables, based on common
column values. (In a library setting, horizontal partitioning is similar to placing the
business journals in a business library, the science books in a science library, and so on.)
Each table created from the partitioning has the same columns. For example, a customer
relation could be broken into four regional customer tables based on the value of a
column Region.

Horizontal partitioning makes sense when different categories of rows of a table
are processed separately (e.g., for the Customer table just mentioned, if a high percent-
age of the data processing needs to work with only one region at a time). Two common
methods of horizontal partitioning are to partition on (1) a single column value (e.g.,
CustomerRegion) and (2) date (because date is often a qualifier in queries, so just the
needed partitions can be quickly found). (See Bieniek, 2006, for a guide to table parti-
tioning.) Horizontal partitioning can also make maintenance of a table more efficient
because fragmenting and rebuilding can be isolated to single partitions as storage
space needs to be reorganized. Horizontal partitioning can also be more secure be-
cause file-level security can be used to prohibit users from seeing certain rows of data.
Also, each partitioned table can be organized differently, appropriately for the way it is
individually used. It is likely also faster to recover one of the partitioned files than one
file with all the rows. In addition, taking one of the partitioned files out of service be-
cause it was damaged or so it can be recovered still allows processing against the other
partitioned files to continue. Finally, each of the partitioned files can be placed on a
separate disk drive to reduce contention for the same drive and hence improve query
and maintenance performance across the database. These advantages of horizontal
partitioning (actually, all forms of partitioning), along with the disadvantages, are
summarized in Table 5-2.

Note that horizontal partitioning is very similar to creating a supertype/subtype
relationship because different types of the entity (where the subtype discriminator is
the field used for segregating rows) are involved in different relationships, hence differ-
ent processing. In fact, when you have a supertype/subtype relationship, you need to
decide whether you will create separate tables for each subtype or combine them in var-
ious combinations. Combining makes sense when all subtypes are used about the same
way, whereas partitioning the supertype entity into multiple files makes sense when the
subtypes are handled differently in transactions, queries, and reports. When a relation
is partitioned horizontally, the whole set of rows can be reconstructed by using the SQL
UNION operator (described in Chapter 6). Thus, for example, all customer data can be
viewed together when desired.

The Oracle DBMS supports several forms of horizontal partitioning, designed in
particular to deal with very large tables (Brobst et al., 1999). A table is partitioned when
it is defined to the DBMS using the SQL data definition language (you will learn about
the CREATE TABLE command in Chapter 6); that is, in Oracle, there is one table with

Horizontal partitioning
Distribution of the rows of
a logical relation into several
separate tables.

Chapter 5 • Physical Database Design and Performance 219

several partitions rather than separate tables per se. Oracle 11g has three data distribu-
tion methods as basic partitioning approaches:

1. Range partitioning, in which each partition is defined by a range of values (lower
and upper key value limits) for one or more columns of the normalized table. A
table row is inserted in the proper partition, based on its initial values for the
range fields. Because partition key values may follow patterns, each partition may
hold quite a different number of rows. A partition key may be generated by the
database designer to create a more balanced distribution of rows. A row may be
restricted from moving between partitions when key values are updated.

2. Hash partitioning, in which data are evenly spread across partitions independent
of any partition key value. Hash partitioning overcomes the uneven distribution
of rows that is possible with range partitioning. It works well if the goal is to dis-
tribute data evenly across devices.

3. List partitioning, in which the partitions are defined based on predefined lists
of values of the partitioning key. For example, in a table partitioned based on
the value of the column State, one partition might include rows that have the value
“CT,” “ME,” “MA,” “NH,” “RI,” or “VT,” and another partition rows that have the
value “NJ” or “NY”.

If a more sophisticated form of partitioning is needed, Oracle 11g also offers com-
posite partitioning, which combines aspects of two of the three single-level partitioning
approaches.

Partitions are in many cases transparent to the database user. (You need to refer to
a partition only if you want to force the query processor to look at one or more parti-
tions.) The part of the DBMS that optimizes the processing of a query will look at the
definition of partitions for a table involved in a query and will automatically decide
whether certain partitions can be eliminated when retrieving the data needed to form
the query results, which can drastically improve query processing performance.

For example, suppose a transaction date is used to define partitions in range parti-
tioning. A query asking for only recent transactions can be more quickly processed by
looking at only the one or few partitions with the most recent transactions rather than

TABLE 5-2 Advantages and Disadvantages of Data Partitioning

Advantages of Partitioning

1. Efficiency: Data queried together are stored close to one another and separate from data
not used together. Data maintenance is isolated in smaller partitions.

2. Local optimization: Each partition of data can be stored to optimize performance for its
own use.

3. Security: Data not relevant to one group of users can be segregated from data those users
are allowed to use.

4. Recovery and uptime: Smaller files take less time to back up and recover, and other files are
still accessible if one file is damaged, so the effects of damage are isolated.

5. Load balancing: Files can be allocated to different storage areas (disks or other media),
which minimizes contention for access to the same storage area or even allows for parallel
access to the different areas.

Disadvantages of Partitioning

1. Inconsistent access speed: Different partitions may have different access speeds, thus
confusing users. Also, when data must be combined across partitions, users may have to
deal with significantly slower response times than in a non-partitioned approach.

2. Complexity: Partitioning is usually not transparent to programmers, who will have to write
more complex programs when combining data across partitions.

3. Extra space and update time: Data may be duplicated across the partitions, taking extra
storage space compared to storing all the data in normalized files. Updates that affect data
in multiple partitions can take more time than if one file were used.

220 Part III • Database Design

scanning the database or even using indexes to find rows in the desired range from a non-
partitioned table. A partition on date also isolates insertions of new rows to one partition,
which may reduce the overhead of database maintenance, and dropping “old” transac-
tions will require simply dropping a partition. Indexes can still be used with a partitioned
table and can improve performance even more than partitioning alone. See Brobst et al.
(1999) for more details on the pros and cons of using dates for range partitioning.

In hash partitioning, rows are more evenly spread across the partitions. If parti-
tions are placed in different storage areas that can be processed in parallel, then query
performance will improve noticeably compared to when all the data have to be
accessed sequentially in one storage area for the whole table. As with range partition-
ing, the existence of partitions typically is transparent to a programmer of a query.
Vertical partitioning distributes the columns of a logical relation into separate tables,
repeating the primary key in each of the tables. An example of vertical partitioning
would be breaking apart a PART relation by placing the part number along with ac-
counting-related part data into one record specification, the part number along with
engineering-related part data into another record specification, and the part number
along with sales-related part data into yet another record specification. The advan-
tages and disadvantages of vertical partitioning are similar to those for horizontal
partitioning. When, for example, accounting-, engineering-, and sales-related part
data need to be used together, these tables can be joined. Thus, neither horizontal nor
vertical partitioning prohibits the ability to treat the original relation as a whole.

Combinations of horizontal and vertical partitioning are also possible. This form of
denormalization—record partitioning—is especially common for a database whose files
are distributed across multiple computers. Thus, you study this topic again in Chapter 12.

A single physical table can be logically partitioned or several tables can be logically
combined by using the concept of a user view, which will be demonstrated in Chapter 6.
With a user view, users can be given the impression that the database contains tables
other than what are physically defined; you can create these logical tables through hori-
zontal or vertical partitioning or other forms of denormalization. However, the purpose
of any form of user view, including logical partitioning via views, is to simplify query
writing and to create a more secure database, not to improve query performance. One
form of a user view available in Oracle is called a partition view. With a partition view,
physically separate tables with similar structures can be logically combined into one
table using the SQL UNION operator. There are limitations to this form of partitioning.
First, because there are actually multiple separate physical tables, there cannot be any
global index on all the combined rows. Second, each physical table must be separately
managed, so data maintenance is more complex (e.g., a new row must be inserted into a
specific table). Third, the query optimizer has fewer options with a partition view than
with partitions of a single table for creating the most efficient query processing plan.

The final form of denormalization we introduce is data replication. With data repli-
cation, the same data are purposely stored in multiple places in the database. For example,
consider again Figure 5-1. You learned earlier in this section that relations can be denor-
malized by combining data from an associative entity with data from one of the simple
entities with which it is associated. So, in Figure 5-1, SUPPLIES data might be stored with
PURCHASED PART data in one expanded PURCHASED PART physical record specifi-
cation. With data duplication, the same SUPPLIES data might also be stored with its asso-
ciated SUPPLIER data in another expanded SUPPLIER physical record specification.
With this data duplication, once either a SUPPLIER or PURCHASED PART record is
retrieved, the related SUPPLIES data will also be available without any further access to
secondary memory. This improved speed is worthwhile only if SUPPLIES data are
frequently accessed with SUPPLIER and with PURCHASED PART data and if the costs
for extra secondary storage and data maintenance are not great.

DESIGNING PHYSICAL DATABASE FILES

A physical file is a named portion of secondary memory (such as a magnetic tape or
hard disk) allocated for the purpose of storing physical records. Some computer operat-
ing systems allow a physical file to be split into separate pieces, sometimes called

Vertical partitioning
Distribution of the columns of a
logical relation into several
separate physical tables.

Physical file
A named portion of secondary
memory (such as a hard disk)
allocated for the purpose of
storing physical records.

Chapter 5 • Physical Database Design and Performance 221

Tablespace
A named logical storage unit in
which data from one or more
database tables, views, or other
database objects may be stored.

Extent
A contiguous section of disk
storage space.

extents. In subsequent sections, we will assume that a physical file is not split and that
each record in a file has the same structure. That is, subsequent sections address how to
store and link relational table rows from a single database in physical storage space. In
order to optimize the performance of the database processing, the person who adminis-
ters a database, the database administrator, often needs to know extensive details about
how the database management system manages physical storage space. This knowl-
edge is very DBMS specific, but the principles described in subsequent sections are the
foundation for the physical data structures used by most relational DBMSs.

Most database management systems store many different kinds of data in one
operating system file. By an operating system file we mean a named file that would appear
on a disk directory listing (e.g., a listing of the files in a folder on the C: drive of your per-
sonal computer). For example, an important logical structure for storage space in Oracle
is a tablespace. A tablespace is a named logical storage unit in which data from one or
more database tables, views, or other database objects may be stored. An instance of
Oracle 11g includes many tablespaces—for example, two (SYSTEM and SYSAUX) for
system data (data dictionary or data about data), one (TEMP) for temporary work space,
one (UNDOTBS1) for undo operations, and one or several to hold user business data.
A tablespace consists of one or several physical operating system files. Thus, Oracle has
responsibility for managing the storage of data inside a tablespace, whereas the operat-
ing system has many responsibilities for managing a tablespace, but they are all related
to its responsibilities related to the management of operating system files (e.g., handling
file-level security, allocating space, and responding to disk read and write errors).

Because an instance of Oracle usually supports many databases for many users, a
database administrator usually will create many user tablespaces, which helps to
achieve database security because the administrator can give each user selected rights
to access each tablespace. Each tablespace consists of logical units called segments (con-
sisting of one table, index, or partition), which, in turn, are divided into extents. These,
finally, consist of a number of contiguous data blocks, which are the smallest unit of stor-
age. Each table, index, or other so-called schema object belongs to a single tablespace,
but a tablespace may contain (and typically contains) one or more tables, indexes, and
other schema objects. Physically, each tablespace can be stored in one or multiple data
files, but each data file is associated with only one tablespace and only one database.

Modern database management systems have an increasingly active role in manag-
ing the use of the physical devices and files on them; for example, the allocation of
schema objects (e.g., tables and indexes) to data files is typically fully controlled by the
DBMS. A database administrator does, however, have the ability to manage the disk
space allocated to tablespaces and a number of parameters related to the way free space
is managed within a database. Because this is not a text on Oracle, we do not cover spe-
cific details on managing tablespaces; however, the general principles of physical data-
base design apply to the design and management of Oracle tablespaces as they do to
whatever the physical storage unit is for any database management system. Figure 5-6
is an EER model that shows the relationships between various physical and logical
database terms related to physical database design in an Oracle environment.

File Organizations

A file organization is a technique for physically arranging the records of a file on sec-
ondary storage devices. With modern relational DBMSs, you do not have to design file
organizations, but you may be allowed to select an organization and its parameters for
a table or physical file. In choosing a file organization for a particular file in a database,
you should consider seven important factors:

1. Fast data retrieval
2. High throughput for processing data input and maintenance transactions
3. Efficient use of storage space
4. Protection from failures or data loss
5. Minimizing need for reorganization
6. Accommodating growth
7. Security from unauthorized use

File organization
A technique for physically
arranging the records of a file on
secondary storage devices.

222 Part III • Database Design

Often these objectives are in conflict, and you must select a file organization that
provides a reasonable balance among the criteria within resources available.

In this chapter, we consider the following families of basic file organizations: se-
quential, indexed, and hashed. Figure 5-7 illustrates each of these organizations, with
the nicknames of some university sports teams.

SEQUENTIAL FILE ORGANIZATIONS In a sequential file organization, the records in the
file are stored in sequence according to a primary key value (see Figure 5-7a). To locate a
particular record, a program must normally scan the file from the beginning until the de-
sired record is located. A common example of a sequential file is the alphabetical list of per-
sons in the white pages of a telephone directory (ignoring any index that may be included
with the directory). A comparison of the capabilities of sequential files with the other two
types of files appears later in Table 5-3. Because of their inflexibility, sequential files are not
used in a database but may be used for files that back up data from a database.

INDEXED FILE ORGANIZATIONS In an indexed file organization, the records are stored
either sequentially or nonsequentially, and an index is created that allows the applica-
tion software to locate individual records (see Figure 5-7b). Like a card catalog in a li-
brary, an index is a table that is used to determine in a file the location of records that
satisfy some condition. Each index entry matches a key value with one or more records.
An index can point to unique records (a primary key index, such as on the ProductID
field of a product record) or to potentially more than one record. An index that allows
each entry to point to more than one record is called a secondary key index. Secondary
key indexes are important for supporting many reporting requirements and for provid-
ing rapid ad hoc data retrieval. An example would be an index on the ProductFinish
column of a Product table. Because indexes are extensively used with relational DBMSs,
and the choice of what index and how to store the index entries matters greatly in data-
base processing performance, we review indexed file organizations in more detail than
the other types of file organizations.

Some index structures influence where table rows are stored, and other index
structures are independent of where rows are located. Because the actual structure of an

Oracle
Database

Data Block

Operating
System File

C
onsists O

f

Consists OfIs Stored In Consists Of

C
onsists O

f

Special
Oracle

Tablespace

User
Data

Tablespace

Data Index Temp

System Undo Temporary

Oracle
Tablespace

2

Segment Extent

d

d d

FIGURE 5-6 DBMS terminology in an Oracle 11g environment

Sequential file organization
The storage of records in a file in
sequence according to a primary
key value.

Indexed file organization
The storage of records either
sequentially or nonsequentially
with an index that allows software
to locate individual records.

Index
A table or other data structure used
to determine in a file the location of
records that satisfy some condition.

Secondary key
One field or a combination of
fields for which more than one
record may have the same
combination of values. Also
called a nonunique key.

Chapter 5 • Physical Database Design and Performance 223

Start of file

Scan

Aces

Boilermakers

Devils

Flyers

Hawkeyes

Hoosiers

…

Miners

Panthers

…

Seminoles

…

FIGURE 5-7 Comparison of file organizations

Aces

Boilermakers

Flyers

Devils Hawkeyes

Hoosiers

Miners

Panthers

Seminoles

F P Z

B D F H L P R S Z

Key
(Flyers)

(a) Sequential

(b) Indexed

(continued)

224 Part III • Database Design

index does not influence database design and is not important in writing database
queries, we will not address the actual physical structure of indexes in this chapter.
Thus, Figure 5-7b should be considered a logical view of how an index is used, not a
physical view of how data are stored in an index structure.

Transaction processing applications require rapid response to queries that involve
one or a few related table rows. For example, to enter a new customer order, an order
entry application needs to find the specific customer table row rapidly, a few product
table rows for the items being purchased, possibly a few other product table rows based
on the characteristics of the products the customer wants (e.g., product finish), and then
the application needs to add one customer order and one customer shipment row to the
respective tables. The types of indexes discussed so far work very well in an application
that is searching for a few specific table rows.

Another increasingly popular type of index, especially in data warehousing and
other decision support applications (see Chapter 9), is a join index. In decision support
applications, the data accessing tends to want all rows from very large tables that are relat-
ed to one another (e.g., all the customers who have bought items from the same store).
A join index is an index on columns from two or more tables that come from the same
domain of values. For example, consider Figure 5-8a, which shows two tables, Customer
and Store. Each of these tables has a column called City. The join index of the City column
indicates the row identifiers for rows in the two tables that have the same City value.
Because of the way many data warehouses are designed, there is a high frequency for
queries to find data (facts) in common to a store and a customer in the same city (or similar
intersections of facts across multiple dimensions). Figure 5-8b shows another possible ap-
plication for a join index. In this case, the join index precomputes the matching of a foreign
key in the Order table with the associated customer in the Customer table (i.e., the result of
a relational join operator, which will be discussed in Chapter 6). Simply stated, a join says
find rows in the same or different tables that have values that match some criterion.

A join index is created as rows are loaded into a database, so the index, like all other
indexes previously discussed, is always up-to-date. Without a join index in the database
of Figure 5-8a, any query that wants to find stores and customers in the same city would
have to compute the equivalent of the join index each time the query is run. For very
large tables, joining all the rows of one table with matching rows in another possibly
large table can be very time-consuming and can significantly delay responding to an
online query. In Figure 5-8b, the join index provides one place for the DBMS to find

Join index
An index on columns from two
or more tables that come from
the same domain of values.

Key
(Flyers)

Relative
record
number

Hashing
algorithm

Aces

Boilermakers

Devils

Flyers

Hawkeyes

Hoosiers

…

Miners

Panthers

…

Seminoles

…

(c) Hashed

FIGURE 5-7 (continued)

Chapter 5 • Physical Database Design and Performance 225

Hashed file organization
A storage system in which the
address for each record is determined
using a hashing algorithm.

Hashing algorithm
A routine that converts a primary
key value into a relative record
number or relative file address.

Customer

RowID Cust# CustName City State

10001 C2027 Hadley Dayton Ohio

10002 C1026 Baines Columbus Ohio

10003 C0042 Ruskin Columbus Ohio

10004 C3861 Davies Toledo Ohio

. . .

Store

RowID Store# City Size Manager

20001 S4266 Dayton K2 E2166

20002 S2654 Columbus K3 E0245

20003 S3789 Dayton K4 E3330

20004 S1941 Toledo K1 E0874

. . .

Join Index

CustRowID StoreRowID Common
Value*

10001 20001 Dayton

10001 20003 Dayton

10002 20002 Columbus

10003 20002 Columbus

10004 20004 Toledo

. . .

*This column may or may not be included, as
needed. Join index could be sorted on any of the
three columns. Sometimes two join indexes are
created, one as above and one with the two RowID
columns reversed.

FIGURE 5-8 Join indexes
(a) Join index for common
nonkey columns

(continued)

information about related table rows. A join index, similarly to any other index, saves
query processing time by finding data meeting a prespecified qualification at the
expense of the extra storage space and maintenance of the index. The use of databases for
new applications, such as in data warehousing and online decision support, is leading to
the development of new types of indexes. We encourage you to investigate the indexing
capabilities of the database management system you are using to understand fully when
to apply each type of index and how to tune the performance of the index structures.

HASHED FILE ORGANIZATIONS In a hashed file organization, the address of each
record is determined using a hashing algorithm (see Figure 5-7c). A hashing algorithm
is a routine that converts a primary key value into a record address. Although there are
several variations of hashed files, in most cases the records are located nonsequentially,
as dictated by the hashing algorithm. Thus, sequential data processing is impractical.

A typical hashing algorithm uses the technique of dividing each primary key
value by a suitable prime number and then using the remainder of the division as the
relative storage location. For example, suppose that an organization has a set of

226 Part III • Database Design

approximately 1,000 employee records to be stored on magnetic disk. A suitable prime
number would be 997, because it is close to 1,000. Now consider the record for employee
12,396. When we divide this number by 997, the remainder is 432. Thus, this record is
stored at location 432 in the file. Another technique (not discussed here) must be used to
resolve duplicates (or overflow) that can occur with the division/remainder method
when two or more keys hash to the same address (known as a “hash clash”).

One of the severe limitations of hashing is that because data table row locations
are dictated by the hashing algorithm, only one key can be used for hashing-based
(storage and) retrieval. Hashing and indexing can be combined into what is called a
hash index table to overcome this limitation. A hash index table uses hashing to map
a key into a location in an index (sometimes called a scatter index table), where there is a
pointer (a field of data indicating a target address that can be used to locate a related
field or record of data) to the actual data record matching the hash key. The index is the
target of the hashing algorithm, but the actual data are stored separately from the ad-
dresses generated by hashing. Because the hashing results in a position in an index, the
table rows can be stored independently of the hash address, using whatever file organ-
ization for the data table makes sense (e.g., sequential or first available space). Thus, as
with other indexing schemes but unlike most pure hashing schemes, there can be several
primary and secondary keys, each with its own hashing algorithm and index table,
sharing one data table.

Also, because an index table is much smaller than a data table, the index can be
more easily designed to reduce the likelihood of key collisions, or overflows, than can

RowID Order# Order Date Cust#(FK)

30001 O5532 10/01/2001 C3861

30002 O3478 10/01/2001 C1062

30003 O8734 10/02/2001 C1062

30004 O9845 10/02/2001 C2027

. . .

Customer

RowID Cust#(PK) CustName City State

10001 C2027 Hadley Dayton Ohio

10002 C1062 Baines Columbus Ohio

10003 C0042 Ruskin Columbus Ohio

10004 C3861 Davies Toledo Ohio

. . .

Join Index

CustRowID OrderRowID Cust#

10001 30004 C2027

10002 30002 C1062

10002 30003 C1062

10004 30001 C3861

. . .

Order(b) Join index for matching
a foreign key (FK) and a
primary key (PK)

FIGURE 5-8 (continued)

Pointer
A field of data indicating a target
address that can be used to locate a
related field or record of data.

Hash index table
A file organization that uses
hashing to map a key into a
location in an index, where there is
a pointer to the actual data record
matching the hash key.

Chapter 5 • Physical Database Design and Performance 227

occur in the more space-consuming data table. Again, the extra storage space for the
index adds flexibility and speed for data retrieval, along with the added expense of
storing and maintaining the index space. Another use of a hash index table is found in
some data warehousing database technologies that use parallel processing. In this situ-
ation, the DBMS can evenly distribute data table rows across all storage devices to fairly
distribute work across the parallel processors, while using hashing and indexing to
rapidly find on which processor desired data are stored.

As stated earlier, the DBMS will handle the management of any hashing file
organization. You do not have to be concerned with handling overflows, accessing
indexes, or the hashing algorithm. What is important for you, as a database designer, is
to understand the properties of different file organizations so that you can choose the
most appropriate one for the type of database processing required in the database and
application you are designing. Also, understanding the properties of the file organiza-
tions used by the DBMS can help a query designer write a query in a way that takes
advantage of the file organization’s properties. As you will see in Chapters 6 and 7,
many queries can be written in multiple ways in SQL; different query structures, how-
ever, can result in vastly different steps by the DBMS to answer the query. If you know
how the DBMS thinks about using a file organization (e.g., what indexes it uses when
and how and when it uses a hashing algorithm), you can design better databases and
more efficient queries.

The three families of file organizations cover most of the file organizations you
will have at your disposal as you design physical files and databases. Although more
complex structures can be built using the data structures outlined in Appendix C, you
are unlikely to be able to use these with a database management system.

Table 5-3 summarizes the comparative features of sequential, indexed, and hashed
file organizations. You should review this table and study Figure 5-7 to see why each
comparative feature is true.

Clustering Files

Some database management systems allow adjacent secondary memory space to con-
tain rows from several tables. For example, in Oracle, rows from one, two, or more related
tables that are often joined together can be stored so that they share the same data

TABLE 5-3 Comparative Features of Different File Organizations

File Organization

Factor Sequential Indexed Hashed

Storage space No wasted space No wasted space for data but
extra space for index

Extra space may be needed to allow for
addition and deletion of records after
the initial set of records is loaded

Sequential retrieval
on primary key

Very fast Moderately fast Impractical, unless using a hash index

Random retrieval on
primary key

Impractical Moderately fast Very fast

Multiple-key retrieval Possible but requires
scanning whole file

Very fast with multiple indexes Not possible unless using a hash index

Deleting records Can create wasted
space or require
reorganizing

If space can be dynamically allocated,
this is easy but requires maintenance
of indexes

Very easy

Adding new records Requires rewriting
a file

If space can be dynamically allocated,
this is easy but requires maintenance
of indexes

Very easy, but multiple keys with the
same address require extra work

Updating records Usually requires
rewriting a file

Easy but requires maintenance
of indexes

Very easy

228 Part III • Database Design

blocks (the smallest storage units). A cluster is defined by the tables and the column or
columns by which the tables are usually joined. For example, a Customer table and a
customer Order table would be joined by the common value of CustomerID, or the
rows of a PriceQuote table (which contains prices on items purchased from vendors)
might be clustered with the Item table by common values of ItemID. Clustering reduces
the time to access related records compared to the normal allocation of different files to
different areas of a disk. Time is reduced because related records will be closer to each
other than if the records are stored in separate files in separate areas of the disk.
Defining a table to be in only one cluster reduces retrieval time for only those tables
stored in the same cluster.

The following Oracle database definition commands show how a cluster is de-
fined and tables are assigned to the cluster. First, the cluster (adjacent disk space) is
specified, as in the following example:

CREATE CLUSTER Ordering (CustomerID CHAR(25));

The term Ordering names the cluster space; the attribute CustomerID specifies the
attribute with common values.

Then tables are assigned to the cluster when the tables are created, as in the fol-
lowing example:

CREATE TABLE Customer_T (
CustomerID VARCHAR2(25) NOT NULL,
CustomerAddress VARCHAR2(15)
)
CLUSTER Ordering (CustomerID);

CREATE TABLE Order_T (
OrderID VARCHAR2(20) NOT NULL,
CustomerID VARCHAR2(25) NOT NULL,
OrderDate DATE
)
CLUSTER Ordering (CustomerID);

Access to records in a cluster can be specified in Oracle to be via an index on the
cluster key or via a hashing function on the cluster key. Reasons for choosing an in-
dexed versus a hashed cluster are similar to those for choosing between indexed and
hashed files (see Table 5-3). Clustering records is best used when the records are fairly
static. When records are frequently added, deleted, and changed, wasted space can
arise, and it may be difficult to locate related records close to one another after the ini-
tial loading of records, which defines the clusters. Clustering is, however, one option a
file designer has to improve the performance of tables that are frequently used together
in the same queries and reports.

Designing Controls for Files

One additional aspect of a database file about which you may have design options is
the types of controls you can use to protect the file from destruction or contamination or
to reconstruct the file if it is damaged. Because a database file is stored in a proprietary
format by the DBMS, there is a basic level of access control. You may require additional
security controls on fields, files, or databases. We address these options in detail in
Chapter 11. Briefly, files will be damaged, so the key is the ability to rapidly restore a
damaged file. Backup procedures provide a copy of a file and of the transactions that
have changed the file. When a file is damaged, the file copy or current file, along with
the log of transactions, is used to recover the file to an uncontaminated state. In terms of
security, the most effective method is to encrypt the contents of the file so that only pro-
grams with access to the decryption routine will be able to see the file contents. Again,
these important topics will be covered later, when you study the activities of data and
database administration in Chapter 11.

Chapter 5 • Physical Database Design and Performance 229

USING AND SELECTING INDEXES

Most database manipulations require locating a row (or collection of rows) that satisfies
some condition. Given the terabyte size of modern databases, locating data without
some help would be like looking for the proverbial “needle in a haystack”; or, in more
contemporary terms, it would be like searching the Internet without a powerful search
engine. For example, we might want to retrieve all customers in a given zip code or all
students with a particular major. Scanning every row in a table, looking for the desired
rows, may be unacceptably slow, particularly when tables are large, as they often are in
real-world applications. Using indexes, as described earlier, can greatly speed up this
process, and defining indexes is an important part of physical database design.

As described in the section on indexes, indexes on a file can be created for either a
primary or a secondary key or both. It is typical that an index would be created for the
primary key of each table. The index is itself a table with two columns: the key and
the address of the record or records that contain that key value. For a primary key, there
will be only one entry in the index for each key value.

Creating a Unique Key Index

The Customer table defined in the section on clustering has the primary key CustomerID.
A unique key index would be created on this field using the following SQL command:

CREATE UNIQUE INDEX CustIndex_PK ON Customer_T(CustomerID);

In this command, CustIndex_PK is the name of the index file created to store
the index entries. The ON clause specifies which table is being indexed and the column
(or columns) that forms the index key. When this command is executed, any existing
records in the Customer table would be indexed. If there are duplicate values of
CustomerID, the CREATE INDEX command will fail. Once the index is created, the
DBMS will reject any insertion or update of data in the CUSTOMER table that would vi-
olate the uniqueness constraint on CustomerIDs. Notice that every unique index creates
overhead for the DBMS to validate uniqueness for each insertion or update of a table
row on which there are unique indexes. We will return to this point later, when we re-
view when to create an index.

When a composite unique key exists, you simply list all the elements of the unique
key in the ON clause. For example, a table of line items on a customer order might have
a composite unique key of OrderID and ProductID. The SQL command to create this
index for the OrderLine_T table would be as follows:

CREATE UNIQUE INDEX LineIndex_PK ON OrderLine_T(OrderID, ProductID);

Creating a Secondary (Nonunique) Key Index

Database users often want to retrieve rows of a relation based on values for various at-
tributes other than the primary key. For example, in a Product table, users might want
to retrieve records that satisfy any combination of the following conditions:

• All table products (Description = “Table”)
• All oak furniture (ProductFinish = “Oak”)
• All dining room furniture (Room = “DR”)
• All furniture priced below $500 (Price < 500)

To speed up such retrievals, we can define an index on each attribute that we use
to qualify a retrieval. For example, we could create a nonunique index on the
Description field of the Product table with the following SQL command:

CREATE INDEX DescIndex_FK ON Product_T(Description);

Notice that the term UNIQUE should not be used with secondary (nonunique)
key attributes, because each value of the attribute may be repeated. As with unique
keys, a secondary key index can be created on a combination of attributes.

230 Part III • Database Design

When to Use Indexes

During physical database design, you must choose which attributes to use to create
indexes. There is a trade-off between improved performance for retrievals through the use
of indexes and degraded performance (because of the overhead for extensive index main-
tenance) for inserting, deleting, and updating the indexed records in a file. Thus, indexes
should be used generously for databases intended primarily to support data retrievals,
such as for decision support and data warehouse applications. Indexes should be used
judiciously for databases that support transaction processing and other applications with
heavy updating requirements, because the indexes impose additional overhead.

Following are some rules of thumb for choosing indexes for relational databases:

1. Indexes are most useful on larger tables.
2. Specify a unique index for the primary key of each table.
3. Indexes are most useful for columns that frequently appear in WHERE clauses of

SQL commands either to qualify the rows to select (e.g., WHERE ProductFinish =
“Oak,” for which an index on ProductFinish would speed retrieval) or for linking
(joining) tables (e.g., WHERE Product_T.ProductID = OrderLine_T.ProductID, for
which a secondary key index on ProductID in the OrderLine_T table and a pri-
mary key index on ProductID in the Product_T table would improve retrieval per-
formance). In the latter case, the index is on a foreign key in the OrderLine_T table
that is used in joining tables.

4. Use an index for attributes referenced in ORDER BY (sorting) and GROUP BY
(categorizing) clauses. You do have to be careful, though, about these clauses. Be
sure that the DBMS will, in fact, use indexes on attributes listed in these clauses
(e.g., Oracle uses indexes on attributes in ORDER BY clauses but not GROUP BY
clauses).

5. Use an index when there is significant variety in the values of an attribute. Oracle
suggests that an index is not useful when there are fewer than 30 different values
for an attribute, and an index is clearly useful when there are 100 or more different
values for an attribute. Similarly, an index will be helpful only if the results of a
query that uses that index do not exceed roughly 20 percent of the total number of
records in the file (Schumacher, 1997).

6. Before creating an index on a field with long values, consider first creating a com-
pressed version of the values (coding the field with a surrogate key) and then in-
dexing on the coded version (Catterall, 2005). Large indexes, created from long
index fields, can be slower to process than small indexes.

7. If the key for the index is going to be used for determining the location where the
record will be stored, then the key for this index should be a surrogate key so that
the values cause records to be evenly spread across the storage space (Catterall,
2005). Many DBMSs create a sequence number so that each new row added to a
table is assigned the next number in sequence; this is usually sufficient for creating
a surrogate key.

8. Check your DBMS for the limit, if any, on the number of indexes allowable per
table. Some systems permit no more than 16 indexes and may limit the size of an
index key value (e.g., no more than 2,000 bytes for each composite value). If there
is such a limit in your system, you will have to choose those secondary keys that
will most likely lead to improved performance.

9. Be careful of indexing attributes that have null values. For many DBMSs, rows
with a null value will not be referenced in the index (so they cannot be found from
an index search of the attribute = NULL). Such a search will have to be done by
scanning the file.

Selecting indexes is arguably the most important physical database design decision,
but it is not the only way you can improve the performance of a database. Other ways ad-
dress such issues as reducing the costs to relocate records, optimizing the use of extra or
so-called free space in files, and optimizing query processing algorithms. (See Viehman,
1994, for a discussion of these additional ways to enhance physical database design and
efficiency.) We briefly discuss the topic of query optimization in the following section of

Chapter 5 • Physical Database Design and Performance 231

this chapter because such optimization can be used to overrule how the DBMS would use
certain database design options included because of their expected improvement in data
processing performance in most instances.

DESIGNING A DATABASE FOR OPTIMAL QUERY PERFORMANCE

The primary purpose today for physical database design is to optimize the performance of
database processing. Database processing includes adding, deleting, and modifying a data-
base, as well as a variety of data retrieval activities. For databases that have greater retrieval
traffic than maintenance traffic, optimizing the database for query performance (producing
online or off-line anticipated and ad hoc screens and reports for end users) is the primary
goal. This chapter has already covered most of the decisions you can make to tune the data-
base design to meet the need of database queries (clustering, indexes, file organizations,
etc.). In this final section of this chapter, we introduce parallel query processing as an addi-
tional advanced database design and processing option now available in many DBMSs.

The amount of work a database designer needs to put into optimizing query per-
formance depends greatly on the DBMS. Because of the high cost of expert database devel-
opers, the less database and query design work developers have to do, the less costly
the development and use of a database will be. Some DBMSs give very little control to the
database designer or query writer over how a query is processed or the physical location of
data for optimizing data reads and writes. Other systems give the application developers
considerable control and often demand extensive work to tune the database design and
the structure of queries to obtain acceptable performance. Sometimes, the workload varies
so much and the design options are so subtle that good performance is all that can
be achieved. When the workload is fairly focused—say, for data warehousing, where
there are a few batch updates and very complex queries requiring large segments of the
database—performance can be well tuned either by smart query optimizers in the DBMS
or by intelligent database and query design or a combination of both. For example, the
Teradata DBMS is highly tuned for parallel processing in a data warehousing environ-
ment. In this case, rarely can a database designer or query writer improve on the capabili-
ties of the DBMS to store and process data. This situation is, however, rare, and therefore it
is important for a database designer to consider options for improving database processing
performance. Chapter 7 will provide additional guidelines for writing efficient queries.

Parallel Query Processing

One of the major computer architectural changes over the past few years is the in-
creased use of multiple processors in database servers. Database servers frequently use
symmetric multiprocessor (SMP) technology (Schumacher, 1997). To take advantage of
this parallel processing capability, some of the most sophisticated DBMSs include
strategies for breaking apart a query into modules that can be processed in parallel by
each of the related processors. The most common approach is to replicate the query so
that each copy works against a portion of the database, usually a horizontal partition
(i.e., sets of rows). The partitions need to be defined in advance by the database designer.
The same query is run against each portion in parallel on separate processors, and the
intermediate results from each processor are combined to create the final query result as
if the query were run against the whole database.

Suppose you have an Order table with several million rows for which query per-
formance has been slow. To ensure that subsequent scans of this table are performed in
parallel, using at least three processors, you would alter the structure of the table with
the SQL command:

ALTER TABLE Order_T PARALLEL 3;

You need to tune each table to the best degree of parallelism, so it is not uncom-
mon to alter a table several times until the right degree is found.

Parallel query processing speed can be impressive. Schumacher (1997) reports
on a test in which the time to perform a query was cut in half with parallel processing

232 Part III • Database Design

compared to using a normal table scan. Because an index is a table, indexes can also be
given the parallel structure, so that scans of an index are also faster. Again, Schumacher
(1997) shows an example where the time to create an index by parallel processing was
reduced from approximately seven minutes to five seconds!

Besides table scans, other elements of a query can be processed in parallel, such as
certain types of joining related tables, grouping query results into categories, combining
several parts of a query result together (called union), sorting rows, and computing aggre-
gate values. Row update, delete, and insert operations can also be processed in parallel. In
addition, the performance of some database creation commands can be improved by par-
allel processing; these include creating and rebuilding an index and creating a table from
data in the database. The Oracle environment must be preconfigured with a specification
for the number of virtual parallel database servers to exist. Once this is done, the query
processor will decide what it thinks is the best use of parallel processing for any command.

Sometimes the parallel processing is transparent to the database designer or query
writer. With some DBMSs, the part of the DBMS that determines how to process a
query, the query optimizer, uses physical database specifications and characteristics of
the data (e.g., a count of the number of different values for a qualified attribute) to de-
termine whether to take advantage of parallel processing capabilities.

Overriding Automatic Query Optimization

Sometimes, the query writer knows (or can learn) key information about the query that
may be overlooked or unknown to the query optimizer module of the DBMS. With such
key information in hand, a query writer may have an idea for a better way to process a
query. But before you as the query writer can know you have a better way, you have to
know how the query optimizer (which usually picks a query processing plan that will
minimize expected query processing time, or cost) will process the query. This is espe-
cially true for a query you have not submitted before. Fortunately, with most relational
DBMSs, you can learn the optimizer’s plan for processing the query before running the
query. A command such as EXPLAIN or EXPLAIN PLAN (the exact command varies
by DBMS) will display how the query optimizer intends to access indexes, use parallel
servers, and join tables to prepare the query result. If you preface the actual relational
command with the explain clause, the query processor displays the logical steps to
process the query and stops processing before actually accessing the database. The query
optimizer chooses the best plan based on statistics about each table, such as average row
length and number of rows. It may be necessary to force the DBMS to calculate up-to-date
statistics about the database (e.g., the Analyze command in Oracle) to get an accurate
estimate of query costs. You may submit several EXPLAIN commands with your query,
written in different ways, to see if the optimizer predicts different performance. Then, you
can submit for actual processing the form of the query that had the best predicted process-
ing time, or you may decide not to submit the query because it will be too costly to run.

You may even see a way to improve query processing performance. With some
DBMSs, you can force the DBMS to do the steps differently or to use the capabilities of
the DBMS, such as parallel servers, differently than the optimizer thinks is the best plan.

For example, suppose we wanted to count the number of orders processed by a
particular sales representative, Smith. In Oracle, parallel table processing works only
when a table is scanned, not when it is accessed via an index. So, in Oracle, we might
want to force both a full table scan as well as scanning in parallel. The SQL command
for this query would be as follows:

SELECT /*+ FULL(Order_T) PARALLEL(Order_T,3) */ COUNT(*)
FROM Order_T
WHERE Salesperson = “SMITH”;

The clause inside the /* */ delimiters is the hint to Oracle. This hint overrides
whatever query plan Oracle would naturally create for this query. Thus, a hint is specific
to each query, but the use of such hints must be anticipated by altering the structure of
tables to be handled with parallel processing.

Chapter 5 • Physical Database Design and Performance 233

Summary

During physical database design, you, the designer,
translate the logical description of data into the technical
specifications for storing and retrieving data. The goal is
to create a design for storing data that will provide ade-
quate performance and ensure database integrity, security,
and recoverability. In physical database design, you con-
sider normalized relations and data volume estimates,
data definitions, data processing requirements and their
frequencies, user expectations, and database technology
characteristics to establish the specifications that are used
to implement the database using a database management
system.

A field is the smallest unit of application data, corre-
sponding to an attribute in the logical data model. You
must determine the data type, integrity controls, and
how to handle missing values for each field, among other
factors. A data type is a detailed coding scheme for repre-
senting organizational data. Data may be coded to reduce
storage space. Field integrity control includes specifying
a default value, a range of permissible values, null value
permission, and referential integrity.

A process of denormalization transforms normal-
ized relations into non-normalized implementation
specifications. Denormalization is done to improve the
efficiency of I/O operations by specifying the database
implementation structure so that data elements that are
required together are also accessed together on the phys-
ical medium. Partitioning is also considered a form of
denormalization. Horizontal partitioning breaks a rela-
tion into multiple record specifications by placing differ-
ent rows into different tables, based on common column
values. Vertical partitioning distributes the columns of a
relation into separate files, repeating the primary key in
each of the files.

A physical file is a named portion of secondary mem-
ory allocated for the purpose of storing physical records.
Data within a physical file are organized through a combi-
nation of sequential storage and pointers. A pointer is a
field of data that can be used to locate a related field or
record of data.

A file organization arranges the records of a file on a
secondary storage device. The three major categories of
file organizations are (1) sequential, which stores records
in sequence according to a primary key value; (2) indexed,
in which records are stored sequentially or nonsequentially
and an index is used to keep track of where the records are
stored; and (3) hashed, in which the address of each

record is determined using an algorithm that converts a
primary key value into a record address. Physical records
of several types can be clustered together into one physi-
cal file in order to place records frequently used together
close to one another in secondary memory.

The indexed file organization is one of the most
popular in use today. An index may be based on a unique
key or a secondary (nonunique) key, which allows more
than one record to be associated with the same key value.
A join index indicates rows from two or more tables that
have common values for related fields. A hash index table
makes the placement of data independent of the hashing
algorithm and permits the same data to be accessed via
several hashing functions on different fields. Indexes are
important in speeding up data retrieval, especially when
multiple conditions are used for selecting, sorting, or
relating data. Indexes are useful in a wide variety of situ-
ations, including for large tables, for columns that are fre-
quently used to qualify the data to be retrieved, when a
field has a large number of distinct values, and when
data processing is dominated by data retrieval rather
than data maintenance.

The introduction of multiprocessor database servers
has made possible new capabilities in database manage-
ment systems. One major new feature is the ability to
break apart a query and process the query in parallel
against segments of a table. Such parallel query processing
can greatly improve the speed of query processing. Also,
database programmers can improve database processing
performance by providing the DBMS with hints about the
sequence in which to perform table operations. These hints
override the cost-based optimizer of the DBMS. Both
the DBMS and programmers can look at statistics about
the database to determine how to process a query. A wide
variety of guidelines for good query design were included
in the chapter.

This chapter concludes the database design section
of this book. Having developed complete physical data
specifications, you are now ready to begin implementing
the database with database technology. Implementation
means defining the database and programming client
and server routines to handle queries, reports, and
transactions against the database. These are primary
topics of the next five chapters, which cover relational
database implementation on client platforms, server
platforms, client/server environments, and data ware-
house technologies.

Chapter Review

Key Terms

Data type 212
Denormalization 215
Extent 221
Field 211
File organization 221
Hash index table 226

Hashed file
organization 225

Hashing
algorithm 225

Horizontal
partitioning 218

Index 222
Indexed file

organization 222
Join index 224
Physical file 220
Pointer 226

Secondary key 222
Sequential file

organization 222
Tablespace 221
Vertical partitioning

220

234 Part III • Database Design

Review Questions
1. Define each of the following terms:

a. file organization
b. sequential file organization
c. indexed file organization
d. hashing file organization
e. denormalization
f. composite key
g. secondary key
h. data type
i. join index

2. Match the following terms to the appropriate definitions:
_____ extent

_____ hashing
algorithm

_____ index
_____ physical

record
_____ pointer
_____ data type
_____ physical file

5. What are the key decisions in physical database design?
6. What decisions have to be made to develop a field specification?
7. Explain how physical database design has an important role

in forming a foundation for regulatory compliance.
8. What are the objectives of selecting a data type for a field?
9. Explain why you sometimes have to reserve much more

space for a numeric field than any of the initial stored values
requires.

10. Why are field values sometimes coded?
11. What options are available for controlling data integrity at

the field level?
12. Describe three ways to handle missing field values.
13. Explain why normalized relations may not comprise an

efficient physical implementation structure.
14. List three common situations that suggest that relations be

denormalized before database implementation.
15. Explain the reasons why some observers are against the

practice of denormalization.
16. What are the advantages and disadvantages of horizontal

and vertical partitioning?
17. List seven important criteria in selecting a file organization.
18. What are the benefits of a hash index table?
19. What is the purpose of clustering of data in a file?
20. State nine rules of thumb for choosing indexes.
21. Indexing can clearly be very beneficial. Why should you not

create an index for every column of every table of your
database?

22. Explain how parallel processing can improve query
performance.

Problems and Exercises

1. Consider the following two relations for Millennium College:

STUDENT(StudentID, StudentName,
CampusAddress, GPA)

REGISTRATION(StudentID, CourseID, Grade)

Following is a typical query against these relations:

SELECT Student_T.StudentID, StudentName,
CourseID, Grade

FROM Student_T, Registration_T
WHERE Student_T.StudentID =

Registration_T.StudentID
AND GPA > 3.0

ORDER BY StudentName;

a. On what attributes should indexes be defined to speed up
this query? Give the reasons for each attribute selected.

b. Write SQL commands to create indexes for each attrib-
ute you identified in part a.

Problems and Exercises 2–5 have been written assuming that the
DBMS you are using is Oracle. If that is not the case, feel free to
modify the question for the DBMS environment that you are
familiar with. You can also compare and contrast answers for
different DBMSs.

2. Choose Oracle data types for the attributes in the normal-
ized relations in Figure 5-4b.

3. Choose Oracle data types for the attributes in the normal-
ized relations that you created in Problem and Exercise 19 in
Chapter 4.

4. Explain in your own words what the precision (p) and
scale (s) parameters for the Oracle data type NUMBER
mean.

5. Say that you are interested in storing the numeric value
3,456,349.2334. What will be stored, with each of the follow-
ing Oracle data types:
a. NUMBER(11)
b. NUMBER(11,1)
c. NUMBER(11,-2)
d. NUMBER(6)
e. NUMBER

6. Suppose you are designing a default value for the age field
in a student record at your university. What possible values
would you consider, and why? How might the default vary
by other characteristics about the student, such as school
within the university or degree sought?

7. When a student has not chosen a major at a university, the
university often enters a value of “Undecided” for the major
field. Is “Undecided” a way to represent the null value?
Should it be used as a default value? Justify your answer
carefully.

a. a detailed coding scheme for
representing organizational data

b. a data structure used to determine
in a file the location of a record/
records

c. a named area of secondary memory
d. a contiguous section of disk

storage space
e. a field not containing business data
f. converts a key value into an address
g. adjacent fields

3. Contrast the following terms:
a. horizontal partitioning; vertical partitioning
b. physical file; tablespace
c. normalization; denormalization
d. range control; null control
e. secondary key; primary key

4. What are the major inputs into physical database design?

Chapter 5 • Physical Database Design and Performance 235

8. Consider the following normalized relations from a data-
base in a large retail chain:

STORE (StoreID, Region, ManagerID, SquareFeet)
EMPLOYEE (EmployeeID, WhereWork, EmployeeName,

EmployeeAddress)
DEPARTMENT (DepartmentID, ManagerID, SalesGoal)
SCHEDULE (DepartmentID, EmployeeID, Date)

What opportunities might exist for denormalizing these
relations when defining the physical records for this data-
base? Under what circumstances would you consider creat-
ing such denormalized records?

9. Consider the following normalized relations for a sports
league:

TEAM(TeamID, TeamName, TeamLocation)
PLAYER(PlayerID, PlayerFirstName, PlayerLastName,

PlayerDateOfBirth, PlayerSpecialtyCode)
SPECIALTY(SpecialtyCode, SpecialtyDescription)
CONTRACT(TeamID, PlayerID, StartTime, EndTime, Salary)
LOCATION(LocationID, CityName, CityState,

CityCountry, CityPopulation)
MANAGER(ManagerID, ManagerName, ManagerTeam)

What recommendations would you make regarding opportu-
nities for denormalization? What additional information would
you need to make fully informed denormalization decisions?

10. What problems might arise from vertically partitioning a re-
lation? Given these potential problems, what general condi-
tions influence when to partition a relation vertically?

11. Is it possible with a sequential file organization to permit
sequential scanning of the data, based on several sorted
orders? If not, why not? If it is possible, how?

12. Suppose each record in a file were connected to the prior
record and the next record in key sequence using pointers.
Thus, each record might have the following format:
Primary key, other attributes, pointer to prior record, pointer
to next record
a. What would be the advantages of this file organization

compared with a sequential file organization?
b. In contrast with a sequential file organization, would it

be possible to keep the records in multiple sequences?
Why or why not?

13. Assume that a student table in a university database had an
index on StudentID (the primary key) and indexes on Major,
Age, MaritalStatus, and HomeZipCode (all secondary keys).
Further, assume that the university wanted a list of students
majoring in MIS or computer science, over age 25, and mar-
ried OR students majoring in computer engineering, single,
and from the 45462 zip code. How could indexes be used so
that only records that satisfy this qualification are accessed?

14. Consider Figure 5-7b. Assuming that the empty rows in
the leaves of this index show space where new records can
be stored, explain where the record for Sooners would be
stored. Where would the record for Flashes be stored? What
might happen when one of the leaves is full and a new
record needs to be added to that leaf?

15. Consider Figure 4-36 and your answer to Problem and
Exercise 19 in Chapter 4. Assume that the most important
reports that the organization needs are as follows:
• A list of the current developer’s project assignments
• A list of the total costs for all projects

• For each team, a list of its membership history
• For each country, a list of all projects, with projected end

dates, in which the country’s developers are involved
• For each year separately, a list of all developers, in the

order of their average assignment scores for all the
assignments that were completed during that year

Based on this (admittedly limited) information, make a rec-
ommendation regarding the indexes that you would create
for this database. Choose two of the indexes and provide the
SQL command that you would use to create those indexes.

16. Can clustering of files occur after the files are populated
with records? Why or why not?

17. Parallel query processing, as described in this chapter,
means that the same query is run on multiple processors
and that each processor accesses in parallel a different
subset of the database. Another form of parallel query pro-
cessing, not discussed in this chapter, would partition the
query so that each part of the query runs on a different
processor, but that part accesses whatever part of the data-
base it needs. Most queries involve a qualification clause
that selects the records of interest in the query. In general,
this qualification clause is of the following form:

(condition OR condition OR . . .) AND (condition OR
condition OR . . .) AND . . .

Given this general form, how might a query be broken apart
so that each parallel processor handles a subset of the query
and then combines the subsets together after each part is
processed?

Problems and Exercises 18–21
refer to the large Pine Valley
Furniture Company data set
provided with the text.

18. Create a join index on the CustomerID fields of the
Customer_T and Order_T tables in Figure 4-4.

19. Consider the composite usage map in Figure 5-1. After a pe-
riod of time, the assumptions for this usage map have
changed, as follows:
• There is an average of 40 supplies (rather than 50) for

each supplier.
• Manufactured parts represent only 30 percent of all

parts, and purchased parts represent 75 percent.
• The number of direct access to purchased parts increases

to 7,500 per hour (rather than 6,000).
Draw a new composite usage map reflecting this new infor-
mation to replace Figure 5-1.

20. Consider the EER diagram for Pine Valley Furniture
shown in Figure 3-12. Figure 5-9 looks at a portion of that
EER diagram.
Let’s make a few assumptions about the average usage of
the system:
• There are 50,000 customers, and of these, 80 percent rep-

resent regular accounts and 20 percent represent national
accounts.

• Currently, the system stores 800,000 orders, although
this number is constantly changing.

• Each order has an average of 20 products.
• There are 3,000 products.
• Approximately 500 orders are placed per hour.
a. Based on these assumptions, draw a usage map for this

portion of the EER diagram.
b. Management would like employees only to use this data-

base. Do you see any opportunities for denormalization?

236 Part III • Database Design

21. Refer to Figure 4-5. For each of the following reports (with
sample data), indicate any indexes that you feel would
help the report run faster as well as the type of index:
a. State, by products (user-specified period)

c. All orders placed last month

ORDER LINEPRODUCT

ORDER

Customer Type

Submits

CUSTOMER

Customer Type

National?

Regular?

O

REGULAR CUSTOMER NATIONAL CUSTOMER

Account Manager

FIGURE 5-9 Figure for
Problem and Exercise 20

d. Total products sold, by product line (user-specified period)

State Product Description Total Quantity Ordered

CO 8-Drawer Dresser 1

CO Entertainment Center 0

CO Oak Computer Desk 1

CO Writer’s Desk 2

NY Writer’s Desk 1

VA Writer’s Desk 5

Product Finish Units Sold

Cherry 13

Order ID Order Date Customer ID Customer Name

19 3/5/10 4 Eastern Furniture

State, by Products Report, January 1, 2010, to March 31, 2010

Product Description
Quantity
Ordered Price

Extended
Price

Cherry End Table 10 $75.00 $750.00

High Back Leather Chair 5 $362.00 $1,810.00

b. Most frequently sold product finish in a user-specified
month

Most Frequently Sold Product Finish Report, March 1, 2010,
to March 31, 2010

Monthly Order Report, March 1, 2010, to March 31, 2010

Associated Order Details:

Order_ID Order Date Customer IDs Customer Name

24 3/10/10 1 Contemporary
Casuals

Product Description
Quantity
Ordered

Price Extended
Price

Bookcase 4 $69.00 $276.00

Associated Order Details:

Product Line Quantity Sold

Basic 200

Antique 15

Modern 10

Classical 75

Products Sold by Product Line, March 1, 2010, to
March 31, 2010

Chapter 5 • Physical Database Design and Performance 237

Field Exercises

1. Find out which database management systems are available
at your university for student use. Investigate which data
types these DBMSs support. Compare these DBMSs based on
the data types supported and suggest which types of applica-
tions each DBMS is best suited for, based on this comparison.

2. Using the Web site for this text and other Internet resources,
investigate the parallel processing capabilities of several
leading DBMSs. How do their capabilities differ?

3. Denormalization can be a controversial topic among data-
base designers. Some believe that any database should be
fully normalized (even using all the normal forms discussed
in Appendix B). Others look for ways to denormalize to

improve processing performance. Contact a database de-
signer or administrator in an organization with which you
are familiar. Ask whether he or she believes in fully normal-
ized or denormalized physical databases. Ask the person
why he or she has this opinion.

4. Contact a database designer or administrator in an organiza-
tion with which you are familiar. Ask what file organizations
are available in the various DBMSs used in that organiza-
tion. Interview this person to learn what factors he or she
considers when selecting an organization for database files.
For indexed files, ask how he or she decides what indexes to
create. Are indexes ever deleted? Why or why not?

References

Babad, Y. M., and J. A. Hoffer. 1984. “Even No Data Has a
Value.” Communications of the ACM 27,8 (August): 748–56.

Bieniek, D. 2006. “The Essential Guide to Table Partitioning and
Data Lifecycle Management.” Windows IT Pro (March) ac-
cessed at www.windowsITpro.com.

Brobst, S., S. Gant, and F. Thompson. 1999. “Partitioning Very
Large Database Tables with Oracle8.” Oracle Magazine 8,2
(March–April): 123–26.

Catterall, R. 2005. “The Keys to the Database.” DB2 Magazine
10,2 (Quarter 2): 49–51.

Finkelstein, R. 1988. “Breaking the Rules Has a Price.” Database
Programming & Design 1,6 (June): 11–14.

Hoberman, S. 2002. “The Denormalization Survival Guide—
Parts I and II.” Published in the online journal The Data
Administration Newsletter, found in the April and July is-
sues of Tdan.com; the two parts of this guide are available
at www.tdan.com/i020fe02.htm and www.tdan.com/
i021ht03.htm, respectively.

Inmon, W. H. 1988. “What Price Normalization.” ComputerWorld
(October 17): 27, 31.

Pascal, F. 2002a. “The Dangerous Illusion: Denormalization,
Performance and Integrity, Part 1.” DM Review 12,6
(June): 52–53, 57.

Pascal, F. 2002b. “The Dangerous Illusion: Denormalization,
Performance and Integrity, Part 2.” DM Review 12,6
(June): 16, 18.

Rogers, U. 1989. “Denormalization: Why, What, and How?”
Database Programming & Design 2,12 (December): 46–53.

Schumacher, R. 1997. “Oracle Performance Strategies.” DBMS
10,5 (May): 89–93.

Viehman, P. 1994. “Twenty-four Ways to Improve Database
Performance.” Database Programming & Design 7,2
(February): 32–41.

Further Reading

Ballinger, C. 1998. “Introducing the Join Index.” Teradata Review
1,3 (Fall): 18–23. (Note: Teradata Review is now Teradata
Magazine.)

Bontempo, C. J., and C. M. Saracco. 1996. “Accelerating Indexed
Searching.” Database Programming & Design 9,7 (July): 37–43.

DeLoach, A. 1987. “The Path to Writing Efficient Queries in SQL/
DS.” Database Programming & Design 1,1 (January): 26–32.

Elmasri, R., and S. Navathe. 2006. Fundamentals of Database
Systems, 5th ed. Menlo Park, CA: Benjamin Cummings.

Loney, K., E. Aronoff, and N. Sonawalla. 1996. “Big Tips for Big
Tables.” Database Programming & Design 9,11 (November):
58–62.

Oracle. 2008. Oracle SQL Parallel Execution. An Oracle White
Paper, June 2008. Available at www.oracle.com/technology/
products/bi/db/11g/pdf/twp_bidw_parallel_execution_
11gr1.pdf

Roti, S. 1996. “Indexing and Access Mechanisms.” DBMS 9,5
(May): 65–70.

Web Resources

www.SearchOracle.com and www.SearchSQLServer.com
Sites that contain a wide variety of information about
database management and DBMSs. New “tips” are
added daily, and you can subscribe to an alert service
for new postings to the site. Many tips deal with
improving the performance of queries through better
database and query design.

www.tdan.com Web site of The Data Administration Newsletter,
which frequently publishes articles on all aspects of data-
base development and design.

www.teradata.com/tdmo/ A journal for NCR Teradata data ware-
housing products that includes articles on database design.
You can search the site for key terms from this chapter, such
as join index, and find many articles on these topics.

www.windowsITpro.com
www.tdan.com/i020fe02.htm
www.tdan.com/i021ht03.htm
www.tdan.com/i021ht03.htm
www.oracle.com/technology/products/bi/db/11g/pdf/twp_bidw_parallel_execution_11gr1.pdf
www.oracle.com/technology/products/bi/db/11g/pdf/twp_bidw_parallel_execution_11gr1.pdf
www.oracle.com/technology/products/bi/db/11g/pdf/twp_bidw_parallel_execution_11gr1.pdf
www.SearchOracle.com
www.SearchSQLServer.com
www.tdan.com
www.teradata.com/tdmo/

238 Part III • Database Design

CASE
Mountain View Community Hospital

Case Description

Up to this point, you have developed the conceptual and
logical models for Mountain View Community Hospital’s
database. After considering several options, the hospital has
decided to use Microsoft SQL Server, a relational DBMS, for
implementing the database. Before the functional database is
actually created, it is necessary to specify its physical design to
ensure that the database is effective and efficient. As you have
learned, physical database design is specific to the target envi-
ronment and must conform to the capabilities of the DBMS to
be used. It requires a good understanding of the DBMS’s
features, such as available data types, indexing, support for ref-
erential integrity and other constraints, and many more. (You
can alternatively assume that MVCH chose another DBMS
with which you are familiar and then answer the following
questions accordingly.)

Case Questions

1. What additional kinds of information do you need for the
physical database design of the MVCH database besides
the 3NF relations you developed earlier for this case in
Chapter 4?

2. What different types or forms of clinical data are collected
at a hospital such as MVCH? Can you identify data that
may not be easily accommodated by the standard data
types provided by a DBMS? How would you handle
that?

3. Are there opportunities for horizontal or vertical partition-
ing of this database? If you are not sure, what other infor-
mation would you need to answer this question with
greater certainty?

4. Do you see an opportunity for using a join index for this
database? Why or why not?

5. Consider the following query against the MVCH database:

For each treatment ordered in the past two weeks, list
by treatment ID and date (in reverse chronological
order) the number of times a physician performed that
treatment that day, sorted alphabetically by physician
name.

a. Which secondary key indexes would you suggest to
optimize the performance of this query? Why? Make
any assumptions you need in order to answer this
question.

b. Following the examples in this chapter, write the SQL
statements that create these secondary key indexes.

6. This chapter describes the 2002 Sarbanes-Oxley Act, which
is not focused on not-for-profit providers such as many
community hospitals.
a. Can you see how MVCH could benefit from voluntarily

complying with SOX?

b. Specifically how can proper physical database design
help with compliance and the following:
• Improving accuracy and completeness of MVCH data
• Eliminating duplicates and data inconsistencies
• Improving understandability of MVCH data

Case Exercises

1. In Case Exercise 2 in Chapter 4, you wrote CREATE
TABLE commands for each relation of Dr. Z’s small data-
base, which was to be created in Microsoft Access. Since
then, Dr. Z has decided to use Microsoft SQL Server, con-
sistent with other databases at MVCH. Reconsider your
previous CREATE TABLE commands in answering the
following questions:
a. Would you choose different data types for any fields?

Why?
b. Are any fields candidates for coding? If so, what coding

scheme would you use for each of these fields?
c. Which fields require data values? Are there any fields

that may take on null values?
d. Suppose the reason for a visit or the patient’s social worker

are not entered. What procedures would you use for
handling these missing data? Can you and should you
use a default value for this field? Why or why not?

e. Using Microsoft Visio (or other tool required by your in-
structor), draw the physical data model that shows the
data types, primary keys, and foreign keys.

2. In Case Exercise 3 from Chapter 4, you developed the rela-
tional schema for Dr. Z’s Multiple Sclerosis (MS) Clinic
Management System.
a. Do you see any opportunities for user-defined data

types? Which fields? Why?
b. Are any fields candidates for coding? If so, what coding

scheme would you use for each of these fields?
c. Are there any fields that may take on a null value? If so,

which ones?
d. Do you see any opportunities for denormalization of the

relations you designed in Chapter 4? If not, why not? If
yes, where and how might you denormalize?

e. Do you see an opportunity for using a bitmap index for
this database? Why or why not?

f. Can you think of a situation with this set of tables where
you might want to use a join index?

3. MVCH Figure 5-1 shows a portion of the data model for
MVCH’s database that represents a set of normalized rela-
tions based on the enterprise model shown in MVCH
Figure 1-1 and additional business rules provided in the
Chapter 2 case segment. Recall that TREATMENT refers to
any test or procedure ordered by a physician for a patient
and that ORDER refers to any order issued by a physician
for treatment and/or services such as diagnostic tests (radi-
ology, laboratory).

Chapter 5 • Physical Database Design and Performance 239

Using the information provided below regarding
data volume and access frequencies, and following the
example provided in Figure 5-1, modify the E-R model
shown in MVCH Figure 5-1 to create a preliminary com-
posite usage map.
a. Data volume analysis:

• Recall from an earlier case segment that the hospital
performs more than a million laboratory procedures
and more than 110,000 radiology procedures annually.
Add these two figures to arrive at the number of
records for the ORDER DETAIL table.

• There are approximately 250 PHYSICIANS, 20,000
PATIENTS, and 200,000 physician ORDERS in this
database.

• ICD-9 procedure codes for treatments (lab proce-
dures, radiology procedures, etc.) fall into approxi-
mately 3,500 major categories. Use this number to
approximate the number of TREATMENT records.

b. Data access frequencies per hour:
• Across all applications that use the MVCH database,

there are approximately 100 direct accesses to PHYSI-
CIAN, 35 to ORDER, 200 to PATIENT, and 150 to
TREATMENT.

• Of the 200 accesses to PATIENT, 30 accesses then also
require ORDER data, and of these 30, there are 20
subsequent accesses to PHYSICIAN, and 30 accesses
to ORDER DETAIL.

• Of the 35 direct accesses to ORDER, 10 accesses then
also require PHYSICIAN data, and 20 require access
to PATIENT data, ORDER DETAIL data, and TREAT-
MENT data.

• Of the 100 direct accesses to PHYSICIAN, 20 also
access ORDER, ORDER DETAIL, and TREATMENT
data.

• Of the 150 direct accesses to TREATMENT, 10 also ac-
cess ORDER DETAIL data and associated ORDER
and PHYSICIAN data.

4. In Case Exercise 3, you created a composite usage map for
part of the MVCH database, based on MVCH Figure 5-1.
Referring to that composite usage map, do you see any op-
portunities for clustering rows from two or more tables?
Why or why not? Is the concept of clustering tables sup-
ported in SQL Server? Does it differ from Oracle’s imple-
mentation? If so, how?

PROJECT ASSIGNMENTS

In Chapter 4, you created the relational schema for the MVCH
database. Next, you will develop the specification for database
implementation. Specifically, you need to identify and docu-
ment choices regarding the properties of each data element in
the database, using the information provided in the case seg-
ments and options available in SQL Server (or other DBMS you
may be using for this assignment).
P1. Review the information provided in the case segments and

identify the data type for each field in the database.

• Do you see any opportunities for user-defined data
types? Which fields? Why?

• Are any fields candidates for coding? If so, what coding
scheme would you use for each of these fields?

• Which fields may take on a null value? Why?
• Which fields should be indexed? What type of index?

PHYSICIAN ORDER

ORDER
DETAIL

TREATMENT

PATIENT

MVCH FIGURE 5-1 Partial
data model

240 Part III • Database Design

P2. Create a data dictionary similar to the metadata table
shown in Table 1-1 in Chapter 1 to document your choices.
For each table in the relational schema you developed ear-
lier, provide the following information for each field/data
element: field name, definition/description, data type, for-
mat, allowable values, whether the field is required or op-
tional, whether the field is indexed and the type of index,
whether the field is a primary key, whether the field is a

foreign key, and the table that is referenced by the foreign
key field.

P3. Using Microsoft Visio (or similar tool designated by your
instructor), create the physical data model for the MVCH
relational schema you developed in Chapter 4, clearly indi-
cating data types, primary keys, and foreign keys.

P4. Identify five reports to be generated by the database and
create a composite usage map for each.

Chapter 6
Introduction to SQL

Chapter 7
Advanced SQL

Chapter 8
Database Application
Development

Chapter 9
Data Warehousing

IV
P A R T

Implementation

AN OVERVIEW OF PART FOUR

Part IV considers topics associated with implementing relational systems, including
Web-enabled Internet applications and data warehouses. Database implementa-
tion, as indicated in Chapter 1, includes coding and testing database processing
programs, completing database documentation and training materials, and
installing databases and converting data, as necessary, from prior systems. Here, at
last, is the point in the systems development life cycle for which we have been
preparing. Our prior activities—enterprise modeling, conceptual data modeling,
and logical and physical database design—are necessary previous stages. At the
end of implementation, we expect a functioning system that meets users’ informa-
tion requirements. After that, the system will be put into production use, and data-
base maintenance will be necessary for the life of the system. The chapters in Part IV
help develop an initial understanding of the complexities and challenges of imple-
menting a database system.

Chapter 6 describes Structured Query Language (SQL), which has become a
standard language (especially on database servers) for creating and processing
relational databases. In addition to a brief history of SQL that includes a thorough
introduction to SQL:1999, currently used by most DBMSs, along with discussion of
the SQL:200n standard that is implemented by many relational systems, the syntax
of SQL is explored. Data definition language (DDL) commands used to create a
database are included, as are single-table data manipulation language (DML)
commands used to query a database. Dynamic and materialized views, which
constrain a user’s environment to relevant tables necessary to complete the user’s
work, are also covered.

Chapter 7 continues the explanation of more advanced SQL syntax and
constructs. Multiple-table queries, along with subqueries and correlated subqueries,
are demonstrated. These capabilities provide SQL with much of its power.
Transaction integrity issues and an explanation of data dictionary construction place
SQL within a wider context. Additional programming capabilities, including triggers
and stored procedures, and embedding SQL in other programming language pro-
grams further demonstrate the capabilities of SQL. Online transaction processing (OLTP)
is contrasted with online analytical processing (OLAP) features of SQL:1999 and
SQL:200n; OLAP queries, necessary for accessing data warehouses, are also covered.
Strategies for writing and testing queries, from simple to more complex, are
offered.

Chapter 8 provides a discussion of the concepts of client/server architecture,
applications, middleware, and database access in contemporary database envi-
ronments. Technologies that are commonly used in creating two- and three-tier

242 Part IV • Implementation

applications are presented, and sample application programs are used to demonstrate
how to access databases from popular programming languages such as Java, VB.NET,
ASP.NET, JSP, and PHP. The chapter also presents expanded coverage of the emerging
role of Extensible Markup Language (XML) and related technologies in data storage
and retrieval. Topics covered include basics of XML schemas, XQuery, XSLT, Web serv-
ices, and service-oriented architecture (SOA).

Chapter 9 describes the basic concepts of data warehousing, the reasons data
warehousing is regarded as critical to competitive advantage in many organizations,
and the database design activities and structures unique to data warehousing. Topics
include alternative data warehouse architectures, types of data warehouse data,
and the dimensional data model (star schema) for data marts. Database design for
data marts, including surrogate keys, fact table grain, modeling dates and time,
conformed dimensions, factless fact tables, and helper/hierarchy/reference tables,
is explained and illustrated.

As indicated by this brief synopses of the chapters, Part IV provides both a con-
ceptual understanding of the issues involved in implementing database applications
and a practical initial understanding of the procedures necessary to construct a
database prototype. The introduction of common strategies, such as client/server,
Web enabled, Web services, and data warehousing, equip you to understand
expected future developments in databases.

243

Introduction to SQL

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: relational DBMS (RDBMS),
catalog, schema, data definition language (DDL), data manipulation language
(DML), data control language (DCL), referential integrity, scalar aggregate, vector
aggregate, base table, virtual table, dynamic view, and materialized view.

� Interpret the history and role of SQL in database development.
� Define a database using the SQL data definition language.
� Write single-table queries using SQL commands.
� Establish referential integrity using SQL.
� Discuss the SQL:1999 and SQL:200n standards.

INTRODUCTION

Pronounced “S-Q-L” by some and “sequel” by others, SQL has become the de facto
standard language for creating and querying relational databases. (Can the next
standard be the sequel to SQL?) The primary purpose of this chapter is to introduce
SQL, the most common language for relational systems. It has been accepted as a
U.S. standard by the American National Standards Institute (ANSI) and is a Federal
Information Processing Standard (FIPS). It is also an international standard
recognized by the International Organization for Standardization (ISO). ANSI has
accredited the International Committee for Information Technology Standards
(INCITS) as a standards development organization; INCITS is working on the next
version of the SQL standard to be released.

The SQL standard is like afternoon weather in Florida (and maybe where you
live, too)—wait a little while, and it will change. The ANSI SQL standards were first
published in 1986 and updated in 1989, 1992 (SQL-92), 1999 (SQL:1999), 2003
(SQL:2003), 2006 (SQL:2006), and 2008 (SQL:2008). SQL:2008 was in final draft form
at the time of writing this edition. (See http://en.wikipedia.org/wiki/SQL for a
summary of this history.) The standard is now generally referred to as SQL:200n
(they will need SQL:20nn any day now!).

SQL-92 was a major revision and was structured into three levels: Entry,
Intermediate, and Full. SQL:1999 established core-level conformance, which must
be met before any other level of conformance can be achieved; core-level
conformance requirements are unchanged in SQL:200n. In addition to fixes and
enhancements of SQL:1999, SQL:2003 introduced a new set of SQL/XML standards,

C H A P T E R

6
Visit www.pearsonhighered.com/
hoffer to view the accompanying
video for this chapter.

http://en.wikipedia.org/wiki/SQL
www.pearsonhighered.com/

244 Part IV • Implementation

three new data types, various new built-in functions, and improved methods for
generating values automatically. SQL:2006 refined these additions and made them
more compatible with XQuery, the XML query language published by the World
Wide Web Consortium (W3C). At the time of this writing, most database
management systems claim SQL:1992 compliance and partial compliance with
SQL:1999 and SQL:200n.

Except where noted as a particular vendor’s syntax, the examples in this
chapter conform to the SQL standard. Concerns have been expressed about
SQL:1999 and SQL:2003/SQL:200n being true standards because conformance with
the standard is no longer certified by the U.S. Department of Commerce’s National
Institute of Standards and Technology (NIST) (Gorman, 2001). “Standard SQL” may
be considered an oxymoron (like safe investment or easy payments)! Vendors’
interpretations of the SQL standard differ from each other, and vendors extend
their products’ capabilities with proprietary features beyond the stated standard.
This makes it difficult to port SQL from one vendor’s product to another. One must
become familiar with the particular version of SQL being used and not expect that
SQL code will transfer exactly as written to another vendor’s version. Table 6-1
demonstrates differences in handling date and time values to illustrate
discrepancies one encounters across SQL vendors (IBM DB2, Microsoft SQL Server,
MySQL [an open source DBMS], and Oracle).

SQL has been implemented in both mainframe and personal computer systems,
so this chapter is relevant to both computing environments. Although many of
the PC-database packages use a query-by-example (QBE) interface, they also
include SQL coding as an option. QBE interfaces use graphic presentations and
translate the QBE actions into SQL code before query execution occurs. In
Microsoft Access, for example, it is possible to switch back and forth between the
two interfaces; a query that has been built using a QBE interface can be viewed in
SQL by clicking a button. This feature may aid you in learning SQL syntax. In
client/server architectures, SQL commands are executed on the server, and the
results are returned to the client workstation.

The first commercial DBMS that supported SQL was Oracle in 1979. Oracle is now
available in mainframe, client/server, and PC-based platforms for many operating
systems, including various UNIX, Linux, and Microsoft Windows operating systems.
IBM’s DB2, Informix, and Microsoft SQL Server are available for this range of
operating systems also. See Eisenberg et al. (2004) for an overview of SQL:2003.

TABLE 6-1 Handling Date and Time Values (Arvin, 2005,based on content currently and previously available at
http://troelsarvin.blogspot.com/)

TIMESTAMP data type: A core feature, the standard requires that this data type store year, month, day, hour, minute,
and second (with fractional seconds; default is six digits).

TIMESTAMP WITH TIME ZONE data type: Extension to TIMESTAMP also stores the time zone.

Implementation:

Product Follows Standard? Comments

DB2 TIMESTAMP only Includes validity check and will not accept an entry such as 2010–02–29 00:05:00.

MS-SQL No DATETIME stores date and time, with only three digits for fractional seconds; DATETIME2
has a larger date range and greater fractional precision. Validity check similar to DB2’s is
included.

MySQL No TIMESTAMP updates to current date and time when other data in the row are updated and
displays the value for the time zone of the user. DATETIME similar to MS-SQL, but validity
checking is less accurate and may result in values of zero being stored.

Oracle TIMESTAMP and
TIMESTAMP WITH
TIME ZONE

TIMESTAMP WITH TIME ZONE not allowed as part of a unique key. Includes validity check
on dates.

http://troelsarvin.blogspot.com/

Chapter 6 • Introduction to SQL 245

ORIGINS OF THE SQL STANDARD

The concepts of relational database technology were first articulated in 1970, in
E. F. Codd’s classic paper “A Relational Model of Data for Large Shared Data Banks.”
Workers at the IBM Research Laboratory in San Jose, California, undertook development
of System R, a project whose purpose was to demonstrate the feasibility of implementing
the relational model in a database management system. They used a language called
Sequel, also developed at the San Jose IBM Research Laboratory. Sequel was renamed
SQL during the project, which took place from 1974 to 1979. The knowledge gained was
applied in the development of SQL/DS, the first relational database management
system available commercially (from IBM). SQL/DS was first available in 1981, running
on the DOS/VSE operating system. A VM version followed in 1982, and the MVS
version, DB2, was announced in 1983.

When System R was well received at the user sites where it was installed, other
vendors began developing relational products that used SQL. One product, Oracle,
from Relational Software, was actually on the market before SQL/DS (1979). Other
products included INGRES from Relational Technology (1981), IDM from Britton-Lee
(1982), DG/SQL from Data General Corporation (1984), and Sybase from Sybase, Inc.
(1986). To provide some directions for the development of relational DBMSs, ANSI and
the ISO approved a standard for the SQL relational query language (functions and
syntax) that was originally proposed by the X3H2 Technical Committee on Database
(Technical Committee X3H2—Database, 1986; ISO, 1987), often referred to as SQL/86.
For a more detailed history of the SQL standard, see the documents available at
www.wiscorp.com.

The following were the original purposes of the SQL standard:

1. To specify the syntax and semantics of SQL data definition and manipulation
languages

2. To define the data structures and basic operations for designing, accessing, main-
taining, controlling, and protecting an SQL database

3. To provide a vehicle for portability of database definition and application mod-
ules between conforming DBMSs

4. To specify both minimal (Level 1) and complete (Level 2) standards, which permit
different degrees of adoption in products

5. To provide an initial standard, although incomplete, that will be enhanced later to
include specifications for handling such topics as referential integrity, transaction
management, user-defined functions, join operators beyond the equi-join, and
national character sets

In terms of SQL, when is a standard not a standard? As explained earlier, most
vendors provide unique, proprietary features and commands for their SQL database
management system. So, what are the advantages and disadvantages of having an SQL
standard, when there is such variations from vendor to vendor? The benefits of such a
standardized relational language include the following (although these are not pure
benefits because of vendor differences):

• Reduced training costs Training in an organization can concentrate on one
language. A large labor pool of IS professionals trained in a common language
reduces retraining for newly hired employees.

• Productivity IS professionals can learn SQL thoroughly and become proficient
with it from continued use. An organization can afford to invest in tools to help
IS professionals become more productive. And because they are familiar with the
language in which programs are written, programmers can more quickly maintain
existing programs.

• Application portability Applications can be moved from machine to machine
when each machine uses SQL. Further, it is economical for the computer software
industry to develop off-the-shelf application software when there is a standard
language.

• Application longevity A standard language tends to remain so for a long time;
hence there will be little pressure to rewrite old applications. Rather, applications

www.wiscorp.com

246 Part IV • Implementation

will simply be updated as the standard language is enhanced or new versions of
DBMSs are introduced.

• Reduced dependence on a single vendor When a nonproprietary language is
used, it is easier to use different vendors for the DBMS, training and educational
services, application software, and consulting assistance; further, the market for
such vendors will be more competitive, which may lower prices and improve
service.

• Cross-system communication Different DBMSs and application programs can
more easily communicate and cooperate in managing data and processing user
programs.

On the other hand, a standard can stifle creativity and innovation; one standard is
never enough to meet all needs, and an industry standard can be far from ideal because
it may be the offspring of compromises among many parties. A standard may be difficult
to change (because so many vendors have a vested interest in it), so fixing deficiencies
may take considerable effort. Another disadvantage of standards that can be extended
with proprietary features is that using special features added to SQL by a particular
vendor, may result in the loss of some advantages, such as application portability.

The original SQL standard has been widely criticized, especially for its lack of
referential integrity rules and certain relational operators. Date and Darwen (1997)
express concern that SQL seems to have been designed without adhering to established
principles of language design, and “as a result, the language is filled with numerous
restrictions, ad hoc constructs, and annoying special rules” (p. 8). They feel that the
standard is not explicit enough and that the problem of standard SQL implementations
will continue to exist. Some of these limitations will be noticeable in this chapter.

Many products are available that support SQL, and they run on machines of all
sizes, from small personal computers to large mainframes. The database market is
maturing, and the rate of significant changes in products may slow, but they will
continue to be SQL based. The number of relational database vendors with significant
market share has continued to consolidate. According to Lai (2007), Oracle controlled
over 44 percent of the overall database market in 2007, IBM a little over 21 percent, and
Microsoft almost 19 percent. Sybase and Teradata also had significant—albeit much
smaller—shares, and open source products, such as MySQL, PostgreSQL, and Ingres,
combined for about 10 percent market share. MySQL, an open source version of SQL
that runs on Linux, UNIX, Windows, and Mac OS X operating systems, has achieved
considerable popularity. (Download MySQL for free from www.mysql.com.) The mar-
ket position of MySQL may be changing; at the time of writing this edition, Oracle had
just acquired MySQL as part of its purchase of Sun Microsystems. Opportunities still
exist for smaller vendors to prosper through industry-specific systems or niche applica-
tions. Upcoming product releases may change the relative strengths of the database
management systems by the time you read this book. But all of them will continue to
use SQL, and they will follow, to a certain extent, the standard described here.

Because of its significant market share, we most often illustrate SQL in this text
using Oracle 11g syntax. We illustrate using a specific relational DBMS not to promote
or endorse Oracle but rather so we know that the code we use will work with some
DBMS. In the vast majority of the cases, the code will, in fact, work with many relational
DBMSs because it complies with standard ANSI SQL. In some cases, we include illus-
trations using several or other relational DBMSs when there are interesting differences;
however, there are only a few such cases, because we are not trying to compare systems,
and we want to be parsimonious.

THE SQL ENVIRONMENT

With today’s relational DBMSs and application generators, the importance of SQL
within the database architecture is not usually apparent to the application users. Many
users who access database applications have no knowledge of SQL at all. For example,
sites on the Web allow users to browse their catalogs (e.g., see www.llbean.com).
The information about an item that is presented, such as size, color, description, and

www.mysql.com
www.llbean.com

Chapter 6 • Introduction to SQL 247

availability, is stored in a database. The information has been retrieved using an SQL
query, but the user has not issued an SQL command. Rather, the user has used a
prewritten program (e.g., written in Java) with embedded SQL commands for database
processing.

An SQL-based relational database application involves a user interface, a set of
tables in the database, and a relational database management system (RDBMS) with an
SQL capability. Within the RDBMS, SQL will be used to create the tables, translate user
requests, maintain the data dictionary and system catalog, update and maintain the
tables, establish security, and carry out backup and recovery procedures. A relational
DBMS (RDBMS) is a data management system that implements a relational data
model, one where data are stored in a collection of tables, and the data relationships are
represented by common values, not links. This view of data was illustrated in Chapter 2
for the Pine Valley Furniture database system and will be used throughout this chapter’s
SQL query examples.

Figure 6-1 is a simplified schematic of an SQL environment, consistent with
SQL:200n standard. As depicted, an SQL environment includes an instance of an SQL
database management system along with the databases accessible by that DBMS and
the users and programs that may use that DBMS to access the databases. Each database
is contained in a catalog, which describes any object that is a part of the database,
regardless of which user created that object. Figure 6-1 shows two catalogs: DEV_C and
PROD_C. Most companies keep at least two versions of any database they are using.
The production version, PROD_C here, is the live version, which captures real business
data and thus must be very tightly controlled and monitored. The development
version, DEV_C here, is used when the database is being built and continues to serve as
a development tool where enhancements and maintenance efforts can be thoroughly
tested before being applied to the production database. Typically this database is not as
tightly controlled or monitored, because it does not contain live business data. Each
database will have a named schema(s) associated with a catalog. A schema is a collection
of related objects, including but not limited to base tables and views, domains, constraints,
character sets, triggers, and roles.

If more than one user has created objects in a database, combining information
about all users’ schemas will yield information for the entire database. Each catalog
must also contain an information schema, which contains descriptions of all schemas in
the catalog, tables, views, attributes, privileges, constraints, and domains, along with

Relational DBMS (RDBMS)
A database management system
that manages data as a collection
of tables in which all data
relationships are represented by
common values in related tables.

Catalog
A set of schemas that, when put
together, constitute a description
of a database.

Schema
A structure that contains
descriptions of objects created by a
user, such as base tables, views,
and constraints, as part of a
database.

SQL Environment

USERS

SQL
queries

Required
information

schema

User schemas

Catalog: DEV_C

Required
information

schema

User schemas

Catalog: PROD_C
PROGRAMS

DBMS

DATADATA

FIGURE 6-1 A simplified
schematic of a typical SQL
environment, as described by
the SQL:2000n standards

248 Part IV • Implementation

other information relevant to the database. The information contained in the catalog is
maintained by the DBMS as a result of the SQL commands issued by the users and can
be rebuilt without conscious action by the user. It is part of the power of the SQL
language that the issuance of syntactically simple SQL commands may result in complex
data management activities being carried out by the DBMS software. Users can browse
the catalog contents by using SQL SELECT statements.

SQL commands can be classified into three types. First, there are data definition
language (DDL) commands. These commands are used to create, alter, and drop tables,
views, and indexes, and they are covered first in this chapter. There may be other
objects controlled by the DDL, depending on the DBMS. For example, many DBMSs
support defining synonyms (abbreviations) for database objects or a field to hold a
specified sequence of numbers (which can be helpful in assigning primary keys to rows
in tables). In a production database, the ability to use DDL commands will generally be
restricted to one or more database administrators in order to protect the database struc-
ture from unexpected and unapproved changes. In development or student databases,
DDL privileges will be granted to more users.

Next, there are data manipulation language (DML) commands. Many consider
the DML commands to be the core commands of SQL. These commands are used for
updating, inserting, modifying, and querying the data in the database. They may be
issued interactively, so that a result is returned immediately following the execution of
the statement, or they may be included within programs written in a procedural
programming language, such as C, Java, PHP, or COBOL or with a GUI tool (e.g., SQL
Assistant with Teradata or MySQL Query Browser). Embedding SQL commands may
provide the programmer with more control over timing of report generation, interface
appearance, error handling, and database security (see Chapter 8 on embedding SQL in
Web-based programs). Most of this chapter is devoted to covering basic DML com-
mands, in interactive format. The general syntax of the SQL SELECT command used in
DML is shown in Figure 6-2.

Finally, data control language (DCL) commands help a DBA control the database;
they include commands to grant or revoke privileges to access the database or particular
objects within the database and to store or remove transactions that would affect the
database.

Each DBMS has a defined list of data types that it can handle. All contain numeric,
string, and date/time-type variables. Some also contain graphic data types, spatial data
types, or image data types, which greatly increase the flexibility of data manipulation.
When a table is created, the data type for each attribute must be specified. Selection of a
particular data type is affected by the data values that need to be stored and the
expected uses of the data. A unit price will need to be stored in a numeric format
because mathematical manipulations such as multiplying unit price by the number of
units ordered are expected. A phone number may be stored as string data, especially if
foreign phone numbers are going to be included in the data set. Even though a phone
number contains only digits, no mathematical operations, such as adding or multiply-
ing phone numbers, make sense with a phone number. And because character data will
process more quickly, numeric data should be stored as character data if no arithmetic
calculations are expected. Selecting a date field rather than a string field will allow the
developer to take advantage of date/time interval calculation functions that cannot be
applied to a character field. See Table 6-2 for a few examples of SQL data types.
SQL:200n includes three new data types: BIGINT, MULTISET, and XML. Watch for

Data definition language (DDL)
Commands used to define a
database, including those for
creating, altering, and dropping
tables and establishing constraints.

Data manipulation language
(DML)
Commands used to maintain and
query a database, including those
for updating, inserting, modifying,
and querying data.

Data control language (DCL)
Commands used to control a
database, including those for
administering privileges and
committing (saving) data.

SELECT [ALL/DISTINCT] column_list
FROM table_list
[WHERE conditional expression]
[GROUP BY group_by_column_list]
[HAVING conditional expression]
[ORDER BY order_by_column_list]

FIGURE 6-2 General syntax
of the SELECT statement
used in DML

Chapter 6 • Introduction to SQL 249

TABLE 6-2 Sample SQL Data Types

String CHARACTER (CHAR) Stores string values containing any characters in a
character set. CHAR is defined to be a fixed length.

CHARACTER VARYING
(VARCHAR or VARCHAR2)

Stores string values containing any characters in a
character set but of definable variable length.

BINARY LARGE OBJECT (BLOB) Stores binary string values in hexadecimal format.
BLOB is defined to be a variable length. (Oracle
also has CLOB and NCLOB, as well as BFILE for
storing unstructured data outside the database.)

Number NUMERIC Stores exact numbers with a defined precision
and scale.

INTEGER (INT) Stores exact numbers with a predefined precision
and scale of zero.

Temporal TIMESTAMPTIMESTAMP WITH
LOCAL TIME ZONE

Stores a moment an event occurs, using a
definable fraction-of–a-second precision.Value
adjusted to the user’s session time zone (available
in Oracle and MySQL)

Boolean BOOLEAN Stores truth values: TRUE, FALSE, or UNKNOWN.

these new data types to be added to RDBMSs that had not previously introduced them
as an enhancement of the existing standard.

Given the wealth of graphic and image data types, it is necessary to consider busi-
ness needs when deciding how to store data. For example, color may be stored as a
descriptive character field, such as “sand drift” or “beige.” But such descriptions will
vary from vendor to vendor and do not contain the amount of information that could be
contained in a spatial data type that includes exact red, green, and blue intensity values.
Such data types are now available in universal servers, which handle data warehouses,
and can be expected to appear in RDBMSs as well. In addition to the predefined data
types included in Table 6-2, SQL:1999 and SQL:200n support constructed data types and
user-defined types. There are many more predefined data types than those shown in
Table 6-2. It will be necessary to familiarize yourself with the available data types for
each RDBMS with which you work to achieve maximum advantage from its capabilities.

We are almost ready to illustrate sample SQL commands. The sample data that
we will be using are shown in Figure 6-3 (which was captured in Microsoft Access).
The data model corresponds to that shown in Figure 2-22. The PVFC database files are
available for your use on this book’s Web site; the files are available in several formats,
for use with different DBMSs, and the database is also available on Teradata Student
Network. Instructions for locating them are included inside the front cover of the book.
There are two PVFC files. The one used here is named BookPVFC (also called Standard
PVFC), and you can use it to work through the SQL queries demonstrated in Chapters 6
and 7. Another file, BigPVFC, contains more data and does not always correspond to
Figure 2-22, nor does it always demonstrate good database design. Big PVFC is used for
some of the exercises at the end of the chapter.

Each table name follows a naming standard that places an underscore and the let-
ter T (for table) at the end of each table name, such as Order_T or Product_T. (Most
DBMSs do not permit a space in the name of a table nor typically in the name of an
attribute.) When looking at these tables, note the following:

1. Each order must have a valid customer ID included in the Order_T table.
2. Each item in an order line must have both a valid product ID and a valid order ID

associated with it in the OrderLine_T table.
3. These four tables represent a simplified version of one of the most common sets of

relations in business database systems—the customer order for products. SQL
commands necessary to create the Customer_T table and the Order_T table were
included in Chapter 2 and are expanded here.

250 Part IV • Implementation

The remainder of the chapter will illustrate DDL, DML, and DCL commands.
Figure 6-4 gives an overview of where the various types of commands are used
throughout the database development process. We will use the following notation in
the illustrative SQL commands:

1. All-capitalized words denote commands. Type them exactly as shown, though
capitalization may not be required by the RDBMSs. Some RDBMSs will always
show data names in output using all capital letters, even if they can be entered in
mixed case. (This is the style of Oracle, which is what we follow except where
noted.) Tables, columns, named constraints, and so forth are shown in mixed case.
Remember that table names follow the “underscore T” convention. SQL com-
mands do not have an “underscore” and so should be easy to distinguish from
table and column names. Also, RDBMSs do not like embedded spaces in data
names, so multiple-word data names from ERDs are entered with the words
together, without spaces between them. A consequence is that, for example, a col-
umn named QtyOnHand will become QTYONHAND when it is displayed by
many RDBMSs. (You can use the ALIAS clause in a SELECT to rename a column
name to a more readable value for display.)

2. Lowercase and mixed-case words denote values that must be supplied by
the user.

3. Brackets enclose optional syntax.
4. An ellipsis (. . .) indicates that the accompanying syntactic clause may be repeated

as necessary.

FIGURE 6-3 Sample Pine
Valley Furniture Company
data

Chapter 6 • Introduction to SQL 251

DDL
Define the database:
 CREATE tables, indexes, views
 Establish foreign keys
 Drop or truncate tables

DML
Load the database:
 INSERT data
UPDATE the database
Manipulate the database:
 SELECT

DCL
Control the database:
 GRANT, ADD, REVOKE

Physical Design

Maintenance

Implementation

FIGURE 6-4 DDL, DML,
DCL, and the database
development process

5. Each SQL command ends with a semicolon (;). In interactive mode, when the user
presses Enter, the SQL command will execute. Be alert for alternate conventions,
such as typing GO or having to include a continuation symbol such as a hyphen
at the end of each line used in the command. The spacing and indentations
shown here are included for readability and are not a required part of standard
SQL syntax.

DEFINING A DATABASE IN SQL

Because most systems allocate storage space to contain base tables, views, constraints,
indexes, and other database objects when a database is created, you may not be allowed
to create a database. Because of this, the privilege of creating databases may be reserved
for the database administrator, and you may need to ask to have a database created.
Students at a university may be assigned an account that gives access to an existing
database, or they may be allowed to create their own database in a limited amount of
allocated storage space (sometimes called perm space or table space). In any case, the basic
syntax for creating a database is

CREATE SCHEMA database_name; AUTHORIZATION owner_user id

The database will be owned by the authorized user, although it is possible for other
specified users to work with the database or even to transfer ownership of the data-
base. Physical storage of the database is dependent on both the hardware and soft-
ware environment and is usually the concern of the system administrator. The
amount of control over physical storage that a database administrator is able to exert
depends on the RDBMS being used. Little control is possible when using Microsoft
Access, but Microsoft SQL Server 2008 allows for more control of the physical data-
base. A database administrator may exert considerable control over the placement of
data, control files, index files, schema ownership, and so forth, thus improving the
ability to tune the database to perform more efficiently and to create a secure database
environment.

252 Part IV • Implementation

Generating SQL Database Definitions

Several SQL DDL CREATE commands are included in SQL:200n (and each command is
followed by the name of the object being created):

CREATE SCHEMA Used to define the portion of a database that a particular user owns.
Schemas are dependent on a catalog and contain schema objects, including
base tables and views, domains, constraints, assertions, character sets,
collations, and so forth.

CREATE TABLE Defines a new table and its columns. The table may be a base table or a
derived table. Tables are dependent on a schema. Derived tables are created
by executing a query that uses one or more tables or views.

CREATE VIEW Defines a logical table from one or more tables or views. Views may not be
indexed. There are limitations on updating data through a view. Where
views can be updated, those changes can be transferred to the underlying
base tables originally referenced to create the view.

You don’t have to be perfect when you create these objects, and they don’t have to
last forever. Each of these CREATE commands can be reversed by using a DROP
command. Thus, DROP TABLE tablename will destroy a table, including its definition,
contents, and any constraints, views, or indexes associated with it. Usually only the
table creator may delete the table. DROP SCHEMA or DROP VIEW will also destroy the
named schema or view. ALTER TABLE may be used to change the definition of an exist-
ing base table by adding, dropping, or changing a column or by dropping a constraint.
Some RDBMSs will not allow you to alter a table in a way that the current data in that
table will violate the new definitions (e.g., you cannot create a new constraint when
current data will violate that constraint, or if you change the precision of a numeric
column you may lose the extra precision of more precise existing values).

There are also five other CREATE commands included in the SQL standards; we
list them here but do not cover them in this book:

CREATE
CHARACTER SET

Allows the user to define a character set for text strings and aids in the
globalization of SQL by enabling the use of languages other than English.
Each character set contains a set of characters, a way to represent each
character internally, a data format used for this representation, and a
collation, or way of sorting the character set.

CREATE
COLLATION

A named schema object that specifies the order that a character set will
assume. Existing collations may be manipulated to create a new collation.

CREATE
TRANSLATION

A named set of rules that maps characters from a source character set to a
destination character set for translation or conversion purposes.

CREATE
ASSERTION

A schema object that establishes a CHECK constraint that is violated if the
constraint is false.

CREATE DOMAIN A schema object that establishes a domain, or set of valid values, for an
attribute. Data type will be specified, and a default value, collation, or other
constraint may also be specified, if desired.

Creating Tables

Once the data model is designed and normalized, the columns needed for each table
can be defined, using the SQL CREATE TABLE command. The general syntax for
CREATE TABLE is shown in Figure 6-5. Here is a series of steps to follow when prepar-
ing to create a table:

1. Identify the appropriate data type, including length, precision, and scale, if
required, for each attribute.

2. Identify the columns that should accept null values, as discussed in Chapter 5.
Column controls that indicate a column cannot be null are established when a

Chapter 6 • Introduction to SQL 253

CREATE TABLE tablename
({column definition [table constraint] } . , . .
[ON COMMIT {DELETE | P RESERVE} ROWS]);

where column definition ::=
column_name

{domain name| d atatype [(size)] }
[column_constraint_clause. . .]
[default value]
[collate clause]

and table constraint ::=
[CONSTRAINT constraint_name]
Constraint_type [constraint_attributes]

FIGURE 6-5 General syntax
of the CREATE TABLE
statement used in data
definition language

table is created and are enforced for every update of the table when data are
entered.

3. Identify the columns that need to be unique. When a column control of UNIQUE
is established for a column, the data in that column must have a different value for
each row of data within that table (i.e., no duplicate values). Where a column or
set of columns is designated as UNIQUE, that column or set of columns is a candi-
date key, as discussed in Chapter 4. Although each base table may have multiple
candidate keys, only one candidate key may be designated as a PRIMARY KEY.
When a column(s) is specified as the PRIMARY KEY, that column(s) is also
assumed to be NOT NULL, even if NOT NULL is not explicitly stated. UNIQUE
and PRIMARY KEY are both column constraints. Note that a table with a compos-
ite primary key, OrderLine_T, is defined in Figure 6-6. The OrderLine_PK con-
straint includes both OrderID and ProductID in the primary key constraint, thus
creating a composite key. Additional attributes may be included within the paren-
theses as needed to create the composite key.

4. Identify all primary key–foreign key mates, as presented in Chapter 4. Foreign
keys can be established immediately, as a table is created, or later by altering the
table. The parent table in such a parent–child relationship should be created first
so that the child table will reference an existing parent table when it is created. The
column constraint REFERENCES can be used to enforce referential integrity (e.g.,
the Order_FK constraint on the Order_T table).

5. Determine values to be inserted in any columns for which a default value is
desired. DEFAULT can be used to define a value that is automatically inserted
when no value is inserted during data entry. In Figure 6-6, the command that cre-
ates the Order_T table has defined a default value of SYSDATE (Oracle’s name for
the current date) for the OrderDate attribute.

6. Identify any columns for which domain specifications may be stated that are more
constrained than those established by data type. Using CHECK as a column con-
straint, it may be possible to establish validation rules for values to be inserted
into the database. In Figure 6-6, creation of the Product_T table includes a check
constraint, which lists the possible values for Product_Finish. Thus, even though
an entry of ‘White Maple’ would meet the VARCHAR data type constraints, it
would be rejected because ‘White Maple’ is not in the checklist.

7. Create the table and any desired indexes, using the CREATE TABLE and CREATE
INDEX statements. (CREATE INDEX is not a part of the SQL:1999 standard be-
cause indexing is used to address performance issues, but it is available in most
RDBMSs.)

Figure 6-6 shows database definition commands using Oracle 11g that include
additional column constraints, as well as primary and foreign keys given names. For
example, the Customer table’s primary key is CustomerID. The primary key constraint
is named Customer_PK. In Oracle, for example, once a constraint has been given a

254 Part IV • Implementation

meaningful name by the user, a database administrator will find it easy to identify the
primary key constraint on the customer table because its name, Customer_PK, will be
the value of the constraint_name column in the DBA_CONSTRAINTS table. If a mean-
ingful constraint name were not assigned, a 16-byte system identifier would be
assigned automatically. These identifiers are difficult to read and even more difficult to
match up with user-defined constraints. Documentation about how system identifiers
are generated is not available, and the method can be changed without notification.
Bottom line: Give all constraints names or be prepared for extra work later.

When a foreign key constraint is defined, referential integrity will be enforced. This
is good: We want to enforce business rules in the database. Fortunately, you are still
allowed to have a null value for the foreign key (signifying a zero cardinality of the rela-
tionship) as long as you do not put the NOT NULL clause on the foreign key column. For
example, if you try to add an order with an invalid CustomerID value (every order has
to be related to some customer, so the minimum cardinality is one next to Customer for
the Submits relationship in Figure 2-22), you will receive an error message. Each DBMS
vendor generates its own error messages, and these messages may be difficult to inter-
pret. Microsoft Access, being intended for both personal and professional use, provides
simple error messages in dialog boxes. For example, for a referential integrity violation,
Access displays the following error message: “You cannot add or change a record
because a related record is required in table Customer_T.” No record will be added to
Order_T until that record references an existing customer in the Customer_T table.

Sometimes a user will want to create a table that is similar to one that already
exists. SQL:1999 included the capability of adding a LIKE clause to the CREATE TABLE
statement to allow for the copying of the existing structure of one or more tables into a

CREATE TABLE Customer_T
(CustomerID NUMBER(11,0)
CustomerName VARCHAR2(25)
CustomerAddress VARCHAR2(30),
CustomerCity VARCHAR2(20),
CustomerState CHAR(2),
CustomerPostalCode VARCHAR2(9),

CONSTRAINT Customer_PK PRIMARY KEY (CustomerID));

CREATE TABLE Order_T
(OrderID NUMBER(11,0) NOT NULL,

NOT NULL,
NOT NULL,

OrderDate DATE DEFAULT SYSDATE,
CustomerID NUMBER(11,0),

CONSTRAINT Order_PK PRIMARY KEY (OrderID),
CONSTRAINT Order_FK FOREIGN KEY (CustomerID) REFERENCES Customer_T(CustomerID));

CREATE TABLE Product_T
(ProductID NUMBER(11,0) NOT NULL,
ProductDescription VARCHAR2(50),
ProductFinish VARCHAR2(20)

CHECK (ProductFinish IN ('Cherry', 'Natural Ash', 'White Ash',
'Red Oak', 'Natural Oak', 'Walnut')),

ProductStandardPrice DECIMAL(6,2),
ProductLineID INTEGER,

CONSTRAINT Product_PK PRIMARY KEY (ProductID));

CREATE TABLE OrderLine_T
(OrderID NUMBER(11,0) NOT NULL,
ProductID INTEGER NOT NULL,
OrderedQuantity NUMBER(11,0),

CONSTRAINT OrderLine_PK PRIMARY KEY (OrderID, ProductID),
CONSTRAINT OrderLine_FK1 FOREIGN KEY (OrderID) REFERENCES Order_T(OrderID),
CONSTRAINT OrderLine_FK2 FOREIGN KEY (ProductID) REFERENCES Product_T(ProductID));

FIGURE 6-6 SQL database definition commands for Pine Valley Furniture Company (Oracle 11g)

Chapter 6 • Introduction to SQL 255

new table. For example, a table can be used to store data that are questionable until the
questionable data can be reviewed by an administrator. This exception table has the
same structure as the verified transaction table, and missing or conflicting data will
be reviewed and resolved before those transactions are appended to the transaction
table. SQL:200n has expanded the CREATE . . . LIKE capability by allowing additional
information, such as table constraints, from the original table to be easily ported to the
new table when it is created. The new table exists independently of the original table.
Inserting a new instance into the original table will have no effect on the new table.
However, if the attempt to insert the new instance triggers an exception, the trigger can
be written so that the data is stored in the new table to be reviewed later.

Oracle, MySQL, and some other RDBMSs have an interesting “dummy” table that
is automatically defined with each database—the Dual table. The Dual table is used to
run an SQL command against a system variable. For example,

SELECT Sysdate FROM Dual;

displays the current date, and

SELECT 8 + 4 FROM Dual;

displays the result of this arithmetic.

Creating Data Integrity Controls

We have seen the syntax that establishes foreign keys in Figure 6-6. To establish referen-
tial integrity constraint between two tables with a 1:M relationship in the relational data
model, the primary key of the table on the one side will be referenced by a column in
the table on the many side of the relationship. Referential integrity means that a value in
the matching column on the many side must correspond to a value in the primary key
for some row in the table on the one side or be NULL. The SQL REFERENCES clause
prevents a foreign key value from being added if it is not already a valid value in the
referenced primary key column, but there are other integrity issues.

If a CustomerID value is changed, the connection between that customer and
orders placed by that customer will be ruined. The REFERENCES clause prevents mak-
ing such a change in the foreign key value, but not in the primary key value. This prob-
lem could be handled by asserting that primary key values cannot be changed once
they are established. In this case, updates to the customer table will be handled in most
systems by including an ON UPDATE RESTRICT clause. Then, any updates that would
delete or change a primary key value will be rejected unless no foreign key references
that value in any child table. See Figure 6-7 for the syntax associated with updates.

Another solution is to pass the change through to the child table(s) by using the
ON UPDATE CASCADE option. Then, if a customer ID number is changed, that
change will flow through (cascade) to the child table, Order_T, and the customer’s ID
will also be updated in the Order_T table.

A third solution is to allow the update on Customer_T but to change the involved
CustomerID value in the Order_T table to NULL by using the ON UPDATE SET NULL
option. In this case, using the SET NULL option would result in losing the connection
between the order and the customer, which is not a desired effect. The most flexible option
to use would be the CASCADE option. If a customer record were deleted, ON DELETE
RESTRICT, CASCADE, or SET NULL would also be available. With DELETE RESTRICT,
the customer record could not be deleted unless there were no orders from that customer
in the Order_T table. With DELETE CASCADE, removing the customer would remove all
associated order records from Order_T. With DELETE SET NULL, the order records for
that customer would be set to null before the customer’s record was deleted. With
DELETE SET DEFAULT, the order records for that customer would be set to a default
value before the customer’s record was deleted. DELETE RESTRICT would probably
make the most sense. Not all SQL RDBMSs provide for primary key referential integrity. In
that case, update and delete permissions on the primary key column may be revoked.

256 Part IV • Implementation

Changing Table Definitions

Base table definitions may be changed by using ALTER on the column specifications.
The ALTER TABLE command can be used to add new columns to an existing table.
Existing columns may also be altered. Table constraints may be added or dropped. The
ALTER TABLE command may include keywords such as ADD, DROP, or ALTER and
allow the column’s names, data type, length, and constraints to be changed. Usually,
when adding a new column, its null status will be NULL so that data that have already
been entered in the table can be dealt with. When the new column is created, it is added
to all of the instances in the table, and a value of NULL would be the most reasonable.
The ALTER command cannot be used to change a view.

Syntax:

ALTER TABLE table_name alter_table_action;

Some of the alter_table_actions available are:

ADD [COLUMN] column_definition
ALTER [COLUMN] column_name SET DEFAULT default-value
ALTER [COLUMN] column_name DROP DEFAULT
DROP [COLUMN] column_name [RESTRICT] [CASCADE]
ADD table_constraint

Command: To add a customer type column named CustomerType to the
Customer table.

ALTER TABLE CUSTOMER_T
ADD COLUMN CustomerType VARCHAR2 (2) DEFAULT “Commercial”;

The ALTER command is invaluable for adapting a database to inevitable modifi-
cations due to changing requirements, prototyping, evolutionary development, and

CUSTOMER
(PK=CustomerID)

ORDER
(FK=CustomerID)

Restricted Update: A customer ID can only be deleted if it is not found in ORDER table.

CREATE TABLE CustomerT
(CustomerID INTEGER DEFAULT ‘999’ NOT NULL,

NOT NULL,CustomerName VARCHAR(40)
. . .

CONSTRAINT Customer_PK PRIMARY KEY (CustomerID),
ON UPDATE RESTRICT);

Cascaded Update: Changing a customer ID in the CUSTOMER table will result in that
value changing in the ORDER table to match.

. . . ON UPDATE CASCADE);

Set Null Update: When a customer ID is changed, any customer ID in the ORDER table
that matches the old customer ID is set to NULL.

. . . ON UPDATE SET NULL);

Set Default Update: When a customer ID is changed, any customer ID in the ORDER
tables that matches the old customer ID is set to a predefined default value.

. . . ON UPDATE SET DEFAULT);

FIGURE 6-7 Ensuring data
integrity through updates

Chapter 6 • Introduction to SQL 257

mistakes. It is also useful when performing a bulk data load into a table that contains a
foreign key. The constraint may be temporarily dropped. Later, after the bulk data load
has finished, the constraint can be enabled. When the constraint is reenabled, it is possible
to generate a log of any records that have referential integrity problems. Rather than
have the data load balk each time such a problem occurs during the bulk load, the data-
base administrator can simply review the log and reconcile the few (hopefully few)
records that were problematic.

Removing Tables

To remove a table from a database, the owner of the table may use the DROP TABLE
command. Views are dropped by using the similar DROP VIEW command.

Command: To drop a table from a database schema.

DROP TABLE Customer_T;

This command will drop the table and save any pending changes to the database.
To drop a table, you must either own the table or have been granted the DROP ANY
TABLE system privilege. Dropping a table will also cause associated indexes and privi-
leges granted to be dropped. The DROP TABLE command can be qualified by the
keywords RESTRICT or CASCADE. If RESTRICT is specified, the command will fail,
and the table will not be dropped if there are any dependent objects, such as views or
constraints, that currently reference the table. If CASCADE is specified, all dependent
objects will also be dropped as the table is dropped. Many RDBMSs allows users to
retain the table’s structure but remove all of the data that have been entered in the table
with its TRUNCATE TABLE command. Commands for updating and deleting part of
the data in a table are covered in the next section.

INSERTING, UPDATING, AND DELETING DATA

Once tables have been created, it is necessary to populate them with data and maintain
those data before queries can be written. The SQL command that is used to populate
tables is the INSERT command. When entering a value for every column in the table, you
can use a command like the following, which was used to add the first row of data to the
Customer_T table for Pine Valley Furniture Company. Notice that the data values must be
ordered in the same order as the columns in the table.

Command: To insert a row of data into a table where a value will be inserted for
every attribute.

INSERT INTO Customer_T VALUES
(001, ‘Contemporary Casuals’, ‘1355 S. Himes Blvd.’, ‘Gainesville’, ‘FL’, 32601);

When data will not be entered into every column in the table, either enter the value
NULL for the empty fields or specify those columns to which data are to be added. Here,
too, the data values must be in the same order as the columns have been specified in the
INSERT command. For example, the following statement was used to insert one row of
data into the Product_T table, because there was no product line ID for the end table.

Command: To insert a row of data into a table where some attributes will be
left null.

INSERT INTO Product_T (ProductID,
ProductDescription, ProductFinish, ProductStandardPrice)

VALUES (1, ‘End Table’, ‘Cherry’, 175, 8);

In general, the INSERT command places a new row in a table, based on values
supplied in the statement, copies one or more rows derived from other database data
into a table, or extracts data from one table and inserts them into another. If you want
to populate a table, CaCustomer_T, that has the same structure as CUSTOMER_T,

258 Part IV • Implementation

with only Pine Valley’s California customers, you could use the following INSERT
command.

Command: Populating a table by using a subset of another table with the same
structure.

INSERT INTO CaCustomer_T
SELECT * FROM Customer_T

WHERE CustomerState = ‘CA’;

In many cases, we want to generate a unique primary identifier or primary key
every time a row is added to a table. Customer identification numbers are a good exam-
ple of a situation where this capability would be helpful. SQL:200n had added a new
feature, identity columns, that removes the previous need to create a procedure to gen-
erate a sequence and then apply it to the insertion of data. To take advantage of this, the
CREATE TABLE Customer_T statement displayed in Figure 6-6 may be modified
(emphasized by bold print) as follows:

CREATE TABLE Customer_T
(CustomerID INTEGER GENERATED ALWAYS AS IDENTITY

(START WITH 1
INCREMENT BY 1
MINVALUE 1
MAXVALUE 10000
NO CYCLE),

CustomerName VARCHAR2(25) NOT NULL,
CustomerAddress VARCHAR2(30),
CustomerCity VARCHAR2(20),
CustomerState CHAR(2),
CustomerPostalCode VARCHAR2(9),
CONSTRAINT Customer_PK PRIMARY KEY (CustomerID);

Only one column can be an identity column in a table. When a new customer is
added, the CustomerID value will be assigned implicitly if the vendor has implemented
identity columns.

Thus, the command that adds a new customer to Customer_T will change from this:

INSERT INTO Customer_T VALUES
(001, ‘Contemporary Casuals’, ‘1355 S. Himes Blvd.’, ‘Gainesville’,

‘FL’, 32601);

to this:

INSERT INTO Customer_T VALUES
(‘Contemporary Casuals’, ‘1355 S. Himes Blvd.’, ‘Gainesville’, ‘FL’, 32601);

The primary key value, 001, does not need to be entered, and the syntax to accom-
plish the automatic sequencing has been simplified in SQL:200n.

Batch Input

The INSERT command is used to enter one row of data at a time or to add multiple
rows as the result of a query. Some versions of SQL have a special command or utility
for entering multiple rows of data as a batch: the INPUT command. For example,
Oracle includes a program, SQL*Loader, which runs from the command line and can be
used to load data from a file into the database. SQL Server includes a BULK INSERT
command with Transact-SQL for importing data into a table or view. (These powerful
and feature rich programs are not within the scope of this text.)

Chapter 6 • Introduction to SQL 259

Deleting Database Contents

Rows can be deleted from a database individually or in groups. Suppose Pine Valley
Furniture decides that it will no longer deal with customers located in Hawaii.
Customer_T rows for customers with addresses in Hawaii could all be eliminated using
the next command.

Command: Deleting rows that meet a certain criterion from the Customer table.

DELETE FROM Customer_T
WHERE CustomerState = ‘HI’;

The simplest form of DELETE eliminates all rows of a table.

Command: Deleting all rows from the Customer table.

DELETE FROM Customer_T;

This form of the command should be used very carefully!
Deletion must also be done with care when rows from several relations are

involved. For example, if we delete a Customer_T row, as in the previous query, before
deleting associated Order_T rows, we will have a referential integrity violation, and
the DELETE command will not execute. (Note: Including the ON DELETE clause with
a field definition can mitigate such a problem. Refer to the “Creating Data Integrity
Controls” section in this chapter if you’ve forgotten about the ON clause.) SQL will
actually eliminate the records selected by a DELETE command. Therefore, always exe-
cute a SELECT command first to display the records that would be deleted and visually
verify that only the desired rows are included.

Updating Database Contents

To update data in SQL, we must inform the DBMS what relation, columns, and rows are
involved. If an incorrect price is entered for the dining table in the Product_T table, the
following SQL UPDATE statement would establish the correction.

Command: To modify standard price of product 7 in the Product table to 775.

UPDATE Product_T
SET ProductStandardPrice = 775

WHERE ProductID = 7;

The SET command can also change a value to NULL; the syntax is SET colum-
name = NULL. As with DELETE, the WHERE clause in an UPDATE command may
contain a subquery, but the table being updated may not be referenced in the subquery.
Subqueries are discussed in Chapter 7.

The SQL:200n standard has included a new keyword, MERGE, that makes
updating a table easier. Many database applications need to update master tables
with new data. A Purchases_T table, for example, might include rows with data about
new products and rows that change the standard price of existing products. Updating
Product_T can be accomplished by using INSERT to add the new products and
UPDATE to modify StandardPrice in an SQL-92 or SQL:1999 DBMS. SQL:200n com-
pliant DBMSs can accomplish the update and the insert in one step by using MERGE:

MERGE INTO Product_T AS PROD
USING
(SELECT ProductID, ProductDescription, ProductFinish,
ProductStandardPrice, ProductLineID FROM Purchases_T) AS PURCH

ON (PROD.ProductID = PURCH.ProductID)
WHEN MATCHED THEN UPDATE

PROD.ProductStandardPrice = PURCH.ProductStandardPrice

260 Part IV • Implementation

WHEN NOT MATCHED THEN INSERT
(ProductID, ProductDescription, ProductFinish, ProductStandardPrice,
ProductLineID)
VALUES(PURCH.ProductID, PURCH.ProductDescription,
PURCH.ProductFinish, PURCH.ProductStandardPrice,

PURCH.ProductLineID);

INTERNAL SCHEMA DEFINITION IN RDBMSS

The internal schema of a relational database can be controlled for processing and stor-
age efficiency. The following are some techniques used for tuning the operational per-
formance of the relational database internal data model:

1. Choosing to index primary and/or secondary keys to increase the speed of row
selection, table joining, and row ordering. You can also drop indexes to increase
speed of table updating. You may want to review the section in Chapter 5 on
selecting indexes.

2. Selecting file organizations for base tables that match the type of processing activ-
ity on those tables (e.g., keeping a table physically sorted by a frequently used
reporting sort key).

3. Selecting file organizations for indexes, which are also tables, appropriate to the
way the indexes are used and allocating extra space for an index file so that an
index can grow without having to be reorganized.

4. Clustering data so that related rows of frequently joined tables are stored close
together in secondary storage to minimize retrieval time.

5. Maintaining statistics about tables and their indexes so that the DBMS can find the
most efficient ways to perform various database operations.

Not all of these techniques are available in all SQL systems. Indexing and cluster-
ing are typically available, however, so we discuss these in the following sections.

Creating Indexes

Indexes are created in most RDBMSs to provide rapid random and sequential access to
base-table data. Because the ISO SQL standards do not generally address performance
issues, no standard syntax for creating indexes is included. The examples given here
use Oracle syntax and give a feel for how indexes are handled in most RDBMSs. Note
that although users do not directly refer to indexes when writing any SQL command,
the DBMS recognizes which existing indexes would improve query performance.
Indexes can usually be created for both primary and secondary keys and both single
and concatenated (multiple-column) keys. In some systems, users can choose between
ascending and descending sequences for the keys in an index.

For example, an alphabetical index on CustomerName in the Customer_T table in
Oracle is created here.

Command: To create an alphabetical index on customer name in the Customer table.

CREATE INDEX Name_IDX ON Customer_T (CustomerName);

RDBMs usually support several different types of indexes, each of which assists in dif-
ferent kinds of keyword searches. For example, in MySQL you can create unique (appropri-
ate for primary keys), nonunique (secondary keys), fulltext (used for full-text searches),
spatial (used for spatial data types), and hash (which is used for in-memory tables).

Indexes can be created or dropped at any time. If data already exist in the key col-
umn(s), index population will automatically occur for the existing data. If an index is
defined as UNIQUE (using the syntax CREATE UNIQUE INDEX . . .) and the existing
data violate this condition, the index creation will fail. Once an index is created, it will
be updated as data are entered, updated, or deleted.

When we no longer need tables, views, or indexes, we use the associated DROP
statements. For example, the NAME_IDX index from the previous example is
dropped here.

Chapter 6 • Introduction to SQL 261

Command: To remove the index on the customer name in the Customer table.

DROP INDEX Name_IDX;

Although it is possible to index every column in a table, use caution when decid-
ing to create a new index. Each index consumes extra storage space and also requires
overhead maintenance time whenever indexed data change value. Together, these costs
may noticeably slow retrieval response times and cause annoying delays for online
users. A system may use only one index even if several are available for keys in a com-
plex qualification. A database designer must know exactly how indexes are used by the
particular RDBMS in order to make wise choices about indexing. Oracle includes an
explain plan tool that can be used to look at the order in which an SQL statement will be
processed and at the indexes that will be used. The output also includes a cost estimate
that can be compared with estimates from running the statement with different indexes
to determine which is most efficient.

PROCESSING SINGLE TABLES

“Processing single tables” may seem like Friday night at the hottest club in town, but
we have something else in mind. Sorry, no dating suggestions (and sorry for the pun).

Four data manipulation language commands are used in SQL. We have talked
briefly about three of them (UPDATE, INSERT, and DELETE) and have seen several
examples of the fourth, SELECT. Although the UPDATE, INSERT, and DELETE com-
mands allow modification of the data in the tables, it is the SELECT command, with its
various clauses, that allows users to query the data contained in the tables and ask
many different questions or create ad hoc queries. The basic construction of an SQL
command is fairly simple and easy to learn. Don’t let that fool you; SQL is a powerful
tool that enables users to specify complex data analysis processes. However, because
the basic syntax is relatively easy to learn, it is also easy to write SELECT queries that
are syntactically correct but do not answer the exact question that is intended. Before
running queries against a large production database, always test them carefully on a
small test set of data to be sure that they are returning the correct results. In addition to
checking the query results manually, it is often possible to parse queries into smaller
parts, examine the results of these simpler queries, and then recombine them. This will
ensure that they act together in the expected way. We begin by exploring SQL queries
that affect only a single table. In Chapter 7, we join tables and use queries that require
more than one table.

Clauses of the SELECT Statement

Most SQL data retrieval statements include the following three clauses:

SELECT Lists the columns (including expressions involving columns) from base tables,
derived tables, or views to be projected into the table that will be the result of the
command. (That’s the technical way of saying it lists the data you want to display.)

FROM Identifies the tables, derived tables, or views from which columns will be chosen to
appear in the result table and includes the tables, derived tables, or views needed to
join tables to process the query.

WHERE Includes the conditions for row selection within the items in the FROM clause and
the conditions between tables, derived tables, or views for joining. Because SQL is
considered a set manipulation language, the WHERE clause is important in defining
the set of rows being manipulated.

The first two clauses are required, and the third is necessary when only certain
table rows are to be retrieved or multiple tables are to be joined. (Most examples for this
section are drawn from the data shown in Figure 6-3.) For example, we can display
product name and quantity on hand from the PRODUCT view for all Pine Valley
Furniture Company products that have a standard price of less than $275.

262 Part IV • Implementation

Query: Which products have a standard price of less than $275?

SELECT ProductDescription, ProductStandardPrice
FROM Product_T

WHERE ProductStandardPrice < 275;

Result:

PRODUCTDESCRIPTION PRODUCTSTANDARDPRICE

End Table 175
Computer Desk 250
Coffee Table 200

As stated before, in this book we show results (except where noted) in the style of
Oracle, which means that column headings are in all capital letters. If this is too annoy-
ing for users, then the data names should be defined with an underscore between the
words rather than run-on words, or you can use an alias (described later in this section)
to redefine a column heading for display.

Every SELECT statement returns a result table (a set of rows) when it executes.
So, SQL is consistent—tables in, tables out of every query. This becomes important
with more complex queries because we can use the result of one query (a table) as
part of another query (e.g., we can include a SELECT statement as one of the elements
in the FROM clause, creating a derived table, which we illustrate later in this chapter).

Two special keywords can be used along with the list of columns to display:
DISTINCT and *. If the user does not wish to see duplicate rows in the result,
SELECT DISTINCT may be used. In the preceding example, if the other computer
desk carried by Pine Valley Furniture had also cost less than $275, the results of the
query would have had duplicate rows. SELECT DISTINCT ProductDescription
would display a result table without the duplicate rows. SELECT *, where * is used
as a wildcard to indicate all columns, displays all columns from all the items in the
FROM clause.

Also, note that the clauses of a SELECT statement must be kept in order, or syn-
tax error messages will occur and the query will not execute. It may also be necessary
to qualify the names of the database objects according to the SQL version being
used. If there is any ambiguity in an SQL command, you must indicate exactly
from which table, derived table, or view the requested data are to come. For
example, in Figure 6-3 CustomerID is a column in both Customer_T and Order_T.
When you own the database being used (i.e., the user created the tables) and
you want CustomerID to come from Customer_T, specify it by asking for
Customer_T.CustomerID. If you want CustomerID to come from Order_T, then ask
for Order_T.CustomerID. Even if you don’t care which table CustomerID comes
from, it must be specified because SQL can’t resolve the ambiguity without
user direction. When you are allowed to use data created by someone else, you
must also specify the owner of the table by adding the owner’s user ID. Now a
request to SELECT the CustomerID from Customer_T may look like this:
OWNER_ID.Customer_T.CustomerID. The examples in this book assume that the
reader owns the tables or views being used, as the SELECT statements will be easier
to read without the qualifiers. Qualifiers will be included where necessary and may
always be included in statements if desired. Problems may occur when qualifiers are
left out, but no problems will occur when they are included.

If typing the qualifiers and column names is wearisome (computer keyboards
aren’t, yet, built to accommodate the two-thumb cellphone texting technique), or if the
column names will not be meaningful to those who are reading the reports, establish
aliases for data names that will then be used for the rest of the query. Although
SQL:1999 does not include aliases or synonyms, they are widely implemented and aid
in readability and simplicity in query construction.

Query: What is the address of the customer named Home Furnishings? Use an
alias, Name, for the customer name. (The AS clauses are bolded for emphasis only.)

Chapter 6 • Introduction to SQL 263

SELECT CUST.CustomerName AS Name, CUST.CustomerAddress
FROM ownerid.Customer_T AS Cust

WHERE Name = ‘Home Furnishings’;

This retrieval statement will give the following result in many versions of SQL. In
Oracle’s SQL*Plus, the alias for the column cannot be used in the rest of the SELECT
statement, except in a HAVING clause, so in order for the query to run, CustomerName
would have to be used in the last line rather than Name. Notice that the column header
prints as Name rather than CustomerName and that the table alias may be used in the
SELECT clause even though it is not defined until the FROM clause.

Result:

NAME CUSTOMERADDRESS

Home 1900 Allard Ave.
Furnishings

You’ve likely concluded that SQL generates pretty plain output. Using an alias is a good
way to make column headings more readable. (Aliases also have other uses, which we’ll
address later.) Many RDBMSs have other proprietary SQL clauses to improve the display
of data. For example, Oracle has the COLUMN clause of the SELECT statement, which can
be used to change the text for the column heading, change alignment of the column head-
ing, reformat the column value, or control wrapping of data in a column, among other
properties. You may want to investigate such capabilities for the RDBMS you are using.

When you use the SELECT clause to pick out the columns for a result table, the
columns can be rearranged so that they will be ordered differently in the result table
than in the original table. In fact, they will be displayed in the same order as they are
included in the SELECT statement. Look back at Product_T in Figure 6-3 to see the dif-
ferent ordering of the base table from the result table for this query.

Query: List the unit price, product name, and product ID for all products in the
Product table.

SELECT ProductStandardPrice, ProductDescription, ProductID
FROM Product_T;

Result:

PRODUCTSTANDARDPRICE PRODUCTDESCRIPTION PRODUCTID

175 End Table 1

200 Coffee Table 2

375 Computer Desk 3

650 Entertainment Center 4

325 Writer’s Desk 5

750 8-Drawer Desk 6

800 Dining Table 7

250 Computer Desk 8

Using Expressions

The basic SELECT . . . FROM . . . WHERE clauses can be used with a single table in a
number of ways. You can create expressions, which are mathematical manipulations of
the data in the table, or take advantage of stored functions, such as SUM or AVG, to
manipulate the chosen rows of data from the table. Mathematical manipulations can be
constructed by using the + for addition, – for subtraction, * for multiplication, and / for
division. These operators can be used with any numeric columns. Expressions are com-
puted for each row of the result table, such as displaying the difference between the
standard price and unit cost of a product, or they can involve computations of columns

264 Part IV • Implementation

and functions, such as standard price of a product multiplied by the amount of that
product sold on a particular order (which would require summing OrderedQuantities).
Some systems also have an operand called modulo, usually indicated by %. A modulo
is the integer remainder that results from dividing two integers. For example, 14 % 4 is
2 because 14/4 is 3, with a remainder of 2. The SQL standard supports year–month and
day–time intervals, which make it possible to perform date and time arithmetic (e.g., to
calculate someone’s age from today’s date and a person’s birthday).

Perhaps you would like to know the current standard price of each product and its
future price if all prices were increased by 10 percent. Using SQL*Plus, here are the
query and the results.

Query: What are the standard price and standard price if increased by 10 percent
for every product?

SELECT ProductID, ProductStandardPrice, ProductStandardPrice*1.1 AS
Plus10Percent

FROM Product_T;

Result:

PRODUCTID PRODUCTSTANDARDPRICE PLUS10PERCENT

2 200.0000 220.00000

3 375.0000 412.50000

1 175.0000 192.50000

8 250.0000 275.00000

7 800.0000 880.00000

5 325.0000 357.50000

4 650.0000 715.00000

6 750.0000 825.00000

The precedence rules for the order in which complex expressions are evaluated are
the same as those used in other programming languages and in algebra. Expressions in
parentheses will be calculated first. When parentheses do not establish order, multiplica-
tion and division will be completed first, from left to right, followed by addition and
subtraction, also left to right. To avoid confusion, use parentheses to establish order.
Where parentheses are nested, the innermost calculations will be completed first.

Using Functions

Standard SQL identifies a wide variety of mathematical, string and date manipulation, and
other functions. We will illustrate some of the mathematical functions in this section. You
will want to investigate what functions are available with the DBMS you are using, some
of which may be proprietary to that DBMS. The standard functions include the following:

Mathematical MIN, MAX, COUNT, SUM, ROUND (to round up a number
to a specific number of decimal places), TRUNC (to truncate
insignificant digits), and MOD (for modular arithmetic)

String LOWER (to change to all lower case), UPPER (to change to
all capital letters), INITCAP (to change to only an initial cap-
ital letter), CONCAT (to concatenate), SUBSTR (to isolate
certain character positions), and COALESCE (finding the
first not NULL values in a list of columns)

Date NEXT_DAY (to compute the next date in sequence),
ADD_MONTHS (to compute a date a given number of months
before or after a given date), and MONTHS_BETWEEN (to
compute the number of months between specified dates)

Analytical TOP (find the top n values in a set, e.g., the top 5 customers
by total annual sales)

Chapter 6 • Introduction to SQL 265

Perhaps you want to know the average standard price of all inventory items. To get
the overall average value, use the AVG stored function. We can name the resulting expres-
sion with an alias, AveragePrice. Using SQL*Plus, here are the query and the results.

Query: What is the average standard price for all products in inventory?

SELECT AVG (ProductStandardPrice) AS AveragePrice
FROM Product_T;

Result:

AVERAGEPRICE

440.625

SQL:1999 stored functions include ANY, AVG, COUNT, EVERY, GROUPING,
MAX, MIN, SOME, and SUM. SQL:200n adds LN, EXP, POWER, SQRT, FLOOR,
CEILING, and WIDTH_BUCKET. New functions tend to be added with each new SQL
standard, and more functions have been added in SQL:2003 and SQL:2008, many of which
are for advanced analytical processing of data (e.g., calculating moving averages and
statistical sampling of data). As seen in the above example, functions such as COUNT,
MIN, MAX, SUM, and AVG of specified columns in the column list of a SELECT command
may be used to specify that the resulting answer table is to contain aggregated data instead
of row-level data. Using any of these aggregate functions will give a one-row answer.

Query: How many different items were ordered on order number 1004?

SELECT COUNT (*)
FROM OrderLine_T

WHERE OrderID = 1004;

Result:

COUNT (*)

2

It seems that it would be simple enough to list order number 1004 by changing
the query.

Query: How many different items were ordered on order number 1004, and
what are they?

SELECT ProductID, COUNT (*)
FROM OrderLine_T

WHERE OrderID = 1004;

In Oracle, here is the result.

Result:

ERROR at line 1:
ORA-00937: not a single-group group function

And in Microsoft SQL Server, the result is as follows.

Result:

Column ‘OrderLine_T.ProductID’ is invalid in the select list because
it is not contained in an Aggregate function and there is no
GROUP BY clause.

The problem is that ProductID returns two values, 6 and 8, for the two rows
selected, whereas COUNT returns one aggregate value, 2, for the set of rows with
ID = 1004. In most implementations, SQL cannot return both a row value and a set
value; users must run two separate queries, one that returns row information and one
that returns set information.

266 Part IV • Implementation

A similar issue arises if we try to find the difference between the standard price of
each product and the overall average standard price (which we calculated above). You
might think the query would be

SELECT ProductStandardPrice – AVG(ProductStandardPrice)
FROM Product_T;

However, again we have mixed a column value with an aggregate, which will
cause an error. Remember that the FROM list can contain tables, derived tables, and
views. One approach to developing a correct query is to make the aggregate the result
of a derived table, as we do in the following sample query.

Query: Display for each product the difference between its standard price and
the overall average standard price of all products.

SELECT ProductStandardPrice – PriceAvg AS Difference
FROM Product_T, (SELECT AVG(ProductStandardPrice) AS PriceAvg

FROM Product_T);

Result:

DIFFERENCE

–240.63
–65.63

–265.63
–190.63
359.38

–115.63
209.38
309.38

Also, it is easy to confuse the functions COUNT (*) and COUNT. The function
COUNT (*), used in the previous query, counts all rows selected by a query, regardless
of whether any of the rows contain null values. COUNT tallies only rows that contain
values; it ignores all null values.

SUM and AVG can only be used with numeric columns. COUNT, COUNT (*),
MIN, and MAX can be used with any data type. Using MIN on a text column, for
example, will find the lowest value in the column, the one whose first column is clos-
est to the beginning of the alphabet. SQL implementations interpret the order of the
alphabet differently. For example, some systems may start with A–Z, then a–z, then
0–9 and special characters. Others treat upper- and lowercase letters as being equiva-
lent. Still others start with some special characters, then proceed to numbers, letters,
and other special characters. Here is the query to ask for the first ProductName in
Product_T alphabetically, which was done using the AMERICAN character set in
Oracle 11g.

Query: Alphabetically, what is the first product name in the Product table?

SELECT MIN (ProductDescription)
FROM Product_T;

It gives the following result, which demonstrates that numbers are sorted before
letters in this character set. (Note: The following result is from Oracle. Microsoft SQL
Server returns the same result but labels the column (No column name) in SQL Query
Analyzer, unless the query specifies a name for the result.)

Result:

MIN(PRODUCTDESCRIPTION)

8-Drawer Desk

Chapter 6 • Introduction to SQL 267

Using Wildcards

The use of the asterisk (*) as a wildcard in a SELECT statement has been previously
shown. Wildcards may also be used in the WHERE clause when an exact match is not
possible. Here, the keyword LIKE is paired with wildcard characters and usually a
string containing the characters that are known to be desired matches. The wildcard
character, %, is used to represent any collection of characters. Thus, using LIKE ‘%Desk’
when searching ProductDescription will find all different types of desks carried by Pine
Valley Furniture. The underscore (_) is used as a wildcard character to represent exactly
one character rather than any collection of characters. Thus, using LIKE ‘_-drawer’
when searching ProductName will find any products with specified drawers, such as
3-, 5-, or 8-drawer dressers.

Using Comparison Operators

With the exception of the very first SQL example in this section, we have used the equal-
ity comparison operator in our WHERE clauses. The first example used the greater
(less) than operator. The most common comparison operators for SQL implementations
are listed in Table 6-3. (Different SQL DBMSs can use different comparison operators.)
You are used to thinking about using comparison operators with numeric data, but you
can also use them with character data and dates in SQL. The query shown here asks for
all orders placed after 10/24/2010.

Query: Which orders have been placed since 10/24/2010?

SELECT OrderID, OrderDate
FROM Order_T

WHERE OrderDate > ‘24-OCT-2010’;

Notice that the date is enclosed in single quotes and that the format of the date is
different from that shown in Figure 6-3, which was taken from Microsoft Access. The
query was run in SQL*Plus. You should check the reference manual for the SQL lan-
guage you are using to see how dates are to be formatted in queries and for data input.

Result:

Query: What furniture does Pine Valley carry that isn’t made of cherry?

SELECT ProductDescription, ProductFinish
FROM Product_T

WHERE ProductFinish != ‘Cherry’;

Result:

PRODUCTDESCRIPTION PRODUCTFINISH

Coffee Table Natural Ash

Computer Desk Natural Ash

Entertainment Center Natural Maple

8-Drawer Desk White Ash

Dining Table Natural Ash

Computer Desk Walnut

ORDERID ORDERDATE

1007 27-OCT-10

1008 30-OCT-10

1009 05-NOV-10

1010 05-NOV-10

TABLE 6-3 Comparison
Operators in SQL

Operator Meaning

= Equal to

> Greater than

>= Greater than
or equal to

< Less than

<= Less than or
equal to

<> Not equal to

!= Not equal to

268 Part IV • Implementation

AND Joins two or more conditions and returns results only when all conditions are true.

OR Joins two or more conditions and returns results when any conditions are true.

NOT Negates an expression.

Using Null Values

Columns that are defined without the NOT NULL clause may be empty, and this may
be a significant fact for an organization. You will recall that a null value means that a
column is missing a value; the value is not zero or blank or any special code—there
simply is no value. We have already seen that functions may produce different results
when null values are present than when a column has a value of zero in all qualified
rows. It is not uncommon, then, to first explore whether there are null values before
deciding how to write other commands, or it may be that you simply want to see data
about table rows where there are missing values. For example, before undertaking a
postal mail advertising campaign, you might want to pose the following query.

Query: Display all customers for whom we do not know their postal code.

SELECT * FROM Customer_T WHERE CustomerPostalCode IS NULL;

Result:

Fortunately, this query returns 0 rows in the result in our sample database, so we can
mail advertisements to all our customers because we know their postal codes. The term IS
NOT NULL returns results for rows where the qualified column has a non-null value. This
allows us to deal with rows that have values in a critical column, ignoring other rows.

Using Boolean Operators

You probably have taken a course or part of a course on finite or discrete mathematics—
logic, Venn diagrams, and set theory, oh my! Remember we said that SQL is a set-ori-
ented language, so there are many opportunities to use what you learned in finite math
to write complex SQL queries. Some complex questions can be answered by adjusting
the WHERE clause further. The Boolean or logical operators AND, OR, and NOT can be
used to good purpose:

If multiple Boolean operators are used in an SQL statement, NOT is evaluated
first, then AND, then OR. For example, consider the following query.

Query A: List product name, finish, and standard price for all desks and all ta-
bles that cost more than $300 in the Product table.

SELECT ProductDescription, ProductFinish, ProductStandardPrice
FROM Product_T

WHERE ProductDescription LIKE ‘%Desk’
OR ProductDescription LIKE ‘%Table’
AND ProductStandardPrice > 300;

Result:

PRODUCTDESCRIPTION PRODUCTFINISH PRODUCTSTANDARDPRICE

Computer Desk Natural Ash 375

Writer’s Desk Cherry 325

8-Drawer Desk White Ash 750

Dining Table Natural Ash 800

Computer Desk Walnut 250

All of the desks are listed, even the computer desk that costs less than $300. Only
one table is listed; the less expensive ones that cost less than $300 are not included. With

Chapter 6 • Introduction to SQL 269

DESK

TABLE

StandardPrice
> $300

OR

processed
second

processed
first

AND

FIGURE 6-8 Boolean query
without the use of
parentheses
(a) Venn diagram of Query A
logic, first process (AND)

DESK

OR

RESULT

TABLE

ANDStandardPrice
> $300

(b) Venn diagram of Query
A logic, second process (OR)

this query, the AND will be processed first, returning all tables with a standard price
greater than $300 (Figure 6-8a). Then the OR is processed, returning all desks, regard-
less of cost, and all tables costing more than $300 (Figure 6-8b). This is the area sur-
rounded by the thick OR line in Figure 6-8b.

If we had wanted to return only desks and tables costing more than $300, we
should have put parentheses after the WHERE and before the AND, as shown in Query
B below. Figures 6-9a and 6-9b show the difference in processing caused by the judi-
cious use of parentheses in the query. The result is all desks and tables with a standard
price of more than $300, indicated by the filled area with horizontal lines. The walnut
computer desk has a standard price of $250 and is not included.

Query B: List product name, finish, and unit price for all desks and tables in the
PRODUCT table that cost more than $300.

SELECT ProductDescription, ProductFinish, ProductStandardPrice
FROM Product_T;
WHERE (ProductDescription LIKE ‘%Desk’

OR ProductDescription LIKE ‘%Table’)
AND ProductStandardPrice > 300;

270 Part IV • Implementation

The results follow. Only products with unit price greater than $300 are included.

Result:

OR

StandardPrice
> $300

DESK TABLE

Done first in
Query B because
of parentheses

TABLE

OR

RESULT

StandardPrice
> $300

DESK

AND

Done second in
Query B after OR

within parentheses
is processed

FIGURE 6-9 Boolean query
with use of parentheses
(a) Venn diagram of Query B
logic, first process (AND)

(b) Venn diagram of Query B,
second process (OR)

PRODUCTDESCRIPTION PRODUCTFINISH PRODUCTSTANDARDPRICE

Computer Desk Natural Ash 375

Writer’s Desk Cherry 325

8-Drawer Desk White Ash 750

Dining Table Natural Ash 800

This example illustrates why SQL is considered a set-oriented, not a record-
oriented, language. (C, Java, and Cobol are examples of record-oriented languages
because they must process one record, or row, of a table at a time.) To answer this

Chapter 6 • Introduction to SQL 271

query, SQL will find the set of rows that are Desk products, and then it will union
(i.e., merge) that set with the set of rows that are Table products. Finally, it will intersect
(i.e., find common rows) the resultant set from this union with the set of rows that have
a standard price above $300. If indexes can be used, the work is done even faster,
because SQL will create sets of index entries that satisfy each qualification and do the
set manipulation on those index entry sets, each of which takes up less space and can
be manipulated much more quickly. You will see in Chapter 7 even more dramatic
ways in which the set-oriented nature of SQL works for more complex queries involv-
ing multiple tables.

Using Ranges for Qualification

The comparison operators < and > are used to establish a range of values. The
keywords BETWEEN and NOT BETWEEN can also be used. For example, to find
products with a standard price between $200 and $300, the following query could
be used.

Query: Which products in the Product table have a standard price between $200
and $300?

SELECT ProductDescription, ProductStandardPrice
FROM Product_T

WHERE ProductStandardPrice > 199 AND ProductStandardPrice < 301;

Result:

PRODUCTDESCRIPTION PRODUCTSTANDARDPRICE

Coffee Table 200

Computer Desk 250

The same result will be returned by the following query.

Query: Which products in the PRODUCT table have a standard price between
$200 and $300?

SELECT ProductDescription, ProductStandardPrice
FROM Product_T

WHERE ProductStandardPrice BETWEEN 200 AND 300;

Result: Same as previous query.

Adding NOT before BETWEEN in this query will return all the other products in
Product_T because their prices are less than $200 or more than $300.

Using Distinct Values

Sometimes when returning rows that don’t include the primary key, duplicate rows will
be returned. For example, look at this query and the results that it returns.

Query: What order numbers are included in the OrderLine table?

SELECT OrderID
FROM OrderLine_T;

Eighteen rows are returned, and many of them are duplicates because many
orders were for multiple items.

272 Part IV • Implementation

Result:

Do we really need the redundant OrderIDs in this result? If we add the keyword
DISTINCT, then only 1 occurrence of each OrderID will be returned, 1 for each of the 10
orders represented in the table.

Query: What are the distinct order numbers included in the OrderLine table?

SELECT DISTINCT OrderID
FROM OrderLine_T;

Result:

DISTINCT and its counterpart, ALL, can be used only once in a SELECT statement. It
comes after SELECT and before any columns or expressions are listed. If a SELECT
statement projects more than one column, only rows that are identical for every column

ORDERID

1001

1001

1001

1002

1003

1004

1004

1005

1006

1006

1006

1007

1007

1008

1008

1009

1009

1010
18 rows selected.

ORDERID

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

10 rows selected.

Chapter 6 • Introduction to SQL 273

CUSTOMERNAME CUSTOMERCITY CUSTOMERSTATE

Contemporary Casuals Gainesville FL

Value Furniture Plano TX

Impressions Sacramento CA

California Classics Santa Clara CA

M and H Casual Furniture Clearwater FL

Seminole Interiors Seminole FL

Kaneohe Homes Kaneohe HI

7 rows selected.

will be eliminated. Thus, if the previous statement also includes OrderedQuantity, 14
rows are returned because there are now only 4 duplicate rows rather than 8. For exam-
ple, both items ordered on OrderID 1004 were for 2 items, so the second pairing of 1004
and 2 will be eliminated.

Query: What are the unique combinations of order number and order quantity
included in the OrderLine table?

SELECT DISTINCT OrderID, OrderedQuantity
FROM OrderLine_T;

Result:

ORDERID ORDEREDQUANTITY

1001 1

1001 2

1002 5

1003 3

1004 2

1005 4

1006 1

1006 2

1007 2

1007 3

1008 3

1009 2

1009 3

1010 10

14 rows selected.

Using IN and NOT IN with Lists

To match a list of values, consider using IN.

Query: List all customers who live in warmer states.

SELECT CustomerName, CustomerCity, CustomerState
FROM Customer_T

WHERE CustomerState IN (‘FL’, ‘TX’, ‘CA’, ‘HI’);

Result:

274 Part IV • Implementation

IN is particularly useful in SQL statements that use subqueries, which will be cov-
ered in Chapter 7. The use of IN is also very consistent with the set nature of SQL. Very
simply, the list (set of values) inside the parentheses after IN can be literals, as illustrated
here, or can be a SELECT statement with a single result column, the result of which will be
plugged in as the set of values for comparison. In fact, some SQL programmers always
use IN, even when the set in parentheses after IN includes only one item. Similarly, any
“table” of the FROM clause can be itself a derived table defined by including a SELECT
statement in parentheses in the FROM clause (as we saw earlier, with the query about the
difference between the standard price of each product and the average standard price of
all products). The ability to include a SELECT statement anyplace within SQL where a set
is involved is a very powerful and useful feature of SQL, and, of course, totally consistent
with SQL being a set-oriented language, as illustrated in Figures 6-8 and 6-9.

Sorting Results: The ORDER BY Clause

Looking at the preceding results, it may seem that it would make more sense to list the
California customers, followed by the Floridians, Hawaiians, and Texans. That brings
us to the other three basic parts of the SQL statement:

CUSTOMERNAME CUSTOMERCITY CUSTOMERSTATE

California Classics Santa Clara CA

Impressions Sacramento CA

Contemporary Casuals Gainesville FL

M and H Casual Furniture Clearwater FL

Seminole Interiors Seminole FL

Kaneohe Homes Kaneohe HI

Value Furniture Plano TX

7 rows selected.

Notice that all customers from each state are listed together, and within each state,
customer names are alphabetized. The sorting order is determined by the order in which
the columns are listed in the ORDER BY clause; in this case, states were alphabetized
first, then customer names. If sorting from high to low, use DESC as a keyword, placed
after the column used to sort. Instead of typing the column names in the ORDER BY
clause, you can use their column positions in the select list; for example, in the preced-
ing query, we could have written the clause as

ORDER BY Sorts the final results rows in ascending or descending order.

GROUP BY Groups rows in an intermediate results table where the values in those rows are
the same for one or more columns.

HAVING Can only be used following a GROUP BY and acts as a secondary WHERE clause,
returning only those groups that meet a specified condition.

So, we can order the customers by adding an ORDER BY clause.

Query: List customer, city, and state for all customers in the Customer table
whose address is Florida, Texas, California, or Hawaii. List the customers alpha-
betically by state and alphabetically by customer within each state.

SELECT CustomerName, CustomerCity, CustomerState
FROM Customer_T

WHERE CustomerState IN (‘FL’, ‘TX’, ‘CA’, ‘HI’)
ORDER BY CustomerState, CustomerName;

Now the results are easier to read.

Result:

Chapter 6 • Introduction to SQL 275

ORDER BY 3, 1;

For cases in which there are many rows in the result table but you need to see only a few
of them, many SQL systems (including MySQL) support a LIMIT clause, such as the fol-
lowing, which would show only the first five rows of the result:

ORDER BY 3, 1 LIMIT 5;

The following would show five rows after skipping the first 30 rows:

ORDER BY 3, 1 LIMIT 30, 5;

How are NULLs sorted? Null values may be placed first or last, before or after
columns that have values. Where the NULLs will be placed will depend upon the SQL
implementation.

Categorizing Results: The GROUP BY Clause

GROUP BY is particularly useful when paired with aggregate functions, such as SUM
or COUNT. GROUP BY divides a table into subsets (by groups); then an aggregate func-
tion can be used to provide summary information for that group. The single value
returned by the previous aggregate function examples is called a scalar aggregate.
When aggregate functions are used in a GROUP BY clause and several values are
returned, they are called vector aggregates.

Query: Count the number of customers with addresses in each state to which
we ship.

SELECT CustomerState, COUNT (CustomerState)
FROM Customer_T

GROUP BY CustomerState;

Result:

Scalar aggregate
A single value returned from
an SQL query that includes
an aggregate function.

Vector aggregate
Multiple values returned from
an SQL query that includes an
aggregate function.

CUSTOMERSTATE COUNT(CUSTOMERSTATE)

CA 2

CO 1

FL 3

HI 1

MI 1

NJ 2

NY 1

PA 1

TX 1

UT 1

WA 1

11 rows selected.

It is also possible to nest groups within groups; the same logic is used as when
sorting multiple items.

Query: Count the number of customers with addresses in each city to which we
ship. List the cities by state.

SELECT CustomerState, CustomerCity, COUNT (CustomerCity)
FROM Customer_T

GROUP BY CustomerState, CustomerCity;

276 Part IV • Implementation

Although the GROUP BY clause seems straightforward, it can produce unexpected
results if the logic of the clause is forgotten (and this is a common “gotcha” for novice
SQL coders). When a GROUP BY is included, the columns allowed to be specified in
the SELECT clause are limited. Only a column with a single value for each group can be
included. In the previous query, each group is identified by the combination of a city and
its state. The SELECT statement includes both the city and state columns. This works
because each combination of city and state is one COUNT value. But if the SELECT
clause of the first query in this section had also included city, that statement would fail
because the GROUP BY is only by state. Because a state can have more than one city, the
requirement that each value in the SELECT clause have only one value in the GROUP BY
group is not met, and SQL will not be able to present the city information so that it makes
sense. If you write queries using the following rule, your queries will work: Each column refer-
enced in the SELECT statement must be referenced in the GROUP BY clause, unless the
column is an argument for an aggregate function included in the SELECT clause.

Qualifying Results by Categories: The HAVING Clause

The HAVING clause acts like a WHERE clause, but it identifies groups, rather than
rows, that meet a criterion. Therefore, you will usually see a HAVING clause following
a GROUP BY clause.

Query: Find only states with more than one customer.

SELECT CustomerState, COUNT (CustomerState)
FROM Customer_T

GROUP BY CustomerState
HAVING COUNT (CustomerState) > 1;

This query returns a result that has removed all states (groups) with one customer.
Remember that using WHERE here would not work because WHERE doesn’t allow
aggregates; further, WHERE qualifies a set of rows, whereas HAVING qualifies a set of
groups. As with WHERE, the HAVING qualification can be compared to the result of a
SELECT statement, which computes the value for comparison (i.e., a set with only one
value is still a set).

Result:

CUSTOMERSTATE COUNT(CUSTOMERSTATE)

CA 2

FL 3

NJ 2

To include more than one condition in the HAVING clause, use AND, OR, and
NOT just as in the WHERE clause. In summary, here is one last command that includes
all six clauses; remember that they must be used in this order.

Query: List, in alphabetical order, the product finish and the average standard price
for each finish for selected finishes having an average standard price less than 750.

SELECT ProductFinish, AVG (ProductStandardPrice)
FROM Product_T

WHERE ProductFinish IN (‘Cherry’, ‘Natural Ash’, ‘Natural Maple’,
‘White Ash’)

GROUP BY ProductFinish
HAVING AVG (ProductStandardPrice) < 750

ORDER BY ProductFinish;

Chapter 6 • Introduction to SQL 277

Result:

PRODUCTFINISH AVG(PRODUCTSTANDARDPRICE)

Cherry 250

Natural Ash 458.333333

Natural Maple 650

Figure 6-10 shows the order in which SQL processes the clauses of a statement.
Arrows indicate the paths that may be followed. Remember, only the SELECT and
FROM clauses are mandatory. Notice that the processing order is different from the
order of the syntax used to create the statement. As each clause is processed, an inter-
mediate results table is produced that will be used for the next clause. Users do not
see the intermediate results tables; they see only the final results. A query can be
debugged by remembering the order shown in Figure 6-10. Take out the optional
clauses and then add them back in one at a time in the order in which they will be
processed. In this way, intermediate results can be seen and problems often can
be spotted.

FROM
Identifies

involved tables

WHERE
Finds all rows
meeting stated

condition(s)

GROUP BY
Organizes rows

according to values
 in stated column(s)

HAVING
Finds all groups
meeting stated

condition(s)

SELECT
Identifies
columns

ORDER BY
Sorts rows

results

FIGURE 6-10 SQL statement
processing order (adapted
from van der Lans, 2006,
p. 100)

278 Part IV • Implementation

Using and Defining Views

The SQL syntax shown in Figure 6-6 demonstrates the creation of four base tables in a
database schema using Oracle 11g SQL. These tables, which are used to store data phys-
ically in the database, correspond to relations in the logical database design. By using
SQL queries with any RDBMS, it is possible to create virtual tables, or dynamic views,
whose contents materialize when referenced. These views may often be manipulated in
the same way as a base table can be manipulated, through SQL SELECT queries.
Materialized views, which are stored physically on a disk and refreshed at appropriate
intervals or events, may also be used.

The often-stated purpose of a view is to simplify query commands, but a view may
also improve data security and significantly enhance programming consistency and pro-
ductivity for a database. To highlight the convenience of using a view, consider Pine Valley’s
invoice processing. Construction of the company’s invoice requires access to the four tables
from the Pine Valley database of Figure 6-3: Customer_T, Order_T, OrderLine_T, and
Product_T. A novice database user may make mistakes or be unproductive in properly for-
mulating queries involving so many tables. A view allows us to predefine this association
into a single virtual table as part of the database. With this view, a user who wants only cus-
tomer invoice data does not have to reconstruct the joining of tables to produce the report or
any subset of it. Table 6-4 summarizes the pros and cons of using views.

A view, Invoice_V, is defined by specifying an SQL query (SELECT . . . FROM . . .
WHERE) that has the view as its result. If you decide to try this query as is, without
selecting additional attributes, remove the comma after OrderedQuantity. The example
assumes you will elect to include additional attributes in the query.

Query: What are the data elements necessary to create an invoice for a customer?
Save this query as a view named Invoice_V.

CREATE VIEW Invoice_V AS
SELECT Customer_T.CustomerID, CustomerAddress, Order_T.OrderID,
Product_T.ProductID,ProductStandardPrice,
OrderedQuantity, and other columns as required

FROM Customer_T, Order_T, OrderLine_T, Product_T
WHERE Customer_T.CustomerID = Order_T.CustomerID

AND Order_T.OrderID = OrderLine_T.OrderD
AND Product_T.ProductID = OrderLine_T.ProductID;

The SELECT clause specifies, or projects, what data elements (columns) are to be
included in the view table. The FROM clause lists the tables and views involved in the
view development. The WHERE clause specifies the names of the common columns
used to join Customer_T to Order_T to OrderLine_T to Product_T. (You’ll learn about
joining in Chapter 7, but for now remember the foreign keys that were defined to refer-
ence other tables; these are the columns used for joining.) Because a view is a table, and
one of the relational properties of tables is that the order of rows is immaterial, the rows

Base table
A table in the relational data model
containing the inserted raw data.
Base tables correspond to the
relations that are identified in the
database’s conceptual schema.

Virtual table
A table constructed automatically as
needed by a DBMS. Virtual tables
are not maintained as real data.

Dynamic view
A virtual table that is created
dynamically upon request by a
user. A dynamic view is not a
temporary table. Rather, its
definition is stored in the system
catalog, and the contents of the
view are materialized as a result of
an SQL query that uses the view. It
differs from a materialized view,
which may be stored on a disk and
refreshed at intervals or when
used, depending on the RDBMS.

Materialized view
Copies or replicas of data, based on
SQL queries created in the same
manner as dynamic views.
However, a materialized view
exists as a table and thus care must
be taken to keep it synchronized
with its associated base tables.

TABLE 6-4 Pros and Cons of Using Dynamic Views

Positive Aspects Negative Aspects

Simplify query commands Use processing time re-creating the view each
time it is referenced

Help provide data security and confidentiality May or may not be directly updateable

Improve programmer productivity

Contain most current base table data

Use little storage space

Provide a customized view for a user

Establish physical data independence

Chapter 6 • Introduction to SQL 279

in a view may not be sorted. But queries that refer to this view may display their results
in any desired sequence.

We can see the power of such a view when building a query to generate an invoice
for order number 1004. Rather than specify the joining of four tables, we can have the
query include all relevant data elements from the view table, Invoice_V.

Query: What are the data elements necessary to create an invoice for order
number 1004?

SELECT CustomerID, CustomerAddress, ProductID,
OrderedQuantity, and other columns as required

FROM Invoice_V
WHERE OrderID = 1004;

A dynamic view is a virtual table; it is constructed automatically, as needed, by the
DBMS and is not maintained as persistent data. Any SQL SELECT statement may be
used to create a view. The persistent data are stored in base tables, those that have been
defined by CREATE TABLE commands. A dynamic view always contains the most cur-
rent derived values and is thus superior in terms of data currency to constructing a tem-
porary real table from several base tables. Also, in comparison to a temporary real table,
a view consumes very little storage space. A view is costly, however, because its con-
tents must be calculated each time they are requested (that is, each time the view is used
in an SQL statement). Materialized views are now available and address this drawback.

A view may join together multiple tables or views and may contain derived (or vir-
tual) columns. For example, if a user of the Pine Valley Furniture database only wants to
know the total value of orders placed for each furniture product, a view for this can be
created from Invoice_V. The following example in SQL*Plus illustrates how this is done
with Oracle, although this can be done with any RDBMS that supports views.

Query: What is the total value of orders placed for each furniture product?

CREATE VIEW OrderTotals_V AS
SELECT ProductID Product, SUM (ProductStandardPrice*OrderedQuantity)
Total

FROM Invoice_V
GROUP BY ProductID;

We can assign a different name (an alias) to a view column rather than use the asso-
ciated base table or expression column name. Here, Product is a renaming of ProductID,
local to only this view. Total is the column name given the expression for total sales of
each product. (Total may not be a legal alias with some relational DBMSs because it might
be a reserved word for a proprietary function of the DBMS; you always have to be careful
when defining columns and aliases not to use a reserved word.) The expression can now
be referenced via this view in subsequent queries as if it were a column rather than a
derived expression. Defining views based on other views can cause problems. For exam-
ple, if we redefine Invoice_V so that StandardPrice is not included, then OrderTotals_V
will no longer work because it will not be able to locate standard unit prices.

Views can also help to establish security. Tables and columns that are not included
will not be obvious to the user of the view. Restricting access to a view with GRANT
and REVOKE statements adds another layer of security. For example, granting some
users access rights to aggregated data, such as averages, in a view but denying them
access to detailed base table data will not allow them to display the base table data. SQL
security commands are explained further in Chapter 11.

Privacy and confidentiality of data can be achieved by creating views that restrict
users to working with only the data they need to perform their assigned duties. If a cler-
ical worker needs to work with employees’ addresses but should not be able to access
their compensation rates, they may be given access to a view that does not contain com-
pensation information.

Some people advocate the creation of a view for every single base table, even if
that view is identical to the base table. They suggest this approach because views

can contribute to greater programming productivity as databases evolve. Consider a
situation in which 50 programs all use the Customer_T table. Suppose that the Pine
Valley Furniture Company database evolves to support new functions that require
the Customer_T table to be renormalized into two tables. If these 50 programs refer
directly to the Customer_T base table, they will all have to be modified to refer to
one of the two new tables or to joined tables. But if these programs all use the view
on this base table, then only the view has to be re-created, saving considerable repro-
gramming effort. However, dynamic views require considerable run-time computer
processing because the virtual table of a view is re-created each time the view is refer-
enced. Therefore, referencing a base table through a view rather than directly can add
considerable time to query processing. This additional operational cost must be bal-
anced against the potential reprogramming savings from using a view.

It can be possible to update base table data via update commands (INSERT,
DELETE, and UPDATE) against a view as long as it is unambiguous what base table
data must change. For example, if the view contains a column created by aggregating
base table data, then it would be ambiguous how to change the base table values if an
attempt were made to update the aggregate value. If the view definition includes the
WITH CHECK OPTION clause, attempts to insert data through the view will be
rejected when the data values do not meet the specifications of WITH CHECK
OPTION. Specifically, when the CREATE VIEW statement contains any of the following
situations, that view may not be used to update the data:

1. The SELECT clause includes the keyword DISTINCT.
2. The SELECT clause contains expressions, including derived columns, aggregates,

statistical functions, and so on.
3. The FROM clause, a subquery, or a UNION clause references more than one

table.
4. The FROM clause or a subquery references another view that is not updateable.
5. The CREATE VIEW command contains a GROUP BY or HAVING clause.

It could happen that an update to an instance would result in the instance
disappearing from the view. Let’s create a view named ExpensiveStuff_V, which lists all
furniture products that have a StandardPrice over $300. That view will include
ProductID 5, a writer’s desk, which has a unit price of $325. If we update data using
Expensive_Stuff_V and reduce the unit price of the writer’s desk to $295, then the
writer’s desk will no longer appear in the ExpensiveStuff_V virtual table because its
unit price is now less than $300. In Oracle, if you want to track all merchandise with an
original price over $300, include a WITH CHECK OPTION clause after the SELECT
clause in the CREATE VIEW command. WITH CHECK OPTION will cause UPDATE or
INSERT statements on that view to be rejected when those statements would cause
updated or inserted rows to be removed from the view. This option can be used only
with updateable views.

Here is the CREATE VIEW statement for ExpensiveStuff_V.

Query: List all furniture products that have ever had a standard price over $300.

CREATE VIEW ExpensiveStuff_V
AS

SELECT ProductID, ProductDescription, ProductStandardPrice
FROM Product_T

WHERE ProductStandardPrice > 300
WITH CHECK OPTION;

When attempting to update the unit price of the writer’s desk to $295 using the
following Oracle SQL*Plus syntax:

UPDATE ExpensiveStuff_V
SET ProductStandardPrice = 295

WHERE ProductID = 5;

280 Part IV • Implementation

Chapter 6 • Introduction to SQL 281

Oracle gives the following error message:

ERROR at line 1:
ORA-01402: view WITH CHECK OPTION where-clause violation

A price increase on the writer’s desk to $350 will take effect with no error message
because the view is updateable and the conditions specified in the view are not violated.

Information about views will be stored in the systems tables of the DBMS. In
Oracle 11g, for example, the text of all views is stored in DBA_VIEWS. Users with sys-
tem privileges can find this information.

Query: List some information that is available about the view named EXPENSIVE-
STUFF_V. (Note that EXPENSIVESTUFF_V is stored in uppercase and must be
entered in uppercase in order to execute correctly.)

SELECT OWNER,VIEW_NAME,TEXT_LENGTH FROM DBA_VIEWS
WHERE VIEW_NAME = ‘EXPENSIVESTUFF_V’;

Result:

OWNER VIEW_NAME TEXT_LENGTH

MPRESCOTT EXPENSIVESTUFF_V 110

MATERIALIZED VIEWS Like dynamic views, materialized views can be constructed in
different ways for various purposes. Tables may be replicated in whole or in part and
refreshed on a predetermined time interval or triggered when the table needs to be
accessed. Materialized views can be based on queries from one or more tables. It is pos-
sible to create summary tables based on aggregations of data. Copies of remote data
that use distributed data may be stored locally as materialized views. Maintenance
overhead will be incurred to keep the local view synchronized with the remote base
tables or data warehouse, but the use of materialized views may improve the perform-
ance of distributed queries, especially if the data in the materialized view are relatively
static and do not have to be refreshed very often.

This chapter has introduced the SQL language for rela-
tional database definition (DDL), manipulation (DML), and
control (DCL) languages, commonly used to define and
query relational database management systems (RDBMSs).
This standard has been criticized as having many flaws. In
reaction to these criticisms and to increase the power of the
language, extensions are constantly under review by
the ANSI X3H2 committee and International Committee
for Information Technology Standards (INCITS). The cur-
rent generally implemented standard is SQL:1999, but
SQL:2008 is under final draft review.

The establishment of SQL standards and confor-
mance certification tests has contributed to relational
systems being the dominant form of new database devel-
opment. Benefits of the SQL standards include reduced
training costs, improved productivity, application porta-
bility and longevity, reduced dependence on single ven-
dors, and improved cross-system communication.

The SQL environment includes an instance of an SQL
DBMS along with accessible databases and associated
users and programs. Each database is included in a catalog
and has a schema that describes the database objects.
Information contained in the catalog is maintained by the
DBMS itself rather than by the users of the DBMS.

The SQL DDL commands are used to define a data-
base, including its creation and the creation of its tables,

indexes, and views. Referential integrity is also estab-
lished through DDL commands. The SQL DML com-
mands are used to load, update, and query the database
through use of the SELECT command. DCL commands
are used to establish user access to the database.

SQL commands may directly affect the base tables,
which contain the raw data, or they may affect a database
view that has been created. Changes and updates made
to views may or may not be passed on to the base tables.
The basic syntax of an SQL SELECT statement contains
the following keywords: SELECT, FROM, WHERE,
ORDER BY, GROUP BY, and HAVING. SELECT deter-
mines which attributes will be displayed in the query
results table. FROM determines which tables or views
will be used in the query. WHERE sets the criteria of the
query, including any joins of multiple tables that are
necessary. ORDER BY determines the order in which
the results will be displayed. GROUP BY is used to
categorize results and may return either scalar aggregates
or vector aggregates. HAVING qualifies results by
categories.

Understanding the basic SQL syntax presented in
this chapter should enable the reader to start using SQL
effectively and to build a deeper understanding of the
possibilities for more complex querying with continued
practice. Advanced SQL topics are covered in Chapter 7.

Summary

282 Part IV • Implementation

Base table 278
Catalog 247
Data control language

(DCL) 248

Chapter Review

Key Terms

Data definition language
(DDL) 248

Data manipulation
language (DML) 248

Dynamic view 278
Materialized view 278
Relational DBMS

(RDBMS) 247

Scalar aggregate 275
Schema 247
Vector aggregate 275
Virtual table 278

Review Questions

1. Define each of the following terms:
a. base table
b. data definition language
c. data manipulation language
d. dynamic view
e. materialized view
f. referential integrity constraint
g. relational DBMS (RDBMS)
h. schema
i. virtual table

2. Match the following terms to the appropriate definitions:
view
referential
integrity
constraint
dynamic
view
materialized
view
SQL:200n
null value
scalar
aggregate
vector
aggregate
catalog
schema
host language

10. Explain some possible purposes of creating a view using
SQL. In particular, explain how a view can be used to rein-
force data security.

11. Explain why it is necessary to limit the kinds of updates
performed on data when referencing data through a view.

12. Describe a set of circumstances for which using a view can
save reprogramming effort.

13. Drawing on material covered in prior chapters, explain the
factors to be considered in deciding whether to create a key
index for a table in SQL.

14. Explain and provide at least one example of how to qualify the
ownership of a table in SQL. What has to occur for one user to
be allowed to use a table in a database owned by another user?

15. How is the order in which attributes appear in a result table
changed? How are the column heading labels in a result
table changed?

16. What is the difference between COUNT, COUNT DIS-
TINCT, and COUNT(*) in SQL? When will these three com-
mands generate the same and different results?

17. What is the evaluation order for the Boolean operators
(AND, OR, NOT) in an SQL command? How can one be
sure that the operators will work in the desired order rather
than in this prescribed order?

18. If an SQL statement includes a GROUP BY clause, the attrib-
utes that can be requested in the SELECT statement will be
limited. Explain that limitation.

19. Describe a situation in which you would need to write a
query using the HAVING clause.

20. In what clause of a SELECT statement is an IN operator
used? What follows the IN operator? What other SQL oper-
ator can sometimes be used to perform the same operation
as the IN operator? Under what circumstances can this
other operator be used?

21. Explain why SQL is called a set-oriented language.
22. When would the use of the LIKE keyword with the CRE-

ATE TABLE command be helpful?
23. What is an identity column? Explain the benefits of using

the identity column capability in SQL.
24. SQL:200n has a new keyword, MERGE. Explain how

using this keyword allows one to accomplish updating
and merging data into a table using one command rather
than two.

25. In what order are the clauses of an SQL statement processed?
26. Within which clauses of an SQL statement can a derived

table be defined?
27. In an ORDER BY clause, what are the two ways to refer

to the columns to be used for sorting the results of the
query?

3. Contrast the following terms:
a. base table; view
b. dynamic view; materialized view
c. catalog; schema

4. What are SQL-92, SQL:1999, and SQL:200n? Briefly describe
how SQL:200n differs from SQL:1999.

5. Describe a relational DBMS (RDBMS), its underlying data
model, its data storage structures, and how data relation-
ships are established.

6. List six potential benefits of achieving an SQL standard that
is widely accepted.

7. Describe the components and structure of a typical SQL
environment.

8. Distinguish among data definition commands, data manip-
ulation commands, and data control commands.

9. Explain how referential integrity is established in databases
that are SQL:1999 compliant. Explain how the ON UPDATE
RESTRICT, ON UPDATE CASCADE, and ON UPDATE
SET NULL clauses differ from one another. What happens if
the ON DELETE CASCADE clause is set?

a. list of values
b. description of a database
c. view materialized as a result of a

SQL query that uses the view
d. logical table
e. missing or nonexistent value
f. descriptions of database objects of

a database
g. programming language in which

SQL commands are embedded
h. established in relational data

models by use of foreign keys
i. view that exists as a table
j. currently proposed standard

relational query and definition
language

k. single value

Chapter 6 • Introduction to SQL 283

28. Explain the purpose of the CHECK clause within a CREATE
TABLE SQL command. Explain the purpose of the WITH
CHECK OPTION in a CREATE VIEW SQL command.

29. What can be changed about a table definition, using the
ALTER SQL command? Can you identify anything about a

table definition that cannot be changed using the ALTER
SQL command?

30. Is it possible to use both a WHERE clause and a HAVING
clause in the same SQL SELECT statement? If so, what are
the different purposes of these two clauses?

Problems and Exercises

Problems and Exercises 1 through 9 are based on the class scheduling
3NF relations along with some sample data shown in Figure 6-11.
Not shown in this figure are data for an ASSIGNMENT relation,
which represents a many-to-many relationship between faculty and
sections.

1. Write a database description for each of the relations shown,
using SQL DDL (shorten, abbreviate, or change any data

names, as needed for your SQL version). Assume the
following attribute data types:

StudentID (integer, primary key)
StudentName (25 characters)
FacultyID (integer, primary key)
FacultyName (25 characters)
CourseID (8 characters, primary key)

FacultyID

2143
2143
3467
3467
4756
4756
...

CourseID

ISM 3112
ISM 3113
ISM 4212
ISM 4930
ISM 3113
ISM 3112

DateQualified

9/1988
9/1988
9/1995
9/1996
9/1991
9/1991

QUALIFIED (FacultyID, CourseID, DateQualified)

SectionNo

2712
2713
2714
2715
...

SECTION (SectionNo, Semester, CourseID)

StudentID

38214
54907
54907
66324
...

SectionNo

2714
2714
2715
2713

I-2008
I-2008
I-2008
I-2008

REGISTRATION (StudentID, SectionNo, Semester)

STUDENT (StudentID, StudentName)

StudentID

38214
54907
66324
70542
...

StudentName

Letersky
Altvater
Aiken
Marra

FacultyID

2143
3467
4756
...

FacultyName

Birkin
Berndt
Collins

FACULTY (FacultyID, FacultyName)

CourseID

ISM 3113
ISM 3113
ISM 4212
ISM 4930

CourseID

ISM 3113
ISM 3112
ISM 4212
ISM 4930
...

CourseName

Syst Analysis
Syst Design
Database
Networking

COURSE (CourseID, CourseName)

I-2008
I-2008
I-2008
I-2008

Semester

Semester

FIGURE 6-11 Class scheduling relations (missing ASSIGNMENT)

284 Part IV • Implementation

CourseName (15 characters)
DateQualified (date)
SectionNo (integer, primary key)
Semester (7 characters)

2. Use SQL to define the following view:

Tutors complete a certification class offered by the agency. Students
complete an assessment interview that results in a report for the tutor
and a recorded Read score. When matched with a student, a tutor meets
with the student for one to four hours per week. Some students work with
the same tutor for years, some for less than a month. Other students
change tutors if their learning style does not match the tutor’s tutoring
style. Many tutors are retired and are available to tutor only part of the
year. Tutor status is recorded as Active, Temp Stop, or Dropped.

10. How many tutors have a status of Temp Stop? Which tutors
are active?

11. List the tutors who took the certification class in January.
12. How many students were matched with someone in the

first five months of the year?
13. Which student has the highest Read score?
14. How long had each student studied in the adult literacy

program?
15. What is the average length of time a student stayed (or has

stayed) in the program?

Problems and Exercises 16
through 43 are based on the
entire (“big” version) Pine
Valley Furniture Company
database. Note: Depending on what DBMS you are using, some field
names may have changed to avoid using reserved words for the
DBMS. When you first use the DBMS, check the table definitions to
see what the exact field names are for the DBMS you are using. See the
Preface and inside covers of this book for instructions on where to find
this database on www.teradatastudentnetwork.com.

16. Modify the Product_T table by adding an attribute
QtyOnHand that can be used to track the finished goods
inventory. The field should be an integer field of five charac-
ters and should accept only positive numbers.

17. Enter sample data of your own choosing into QtyOnHand
in the Product_T table. Test the modification you made in
Problem and Exercise 16 by attempting to update a product
by changing the inventory to 10,000 units. Test it again by
changing the inventory for the product to –10 units. If you
do not receive error messages and are successful in making
these changes, then you did not establish appropriate con-
straints in Problem and Exercise 16.

18. Add an order to the Order_T table and include a sample
value for every attribute.
a. First, look at the data in the Customer_T table and enter

an order from any one of those customers.
b. Enter an order from a new customer. Unless you have

also inserted information about the new customer in the
Customer_T table, your entry of the order data should
be rejected. Referential integrity constraints should pre-
vent you from entering an order if there is no informa-
tion about the customer.

19. Use the Pine Valley database to answer the following
questions:
a. How many work centers does Pine Valley have?
b. Where are they located?

20. List the employees whose last names begin with an L.
21. Which employees were hired during 1999?
22. List the customers who live in California or Washington.

Order them by zip code, from high to low.
23. List all raw materials that are made of cherry and that have

dimensions (thickness and width) of 12 by 12.

3. Because of referential integrity, before any row can be
entered into the SECTION table, the CourseID to be entered
must already exist in the COURSE table. Write an SQL
assertion that will enforce this constraint.

4. Write SQL data definition commands for each of the follow-
ing queries:
a. How would you add an attribute, Class, to the Student

table?
b. How would you remove the Registration table?
c. How would you change the FacultyName field from

25 characters to 40 characters?
5. Write SQL commands for the following:

a. Create two different forms of the INSERT command to
add a student with a student ID of 65798 and last name
Lopez to the Student table.

b. Now write a command that will remove Lopez from the
Student table.

c. Create an SQL command that will modify the name of
course ISM 4212 from Database to Introduction to
Relational Databases.

6. Write SQL queries to answer the following questions:
a. Which students have an ID number that is less than 50000?
b. What is the name of the faculty member whose ID is 4756?
c. What is the smallest section number used in the first

semester of 2008?
7. Write SQL queries to answer the following questions:

a. How many students are enrolled in Section 2714 in the
first semester of 2008?

b. Which faculty members have qualified to teach a
course since 1993? List the faculty ID, course, and date
of qualification.

8. Write SQL queries to answer the following questions:
a. Which students are enrolled in Database and Networking?

(Hint: Use SectionNo for each class so you can determine
the answer from the Registration table by itself.)

b. Which instructors cannot teach both Syst Analysis and
Syst Design?

9. Write SQL queries to answer the following questions:
a. What are the courses included in the Section table? List

each course only once.
b. List all students in alphabetical order by StudentName.
c. List the students who are enrolled in each course in

Semester I, 2008. Group the students by the sections in
which they are enrolled.

d. List the courses available. Group them by course prefix.
(ISM is the only prefix shown, but there are many others
throughout the university.)

Problems and Exercises 10 through 15 are based on the relations
shown in Figure 6-12. The database tracks an adult literacy program.

StudentID StudentName

38214 Letersky

54907 Altvater

54907 Altvater

66324 Aiken

www.teradatastudentnetwork.com

Chapter 6 • Introduction to SQL 285

Active5/22/2008106

Temp Stop5/22/2008105

Active5/22/2008104

Active5/22/2008103

Dropped1/05/2008102

Temp Stop1/05/2008101

Active1/05/2008100

StatusCertDateTutorID

TUTOR (TutorID, CertDate, Status)

3007

3006

3005

3004

3003

3002

3001

3000

ReadStudentID

1.5

7.8

4.8

2.7

3.3

1.3

5.6

2.3

STUDENT (StudentID, Read)

6/01/20087

6/28/20086/01/20086

6/15/20086/01/20085

5/28/20084

3/01/20082/10/20083

5/15/20081/15/20082

1/10/20081

EndDateStartDateStudentIDTutorIDMatchID

3006104

3005104

3004103

3003106

3002102

3001101

3000100

MATCH HISTORY (MatchID, TutorID, StudentID,
StartDate, EndDate)

FIGURE 6-12 Adult literacy program (for Problems and Exercises 10 through 15)

24. List the MaterialID, MaterialName, Material,
MaterialStandardPrice, and Thickness for all raw materials
made of cherry, pine, or walnut. Order the listing by
Material, StandardPrice, and Thickness.

25. Display the product line ID and the average standard price
for all products in each product line.

26. For every product that has been ordered, display the prod-
uct ID and the total quantity ordered (label this result
TotalOrdered). List the most popular product first and the
least popular last.

27. For each customer, list the CustomerID and total number of
orders placed.

286 Part IV • Implementation

28. For each salesperson, display a list of CustomerIDs.
29. Display the product ID and the number of orders placed for

each product. Show the results in decreasing order by the
number of times the product has been ordered and label this
result column NumOrders.

30. For each customer, list the CustomerID and the total num-
ber of orders placed in 2010.

31. For each salesperson, list the total number of orders.
32. For each customer who had more than two orders, list the

CustomerID and the total number of orders placed.
33. List all sales territories (TerritoryID) that have more than

one salesperson.
34. Which product is ordered most frequently?
35. Display the territory ID and the number of salespersons in

the territory for all territories that have more than one sales-
person. Label the number of salespersons NumSalesPersons.

36. Display the SalesPersonID and a count of the number of
orders for that salesperson for all salespersons except sales-
persons 3, 5, and 9. Write this query with as few clauses or
components as possible, using the capabilities of SQL as
much as possible.

37. For each salesperson, list the total number of orders by
month for the year 2010. (Hint: If you are using Access, use
the Month function. If you are using Oracle, convert the
date to a string, using the TO_CHAR function, with the for-
mat string ‘Mon’ [i.e., TO_CHAR(order_date,‘MON’)]. If
you are using another DBMS, you will need to investigate
how to deal with months for this query.)

38. List MaterialName, Material, and Width for raw materials
that are not cherry or oak and whose width is greater than
10 inches.

39. List ProductID, ProductDescription, ProductFinish, and
ProductStandardPrice for oak products with a
ProductStandardPrice greater than $400 or cherry products
with a StandardPrice less than $300

40. For each order, list the order ID, customer ID, order date,
and most recent date among all orders.

41. For each customer, list the customer ID, the number of
orders from that customer, and the ratio of the number of
orders from that customer to the total number of orders
from all customers combined. (This ratio, of course, is the
percentage of all orders placed by each customer.)

42. For products 1, 2, and 7, list in one row and three respective
columns that product’s total unit sales; label the three
columns Prod1, Prod2, and Prod7.

43. Not all versions of this database include referential integrity
constraints for all foreign keys. Use whatever commands
are available for the RDBMS you are using, investigate if
any referential integrity constraints are missing. Write any
missing constraints and, if possible, add them to the associ-
ated table definitions.

44. Tyler Richardson set up a house alarm system when he
moved to his new home in Seattle. For security purposes, he
has all of his mail, including his alarm system bill, mailed to
his local UPS store. Although the alarm system is activated
and the company is aware of its physical address, Richardson
receives repeated offers mailed to his physical address,
imploring him to protect his house with the system he cur-
rently uses. What do you think the problem might be with
that company’s database(s)?

Field Exercises

1. Arrange an interview with a database administrator in an
organization in your area. When you interview the database
administrator, familiarize yourself with one application that is
actively used in the organization. Focus your interview ques-
tions on determining end users’ involvement with the appli-
cation and understanding the extent to which end users must
be familiar with SQL. For example, if end users are using SQL,
what training do they receive? Do they use an interactive form
of SQL for their work, or do they use embedded SQL? How
have the required skills of the end users changed over the past
few years, as the database user interfaces have changed?

2. Arrange an interview with a database administrator in your
area. Focus the interview on understanding the environ-
ment within which SQL is used in the organization. Inquire
about the version of SQL that is used and determine

whether the same version is used at all locations. If different
versions are used, explore any difficulties that the DBA has
had in administering the database. Also inquire about any
proprietary languages, such as Oracle’s PL*SQL, that are
being used. Learn about possible differences in versions
used at different locations and explore any difficulties that
occur if different versions are installed.

3. Arrange an interview with a database administrator in your
area who has at least seven years of experience as a database
administrator. Focus the interview on understanding how
DBA responsibilities and the way they are completed have
changed during the DBA’s tenure. Does the DBA have to
generate more or less SQL code to administer the databases
now than in the past? Has the position become more or less
stressful?

References

Arvin, T. 2005. “Comparison of Different SQL Implementations”
this and other information accessed at http://troelsarvin.
blogspot.com.

Codd, E. F. 1970. “A Relational Model of Data for Large Shared
Data Banks.” Communications of the ACM 13,6 (June): 77–87.

Date, C. J., and H. Darwen. 1997. A Guide to the SQL Standard.
Reading, MA: Addison-Wesley.

Eisenberg, A., J. Melton, K. Kulkarni, J. E. Michels, and F.
Zemke. 2004. “SQL:2003 Has Been Published.” SIGMOD
Record 33,1 (March):119–126.

Gorman, M. M. 2001. “Is SQL a Real Standard Anymore?” The
Data Administration Newsletter (July), available at www.
tdan.com/i016hy01.htm.

Lai, E. 2007. “IDC: Oracle Extended Lead Over IBM in 2006
Database Market.” Computerworld (April 26), available at
www.computerworld.com/action/article.do?command=
viewArticleBasic&articleId=9017898&intsrc=news_list.

van der Lans, R. F. 2006. Introduction to SQL; Mastering the
Relational Database Language, 4th ed. Workingham, UK:
Addison-Wesley.

http://troelsarvin.blogspot.com
http://troelsarvin.blogspot.com
www.tdan.com/i016hy01.htm
www.tdan.com/i016hy01.htm
www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9017898&intsrc=news_list
www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9017898&intsrc=news_list

Chapter 6 • Introduction to SQL 287

Further Reading

Bagui, S., and R. Earp. 2006. Learning SQL on SQL Server 2005.
Sebastopol, CA: O’Reilly Media, Inc.

Bordoloi, B., and D. Bock. 2004. Oracle SQL. Upper Saddle River,
NJ: Pearson Prentice Hall.

Celko, J. 2006. Joe Celko’s SQL Puzzles & Answers, 2nd ed. San
Francisco: Morgan Kaufmann.

Guerrero, F. G., and C. E. Rojas. 2001. Microsoft SQL Server 2000
Programming by Example. Indianapolis: QUE Corporation.

Gulutzan, P., and T. Petzer. 1999. SQL-99 Complete, Really.
Lawrence, KS: R&D Books.

Nielsen, P. 2003. Microsoft SQL Server 2000 Bible. New York:
Wiley Publishing, Inc.

Web Resources

http://standards.ieee.org The home page of the IEEE Standards
Association.

http://troelsarvin.blogspot.com/ Blog that provides a detailed
comparison of different SQL implementations, including
DB2, Microsoft SQL, MySQL, Oracle, and PostGreSQL.

www.1keydata.com/sql/sql.html Web site that provides tutori-
als on a subset of ANSI standard SQL commands.

www.ansi.org Information on ANSI and the latest national and
international standards.

www.coderecipes.net Web site that explains and shows exam-
ples for a wide range of SQL commands.

www.fluffycat.com/SQL/ Web site that defines a sample data-
base and shows examples of SQL queries against this
database.

www.incits.org The home page of the International Committee
for Information Technology Standards, which used to be
the National Committee for Information Technology
Standards, which used to be the Accredited Standard
Committee X3.

www.iso.ch International Organization for Standardization
Web site, from which copies of current standards may be
purchased.

www.itl.nist.gov/div897/ctg/dm/sql_examples.htm Web site
that shows examples of SQL commands for creating

tables and views, updating table contents, and performing
some SQL database administration commands.

www.java2s.com/Code/SQL/CatalogSQL.htm Web site that
provides tutorials on SQL in a MySQL environment.

www.mysql.com The official home page for MySQL, which
includes many free downloadable components for work-
ing with MySQL.

www.paragoncorporation.com/ArticleDetail.aspx?ArticleID=27
Web site that provides a brief explanation of the power of
SQL and a variety of sample SQL queries.

www.sqlcourse.com and www.sqlcourse2.com Web sites that
provide tutorials for a subset of ANSI SQL, along with a
practice database.

www.teradatastudentnetwork.com Web site where your
instructor may have created some course environments
for you to use Teradata SQL Assistant, Web Edition, with
one or more of the Pine Valley Furniture and Mountain
View Community Hospital data sets for this text.

www.tizag.com/sqlTutorial/ A set of tutorials on SQL concepts
and commands.

www.wiscorp.com/SQLStandards.html Whitemarsh
Information Systems Corp., a good source of informa-
tion about SQL standards, including SQL:2003 and later
standards.

http://standards.ieee.org
http://troelsarvin.blogspot.com/
www.1keydata.com/sql/sql.html
www.ansi.org
www.coderecipes.net
www.fluffycat.com/SQL/
www.incits.org
www.iso.ch
www.itl.nist.gov/div897/ctg/dm/sql_examples.htm
www.java2s.com/Code/SQL/CatalogSQL.htm
www.mysql.com
www.paragoncorporation.com/ArticleDetail.aspx?ArticleID=27
www.sqlcourse.com
www.sqlcourse2.com
www.teradatastudentnetwork.com
www.tizag.com/sqlTutorial/
www.wiscorp.com/SQLStandards.html

288 Part IV • Implementation

CASE
Mountain View Community Hospital

Case Description

This case segment uses the physical designs you constructed for
Mountain View Community Hospital (MVCH) in Chapter 5 to
complete the case questions and case exercises.

Case Questions

1. What version of SQL and what RDBMS will you use to do
the case exercises?

2. Which CASE tools are available for completing the case
exercises? Can the CASE tool you are using generate the
database schema from the physical data model(s) you
created?

3. Can you suggest an easy way to populate your tables if you
want to create a large set of test data?

4. How do the actual values you are using help you to test the
functionality of your database?

Case Exercises

1. In Case Exercise 1 in Chapter 5, you created the physical
data model for Dr. Z’s database that keeps track of patients
checking in. You may recall that Dr. Z decided to use SQL
Server. Instructions for installing SQL Server and SQL
Server Management Studio Express are available in the
Pine Valley sample database area of this book’s Web site.
a. Using the design you created in Chapter 5, create the

database and tables using SQL. Be sure to create the SQL
assertions necessary to ensure referential integrity and
other constraints.

b. Populate the database with sample data. (MVCH Figure
4-5 in Chapter 4 provides some sample data, but you need
a few more patients and visits for the queries in part c.)

c. Write and test some queries that will work using your
sample data. Write queries that
i. Select information from only one of the tables (e.g., an

alphabetical listing of all patients, an alphabetical

listing of all the patients assigned to one of the social
workers, etc.).

ii. Aggregate information from one attribute in a table
(e.g., How often has patient 8766 visited the MS
Center at MVCH in a given month? How many
patients are assigned to each social worker?).

iii. Try out the various functions, such as MIN, MAX, and
AVG (e.g., What is the average level of pain reported
by Dr. Z’s patients? What is the worst level of pain his
patients have experienced?).

2. Using your database from Case Exercise 1, write and test
SQL queries that
a. Select information from only one of the tables.
b. Aggregate information from one attribute in a table.
c. Try out the various functions, such as MIN, MAX, and

AVG.
d. Qualify results by category.

Project Assignments

P1. Use the physical data model you created in Chapter 5 to
guide you in writing the SQL statements for creating the
MVCH database for the relational schema you created in
Chapter 4.

a. Write the SQL statements for creating the tables, specify-
ing data types and field lengths, establishing primary
keys and foreign keys, and implementing other con-
straints you identified.

b. Following the examples in Chapter 5, write the SQL state-
ments that create the indexes.

P2. Select a portion of your database and populate it with sam-
ple data. Be prepared to defend the sample test data that
you insert into your database.

P3. Write and execute a variety of queries, based on the intro-
duction to SQL in this chapter to test the functionality of
your database. Ensure that your queries are correct and
produce the results you expected.

289

Advanced SQL

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: join, equi-join, natural join, outer
join, correlated subquery, user-defined data type, Persistent Stored Modules
(SQL/PSM), trigger, function, procedure, embedded SQL, and dynamic SQL.

� Write single- and multiple-table queries using SQL commands.
� Define three types of join commands and use SQL to write these commands.
� Write noncorrelated and correlated subqueries and know when to write each.
� Establish referential integrity using SQL.
� Understand common uses of database triggers and stored procedures.
� Discuss the SQL:200n standard and explain its enhancements and extensions.

INTRODUCTION

The previous chapter introduced SQL and explored its capabilities for querying one
table. The real power of the relational model derives from its storage of data in
many related entities. Taking advantage of this approach to data storage requires
establishing relationships and constructing queries that use data from multiple
tables. This chapter examines multiple-table queries in some detail. Different
approaches to getting results from more than one table are demonstrated,
including the use of subqueries, inner and outer joins, and union joins.

Once an understanding of basic SQL syntax is gained, it is important to understand
how SQL is used in the creation of applications. Triggers, small modules of code that
include SQL, execute automatically when a particular condition, defined in the trigger,
exists. Procedures are similar modules of code but must be called before they execute.
SQL commands are often embedded within modules written in a host language, such
as C, PHP, .NET, or Java. Dynamic SQL creates SQL statements on the fly, inserting
parameter values as needed, and is essential to Web applications. Brief introductions
and examples of each of these methods are included in this chapter. Some of the
enhancements and extensions to SQL included in SQL:200n are also covered. Oracle, a
leading RDBMS vendor, is SQL:1999 compliant.

Completion of this chapter gives the student an overview of SQL and some of the
ways in which it may be used. Many additional features, often referred to as “obscure”
in more detailed SQL texts, will be needed in particular situations. Practice with the
syntax included in this chapter will give you a good start toward mastery of SQL.

C H A P T E R

7
Visit www.pearsonhighered.com/
hoffer to view the accompanying
video for this chapter.

www.pearsonhighered.com/

290 Part IV • Implementation

PROCESSING MULTIPLE TABLES

Now that we have explored some of the possibilities for working with a single table, it’s
time to bring out the light sabers, jet packs, and tools for heavy lifting: We will work
with multiple tables simultaneously. The power of RDBMSs is realized when working
with multiple tables. When relationships exist among tables, the tables can be linked
together in queries. Remember from Chapter 4 that these relationships are established
by including a common column(s) in each table where a relationship is needed. Often
this is accomplished by setting up a primary key–foreign key relationship, where the
foreign key in one table references the primary key in another, and the values in both
come from a common domain. We can use these columns to establish a link between
two tables by finding common values in the columns. Figure 7-1 carries forward two
relations from Figure 6-3, depicting part of the Pine Valley Furniture Company data-
base. Notice that CustomerID values in Order_T correspond to CustomerID values in
Customer_T. Using this correspondence, we can deduce that Contemporary Casuals
placed orders 1001 and 1010 because Contemporary Casuals’s CustomerID is 1, and
Order_T shows that OrderID 1001 and 1010 were placed by customer 1. In a relational
system, data from related tables are combined into one result table or view and then
displayed or used as input to a form or report definition.

The linking of related tables varies among different types of relational systems. In
SQL, the WHERE clause of the SELECT command is also used for multiple-table opera-
tions. In fact, SELECT can include references to two, three, or more tables in the same
command. As illustrated next, SQL has two ways to use SELECT for combining data
from related tables.

The most frequently used relational operation, which brings together data from
two or more related tables into one resultant table, is called a join. Originally, SQL spec-
ified a join implicitly by referring in a WHERE clause to the matching of common
columns over which tables were joined. Since SQL-92, joins may also be specified in the
FROM clause. In either case, two tables may be joined when each contains a column
that shares a common domain with the other. As mentioned previously, a primary key
from one table and a foreign key that references the table with the primary key will
share a common domain and are frequently used to establish a join. Occasionally, joins
will be established using columns that share a common domain but not the primary-
foreign key relationship, and that also works (e.g., we might join customers and sales-
persons based on common postal codes, for which there is no relationship in the data
model for the database). The result of a join operation is a single table. Selected columns
from all the tables are included. Each row returned contains data from rows in the dif-
ferent input tables where values for the common columns match.

Explicit JOIN . . . ON commands are included in the FROM clause. The following join
operations are included in the standard, though each RDBMS product is likely to support
only a subset of the keywords: INNER, OUTER, FULL, LEFT, RIGHT, CROSS, and
UNION. (We’ll explain these in a following section.) NATURAL is an optional keyword.
No matter what form of join you are using, there should be one ON or WHERE specification for
each pair of tables being joined. Thus, if two tables are to be combined, one ON or WHERE
condition would be necessary, but if three tables (A, B, and C) are to be combined, then two

Join
A relational operation that causes
two tables with a common domain
to be combined into a single table
or view.

FIGURE 7-1 Pine Valley
Furniture Company
Customer_T and Order_T
tables, with pointers from
customers to their orders

Chapter 7 • Advanced SQL 291

ON or WHERE conditions would be necessary because there are 2 pairs of tables (A-B and
B-C), and so forth. Most systems support up to 10 pairs of tables within one SQL command.
At this time, core SQL does not support CROSS JOIN, UNION JOIN, FULL [OUTER] JOIN,
or the keyword NATURAL. Knowing this should help you understand why you may not
find these implemented in the RDBMS you are using. Because they are included in the
SQL:200n standard and are useful, expect to find them becoming more widely available.

The various types of joins are described in the following sections.

Equi-join

With an equi-join, the joining condition is based on equality between values in the com-
mon columns. For example, if we want to know data about customers who have placed
orders, that information is kept in two tables, Customer_T and Order_T. It is necessary
to match customers with their orders and then collect the information about, for exam-
ple, customer name and order number in one table in order to answer our question. We
call the table created by the query the result or answer table.

Query: What are the customer IDs and names of all customers, along with the
order IDs for all the orders they have placed?

SELECT Customer_T.CustomerID, Order_T.CustomerID,
CustomerName, OrderID

FROM Customer_T, Order_T
WHERE Customer_T.CustomerID = Order_T. CustomerID
ORDER BY OrderID

Result:

Equi-join
A join in which the joining
condition is based on equality
between values in the common
columns. Common columns appear
(redundantly) in the result table.

The redundant CustomerID columns, one from each table, demonstrate that the
customer IDs have been matched and that matching gives one row for each order placed.
We prefixed the CustomerID columns with the names of their respective tables so SQL
knows which CustomerID column we referenced in each element of the SELECT list; we
did not have to prefix CustomerName nor OrderID with their associated table names
because each of these columns is found in only one table in the FROM list.

The importance of achieving the match between tables can be seen if the WHERE
clause is omitted. That query will return all combinations of customers and orders, or
150 rows, and includes all possible combinations of the rows from the two tables (i.e., an
order will be matched with every customer, not just the customer who placed that
order). In this case, this join does not reflect the relationships that exist between the

CUSTOMERID CUSTOMERID CUSTOMERNAME ORDERID

1 1 Contemporary Casuals 1001

8 8 California Classics 1002

15 15 Mountain Scenes 1003

5 5 Impressions 1004

3 3 Home Furnishings 1005

2 2 Value Furniture 1006

11 11 American Euro Lifestyles 1007

12 12 Battle Creek Furniture 1008

4 4 Eastern Furniture 1009

1 1 Contemporary Casuals 1010

10 rows selected.

292 Part IV • Implementation

tables and is not a useful or meaningful result. The number of rows is equal to the
number of rows in each table, multiplied together (10 orders × 15 customers = 150 rows).
This is called a Cartesian join. Cartesian joins with spurious results will occur when any
joining component of a WHERE clause with multiple conditions is missing or erroneous.
In the rare case that a Cartesian join is desired, omit the pairings in the WHERE clause. A
Cartesian join may be explicitly created by using the phrase CROSS JOIN in the FROM
statement. FROM Customer_T CROSS JOIN Order_T would create a Cartesian product
of all customers with all orders. (Use this query only if you really mean to because a cross
join against a production database can produce hundreds of thousands of rows and can
consume significant computer time—plenty of time to receive a pizza delivery!)

The keywords INNER JOIN . . . ON are used to establish an equi-join in the
FROM clause. While the syntax demonstrated here is Microsoft Access SQL syntax, note
that some systems, such as Oracle and Microsoft SQL Server, treat the keyword JOIN by
itself without the word INNER to establish an equi-join:

Query: What are the customer IDs and names of all customers, along with the
order IDs for all the orders they have placed?

SELECT Customer_T.CustomerID, Order_T.CustomerID,
CustomerName, OrderID

FROM Customer_T INNER JOIN Order_T ON
Customer_T.CustomerID = Order_T.CustomerID

ORDER BY OrderID;

Result: Same as the previous query.

Simplest of all would be to use the JOIN . . . USING syntax, if this is supported by
the RDBMS you are using. If the database designer thought ahead and used identical
column names for the primary and foreign keys, as has been done with CustomerID in
the Customer_T and Order_T tables, the following query could be used:

SELECT Customer_T.CustomerID, Order_T.CustomerID,
CustomerName, OrderID

FROM Customer_T INNER JOIN Order_T USING CustomerID
ORDER BY OrderID ;

Notice that the WHERE clause now functions only in its traditional role as a filter as
needed. Since the FROM clause is generally evaluated prior to the WHERE clause, some
users prefer using the newer syntax of ON or USING in the FROM clause. A smaller record
set that meets the join conditions is all that must be evaluated by the remaining clauses, and
performance may improve. All DBMS products support the traditional method of defining
joins within the WHERE clause. Microsoft SQL Server supports the INNER JOIN . . . ON
syntax, Oracle has supported it since 9i, and MySQL has supported it since 3.23.17.

We again emphasize that SQL is a set-oriented language. Thus, this join example is
produced by taking the customer table and the order table as two sets and appending
together those rows from Customer_T with rows from Order_T that have equal
CustomerID values. This is a set intersection operation, which is followed by append-
ing the selected columns from the matching rows. Figure 7-2 uses set diagrams to
display the most common types of two-table joins.

Natural Join

A natural join is the same as an equi-join, except that it is performed over matching
columns, and one of the duplicate columns is eliminated in the result table. The natural
join is the most commonly used form of join operation. (No, a “natural” join is not a
more healthy join with more fiber, and there is no un-natural join; but you will find it a
natural and essential function with relational databases.) Notice in the command below
that CustomerID must still be qualified because there is still ambiguity; CustomerID

Natural join
A join that is the same as an
equi-join except that one of the
duplicate columns is eliminated
in the result table.

Chapter 7 • Advanced SQL 293

Natural Join Left Outer Join

Union Join

Darker area is result returned.

All records are returned.

All records returned from outer table.
Matching records returned
from joined table.

FIGURE 7-2 Visualization of
different join types, with the
results returned in the
shaded area

exists in both Customer_T and Order_T, and therefore it must be specified from which
table CustomerID should be displayed. NATURAL is an optional keyword when the
join is defined in the FROM clause.

Query: For each customer who has placed an order, what is the customer’s ID,
name, and order number?

SELECT Customer_T.CustomerID, CustomerName, OrderID
FROM Customer_T NATURAL JOIN Order_T ON
Customer_T.CustomerID = Order_T.CustomerID;

Note that the order of table names in the FROM clause is immaterial. The query
optimizer of the DBMS will decide in which sequence to process each table. Whether
indexes exist on common columns will influence the sequence in which tables are
processed, as will which table is on the 1 and which is on the M side of 1:M relationship.
If a query takes significantly different amounts of time, depending on the order in
which tables are listed in the FROM clause, the DBMS does not have a very good query
optimizer.

Outer Join

In joining two tables, we often find that a row in one table does not have a matching
row in the other table. For example, several CustomerID numbers do not appear in the
Order_T table. In Figure 7-1 pointers have been drawn from customers to their orders.
Contemporary Casuals has placed two orders. Furniture Gallery, Period Furniture,
M & H Casual Furniture, Seminole Interiors, Heritage Furnishings, and Kaneohe
Homes have not placed orders in this small example. We can assume that this is
because those customers have not placed orders since 10/21/2010, or their orders are
not included in our very short sample Order_T table. As a result, the equi-join and
natural join shown previously do not include all the customers shown in Customer_T.

Of course, the organization may be very interested in identifying those customers
who have not placed orders. It might want to contact them to encourage new orders, or
it might be interested in analyzing these customers to discern why they are not order-
ing. Using an outer join produces this information: Rows that do not have matching
values in common columns are also included in the result table. Null values appear in
columns where there is not a match between tables.

Outer joins can be handled by the major RDBMS vendors, but the syntax used to
accomplish an outer join varies across vendors. The example given here uses ANSI
standard syntax. When an outer join is not available explicitly, use UNION and NOT
EXISTS (discussed later in this chapter) to carry out an outer join. Here is an outer join.

Outer join
A join in which rows that do not
have matching values in common
columns are nevertheless included
in the result table.

294 Part IV • Implementation

Query: List customer name, identification number, and order number for all cus-
tomers listed in the Customer table. Include the customer identification number
and name even if there is no order available for that customer.

SELECT Customer_T.CustomerID, CustomerName, OrderID
FROM Customer_T LEFT OUTER JOIN Order_T
WHERE Customer_T.CustomerID = Order_T. CustomerID;

The syntax LEFT OUTER JOIN was selected because the Customer_T table was
named first, and it is the table from which we want all rows returned, regardless of
whether there is a matching order in the Order_T table. Had we reversed the order in
which the tables were listed, the same results would be obtained by requesting a RIGHT
OUTER JOIN. It is also possible to request a FULL OUTER JOIN. In that case, all rows
from both tables would be returned and matched, if possible, including any rows that
do not have a match in the other table. INNER JOINs are much more common than
OUTER JOINs because outer joins are necessary only when the user needs to see data
from all rows, even those that have no matching row in another table.

It should also be noted that the OUTER JOIN syntax does not apply easily to a join
condition of more than two tables. The results returned will vary according to the ven-
dor, so be sure to test any outer join syntax that involves more than two tables until you
understand how it will be interpreted by the DBMS being used.

Also, the result table from an outer join may indicate NULL (or a symbol, such as ??)
as the values for columns in the second table where no match was achieved. If those
columns could have NULL as a data value, you cannot know whether the row returned is
a matched row or an unmatched row unless you run another query that checks for null
values in the base table or view. Also, a column that is defined as NOT NULL may be
assigned a NULL value in the result table of an OUTER JOIN. In the following result,
NULL values are shown by an empty value (i.e., a customer without any orders is listed
with no value for OrderID).

Result:

CUSTOMERID CUSTOMERNAME ORDERID

1 Contemporary Casuals 1001

1 Contemporary Casuals 1010

2 Value Furniture 1006

3 Home Furnishings 1005

4 Eastern Furniture 1009

5 Impressions 1004

6 Furniture Gallery

7 Period Furniture

8 California Classics 1002

9 M & H Casual Furniture

10 Seminole Interiors

11 American Euro Lifestyles 1007

12 Battle Creek Furniture 1008

13 Heritage Furnishings

14 Kaneohe Homes

15 Mountain Scenes 1003

16 rows selected.

Chapter 7 • Advanced SQL 295

It may help you to glance back at Figures 7-1 and 7-2. In Figure 7-2, customers are
represented by the left circle and orders are represented by the right. With an INNER
JOIN of Customer_T and Order_T, only the 10 rows that have arrows drawn in
Figure 7-1 will be returned. The LEFT OUTER JOIN on Customer_T, returns all of the
customers along with the orders they have placed, and customers are returned even if
they have not placed orders. Because Customer 1, Contemporary Casuals, has placed
two orders, a total of 16 rows are returned because rows are returned for both orders
placed by Contemporary Casuals.

The advantage of an outer join is that information is not lost. Here, all customer
names were returned, whether or not they had placed orders. Requesting a RIGHT
OUTER join would return all orders. (Because referential integrity requires that every
order be associated with a valid customer ID, this right outer join would only ensure
that referential integrity is being enforced.) Customers who had not placed orders
would not be included in the result.

Query: List customer name, identification number, and order number for all
orders listed in the Order table. Include the order number, even if there is no
customer name and identification number available.

SELECT Customer_T.CustomerID,CustomerName, OrderID
FROM Customer_T RIGHT OUTER JOIN Order_T ON

Customer_T.CustomerID = Order_T.CustomerID;

Union Join

SQL:1999 and, by extension, SQL:200n also allow for the use of UNION JOIN, which has
not yet been implemented in all DBMS products. The results of a UNION JOIN will be a
table that includes all data from each table that is joined. The result table will contain all
columns from each table and will contain an instance for each row of data included from
each table. Thus, a UNION JOIN of the Customer_T table (15 customers and 6 attributes)
and the Order_T table (10 orders and 3 attributes) will return a result table of 25 rows
(15 � 10) and 9 columns (6 � 3). Assuming that each original table contained no nulls,
each customer row in the result table will contain three attributes with assigned null
values, and each order row will contain six attributes with assigned null values.

UNION JOINs may not include the keyword NATURAL, an ON clause, or a
USING clause. Each of these implies an equivalence that would conflict with the
UNION JOIN’s inclusion of all the data from each table that is joined. Do not confuse
this command with the UNION command that joins multiple SELECT statements and
is covered later in this chapter.

Sample Join Involving Four Tables

Much of the power of the relational model comes from its ability to work with the rela-
tionships among the objects in the database. Designing a database so that data about each
object are kept in separate tables simplifies maintenance and data integrity. The capabil-
ity to relate the objects to each other by joining the tables provides critical business infor-
mation and reports to employees. Although the examples provided in Chapters 6 and 7
are simple and constructed only to provide a basic understanding of SQL, it is important
to realize that these commands can be and often are built into much more complex
queries that provide exactly the information needed for a report or process.

Here is a sample join query that involves a four-table join. This query produces a
result table that includes the information needed to create an invoice for order number
1006. We want the customer information, the order and order line information, and the
product information, so we will need to join four tables. Figure 7-3a shows an anno-
tated ERD of the four tables involved in constructing this query; Figure 7-3b shows an
abstract instance diagram of the four tables with order 1006 hypothetically having two
line items for products Px and Py, respectively. We encourage you to draw such dia-
grams to help conceive the data involved in a query and how you might then construct
the corresponding SQL command with joins.

296 Part IV • Implementation

CUSTOMER
CustomerID
CustomerName
CustomerAddress
CustomerCity
CustomerState
CustomerPostalCode

PRODUCT
ProductID
ProductDescription
ProductFinish
ProductStandardPrice
ProductLineID

JOIN
=

JOIN
=

JOIN
=

ORDER
OrderID
OrderDate
CustomerID

ORDER LINE
OrderID
ProductID
OrderedQuantity

WHERE
= 1006

FIGURE 7-3 Diagrams
depicting a four-table join
(a) Annotated ERD with
relations used in a
four-table join

Query: Assemble all information necessary to create an invoice for order
number 1006.

SELECT Customer_T.CustomerID, CustomerName, CustomerAddress,
CustomerCity, CustomerState, CustomerPostalCode, Order_T.OrderID,
OrderDate, OrderedQuantity, ProductDescription, StandardPrice,
(OrderedQuantity * ProductStandardPrice)

FROM Customer_T, Order_T, OrderLine_T, Product_T
WHERE Order_T.CustomerID = Customer_T.CustomerID

AND Order_T.OrderID = OrderLine_T.OrderID
AND OrderLine_T.ProductID = Product_T.ProductID
AND Order_T.OrderID = 1006;

CUSTOMER

CustomerID

. . . .

Cx

. . . .

. . . .

. . . .

. . . .

. . . .

ORDER

CustomerID

Cx

. . . .

. . . .

OrderID

1006

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

PRODUCT

ProductID

Px

. . . .

Py

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .

ORDER LINE

ProductID

. . . .

Py

Px

. . . .

OrderID

. . . .

1006

1006

. . . .

. . . .

. . . .

. . . .

. . . .

. . . .
=

=

=

=

=

(b) Annotated instance
diagram of relations used
in a four-table join

Chapter 7 • Advanced SQL 297

CUSTOMERID

2
2
2

CUSTOMERNAME

Value Furniture
Value Furniture
Value Furniture

CUSTOMERADDRESS

15145 S. W. 17th St.
15145 S. W. 17th St.
15145 S. W. 17th St.

CUSTOMER
CITY

Plano
Plano
Plano

CUSTOMER
STATE

TX
TX
TX

CUSTOMER
POSTALCODE

75094 7743
75094 7743
75094 7743

ORDERID

1006
1006
1006

ORDERDATE

24-OCT -10
24-OCT -10
24-OCT -10

ORDERED
QUANTITY

1
2
2

PRODUCTNAME

Entertainment Center
Writer’s Desk
Dining Table

PRODUCT
STANDARDPRICE

650
325
800

(QUANTITY*
STANDARDPRICE)

650
650

1600

FIGURE 7-4 Results from a four-table join (edited for readability)

The results of the query are shown in Figure 7-4. Remember, because the join
involves four tables, there are three column join conditions, as follows:

1. Order_T.CustomerID = Customer_T.CustomerID = links an order with its associ-
ated customer.

2. Order_T.OrderID = OrderLine_T.OrderID links each order with the details of the
items ordered.

3. OrderLine_T.ProductID = Product_T.ProductID links each order detail record
with the product description for that order line.

Self-Join

There are times when a join requires matching rows in a table with other rows in that
same table—that is, joining a table with itself. There is no special command in SQL to do
this, but people generally call this operation a self-join. Self-joins arise for several rea-
sons, the most common of which is a unary relationship, such as the Supervises rela-
tionship in the Pine Valley Furniture database in Figure 2-22. This relationship is
implemented by placing in the EmployeeSupervisor column the EmployeeID (foreign
key) of the employee’s supervisor, another employee. With this recursive foreign key
column, we can ask the following question:

Query: What are the employee ID and name of each employee and the name of
his or her supervisor (label the supervisor’s name Manager)?

SELECT E.EmployeeID, E.EmployeeName, M.EmployeeName AS Manager
FROM Employee_T E, Employee_T M
WHERE E.EmployeeSupervisor = M.EmployeeID;

Result:

EMPLOYEEID EMPLOYEENAME MANAGER

123-44-347 Jim Jason Robert Lewis

There are two things to note in this query. First, the Employee table is, in a sense, serv-
ing two roles: It contains a list of employees and a list of managers. Thus, the FROM
clause refers to the Employee_T table twice, once for each of these roles. However, to
distinguish these roles in the rest of the query, we give the Employee_T table an alias for
each role (in this case, E for employee and M for manager roles, respectively). Then the
columns from the SELECT list are clear: first the ID and name of an employee (with pre-
fix E) and then the name of a manager (with prefix M). Which manager? That then is the
second point: The WHERE clause joins the “employee” and “manager” tables based on
the foreign key from employee (EmployeeSupervisor) to manager (EmployeeID). As far

298 Part IV • Implementation

as SQL is concerned, it considers the E and M tables to be two different tables that have
identical column names, so the column names must have a suffix to clarify from which
table a column is to be chosen each time it is referenced.

It turns out that there are various interesting queries that can be written using
self-joins following unary relationships. For example, which employees have
a salary greater than the salary of their manager (not uncommon in professional base-
ball, but generally frowned on in business or government organizations), or (if we had
this data in our database) is anyone married to his or her manager (not uncommon in
a family-run business but possibly prohibited in many organizations)? Several of the
Problems and Exercises at the end of this chapter require queries with a self-join.

As with any other join, it is not necessary that a self-join be based on a foreign key
and a specified unary relationship. For example, when a salesperson is scheduled to visit a
particular customer, maybe she would want to know who are all the other customers in
the same postal code as the customer she is scheduled to visit. Remember, it is possible to
join rows on columns from different (or the same) tables as long as those columns come
from the same domain of values and the linkage of values from those columns makes
sense. For example, even though ProductFinish and EmployeeCity may have the identical
data type, they don’t come from the same domain of values, and there is no conceivable
business reason to link products and employees on these columns. However, one might
conceive of some reason to understand the sales booked by a salesperson by looking at
order dates of the person’s sales relative to his or her hire date. It is amazing what ques-
tions SQL can answer (although we have limited control on how SQL displays the results).

Subqueries

The preceding SQL examples illustrate one of the two basic approaches for joining two
tables: the joining technique. SQL also provides the subquery technique, which involves
placing an inner query (SELECT . . . FROM . . . WHERE) within a WHERE or HAVING
clause of another (outer) query. The inner query provides a set of one or more values for
the search condition of the outer query. Such queries are referred to as subqueries or
nested subqueries. Subqueries can be nested multiple times. Subqueries are prime
examples of why SQL is a set-oriented language.

Sometimes, either the joining or the subquery technique can be used to accom-
plish the same result, and different people will have different preferences about which
technique to use. Other times, only a join or only a subquery will work. The joining
technique is useful when data from several relations are to be retrieved and displayed,
and the relationships are not necessarily nested, whereas the subquery technique
allows you to display data from only the tables mentioned in the outer query. Let’s com-
pare two queries that return the same result. Both answer the question, what is the
name and address of the customer who placed order number 1008? First, we will use a
join query, which is graphically depicted in Figure 7-5a.

Query: What are the name and address of the customer who placed order
number 1008?

SELECT CustomerName, CustomerAddress, CustomerCity,
CustomerState, CustomerPostalCode

FROM Customer_T, Order_T
WHERE Customer_T.CustomerID = Order_T. CustomerID

AND OrderID = 1008;

In set-processing terms, this query finds the subset of the Order_T table
for OrderID = 1008 and then matches the row(s) in that subset with the rows in
the Customer_T table that have the same CustomerID values. In this approach, it
is not necessary that only one order have the OrderID value 1008. Now, look at the
equivalent query using the subquery technique, which is graphically depicted in
Figure 7-5b.

Chapter 7 • Advanced SQL 299

Query: What are the name and address of the customer who placed order
number 1008?

SELECT CustomerName, CustomerAddress, CustomerCity,
CustomerState, CustomerPostalCode

FROM Customer_T
WHERE Customer_T.CustomerID =

(SELECT Order_T.CustomerID
FROM Order_T

WHERE OrderID = 1008);

Notice that the subquery, shaded in blue and enclosed in parentheses, follows the
form learned for constructing SQL queries and could stand on its own as an independ-
ent query. That is, the result of the subquery, as with any other query, is a set of rows—
in this case, a set of CustomerID values. We know that only one value will be in the
result. (There is only one CustomerID for the order with OrderID 1008.) To be safe, we

ORDER_T

CustomerID

. . . .

Cx

. . . .

WHERE
Order_T.CustomerID =
Customer_T.CustomerID

OrderID

. . . .

1008

. . . .

. . . .

. . . .

. . . .

. . . .

CUSTOMER_T

CustomerID

Cx

Customer
Name

Customer
Address

Customer
City

Customer
State

Customer
PostalCode

WHERE
OrderID = 1008

SELECT

FIGURE 7-5 Graphical depiction of two ways to answer a query with different types of joins

All CustomerIDs

Show customer data for
customers with these
CustomerIDsOrder_T.

CustomerIDs
WHERE

OrderID =
1008

(a) Join query approach

(b) Subquery approach

300 Part IV • Implementation

can, and probably should, use the IN operator rather than = when writing subqueries.
The subquery approach may be used for this query because we need to display data from only the
table in the outer query. The value for OrderID does not appear in the query result; it is
used as the selection criterion in the inner query. To include data from the subquery in
the result, use the join technique, because data from a subquery cannot be included in
the final results.

As noted previously, we know in advance that the preceding subquery will
return at most one value, the CustomerID associated with OrderID 1008. The result
will be empty if an order with that ID does not exist. (It is advisable to check that
your query will work if a subquery returns zero, one, or many values.) A subquery
can also return a list (set) of values (with zero, one, or many entries) if it includes
the keyword IN. Because the result of the subquery is used to compare with one attribute
(CustomerID, in this query), the select list of a subquery may include only one attribute.
For example, which customers have placed orders? Here is a query that will answer
that question.

Query: What are the names of customers who have placed orders?

SELECT CustomerName
FROM Customer_T

WHERE CustomerID IN
(SELECT DISTINCT CustomerID
FROM Order_T);

This query produces the following result. As required, the subquery select list con-
tains only the one attribute, CustomerID, needed in the WHERE clause of the outer
query. Distinct is used in the subquery because we do not care how many orders a cus-
tomer has placed, as long as they have placed an order. For each customer identified in
the Order_T table, that customer’s name has been returned from Customer_T. (You will
study this query again in Figure 7-7a.)

Result:

CUSTOMERNAME

Contemporary Casuals

Value Furniture

Home Furnishings

Eastern Furniture

Impressions

California Classics

American Euro Lifestyles

Battle Creek Furniture

Mountain Scenes

9 rows selected.

The qualifiers NOT, ANY, and ALL may be used in front of IN or with logical
operators such as = , >, and <. Because IN works with zero, one, or many values from
the inner query, many programmers simply use IN instead of = for all queries, even if
the equal sign would work. The next example shows the use of NOT, and it also demon-
strates that a join can be used in an inner query.

Chapter 7 • Advanced SQL 301

Query: Which customers have not placed any orders for computer desks?

SELECT CustomerName
FROM Customer_T
WHERE CustomerID NOT IN
(SELECT CustomerID

FROM Order_T, OrderLine_T, Product_T
WHERE Order_T.OrderID = OrderLine_T.OrderID

AND OrderLine_T.ProductID = Product_T.ProductID
AND ProductDescription = ‘Computer Desk’);

Result:

The result shows that 10 customers have not yet ordered computer desks. The
inner query returned a list (set) of all customers who had ordered computer desks.
The outer query listed the names of those customers who were not in the list returned
by the inner query. Figure 7-6 graphically breaks out the results of the subquery and
main query.

Qualifications such as < ANY or >= ALL instead of IN are also useful. For exam-
ple, the qualification >= ALL can be used to match with the maximum value in a set.
But be careful: Some combinations of qualifications may not make sense, such as = ALL
(which makes sense only when the all the elements of the set have the same value).

Two other conditions associated with using subqueries are EXISTS and NOT
EXISTS. These keywords are included in an SQL query at the same location where IN
would be, just prior to the beginning of the subquery. EXISTS will take a value of true
if the subquery returns an intermediate result table that contains one or more rows
(i.e., a nonempty set) and false if no rows are returned (i.e., an empty set). NOT
EXISTS will take a value of true if no rows are returned and false if one or more rows
are returned.

So, when do you use EXISTS versus IN, and when do you use NOT EXISTS versus
NOT IN? You use EXISTS (NOT EXISTS) when your only interest is whether the sub-
query returns a nonempty (empty) set (i.e., you don’t care what is in the set, just
whether it is empty), and you use IN (NOT IN) when you need to know what values are
(are not) in the set. Remember, IN and NOT IN return a set of values from only one col-
umn, which can then be compared to one column in the outer query. EXISTS and NOT
EXISTS returns only a true or false value depending on whether there are any rows in
the answer table of the inner query or subquery.

Consider the following SQL statement, which includes EXISTS.

CUSTOMERNAME

Value Furniture

Home Furnishings

Eastern Furniture

Furniture Gallery

Period Furniture

M & H Casual Furniture

Seminole Interiors

American Euro Lifestyles

Heritage Furnishings

Kaneohe Homes

10 rows selected.

Query: What are the order IDs for all orders that have included furniture fin-
ished in natural ash?

SELECT DISTINCT OrderID FROM OrderLine_T
WHERE EXISTS

(SELECT *
FROM Product_T

WHERE ProductID = OrderLine_T.ProductID
AND ProductFinish = ‘Natural Ash’);

The subquery is executed for each order line in the outer query. The subquery
checks for each order line to see if the finish for the product on that order line is natural
ash (indicated by the arrow added to the query above). If this is true (EXISTS), the outer
query displays the order ID for that order. The outer query checks this one row at a time
for every row in the set of referenced rows (the OrderLine_T table). There have been
seven such orders, as the result shows. (We discuss this query further in Figure 7-7b.)

Result:

302 Part IV • Implementation

ORDERID

1001
1002

1003

1006

1007

1008

1009

7 rows selected.

SELECT CustomerName FROM Customer_T

WHERE CustomerID NOT IN

(SELECT CustomerID FROM Order_T, OrderLine_T, Product_T

WHERE Order_T.OrderID = OrderLine_T.OrderID

AND OrderLine_T.ProductID = Product_T.ProductID

AND ProductDescription = ‘Computer Desk’);

1. The subquery (shown in the box) is
processed first and an intermediate
results table created. It returns the
Customer ID for every customer that
has purchased at least one computer
desk.

CUSTOMERID
1
5
8

12
15

2. The main query is then processed and returns
every customer who was NOT IN the subquery’
results.

CUSTOMERNAME

Value Furniture
Home Furnishings
Eastern Furniture
Furniture Gallery
Period Furniture
M and H Casual Furniture
Seminole Interiors
American Euro Lifestyles
Heritage Furnishings
Kaneohe Homes

CustomerIDs
from orders
for Computer
Desks

All Customers

Show
names

FIGURE 7-6 Using the NOT IN qualifier

Chapter 7 • Advanced SQL 303

When EXISTS or NOT EXISTS is used in a subquery, the select list of the subquery
will usually just select all columns (SELECT *) as a placeholder because it does not matter
which columns are returned. The purpose of the subquery is to test whether any rows fit
the conditions, not to return values from particular columns for comparison purposes in
the outer query. The columns that will be displayed are determined strictly by the outer
query. The EXISTS subquery illustrated previously, like almost all other EXISTS sub-
queries, is a correlated subquery, which is described next. Queries containing the keyword
NOT EXISTS will return a result table when no rows are found that satisfy the subquery.

In summary, use the subquery approach when qualifications are nested or when
qualifications are easily understood in a nested way. Most systems allow pairwise join-
ing of one and only one column in an inner query with one column in an outer query. An
exception to this is when a subquery is used with the EXISTS keyword. Data can be dis-
played only from the table(s) referenced in the outer query. Up to 16 levels of nesting
are typically supported. Queries are processed from the inside out, although another
type of subquery, a correlated subquery, is processed from the outside in.

Correlated Subqueries

In the first subquery example in the prior section, it was necessary to examine the inner
query before considering the outer query. That is, the result of the inner query was used to
limit the processing of the outer query. In contrast, correlated subqueries use the result of
the outer query to determine the processing of the inner query. That is, the inner query is
somewhat different for each row referenced in the outer query. In this case, the inner query
must be computed for each outer row, whereas in the earlier examples, the inner query was
computed only once for all rows processed in the outer query. The EXISTS subquery exam-
ple in the prior section had this characteristic, in which the inner query was executed for
each OrderLine_T row, and each time it was executed, the inner query was for a different
ProductID value—the one from the OrderLine_T row in the outer query. Figures 7-7a and
7-7b depict the different processing order for each of the examples from the previous sec-
tion on subqueries.

Let’s consider another example query that requires composing a correlated subquery.

Query: List the details about the product with the highest standard price.

SELECT ProductDescription, ProductFinish, ProductStandardPrice
FROM Product_T PA

WHERE PA.ProductStandardPrice > ALL
(SELECT ProductStandardPrice FROM Product_T PB

WHERE PB.ProductID ! = PA.ProductID);

As you can see in the following result, the dining table has a higher unit price than
any other product.

Result:

Correlated subquery
In SQL, a subquery in which
processing the inner query
depends on data from the
outer query.

PRODUCTDESCRIPTION PRODUCTFINISH PRODUCTSTANDARDPRICE

Dining Table Natural Ash 800

The arrow added to the query above illustrates the cross-reference for a value in
the inner query to be taken from a table in the outer query. The logic of this SQL state-
ment is that the subquery will be executed once for each product to be sure that no other
product has a higher standard price. Notice that we are comparing rows in a table to
themselves and that we are able to do this by giving the table two aliases, PA and PB;
you’ll recall we identified this earlier as a self-join. First, ProductID 1, the end table, will
be considered. When the subquery is executed, it will return a set of values, which are
the standard prices of every product except the one being considered in the outer query
(product 1, for the first time it is executed). Then, the outer query will check to see if the
standard price for the product being considered is greater than all of the standard prices
returned by the subquery. If it is, it will be returned as the result of the query. If not, the
next standard price value in the outer query will be considered, and the inner query

304 Part IV • Implementation

will return a list of all the standard prices for the other products. The list returned by the
inner query changes as each product in the outer query changes; that makes it a corre-
lated subquery. Can you identify a special set of standard prices for which this query
will not yield the desired result (see Problem and Exercise 38)?

Using Derived Tables

Subqueries are not limited to inclusion in the WHERE clause. As we saw in Chapter 6,
they may also be used in the FROM clause to create a temporary derived table (or set)
that is used in the query. Creating a derived table that has an aggregate value in it, such
as MAX, AVG, or MIN, allows the aggregate to be used in the WHERE clause. Here,
pieces of furniture that exceed the average standard price are listed.

Query: Show the product description, product standard price, and overall aver-
age standard price for all products that have a standard price that is higher than
the average standard price.

SELECT ProductDescription, ProductStandardPrice, AvgPrice
FROM

(SELECT AVG(ProductStandardPrice) AvgPrice FROM Product_T),
Product_T

WHERE ProductStandardPrice > AvgPrice;

Result:

PRODUCTDESCRIPTION PRODUCTSTANDARDPRICE AVGPRICE

Entertainment Center 650 440.625

8-Drawer Dresser 750 440.625

Dining Table 800 440.625

SELECT CustomerName

What are the names of customers who have placed orders?

FROM Customer_T
WHERE CustomerID IN

1. The subquery (shown in the box) is 2. The outer query returns the requested
processed first and an intermediate customer information for each customer
results table created: included in the intermediate results table:

CUSTOMERID CUSTOMERNAME
Contemporary Casuals

8
15 Home Furnishings
5 Eastern Furniture
3
2

11 American Euro Lifestyles
12 Battle Creek Furniture
4

9 rows selected. 9 rows selected.

(SELECT DISTINCT CustomerID
FROM Order_T);

CustomerIDs
from orders

All Customers

Show
names

1
Value Furniture

Impressions
California Classics

Mountain Scenes

FIGURE 7-7 Subquery processing

(a) Processing a noncorrelated subquery

(continued)

Chapter 7 • Advanced SQL 305

So, why did this query require a derived table rather than, say, a subquery? The
reason is we want to display both the standard price and the average standard price for
each of the selected products. The similar query in the prior section on correlated sub-
queries worked fine to show data from only the table in the outer query, the product table.
However, to show both standard price and the average standard price in each displayed
row, we have to get both values into the “outer” query, as is done in the query above.

Combining Queries

Sometimes, no matter how clever you are, you can’t get all the rows you want into the
single answer table using one SELECT statement. Fortunately, you have a lifeline!
The UNION clause is used to combine the output (i.e., union the set of rows) from
multiple queries together into a single result table. To use the UNION clause, each
query involved must output the same number of columns, and they must be UNION
compatible. This means that the output from each query for each column should be of
compatible data types. Acceptance as a compatible data type varies among the DBMS
products. When performing a union where output for a column will merge two different
data types, it is safest to use the CAST command to control the data type conversion

*

1. The first order ID is selected from OrderLine_T: OrderID =1001.

2. The subquery is evaluated to see if any product in that order has a natural ash finish.
Product 2 does, and is part of the order. EXISTS is valued as true and the order ID is
added to the result table.

3. The next order ID is selected from OrderLine_T: OrderID =1002.

4. The subquery is evaluated to see if the product ordered has a natural ash finish. It does.
EXISTS is valued as true and the order ID is added to the result table.

5. Processing continues through each order ID. Orders 1004, 1005, and 1010 are not
included in the result table because they do not include any furniture with a natural ash
finish. The final result table is shown in the text on page 302.

2
4

SELECT DISTINCT OrderID FROM OrderLine_T
WHERE EXISTS

(SELECT *
FROM Product _T

WHERE ProductID = OrderLine_T.ProductID
AND Productfinish = ‘Natural Ash’);

1

3

OrderID
1001
1001
1001
1002
1003
1004
1004
1005
1006
1006
1007
1007
1008
1008
1009
1009
1010

0

ProductID
1
2
4
3
3
6
8
4
4
5
1
2
3
8
4
7
8
0

OrderedQuantity
1
2
1
5
3
2
2
4
1
2
3
2
3
3
2
3

10
0

ProductID
1
2
3
4
5
6
7
8

(AutoNumber)

ProductDescription
End Table
Coffee Table
Computer Desk
Entertainment Center
Writer’s Desk
8-Drawer Dresser
Dining Table
Computer Desk

ProductFinish
Cherry
Natural Ash
Natural Ash
Natural Maple
Cherry
White Ash
Natural Ash
Walnut

ProductStandardPrice ProductLineID
10001
20001
20001
30001
10001
20001
20001
30001

What are the order IDs for all orders that have included furniture finished in natural ash?

$175.00
$200.00
$375.00
$650.00
$325.00
$750.00
$800.00
$250.00

$0.00

(b) Processing a correlated subquery

FIGURE 7-7 (continued)

306 Part IV • Implementation

yourself. For example, the DATE data type in Order_T might need to be converted into
a text data type. The following SQL command would accomplish this:

SELECT CAST (OrderDate AS CHAR) FROM Order_T;

The following query determines the customer(s) who has in a given line item pur-
chased the largest quantity of any Pine Valley product and the customer(s) who has in a
given line item purchased the smallest quantity and returns the results in one table.

Query:

SELECT C1.CustomerID, CustomerName, OrderedQuantity,
‘Largest Quantity’ AS Quantity
FROM Customer_T C1,Order_T O1, OrderLine_T Q1

WHERE C1.CustomerID = O1.CustomerID
AND O1.OrderID = Q1.OrderID
AND OrderedQuantity =
(SELECT MAX(OrderedQuantity)
FROM OrderLine_T)

UNION
SELECT C1.CustomerID, CustomerName, OrderedQuantity,
‘Smallest Quantity’
FROM Customer_T C1, Order_T O1, OrderLine_T Q1

WHERE C1.CustomerID = O1.CustomerID
AND O1.OrderID = Q1.OrderID
AND OrderedQuantity =

(SELECT MIN(OrderedQuantity)
FROM OrderLine_T)

ORDER BY 3;

Notice that an expression Quantity has been created in which the strings
‘Smallest Quantity’ and ‘Largest Quantity’ have been inserted for readability. The
ORDER BY clause has been used to organize the order in which the rows of output are
listed. Figure 7-8 breaks the query into parts to help you understand how it processes.

Result:

CUSTOMERID CUSTOMERNAME ORDEREDQUANTITY QUANTITY

1 Contemporary
Casuals

1 Smallest Quantity

2 Value Furniture 1 Smallest Quantity

1 Contemporary
Casuals

10 Largest Quantity

Did we have to answer this question by using UNION? Could we instead have
answered it using one SELECT and a complex, compound WHERE clause with many
ANDs and ORs? In general, the answer is sometimes (another good academic answer,
like “it depends”). Often, it is simply easiest to conceive of and write a query using
several simply SELECTs and a UNION. Or, if it is a query you frequently run, maybe
one way will process more efficiently than another. You will learn from experience
which approach is most natural for you and best for a given situation.

Now that you remember the union set operation from finite mathematics, you
may also remember that there are other set operations—intersect (to find the elements
in common between two sets) and minus (to find the elements in one set that are not in

Chapter 7 • Advanced SQL 307

another set). These operations—INTERSECT and MINUS—are also available in SQL,
and they are used just as UNION was above to manipulate the result sets created by
two SELECT statements.

Conditional Expressions

Establishing IF-THEN-ELSE logical processing within an SQL statement can now be
accomplished by using the CASE keyword in a statement. Figure 7-9 gives the CASE
syntax, which actually has four forms. The CASE form can be constructed using either
an expression that equates to a value or a predicate. The predicate form is based on
three-value logic (true, false, don’t know) but allows for more complex operations. The
value-expression form requires a match to the value expression. NULLIF and COA-
LESCE are the keywords associated with the other two forms of the CASE expression.

SELECT C1.CustomerID, CustomerName, OrderedQuantity, ‘Smallest Quantity’
 FROM Customer_T C1, Order_T O1, OrderLine_T Q1
 WHERE C1.CustomerID = O1.CustomerID
 AND O1.OrderID = Q1.OrderID
 AND OrderedQuantity =
 (SELECT MIN(OrderedQuantity)
 FROM OrderLine_T)
ORDER BY 3;

SELECT C1.CustomerID, CustomerName, OrderedQuantity, ‘Largest Quantity’ AS Quantity
 FROM Customer_T C1,Order_T O1, OrderLine_T Q1
 WHERE C1.CustomerID = O1.CustomerID
 AND O1.OrderID = Q1.OrderID
 AND OrderedQuantity =
 (SELECT MAX(OrderedQuantity)
 FROM OrderLine_T)

1. In the above query, the subquery is processed first and an intermediate results table created.
It contains the maximum quantity ordered from OrderLine_T and has a value of 10.

2. Next the main query selects customer information for the customer or customers who ordered 10
of any item. Contemporary Casuals has ordered 10 of some unspecified item.

1. In the second main query, the same process is followed but the result returned is for the minimum order quantity.
2. The results of the two queries are joined together using the UNION command.
3. The results are then ordered according to the value in OrderedQuantity. The default is ascending value,

so the orders with the smallest quantity, 1, are listed first.

FIGURE 7-8 Combining queries using UNION

{CASE expression
{WHEN expression
THEN {expression � NULL}} . . .
� {WHEN predicate
THEN {expression � NULL}} . . .
[ELSE {expression NULL}]
END }
� (NULLIF (expression, expression) }
� (COALESCE (expression . . .) }

FIGURE 7-9 CASE conditional
syntax

308 Part IV • Implementation

CASE could be used in constructing a query that asks “What products are included
in Product Line 1?” In this example, the query displays the product description for each
product in the specified product line and a special text, ‘####’ for all other products, thus
displaying a sense of the relative proportion of products in the specified product line.

Query:

SELECT CASE
WHEN ProductLine = 1 THEN ProductDescription
ELSE ‘####’

END AS ProductDescription
FROM Product_T;

Result:

PRODUCTDESCRIPTION

End Table

####

####

####

Writers Desk

####

####

####

Gulutzan & Pelzer (1999, p. 573) indicate that “It’s possible to use CASE expres-
sions this way as retrieval substitutes, but the more common applications are (a) to make
up for SQL’s lack of an enumerated <data type>, (b) to perform complicated if/then cal-
culations, (c) for translation, and (d) to avoid exceptions. We find CASE expressions to be
indispensable, and it amazes us that in pre SQL-92 DBMSs they didn’t exist.”

More Complicated SQL Queries

We have kept the examples used in Chapter 6 and this chapter very simple in order to
make it easier for you to concentrate on the piece of SQL syntax being introduced. It is
important to understand that production databases may contain hundreds and even
thousands of tables, and many of those contain hundreds of columns. While it is diffi-
cult to come up with complicated queries from the four tables used in Chapter 6 and
this chapter, the text comes with a larger version of the Pine Valley Furniture Company
database, which allows for somewhat more complex queries. This version is available at
www.prenhall.com/hoffer and at www.teradatastudentnetwork.com; here are two
samples drawn from that database:

Question 1: For each salesperson, list his or her biggest-selling product.
Query: First, we will define a view called TSales, which computes the total sales
of each product sold by each salesperson. We create this view to simplify answer-
ing this query by breaking it into several easier-to-write queries.

CREATE VIEW TSales AS
SELECT SalespersonName,

ProductDescription,
SUM(OrderedQuantity) AS Totorders

www.prenhall.com/hoffer
www.teradatastudentnetwork.com

Chapter 7 • Advanced SQL 309

FROM Salesperson_T, OrderLine_T, Product_T, Order_T
WHERE Salesperson_T.SalespersonID=Order_T.SalespersonID
AND Order_T.OrderID=OrderLine_T.OrderID
AND OrderLine_T.ProductID=Product_T.ProductID
GROUP BY SalespersonName, ProductDescription;

Next we write a correlated subquery using the view:

SELECT SalespersonName, ProductDescription
FROM TSales AS A

WHERE Totorders = (SELECT MAX(Totorders) FROM TSales B
WHERE B.SalesperssonName = A.SalespersonName);

Notice that once we had the TSales view, the correlated subquery was rather
simple to write. Also, it was simple to conceive of the final query once all the data
needed to display were all in the set created by the virtual table (set) of the view. Our
thought process was if we could create a set of information about the total sales for
each salesperson, we could then find the maximum value of total sales in this set. Then
it is simply a matter of scanning that set to see which salesperson(s) has total sales
equal to that maximum value. There are likely other ways to write SQL statements to
answer this question, so use whatever approach works and is most natural for you. We
suggest that you draw diagrams, like those you have seen in figures in this chapter, to
represent the sets you think you could manipulate to answer the question you face.

Question 2: Write an SQL query to list all salespersons who work in the territory
where the most end tables have been sold.
Query: First, we will create a query called TopTerritory, using the following SQL
statement:

SELECT TOP 1 Territory_T.TerritoryID,
SUM(OrderedQuantity) AS TopSales

FROM Territory_T INNER JOIN (Product_T INNER JOIN
(((Customer_T INNER JOIN DoesBusinessIn_T ON
Customer_T.CustomerID = DoesBusinessIn_T.CustomerID)
INNER JOIN Order_T ON Customer_T.CustomerID =
Order_T.CustomerID) INNER JOIN OrderLine_T ON
Order_T.OrderID = OrderLine_T.OrderID) ON
Product_T.ProductID = OrderLine_T.ProductID) ON
Territory_T.TerritoryID = DoesBusinessIn_T.TerritoryID
WHERE ((ProductDescription)=‘End Table’)
GROUP BY Territory_T.TerritoryID
ORDER BY TotSales DESC;

This will give us the territory number of the top-producing territory for sales of end tables.
Next, we will write a query using this query as a derived table. (To save space, we

simply insert the name we used for the above query, but SQL requires that the above
query be inserted as a derived table where its name appears in the query below.
Alternatively, TopTerritory could have been created as a view.)

SELECT Salesperson_T.SalespersonID, SalesperspmName
FROM Territory_T INNER JOIN Salesperson_T ON

Territory_T.TerritoryID = Salesperson_T.TerritoryID
WHERE Salesperson_T.TerritoryID IN

(SELECT TerritoryID FROM TopTerritory);

310 Part IV • Implementation

You probably noticed the use of the TOP operator in the TopTerritory query above.
TOP, which is compliant with the SQL:2003 standard, specifies a given number or per-
centage of the rows (with or without ties, as indicated by a subclause) to be returned
from the ordered query result set.

TIPS FOR DEVELOPING QUERIES

SQL’s simple basic structure results in a query language that is easy for a novice to use
to write simple ad hoc queries. At the same time, it has enough flexibility and syntax
options to handle complicated queries used in a production system. Both characteris-
tics, however, lead to potential difficulties in query development. As with any other
computer programming, you are likely not to write a query correctly the first time. Be
sure you have access to an explanation of the error codes generated by the RDBMS.
Work initially with a test set of data, usually small, for which you can compute the
desired answer by hand as a way to check your coding. This is especially true if you are
writing INSERT, UPDATE, or DELETE commands, and it is why organizations have
test, development, and production versions of a database, so inevitable development
errors do not harm production data.

First, as a novice query writer, you will find it easy to write a query that runs
without error. Congratulations, but the results may not be exactly what you
intended. Sometimes it will be obvious to you that there is a problem, especially
if you forget to define the links between tables with a WHERE clause and get a
Cartesian join of all possible combinations of records. Other times, your query
will appear to be correct, but close inspection using a test set of data may reveal
that your query returns 24 rows when it should return 25. Sometimes it will return
duplicates you don’t want or just a few of the records you want, and sometimes it
won’t run because you are trying to group data that can’t be grouped. Watch
carefully for these types of errors before you turn in your homework. Working
through a well-thought-out set of test data by hand will help you to catch your
errors. When you are constructing a set of test data, include some examples of com-
mon data values. Then think about possible exceptions that could occur. For exam-
ple, real data might unexpectedly include null data, out-of-range data, or impossible
data values.

Certain steps are necessary in writing any query. The graphical interfaces now
available make it easier to construct queries and to remember table and attribute names
as you work. Here are some suggestions to help you (we assume that you are working
with a database that has been defined and created):

• Familiarize yourself with the data model and the entities and relationships that
have been established. The data model expresses many of the business rules that
may be idiosyncratic for the business or problem you are considering. It is very
important to have a good grasp of the data that are available with which to
work. As demonstrated in Figures 7-7a and 7-7b, you can draw the segment
of the data model you intend to reference in the query and then annotate it to
show qualifications and joining criteria. Alternatively you can draw figures such
as Figures 7-5 and 7-6 with sample data and Venn diagrams to also help conceive
of how to construct subqueries or derived tables that can be used as components
in a more complex query.

• Be sure that you understand what results you want from your query. Often, a user
will state a need ambiguously, so be alert and address any questions you have
after working with users.

• Figure out what attributes you want in your query result. Include each attribute
after the SELECT keyword.

• Locate within the data model the attributes you want and identify the entity
where the required data are stored. Include these after the FROM keyword.

• Review the ERD and all the entities identified in the previous step. Determine
what columns in each table will be used to establish the relationships. Consider
what type of join you want between each set of entities.

Chapter 7 • Advanced SQL 311

• Construct a WHERE equality for each link. Count the number of entities
involved and the number of links established. Usually there will be one more
entity than there are WHERE clauses. When you have established the basic
result set, the query may be complete. In any case, run it and inspect your
results.

• When you have a basic result set to work with, you can begin to fine-tune your
query by adding GROUP BY and HAVING clauses, DISTINCT, NOT IN, and so
forth. Test your query as you add keywords to it to be sure you are getting the
results you want.

• Until you gain query writing experience, your first draft of a query will tend to
work with the data you expect to encounter. Now, try to think of exceptions to
the usual data that may be encountered and test your query against a set of test
data that includes unusual data, missing data, impossible values, and so forth.
If you can handle those, your query is almost complete. Remember that check-
ing by hand will be necessary; just because an SQL query runs doesn’t mean it
is correct.

As you start to write more complicated queries using additional syntax, debug-
ging queries may be more difficult for you. If you are using subqueries, errors of logic
can often be located by running each subquery as a freestanding query. Start with the
subquery that is nested most deeply. When its results are correct, use that tested sub-
query with the outer query that uses its result. You can follow a similar process with
derived tables. Follow this procedure until you have tested the entire query. If you are
having syntax trouble with a simple query, try taking apart the query to find the prob-
lem. You may find it easier to spot a problem if you return just a few crucial attribute
values and investigate one manipulation at a time.

As you gain more experience, you will be developing queries for larger databases.
As the amount of data that must be processed increases, the time necessary to success-
fully run a query may vary noticeably, depending on how you write the query. Query
optimizers are available in the more powerful database management systems such as
Oracle, but there are also some simple strategies for writing queries that may prove
helpful for you. The following are some common strategies to consider if you want to
write queries that run more efficiently:

• Rather than use the SELECT * option, take the time to include the column
names of the attributes you need in a query. If you are working with a wide
table and need only a few of the attributes, using SELECT * may generate a
significant amount of unnecessary network traffic as unnecessary attributes are
fetched over the network. Later, when the query has been incorporated into
a production system, changes in the base table may affect the query results.
Specifying the attribute names will make it easier to notice and correct for such
events.

• Try to build your queries so that your intended result is obtained from one query.
Review your logic carefully to reduce the number of subqueries in the query as
much as possible. Each subquery you include requires the DBMS to return an
interim result set and integrate it with the remaining subqueries, thus increasing
processing time.

• Sometimes data that reside in one table will be needed for several separate
reports. Rather than obtain those data in several separate queries, create a single
query that retrieves all the data that will be needed; you reduce the overhead
by having the table accessed once rather than repeatedly. It may help you to recog-
nize such a situation by thinking about the data that are typically used by a
department and creating a view for the department’s use.

Guidelines for Better Query Design

Now you have some strategies for developing queries that will give you the results you
want. But will these strategies result in efficient queries, or will they result in the “query
from hell,” giving you plenty of time for the pizza to be delivered, to watch the Star Trek

312 Part IV • Implementation

anthology, or to organize your closet? Various database experts, such as DeLoach (1987)
and Holmes (1996), provide suggestions for improving query processing in a variety of
settings. Also see the Web Resources at the end of this chapter and prior chapters for
links to sites where query design suggestions are continually posted. We summarize
here some of their suggestions that apply to many situations:

1. Understand how indexes are used in query processing Many DBMSs will use only
one index per table in a query—often the one that is the most discriminating (i.e.,
has the most key values). Some will never use an index with only a few values com-
pared to the number of table rows. Others may balk at using an index for which the
column has many null values across the table rows. Monitor accesses to indexes and
then drop indexes that are infrequently used. This will improve the performance of
database update operations. In general, queries that have equality criteria for select-
ing table rows (e.g., WHERE Finish = “Birch” OR “Walnut”) will result in faster pro-
cessing than queries involving more complex qualifications do (e.g., WHERE Finish
NOT = “Walnut”) because equality criteria can be evaluated via indexes.

2. Keep optimizer statistics up-to-date Some DBMSs do not automatically update
the statistics needed by the query optimizer. If performance is degrading, force the
running of an update-statistics-like command.

3. Use compatible data types for fields and literals in queries Using compatible
data types will likely mean that the DBMS can avoid having to convert data dur-
ing query processing.

4. Write simple queries Usually the simplest form of a query will be the easiest for
a DBMS to process. For example, because relational DBMSs are based on set the-
ory, write queries that manipulate sets of rows and literals.

5. Break complex queries into multiple simple parts Because a DBMS may use only
one index per query, it is often good to break a complex query into multiple, sim-
pler parts (which each use an index) and then combine together the results of the
smaller queries. For example, because a relational DBMS works with sets, it is
very easy for the DBMS to UNION two sets of rows that are the result of two sim-
ple, independent queries.

6. Don’t nest one query inside another query Usually, nested queries, especially
correlated subqueries, are less efficient than a query that avoids subqueries to pro-
duce the same result. This is another case where using UNION, INTERSECT, or
MINUS and multiple queries may produce results more efficiently.

7. Don’t combine a table with itself Avoid, if possible, using self-joins. It is usually
better (i.e., more efficient for processing the query) to make a temporary copy of a
table and then to relate the original table with the temporary one. Temporary
tables, because they quickly get obsolete, should be deleted soon after they have
served their purpose.

8. Create temporary tables for groups of queries When possible, reuse data that are
used in a sequence of queries. For example, if a series of queries all refer to the same
subset of data from the database, it may be more efficient to first store this subset in
one or more temporary tables and then refer to those temporary tables in the series
of queries. This will avoid repeatedly combining the same data together or repeat-
edly scanning the database to find the same database segment for each query. The
trade-off is that the temporary tables will not change if the original tables are
updated when the queries are running. Using temporary tables is a viable substi-
tute for derived tables, and they are created only once for a series of references.

9. Combine update operations When possible, combine multiple update com-
mands into one. This will reduce query processing overhead and allow the DBMS
to seek ways to process the updates in parallel.

10. Retrieve only the data you need This will reduce the data accessed and trans-
ferred. This may seem obvious, but there are some shortcuts for query writing that
violate this guideline. For example, in SQL the command SELECT * from EMP will
retrieve all the fields from all the rows of the EMP table. But, if the user needs to
see only some of the columns of the table, transferring the extra columns increases
the query processing time.

Chapter 7 • Advanced SQL 313

11. Don’t have the DBMS sort without an index If data are to be displayed in sorted
order and an index does not exist on the sort key field, then sort the data outside
the DBMS after the unsorted results are retrieved. Usually a sort utility will be
faster than a sort without the aid of an index by the DBMS.

12. Learn! Track query processing times, review query plans with the EXPLAIN
command, and improve your understanding of the way the DBMS determines
how to process queries. Attend specialized training from your DBMS vendor on
writing efficient queries, which will better inform you about the query optimizer.

13. Consider the total query processing time for ad hoc queries The total time
includes the time it takes the programmer (or end user) to write the query as well
as the time to process the query. Many times, for ad hoc queries, it is better to have
the DBMS do extra work to allow the user to more quickly write a query. And isn’t
that what technology is supposed to accomplish—to allow people to be more pro-
ductive? So, don’t spend too much time, especially for ad hoc queries, trying to
write the most efficient query. Write a query that is logically correct (i.e., produces
the desired results) and let the DBMS do the work. (Of course, do an EXPLAIN
first to be sure you haven’t written “the query from hell” so that all other users
will see a serious delay in query processing time.) This suggests a corollary: When
possible, run your query when there is a light load on the database, because the
total query processing time includes delays induced by other load on the DBMS
and database.

All options are not available with every DBMS, and each DBMS has unique
options due to its underlying design. You should refer to reference manuals for your
DBMS to know which specific tuning options are available to you.

ENSURING TRANSACTION INTEGRITY

RDBMSs are no different from other types of database managers in that one of their
primary responsibilities is to ensure that data maintenance is properly and com-
pletely handled. Even with extensive testing, as suggested in the prior section, bad
things can happen to good data managers: A data maintenance program may not
work correctly because someone submitted the job twice, some unanticipated anom-
aly in the data occurred, or there was a computer hardware, software, or power mal-
function during the transaction. Data maintenance is defined in units of work called
transactions, which involve one or more data manipulation commands. A transaction
is a complete set of closely related update commands that must all be done, or none of
them done, for the database to remain valid. Consider Figure 7-10, for example. When
an order is entered into the Pine Valley database, all of the items ordered should be
entered at the same time. Thus, either all OrderLine_T rows from this form are to
be entered, along with all the information in Order_T, or none of them should be
entered. Here, the business transaction is the complete order, not the individual items
that are ordered. What we need are commands to define the boundaries of a transac-
tion, to commit the work of a transaction as a permanent change to the database, and
to abort a transaction on purpose and correctly, if necessary. In addition, we need data
recovery services to clean up after abnormal termination of database processing in the
middle of a transaction. Perhaps the order form is accurate, but in the middle of enter-
ing the order, the computer system malfunctions or loses power. In this case, we do
not want some of the changes made and not others. It’s all or nothing at all if we want
a valid database.

When a single SQL command constitutes a transaction, some RDBMSs will auto-
matically commit or roll back after the command is run. With a user-defined transaction,
however, where multiple SQL commands need to be run and either entirely committed
or entirely rolled back, commands are needed to manage the transaction explicitly. Many
systems will have BEGIN TRANSACTION and END TRANSACTION commands,
which are used to mark the boundaries of a logical unit of work. BEGIN TRANSAC-
TION creates a log file and starts recording all changes (insertions, deletions, and
updates) to the database in this file. END TRANSACTION or COMMIT WORK takes the

314 Part IV • Implementation

contents of the log file and applies them to the database, thus making the changes per-
manent, and then empties the log file. ROLLBACK WORK asks SQL to empty the log
file. Some RDBMSs also have an AUTOCOMMIT (ON/OFF) command that specifies
whether changes are made permanent after each data modification command (ON) or
only when work is explicitly made permanent (OFF) by the COMMIT WORK command.

User-defined transactions can improve system performance because transactions
will be processed as sets rather than as individual transactions, thus reducing system
overhead. When AUTOCOMMIT is set to OFF, changes will not be made automatically
until the end of a transaction is indicated. When AUTOCOMMIT is set to ON, changes
will be made automatically at the end of each SQL statement; this would not allow for
user-defined transactions to be committed or rolled back only as a whole.

SET AUTOCOMMIT is an interactive command; therefore, a given user session
can be dynamically controlled for appropriate integrity measures. Each SQL INSERT,
UPDATE, and DELETE command typically works on only one table at a time. Some data
maintenance requires updating of multiple tables for the work to be complete. Therefore,
these transaction-integrity commands are important in clearly defining whole units of
database changes that must be completed in full for the database to retain integrity.

Further, some SQL systems have concurrency controls that handle the updating of a
shared database by concurrent users. These can journalize database changes so that a
database can be recovered after abnormal terminations in the middle of a transaction.
They can also undo erroneous transactions. For example, in a banking application, the
update of a bank account balance by two concurrent users should be cumulative. Such
controls are transparent to the user in SQL; no user programming is needed to ensure
proper control of concurrent access to data. To ensure the integrity of a particular data-
base, be sensitive to transaction integrity and recovery issues and make sure that applica-
tion programmers are appropriately informed of when these commands are to be used.

DATA DICTIONARY FACILITIES

RDBMSs store database definition information in secure system-created tables; we
can consider these system tables as a data dictionary. Becoming familiar with the sys-
tems tables for any RDBMS being used will provide valuable information, whether

Valid information inserted.
COMMIT work.

All changes to data
are made permanent.

Invalid ProductID entered.

Transaction will be ABORTED.
ROLLBACK all changes made to Order_T.

All changes made to Order_T
and OrderLine_T are removed.
Database state is just as it was
before the transaction began.

BEGIN transaction

 INSERT OrderID, Orderdate, CustomerID into Order_T;

 INSERT OrderID, ProductID, OrderedQuantity into OrderLine_T;
 INSERT OrderID, ProductID, OrderedQuantity into OrderLine_T;
 INSERT OrderID, ProductID, OrderedQuantity into OrderLine_T;

END transaction

FIGURE 7-10 An SQL
transaction sequence
(in pseudocode)

Chapter 7 • Advanced SQL 315

you are a user or a database administrator. Because the information is stored in tables,
it can be accessed by using SQL SELECT statements that can generate reports about
system usage, user privileges, constraints, and so on. Also, the RDBMS will provide
special SQL (proprietary) commands, such as SHOW, HELP, or DESCRIBE, to display
predefined contents of the data dictionary, including the DDL that created database
objects. Further, a user who understands the systems-table structure can extend exist-
ing tables or build other tables to enhance built-in features (e.g., to include data on
who is responsible for data integrity). A user is, however, often restricted from modi-
fying the structure or contents of the system tables directly, because the DBMS main-
tains them and depends on them for its interpretation and parsing of queries.

Each RDBMS keeps various internal tables for these definitions. In Oracle 11g,
there are 522 data dictionary views for DBAs to use. Many of these views, or subsets of
the DBA view (i.e., information relevant to an individual user), are also available to
users who do not possess DBA privileges. Those view names begin with USER (anyone
authorized to use the database) or ALL (any user) rather than DBA. Views that begin
with V$ provide updated performance statistics about the database. Here is a list of
some of the tables (accessible to DBAs) that keep information about tables, clusters,
columns, and security. There are also tables related to storage, objects, indexes, locks,
auditing, exports, and distributed environments.

Table Description

DBA_TABLES Describes all tables in the database

DBA_TAB_COMMENTS Comments on all tables in the database

DBA_CLUSTERS Describes all clusters in the database

DBA_TAB_COLUMNS Describes columns of all tables, views, and clusters

DBA_COL_PRIVS Includes all grants on columns in the database

DBA_COL_COMMENTS Comments on all columns in tables and views

DBA_CONSTRAINTS Constraint definitions on all tables in the database

DBA_CLU_COLUMNS Maps table columns to cluster columns

DBA_CONS_COLUMNS Information about all columns in constraint definitions

DBA_USERS Information about all users of the database

DBA_SYS_PRIVS Describes system privileges granted to users and to roles

DBA_ROLES Describes all roles that exist in the database

DBA_PROFILES Includes resource limits assigned to each profile

DBA_ROLE_PRIVS Describes roles granted to users and to other roles

DBA_TAB_PRIVS Describes all grants on objects in the database

To give an idea of the type of information found in the system tables, consider
DBA_USERS. DBA_USERS contains information about the valid users of the database;
its 12 attributes include user name, user ID, encrypted password, default tablespace,
temporary tablespace, date created, and profile assigned. DBA_TAB_COLUMNS has
31 attributes, including owner of each table, table name, column name, data type, data
length, precision, and scale, among others. An SQL query against DBA_TABLES to find
out who owns PRODUCT_T follows. (Note that we have to specify PRODUCT_T, not
Product_T, because Oracle stores data names in all capital letters.)

Query: Who is the owner of the PRODUCT_T table?

SELECT OWNER, TABLE_NAME
FROM DBA_TABLES

WHERE TABLE_NAME = ‘PRODUCT_T’;

316 Part IV • Implementation

Result:

OWNER TABLE_NAME

MPRESCOTT PRODUCT_T

View Description

sys.columns Table and column specifications

sys.computed_columns Specifications about computed columns

sys.foreign_key_columns Details about columns in foreign key constraints

sys.indexes Table index information

sys.objects Database objects listing

sys.tables Tables and their column names

sys.synonyms Names of objects and their synonyms

Every RDBMS contains a set of tables in which metadata of the sort described for
Oracle 11g is contained. Microsoft SQL Server 2008 divides the system tables (or views)
into different categories, based on the information needed:

• Catalog views, which return information that is used by the SQL Server database
engine. All user-available catalog metadata is exposed through catalog views.

• Compatibility views, which are implementations of the system tables from earlier
releases of SQL Server. These views expose the same metadata available in SQL
Server 2000.

• Dynamic management views and functions, which return server state information
that can be used to monitor the health of a server instance, diagnose problems,
and tune performance. There are two types of dynamic management views and
functions:
• Server-scoped dynamic management views and functions, which require VIEW

SERVER STATE permission on the server.
• Database-scoped dynamic management views and functions, which require

VIEW DATABASE STATE permission on the database.
• Information schema views, which provide an internal system table–

independent view of the SQL Server metadata. The information schema views
included in SQL Server comply with the ISO standard definition for the
INFORMATION_SCHEMA.

• Replication views, which contain information that is used by data replication in
Microsoft SQL Server.

SQL Server metadata tables begin with sys, just as Oracle tables begin with DBA, USER,
or ALL.

Here are a few of the Microsoft SQL Server 2008 catalog views:

These metadata views can be queried just like a view of base table data. For exam-
ple, the following query displays specific information about objects in a SQL Server
database that have been modified in the past 10 days:

SELECT name as object_name, SCHEMA_NAME (schema_id) AS
schema_name, type_desc, create_date, modify_date

FROM sys.objects
WHERE modify_date > GETDATE() – 10
ORDER BY modify_date;

You will want to investigate the system views and metadata commands
available with the RDBMS you are using. They can be life savers when you need
critical information to solve a homework assignment or to work exam exercises.
(Is this enough motivation?)

Chapter 7 • Advanced SQL 317

SQL:200N ENHANCEMENTS AND EXTENSIONS TO SQL

Chapter 6 and this chapter have demonstrated the power and simplicity of SQL.
However, readers with a strong interest in business analysis may have wondered about
the limited set of statistical functions available. Programmers familiar with other lan-
guages may have wondered how variables will be defined, flow control established, or
user-defined data types (UDTs) created. And, as programming becomes more object
oriented, how is SQL going to adjust? SQL:1999 extended SQL by providing more pro-
gramming capabilities. SQL:200n has standardized additional statistical functions. With
time, the SQL standard will be modified to encompass object-oriented concepts. Other
notable additions in SQL:200n include three new data types and a new part, SQL/XML.
The first two areas, additional statistical functions within the WINDOW clause, and the
new data types, are discussed here. SQL/XML is discussed briefly in Chapter 8.

Analytical and OLAP Functions

SQL:200n added a set of analytical functions, referred to as OLAP (online analytical
processing) functions, as SQL language extensions. Most of the functions have already
been implemented in Oracle, DB2, Microsoft SQL Server, and Teradata. Including these
functions in the SQL standard addresses the needs for analytical capabilities within the
database engine. Linear regressions, correlations, and moving averages can now be cal-
culated without moving the data outside the database. As SQL:200n is implemented,
vendor implementations will adhere strictly to the standard and become more similar.
We discuss OLAP further in Chapter 9, as part of the discussion of data warehousing.

Table 7-1 lists a few of the newly standardized functions. Both statistical and
numeric functions are included. Functions such as ROW_NUMBER and RANK will
allow the developer to work much more flexibly with an ordered result. For database
marketing or customer relationship management applications, the ability to consider

User-defined data type (UDT)
A data type that a user can define
by making it a subclass of a
standard type or creating a type
that behaves as an object. UDTs
may also have defined functions
and methods.

TABLE 7-1 Some Built-in Functions Added in SQL:200n

Function Description

CEILING Computes the least integer greater than or equal to its argument—for
example, CEIL(100) or CEILING(100).

FLOOR Computes the greatest integer less than or equal to its argument—for
example, FLOOR(25).

SQRT Computes the square root of its argument—for example, SQRT(36).

RANK Computes the ordinal rank of a row within its window. Implies that
if duplicates exist, there will be gaps in the ranks assigned. The rank of
the row is defined as 1 plus the number of rows preceding the row that
are not peers of the row being ranked.

DENSE_RANK Computes the ordinal rank of a row within its window. Implies that
if duplicates exist, there will be no gaps in the ranks assigned. The rank
of the row is the number of distinct rows preceding the row and itself.

ROLLUP Works with GROUP BY to compute aggregate values for each level of
the hierarchy specified by the group by columns, (The hierarchy is
assumed to be left to right in the list of GROUP BY columns.)

CUBE Works with GROUP BY to create a subtotal of all possible columns
for the aggregate specified.

SAMPLE Reduces the number of rows by returning one or more random samples
(with or without replacement). (This function is not ANSI SQL-2003
compliant but is available with many RDBMSs.)

OVER or WINDOW Creates partitions of data, based on values of one or more columns over
which other analytical functions (e.g., RANK) can be computed.

318 Part IV • Implementation

only the top n rows or to subdivide the result into groupings by percentile is a welcome
addition. Users can expect to achieve more efficient processing, too, as the functions are
brought into the database engine and optimized. Once they are standardized, applica-
tion vendors can depend on them, including their use in their applications and avoid-
ing the need to create their own functions outside of the database.

SQL:1999 was amended to include an additional clause, the WINDOW clause. The
WINDOW clause improves SQL’s numeric analysis capabilities. It allows a query to
specify that an action is to be performed over a set of rows (the window). This clause
consists of a list of window definitions, each of which defines a name and specification
for the window. Specifications include partitioning, ordering, and aggregation grouping.

Here is a sample query from the paper that proposed the amendment (Zemke et al.,
1999, p. 4):

SELECT SH.Territory, SH.Month, SH.Sales,
AVG (SH.Sales) OVER W1 AS MovingAverage

FROM SalesHistory AS SH
WINDOW W1 AS (PARTITION BY (SH.Territory)

ORDER BY (SH.Month ASC)
ROWS 2 PRECEDING);

The window name is W1, and it is defined in the WINDOW clause that follows the
FROM clause. The PARTITION clause partitions the rows in SalesHistory by Territory.
Within each territory partition, the rows will be ordered in ascending order, by month.
Finally, an aggregation group is defined as the current row and the two preceding rows of
the partition, following the order imposed by the ORDER BY clause. Thus, a moving aver-
age of the sales for each territory will be returned as MovingAverage. Although proposed,
MOVING_AVERAGE was not included in SQL:1999 or SQL:200n; it has been imple-
mented by many RDBMS vendors, especially those supporting data warehousing and
business intelligence. Though using SQL is not the preferred way to perform numeric
analyses on data sets, inclusion of the WINDOW clause has made many OLAP analyses
easier. Several new WINDOW functions were approved in SQL:200n. Of these new
window functions, RANK and DENSE_RANK are included in Table 7-1. Previously
included aggregate functions, such as AVG, SUM, MAX, and MIN, can also be used in the
WINDOW clause.

New Data Types

SQL:200n includes three new data types and removed two traditional data types. The
data types that were removed are BIT and BIT VARYING. Eisenberg et al. (2004) indi-
cate that BIT and BIT VARYING were removed because they had not been widely sup-
ported by RDBMS products and were not expected to be supported.

The three new data types are BIGINT, MULTISET, and XML. BIGINT is an exact
numeric type of scale 0, meaning it is an integer. The precision of BIGINT is greater than
that of either INT or SMALLINT, but its exact definition is implementation specific.
However, BIGINT, INT, and SMALLINT must have the same radix, or base system. All
operations that can be performed using INT and SMALLINT can be performed using
BIGINT, too.

MULTISET is a new collection data type. The previous collection data type is
ARRAY, a noncore SQL data type. MULTISET differs from ARRAY because it can con-
tain duplicates. This also distinguishes a table defined as MULTISET data from a rela-
tion, which is a set and cannot contain duplicates. MULTISET is unordered, and all
elements are of the same element type. The elements can be any other supported data
type. INTEGER MULTISET, for example, would define a multiset where all the ele-
ments are INTEGER data type. The values in a multiset may be created through
INSERT or through a SELECT statement. An example of the INSERT approach would
be MULTISET (2,3,5,7) and of the SELECT approach MULTISET (SELECT
ProductDescription FROM Product_T WHERE ProductStandardPrice > 200;. MULTI-
SET) reflects the real-world circumstance that some relations may contain duplicates
that are acceptable when a subset is extracted from a table.

Chapter 7 • Advanced SQL 319

Other Enhancements

In addition to the enhancements to windowed tables described previously, the CREATE
TABLE command has been enhanced by the expansion of CREATE TABLE LIKE
options. CREATE TABLE LIKE allows one to create a new table that is similar to an
existing table, but in SQL:1999 information such as default values, expressions used
to generate a calculated column, and so forth, could not be copied to the new table.
Now a general syntax of CREATE TABLE LIKE . . . INCLUDING has been approved.
INCLUDING COLUMN DEFAULTS, for example, will pick up any default values
defined in the original CREATE TABLE command and transfer it to the new table by
using CREATE TABLE LIKE . . . INCLUDING. It should be noted that this command
creates a table that seems similar to a materialized view. However, tables created using
CREATE TABLE LIKE are independent of the table that was copied. Once the table is
populated, it will not be automatically updated if the original table is updated.

An additional approach to updating a table can now be taken by using the new
SQL:200n MERGE command. In a transactional database, it is an everyday need to be able
to add new orders, new customers, new inventory, and so forth, to existing order, customer,
and inventory tables. If changes that require updating information about customers and
adding new customers are stored in a transaction table, to be added to the base customer
table at the end of the business day, adding a new customer used to require an INSERT
command, and changing information about an existing customer used to require an
UPDATE command. The MERGE command allows both actions to be accomplished using
only one query. Consider the following example from Pine Valley Furniture Company:

MERGE INTO Customer_T as Cust
USING (SELECT CustomerID, CustomerName, CustomerAddress,
CustomerCity, CustomerState, CustomerPostalCode

FROM CustTrans_T)
AS CT

ON (Cust.CustomerID = CT.CustomerID)
WHEN MATCHED THEN UPDATE

SET Cust.CustomerName = CT.CustomerName,
Cust.CustomerAddress = CT.CustomerAddress,
Cust.CustomerCity = CT.CustomerCity,
Cust.CustomerState = CT.CustomerState,
Cust.CustomerPostalCode = CT.CustomerPostalCode

WHEN NOT MATCHED THEN INSERT
(CustomerID, CustomerName, CustomerAddress, CustomerCity,
CustomerState, CustomerPostalCode)

VALUES (CT.CustomerID, CT.CustomerName, CT.CustomerAddress,
CT.CustomerCity, CT.CustomerState, CT.CustomerPostalCode);

Programming Extensions

SQL-92 and earlier standards developed the capabilities of SQL as a data retrieval and
manipulation language, and not as an application language. As a result, SQL has been
used in conjunction with computationally complete languages such as C, .NET, and
Java to create business application programs, procedures, or functions. SQL:1999, how-
ever, extended SQL by adding programmatic capabilities in core SQL, SQL/PSM, and
SQL/OLB. These capabilities have been carried forward and included in SQL:200n.

The extensions that make SQL computationally complete include flow control
capabilities, such as IF-THEN, FOR, WHILE statements, and loops, which are contained
in a package of extensions to the essential SQL specifications. This package, called
Persistent Stored Modules (SQL/PSM), is so named because the capabilities to create
and drop program modules are stored in it. Persistent means that a module of code will
be stored until dropped, thus making it available for execution across user sessions, just
as the base tables are retained until they are explicitly dropped. Each module is stored
in a schema as a schema object. A schema does not have to have any program modules,
or it may have multiple modules.

Persistent Stored Modules
(SQL/PSM)
Extensions defined in SQL:1999
that include the capability
to create and drop modules
of code stored in the database
schema across user sessions.

320 Part IV • Implementation

Each module must have a name, an authorization ID, an association with a partic-
ular schema, an indication of the character set to be used, and any temporary table dec-
larations that will be needed when the module executes. Every module must contain one
or more SQL procedures—named programs that each execute one SQL statement when
called. Each procedure must also include an SQLSTATE declaration that acts as a status
parameter and indicates whether an SQL statement has been successfully executed.

SQL/PSM can be used to create applications or to incorporate procedures and
functions using SQL data types directly. Using SQL/PSM introduces procedurality to
SQL, because statements are processed sequentially. Remember that SQL by itself is a
nonprocedural language and that no statement execution sequence is implied.
SQL/PSM includes several SQL control statements:

Statement Description

CASE Executes different sets of SQL sequences, according to a comparison of values or
the value of a WHEN clause, using either search conditions or value expressions.
The logic is similar to that of an SQL CASE expression, but it ends with END
CASE rather than END and has no equivalent to the ELSE NULL clause.

IF If a predicate is TRUE, executes an SQL statement. The statement ends with
an ENDIF and contains ELSE and ELSEIF statements to manage flow control
for different conditions.

LOOP Causes a statement to be executed repeatedly until a condition exists that
results in an exit.

LEAVE Sets a condition that results in exiting a loop.

FOR Executes once for each row of a result set.

WHILE Executes as long as a particular condition exists. Incorporates logic that
functions as a LEAVE statement.

REPEAT Similar to the WHILE statement, but tests the condition after execution of the
SQL statement.

ITERATE Restarts a loop.

SQL/PSM brings the promise of addressing several widely noted deficiencies of
essential SQL. It is still too soon to know if programmers are going to embrace
SQL/PSM or continue to use host languages, invoking SQL through embedded SQL or
via call-level interface (CLI). The standard makes it possible to do the following:

• Create procedures and functions within SQL, thus making it possible to accept
input and output parameters and to return a value directly

• Detect and handle errors within SQL rather than having to handle errors through
another language

• Use the DECLARE statement to create variables that stay in scope throughout the
procedure, method, or function in which they are contained

• Pass groups of SQL statements rather than individual statements, thus improving
performance

• Handle the impedance-mismatch problem, where SQL processes sets of data
while procedural languages process single rows of data within modules

SQL/PSM has not yet been widely implemented, and therefore we have not
included extensive syntax examples in this chapter. Oracle’s PL/SQL and Microsoft
SQL Server’s T-SQL bear some resemblance to the new standard, with its modules of
code and BEGIN . . . END, LOOP, and WHILE statements. Although SQL/PSM is not
yet widely popular, this situation could change quickly.

TRIGGERS AND ROUTINES

Prior to the issuance of SQL:1999, no support for user-defined functions or procedures
was included in the SQL standards. Commercial products, recognizing the need for
such capabilities, have provided them for some time, and we expect to see their syntax

Chapter 7 • Advanced SQL 321

change over time to be in line with the SQL:1999 requirements, just as we expect to see
inclusion of SQL/PSM standards.

Triggers and routines are very powerful database objects because they are stored
in the database and controlled by the DBMS. Thus, the code required to create them is
stored in only one location and is administered centrally. As with table and column con-
straints, this promotes stronger data integrity and consistency of use within the data-
base; it can be useful in data auditing and security to create logs of information about
data updates. Not only can triggers be used to prevent unauthorized changes to the
database, they can also be used to evaluate changes and take actions based on the
nature of the changes. Because triggers are stored only once, code maintenance is also
simplified (Mullins, 1995). Also, because they can contain complex SQL code, they are
more powerful than table and column constraints; however, constraints are usually
more efficient and should be used instead of the equivalent triggers, if possible. A sig-
nificant advantage of a trigger over a constraint to accomplish the same control is that
the processing logic of a trigger can produce a customized user message about the
occurrence of a special event, whereas a constraint will produce a standardized, DBMS
error message, which often is not very clear about the specific event that occurred.

Both triggers and routines consist of blocks of procedural code. Routines are stored
blocks of code that must be called to operate (see Figure 7-11). They do not run automat-
ically. In contrast, trigger code is stored in the database and runs automatically whenever
the triggering event, such as an UPDATE, occurs. Triggers are a special type of stored
procedure and may run in response to either DML or DDL commands. Trigger syntax
and functionality vary from RDBMS to RDBMS. A trigger written to work with an Oracle
database will need to be rewritten if the database is ported to Microsoft SQL Server and
vice versa. For example, Oracle triggers can be written to fire once per INSERT,
UPDATE, or DELETE command or to fire once per row affected by the command.
Microsoft SQL Server triggers can fire only once per DML command, not once per row.

Triggers

Because triggers are stored and executed in the database, they execute against all appli-
cations that access the database. Triggers can also cascade, causing other triggers to fire.
Thus, a single request from a client can result in a series of integrity or logic checks
being performed on the server without causing extensive network traffic between client

Insert
Update
Delete

Call
Procedure_name
(parameter_value:)

Implicit execution

performs
trigger action

returns value
or performs

routine

Explicit execution

ROUTINE:

TRIGGER:

Stored
Procedure

code

Trigger

code

Database

FIGURE 7-11 Triggers
contrasted with stored
procedures

Source: Based on Mullins (1995).

Trigger
A named set of SQL statements
that are considered (triggered)
when a data modification
(i.e., INSERT, UPDATE, DELETE)
occurs or if certain data definitions
are encountered. If a condition
stated within a trigger is met,
then a prescribed action is taken.

322 Part IV • Implementation

and server. Triggers can be used to ensure referential integrity, enforce business rules,
create audit trails, replicate tables, or activate a procedure (Rennhackkamp, 1996).

Constraints can be thought of as a special case of triggers. They also are applied
(triggered) automatically as a result of data modification commands, but their precise
syntax is determined by the DBMS and does not have the flexibility of a trigger.

Triggers are used when you need to perform, under specified conditions, a certain
action as the result of some database event (e.g., the execution of a DML statement such as
INSERT, UPDATE, or DELETE or the DDL statement ALTER TABLE). Thus, a trigger has
three parts—the event, the condition, and the action—and these parts are reflected in the
coding structure for triggers. (See Figure 7-12 for a simplified trigger syntax.) Consider
the following example from Pine Valley Furniture Company: Perhaps the manager in
charge of maintaining inventory needs to know (the action of being informed) when an
inventory item’s standard price is updated in the Product_T table (the event). After creat-
ing a new table, PriceUpdates_T, a trigger can be written that enters each product when it
is updated, the date that the change was made, and the new standard price that was
entered. The trigger is named StandardPriceUpdate, and the code for this trigger follows:

CREATE TRIGGER StandardPriceUpdate
AFTER UPDATE OF ProductStandardPrice ON Product_T
FOR EACH ROW
INSERT INTO PriceUpdates_T VALUES (ProductDescription, SYSDATE,
ProductStandardPrice);

In this trigger, the event is an update of ProductStandardPrice, the condition is FOR EACH
ROW (i.e., not just certain rows), and the action after the event is to insert the specified val-
ues in the PriceUpdates_T table, which stores a log of when (SYSDATE) the change
occurred and important information about changes made to the ProductStandardPrice of
any row in the table. More complicated conditions are possible, such as taking the action
for rows where the new ProductStandardPrice meets some limit or the product is associ-
ated with only a certain product line. It is important to remember that the procedure in
the trigger is performed every time the event occurs; no user has to ask for the trigger to
fire, nor can any user prevent it from firing. Because the trigger is associated with the
Product_T table, the trigger will fire no matter the source (application) causing the event;
thus, an interactive UPDATE command or an UPDATE command in an application pro-
gram or stored procedure against the ProductStandardPrice in the Product_T table will
cause the trigger to execute. In contrast, a routine (or stored procedure) executes only
when a user or program asks for it to run.

Triggers may occur either before, after, or instead of the statement that aroused the
trigger is executed. An “instead of” trigger is not the same as a before trigger but exe-
cutes instead of the intended transaction, which does not occur if the “instead of” trigger
fires. DML triggers may occur on INSERT, UPDATE, or DELETE commands. And they
may fire each time a row is affected, or they may fire only once per statement, regardless
of the number of rows affected. In the case just shown, the trigger should insert the new
standard price information into PriceUpdate_T after Product_T has been updated.

DDL triggers are useful in database administration and may be used to regulate
database operations and perform auditing functions. They fire in response to DDL
events such as CREATE, ALTER, DROP, GRANT, DENY, and REVOKE. The sample
trigger below, taken from SQL Server 2008 Books Online [http://msdn2.microsoft.com/
en-us/library/ms175941], demonstrates how a trigger can be used to prevent the unin-
tentional modification or drop of a table in the database:

CREATETRIGGER trigger_name
{BEFORE| AFTER | INSTEAD OF} {INSERT | DELETE | UPDATE} ON
table_name
[FOR EACH {ROW | STATEMENT}] [WHEN (search condition)]
<triggered SQL statement here>;

FIGURE 7-12 Simplified
trigger syntax in SQL:200n

http://msdn2.microsoft.com/en-us/library/ms175941
http://msdn2.microsoft.com/en-us/library/ms175941

Chapter 7 • Advanced SQL 323

CREATE TRIGGER safety
ON DATABASE
FOR DROP_TABLE, ALTER_TABLE
AS

PRINT ‘You must disable Trigger “safety” to drop or alter tables!’
ROLLBACK;

A developer who wishes to include triggers should be careful. Because triggers
fire automatically, unless a trigger includes a message to the user, the user will be
unaware that the trigger has fired. Also, triggers can cascade and cause other triggers to
fire. For example, a BEFORE UPDATE trigger could require that a row be inserted in
another table. If that table has a BEFORE INSERT trigger, it will also fire, possibly with
unintended results. It is even possible to create an endless loop of triggers! So, while
triggers have many possibilities, including enforcement of complex business rules, cre-
ation of sophisticated auditing logs, and enforcement of elaborate security authoriza-
tions, they should be included with care.

Triggers can be written that provide little notification when they are triggered. A
user who has access to the database but not the authority to change access permissions
might insert the following trigger, also taken from SQL Server 2008 Books Online
[http://msdn2.microsoft.com/en-us/library/ms191134]:

CREATE TRIGGER DDL_trigJohnDoe
ON DATABASE
FOR ALTER_TABLE
AS
GRANT CONTROL SERVER TO JohnDoe;

When an administrator with appropriate permissions issues any ALTER _TABLE
command, the trigger DDL_trigJohnDoe will fire without notifying the administrator,
and it will grant CONTROL SERVER permissions to John Doe.

Routines

In contrast to triggers, which are automatically run when a specified event occurs, routines
must be explicitly called, just as the MIN built-in function is called. SQL-invoked routines
can be either procedures or functions. The terms procedure and function are used in the
same manner as they are in other programming languages. A function returns one value
and has only input parameters. You have already seen the many built-in functions
included in SQL, including the newest functions listed in Table 7-1. A procedure may have
input parameters, output parameters, and parameters that are both input and output
parameters. You may declare and name a unit of procedural code using proprietary code
of the RDBMS product being used or invoke (via a CALL to an external procedure) a host-
language library routine. SQL products had developed their own versions of routines prior
to the issuance of SQL:1999, so be sure to become familiar with the syntax and capabilities
of any product you use. Some of these proprietary languages, such as Microsoft SQL
Server’s Transact-SQL and Oracle’s PL/SQL, are in wide use and will continue to be avail-
able. To give you an idea of how much stored procedure syntax has varied across products,
Table 7-2 examines the CREATE PROCEDURE syntax used by three RDBMS vendors; this
is the syntax for a procedure stored with the database. This table comes from www.tdan.
com/i023fe03.htm by Peter Gulutzan (accessed June 6, 2007, but no longer accessible).

The following are some of the advantages of SQL-invoked routines:

• Flexibility Routines may be used in more situations than constraints or triggers,
which are limited to data-modification circumstances. Just as triggers have more
code options than constraints, routines have more code options than triggers.

• Efficiency Routines can be carefully crafted and optimized to run more quickly
than slower, generic SQL statements.

Function
A stored subroutine that returns
one value and has only input
parameters.

Procedure
A collection of procedural and SQL
statements that are assigned a
unique name within the schema
and stored in the database.

http://msdn2.microsoft.com/en-us/library/ms191134
www.tdan.com/i023fe03.htm
www.tdan.com/i023fe03.htm

324 Part IV • Implementation

• Sharability Routines may be cached on the server and made available to all
users so that they do not have to be rewritten.

• Applicability Routines are stored as part of the database and may apply to the
entire database rather than be limited to one application. This advantage is a
corollary to sharability.

The SQL:200n syntax for procedure and function creation is shown in Figure 7-13. As
you can see, the syntax is complicated, and we will not go into the details about each clause
here. However, a simple procedure follows, to give you an idea of how the code works.

A procedure is a collection of procedural and SQL statements that are assigned a
unique name within the schema and stored in the database. When it is needed to run
the procedure, it is called by name. When it is called, all of the statements in the proce-
dure will be executed. This characteristic of procedures helps to reduce network traffic,
because all of the statements are transmitted at one time, rather than sent individually.
A procedure can access database contents and may have local variables. When the pro-
cedure accesses database contents, the procedure will generate an error message if the
user/program calling the procedure does not have the necessary rights to access the
part of the database used by the procedure.

TABLE 7-2 Comparison of Vendor Syntax Differences in Stored Procedures

The vendors’ syntaxes differ in stored procedures more than in ordinary SQL. For an illustration, here
is a chart that shows what CREATE PROCEDURE looks like in three dialects. We use one line for
each significant part, so you can compare dialects by reading across the line.

SQL:1999/IBM MICROSOFT/SYBASE ORACLE

CREATE PROCEDURE CREATE PROCEDURE CREATE PROCEDURE

Sp_proc1 Sp_proc1 Sp_proc1

(param1 INT) @param1 INT (param1 IN OUT INT)

MODIFIES SQL DATA BEGIN
DECLARE num1 INT;

AS DECLARE @num1 INT AS num1 INT; BEGIN

IF param1 <> 0 IF @param1 <> 0 IF param1 <> 0

THEN SET param1 = 1; SELECT @param1 = 1; THEN param1 :=1;

END IF END IF;

UPDATE Table1 SET
column1 = param1;

UPDATE Table1 SET
column1 = @param1

UPDATE Table1 SET
column1 = param1;

END END

Source: Data from SQL Performance Tuning (Gulutzan and Pelzer, Addison-Wesley, 2002). Viewed at
www.tdan.com/i023fe03.htm, June 6, 2007 (no longer available from this site).

{CREATE PROCEDURE � CREATE FUNCTION} routine_name
([parameter [{,parameter} . . .]])
[RETURNS data_type result_cast] /* for functions only */
[LANGUAGE {ADA�C�COBOL�FORTRAN�MUMPS�PASCAL�PLI�SQL}]
[PARAMETER STYLE {SQL�GENERAL}]
[SPECIFIC specific_name]
[DETERMINISTIC�NOT DETERMINISTIC]
[NO SQL�CONTAINS SQL�READS SQL DATA�MODIFIES SQL DATA]
[RETURNS NULL ON NULL INPUT�CALLED ON NULL INPUT]
[DYNAMIC RESULT SETS unsigned_integer] /* for procedures only */
[STATIC DISPATCH] /* for functions only */
[NEW SAVEPOINT LEVEL | OLD SAVEPOINT LEVEL]
routine_body

FIGURE 7-13 Syntax for
creating a routine, SQL:200n

www.tdan.com/i023fe03.htm

Chapter 7 • Advanced SQL 325

To build a simple procedure that will set a sale price, the existing Product_T table
in Pine Valley Furniture company is altered by adding a new column, SalePrice, that
will hold the sale price for the products:

ALTER TABLE Product_T
ADD (SalePrice DECIMAL (6,2));

Result:

Table altered.

This simple procedure will execute two SQL statements, and there are no input or
output parameters; if present, parameters are listed and given SQL data types in a par-
enthetical clause after the name of the procedure, similar to the columns in a CREATE
TABLE command. The procedure scans all rows of the Product_T table. Products with a
ProductStandardPrice of $400 or higher are discounted 10 percent, and products with a
ProductStandardPrice of less than $400 are discounted 15 percent. As with other data-
base objects, there are SQL commands to create, alter, replace, drop, and show the code
for procedures. The following is an Oracle code module that will create and store the
procedure named ProductLineSale:

CREATE OR REPLACE PROCEDURE ProductLineSale
AS BEGIN

UPDATE Product_T
SET SalePrice = .90 * ProductStandardPrice
WHERE ProductStandardPrice > = 400;

UPDATE Product_T
SET SalePrice = .85 * ProductStandardPrice
WHERE ProductStandardPrice < 400;

END;

Oracle returns the comment “Procedure created” if the syntax has been accepted.
To run the procedure in Oracle, use this command (which can be run interactively,

as part of an application program, or as part of another stored procedure):

SQL > EXEC ProductLineSale

Oracle gives this response:

PL/SQL procedure successfully completed.

Now Product_T contains the following:

PRODUCTLINE PRODUCTID PRODUCTDESCRIPTION PRODUCTFINISH PRODUCTSTANDARDPRICE SALEPRICE

10001 1 End Table Cherry 175 148.75

20001 2 Coffee Table Natural Ash 200 170

20001 3 Computer Desk Natural Ash 375 318.75

30001 4 Entertainment Center Natural Maple 650 585

10001 5 Writer’s Desk Cherry 325 276.25

20001 6 8-Drawer Dresser White Ash 750 675

20001 7 Dining Table Natural Ash 800 720

30001 8 Computer Desk Walnut 250 212.5

326 Part IV • Implementation

We have emphasized numerous times that SQL is a set-oriented language,
meaning that, in part, the result of an SQL command is a set of rows. You probably
noticed in Figure 7-13 that procedures can be written to work with many different
host languages, most of which are record-oriented languages, meaning they
are designed to manipulate one record, or row, at a time. This difference is often
called an impedance mismatch between SQL and the host language that uses SQL
commands. When SQL calls an SQL procedure, as in the example above, this is
not an issue, but when the procedure is called, for example, by a C program, it can be
an issue. In the next section we consider embedding SQL in host languages and some
of the additional capabilities needed to allow SQL to work seamlessly with lan-
guages not designed to communicate with programs written in other, set-oriented
languages.

EMBEDDED SQL AND DYNAMIC SQL

We have been using the interactive, or direct, form of SQL. With interactive SQL, one
SQL command is entered and executed at a time. Each command constitutes a logical
unit of work, or a transaction. The commands necessary to maintain a valid database,
such as ROLLBACK and COMMIT, are transparent to the user in most interactive SQL
situations. SQL was originally created to handle database access alone and did not have
flow control or the other structures necessary to create an application. SQL/PSM, intro-
duced in SQL:1999, provides for the types of programmatic extensions needed to
develop a database application.

Prior to SQL/PSM, two other forms of SQL were widely used in creating applica-
tions on both clients and servers; they are referred to as embedded SQL and dynamic
SQL. SQL commands can be embedded in third-generation langagues (3GLs), such as
Ada, and COBOL, as well as in C, PHP, .NET, and Java if the commands are placed at
appropriate locations in a 3GL host program. Oracle also offers PL/SQL, or SQL
Procedural Language, a proprietary language that extends SQL by adding some proce-
dural language features such as variables, types, control structures (including
IF-THEN-ELSE loops), functions, and procedures. PL/SQL blocks of code can also be
embedded within 3GL programs.

Dynamic SQL derives the precise SQL statement at run time. Programmers write
to an application programming interface (API) to achieve the interface between lan-
guages. Embedded SQL and dynamic SQL will continue to be used. Programmers are
used to them, and in many cases they are still an easier approach than attempting to use
SQL as an application language in addition to using it for database creation, administra-
tion, and querying.

There are several reasons to consider embedding SQL in a 3GL:

1. It is possible to create a more flexible, accessible interface for the user. Using
interactive SQL requires a good understanding of both SQL and the database
structure—understanding that a typical application user may not have.
Although many RDBMSs come with form, report, and application generators (or
such capabilities available as add-ons), developers frequently envision capabili-
ties that are not easily accomplished with these tools but that can be easily
accomplished using a 3GL. Large, complex programs that require access to a
relational database may best be programmed in a 3GL with embedded SQL calls
to an SQL database.

2. It may be possible to improve performance by using embedded SQL. Using inter-
active SQL requires that each query be converted to executable machine code each
time the query is processed. Or, the query optimizer, which runs automatically in
a direct SQL situation, may not successfully optimize the query, causing it to run
slowly. With embedded SQL, the developer has more control over database access
and may be able to create significant performance improvements. Knowing when
to rely on the SQL translator and optimizer and when to control it through the
program depends on the nature of the problem, and making this trade-off is best
accomplished through experience and testing.

Embedded SQL
Hard-coded SQL statements
included in a program written in
another language, such as C or Java.

Dynamic SQL
Specific SQL code generated on
the fly while an application is
processing.

Chapter 7 • Advanced SQL 327

3. Database security may be improved by using embedded SQL. Restricted access
can be achieved by a DBA through the GRANT and REVOKE permissions in SQL
and through the use of views. These same restrictions can also be invoked in an
embedded SQL application, thus providing another layer of protection. Complex
data integrity checks also may be more easily accomplished, including cross-field
consistency checks.

A program that uses embedded SQL will consist of the host program written in a
3GL such as C or COBOL, and there will also be sections of SQL code sprinkled
throughout. Each section of SQL code will begin with EXEC SQL, keywords used to
indicate an embedded SQL command that will be converted to the host source code
when run through the precompiler. You will need a separate precompiler for each host
language that you plan to use. Be sure to determine that the 3GL compiler is compatible
with your RDBMS’s precompiler for each language.

When the precompiler encounters an EXEC SQL statement, it will translate that
SQL command into the host program language. Some, but not all, precompilers will
check for correct SQL syntax and generate any required error messages at this point.
Others will not generate an error message until the SQL statement actually attempts to
execute. Some products’ precompilers (DB2, SQL/DS, Ingres) create a separate file of
SQL statements that is then processed by a separate utility called a binder, which deter-
mines that the referenced objects exist, that the user possesses sufficient privileges to
run the statement, and the processing approach that will be used. Other products
(Oracle, Informix) interpret the statements at run time rather than compiling them.
In either case, the resulting program will contain calls to DBMS routines, and the
link/editor programs will link these routines into the program.

Here is a simple example, using C as the host language, that will give you an idea
of what embedded SQL looks like in a program. This example uses a prepared SQL
statement named GETCUST, which will be compiled and stored as executable code in
the database. CustID is the primary key of the customer table. GETCUST, the prepared
SQL statement, returns customer information (cname, caddress, city, state, postcode)
for an order number. A placeholder is used for the order information, which is an input
parameter. Customer information is output from the SQL query and stored into host
variables using the into clause. This example assumes that only one row is returned
from the query, what is often called a singleton SELECT. (We’ll discuss below how to
handle the situation in which it is possible to return more than one row.)

exec sql prepare getcust from
“select cname, c_address, city, state, postcode
from customer_t, order_t
where customer_t.custid = order_t.custid and orderid = ?”;
.
.
./* code to get proper value in theOrder */

exec sql execute getcust into :cname, :caddress, :city, :state,
:postcode using theOrder;

.

.

.

If a prepared statement returns multiple rows, it is necessary to write a program
loop using cursors to return a row at a time to be stored. A cursor is a data structure,
internal to the programming environment, that points to a result table row (similarly to
how a display screen cursor points to where data would be inserted in a form if you
began entering data). Cursors help to eliminate the impedance mismatch between
SQL’s set-at-a-time processing and procedural languages’ record-at-a-time processing.
Record-at-a-time languages have to be able to move cursor values forward and back-
ward in the set (FETCH NEXT or FETCH PRIOR), to find the first or last row in a result

328 Part IV • Implementation

set (FETCH FIRST and FETCH LAST), to move the cursor to a specific row or one rela-
tive to the current position (FETCH ABSOLUTE or FETCH RELATIVE), and to know
the number of rows to process and when the end of the result set is reached, which often
triggers the end of a programming loop (FOR . . . END FOR). There are different types
of cursors, and the number of types and how they are each handled varies by RDBMS.
Thus, this topic is beyond the scope of this book, although you are now aware of this
important aspect of embedded SQL.

Dynamic SQL is used to generate appropriate SQL code on the fly while an appli-
cation is processing. Most programmers write to an API, such as ODBC, which can then
be passed through to any ODBC-compliant database. Dynamic SQL is central to most
Internet applications. The developer is able to create a more flexible application because
the exact SQL query is determined at run time, including the number of parameters to
be passed, which tables will be accessed, and so forth. Dynamic SQL is very useful
when an SQL statement shell will be used repeatedly, with different parameter values
being inserted each time it executes.

Embedded and dynamic SQL code is vulnerable to malicious modification. Any
procedure that has or especially constructs SQL statements should be reviewed for such
vulnerabilities. A common form of such an attack involves insertion of the malicious
code into user input variables that are concatenated with SQL commands and then exe-
cuted. Alternatively, malicious code can be included in text stored in the database. As
long as the malicious code is syntactically correct, the SQL database engine will process
it. Preventing and detecting such attacks can be complicated, and this is beyond the
scope of this text. The reader is encouraged to do an Internet search on the topic of SQL
injection for recommendations. At a minimum, user input should be carefully vali-
dated, strong typing of columns should be used to limit exposure, and input data can be
filtered or modified so that special SQL characters (e.g., ;) or words (e.g., DELETE) are
put in quotes so they cannot be executed.

Currently, the Open Database Connectivity (ODBC) standard is the most com-
monly used API. SQL:1999 includes the SQL Call Level Interface (SQL/CLI). Both are
written in C, and both are based on the same earlier standard. Java Database
Connectivity (JDBC) is an industry standard used for connecting from Java. It is not yet
an ISO standard. No new functionality has been added in SQL:200n.

As SQL:200n becomes implemented more completely, the use of embedded and
dynamic SQL will become more standardized because the standard creates a compu-
tationally complete SQL language for the first time. Because most vendors have
created these capabilities independently, though, the next few years will be a period
in which SQL:1999-compliant products will exist side by side with older, but
entrenched, versions. The user will need to be aware of these possibilities and deal
with them.

Summary

This chapter continues from Chapter 6, which introduced
the SQL language. Equi-joins, natural joins, outer joins,
and union joins have been considered. Equi-joins are
based on equal values in the common columns of the
tables that are being joined and will return all requested
results including the values of the common columns from
each table included in the join. Natural joins return all
requested results, but values of the common columns are
included only once. Outer joins return all the values in one
of the tables included in the join, regardless of whether a
match exists in the other table or not. Union joins return a
table that includes all data from each table that was joined.

Nested subqueries, where multiple SELECT state-
ments are nested within a single query, are useful for
more complex query situations. A special form of the

subquery, a correlated subquery, requires that a value be
known from the outer query before the inner query can
be processed. Other subqueries process the inner query,
return a result to the next outer query, and then process
that outer query.

Other advanced SQL topics include the use of embed-
ded SQL and the use of triggers and routines. SQL can be
included within the context of many third-generation
languages including COBOL, C, Fortran, and Ada and
more modern languages such as C, PHP, .NET, and Java.
The use of embedded SQL allows for the development of
more flexible interfaces, improved performance, and
improved database security. User-defined functions that
run automatically when records are inserted, updated, or
deleted are called triggers. Procedures are user-defined

Chapter 7 • Advanced SQL 329

code modules that can be called to execute. OLTP and
OLAP are used for operational transaction processing and
data analysis respectively.

New analytical functions included in SQL:200n are
shown. Extensions already included in SQL:1999 made
SQL computationally complete and included flow con-
trol capabilities in a set of SQL specifications known as
Persistent Stored Modules (SQL/PSM). SQL/PSM can
be used to create applications or to incorporate pro-
cedures and functions using SQL data types directly.
SQL-invoked routines, including triggers, functions,

and procedures, were also included in SQL:1999. Users
must realize that these capabilities have been included
as vendor-specific extensions and will continue to exist
for some time.

Dynamic SQL is an integral part of Web-enabling
databases and will be demonstrated in more detail in
Chapter 8. This chapter has presented some of the more
complex capabilities of SQL and has created awareness
of the extended and complex capabilities of SQL
that must be mastered to build database application
programs.

Chapter Review

Key Terms

Correlated subquery 303
Dynamic SQL 326
Embedded SQL 326
Equi-join 291

Function 323
Join 290
Natural join 292
Outer join 293

Persistent Stored Modules
(SQL/PSM) 319

Procedure 323
Trigger 321

User-defined data type
(UDT) 317

Review Questions

1. Define each of the following terms:
a. dynamic SQL
b. correlated subquery
c. embedded SQL
d. procedure
e. join
f. equi-join
g. self join
h. outer join
i. function
j. Persistent Stored Modules (SQL/PSM)

2. Match the following terms to the appropriate definition:
_____ equi-join
_____ natural join
_____ outer join
_____ trigger

_____ procedure
_____ embedded SQL

_____ UDT

_____ COMMIT

_____ SQL/PSM

_____ Dynamic SQL

_____ ROLLBACK

5. Explain the following statement regarding SQL: Any query
that can be written using the subquery approach can also be
written using the joining approach but not vice versa.

6. What is the purpose of the COMMIT command in SQL?
How does commit relate to the notion of a business transac-
tion (e.g., entering a customer order or issuing a customer
invoice)?

7. Care must be exercised when writing triggers for a
database. What are some of the problems that could be
encountered?

8. Explain the structure of a module of code that defines a trigger.
9. Under what conditions can a UNION clause be used?

10. Discuss the differences between triggers and stored
procedures.

11. Explain the purpose of SQL/PSM.
12. List four advantages of SQL-invoked routines.
13. When would you consider using embedded SQL? When

would you use dynamic SQL?
14. When do you think that the CASE keyword in SQL would

be useful?
15. Explain the use of derived tables.
16. Describe an example in which you would want to use a

derived table.
17. What other Oracle object can be used in place of a derived

table? Which approach do you think is better?
18. If two queries involved in a UNION operation contained

columns that were data type incompatible, how would you
recommend fixing this?

19. Can an outer join be easily implemented when joining more
than two tables? Why or why not?

20. This chapter discusses the data dictionary views for
Oracle 11g. Research another RDBMS, such as Microsoft
SQL Server, and report on its data dictionary facility and
how it compares with Oracle.

a. undoes changes to a table
b. user-defined data type
c. SQL:1999 extension
d. returns all records of

designated table
e. keeps redundant columns
f. makes changes to a table

permanent
g. process that includes SQL

statements within a host
language

h. process of making an application
capable of generating specific
SQL code on the fly

i. does not keep redundant
columns

j. set of SQL statements that execute
under stated conditions

k. stored, named collection of
procedural and SQL statements

3. When is an outer join used instead of a natural join?
4. Explain the processing order of a correlated subquery.

330 Part IV • Implementation

Problems and Exercises

FacultyID

2143
2143
3467
3467
4756
4756
...

CourseID

ISM 3112
ISM 3113
ISM 4212
ISM 4930
ISM 3113
ISM 3112

DateQualified

9/1988
9/1988
9/1995
9/1996
9/1991
9/1991

QUALIFIED (FacultyID, CourseID, DateQualified)

SectionNo

2712
2713
2714
2715
...

SECTION (SectionNo, Semester, CourseID)

StudentID

38214
54907
54907
66324
...

SectionNo

2714
2714
2715
2713

Semester

I-2008
I-2008
I-2008
I-2008

REGISTRATION (StudentID, SectionNo, Semester)

STUDENT (StudentID, StudentName)

StudentID

38214
54907
66324
70542
...

StudentName

Letersky
Altvater
Aiken
Marra

FacultyID

2143
3467
4756
...

FacultyName

Birkin
Berndt
Collins

FACULTY (FacultyID, FacultyName)

CourseID

ISM 3113
ISM 3113
ISM 4212
ISM 4930

CourseID

ISM 3113
ISM 3112
ISM 4212
ISM 4930
...

CourseName

Syst Analysis
Syst Design
Database
Networking

COURSE (CourseID, CourseName)

Semester

I-2008
I-2008
I-2008
I-2008

FIGURE 7-14 Class scheduling relations (for Problems and Exercises 1–5)

Problems and Exercises 1 through 5 are based on the class schedule
3NF relations along with some sample data in Figure 7-14. For
Problems and Exercises 1 through 5, draw a Venn or ER diagrams
and mark it to show the data you expect your query use to produce
the results.

1. Write SQL retrieval commands for each of the following
queries:
a. Display the course ID and course name for all courses

with an ISM prefix.
b. Display all courses for which Professor Berndt has been

qualified.
c. Display the class roster, including student name, for all

students enrolled in section 2714 of ISM 4212.
2. Write an SQL query to answer the following question:

Which instructors are qualified to teach ISM 3113?
3. Write an SQL query to answer the following question: Is any

instructor qualified to teach ISM 3113 and not qualified to
teach ISM 4930?

4. Write SQL queries to answer the following questions:
a. How many students were enrolled in section 2714 dur-

ing semester I-2008?
b. How many students were enrolled in ISM 3113 during

semester I-2008?
5. Write an SQL query to answer the following question:

Which students were not enrolled in any courses during
semester I-2008?

Problems and Exercises 6 through 14 are based on Figure 7-15.
This problem set continues from Chapter 6, Problems and
Exercises 10 through 15, which were based on Figure 6-12.

6. Determine the relationships among the four entities in
Figure 7-15. List primary keys for each entity and any for-
eign keys necessary to establish the relationships and
maintain referential integrity. Pay particular attention to
the data contained in TUTOR REPORTS when you set up
its primary key.

Chapter 7 • Advanced SQL 331

Active5/22/2008

Temp Stop5/22/2008

Active5/22/2008

Active5/22/2008

Dropped1/05/2008

Temp Stop1/05/2008

Active1/05/2008

StatusCertDateTutorID

106

105

104

103

102

101

100

1.53007

7.83006

4.83005

2.73004

3.33003

1.33002

5.63001

2.33000

ReadStudentID 6/01/20083006

6/28/20086/01/20083005

6/15/20086/01/20083004

5/28/20083003

3/01/20082/10/20083002

5/15/20081/15/20083001

1/10/20083000

EndDateStartDateStudentIDTutorIDMatchID

1047

1046

1035

1064

1023

1012

1001

TUTOR (TutorID, CertDate, Status)

STUDENT (StudentID, Read)

MATCH HISTORY (MatchID, TutorID, StudentID,
StartDate, EndDate)

247/08

5107/08

446/08

686/08

486/08

LessonsHours

1

4

5

4

1

MatchID

TUTOR REPORT (MatchID, Month, Hours, Lessons)

Month

FIGURE 7-15 Adult literacy program (for Problems and Exercises 6–14)

7. Write the SQL command to add MATH SCORE to the
STUDENT table.

8. Write the SQL command to add SUBJECT to TUTOR. The only
values allowed for SUBJECT will be Reading, Math, and ESL.

9. What do you need to do if a tutor signs up and wants to
tutor in both reading and math? Draw the new ERD and
write any SQL statements that would be needed to handle
this development.

10. Write the SQL command to find any tutors who have not
submitted a report for July.

11. Where do you think student and tutor information such as
name, address, phone, and e-mail should be kept? Write the
necessary SQL commands to capture this information.

12. List all active students in June by name. (Make up names
and other data if you are actually building a prototype data-
base.) Include the number of hours students received tutor-
ing and how many lessons they completed.

13. Which tutors, by name, are available to tutor? Write the SQL
command.

14. Which tutor needs to be reminded to turn in reports? Write
the SQL command.

Problems and Exercises 15 through 44 are
based on the entire (“big” version) Pine
Valley Furniture Company database. Note:
Depending on what DBMS you are using,

some field names may have changed to avoid conflicting with
reserved words for the DBMS. When you first use the DBMS,
check the table definitions to see what the field names are for the

DBMS you are using. See the Preface and inside covers of this book
for instructions on where to find this database, including on www.
teradatastudentnetwork.com.

15. Write an SQL command that will find any customers who
have not placed orders.

16. List the names and number of employees supervised (label
this value HeadCount) for each supervisor who supervises
more than two employees.

17. List the name of each employee, his or her birth date,
the name of his or her manager, and the manager’s birth
date for those employees who were born before their man-
ager was born; label the manager’s data Manager and
ManagerBirth.

18. Write an SQL command to display the order number, cus-
tomer number, order date, and items ordered for order
number 1.

19. Write an SQL command to display each item ordered for
order number 1, its standard price, and the total price for
each item ordered.

20. Write an SQL command to total the cost of order number 1.
21. Calculate the total raw material cost (label TotCost) for each

product compared to its standard product price. Display
product ID, product description, standard price, and the
total cost in the result.

22. For every order that has been received, display the order ID,
the total dollar amount owed on that order (you’ll have to
calculate this total from attributes in one or more tables;
label this result TotalDue), and the amount received in

www.teradatastudentnetwork.com
www.teradatastudentnetwork.com

332 Part IV • Implementation

payments on that order (assume that there is only one pay-
ment made on each order). To make this query a little sim-
pler, you don’t have to include those orders for which no
payment has yet been received. List the results in decreasing
order of the difference between total due and amount paid.

23. Write an SQL query to list each salesperson who has sold com-
puter desks and the number of units sold by each salesperson.

24. List, in alphabetical order, the names of all employees (man-
agers) who are now managing people with skill ID BS12; list
each manager’s name only once, even if that manager man-
ages several people with this skill.

25. Display the salesperson name, product finish, and total
quantity sold (label as TotSales) for each finish by each
salesperson.

26. Write a query to list the number of products produced in
each work center (label as TotalProducts). If a work center
does not produce any products, display the result with a
total of 0.

27. The production manager at PVFC is concerned about sup-
port for purchased parts in products owned by customers.
A simple analysis he wants done is to determine for each
customer how many vendors are in the same state as that
customer. Develop a list of all the PVFC customers by name
with the number of vendors in the same state as that cus-
tomer. (Label this computed result NumVendors.)

28. Display the order IDs for customers who have not made
any payment, yet, on that order. Use the set command
UNION, INTERSECT, or MINUS in your query.

29. Display the names of the states in which customers reside
but for which there is no salesperson residing in that state.
There are several ways to write this query. Try to write it
without any WHERE clause. Write this query two ways,
using the set command UNION, INTERSECT, or MINUS
and not using any of these commands. Which was the most
natural approach for you, and why?

30. Write an SQL query to produce a list of all the products (i.e.,
product description) and the number of times each product
has been ordered.

31. Display the customer ID, name, and order ID for all cus-
tomer orders. For those customers who do not have any
orders, include them in the display once.

32. Display the EmployeeID and EmployeeName for those
employees who do not possess the skill Router. Display the
results in order by EmployeeName.

33. Display the name of customer 16 and the names of all the
customers that are in the same zip code as customer 16. (Be
sure this query will work for any customer.)

34. Rewrite your answer to Problem and Exercise 33 for each
customer, not just customer 16.

35. Display the customer ID, name, and order ID for all customer
orders. For those customers who do not have any orders,
include them in the display once by showing order ID 0.

36. Show the customer ID and name for all the customers who
have ordered both products with IDs 3 and 4 on the same
order.

37. Display the customer names of all customer who have
ordered (on the same or different orders) both products
with IDs 3 and 4.

38. Review the first query in the “Correlated Subqueries” sec-
tion. Can you identify a special set of standard prices for
which this query will not yield the desired result? How
might you rewrite the query to handle this situation?

39. Write an SQL query to list the order number and order
quantity for all customer orders for which the order quan-
tity is greater than the average order quantity of that prod-
uct. (Hint: This involves using a correlated subquery.)

40. Write an SQL query to list the salesperson who has sold the
most computer desks.

41. Display in product ID order the product ID and total amount
ordered of that product by the customer who has bought the
most of that product; use a derived table in a FROM clause to
answer this query.

42. Display employee information for all the employees in each
state who were hired before the most recently hired person
in that state.

43. The head of marketing is interested in some opportunities
for cross-selling of products. She thinks that the way to
identify cross-selling opportunities is to know for each
product how many other products are sold to the same cus-
tomer on the same order (e.g., a product that is bought by
a customer in the same order with lots of other products is
a better candidate for cross-selling than a product bought
by itself).
a. To help the marketing manager, first list the IDs for all

the products that have sold in total more than 20 units
across all orders. (These are popular products, which are
the only products she wants to consider as triggers for
potential cross-selling.)

b. Make a new query that lists all the IDs for the orders
that include products that satisfy the first query, along
with the number of products on those orders. Only
orders with three or more products on them are of inter-
est to the marketing manager. Write this query as gen-
eral as possible to cover any answer to the first query,
which might change over time. To clarify, if product X is
one of the products that is in the answer set from part a,
then in part b we want to see the desired order informa-
tion for orders that include product X.

c. The marketing manager needs to know what other
products were sold on the orders that are in the result
for part b. (Again, write this query for the general, not
specific, result to the query in part b.) These are products
that are sold, for example, with product X from part a,
and these are the ones that if people buy that product,
we’d want to try to cross-sell them product X because
history says they are likely to buy it along with what
else they are buying. Write a query to identify these
other products by ID and description. It is okay to
include “product X” in your result (i.e., you don’t need
to exclude the products in the result of part a.).

44. For each product, display in ascending order, by product ID,
the product ID and description, along with the customer ID
and name for the customer who has bought the most of that
product; also show the total quantity ordered by that
customer (who has bought the most of that product). Use a
correlated subquery.

Chapter 7 • Advanced SQL 333

Field Exercises

1. Conduct a search of the Web to locate as many links as pos-
sible that discuss SQL standards.

2. Compare two versions of SQL to which you have access,
such as Microsoft Access and Oracle SQL*Plus. Identify at

least five similarities and three dissimilarities in the SQL
code from these two SQL systems. Do the dissimilarities
cause results to differ?

References

DeLoach, A. 1987. “The Path to Writing Efficient Queries in
SQL/DS.” Database Programming & Design 1,1 (January):
26–32.

Eisenberg, A., J. Melton, K. Kulkarni, J. E. Michels, and
F. Zemke. 2004. “SQL:2003 Has Been Published.”
SIGMOD Record 33,1 (March):119–126.

Gulutzan, P., and T. Pelzer. 1999. SQL-99 Complete, Really!
Lawrence, KS: R&D Books.

Holmes, J. 1996. “More Paths to Better Performance.” Database
Programming & Design 9, 2 (February):47–48.

Mullins, C. S. 1995. “The Procedural DBA.” Database Programming &
Design 8,12 (December): 40–45.

Rennhackkamp, M. 1996. “Trigger Happy.” DBMS 9,5 (May):
89–91, 95.

Zemke, F., K. Kulkarni, A. Witkowski, and B. Lyle. 1999.
“Introduction to OLAP Functions.” ISO/IEC JTC1/SC32
WG3: YGJ.068 ANSI NCITS H2–99–154r2.

Further Reading

American National Standards Institute. 2000. ANSI Standards
Action 31,11 (June 2): 20.

Celko, J. 2006. Analytics and OLAP in SQL. San Francisco:
Morgan Kaufmann.

Codd, E. F. 1970. “A Relational Model of Data for Large Shared
Data Banks.” Communications of the ACM 13,6 (June): 77–87.

Date, C. J., and H. Darwen. 1997. A Guide to the SQL Standard.
Reading, MA: Addison-Wesley.

Itzik, B., L. Kollar, and D. Sarka. 2006. Inside Microsoft SQL Server
2005 T-SQL Querying. Redmond, WA: Microsoft Press.

Itzik B., D. Sarka, and R. Wolter. 2006. Inside Microsoft SQL Server
2005: T-SQL Programming. Redmond, WA: Microsoft Press.

Kulkarni, K. 2004. “Overview of SQL:2003.” Accessed at www.
wiscorp.com/SQLStandards.html#keyreadings.

Melton, J. 1997. “A Case for SQL Conformance Testing.”
Database Programming & Design 10,7 (July): 66–69.

van der Lans, R. F. 1993. Introduction to SQL, 2nd ed.
Workingham, UK: Addison-Wesley.

Winter, R. 2000. “SQL-99’s New OLAP Functions.” Intelligent
Enterprise 3,2 (January 20): 62, 64–65.

Winter, R. 2000. “The Extra Mile.” Intelligent Enterprise 3,10
(June 26): 62–64.

See also “Further Reading” in Chapter 6.

Web Resources

www.ansi.org Web site of the American National Standards
Institute. Contains information on the ANSI federation
and the latest national and international standards.

www.coderecipes.net Web site that explains and shows exam-
ples for a wide range of SQL commands.

www.fluffycat.com/SQL/ Web site that defines a sample database
and shows examples of SQL queries against this database.

www.iso.ch The International Organization for Standardization’s
(ISO’s) Web site, which provides information about the ISO.
Copies of current standards may be purchased here.

www.sqlcourse.com and www.sqlcourse2.com Web sites that
provide tutorials for a subset of ANSI SQL with a practice
database.

standards.ieee.org The home page of the IEEE standards
organization.

www.tizag.com/sqlTutorial/ Web site that provides a set of
tutorials on SQL concepts and commands.

http://troelsarvin.blogspot.com/ Blog that provides a detailed
comparison of different SQL implementations, including
DB2, Microsoft SQL, MySQL, Oracle, and PostGreSQL

www.teradatastudentnetwork.com Web site where your
instructor may have created some course environ-
ments for you to use Teradata SQL Assistant, Web
Edition, with one or more of the Pine Valley Furniture
and Mountain View Community Hospital data sets
for this text.

www.wiscorp.com/SQLStandards.html#keyreadings
www.wiscorp.com/SQLStandards.html#keyreadings
www.ansi.org
www.coderecipes.net
www.fluffycat.com/SQL/
www.iso.ch
www.sqlcourse.com
www.sqlcourse2.com
www.tizag.com/sqlTutorial/
http://troelsarvin.blogspot.com/
www.teradatastudentnetwork.com

CASE
Mountain View Community Hospital

Case Description

Use the databases you implemented in Chapter 6 for Mountain
View Community Hospital to complete the case questions and
case exercises.

Case Questions

1. Does your SQL-based DBMS support dynamic SQL, func-
tions, triggers, stored procedures, and UDTs?

2. HIPAA’s privacy and security rules mandate audit controls
“that record and examine activity in information systems
that contain or use electronic protected health information”
[§164.312(b)]. How can DDL triggers be used in support of
this mandate?

Case Exercises

1. Using the small sample database you created for Dr. Z in
Case Exercise 1 in Chapter 6, write queries that illustrate
the more complex queries covered in this chapter:
a. Select information from two or more tables (e.g., all the

details of all the visits of a patient, etc.).
b. Use subquery syntax (e.g., a listing of all the patients who

reported pain that exceeded the average pain for all visits).
c. Return a result table that could be used to produce a

report, sorted by patient name or date, for a particular
week or after a particular date, or a listing of patient vis-
its for patients assigned to a specific social worker.

2. Review the exercises below and select several to attempt. You
will probably need to add to your prototype and populate
your tables with sample data in order to test your queries:
a. For a given physician, which treatments has that physi-

cian performed on each patient referred by that physi-
cian to the hospital?

b. For the query in part a, also include physicians who
have not referred patients to the hospital.

c. For each patient, what is the average number of treat-
ments performed on him or her by each physician who
has treated that patient?

d. List all patients who have received no treatments.
e. For each nurse in charge, what is the total number of

hours worked by all employees who work in the care
center which that nurse supervises?

f. Which technicians have more than one skill listed?
Which technicians have no skills listed?

g. Determine whether any outpatients were accidentally
assigned to resident beds.

h. Determine which item is consumed most.
i. Determine which physicians prescribe the most expen-

sive item.
j. Return a result table that could be used to produce a

hospital report, such as nursing staff assigned to each
care center.

k. Use the UNION statement to provide a combined listing
of care center names and their locations as well as labo-
ratories and their location. The list should be sorted by
location, in ascending order. (You should use aliases to
rename the fields in this query.)

Project Assignments

P1. Write and execute the queries for the five reports you iden-
tified in Chapter 5.

P2. Identify opportunities for using triggers in your database
and create at least one DDL trigger. For example, the claims
manager at the hospital may need to know that a patient’s
health insurance has been updated.

334 Part IV • Implementation

335

Database Application
Development

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: client/server systems, fat client,
database server, stored procedure, three-tier architecture, thin client, application
partitioning, middleware, and application program interface (API), World Wide
Web Consortium (W3C), Extensible Markup Language (XML), XHTML, XML
Schema Definition, Extensible Stylesheet Language Transformation (XSLT),
XPath, XQuery, Java servlet, Web services, Universal Description, Discovery, and
Integration (UDDI), Web Services Description Language (WSDL), Simple Object
Access Protocol (SOAP), and Service-oriented architecture (SOA).

� Explain the three components of client/server systems: data presentation services,
processing services, and storage services.

� Distinguish between two-tier and three-tier architectures.
� Describe how to connect to databases in a two-tier application in VB.NET and Java.
� Describe the key components of a Web application and the information flow

between the various components.
� Describe how to connect to databases in a three-tier Web application using Java

Server Pages (JSP), PHP, and ASP.NET.
� Explain the purpose of XML and its uses in standardizing data exchange across

the Internet.
� Understand how XQuery can be used to query XML documents.
� Explain how XML has led to the spread of Web services and the emergence of

service-oriented architectures.

LOCATION, LOCATION, LOCATION!

When looking for property to buy, at least one of your friends will say, “It’s all
about location, location, location.” Storing data and applications comes down to
making location decisions, too. No, we aren’t talking about giving data an ocean
view with a hot tub and proximity to good schools. But good database design is
built on picking the right location to store data.

You studied the location concept for storing data on storage devices in Chapter 5,
with such concepts as denormalization and partitioning. In addition, multitiered

C H A P T E R

8

336 Part IV • Implementation

computer architectures offer storage possibilities at each tier, and there is no right
answer for all situations. That’s the beauty of the client/server approach: It can be
tailored to optimize performance. As with most other major steps forward in
computerization, the first client/server applications were tried in noncritical
situations. By the mid-1990s, success stories began to be publicized, and the client/
server approach moved up to handle business-critical applications. Now client/server
has become old hat, and you may feel that this chapter is the most mundane one in
the whole book. That may be, but you are urged to pay close attention anyway
because the client/server approach continues to drive the newest directions in
database computing. You will read about Web-enabled databases and learn about
some of the newest acronyms, including service-oriented architecture (SOA) and Web
services. Some authors will write as though these newest approaches are somehow
different and beyond client/server technology. Actually, the clients may be fat or thin,
and the servers can be connected in different ways, but the basic concepts included in
this chapter underlie the newest approaches to distributed computing (for Web
applications here and distributed databases in Chapter 12).

And it’s mostly about location: what must be located on the client (think
cellphone), what is stored on the server, and how much information should be
moved from the server to the cellphone when a request for data (think SQL query) is
made (think about locating a restaurant when you’re traveling). Part of the answer
to optimizing a particular architecture lies not in location but in quickly moving the
information from one location to another location. These issues are critically
important to mobile applications, such as those for smartphones. In addition to
transmitting voice data, most phone services now include text messaging, content
browsing, object/image downloading, and business applications. Just as we can
make a voice phone call from any phone in the world to any other phone, we expect
to use these newer services in the same way, and we want immediate response times.
Addressing these problems requires a good understanding of the client/server
principles you will learn in this chapter.

INTRODUCTION

Client/server systems operate in networked environments, splitting the processing of
an application between a front-end client and a back-end processor. Generally, the client
process requires some resource, which the server provides to the client. Clients and
servers can reside in the same computer, or they can be on different computers that are
networked together. Both clients and servers are intelligent and programmable, so the
computing power of both can be used to devise effective and efficient applications.

It is difficult to overestimate the impact that client/server applications have had in
the past 20 years. Advances in personal computer technology and the rapid evolution of
graphical user interfaces (GUIs), networking, and communications have changed the way
businesses use computing systems to meet ever more demanding business needs.
Electronic commerce requires that client browsers be able to access dynamic Web pages
attached to databases that provide real-time information. Personal computers linked
through networks that support workgroup computing are the norm. Mainframe applica-
tions have been rewritten to run in client/server environments and take advantage of the
greater cost-effectiveness of networks of personal computers and workstations. The need
for strategies that fit specific business environments is being filled by client/server solu-
tions because they offer flexibility, scalability (the ability to upgrade a system without
having to redesign it), and extensibility (the ability to define new data types and opera-
tions). As businesses become more global in their operations, they must devise distributed
systems (discussed in Chapter 12); their plans often include client/server architectures.

CLIENT/SERVER ARCHITECTURES

Client/server environments use a local area network (LAN) to support a network of per-
sonal computers, each with its own storage, that are also able to share common devices
(such as a hard disk or printer) and software (such as a DBMS) attached to the LAN.

Client/server system
A networked computing model
that distributes processes between
clients and servers, which supply
the requested services. In a
database system, the database
generally resides on a server that
processes the DBMS. The clients
may process the application
systems or request services from
another server that holds the
application programs.

Chapter 8 • Database Application Development 337

Storage Logic
Data storage and
retrieval

Processing Logic
I/O processing
Business rules
Data management

Presentation Logic
Input
Output

FIGURE 8-1 Application logic
components

Each PC and workstation on a LAN is typically within 100 feet of the others; all PCs are
usually within one mile of one another. A LAN may be hard-wired or it may be wireless.
At least one PC is designated as a file server, on which the shared database is stored.
The LAN modules of a DBMS add concurrent access controls, possibly extra security
features, and query- or translation-queuing management to support concurrent access
from multiple users of a shared database.

The various client/server architectures that have evolved can be distinguished
by the distribution of application logic components across clients and servers. There
are three components of application logic (see Figure 8-1). The first is the input/output
(I/O), or presentation logic, component. This component is responsible for formatting
and presenting data on the user’s screen or other output device and for managing user
input from a keyboard or other input device. The second component is the processing
component. It handles data processing logic, business rules logic, and data manage-
ment logic. Data processing logic includes such activities as data validation and iden-
tification of processing errors. Business rules that have not been coded at the DBMS
level may be coded in the processing component. Data management logic identifies
the data necessary for processing the transaction or query. The third component is
storage, the component responsible for data storage and retrieval from the physical
storage devices associated with the application. Activities of a DBMS occur in the stor-
age component logic.

Partitioning an Application

There is no one optimal client/server architecture that is the best solution for all busi-
ness problems. Rather, the flexibility inherent in client/server architectures offers
organizations the possibility of tailoring their configurations to fit their particular pro-
cessing needs. Figure 8-1 depicts the computing logics that must be distributed across
the client and server(s). Presentation logic resides on the client, where the user inter-
faces with the system. Processing logic may be divided across clients and servers.
Storage logic usually resides on the database server, close to the physical location of the
data. Data integrity control activities, such as constraint checking, are typically placed
there. Triggers, which will always fire when appropriate conditions are met, are associ-
ated with insert, modify, update, and delete commands. As these commands affect the
data directly, triggers are also usually stored on the database server. Stored procedures
that use the data directly are usually stored on the database server. Those that work
with a query result may be stored on an application server or on the client. Depending

338 Part IV • Implementation

on the nature of the business problem being addressed, these general rules may not be
followed in order to achieve optimum throughput and performance.

Application partitioning helps in this tailoring. It gives developers the opportu-
nity to write application code that they can later place either on a client workstation or
on a server, depending on which location will give the best performance. It is not neces-
sary to include the code that will place the process being partitioned or to write the code
that will establish the connections to the process. Those activities are handled by appli-
cation partitioning tools.

The objects created by using object-oriented programming are very appropriate for
application partitioning. Programmers have tremendous control over each object’s
content, and it is easier to separate user interface code, business rules, and data. This sep-
aration supports today’s rapidly developing n-tier systems. The strong business push
toward Internet and e-commerce business solutions is causing application partitioning
to develop more rapidly and in new ways. Web applications must be multitiered and
partitioned. They require components that can be assembled on the fly, as they are
requested by the browser, and they need to be compatible with different operating sys-
tems, user interfaces, and databases. Effective application partitioning is necessary in the
Web environment to achieve desired performance along with acceptable maintainability,
data integrity, and security in an unpredictable distributed environment.

The application code can be developed and tested on a client workstation, and
decisions about partitioning that code and placing it can be made later. This capability is
likely to increase developers’ productivity. Application modules can be placed on a
client or server late in the design phase. However, a developer must understand how
and where each process will need to run in order to synchronize each process or transac-
tion correctly across databases and platforms. Decisions about placing code on the appli-
cation or database server will depend partly on the DBMS’s capabilities. For example, a
DBMS that supports static SQL (completely prewritten SQL code) through stored proce-
dures and triggers that are located on the database server may create a performance
decrement if dynamic SQL code (i.e., SQL code created at run time) is located on the
application server. Each dynamic SQL statement will generate a dynamic bind (or links
to database objects) at the database server as it is processed. The performance impact
will depend on how intensively dynamic SQL statements are used. Whether to concen-
trate processing on the application server or the database server is a decision that must
be made by the developer, who understands the hardware environment available, the
interactions of the hardware and DBMS software, and the demands of the application.

It is also possible to add transaction processing monitors to client/server systems
to improve performance. Where multiple application servers and database servers are
available, TP monitors can balance the workload, directing transactions to servers that
are not busy. TP monitors are also useful in distributed environments, where distrib-
uted transactions from a single unit of work can be managed across a heterogeneous
environment.

To partition the environment to create a two-, three-, or n-tier architecture, deci-
sions must be made about the placement of the processing logic. In each case, storage
logic (the database engine) is handled by the server, and presentation logic is handled
by the client.

Figure 8-2a depicts some possible two-tier systems, placing the processing logic
on the client (creating a fat client), on the server (creating a thin client), or partitioned
across both the server and the client (a distributed environment). It is the placement of
the processing logic that is emphasized in the three scenarios. In the fat client, the appli-
cation processing occurs entirely on the client, whereas in the thin client, this processing
occurs on the server. In the distributed example, application processing is partitioned
between the client and the server.

Figure 8-2b presents a typical three-tier architecture and an n-tier architecture.
Again, some processing logic could be placed on the client, if desired. But, a typical
client in a Web-enabled client/server environment will be a thin client, using a browser
for its presentation logic. The middle tiers are typically coded in a portable language
such as C or Java. The flexibility and easier manageability of the n-tier approaches
account for its increasing popularity, in spite of the increased complexity of managing

Application partitioning
The process of assigning portions
of application code to client or
server partitions after it is written
to achieve better performance
and interoperability (ability of a
component to function on different
platforms).

Fat client
A client PC that is responsible
for processing presentation logic,
extensive application and
business rules logic, and many
DBMS functions.

Chapter 8 • Database Application Development 339

Server
Storage
Logic

Client

Processing
Logic

Presentation
Logic

Fat Client

Client

Storage
Logic

Server

Processing
Logic

Presentation
Logic

Thin Client

Storage
Logic

Client

Server

Processing
Logic

Presentation
Logic

Distributed

FIGURE 8-2 Common logic
distributions

(a) Two-tier client/server
environments

Database server
A computer that is responsible for
database storage, access, and
processing in a client/server
environment. Some people also use
this term to describe a two-tier
client/server applications.

Storage
Logic

Oracle
Solaris
SQL*Net
TCP/IP

App. Services
SQL*Net
Tuxedo
TCP/IP
Solaris

C++
Tuxedo
TCP/IP
Windows XP

Processing
Logic

Presentation
Logic

Database
Server

Application
Server

Client

Storage
Logic

Oracle
Solaris
SQL*Net
TCP/IP

App/Server
SQL*Net
TCP/IP
Solaris

Internet Explorer
HTTP
TCP/IP
Windows 7

HTTP
CGI; TCP/IP
Windows Server
App/Server API

Processing
Logic

Presentation
Logic

Database
Server

Application
Server

Processing
Logic

Web
Server

Client

(b) Three-tier and n-tier
client/server environments

communication among the tiers. The fast-paced, distributed, and heterogeneous envi-
ronment of the Internet and e-commerce initiatives have also led to the development of
many n-tier architectures.

Now that we have examined some of the key questions related to client/server
architectures and their advantages and disadvantages in general, in the next two sections
we show specific examples of the role of databases in these two types of architectures.

DATABASES IN A TWO-TIER ARCHITECTURE

In a two-tier architecture, a client workstation is responsible for managing the user inter-
face, including presentation logic, data processing logic, and business rules logic, and a
database server is responsible for database storage, access, and processing. Figure 8-3
shows a typical database server architecture. With the DBMS placed on the database
server, LAN traffic is reduced because only those records that match the requested crite-
ria are transmitted to the client station, rather than entire data files. Some people refer to
the central DBMS functions as the back-end functions, whereas they call the application
programs on the client PCs front-end programs.

340 Part IV • Implementation

With this architecture, only the database server requires processing power ade-
quate to handle the database, and the database is stored on the server, not on the clients.
Therefore, the database server can be tuned to optimize database-processing perform-
ance. Because fewer data are sent across the LAN, the communication load is reduced.
User authorization, integrity checking, data dictionary maintenance, and query and
update processing are all performed at one location, on the database server.

Client/server projects that use two-tier architectures tend to be departmental
applications, supporting a relatively small number of users. Such applications are not
mission critical and have been most successful where transaction volumes are low,
immediate availability is not critical, and security is not of the highest concern. As com-
panies have sought to gain expected benefits from client/server projects, such as scala-
bility, flexibility, and lowered costs, they have had to develop new approaches to
client/server architectures.

Most two-tier applications are written in a programming language such as Java,
VB.NET, or C#. Connecting an application written in a common programming language,
such as Java, VB.NET, or C#, to a database is achieved through the use of special software
called database-oriented middleware. Middleware is often referred to as the glue that holds
together client/server applications. It is a term that is commonly used to describe any soft-
ware component between the PC client and the relational database in n-tier architectures.
Simply put, middleware is any of several classes of software that allow an application to
interoperate with other software without requiring the user to understand and code the
low-level operations required to achieve interoperability (Hurwitz, 1998). The database-
oriented middleware needed to connect an application to a database consists of two parts:
an application programming interface (API) and a database driver to connect to a specific
type database (e.g., SQL Server or Oracle). The most common APIs are Open Database
Connectivity (ODBC) and ADO.NET for the Microsoft platform (VB.NET and C#) and
Java Database Connectivity (JDBC) for use with Java programs.

No matter which API or language is used, the basic steps for accessing a database
from an application remain surprisingly similar:

1. Identify and register a database driver.
2. Open a connection to a database.

Selected data only

Data

Requests for data

LAN

Database
server

Client

Client

Client

FIGURE 8-3 Database
server architecture
(two-tier architecture)

Middleware
Software that allows an application
to interoperate with other software
without requiring the user to
understand and code the low-level
operations necessary to achieve
interoperability.

Application program
interface (API)
Sets of routines that an application
program uses to direct the
performance of procedures by the
computer’s operating system.

Open database connectivity
(ODBC)
An application programming
interface that provides a common
language for application programs
to access and process SQL
databases independent of the
particular DBMS that is accessed.

Chapter 8 • Database Application Development 341

3. Execute a query against the database.
4. Process the results of the query.
5. Repeat steps 3–4 as necessary.
6. Close the connection to the database.

A VB.NET Example

Let us take a look at these steps in action in the context of a simple VB.NET application.
The purpose of the code snippet shown in Figure 8-4 is to insert a new record into a stu-
dent database. For simplicity, we will not show code related to error handling. Also,
while we show the password embedded in the code below, in commercial applications,
other mechanisms to retrieve passwords are used.

The VB.NET code shown in Figure 8-4 uses the ADO.NET data access framework
and .NET data providers to connect to the database. The .NET Framework has different
data providers (or database drivers) that allow you to connect a program written in a
.NET programming language to a database. Common data providers available in the
framework are for SQL Server and Oracle.

The VB.NET code illustrates how a simple INSERT query can be executed against
the Oracle database. Figure 8-4a shows the VB.NET code needed to create a simple form
that allows the user input to a name, department number, and student ID. Figure 8-4b
shows the detailed steps to connect to a database and issue an INSERT query. By read-
ing the explanations presented in the text boxes in the figure, you can see how the
generic steps for accessing a database described in the previous section are imple-
mented in the context of a VB.NET program. Figure 8-4c shows how you would access
the database and process the results for a SELECT query. The main difference is that use
the ExecuteReader() method instead of ExecuteNonQuery() method. The latter is used
for INSERT, UPDATE, and DELETE queries. The table that results from running a
SELECT query are captured inside an OracleDataReader object. You can access each
row in the result by traversing the object, one row at a time. Each column in the object
can be accessed by a Get method and by referring to the column’s position in the query
result (or by name). ADO.NET provides two main choices with respect to handling the
result of the query: DataReader (e.g., OracleDataReader in Figure 8-4c) and DataSet.
The primary difference between the two options is that the first limits us to looping
through the result of a query one row at a time. This can be very cumbersome if the

Option Explicit On

Imports System

Imports System.Data

Imports System.Data.OracleClient

Public Class InsertForm

Private Sub Button1_Click (ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles Button1.Click

Dim name As String = TextBox1.Text

Dim deptno As String = TextBox2.Text

Dim studentid As String = TextBox3.Text

Retrieve the value for name from TextBox1.

These two import statements allow
VB.NET database functions to be made
available for use in this program.

Retrieve the value for student
identification number from TextBox3.

Retrieve the value for department
number from TextBox2.

This allows you to use the .NET data
provider for Oracle.

FIGURE 8-4 Sample VB.NET
code that demonstrates an
INSERT in a database
(a) Setup form for receiving
user input

(continued)

342 Part IV • Implementation

Dim queryReader As OracleDataReader

 cmdQuery = “Select * from Student”

queryReader = cmd.ExecuteReader()

 While queryReader.Read()

 Console.WriteLine(myReader.GetString(0))

End While

queryReader.Close()

Construct a valid SQL SELECT query.

Process the result one row at a time.
GetString (0) refers to the first column in
the result table.

Execute the SELECT query. Store the
result in an OracleDataReader object.

Dim conn As New OracleConnection

Dim cmdQuery As String

conn.ConnectionString = "User Id=nisubram;Password=nisubram;

DataSource=oed1;"

cmdQuery = "INSERT INTO Student (name,deptno,student_id) VALUES (' " & name

& " ',' " & deptno

& " ',' " & studentid & " ')"

Dim cmd As OracleCommand = New OracleCommand(cmdQuery)

cmd.Connection = conn

conn.Open()

cmd.Connection = conn

Dim returnvalue As Integer

returnvalue = cmd.ExecuteNonQuery()

Label4.Text = "Success"

conn.Close()

End Sub

Private Sub InsertForm_Load(ByVal sender As System.Object, ByVal e As

System.EventArgs) Handles MyBase.Load

End Sub

End Class

This variable will be used to store a
connection to an Oracle database.

Initialize a new variable
with the INSERTquery
as its value.

Construct a valid SQL INSERTquery by
using the values in the various text boxes.

Assign the connection to the current SQL
command object that we want to execute.

Execute the INSERT query. returnvalue will
contain a number greater than zero if the
insert was successful.

Make a connection to the database,
using the details specified in ConnectionString.

FIGURE 8-4 (continued)
(b) Connecting to a database
and issuing an INSERT query

(c) Sample code snippet for
using a SELECT query

Chapter 8 • Database Application Development 343

result has a large number of rows. The DataSet object provides a disconnected snapshot
of the database which we can then manipulate in our program using the features avail-
able in the programming language. Later in this chapter, we will see how .NET data
controls (which use DataSet objects) can provide a cleaner and easier way to manipulate
data in a program.

A Java Example

Let us now look at an example of how to connect to a database from a Java application
(see Figure 8-5). This Java application is actually connecting to the same database as the
VB.NET application in Figure 8-4. Its purpose is to retrieve and print the names of all
students in the Student table. In this example, the Java program is using the JDBC API
and an Oracle thin driver to access the Oracle database.

Notice that unlike the INSERT query shown in the VB.NET example, running an
SQL SELECT query requires us to capture the data inside an object that can appropri-
ately handle the tabular data. JDBC provides two key mechanisms for this: the
ResultSet and RowSet objects. The difference between these two is somewhat similar to
the difference between the DataReader and DataSet objects described in the VB.NET
example.

The ResultSet object has a mechanism, called the cursor, that points to its current
row of data. When the ResultSet object is first initialized, the cursor is positioned before
the first row. This is why we need to first call the next() method before retrieving data. The
ResultSet object is used to loop through and process each row of data and retrieve the col-
umn values that we want to access. In this case, we access the value in the name column
using the rec.getString method, which is a part of the JDBC API. For each of the common
database types, there is a corresponding get and set method that allows for retrieval and
storage of data in the database. Table 8-1 provides some common examples of SQL-to-
Java mappings.

It is important to note that while the ResultSet object maintains an active connec-
tion to the database, depending on the size of the table, the entire table (i.e., the result of
the query) may or may not actually be in memory on the client machine. How and
when data are transferred between the database and client is handled by the Oracle

import java.sql.*;
public class TestJDBC {
 public static void main(String[] args) {
 try {
 Driverd =
 (Driver)Class.forName("oracle.jdbc.driver.OracleDriver").newInstance();
 System.out.println(d);
 DriverManager.registerDriver (new oracle.jdbc.driver.OracleDriver());
 Connection conn =
 DriverManager.getConnection ("jdbc:oracle:thin:@durga.uits.indiana.edu:1
 521:OED1", args[0], args[1]);

 Statement st = conn.createStatement();
 ResultSet rec = st.executeQuery("SELECT * FROM Student");
 while(rec.next()) {
 System.out.println(rec.getString("name"));}
 conn.close();
 }
 catch (Exception e) {
System.out.println("Error — " + e);
 }
 }
}

Register the driver to be used.

Open a connection to a database.

Identify the type of driver to be used.

Issue a query and get a result.

Process the result, one row at a time.

Create a Statement variable that can
be used to issue queries against the
database

Close the connection.

FIGURE 8-5 Database access from a Java program

344 Part IV • Implementation

driver. By default, a ResultSet object is read-only and can only be traversed in one direc-
tion (forward). However, advanced versions of the ResultSet object allow scrolling in
both directions and can be updateable as well.

THREE-TIER ARCHITECTURES

In general, a three-tier architecture includes another server layer in addition to the
client and database server layers previously mentioned (see Figure 8-6a). Such config-
urations are also referred to as n-tier, multitier, or enhanced client/server architectures.
The additional server in a three-tier architecture may be used for different purposes.
Often, application programs reside and are run on the additional server, in which case
it is referred to as an application server. Or the additional server may hold a local data-
base while another server holds the enterprise database. Each of these configurations
is likely to be referred to as a three-tier architecture, but the functionality of each
differs, and each is appropriate for a different situation. Advantages of the three-tier
compared with the two-tier architecture, such as increased scalability, flexibility, per-
formance, and reusability, have made three-layer architectures a popular choice for
Internet applications and net-centric information systems. These advantages are
discussed in more detail later.

TABLE 8-1 Common Java-to-SQL Mappings

SQL Type Java Type Common Get/Set Methods

INTEGER int getInt(), setInt()

CHAR String getString, setString()

VARCHAR String getString, setString()

DATE java.util.Date getDate(), setDate()

TIME java.sql.Time getTime(), setTime()

TIMESTAMP java.sql.Timestamp getTimestamp(), setTimestamp()

LAN

Data
Database
server

ClientClient

Client Layer

Business Layer

Database Layer

Client

Application
server

FIGURE 8-6 Three-tier
architecture

(a) Generic three-tier
architecture

Three-tier architecture
A client/server configuration that
includes three layers: a client layer
and two server layers. Although
the nature of the server layers
differs, a common configuration
contains an application server and
a database server.

Chapter 8 • Database Application Development 345

DBMS
Server

2 Process Scheduler
Servers

Process
Scheduler
Server Agent

Distribution
Agent

Report
Repository

COBOL

2 Web
Servers with
PeopleSoft

Internet
Architecture

Process
Request Dialog

Web Interface

http

Report Log
Viewer

Messages sent back to
repository FTP or XCOPY

Application
Server

Application
Engine

SOR

nVision

Crystal

(b) Sample PeopleSoft
Financials three-tier
configuration

In some three-tier architectures, most application code is stored on the application
server. This case realizes the same benefits as those that come from putting stored proce-
dures on the database server in a two-tier architecture. Using an application server can also
improve performance through the use of true machine code, easier portability of the appli-
cation code to other platforms, and less reliance on proprietary languages such as SQL*Plus
(Quinlan, 1995). In many situations, most business processing occurs on the application
server rather than on the client workstation or database server, resulting in a thin client.
The use of Internet browsers for accessing the Web is an example of a thin client.
Applications that reside on a server and execute on that server without downloading to the
client are becoming more common. Thus, upgrading application programs requires load-
ing the new version only on the application server, rather than on client workstations.

The most common type of three-tier application in use in modern organizations is
a Web-based application. Such applications can be accessed from either the Internet or
an intranet. Figure 8-7 depicts the basic environment needed to set up both intranet and
Internet database-enabled connectivity. In the box on the right side of the diagram is a
depiction of an intranet. The client/server nature of the architecture is evident from the
labeling. The network that connects the client workstations, Web server, and database
server uses TCP/IP. While multitier intranet structures are also used, Figure 8-7 depicts
a simpler architecture, where a request from a client browser will be sent through the
network to the Web server, which stores pages scripted in HTML to be returned and dis-
played through the client browser. If the request requires that data be obtained from the
database, the Web server constructs a query and sends it to the database server, which
processes the query and returns the results set when the query is run against the data-
base. Similarly, data entered at the client station can be passed through and stored in the
database by sending it to the Web server, which passes it on to the database server,
which commits the data to the database.

The processing flow described here is similar when connecting from outside the
company. This is the case whether the connection is available only to a particular cus-
tomer or supplier or to any workstation connected to the Internet. However, opening
up the Web server to the outside world requires that additional data security measures

Thin client
An application where the client
(PC) accessing the application
primarily provides the user
interfaces and some application
processing, usually with no or
limited local data storage.

346 Part IV • Implementation

Public Internet client

Extranet client

WWW (TCP/IP) Firewall

Clients w/browers

TCP/IP

DatabaseDatabase server

Organization’s intranet

Web server

FIGURE 8-7 A database-enabled intranet/Internet environment

be in place. Security is central to the deployment of Web services and will be discussed
in more detail in Chapter 11.

Internally, access to data is typically controlled by the database management sys-
tem, with the database administrator setting the permissions that determine employee
access to data. Firewalls limit external access to the company’s data and the movement
of company data outside the company’s boundaries. All communication is routed
through a proxy server outside of the organization’s network. The proxy server controls
the passage of messages or files through to the organization’s network. It can also
improve a site’s performance by caching frequently requested pages that can then be
displayed without having to attach to the Web server.

Given that the most common type of three-tier application is a Web application, in
the next section we take a closer look at the key components of a Web application. We
then present examples of simple Web applications written in three common languages:
Java Server Pages (JSP), ASP.NET, and PHP.

WEB APPLICATION COMPONENTS

Figure 8-2 shows the various components of a typical Web application. Four key com-
ponents must be used together to create a Web application site:

1. A database server This server hosts the storage logic for the application and hosts
the DBMS. You have read about many of them, including Oracle, Microsoft SQL
Server, Informix, Sybase, DB2, Microsoft Access, and MySQL. The DBMS may
reside either on a separate machine or on the same machine as the Web server.

2. A Web server The Web server provides the basic functionality needed to receive
and respond to requests from browser clients. These requests use HTTP or HTTPS
as a protocol. The most common Web server software in use is Apache, but you are

Chapter 8 • Database Application Development 347

also likely to encounter Microsoft’s Internet Information Server (IIS) Web server.
Apache can run on different operating systems, such as Windows, UNIX, or
Linux. IIS is primarily intended to run on Windows servers.

3. An application server This software provides the building blocks for creating
dynamic Web sites and Web-based applications. Examples include the .NET
Framework from Microsoft; Java Platform, Enterprise Edition (Java EE); and
ColdFusion. Also, while technically not considered an application server plat-
form, software that enables you to write applications in languages such as PHP,
Python, and Perl also belong to this category.

4. A Web browser Microsoft’s Internet Explorer, Mozilla’s Firefox, Apple’s Safari,
Google’s Chrome, and Opera are examples.

As you can see, a bewildering collection of tools are available to use for Web appli-
cation development. Although Figure 8-7 gives an overview of the architecture required,
there is no one right way to put together the components. Rather, there are many possible
configurations, using redundant tools. Often, Web technologies within the same category
can be used interchangeably. One tool may solve the same problem as well as another
tool. However, the following are the most common combinations you will encounter:

• IIS Web server, SQL Server/Oracle as the DBMS, and applications written in
ASP.NET

• Apache Web server, Oracle/IBM as the DBMS, and applications written using Java
• Apache Web server, Oracle/IBM/SQL Server as the DBMS, and applications writ-

ten using ColdFusion
• The Linux operating system, Apache Web server, a MySQL database, and applica-

tions written in PHP/Python or Perl (also sometimes referred to as the LAMP stack).

Your development environment is likely to be determined by your employer.
When you know what environment you will be using, there are many alternatives avail-
able for becoming familiar and proficient with the tools. Your employer may send you to
training classes or even hire a subject matter expert to work with you. You will find one
or more books specific to each tool when you search online or in a bookstore. Figure 8-8
presents a visual depiction of the components necessary to create a dynamic Web site.

Programming Languages (C, C#, Java, XML, XHTML, JavaScript...)
Development Technologies (ASP.NET, PHP, ColdFusion...)
Client-side extensions (ActiveX, plug-ins, cookies)
Web browser (Internet Explorer, Navigator, Firefox...)
Text editor (Notepad, BBEdit, vi, Dreamweaver...)
FTP capabilities (SmartFTP, FTP Explorer, WS_FTP...)

Database (May be on same machine
as Web server for development purposes)
(Oracle, Microsoft SQL Server, Informix,
Sybase, DB2, Microsoft Access, MySQL...)

Web server (Apache, Microsoft-IIS)
Server-side extensions (JavaScript Session
 Management Service & LiveWire
 Database Service, FrontPage Extensions...)
Web server interfaces (CGI, API,
 Java servlets)

FIGURE 8-8 Dynamic Web development environment

348 Part IV • Implementation

Languages for Creating Web Pages

The World Wide Web Consortium (W3C) is the chief standards body for HTTP and
HTML. Founded in 1994 by Tim Berners-Lee, W3C is an international consortium of
companies. W3C’s intent is to develop open standards that foster the development
of Web conventions so that Web documents can be consistently displayed across all
platforms. The consortium organizes its work into four domains, each of which reports
its current activities on the W3C Web site (www.w3.org). The four domains are
Architecture, Interaction, Technology and Society, and the Web Accessibility Initiative.

The fundamental authoring language used to create documents for the Web is
Hypertext Markup Language (HTML). HTML is similar to Standard Generalized Markup
Language (SGML), which states the rules for tagging elements of a document so that they
can be formatted in a standard way. HTML tag conventions are based on SGML rules.
HTML is a scripting language, intended to define Web document structure and layout for
display purposes, using a variety of tags and attributes. For example, an HTML docu-
ment starts with the tags (document subject is entered here). The information to be dis-
played and additional formatting tags follow, and the document will end with the tags.

XML is a rapidly developing scripting language, also based on SGML, that has
been widely accepted as a means of capturing data structure. XML is an acronym for
Extensible Markup Language, a specification developed by the W3C. Designed espe-
cially for Web documents, XML allows the creation of customized tags. These tags can
be used across organizations, enabling the definition, transmission, validation, and
interpretation of data between applications and between organizations. XML has also
proved useful for attaching legacy data to the Web because the XML tags can be used to
define data as it is formatted in the legacy data store, thus eliminating the need to refor-
mat it. We discuss XML in detail later in this chapter.

W3C has issued specifications for a hybrid scripting language, Extensible
Hypertext Markup Language (XHTML), which extends HTML code to make it XML
compliant. XHTML uses three XML namespaces that correspond to three HTML 4.0
data type definitions (DTDs): Strict, Transitional, and Frameset. Because the modules
used in XHTML conform to certain standards, layout and presentation remain consis-
tent across platforms. The W3C wants XHTML to replace HTML as the standard script-
ing language. It is recommended that the reader visit the W3C Web site to learn how
close the organization is to accomplishing this objective.

The languages mentioned thus far are scripting or markup languages, intended
for handling layout and display of documents (or, in the case of XML, handling data
definition and interpretation) rather than for programming functions or activities. Web
pages also contain code written in JavaScript (not be confused with Java). Web authors
use JavaScript to achieve interactivity and introduce dynamic content. For example,
mouse rollovers, automatic notices that content has been updated, and error handling
can be accomplished through JavaScript embedded in the HTML code. When an event
occurs, such as the mouse rolling over a button, the JavaScript will be activated.
JavaScript is an open language and does not require a license. It is supported by
Internet Explorer and other browsers. VBScript is similar to JavaScript. Just as
JavaScript is based on Java but is simpler, VBScript is based on Visual Basic and is also
simpler. VBScript can be used to add buttons, scrollbars, and other interactive controls
to a Web page. Microsoft developed this scripting language, and it is supported by the
Microsoft Internet Explorer browser.

Now that we have seen the technologies that can be used to create HTML pages, let
us turn our attention toward understanding how a Web server, an application server, and
a database server can be combined create a database-driven Web application. We will
look at examples of such applications in three popular languages: JSP, ASP.NET, and PHP.

DATABASES IN THREE-TIER APPLICATIONS

Figure 8-9a presents a general overview of the information flow in a Web application.
A user submitting a Web page request is unaware of whether the request being submit-
ted is returning a static Web page or a Web page whose content is a mixture of static
information and dynamic information retrieved from the database. The data returned

World Wide Web Consortium
(W3C)
An international consortium of
companies working to develop
open standards that foster the
development of Web conventions
so that Web documents can be
consistently displayed across
all platforms.

XHTML
A hybrid scripting language that
extends HTML code to make it
XML compliant.

www.w3.org

Chapter 8 • Database Application Development 349

from the Web server is always in a format that can be rendered by the browser
(i.e., HTML or XML).

As shown in Figure 8-9a, if the Web server determines that the request from the
client can be satisfied without passing the request on to the application server, it will
process the request and then return the appropriately formatted information to the
client machine. This decision is most often based on the file suffix. For example, all
.html and .htm files can be processed by the Web server itself.

However, if the request has a suffix that requires application server intervention,
the information flow show in Figure 8-9b is invoked. The application invokes the data-
base, as necessary, using one of the mechanisms described previously (ADO.NET or
JDBC) or a proprietary one. While the internal details of how each of the popular plat-
forms (JSP/Java servlets, ASP.NET, ColdFusion, and PHP) handle the requests are
likely very different, the general logic for creating Web applications is very similar to
what is shown in Figure 8.9b.

A JSP Web Application

As indicated previously, there are several suitable languages and development tools
available with which to create dynamic Web pages. One of the most popular languages
in use is Java Server Pages (JSP). JSP pages are a mixture of HTML and Java. The HTML
parts are used to display information on the browser. The Java parts are used to process
information sent from an HTML form.

The code in Figure 8-10 shows a sample JSP application whose purpose is to cap-
ture user registration information and store the data in a database. Let us assume that
the name of the page is registration.jsp. This JSP page performs the following functions:

• Displays the registration form
• Processes the user’s filled-in form and checks it for common errors, such as miss-

ing items and matching password fields

CLIENT
Request *.html

Web Server Application Server

Return HTML

HTML JSP/
Servlet Database

Server

FIGURE 8-9 Information flow in a three-tier architecture

CLIENT
*.jsp

Web Server Application Server

Return Data

Return HTML

JSP/
Servlet

Invoke JSP/
Servlet

Call Database
as necessary

D
R
I
V
E
R

Database
Server

(a) Static page request

(b) Dynamic page request

350 Part IV • Implementation

<%@ page import="java.sql.*" %>
<%

// Create an empty new variable
String message = null;

// Handle the form
if (request.getParameter("submit") != null)
{
 String firstName = null;
 String lastName = null;
 String email = null;
 String userName = null;
 String password = null;

 // Check for a first name
 if (request.getParameter("first_name")=="") {
 message = "<p>You forgot to enter your first name!</p>";
 firstName = null;
 }
else {
 firstName = request.getParameter("first_name");
 }

 // Check for a last name
 if (request.getParameter("last_name")=="") {
 message = "<p>You forgot to enter your last name!</p>";
 lastName = null;
 }
 else {
 lastName = request.getParameter("last_name");
 }

 // Check for an email address
 if (request.getParameter("email")=="") {
 message = "<p>You forgot to enter your email address!</p>";
 email = null;
 }
 else {
 email = request.getParameter("email");
 }

 // Check for a username
 if (request.getParameter("username")=="") {
 message = "<p>You forgot to enter your username!</p>";
 userName = null;
 }
 else {
 userName = request.getParameter("username");
 }

 // Check for a password and match against the confirmed password
 if (request.getParameter("password1")=="") {
 message = "<p>You forgot to enter your password!</p>";
 password = null;
 }

The <%@ page %>directive applies to the entire JSP
page. The import attribute specifies the Java packages
that should be included within the JSP file.

Check whether the form needs to be
processed.

Validate first nam.e

Validate last name

Validate e-mail address

Validate the password

Validate username

FIGURE 8-10 Sample JSP application

(a) Validation and database connection code

(continued)

Chapter 8 • Database Application Development 351

 else {
 if(request.getParameter("password1").equals(request.getParameter("password2"))) {
 password = request.getParameter("password1");
 }
 else {
 password = null;
 message = "<p>Your password did not match the confirmed password!</p>";
 }
 }

 // If everything's OK
 PreparedStatement stmt = null;
 Connection conn = null;
 if (firstName!=null && lastName!=null && email!=null && userName!=null && password!=null) {

 // Call method to register student
 try {

 // Connect to the db
 DriverManager.registerDriver(new oracle.jdbc.driver.OracleDriver());
 conn=DriverManager.getConnection("jdbc:oracle:thin:@localhost:1521:xe","scott","tiger");

 // Make the query
 String ins_query="INSERT INTO users VALUES ('"+firstName+"','"+lastName+"','"
 +email+"','"+userName+"','"+password+"')";
stmt=conn.prepareStatement(ins_query);

 // Run the query
 int result = stmt.executeUpdate(ins_query);
conn.commit();
message = "<p> You have been registered ! </p>";

 // Close the database connection
stmt.close();
conn.close();
}
catch (SQLException ex) {

message = "<p> You could not be registered due to a system error. We apologize
for any inconvenience. </p>"+ex.getMessage()+"</p>";
stmt.close();
conn.close();
}
}
 else {
 message = message+"<p>.Please try again</p>";
 }
}
%>

If all user information has been validated, the
data will be inserted into the database (an
Oracle Database in this case)

Connect to the Database :
Connection String : jdbc:oracle:thin:@localhost:1521:xe
Username : scott
Password : tiger

Prepare and Execute INSERT query

Close Connection and Statement

End of JSP code

If the INSERT was not successful
print error message

If the INSERT was
successful print message

(a) Validation and database connection code (continued)

• If there is an error, redisplays the entire form, with an error message in red
• If there is no error, enters the user’s information into a database and sends the user

to a “success” screen.

Let us examine the various pieces of the code to see how it accomplishes the above
functions. All Java code is found between <% and %> and is not displayed in the
browser. The only items displayed in the browser are the ones enclosed in HTML tags.

When a user accesses the registration.jsp page in a browser by typing in a
URL similar to http://myserver.mydomain.edu/regapp/registration.jsp, the value of

(continued)

http://myserver.mydomain.edu/regapp/registration.jsp

352 Part IV • Implementation

FIGURE 8-10 (continued)

HTML code to create a form in the JSP application
<html>
<head><title> Register </title></head>
<body>
<% if (message!=null) {%>
<%=message%>
<%}%>
<form method="post">
<fieldset>
<legend>Enter your information in the form below:</legend>
<p> First Name:
 <input type="text" name="first_name" size="15" maxlength ="15" value=""/></p>
<p> Last Name:
 <input type="text" name="last_name" size="30" maxlength ="30" value=""/></p>
<p> Email Address:
 <input type="text" name="email" size="40" maxlength ="40" value=""/></p>
<p> User Name:
 <input type="text" name="username" size="10" maxlength ="20" value=""/></p>
<p> Password:
 <input type="password" name="password1" size="20" maxlength ="20" value=""/></p>
<p> Confirm Password:
 <input type="password" name="password2" size="20" maxlength ="20" value=""/></p>
</fieldset>
<div align="center"><input type="submit" name="submit" value="Register"/></div>
</form><!-- End of Form -->
</body>
</html>

Beginning of HTML form

(b) HTML code to create a form in the JSP application

(c) Sample form output from the JSP application

the message Web parameter is NULL. Because the IF condition fails, the HTML form is
displayed without an error message. Notice that this form has a submit button and that
the action value in the form indicates that the page that is going to process the data is
also registration.jsp.

After the user fills in the details and clicks the submit button, the data are sent to the
Web server. The Web server passes on the data (called parameters) to the application
server, which in turn invokes the code in the page specified in the actions parameter

Chapter 8 • Database Application Development 353

(i.e., the registration.jsp page). This is the code in the page that is enclosed in the <% and %>
and is written in Java. This code has several IF-ELSE statements for error checking pur-
poses as well as a portion that contains the logic to store the user form data in a database.

If any of the user entries are missing or if the passwords don’t match, the Java
code sets the message value to something other than NULL. At the end of that check,
the original form is displayed, but now an error message in red will be displayed at the
top of the form because of the very first IF statement.

On the other hand, if the form has been filled correctly, the code segment for insert-
ing the data into the database is executed. Notice that this code segment is very similar to
the code we showed in the Java example before. After the user information is inserted
into the database, <jsp:forward> causes the application server to execute a new JSP page
called success.jsp. Notice that the message that should be displayed by this page is the
value that is in the message variable and is passed to it in the form of a Web parameter. It
is worthwhile to note that all JSP pages are actually compiled into Java servlets on the
application server before execution.

If you examine the segments of the application from a database access perspective
(starting from the try block), you will notice that there is nothing fundamentally differ-
ent about how the code inside a JSP page looks compared to the code in a the Java appli-
cation, as described earlier. It still follows the same six steps identified earlier in the
chapter. The primary difference is that in this case, the database access code is now part
of a Java servlet that runs on the application server instead of the client.

A PHP Example

Java, C, C++, C#, and Perl are APIs that can be used with MySQL. PHP is one of the
most popular APIs for several reasons. Support for MySQL has been built into PHP
since PHP4. It has a reputation for ease of use, short development time, and high per-
formance. PHP5, recently released, is more object oriented than PHP4 and includes sev-
eral class libraries. It is considered to be relatively easy to learn. Intermediate-level
programmers will learn it quickly.

Figure 8-11 includes a sample script from Ullman (2003) that demonstrates the
integration of PHP with a MySQL database and HTML code. The script accepts a
guest’s registration on a Web site, including first name, last name, e-mail address, user
name, and password. Once this information has been stored in the MySQL database,
the database owner will want to retrieve it. Ullman also includes a sample script for
retrieving the results and displaying them in good form. Reviewing Figure 8-11 will
give you an overview of one approach to building a dynamic Web site with an attached
database, as well as an appreciation for PHP’s use of other language’s syntax conven-
tions that will make the script relatively easy for you to understand. As you review the
figure, look for the embedded SQL code, necessary to establish a dynamic Web site.

The JSP and PHP examples presented above have several drawbacks associated with
them. First, the HTML code, Java code, and SQL code are all mixed in together. Because the
same person is unlikely to possess expertise in all three areas, creating large applications
using this paradigm will be challenging. Further, even small changes to one part of an
application can have a ripple effect and require that many pages be rewritten, which is
inherently error prone. For example, if the name of the database needs to be changed from
xe to oed1, then every page that makes a connection to a database will need to be changed.

To overcome this problem, most Web applications are designed using a concept
known as the Model-View-Controller (MVC). Using this architecture, the presentation
logic (view), the business logic (controller/model), and the database logic (model) are
separated. Chapter 14 provides detailed examples of how this can be done in Java.

An ASP.NET Example

A final code segment that we will examine (Figure 8-12, page 357) shows how the regis-
tration page can be written in ASP.NET.

Notice that the ASP.NET code is considerably shorter than either the PHP or JSP
code. This is partially because we have not included all the error checking aspects in
this code. Further, we have used some powerful built-in controls available in ASP.NET

Java servlet
A Java program that is stored
on the server and contains the
business and database logic for
a Java-based application.

354 Part IV • Implementation

<?php # Script 6.6 - register.php

// Set the page title and include the HTML header.
$page_title = 'Register';
include ('templates/header.inc');

//Handle the form.
if (isset($_POST['submit'])) {

// Create an empty new variable.
$message = NULL;

// Check for a first name.
if (empty($_POST['first_name'])) {

$fn = FALSE;
$message = '<p>You forgot to enter your first name!</p>';

} else {
$fn = $_POST['first_name'];

}

// Check for a last name.
if (empty($_POST['last_name'])) {

$ln = FALSE;
$message = '<p>You forgot to enter your last name!</p>';

} else {
$ln = $_POST['last_name'];

}

// Check for an email address.
if (empty($_POST['email'])) {

$e = FALSE;
$message = '<p>You forgot to enter your email address!</p>';

} else {
$e = $_POST['email'];

}

// Check for a username.
if (empty($_POST['username'])) {

$u = FALSE;
$message = '<p>You forgot to enter your username!</p>';

} else {
$u = $_POST['username'];

}

// Check for a password and match against the confirmed password.
if (empty($_POST['password1'])) {

$p = FALSE;
$message = '<p>You forgot to enter your password!</p>';

} else {
if ($_POST['password1'] = $_POST['password2']) {

$p = $_POST['password1'];
} else {

$p = FALSE;
$message .= '<p>Your password did not match

the confirmed password!</p>';
}

}

PHP file named register.php begins.

This file contains HTML code to set up
a generic page, including its page title and
header.

Check whether to process form.

Validate first name.

Validate last name.

Validate e-mail address.

Validate username.

Validate the password.

FIGURE 8-11 Sample PHP script that accepts user registration input

(a) PHP script initiation and input validation

(continued)

Chapter 8 • Database Application Development 355

//If everything's OK.
if ($fn && $ln && $e && $u && $p) {

// Register the user in the database.

// Connect to the db.
require_once ('../mysql_connect.php');

// Make the query.
$query = "INSERT INTO users (username, first_name, last_name, email, password,
registration_date) VALUES ('$u', '$fn', '$ln', '$e', PASSWORD('$p'), NOW())";

//Run the query.
$result = @mysql_query ($query);

//If it ran OK.
if ($result) {

// Send an email, if desired.
echo '<p>You have been registered!</p>';

//Include the HTML footer.
include ('templates/footer.inc');

//Quit the script.
exit();

// If it did not run OK.
} else {

$message = '<p>You could not be registered due to a system error.
We apologize for any inconvenience.</p><p>' . mysql_error() . '</p>';

}

//Close the database connection.
mysql_close();

} else {
$message = '<p>Please try again.</p>';

}

// End of the main Submit conditional.
}

If all user information has been
validated, the data will be inserted
into the MySQL database.

$result contains value returned by mysql_query.
If TRUE, message is displayed, footer is required,
script is halted.

Establish connection to database.

mysql_query() function sends SQL to MySQL.

If $result FALSE, assign value to $message.

Close connection to MySQL database.

Completion of registration conditional.

Completion of submit conditional.

SQL query with encrypted password and current date.

(b) Adding user information to the database

to perform the majority of the functions that we were writing code for ourselves in the
other two languages. The DetailsView control, for example, automatically grabs data
from the various text fields in the Web page and assigns the values to the corresponding
data field variable in the control (e.g., the User Name form field is stored in the user-
name data field). Further, the SqlDataSource control hides the details of the steps
needed to connect to the database, issue SQL queries, and retrieve the results.

KEY CONSIDERATIONS IN THREE-TIER APPLICATIONS

In describing the database component of the applications in the preceding sections, we
observed that the basics of connecting, retrieving, and storing data in a database do not
change substantially when we move from a two-tier application to a three-tier applica-
tion. In fact, what changes is where the code for accessing the database is located.
However, there are several key considerations that application developers need to keep
in mind in order to be able to create a stable high-performance application.

(continued)

356 Part IV • Implementation

// Print the message if there is one.
if (isset($message)) {

echo '',$message, '';
}
?>

<form action="<?php echo $_SERVER['PHP_SELF']; ?>" method="post">
<fieldset><legend>Enter your information in the form below:</legend>

<p>First Name: <input type="text" name="first_name" size="15" maxlength="15"
value="<?php if (isset($_POST['first_name'])) echo $_POST['first_name']; ?>" /></p>

<p>Last Name: <input type="text" name="last_name" size="30" maxlength="30"
value="<?php if (isset($_POST['last_name'])) echo $_POST['last_name']; ?>" /></p>

<p>Email Address: <input type="text" name="email" size="40" maxlength="40"
value="<?php if (isset($_POST['email'])) echo $_POST['email']; ?>" /> </p>

<p>User Name: <input type="text" name="username" size="10" maxlength="20"
value="<?php if (isset($_POST['username'])) echo $_POST['username']; ?>" ></p>

<p>Password: <input type="password" name="password1" size="20" maxlength="20"/></p>

<p>Confirm Password: <input type="password" name="password2" size="20" maxlength="20"

/></p>
</fieldset>

<div align="center"><input type="submit" name="submit" value="Register" /></div>

</form><!-- End of Form -->

<?php
//Include the HTML footer.
include ('templates/footer.inc'); ?>

If an error message exists, display it.

Begin HTML form.

Source: Ullman, PHP and MySQL for Dynamic Web Sites, 2003, Script 6.6

FIGURE 8-11 (continued)

(c) Closing the PHP script and displaying the HTML form

Stored Procedures

Stored procedures (same as procedures; see Chapter 7 for a definition) are modules of
code that implement application logic and are included on the database server. As
pointed out by Quinlan (1995), stored procedures have the following advantages:

• Performance improves for compiled SQL statements.
• Network traffic decreases as processing moves from the client to the server.
• Security improves if the stored procedure rather than the data is accessed and

code is moved to the server, away from direct end-user access.
• Data integrity improves as multiple applications access the same stored procedure.
• Stored procedures result in a thinner client and a fatter database server.

However, writing stored procedures can also take more time than using Visual
Basic or Java to create an application. Also, the proprietary nature of stored procedures
reduces their portability and may make it difficult to change DBMSs without having to
rewrite the stored procedures. However, using stored procedures appropriately, can
lead to more efficient processing of database code.

Figure 8-13a shows an example of a stored procedure written in Oracle’s PL/SQL
that is intended to check whether a user name already exists in the database. Figure 8-13b
shows a sample code segment which illustrates that this stored procedure can be called
from a Java program.

Chapter 8 • Database Application Development 357

<%@ Page Language="C#" AutoEventWireup="true" CodeFile="users.aspx.cs" Inherits="users" %>
<html xmlns="http://www.w3.org/1999/xhtml" >
<head runat="server">
 <title>Register</title>
</head>
<body>
<form id="form1" runat="server">
<div>
<asp:DetailsView ID="manageUsers" runat="server" DataSourceID="usersDataSource">
 <Fields>
 <asp:BoundField DataField="username" HeaderText="User Name" />
 <asp:BoundField DataField="first_name" HeaderText="First Name" />
 <asp:BoundField DataField="last_name" HeaderText="Last Name" />
 <asp:BoundField DataField="email" HeaderText="Email Address" />
 <asp:BoundField DataField="password" HeaderText="Password" />
 <asp:CommandField ShowInsertButton="True" ButtonType="Button" />
 </Fields>
 </asp:DetailsView>
<asp:SqlDataSource ID="usersDataSource" runat="server"
 ConnectionString="<%$ ConnectionStrings:StudentConnectionString %>"
 InsertCommand="INSERT INTO users(username, first_name, last_name, email, password,
 registration_date) VALUES (@username, @first_name, @last_name, @email, @password, GETDATE())"
 SelectCommand="SELECT [username], [first_name], [last_name], [email], [password] FROM [users]">
</asp:SqlDataSource>
</div>
</form>
</body>
</html>

FIGURE 8-12 A registration page written in ASP.NET

(a) Sample ASP.NET code for user registration

(b) Form for the ASP.NET application

Transactions

In the examples shown so far, we have only examined code that consists of a single
SQL action. However, most business applications require several SQL queries to
complete a business transaction (refer to Figure 7-10). By default, most database
connections assume that you would like to commit the results of executing a query to
the database immediately. However, it is possible to define the notion of a business
transaction in your program. Figure 8-14 shows how a Java program would execute a
database transaction.

Given that there might be thousands of users simultaneously trying to access
and/or update a database through a Web application at any given point time (think

CREATE OR REPLACE PROCEDURE p_registerstudent
(
 p_first_name
 p_last_name
 p_email
 p_username
 p_password
 p_error
)
IS
l_user_exists NUMBER := 0;
l_error VARCHAR2(2000);

BEGIN

BEGIN
 SELECT COUNT(*)
 INTO l_user_exists
 FROM users
 WHERE username = p_username;

 EXCEPTION
 WHEN OTHERS THEN
 l_error := 'Error: Could not verify username';
 END;

IF l_user_exists = 1 THEN
 l_error := 'Error: Username already exists !';
ELSE

 BEGIN
 INSERT INTO users VALUES(p_first_name,p_last_name,p_email,p_username,p_password,SYSDATE);

 EXCEPTION
 WHEN OTHERS THEN
 l_error := 'Error: Could not insert user';
 END;
END IF;

p_error = l_error;
END p_registerstudent;

OUT VARCHAR2

IN VARCHAR2
IN VARCHAR2
IN VARCHAR2
IN VARCHAR2

IN VARCHAR2

Procedure p_registerstudent accepts
first and last name, email, username,
and password as inputs and returns
the error message(if any).

This query checks whether the
username entered already exists in
the database.

If the username does not exist in
the database, the data entered are
inserted into the database.

If the username already exists, an
error message is created for the user.

FIGURE 8-13 Example Oracle PL/SQL stored procedure

CallableStatement stmt =
 connection.prepareCall("begin p_registerstudent(?,?,?,?,?,?); end;");

// Binds the parameter types

stmt.setString(1, first_name);

 stmt.setString(2, last_name);

 stmt.setString(3, email);

 stmt.setString(4, username);

 stmt.setString(5, password);

 stmt.registerOutParameter(6, Types.VARCHAR);

stmt.execute();

error = stmt.getString(6);

Bind first parameter.

Bind third parameter.

Bind fourth parameter.

Bind fifth parameter.

Execute the callable statement.

Get error message.

Bind sixth parameter.

Bind second parameter.

(a) Sample Oracle PL/SQL stored procedure

(b) Sample Java code for invoking the Oracle PL/SQL stored procedure

358

Chapter 8 • Database Application Development 359

connection.setAutoCommit(false);
try {
Statement st = connection.createStatement();

st.executeUpdate("UPDATE Order_T SET Quantity =(Quantity - 1) WHERE OrderID = "1001");

st.executeUpdate("UPDATE OrderLine_T SET Quantity = (Quantity - 1) WHERE OrderLineID = "100");
connection.commit();
}

catch (SQLException e) { connection.rollback(); }
finally { connection.setAutoCommit(true); }

Prevent the database driver from
committing the query to the database
immediately.

Reset the AutoCommit feature to true.

Cause the two updates to now be
committed to the database as a group.

Rollback the database if either update
doesn’t succeed.

FIGURE 8-14 Sample Java code snippet for an SQL transaction

Amazon.com or eBay), application developers need to be well versed in the concepts of
database transactions and need to use them appropriately when developing applications.

Database Connections

In most three-tier applications, while it is very common to have the Web servers and
application servers located on the same physical machine, the database server is often
located on a different machine. In this scenario, the act of making a database connection
and keeping the connection alive can be very resource intensive. Further, most data-
bases allow only a limited number of connections to be open at any given time. This can
be challenging for applications that are being accessed via the Internet because it is dif-
ficult to predict the number of users. Luckily, most database drivers relieve application
developers of the burden of managing database connections by using the concept of
connection pooling. However, application developers should still be careful about how
often they make connections to a database and how long they keep a connection open
within their application program.

Key Benefits of Three-Tier Applications

The appropriate use of three-tier applications can lead to several benefits in organiza-
tions (Thompson, 1997):

• Scalability Three-tier architectures are more scalable than two-tier architectures.
For example, the middle tier can be used to reduce the load on a database server
by using a transaction processing (TP) monitor to reduce the number of connec-
tions to a server, and additional application servers can be added to distribute
application processing. A TP monitor is a program that controls data transfer
between clients and servers to provide a consistent environment for online trans-
action processing (OLTP).

• Technological flexibility It is easier to change DBMS engines, although triggers
and stored procedures will need to be rewritten, with a three-tier architecture. The
middle tier can even be moved to a different platform. Simplified presentation
services make it easier to implement various desired interfaces such as Web
browsers or kiosks.

• Lower long-term costs Use of off-the-shelf components or services in the middle
tier can reduce costs, as can substitution of modules within an application rather
than an entire application.

• Better match of systems to business needs New modules can be built to support
specific business needs rather than building more general, complete applications.

• Improved customer service Multiple interfaces on different clients can access the
same business processes.

360 Part IV • Implementation

• Competitive advantage The ability to react to business changes quickly by
changing small modules of code rather than entire applications can be used to
gain a competitive advantage.

• Reduced risk Again, the ability to implement small modules of code quickly and
combine them with code purchased from vendors limits the risk assumed with a
large-scale development project.

EXTENSIBLE MARKUP LANGUAGE (XML)

Extensible Markup Language (XML) is a key development that is likely to continue to
revolutionize the way data are exchanged over the Internet. As noted in an earlier sec-
tion, HTML documents govern the display of information in a Web browser, whereas
XML addresses the issue of representing data in a structure and format that can both be
exchanged over the Internet and be interpreted by different components (i.e., browsers,
Web servers, application servers). XML does not replace HTML, but it works with
HTML to facilitate the transfer, exchange, and manipulation of data.

XML uses tags, short descriptions enclosed in angle brackets (< >), to characterize
data. The use of angle brackets in XML is similar to their use for HTML tags. But
whereas HTML tags are used to describe the appearance of content, XML tags are used
to describe the content, or data, itself. Consider the following XML document stored in
a file called PVFC.xml that is intended to provide the description of a product in PVFC:

<?xml version = “1.0”/>
<furniturecompany>

<product ID=”1”>
<description>End Table</description>
<finish>Cherry</finish>
<standard price>175.00</standard price>
<line>1</line>

</product>
</furniturecompany>

<description>, <finish>, and so on are examples of XML tags. <description>End
Table</description> is an example of an element. Hence, an XML document consists of
a series of nested elements. There are few restrictions on what can and cannot constitute
tags in an XML element. However, an XML document itself must conform to a set of
rules in terms of its structure. Three main techniques are used to validate that an XML
document is structured correctly (i.e., follows all the rules for what constitutes a valid
XML document): document structure declarations (DSDs), XML Schema Definition
(XSD), and Relax NG. All of these are alternatives to document type declarations
(DTDs). DTDs were included in the first version XML but have some limitations. They
cannot specify data types and are written in their own language, not in XML. In addi-
tion, DTDs do not support some newer features of XML, such as namespaces.

To overcome these difficulties, theW3C published the XML Schema standard in
May 2001. It defines the data model and establishes data types for the document data.
The W3C XML Schema Definition (XSD) language uses a custom XML vocabulary to
describe XML documents. It represents a step forward from using DTDs because it
allows data types to be denoted. The following is very simple XSD schema that
describes the structure, data typing, and validation of a salesperson record.

<?xml version=“1.0” encoding=“utf-8” ?>
<xsd:schema id=“salespersonSchema”
xmlns:xsd=“http://www.w3.org/2001/XMLSchema”>

<xsd:element name=“Salesperson” type=”SalespersonType” />
<xsd:complexType name=“SalespersonType”>

<xsd:sequence>
<xsd:elementname=“SalespersonID”

type=“xsd:integer”/>

Extensible Markup Language
(XML)
A text-based scripting language
used to describe data structures
hierarchically, using HTML-like tags.

XML Schema Definition (XSD)
Language used for defining XML
databases that has been
recommended by the W3C.

Chapter 8 • Database Application Development 361

<xsd:elementname=“SalespersonName”
type=“xsd:string” />

<xsd:element name=“SalespersonTelephone”
type=“PhoneNumberType”>

<xsd:element name=“SalespersonFax”
type=“PhoneNumber” minOccurs=“0” />

</xsd:element>
</xsd:sequence>

</xsd:complexType>
<xsd:simpleType name=“PhoneNumberType”>

<xsd:restriction base=“xsd:string”>
<xsd:length value=“12” />
<xsd:pattern value=“\d{3}-\d{3}-\d{4}” />

</xsd:restriction>
</xsd:simpleType>

</xsd:schema>

The following XML document conforms to the schema listed previously.

<?xml version=“1.0” encoding=“utf-8” ?>
<Salesperson xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
xsi:noNamespaceSchemaLocation=“salespersonSchema.xsd”>

<SalespersonID>1</SalespersonID>
<SalespersonName>Doug Henny</SalespersonName>
<SalespersonTelephone>813-444-5555</SalespersonTelephone>

</Salesperson>

While it is possible to set up your own XML vocabulary, as we have just done, a wide
variety of public XML vocabularies already exist and can be used to mark up your data.
Many of them are listed at http://wdvl.com/Authoring/Languages/XML/Specifications
.html and www.service-architecture.com/xml/articles/xml_vocabularies.html. Such
vocabularies make it easier for an organization to exchange data with other organizations
without having to engage in individual agreements with each business partner. Selecting
the best XML vocabulary to use to describe a database is very important. As XML gains
popularity, more libraries of external XML schemas should become available, but for now,
Web searches and word of mouth are the most likely mechanisms for you to find the
appropriate schemas for your application.

New XML-based vocabularies, such as Extensible Business Reporting Language
(XBRL) and Structured Product Labeling (SPL), are emerging as open standards that
will allow meaningful and unambiguous comparisons that could not be made easily
previously. Financial organizations that adhere to XBRL may record up to 2,000 finan-
cial data points, such as cost, assets, and net income, using standard XBRL tag defini-
tions. These data points may then be combined or compared across institutions’
financial reports. As products that enable easier use of XBRL come to market, large
financial institutions expect to spend much less time cleansing and normalizing their
data and exchanging data with business partners. Smaller institutions can anticipate
improved and more affordable access to financial analysis (Henschen, 2005). The FDA is
also beginning to require the use of Structured Product Labeling (SPL), to record the
information provided on drug labels, for both prescription and over-the-counter drugs.

Some sites are making standardization with their site easier for outside developers.
For example, developers can use the eBay API via XML to display eBay listings on any
third-party site. In addition, after downloading a developer’s kit, creating an account,
and obtaining a license key, developers can use Google APIs to query Google’s database
from within their own Web pages and applications. It is beyond the scope of this text to
provide the reader with an in-depth understanding of XML. Nevertheless, the function-
ality provided by eBay and Google already make it clear that XML is an area that melds
closely with traditional database content as e-commerce continues to develop.

http://wdvl.com/Authoring/Languages/XML/Specifications.html
http://wdvl.com/Authoring/Languages/XML/Specifications.html
www.service-architecture.com/xml/articles/xml_vocabularies.html

362 Part IV • Implementation

Now that you have a basic understanding of what constitutes an XML document,
we can turn our attention to how XML data can be used in the modern computing envi-
ronment and the unique challenges they bring to the table.

Storing XML Documents

One of the biggest questions that needs to be answered as XML data becomes more
prevalent is “Where do we store these data?” While it is possible to store XML data as a
series of files, doing so brings back into play the same disadvantages with file process-
ing systems that we discussed in Chapter 1. Luckily, we have several choices when it
comes to storing XML data:

1. Store XML data in a relational database by shredding the XML document Shredding
an XML document essentially means that we store each element of an XML schema
independently in a relational table and use other tables to store the relationships
among the elements. Modern databases such as Microsoft SQL Server and Oracle
provide capabilities beyond standard SQL to help store and retrieve XML data.

2. Store an entire XML document in a field capable of storing large objects, such as a
binary large object (BLOB) or a character large object (CLOB) This technique is
not very useful if you have to actually search for data within the XML document.

3. Store the XML document using special XML columns that are made available as
part of database These columns can be associated with an XSD, for example, to
ensure that the XML document that is being inserted is a valid document.

4. Store the XML document using a native XML database These are non-relational
databases designed specifically to store XML documents.

In general, the latter two options are used when the majority of the information
being processed is originally in XML format. For example, many academic and practi-
tioner conferences are beginning to require that authors submit their presentations and
papers in XML format. On the other hand, the first two options are used primarily if
XML is used as a data exchange format between a browser and an application server.

Retrieving XML Documents

Modern databases provide extensive support for retrieving information from databases
in XML format. The key technologies behind XML data retrieval are XPath and XQuery.
Each of the storage options listed above provides specific mechanisms by which you
can retrieve data in XML format. For the first three options, these take the form of exten-
sions to the SQL language (based on XPath and XQuery). In the case of a native XML
database, the most likely choice is XQuery itself. XQuery helps in locating and extract-
ing elements from XML documents; it can be used to accomplish such activities as
transforming XML data to XHTML, providing information for use by Web services,
generating summary reports, and searching Web documents.

The XML Query Working Group describes XQuery most simply in these words,
published at www.w3c.org/XML/Query: “XQuery is a standardized language for com-
bining documents, databases, Web pages and almost anything else. It is very widely
implemented. It is powerful and easy to learn. XQuery is replacing proprietary middle-
ware languages and Web Application development languages. XQuery is replacing
complex Java or C++ programs with a few lines of code. XQuery is simpler to work
with and easier to maintain than many other alternatives.”

Built on XPath expressions, XQuery is now supported by the major relational
database engines, including those from IBM, Oracle, and Microsoft.

Take a look at the XML document shown in Figure 8-15a. Now, consider the following
XQuery expression that returns all product elements that have a standard price > 300.00:

for $p in doc(“PVFC.xml”)/furniture company/product
where $p/standardprice>300.00
order by $p/description
return $p/description

XPath
One of a set of XML technologies
that supports XQuery development.
XPath expressions are used to locate
data in XML documents.

XQuery
An XML transformation language
that allows applications to query
both relational databases and
XML data.

www.w3c.org/XML/Query:

Chapter 8 • Database Application Development 363

<?xml version = “1.0”?>
<furniture company>
 <product ID=“1”>
 <description>End Table</description>
 <finish>Cherry</finish>
 <standard price>175.00</standard price>
 <line>1</line>
 </product>
 <product ID=“2”>
 <description>Coffee Table</description>
 <finish>Natural Ash</finish>
 <standard price>200.00</standard price>
 <line>2</line>
 </product>
 <product ID=“3”>
 <description>Computer Desk</description>
 <finish>Natural Ash</finish>
 <standard price>375.00</standard price>
 <line>2</line>
 </product>
 <product ID=“4”>
 <description>Entertainment Center</description>
 <finish>Natural Maple</finish>
 <standard price>650.00</standard price>
 <line>3</line>
 </product>
 <product ID=“5”>
 <description>Writers Desk</description>
 <finish>Cherry</finish>
 <standard price>325.00</standard price>
 <line>1</line>
 </product>
 <product ID=“6”>
 <description>8-Drawer Desk</description>
 <finish>White Ash</finish>
 <standard price>750.00</standard price>
 <line>2</line>
 </product>
 <product ID=“7”>
 <description>Dining Table</description>
 <finish>Natural Ash</finish>
 <standard price>800.00</standard price>
 <line>2</line>
 </product>
 <product ID=“8”>
 <description>Computer Desk</description>
 <finish>Walnut</finish>
 <standard price>250.00</standard price>
 <line>3</line>
 </product>
</furniture company>

FIGURE 8-15 XML code
segments

(a) XML schema

You can see the similarities between XQuery and SQL in this example. It is
often said that XQuery is to XML as SQL is to relational databases. This example
demonstrates the ease with which you will become fluent in XQuery as your
understanding of SQL increases. The XQuery expression shown previously is
called a FLWOR expression. FLWOR is an acronym for For, LET, Where, Order by,
and Return:

• The FOR clause selects all product elements from furniture company into the
variable named $p.

• The WHERE clause selects all product elements with a standard price greater
than $300.00.

(continued)

364 Part IV • Implementation

<?xml version = "1.0"?>
<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
<xsl:template match="/">
 <html>
 <body>
 <h2>Product Listing</h2>
 <table border="1">
 <tr bgcolor="orange">
 <th>Description</th>
 <th>Finish</th>
 <th>Price</th>
 </tr>
 <xsl:for-each select="furniturecompany/product">
 <tr>
 <td> <xsl:value-of select="description"/> </td>
 <td> <xsl:value-of select="finish"/> </td>
 <td> <xsl:value-of select="price"/> </td>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
</xsl:template>
</xsl:stylesheet>

FIGURE 8-15 (continued)
(b) XSLT code

(c) Output of XSLT
tranformation

• The ORDER BY clause sets the sorting order of the results to be by the description
element.

• The RETURN clause specifies that the description elements should be returned.

The results of the above XQuery are as follows:

<description>8-Drawer Desk</description>
<description>Computer Desk</description>
<description>Dining Table</description>
<description>Entertainment Center</description>
<description>Writer’s Desk</description>

This example shows how to query data that is in XML format. Given the importance
of XML as a data exchange format, many relational databases also provide mechanisms to

Chapter 8 • Database Application Development 365

return data from relational tables in an XML format. In Microsoft SQL Server, this can be
achieved by adding the statement FOR XML AUTO or PATH to the end of a typical
SELECT query. Essentially, the result table from the SELECT is converted into an XML
form and returned to the calling program. Behind the scenes, many of these additional
features use XPath as the basis for the queries.

Displaying XML Data

Notice that in the XML examples so far, we have provided little information about what
to do with XML data. In fact, the separation of how data is formatted from how the data
is displayed is one of the key reasons XML is gaining popularity over HTML, where the
data and formatting are intermingled. The display of XML data on a Web browser is
controlled by a stylesheet specified using the Extensible Stylesheet Language
Transformation (XSLT). Most modern browsers and programming languages provide
support for XSLT. Thus, the transformation of the XML can happen either at the Web
server layer or the application server layer. Figure 8-15b shows a sample XSLT specifica-
tion for displaying the Salesperson data in the form of an HTML table. The resultant
output is shown in Figure 8-15c.

One of the advantages of XSLT is that it can be used to handle the myriad devices
that now use the Internet. Smartphone devices have built-in browsers that allow a user
to access the Internet. Some of the browsers require that content delivered to them use
the Wireless Application Protocol (WAP), using the Wireless Markup Language (WML).
Others can handle HTML, as long as it has been appropriately transformed for optimal
viewing on the screen size of a mobile device. By using XSLT, XML, and other technolo-
gies, the same set of data can be rendered onto the different devices without having to
write a separate page for each device type.

XML and Web Services

The Internet has served as a powerful driver to encourage the integration of commu-
nication between the providers of software applications and the users of those appli-
cations. As the Internet evolves as a distributed computing platform, a set of
emerging standards is affecting software development and distribution practices.
Easing the automatic communication of software programs through the use of XML
coding and Internet protocols such as HTTP and e-mail protocols, a new class of
applications called Web services are improving the ability of computers to commu-
nicate over the Internet automatically, thus aiding the development and deployment
of applications within a company or across an industry. Existing methods of estab-
lishing communication, such as electronic data interchange (EDI), are still being
used, but the widespread availability of XML means that the Web services approach
promises to make it much easier to create program application modules that execute
in a distributed environment.

The promise of Web services is the development of a standardized communica-
tion system among different applications, using XML based technologies at their
core. Easier integration of applications is possible because developers need not
be familiar with the technical details associated with the applications being inte-
grated, nor must they learn the programming language of the application being
integrated. Anticipation of increased business agility derived from significant reduc-
tions in the time and effort needed to establish enterprise application integration and
B2B relationships is driving the interest in the Web services approach. Figure 8-16 is
a very simple diagram of an order entry system that includes both internal Web serv-
ices (Order Entry and Accounting) and Web services that are outsourced to compa-
nies that provide authentication and credit validation services over the Web
(Newcomer, 2002).

There are some key additional terms that are associated with using Web services.
Figure 8-17 depicts a common database/Web services protocol stack. The transformation
and communication of data into and out of application programs and databases relies on a
set of XML-based protocols. Universal Description, Discovery, and Integration (UDDI) is

Extensible Stylesheet Language
Transformation (XSLT)
A language used to transform
complex XML documents and also
used to create HTML pages from
XML documents.

Web services
A set of emerging standards that
define protocols for automatic
communication between software
programs over the Web. Web
services are XML based and usually
run in the background to establish
transparent communication among
computers.

Universal Description, Discovery,
and Integration (UDDI)
A technical specification for
creating a distributed registry of
Web services and businesses that
are open to communicating
through Web services.

366 Part IV • Implementation

a technical specification for creating a distributed registry of Web services and
businesses that are open to communicating through Web services. Web Services
Description Language (WSDL) is an XML-based grammar or language used to
describe what a Web service can do and to specify a public interface for how to use that
service. WSDL is used to create a file that automatically generates a client interface,

Retailer’s
Inventory
Service

Wholesaler’s
Order Entry
Web Service

Wholesaler’s
Accounting

Web Service

Authentication
Web Service

Provider

Credit Validation
Web Service

Provider

FIGURE 8-16 A typical order
entry system that uses Web
services
Source: Based on Newcomer (2002).

Web Services Description
Language (WSDL)
An XML-based grammar or
language used to describe a Web
service and specify a public
interface for that service.

InternetOpen Communications

eXtensible
Markup
Language

XMLData Format

Simple
Object
Access
Protocol

SOAP
Service

Interactions

Web
Services
Description
Language

WSDL
Describe
Services

Universal
Description,
Discovery,
Integration

UDDI
Publish, Find, Use

Services

FIGURE 8-17 Web services
protocol stack

Chapter 8 • Database Application Development 367

allowing a developer to attend to the business logic rather than the communications
requirements of an application. The definition of the public interface may indicate data
types for XML messages, message format, location information for the specified Web
service, the transport protocol to be used (HTTP, HTTPS, or e-mail), and so forth. These
descriptions are stored in a UDDI repository.

Simple Object Access Protocol (SOAP) is an XML-based communication
protocol used for sending messages between applications via the Internet. Because it
is a language-independent platform, it enables communication between diverse
applications. As SOAP moves toward becoming a W3C standard, it generalizes a
capability that was previously established on an ad hoc basis between specific
programs. Many view it as the most important Web service. SOAP structures a
message into three parts: an optional header, a required body, and optional attach-
ments. The header can support in-transit processing and can thus deal with firewall
security issues.

The following is an example, adapted from an example displayed at http://en.
wikipedia.org/wiki/SOAP, of how Pine Valley Furniture Company might format a
SOAP message requesting product information from one of its suppliers. PVFC needs
to know which product corresponds to the supplier’s product ID 32879.

<soap:Envelope xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/>
<soap:Body>

<getProductDetails xmlns=http://supplier.example.com/ws
<productID>32879</productID>

</getProductDetails>
</soap:Body>

</soap:Envelope>

The supplier’s Web service could format its reply message, which contains the
requested information about the product, in this way:

<soap:Envelope xmlns:soap=http://schemas.xmlsoap.org/soap/envelope/>
<soap:Body>

<getProductDetailsResponse xmlns=“suppliers.example.com/ws”>
<getProductDetailsResult>
<productName>Dining Table</productName>
<Finish>Natural Ash</Finish>
<Price>800</Price>
<inStock>True</inStock>
</getProductDetailsResult>

</getProductDetailsResponse>
</soap:Body>

</soap:Envelope>

Figure 8-18 shows the interaction of applications and systems with Web services.
Note that as a transaction flows from one business to another or from a customer to
a business, a SOAP processor creates a message envelope that allows the exchange
of formatted XML data across the Web. Because SOAP messages connect remote
sites, appropriate security measures must be implemented in order to maintain data
integrity.

Web services, with their promise of automatic communication between businesses
and customers, whether they are other businesses or individual retail customers, have
generated much discussion and anticipation in the past few years. Concerns about
adopting a Web services approach focus on transaction speed, security, and reliability.
The open system implied in establishing automatic communication among computers
attached to the Web must be further developed before the security and reliability match
those of traditional business applications.

Simple Object Access Protocol
(SOAP)
An XML-based communication
protocol used for sending
messages between applications
via the Internet.

http://en.wikipedia.org/wiki/SOAP
http://en.wikipedia.org/wiki/SOAP

368 Part IV • Implementation

However, it is clear that Web services are here to stay. Several organizations have
already attracted attention by their use of Web services. Both Amazon.com and
Google, two companies with high-profile Web presence, use Web services extensively.
Google began its program in April 2002, allowing developers to access its search data-
base directly for noncommercial uses and to create their own interfaces to the data.
Access to Amazon.com’s inventory database was made available in July 2002.
Combining the service with a blog tool, an API allows bloggers to create a link to a rel-
evant Amazon.com product in one step. Programmers benefit from improved ease
of access, customers conduct more efficient searches, and Amazon.com and Google
continue to spread and support their brands. Google “Amazon Web services
documentation” or “Google Web services” to become more familiar with these free
opportunities.

Others charge for using their Web services. Microsoft .NET developers can use
Microsoft’s MapPoint Web Service to provide location-based services (LBS) from their
Web sites. MapPoint Web Service provides both location and mapping capabilities that
may be accessed over any HTTPS connection. MapQuest offers similar capabilities.
After paying a setup fee, users may elect to pay on an annual or monthly basis. Charges
depend on transaction count. Topographic and satellite images are available through
MSR Maps (see http://msrmaps.com).

The growing popularity and availability of Web services is also leading
to a change in the way organizations think about developing their IT applications
and capabilities. A new paradigm called service-oriented architecture (SOA) is
gaining a foothold. An SOA is a collection of services that communicate with each
other in some manner, usually passing data or coordinating a business activity.
While these services do not have to be Web services, Web services are the predomi-
nant mechanism used. SOAs differ from traditional object-oriented approaches in
that the services are loosely coupled and very interoperable. The software compo-
nents are very reusable and operate across different development platforms, such as
Java and .NET. Using XML, SOAP, and WSDL eases the establishment of necessary
connections.

HTML

Firewall
SOAP

Processor

DB

Browsers

XML

Web
Presentation

External
Applications

DBMS

Business
Logic

SOAP
Processor

Application Server

FIGURE 8-18 Web services deployment

Service-oriented
architecture (SOA)
A collection of services that
communicate with each other in
some manner, usually by passing
data or coordinating a business
activity.

Source: Based on Newcomer (2002).

http://msrmaps.com

Chapter 8 • Database Application Development 369

Summary
Client/server architectures have offered businesses
opportunities to better fit their computer systems to their
business needs. Establishing the appropriate balance
between client/server and mainframe DBMSs is a matter
of much current discussion. Client/server architectures
are prominent in providing Internet applications, includ-
ing dynamic data access. Application partitioning assigns
portions of application code to client or server partitions
after it is written in order to achieve better performance
and interoperability. Application developer productivity
is expected to increase as a result of using application par-
titioning, but the developer must understand each
process intimately to place it correctly.

In a two-tier architecture, the client manages the
user interface and business logic, while the database
server manages database storage and access. This archi-
tecture reduces network traffic, reduces the power
required for each client, and centralizes user authoriza-
tion, integrity checking, data dictionary maintenance, and
query and update processing on the database server. We
looked at examples of a two-tier application written in
VB.NET and Java and examined the six key steps needed
to retrieve data from a database.

Three-tier architectures, which include another
server in addition to the client and database server layers,
allow application code to be stored on the additional
server. This approach allows business processing to be per-
formed on the additional server, resulting in a thin client.
Advantages of the three-tier architecture can include scala-
bility, technological flexibility, lower long-term costs, bet-
ter matching of systems to business needs, improved
customer service, competitive advantage, and reduced

risk. But higher short-term costs, advanced tools and train-
ing, shortages of experienced personnel, incompatible
standards, and lack of end-user tools are some of the chal-
lenges related to using three-tier or n-tier architectures.

The most common type of three-tier application is
the Internet-based Web application. In its simplest
form, a request from a client browser is sent through
the network to the Web server. If the request requires
that data be obtained from the database, the Web server
constructs a query and sends it to the database server,
which processes the query and returns the results.
Firewalls are used to limit external access to the com-
pany’s data.

Common components of Internet architecture are
certain programming and markup languages, Web
servers, applications servers, database servers, and data-
base drivers and other middleware that can be used to
connect the various components together. To aid in our
understanding of how to create a Web application, we
looked at examples of three-tier applications written in
JSP, PHP, and ASP.NET and examined some of the key
database-related issues in such applications.

Finally, we discussed the role of XML as a data
exchange standard on the Internet. We examined issues
related to the storage of XML documents in databases,
retrieval of XML using languages such as XQuery
and XPath, as well transformation of XML data into pres-
entation formats such as HTML. We also examined
various XML-based technologies, UDDI, WSDL, and
SOAP, which are all fueling the interest in SOA and Web
services. These allow disparate applications within a com-
pany or around the globe to be able to talk to each other.

Chapter Review

Key Terms

Application partitioning
338

Application program
interface (API) 340

Client/server system 336
Database server 339
Extensible Markup

Language (XML) 360
Fat client 338
Java servlet 353

Middleware 340
Open Database

Connectivity (ODBC)
340

Thin client 345
Three-tier architecture 344
Service-oriented architec-

ture (SOA) 368
Simple Object Access

Protocol (SOAP) 367

Universal Description,
Discovery, and
Integration
(UDDI) 365

Web services 365
Web Services

Description Language
(WSDL) 366

World Wide Web
Consortium (W3C) 348

XHTML 348
XML Schema Definition

(XSD) 360
XPath 362
XQuery 362
Extensible Stylesheet

Language
Transformation
(XSLT) 365

Using an SOA approach leads to the establishment of a modeling, design, and
software development process that supports the efficient development of applications.
Organizations that have adopted such an approach have found their development time
reduced by at least 40 percent. Not only are the organizations experiencing shorter
development time, they also hope to demonstrate more flexibility in responding to the
rapidly changing business environment.

370 Part IV • Implementation

Review Questions

1. Define each of the following terms:
a. application partitioning
b. application program interface (API)
c. client/server system
d. middleware
e. stored procedure
f. three-tier architecture
g. Java Database Connectivity (JDBC)
h. XML Schema
i. Web services
j. XSLT
k. SOAP

2. Match each of the following terms with the most appropriate
definition:
_____ client/server

system

_____ application
program
interface (API)

_____ fat client

_____ database
server

_____ middleware

_____ three-tiered
architecture

_____ thin client

_____ XSD

_____ SOA

_____ W3C

3. List several major advantages of the client/server architec-
ture compared with other computing approaches.

4. Contrast the following terms:
a. two-tier architecture; three-tier architecture
b. fat client; thin client
c. ODBC; JDBC
d. XHTML; XSLT
e. SQL; XQuery
f. Web services; SOA

5. Describe the advantages and disadvantages of two-tier
architectures.

6. Describe the advantages and disadvantages of three-tier
architectures.

7. Describe the common components needed to create a Web-
based application.

8. What database APIs are commonly used to access databases
from various programming languages?

9. What are the six common steps needed to access databases
from a typical program?

10. If you were charged with developing a client/server appli-
cation, how would you ensure success?

11. Research the Web for information on trends in migrating
from mainframe systems to client/server architecture.
What percentage of U.S. companies have migrated?
Highlight success stories that you encounter, as well as
difficulties. A good Web site to start with is www.cs.wisc.
edu/arch/www.

12. What are the four common approaches to storing XML data?
13. What components must a PHP program that enables a

dynamic Web site contain?
14. Explain why using XML Schema is a step forward from

using document type declarations (DTDs).
15. What is XSLT, and how does it differ from XML? What role

does it play in the creation of a Web application?
16. Discuss UDDI. Compare and contrast it with the white,

yellow, and green pages of the telephone book. (If your
telephone book does not have green pages, you will
need to research this feature found in some telephone
books.)

Problems and Exercises
1. You have been asked to prepare a report that evaluates pos-

sible client/server solutions to handle a new customer
application system for all branch offices. What business
characteristics would you evaluate? What technology char-
acteristics would you evaluate? Why?

2. Explain the difference between a static Web site and a dynamic
one. What are the characteristics of a dynamic Web site that
enable it to better support the development of e-business?

3. Historically, what types of applications have moved quickly
to client/server database systems? What types have moved
more slowly, and why? What do you think will happen in
the future to the ratio of client/server database systems ver-
sus mainframe database systems?

4. Discuss some of the languages that are associated with
Internet application development. Classify these languages

according to the functionality they provide for each applica-
tion. It is not necessary that you use the same classification
scheme used in the chapter.

5. Find some dynamic Web site code such as that included in
Figures 8-10, 8-11, and 8-12. Annotate the code, as is done in
these figures, to explain each section, especially the ele-
ments that involve interaction with the database. (Hint:
Google “JSP,” “ASP.NET,” or “PHP MySQL Examples” to
find a rich set of sample code to explore.)

6. Rewrite the example shown in Figure 8-5 using VB.NET.
7. Rewrite the example show in Figure 8-4 using Java.
8. Construct a simple XML schema that describes a tutor.

Include the tutor’s last name, first name, phone, e-mail
address, and certification date as child elements of the
TUTOR element.

a. a client that is responsible for
processing, including application
logic and presentation logic

b. World Wide Web Consortium
c. a PC configured for handling the

presentation layer and some
business logic processing for an
application

d. a collection of services that
communicate with each other in
some manner

e. software that facilitates
interoperability, reducing
programmer coding effort

f. device responsible for database
storage and access

g. systems where the application
logic components are distributed

h. software that facilitates
communication between front-
end programs and back-end
database servers

i. three-layer client/server
configuration

j. language used for defining XML
databases

www.cs.wiscedu/arch/www
www.cs.wiscedu/arch/www

Chapter 8 • Database Application Development 371

9. Using your schema from Question 8, write an FLWOR
XQuery expression that lists only the tutors’ names and lists
them alphabetically by last name.

10. Using your schema from Question 8, write an XSLT pro-
gram to display the tutor information in the form of an
HTML table.

11. Discuss how Web services can be used to effectively inte-
grate business applications and data. Search the Web for
resources on current Web services that employ XML, SOAP,
UDDI, and WSDL. Find at least three and discuss how each
is used, including examples from industry.

Field Exercises
1. Investigate the computing architecture of your university.

Trace the history of computing at your university and
determine what path the university followed to get to its
present configurations. Some universities started early
with mainframe environments; others started when PCs
became available. Can you tell how your university’s initial
computing environment has affected today’s computing
environment?

2. On a smaller scale than in Question 1, investigate the com-
puting architecture of a department within your university.
Try to find out how well the current system is meeting the
department’s information-processing needs.

3. Locate three sites on the Web that have interactive database
systems attached to them. Evaluate the functionality of each
site and discuss how its interactive database system is likely
to affect that functionality. If you’re not sure where to start,
try www.amazon.com.

4. Determine what you would have to do to use PHP, JSP, or
ASP.NET on a public Web site owned either by you or by
the organization for which you work.

5. Outline the steps you would take to conduct a risk assess-
ment for your place of employment with regard to attaching
a database to your public site. If possible, help with the
actual implementation of the risk assessment.

6. According to your own personal interests, use one of the
common combinations PHP and MySQL, JSP and Oracle, or
ASP.NET and Microsoft Access to attach a database to your
personal Web site. Test it locally and then move it to your
public site.

7. Identify a Web site that extensively describes XML technolo-
gies. What other XML technologies besides the ones described
in this chapter do you see being discussed? What purpose do
they serve? If you’re not sure where to start, try www.xml.
com or www.w3.org.

References

Henschen, D. 2005. “XBRL Offers a Faster Route to Intelligence.”
Intelligent Enterprise 8, 8 (August): 12.

Hurwitz, J. 1998. “Sorting Out Middleware.” DBMS 11,1
(January): 10–12.

Newcomer, E. 2002. Understanding Web Services, XML, WSDL,
SOAP, and UDDI. Boston: Addison-Wesley.

Quinlan, T. 1995. “The Second Generation of Client/Server.”
Database Programming & Design 8,5 (May): 31–39.

Thompson, C. 1997. “Committing to Three-Tier Architecture.”
Database Programming & Design 10,8 (August): 26–33.

Ullman, L. 2003. PHP and MySQL for Dynamic Web Sites.
Berkeley, CA: Peachpit Press.

Further Reading
Anderson, G., and B. Armstrong. 1995. “Client/Server: Where

Are We Really?” Health Management Technology 16,6 (May):
34, 36, 38, 40, 44.

Cerami, E. 2002. Web Services Essentials. Sebastopol, CA:
O’Reilly & Associates, Inc.

Frazer, W. D. 1998. “Object/Relational Grows Up.” Database
Programming & Design 11,1 (January): 22–28.

Innocenti, C. 2006. “XQuery Levels the Data Integration Playing
Field.” DM Review accessed at DM Direct, http://www.
information-management.com/infodirect/20061201/
1069184-1.html (December).

Koenig, D., A. Glover, P. King, G. Laforge, and J. Skeet. 2007.
Groovy in Action. Greenwich, CT: Manning Publications.

Mason, J. N., and M. Hofacker. 2001. “Gathering Client-Server
Data.” Internal Auditor 58:6 (December): 27–29.

Melton, J., and S. Buxton.2006. Querying XML, XQuery, XPath,
and SQL/XML in Context. Morgan Kaufmann Series in Data
Management Systems. San Francisco: Morgan Kaufmann.

Morrison, M., and J. Morrison. 2003. Database-Driven Web Sites,
2nd ed. Cambridge, MA: Thomson-Course Technologies.

Richardson, L., S. Ruby, and D. H. Hansson. 2007. RESTful Web
Services. Sebastopol, CA: O’Reilly Media, Inc.

Valade, J. 2006. PHP & MySQL: Your Visual Blueprint for Creating
Dynamic, Database-Driven Web Sites. Hoboken, NJ: Wiley &
Sons.

Wamsley, P. 2007. XQuery. Sebastopol, CA: O’Reilly Media, Inc.

Web Resources

www.javacoffeebreak.com/articles/jdbc/index.html “Getting
Started with JDBC” by David Reilly.

http://www.w3schools.com/ASPNET/default.asp Tutorial on
ASP.NET.

www.cs.wisc.edu/arch/www The WWW Computer Architecture
site, maintained by the Computer Architecture Group in the
Computer Sciences area at the University of Wisconsin.

www.w3.org/html/wg W3C’s home page for HTML.

www.amazon.com
www.xml.com
www.xml.com
www.w3.org
http://www.information-management.com/infodirect/20061201/1069184-1.html
http://www.information-management.com/infodirect/20061201/1069184-1.html
http://www.information-management.com/infodirect/20061201/1069184-1.html
www.javacoffeebreak.com/articles/jdbc/index.html
http://www.w3schools.com/ASPNET/default.asp
www.cs.wisc.edu/arch/www
www.w3.org/html/wg

372 Part IV • Implementation

www.w3.org/MarkUp W3C’s home page for XHTML.
www.w3.org/XML/Query W3C’s home page for XQuery.
www.w3.org/XML/1999/XML-in-10-points The W3C article

“XML in 10 points,” which presents basic XML concepts.
www.netcraft.com The Netcraft Web Server survey, which

tracks the market share of different Web servers and SSL
site operating systems.

www.projectliberty.org The home page of the Liberty Alliance.
Open standards specifications and drafts of specifications
may be downloaded here.

www.w3schools.com/default.asp A Web developers’ site that
provides Web-building tutorials on topics from basic

HTML and XHTML to advanced XML, SQL, databases,
multimedia, and WAP.

www.ws-i.org The home page of the Web Services Interoperability
Organization (WS-I).

www.oasis-open.org/home/index.php The home page of the
Organization for the Advancement of Structured
Information Standards (OASIS).

xml.apache.org/cocoon The Cocoon project, a Java Web pub-
lishing framework that separates document content,
style, and logic, allowing the independent design, cre-
ation, and management of each.

www.w3.org/MarkUp
www.w3.org/XML/Query
www.w3.org/XML/1999/XML-in-10-points
www.netcraft.com
www.projectliberty.org
www.w3schools.com/default.asp
www.ws-i.org
www.oasis-open.org/home/index.php

Chapter 8 • Database Application Development 373

CASE
Mountain View Community Hospital

Case Description

In Chapter 1, you learned about the Mountain View Community
Hospital (MVCH) special study team that is developing a long-
term strategic plan, including an information systems plan for
MVCH. In assessing the future technology needs of the hospital,
the planning team of Mr. Heller, Mr. Lopez, Dr. Jefferson, and a
consultant has taken a close look at issues with existing systems
as well as trends in the health-care IT industry.

You may recall that MVCH has systems for many different
areas, including patient accounting, administrative services, and
financial management. Most of the computer applications are
implemented using relational database and client/server technol-
ogy. Some systems were developed internally, while others were
acquired from outside vendors. Responding to a recent survey of
health-care CIOs, Mr. Heller chose the term limited integration to
describe the hospital’s current IT infrastructure: best-in-class sys-
tems in some areas, stand-alone systems in other areas, and some
remaining manual or paper-based processes. Such limited inte-
gration is affecting virtually all of the hospital’s stakeholders.

Physicians often have to log on to multiple applications to
retrieve patient-related information or read e-mail. Some doctors
have expressed an interest in being able to access clinical sys-
tems remotely while working outside the hospital. Patients must
negotiate a maze of health plans, administrators, physicians, and
clinics in their encounters with the hospital. The hospital’s het-
erogeneous environment of platforms and applications, as well
as the paper-based systems, has made exchange of patient data
between the clinical systems and administrative/financial appli-
cations a challenge. At the same time, the managed-care envi-
ronment and the needs to contain costs and simultaneously
improve clinical outcomes, patient satisfaction, and efficiency
require MVCH to closely track and analyze its clinical and finan-
cial data related to patient care services and provide those data
to its administrative and clinical decision makers. Oftentimes,
accurate data need to be available in real time.

In addition to these concerns, some important develop-
ments in the health-care IT industry factor into the study team’s
analysis. One is the trend toward using electronic medical record
systems that require various clinical information systems to
work together to provide a complete patient record. Hospitals
concerned about moving patients through the hospital more effi-
ciently and effectively have begun adopting workflow automa-
tion (or business process management) technology and Web
technologies are making inroads. Web portals, for example,
allow both patients and physicians to communicate online.
Health-care alliances are extending their member and patient
services beyond their organizational boundaries, to the work-
place, schools, and homes. Health plan members can check their
claim status, send messages to service representatives, and
review coverage. Patients can even make their own appoint-
ments by accessing appointment schedules.

Given these issues and trends, the study team has con-
cluded that better and more centralized access to operational,
financial, and clinical information should be a top priority for
the hospital. Specifically, the team would like MVCH to imple-
ment a system that integrates all of these data—data from

health plans, physicians, and hospital systems—so that accurate
real-time information is available.

MVCH’s planning committee believes the adoption of
Web-based solutions may greatly improve the hospital’s opera-
tions, extend customer service and marketing functions, speed
up and improve the quality of patient care, and allow physi-
cians to be more responsive to their patients. The committee
specifically sees Web services as a way of addressing many of
the hospital’s challenges.

For one thing, given the widespread access to the Internet
these days, patients are increasingly demanding online capabili-
ties, such as making appointments, booking surgeries, making
payments, and so on. In response, hospitals have begun to imple-
ment patient portals that can even provide patients with access to
their medical records. Another issue at MVCH is the heteroge-
neous environment of platforms and applications. As stated in pre-
vious chapters, MVCH has applications and software from many
different vendors. Consequently, the IT department has been
struggling to interface the many different systems and exchange
patient data between the clinical systems and software that is not
health-care specific, such as reporting and billing applications.
Mr. Heller, MVCH’s CIO, believes that Web services would provide
an efficient means of making the diverse systems work together.

Such a solution would also be beneficial for the medical
staff. Currently, physicians have to log on to multiple applica-
tions to retrieve diagnostic information such as radiology
reports and digital images, access the latest medical literature
regarding a patient condition, or read e-mail. Some doctors have
also expressed an interest in accessing clinical systems remotely
while working outside of the hospital. A physician’s portal
accessed from a standard Web browser could provide faster
access to information regardless of location, and doctors could
open and navigate multiple applications to extract information.
Web services could even push relevant new information regard-
ing a patient’s condition. At a recent conference for health-care
CIOs, Mr. Heller also learned from presentations and conversa-
tions with peers that Web services could potentially be rolled out
in a relatively short time frame—three to six months.

In considering where Web services and other Web-based
solutions could be developed for MVCH’s health-care systems,
several issues have been raised:

• Privacy and security concerns are of primary importance.
Patient health information requires high levels of confi-
dentiality because it is sensitive by nature and because of
HIPAA’s privacy and security mandates.

• Data entry questions are also significant. Doctors, nurses,
and other health-care workers must be able and willing to
enter the data into any system that is provided.

• Given that Web services are built on a foundation of
HTTP, system availability and reliability would be crucial
if a decision were made to implement a Web-enabled sys-
tem, particularly for key business processes.

• How would a browser-based system integrate with the
systems already in existence at MVCH?

• Would MVCH have the funding and staffing resources
to go forward with a Web services project? Would it be

374 Part IV • Implementation

necessary to hire an external service provider? Could it be
done in-house with existing IT staff?

• How would MVCH demonstrate that the proposed sys-
tem is cost-effective?

• How will MVCH predict and handle changes in work
patterns that may occur?

• What organizational policies and procedures will need to be
changed or modified as system changes are implemented?

Case Questions

1. Do you think that MVCH IT staff under Mr. Heller should
and could undertake the project of moving MVCH toward
an integrated environment? Should MVCH outsource such
a project? Why or why not?

2. Can you think of any other approaches to integration
(besides the Web-based approach) that the study team has
not considered? If so, what are some alternatives to address
the issues at hand?

3. Discuss the extent and nature of security and privacy
issues that the planning committee should consider when
evaluating any decisions to provide more information that
is critical to patients over the Web. Why would systems
integration be important in terms of addressing HIPAA’s
privacy and security concerns?

4. The health-care industry has not embraced Web services as
quickly as other industries for integrating diverse systems.
Why do you think that’s the case? What would be critical
success factors for making Web services solutions a success
at MVCH and other health-care organizations?

5. Should MVCH treat the potential implementation of Web-
based solutions and Web services as a technology issue or a
strategy issue? Please explain.

Case Exercises

1. Outline the advantages and risks/disadvantages of mov-
ing toward an integrated Web-based environment based on
a three-tier architecture. What do you think would be the
most significant challenges with this integration approach?
Which specific technologies would you recommend for
implementing this solution?

2. An alternative approach that has been suggested is to look for
a single integrated solution. The study team is examining the
Global Care Solutions Hospital 2000 system, a fully integrated
hospital information system (HIS). What advantages do you
see in adopting a fully integrated health information/ERP
system? What do you think would be the most significant
challenges with this integration approach?

3. Using the information developed in the first two case exer-
cises, do you think MVCH has arrived at the right decision?
Defend your answer. Indicate what additional information
you would like to have to help you with your analysis.

4. Outline some of the benefits of using thin clients in a hospi-
tal setting such as MVCH. Which thin client devices would
be most beneficial? Would thin client hardware make it eas-
ier to comply with the privacy and security requirements of
HIPAA? Why or why not? Would you recommend that
MVCH pursue a thin client strategy?

5. The MVCH planning committee is considering several busi-
ness functions to be accessed via the Web: (1) submitting

insurance claims online, (2) providing clinical information
to patients online, (3) implementing supply chain manage-
ment online, (4) providing medical records to other facili-
ties, and (5) implementing an online medical knowledge
base. Which of these five possibilities do you recommend
implementing first? Why? In your answer, address the fol-
lowing issues for each option being considered:
a. Security and confidentiality concerns: Who would need to

access the data? How would access be restricted? How
likely is the proposed security system to be compromised?

b. Data entry requirements: Which job functions would
enter data? How much resistance is expected from each
function, and how is this resistance to be handled?

c. The benefits that MVCH could expect and the expected
costs.

6. Use the MVCH files you have prototyped to complete this
exercise.
a. Provide the PATIENT data as an XML file.
b. Use XQuery to provide a query related to the PATIENT

table.
c. Generate a report and, using the XML capabilities in

Microsoft Access (e.g., ReportML and an XSLT file), trans-
form the report so that it can be displayed inside a browser
view to look like the report in the Print Preview of Access.

Project Assignments

P1. Assume that the MVCH hospital database you developed
in SQL Server (or another DBMS designated by your
instructor) will be made available to several desktop client
applications at the hospital.
a. What client and connectivity components are needed in

order for the applications to access the database?
b. What types of client applications can access the data-

base? How do the different types of clients connect to
the database server?

c. Which APIs are supported for building Web-based
applications?

d. What client tools are available? Describe their function.
e. Would you use more than one database server? For

what purposes? How would you add another server?
P2. Assume that Dr. Z’s MS management system uses the same

RDBMS that you used for your MVCH database but is cur-
rently located on a different database server.
a. How could you establish a link to that database?
b. What would you need to do to place the database on the

same server as the MVCH database you created? How
would client applications access the MS management
system database?

P3. Web-enable the MVCH database you developed earlier and
develop one or more functionalities such as the following:
• Online patient registration (e.g., for ambulatory surgery,

for Dr. Z’s MS Center, etc.)
• Online volunteer application
• Login for employees or physicians with a user name and

password
P4. Using the MVCH database you created earlier, identify one

or two tables and provide the data as XML files.
P5. Using the MVCH database you created earlier, identify one

or two queries and return the data as an XML stream.

375

Data Warehousing

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: data warehouse, operational
system, informational system, data mart, independent data mart, dependent data
mart, enterprise data warehouse (EDW), operational data store (ODS), logical
data mart, real-time data warehouse, reconciled data, derived data, transient
data, periodic data, star schema, grain, conformed dimension, snowflake
schema, online analytical processing (OLAP), relational OLAP (ROLAP),
multidimensional OLAP (MOLAP), data visualization, and data mining.

� Give two important reasons why an “information gap” often exists between an
information manager’s need and the information generally available.

� List two major reasons most organizations today need data warehousing.
� Name and briefly describe the three levels in a data warehouse architecture.
� Describe the two major components of a star schema.
� Estimate the number of rows and total size, in bytes, of a fact table, given reasonable

assumptions concerning the database dimensions.
� Design a data mart using various schemes to normalize and denormalize

dimensions and to account for fact history, hierarchical relationships between
dimensions, and changing dimension attribute values.

� Develop the requirements for a data mart from questions supporting decision
making.

INTRODUCTION

Everyone agrees that readily available high-quality information is vital in business
today. Consider the following actual critical situation:

In September 2004, Hurricane Frances was heading for the Florida Atlantic
Coast. Fourteen hundred miles away, in Bentonville, Arkansas, Wal-Mart
executives were getting ready. By analyzing 460 terabytes of data in their
data warehouse, focusing on sales data from several weeks earlier, when
Hurricane Charley hit the Florida Gulf Coast, the executives were able to
predict what products people in Miami would want to buy. Sure, they
needed flashlights, but Wal-Mart also discovered that people also bought
strawberry Pop-Tarts and, yes, beer. Wal-Mart was able to stock its stores

C H A P T E R

9

376 Part IV • Implementation

with plenty of the in-demand items, providing what people wanted and
avoiding stockouts, thus gaining what would otherwise have been lost
revenue.

Beyond special circumstances like hurricanes, by studying a market
basket of what individuals buy, Wal-Mart can set prices to attract customers
who want to buy “loss leader” items because they will also likely put several
higher-margin products in the same shopping cart. Detailed sales data also
help Wal-Mart determine how many cashiers are needed at different hours
in different stores given the time of year, holidays, weather, pricing, and
many other factors. Wal-Mart’s data warehouse contains general sales data,
sufficient to answer the questions for Hurricane Frances, and it also enables
Wal-Mart to match sales with many individual customer demographics
when people use their credit and debit cards to pay for merchandise. At the
company’s Sam’s Club chain, membership cards provide the same personal
identification. With this identifying data, Wal-Mart can associate product
sales with location, income, home prices, and other personal demographics.
The data warehouse facilitates target marketing of the most appropriate
products to individuals. Further, the company uses sales data to improve its
supply chain by negotiating better terms with suppliers for delivery, price,
and promotions. All this is possible through an integrated, comprehensive,
enterprise-wide data warehouse with significant analytical tools to make
sense out of this mountain of data. (Adapted from Hays, 2004)

In light of this strong emphasis on information and the recent advances in
information technology, you might expect most organizations to have highly
developed systems for delivering information to managers and other users. Yet this
is often not the case. In fact, despite having mountains of data (as in petabytes—
1000 terabytes, or 10005 bytes), and often many databases, few organizations have
more than a fraction of the information they need. Managers are often frustrated
by their inability to access or use the data and information they need. This situation
contributes to why some people claim that “business intelligence” is an oxymoron.

Modern organizations are said to be drowning in data but starving for
information. Despite the mixed metaphor, this statement seems to portray quite
accurately the situation in many organizations. What is the reason for this state of
affairs? Let’s examine two important (and related) reasons why an information gap
has been created in most organizations.

The first reason for the information gap is the fragmented way in which
organizations have developed information systems—and their supporting
databases—for many years. The emphasis in this text is on a carefully planned,
architectural approach to systems development that should produce a compatible
set of databases. However, in reality, constraints on time and resources cause most
organizations to resort to a “one-thing-at-a-time” approach to developing islands
of information systems. This approach inevitably produces a hodgepodge of
uncoordinated and often inconsistent databases. Usually databases are based on a
variety of hardware, software platforms, and purchased applications and have
resulted from different organizational mergers, acquisitions, and reorganizations.
Under these circumstances, it is extremely difficult, if not impossible, for managers
to locate and use accurate information, which must be synthesized across these
various systems of record.

The second reason for the information gap is that most systems are developed
to support operational processing, with little or no thought given to the
information or analytical tools needed for decision making. Operational
processing, also called transaction processing, captures, stores, and manipulates
data to support daily operations of the organization. It tends to focus database
design on optimizing access to a small set of data related to a transaction (e.g., a
customer, order, and associated product data). Informational processing is the
analysis of data or other forms of information to support decision making. It needs
large “swatches” of data from which to derive information (e.g., sales of all

Chapter 9 • Data Warehousing 377

products, over several years, from every sales region). Most systems that are
developed internally or purchased from outside vendors are designed to support
operational processing, with little thought given to informational processing.

Bridging the information gap are data warehouses that consolidate and
integrate information from many internal and external sources and arrange it
in a meaningful format for making accurate and timely business decisions.
They support executives, managers, and business analysts in making complex
business decisions through applications such as the analysis of trends, target
marketing, competitive analysis, customer relationship management, and so on.
Data warehousing has evolved to meet these needs without disturbing existing
operational processing.

The proliferation of Web-based customer interactions has made the situation
much more interesting and more real-time. The activities of customers and suppliers
on an organization’s Web site provide a wealth of new clickstream data to help
understand behaviors and preferences and create a unique opportunity to
communicate the right message (e.g., product cross-sales message). Extensive
details, such as time, IP address, pages visited, context from where the page request
was made, links taken, elapsed time on page, and so forth, can be captured
unobtrusively. These data, along with customer transaction, payment, product
return, inquiry, and other history consolidated into the data warehouse from a
variety of transaction systems, can be used to personalize pages. Such reasoned and
active interactions can lead to satisfied customers and business partners and more
profitable business relationships. A similar proliferation of data for decision making
is resulting from the growing use of RFID and GPS-generated data to track the
movement of packages, inventory, or people.

This chapter provides an overview of data warehousing. This exceptionally
broad topic normally requires an entire text, especially when the expansive topic of
business intelligence is the focus. This is why most texts on the topic are devoted to
just a single aspect, such as data warehouse design or administration, data quality
and governance, or business intelligence. We focus on the two areas relevant to a
text on database management: data architecture and database design for data
warehousing. You will learn first how a data warehouse relates to databases in
existing operational systems. Described next is the three-tier data architecture,
which characterizes most data warehouse environments. Next, we show special
database design elements frequently used in data warehousing. Finally, you will
see how users interact with the data warehouse, including online analytical
processing, data mining, and data visualization. This last topic provides the bridge
from this text to the broader context in which data warehousing is most often
applied—business intelligence.

Data warehousing requires extracting data from existing operational systems,
cleansing and transforming data for decision making, and loading them into a
data warehouse—what is often called the extract–transform–load (ETL) process. An
inherent part of this process are activities to ensure data quality, which is of special
concern when data are consolidated across disparate systems. Data warehousing is
not the only method organizations use to integrate data to gain greater reach to
data across the organization. Thus, we devote Chapter 10, the first chapter in the
next section of this text, to issues of data quality, which apply to data warehousing
as well as other forms of data integration, which are also introduced in Chapter 10.

BASIC CONCEPTS OF DATA WAREHOUSING

A data warehouse is a subject-oriented, integrated, time-variant, nonupdateable collec-
tion of data used in support of management decision-making processes and business
intelligence (Inmon and Hackathorn, 1994). The meaning of each of the key terms in this
definition follows:

• Subject-oriented A data warehouse is organized around the key subjects (or
high-level entities) of the enterprise. Major subjects may include customers,
patients, students, products, and time.

Data warehouse
A subject-oriented, integrated,
time-variant, nonupdateable
collection of data used in support
of management decision-making
processes.

378 Part IV • Implementation

• Integrated The data housed in the data warehouse are defined using consistent
naming conventions, formats, encoding structures, and related characteristics
gathered from several internal systems of record and also often from sources
external to the organization. This means that the data warehouse holds the one
version of “the truth.”

• Time-variant Data in the data warehouse contain a time dimension so that they
may be used to study trends and changes.

• Nonupdateable Data in the data warehouse are loaded and refreshed from oper-
ational systems, but cannot be updated by end users.

A data warehouse is not just a consolidation of all the operational databases in an
organization. Because of its focus on business intelligence, external data, and time-variant
data (not just current status), a data warehouse is a unique kind of database.

Data warehousing is the process whereby organizations create and maintain data
warehouses and extract meaning and inform decision making from their informational
assets through these data warehouses. Successful data warehousing requires following
proven data warehousing practices, sound project management, strong organizational
commitment, as well as making the right technology decisions.

A Brief History of Data Warehousing

Data warehousing emerged as a result of advances in the field of information systems
over several decades. The following were some key advances:

• Improvements in database technology, particularly the development of the rela-
tional data model and relational database management systems (RDBMSs)

• Advances in computer hardware, particularly the emergence of affordable mass
storage and parallel computer architectures

• The emergence of end-user computing, facilitated by powerful, intuitive com-
puter interfaces and tools

• Advances in middleware products that enable enterprise database connectivity
across heterogeneous platforms (Hackathorn, 1993)

The key discovery that triggered the development of data warehousing was the
recognition (and subsequent definition) of the fundamental differences between opera-
tional (or transaction processing) systems (sometimes called systems of record because
their role is to keep the official, legal record of the organization) and informational (or
decision-support) systems. Devlin and Murphy (1988) published the first article
describing the architecture of a data warehouse, based on this distinction. In 1992,
Inmon published the first book describing data warehousing, and he has subsequently
become one of the most prolific authors in this field.

The Need for Data Warehousing

Two major factors drive the need for data warehousing in most organizations today:

1. A business requires an integrated, company-wide view of high-quality information.
2. The information systems department must separate informational from opera-

tional systems to improve performance dramatically in managing company data.

NEED FOR A COMPANY-WIDE VIEW Data in operational systems are typically frag-
mented and inconsistent, so-called silos, or islands, of data. They are also generally dis-
tributed on a variety of incompatible hardware and software platforms. For example,
one file containing customer data may be located on a UNIX-based server running an
Oracle DBMS, whereas another may be located on an IBM mainframe running the DB2
DBMS. Yet, for decision-making purposes, it is often necessary to provide a single, cor-
porate view of that information.

To understand the difficulty of deriving a single corporate view, look at the simple
example shown in Figure 9-1. This figure shows three tables from three separate sys-
tems of record, each containing similar student data. The STUDENT DATA table is from
the class registration system, the STUDENT EMPLOYEE table is from the personnel

Chapter 9 • Data Warehousing 379

STUDENT DATA

• • •

123-45-6789

389-21-4062

MI

T

R

LastName

Enright

Smith

FirstName

Mark

Elaine

Telephone

483-1967

283-4195

Status

Soph

Jr

STUDENT EMPLOYEE

• • •StudentID

123-45-6789

389-21-4062

Address

1218 Elk Drive, Phoenix, AZ 91304

134 Mesa Road, Tempe, AZ 90142

Dept

Soc

Math

Hours

8

10

STUDENT HEALTH

• • •StudentName

Mark T. Enright

Elaine R. Smith

Telephone

483-1967

555-7828

Insurance

Blue Cross

?

ID

123-45-6789

389-21-4062

StudentNo

FIGURE 9-1 Examples of
heterogeneous data

system, and the STUDENT HEALTH table is from a health center system. Each table
contains some unique data concerning students, but even common data (e.g., student
names) are stored using different formats.

Suppose you want to develop a profile for each student, consolidating all data into
a single file format. Some of the issues that you must resolve are as follows:

• Inconsistent key structures The primary key of the first two tables is some ver-
sion of the student Social Security number, whereas the primary key of STUDENT
HEALTH is StudentName.

• Synonyms In STUDENT DATA, the primary key is named StudentNo, whereas
in STUDENT EMPLOYEE it is named StudentID. (We discussed how to deal with
synonyms in Chapter 4.)

• Free-form fields versus structured fields In STUDENT HEALTH, StudentName
is a single field. In STUDENT DATA, StudentName (a composite attribute) is bro-
ken into its component parts: LastName, MI, and FirstName.

• Inconsistent data values Elaine Smith has one telephone number in STUDENT
DATA but a different number in STUDENT HEALTH. Is this an error, or does this
person have two telephone numbers?

• Missing data The value for Insurance is missing (or null) for Elaine Smith in the
STUDENT HEALTH table. How will this value be located?

This simple example illustrates the nature of the problem of developing a single
corporate view but fails to capture the complexity of that task. A real-life scenario
would likely have dozens (if not hundreds) of files and thousands (or millions!) of
records.

380 Part IV • Implementation

Why do organizations need to bring data together from various systems of record?
Ultimately, of course, the reason is to be more profitable, to be more competitive, or to
grow by adding value for customers. This can be accomplished by increasing the speed
and flexibility of decision making, improving business processes, or gaining a clearer
understanding of customer behavior. For the previous student example, university admin-
istrators may want to investigate if the health or number of hours students work on cam-
pus is related to student academic performance, if taking certain courses is related to the
health of students, or whether poor academic performers cost more to support, for exam-
ple, due to increased health care as well as other costs. In general, certain trends in organi-
zations encourage the need for data warehousing; these trends include the following:

• No single system of record Almost no organization has only one database.
Seems odd, doesn’t it? Remember our discussion in Chapter 1 about the reasons
for using a database compared to using separate file-processing systems? Because
of the heterogeneous needs for data in different operational settings, because of
corporate mergers and acquisitions, and due to the sheer size of many organiza-
tions, multiple operational databases exist.

• Multiple systems are not synchronized It is difficult, if not impossible, to make
separate databases consistent. Even if the metadata are controlled and made the
same by one data administrator (see Chapter 11), the data values for the same attrib-
utes will not agree. This is because of different update cycles and separate places
where the same data are captured for each system. Thus, to get one view of the
organization, the data from the separate systems must be periodically consolidated
and synchronized into one additional database. We will see that there can be actu-
ally two such consolidated databases—an operational data store and an enterprise
data warehouse, both of which we include under the topic of data warehousing.

• Organizations want to analyze the activities in a balanced way Many organi-
zations have implemented some form of a balanced scorecard—metrics that show
organization results in financial, human, customer satisfaction, product quality,
and other terms simultaneously. To ensure that this multidimensional view of the
organization shows consistent results, a data warehouse is necessary. When ques-
tions arise in the balanced scorecard, analytical software working with the data
warehouse can be used to “drill down,” “slice and dice,” visualize, and in other
ways mine business intelligence.

• Customer relationship management Organizations in all sectors are realizing
that there is value in having a total picture of their interactions with customers
across all touch points. Different touch points (e.g., for a bank, these touch points
include ATMs, online banking, tellers, electronic funds transfers, investment port-
folio management, and loans) are supported by separate operational systems.
Thus, without a data warehouse, a teller may not know to try to cross-sell a cus-
tomer one of the bank’s mutual funds if a large, atypical automatic deposit trans-
action appears on the teller’s screen. Having a total picture of the activity with a
given customer requires a consolidation of data from various operational systems.

• Supplier relationship management Managing the supply chain has become a
critical element in reducing costs and raising product quality for many organiza-
tions. Organizations want to create strategic supplier partnerships based on a total
picture of their activities with suppliers, from billing, to meeting delivery dates, to
quality control, to pricing, to support. Data about these different activities can be
locked inside separate operational systems (e.g., accounts payable, shipping and
receiving, production scheduling, and maintenance). ERP systems have improved
this situation by bringing many of these data into one database. However, ERP
systems tend to be designed to optimize operational, not informational or analyti-
cal, processing, which we discuss next.

NEED TO SEPARATE OPERATIONAL AND INFORMATIONAL SYSTEMS An operational system
is a system that is used to run a business in real-time, based on current data. Examples
of operational systems are sales order processing, reservation systems, and patient reg-
istration systems. Operational systems must process large volumes of relatively simple

Operational system
A system that is used to run a
business in real-time, based on
current data. Also called a system
of record.

Chapter 9 • Data Warehousing 381

Informational system
A system designed to support
decision making based on
historical point-in-time and
prediction data for complex queries
or data-mining applications.

TABLE 9-1 Comparison of Operational and Informational Systems

Characteristic Operational Systems Informational Systems

Primary purpose Run the business on a current basis Support managerial decision making

Type of data Current representation of state
of the business

Historical point-in-time (snapshots)
and predictions

Primary users Clerks, salespersons, administrators Managers, business analysts,
customers

Scope of usage Narrow, planned, and simple
updates and queries

Broad, ad hoc, complex queries
and analysis

Design goal Performance: throughput, availability Ease of flexible access and use

Volume Many constant updates and queries
on one or a few table rows

Periodic batch updates and
queries requiring many or all rows

read/write transactions and provide fast response. Operational systems are also called
systems of record.

Informational systems are designed to support decision making based on histor-
ical point-in-time and prediction data. They are also designed for complex queries or
data-mining applications. Examples of informational systems are systems for sales
trend analysis, customer segmentation, and human resources planning.

The key differences between operational and informational systems are shown in
Table 9-1. These two types of processing have very different characteristics in nearly
every category of comparison. In particular, notice that they have quite different com-
munities of users. Operational systems are used by clerks, administrators, salespersons,
and others who must process business transactions. Informational systems are used by
managers, executives, business analysts, and (increasingly) by customers who are
searching for status information or who are decision makers.

The need to separate operational and informational systems is based on three pri-
mary factors:

1. A data warehouse centralizes data that are scattered throughout disparate opera-
tional systems and makes them readily available for decision support applications.

2. A properly designed data warehouse adds value to data by improving their qual-
ity and consistency.

3. A separate data warehouse eliminates much of the contention for resources that
results when informational applications are confounded with operational processing.

Data Warehousing Success

“If you build it, they will come” might work in a classic baseball movie. Data warehous-
ing success, however, is not guaranteed. Data warehousing projects fail about 40 per-
cent of the time (Whiting, 2003). Data warehousing is complex and requires cooperation
across an organization. For example, when errors are discovered in data being loaded
into the warehouse, the right place to fix the errors is in the source systems so erroneous
data are not loaded again later. But the errors may be acceptable in the source system or
not even considered errors by the business unit for the source system.

Several professional organizations sponsor annual award programs to highlight the
best data warehousing practices. One of the most prestigious is the Data Warehousing
Institute Awards. The winners for 2003 and 2006 illustrate many of the reasons success
is becoming more common (TDWI, 2006; Whiting, 2003). The following is a summary of
some of these award winners:

• Continental Airlines—Best Enterprise Data Warehouse The Continental data
warehouse has a real-time architecture and automated data transformations. This
simplifies consolidating data from different source systems. A cross-business-unit steering

382 Part IV • Implementation

committee develops standard data definitions (metadata). Uses of and changes to the
warehouse must be justified by revenue and profitability projections.

• Bank of America—Data Warehouse Integration Separate well-established data
warehouses had to be integrated when NationsBank and Bank of America merged
in 1998. Links between the existing data warehouses created significant performance
issues and encouraged departments to create separate work-arounds, with independent
systems (called data marts) negating the value of the data warehouse. Top leadership
designated the data warehouse consolidation as high priority, appropriate resources were
allocated, and extensive user requirements planning was completed.

• Royal Bank of Canada—Enterprise Data Warehousing The enterprise data ware-
house architecture was designed from the outset to enable scalability, reliability, flex-
ibility, and adaptability over the long term. In particular, the enterprise information
management team took a disciplined approach to data structure definition, provid-
ing an integrated data and metadata that enables efficient management and fast, cost-
effective reuse of data. The EDW currently executes more than a million queries
and up to 25,000 extract-transform-load batch processes every month. It houses
more than 30 terabytes of business data, and supports more than 33,000 users.

• Toyota Motor Sales USA—Metadata Management A metadata repository
improves the performance of Toyota’s data warehouse by helping IT workers and
business users access the meaning of warehouse data and hence the meaning of infor-
mation in reports generated from the warehouse. It also makes it easier to identify
the impact of changes to data specifications.

• Iowa Department of Revenue—Government or Nonprofit Organization The
department managers felt that there were many companies and individuals who
did not file tax returns or who underreported earnings. The data to uncover such
problems were buried in many different mainframe applications, file extracts, and
20 disparate systems. The data warehouse was funded from business improvements
from the additional $10 million per year in tax revenue that it now generates.

Based on these award winners, success is more likely when there is high-level sup-
port, adequate resources are committed, real business value is apparent, well-managed
metadata exist, the organization has an enterprise vision, and changes are anticipated
and well managed. Technology is important, and high-performance technologies enable
successful data warehousing. But the organization-related factors outlined here are more
important than technical factors. As one data warehousing executive from a consumer
products company told the authors, “The technology is easy; it’s the organizational
issues that are tough.” Thus, the tone of the rest of the chapter is to make sound database
management decisions for the data warehouse within an organizational context.

DATA WAREHOUSE ARCHITECTURES

The architecture for data warehouses has evolved, and organizations have considerable
latitude in creating variations. We will review here two core structures that form the
basis for most implementations. The first is a three-level architecture that characterizes
a bottom-up, incremental approach to evolving the data warehouse; the second is also a
three-level data architecture that appears usually from a more top-down approach that
emphasizes more coordination and an enterprise-wide perspective. Even with their dif-
ferences, there are many common characteristics to these approaches.

Independent Data Mart Data Warehousing Environment

The independent data mart architecture for a data warehouse is shown in Figure 9-2.
Building this architecture requires four basic steps (moving left to right in Figure 9-2):

1. Data are extracted from the various internal and external source system files and
databases. In a large organization, there may be dozens or even hundreds of such
files and databases.

2. The data from the various source systems are transformed and integrated before
being loaded into the data marts. Transactions may be sent to the source systems

Chapter 9 • Data Warehousing 383

Source
Data Systems

Internal Cleaned
dimension

dataExternal

Extract

Extract

Extract

Extract

Model/query results

Processing
clean
reconcile
derive
match

combine
remove dups

standardize
transform
conform

dimensions

export to data
marts

Data Staging Area

Load

Load

Load

Load

Load

Data & Metadata
Storage Area

End-User
Presentation Tools

Data
Mart

Data
Mart

Data
Mart

Data
Mart

Data
Mart

Data warehouse Ad hoc query
tools
matched to

presentation
format

Report writers
OLAP tools

End-user
applications

Modeling/
mining tools

Visualization
tools

Business
performance
management
tools

FIGURE 9-2 Independent data mart data warehousing architecture

to correct errors discovered in data staging. The data warehouse is considered to
be the collection of data marts.

3. The data warehouse is a set of physically distinct databases organized for decision
support. It contains both detailed and summary data.

4. Users access the data warehouse by means of a variety of query languages and an-
alytical tools. Results (e.g., predictions, forecasts) may be fed back to data ware-
house and operational databases.

We will discuss the important processes of extracting, transforming, and loading
(ETL) data from the source systems into the data warehouse in more detail in Chapter 10.
We will also overview in a subsequent section various end-user presentation tools.

Extraction and loading happen periodically—sometimes daily, weekly, or monthly.
Thus, the data warehouse often does not have, nor does it need to have, current data.
Remember, the data warehouse is not (directly) supporting operational transaction
processing, although it may contain transactional data (but more often summaries of
transactions and snapshots of status variables, such as account balances and inventory
levels). For most data warehousing applications, users are not looking for a reaction to
an individual transaction but rather for trends and patterns in the state of the organiza-
tion across a large subset of the data warehouse. At a minimum, five fiscal quarters
of data are kept in a data warehouse so that at least annual trends and patterns can be
discerned. Older data may be purged or archived. We will see later that one advanced
data warehousing architecture, real-time data warehousing, is based on a different
assumption about the need for current data.

Contrary to many of the principles discussed so far in this chapter, the independent
data marts approach does not create one data warehouse. Instead, this approach creates
many separate data marts, each based on data warehousing, not transaction processing
database technologies. A data mart is a data warehouse that is limited in scope, cus-
tomized for the decision-making applications of a particular end-user group. Its contents
are obtained either from independent ETL processes, as shown in Figure 9-2 for
an independent data mart, or are derived from the data warehouse, which we will dis-
cuss in the next two sections. A data mart is designed to optimize the performance for

Data mart
A data warehouse that is limited in
scope, whose data are obtained by
selecting and summarizing data
from a data warehouse or from
separate extract, transform, and load
processes from source data systems.

Independent data mart
A data mart filled with data
extracted from the operational
environment, without the benefit
of a data warehouse.

384 Part IV • Implementation

well-defined and predicable uses, sometimes as few as a single or a couple of queries.
For example, an organization may have a marketing data mart, a finance data mart, a
supply chain data mart, and so on, to support known analytical processing. It is possi-
ble that each data mart is built using different tools; for example, a financial data mart
may be built using a proprietary multidimensional tool like Hyperion’s Essbase, and a
sales data mart may be built on a more general-purpose data warehouse platform,
such as Teradata, using MicroStrategy and other tools for reporting, querying, and
data visualization.

We will provide a comparison of the various data warehousing architectures later,
but you can see one obvious characteristic of the independent data mart strategy:
the complexity for end users when they need to access data in separate data marts
(evidenced by the crisscrossed lines connecting all the data marts to the end-user presen-
tation tools). This complexity comes not only from having to access data from separate
data mart databases but also from possibly a new generation of inconsistent data systems—
the data marts. If there is one set of metadata across all the data marts, and if data are
made consistent across the data marts through the activities in the data staging area (e.g.,
by what is called “conform dimensions” in the data staging area box in Figure 9-2), then
the complexity for users is reduced. Not so obvious in Figure 9-2 is the complexity for the
ETL processes, because separate transformation and loads need to be built for each inde-
pendent data mart.

Independent data marts are often created because an organization focuses on a series
of short-term, expedient business objectives. The limited short-term objectives can be more
compatible with the comparably lower cost (money and organizational capital) to imple-
ment yet one more independent data mart. However, designing the data warehousing
environment around different sets of short-term objectives means that you lose flexibility
for the long term and the ability to react to changing business conditions. And being able to
react to change is critical for decision support. It can be organizationally and politically eas-
ier to have separate, small data warehouses than to get all organizational parties to agree to
one view of the organization in a central data warehouse. Also, some data warehousing
technologies have technical limitations for the size of the data warehouse they can
support—what we will call later a scalability issue. Thus, technology, rather than the busi-
ness, may dictate a data warehousing architecture if you first lock yourself into a particular
data warehousing set of technologies before you understand your data warehousing
requirements. We discuss the pros and cons of the independent data mart architecture
compared with its prime competing architecture in the next section.

Dependent Data Mart and Operational Data Store Architecture:
A Three-Level Approach

The independent data mart architecture in Figure 9-2 has several important limitations
(Marco, 2003; Meyer, 1997):

1. A separate ETL process is developed for each data mart, which can yield costly
redundant data and processing efforts.

2. Data marts may not be consistent with one another because they are often devel-
oped with different technologies, and thus they may not provide a clear enterprise-
wide view of data concerning important subjects such as customers, suppliers, and
products.

3. There is no capability to drill down into greater detail or into related facts in other
data marts or a shared data repository, so analysis is limited, or at best very
difficult (e.g., doing joins across separate platforms for different data marts).
Essentially, relating data across data marts is a task performed by users outside
the data warehouse.

4. Scaling costs are excessive because every new application that creates a separate data
mart repeats all the extract and load steps. Usually, operational systems have limited
time windows for batch data extracting, so at some point, the load on the operations
systems may mean that new technology is needed, with additional costs.

5. If there is an attempt to make the separate data marts consistent, the cost to do so
is quite high.

Chapter 9 • Data Warehousing 385

Source
Data Systems

Internal

L = logical P = physical

External

Extract

Extract

Extract

Extract

Model/query results

Data Storage
relational, fast

Processing
clean
reconcile
derive
match

combine
remove dups

standardize
transform
conform

dimensions
export to DW
 and DMs

Data Staging Area
(Operational Data Store)

Load

Data & Metadata
Storage Area

End-User
Presentation Tools

Data
Mart

Data
Mart

Data
Mart

Data
Mart

Data
Mart

Feed

Load

Feed

Enterprise
Data

Warehouse

Feed

P

P

P

L

L

Ad hoc query
tools
matched to

presentation
format

Report writers
OLAP tools

End-user
applications

Modeling/
mining tools

Visualization
tools

Business
performance
management
tools

FIGURE 9-3 Dependent data mart and operational data store: A three-level architecture

The value of independent data marts has been hotly debated. Kimball (1997)
strongly supports the development of independent data marts as a viable strategy for a
phased development of decision support systems. Armstrong (1997), Inmon (1997,
2000), and Marco (2003) point out the five fallacies previously mentioned and many
more. There are two debates as to the actual value of independent data marts:

1. One debate deals with the nature of the phased approach to implementing a data
warehousing environment. The essence of this debate is whether each data mart
should or should not evolve in a bottom-up fashion from a subset of enterprise-
wide decision support data.

2. The other debate deals with the suitable database architecture for analytical pro-
cessing. This debate centers on the extent to which a data mart database should be
normalized.

The essences of these two debates are addressed throughout this chapter. We provide an
exercise at the end of the chapter for you to explore these debates in more depth.

One of the most popular approaches to addressing the independent data mart lim-
itations raised earlier is to use a three-level approach represented by the dependent data
mart and operational data store architecture (see Figure 9-3). Here the new level is the
operational data store, and the data and metadata storage level is reconfigured. The first
and second limitations are addressed by loading the dependent data marts from an
enterprise data warehouse (EDW), which is a central, integrated data warehouse that is
the control point and single “version of the truth” made available to end users for deci-
sion support applications. Dependent data marts still have a purpose to provide a sim-
plified and high-performance environment that is tuned to the decision-making needs
of user groups. A data mart may be a separate physical database (and different data
marts may be on different platforms) or can be a logical (user view) data mart instanti-
ated on the fly when accessed. We explain logical data marts in the next section.

A user group can access its data mart, and then when other data are needed, users
can access the EDW. Redundancy across dependent data marts is planned, and redun-
dant data are consistent because each data mart is loaded in a synchronized way from
one common source of data (or is a view of the data warehouse). Integration of data is

Dependent data mart
A data mart filled exclusively from
an enterprise data warehouse and
its reconciled data.

Enterprise data warehouse (EDW)
A centralized, integrated data
warehouse that is the control point
and single source of all data made
available to end users for decision
support applications.

386 Part IV • Implementation

the responsibility of the IT staff managing the enterprise data warehouse; it is not the
end users’ responsibility to integrate data across independent data marts for each query
or application. The dependent data mart and operational data store architecture is often
called a “hub and spoke” approach, in which the EDW is the hub and the source data
systems and the data marts are at the ends of input and output spokes.

The third limitation is addressed by providing an integrated source for all the oper-
ational data in an operational data store. An operational data store (ODS) is an
integrated, subject-oriented, continuously updateable, current-valued (with recent
history), organization-wide, detailed database designed to serve operational users as they
do decision support processing (Imhoff, 1998; Inmon, 1998). An ODS is typically a rela-
tional database and normalized like databases in the systems of record, but it is tuned for
decision-making applications. For example, indexes and other relational database design
elements are tuned for queries that retrieve broad groups of data, rather than for transac-
tion processing or querying individual and directly related records (e.g., a customer
order). Because it has volatile, current, and only recent history data, the same query
against an ODS very likely will yield different results at different times. An ODS typically
does not contain “deep” history, whereas an EDW holds typically a multiyear history of
snapshots of the state of the organization. An ODS may be fed from the database of an
ERP application, but because most organizations do not have only one ERP database and
do not run all operations against one ERP, an ODS is usually different from an ERP data-
base. The ODS also serves as the staging area for loading data into the EDW. The ODS
may receive data immediately or with some delay from the systems of record, whichever
is practical and acceptable for the decision-making requirements that it supports.

The dependent data mart and operational data store architecture is also called a
corporate information factory (CIF) (see Imhoff, 1999). It is considered to be a comprehen-
sive view of organizational data in support of all user data requirements.

Different leaders in the field endorse different approaches to data warehousing.
Those that endorse the independent data mart approach argue that this approach has
two significant benefits:

1. It allows for the concept of a data warehouse to be demonstrated by working on a
series of small projects.

2. The length of time until there is some benefit from data warehousing is reduced
because the organization is not delayed until all data are centralized.

The advocates of the CIF (Armstrong, 2000; Inmon, 1999) raise serious issues with
the independent approach; these issues include the five limitations of independent data
marts outlined earlier. Inmon suggests that an advantage of physically separate
dependent data marts is that they can be tuned to the needs of each community of users.
In particular, he suggests the need for an exploration warehouse, which is a special ver-
sion of the EDW optimized for data mining and business intelligence using advanced
statistical, mathematical modeling, and visualization tools. Armstrong (2000) and oth-
ers go further to argue that the benefits claimed by the independent data mart advo-
cates really are benefits of taking a phased approach to data warehouse development. A
phased approach can be accomplished within the CIF framework as well, and is facili-
tated by the final data warehousing architecture we review in the next section.

Logical Data Mart and Real-Time Data Warehouse Architecture

The logical data mart and real-time data warehouse architecture is practical for only
moderate-sized data warehouses or when using high-performance data warehousing
technology, such as the Teradata system. As can be seen in Figure 9-4, this architecture
has the following unique characteristics:

1. Logical data marts are not physically separate databases but rather different rela-
tional views of one physical, slightly denormalized relational data warehouse.
(Refer to Chapter 6 to review the concept of views.)

2. Data are moved into the data warehouse rather than to a separate staging area to
utilize the high-performance computing power of the warehouse technology to
perform the cleansing and transformation steps.

Logical data mart
A data mart created by a relational
view of a data warehouse.

Operational data store (ODS)
An integrated, subject-oriented,
continuously updateable, current-
valued (with recent history),
enterprise-wide, detailed database
designed to serve operational users
as they do decision support
processing.

Chapter 9 • Data Warehousing 387

3. New data marts can be created quickly because no physical database or database
technology needs to be created or acquired and no loading routines need to be
written.

4. Data marts are always up to date because data in a view are created when the
view is referenced; views can be materialized if a user has a series of queries and
analysis that need to work off the same instantiation of the data mart.

Whether logical or physical, data marts and data warehouses play different
roles in a data warehousing environment; these different roles are summarized in
Table 9-2. Although limited in scope, a data mart may not be small. Thus, scalable
technology is often critical. A significant burden and cost is placed on users when
they themselves need to integrate the data across separate physical data marts (if this
is even possible). As data marts are added, a data warehouse can be built in phases;
the easiest way for this to happen is to follow the logical data mart and real-time data
warehouse architecture.

The real-time data warehouse aspect of the architecture in Figure 9-4 means that
the source data systems, decision support services, and the data warehouse exchange
data and business rules at a near-real-time pace because there is a need for rapid
response (i.e., action) to a current, comprehensive picture of the organization. The pur-
pose of real-time data warehousing is to know what is happening, when it is happen-
ing, and to make desirable things happen through the operational systems. For
example, a help desk professional answering questions and logging problem tickets
will have a total picture of the customer’s most recent sales contacts, billing and pay-
ment transactions, maintenance activities, and orders. With this information, the system
supporting the help desk can, based on operational decision rules created from a con-
tinuous analysis of up-to-date warehouse data, automatically generate a script for the
professional to sell what the analysis has shown to be a likely and profitable mainte-
nance contract, an upgraded product, or another product bought by customers with a
similar profile. A critical event, such as entry of a new product order, can be considered
immediately so that the organization knows at least as much about the relationship
with its customer as does the customer.

Source
Data Systems

Internal Cleaned
dimension

dataExternal

Extract

Extract

Extract

Extract

New business rules
for operational decisions

Near real-time feeds

Data Storage
relational, fast

Processing
clean
reconcile
derive
match

combine
remove dups

standardize
transform
conform

dimensions
load into DW

Data Staging Area
(Operational Data Store)

Data & Metadata
Storage Area

&
End-User

Presentation Tools

Feed

Ad hoc query
tools

Report writers
OLAP tools
End-user

applications
(e.g., CRM and
SRM, ATM)

Transformation
Layer

Real-Time
Data Warehouse

Data Mart

Data Mart

Data Mart

Data Mart Business
 performance
 management tools

Modeling/
mining tools

Visualization
tools

FIGURE 9-4 Logical data mart and real-time data warehouse architecture

Real-time data warehouse
An enterprise data warehouse
that accepts near-real-time feeds of
transactional data from the systems
of record, analyzes warehouse data,
and in near-real-time relays business
rules to the data warehouse and
systems of record so that immediate
action can be taken in response to
business events.

388 Part IV • Implementation

Another example of real-time data warehousing (with real-time analytics) would
be an express mail and package delivery service using frequent scanning of parcels to
know exactly where a package is in their transportation system. Real-time analytics,
based on this package data, as well as pricing, customer service level agreements, and
logistics opportunities, could automatically reroute packages to meet delivery promises
for their best customers. RFID technologies are allowing these kinds of opportunities
for real-time data warehousing (with massive amounts of data) coupled with real-time
analytics to be used to greatly reduce the latency between event data capture and
appropriate actions being taken.

The orientation is that each event with, say, a customer, is a potential opportunity
for a customized, personalized, and optimized communication based on a strategic
decision of how to respond to a customer with a particular profile. Thus, decision mak-
ing and the data warehouse are actively involved in guiding operational processing,
which is why some people call this active data warehousing. The goal is to shorten the
cycle to do the following:

• Capture customer data at the time of a business event (what did happen)
• Analyze customer behavior (why did something happen) and predict customer

responses to possible actions (what will happen)
• Develop rules for optimizing customer interactions, including the appropriate

response and channel that will yield the best results
• Take immediate action with customers at touch points based on best responses to

customers as determined by decision rules in order to make desirable results happen

The idea is that the potential value of taking the right action decays the longer the
delay from event to action. The real-time data warehouse is where all the intelligence
comes together to reduce this delay. Thus, real-time data warehousing moves data
warehousing from the back office to the front office. For a thorough status report on
real-time data warehousing, see Hackathorn (2002). Other authors refer to real-time
data warehousing as action-oriented or active (@ctive) data warehousing.

TABLE 9-2 Data Warehouse Versus Data Mart

Data Warehouse Data Mart

Scope Scope

• Application independent • Specific DSS application

• Centralized, possibly enterprise-wide • Decentralized by user area

• Planned • Organic, possibly not planned

Data Data

• Historical, detailed, and summarized • Some history, detailed, and summarized

• Lightly denormalized • Highly denormalized

Subjects Subjects

• Multiple subjects • One central subject of concern to users

Sources Sources

• Many internal and external sources • Few internal and external sources

Other Characteristics Other Characteristics

• Flexible • Restrictive

• Data oriented • Project oriented

• Long life • Short life

• Large • Start small, becomes large

• Single complex structure • Multi, semi-complex structures, together complex

Source: Based on Strange (1997).

Chapter 9 • Data Warehousing 389

The following are some beneficial applications for real-time data warehousing:

• Just-in-time transportation for rerouting deliveries based on up-to-date inventory
levels

• E-commerce where, for instance, an abandoned shopping cart can trigger an e-mail
promotional message before the user signs off

• Salespeople who monitor key performance indicators for important accounts
in real-time

• Fraud detection in credit card transactions, where an unusual pattern of transactions
could alert a sales clerk or online shopping cart routine to take extra precautions

Such applications are often characterized by online user access 24/7. For any of the
data warehousing architectures, users may be employees, customers, or business partners.

With high-performance computers and data warehousing technologies, there may
not be a need for a separate ODS from the enterprise data warehouse. When the ODS
and EDW are one and the same, it is much easier for users to drill down and drill up
when working through a series of ad hoc questions in which one question leads to
another. It is also a simpler architecture, because one layer of the dependent data mart
and operational data store architecture has been eliminated.

Three-Layer Data Architecture

Figure 9-5 shows a three-layer data architecture for a data warehouse. This architecture
is characterized by the following:

1. Operational data are stored in the various operational systems of record through-
out the organization (and sometimes in external systems).

2. Reconciled data are the type of data stored in the enterprise data warehouse and
an operational data store. Reconciled data are detailed, current data intended to
be the single, authoritative source for all decision support applications.

3. Derived data are the type of data stored in each of the data marts. Derived data
are data that have been selected, formatted, and aggregated for end-user decision
support applications.

We discuss reconciled data in the next chapter because the processes for reconciling
data across source systems is a part of a topic larger than simply data warehousing: data
quality and integration. Pertinent to data warehousing is derived data, which we cover

Enterprise
data model

Data mart
metadata

EDW
metadata

Operational
metadata

Derived data

Data mart

Reconciled data

Enterprise data warehouse and
operational data store

Operational data

Operational systems

FIGURE 9-5 Three-layer data
architecture for a data
warehouse

Reconciled data
Detailed, current data intended
to be the single, authoritative
source for all decision support
applications.

Derived data
Data that have been selected,
formatted, and aggregated for end-
user decision support applications.

390 Part IV • Implementation

in a subsequent section of the current chapter. Two components shown in Figure 9-5 play
critical roles in the data architecture: the enterprise data model and metadata.

ROLE OF THE ENTERPRISE DATA MODEL In Figure 9-5, we show the reconciled data
layer linked to the enterprise data model. Recall from Chapter 1 that the enterprise data
model presents a total picture explaining the data required by an organization. If the
reconciled data layer is to be the single, authoritative source for all data required for
decision support, it must conform to the design specified in the enterprise data model.
Thus, the enterprise data model controls the phased evolution of the data warehouse.
Usually the enterprise data model evolves as new problems and decision applications
are addressed. It takes too long to develop the enterprise data model in one step, and
the dynamic needs for decision making will change before the warehouse is built.

ROLE OF METADATA Figure 9-5 also shows a layer of metadata linked to each of the three
data layers. Recall from Chapter 1 that metadata are technical and business data that
describe the properties or characteristics of other data. Following is a brief description of
the three types of metadata shown in Figure 9-5.

1. Operational metadata describe the data in the various operational systems (as
well as external data) that feed the enterprise data warehouse. Operational meta-
data typically exist in a number of different formats and unfortunately are often of
poor quality.

2. Enterprise data warehouse (EDW) metadata are derived from (or at least consis-
tent with) the enterprise data model. EDW metadata describe the reconciled data
layer as well as the rules for extracting, transforming, and loading operational
data into reconciled data.

3. Data mart metadata describe the derived data layer and the rules for transform-
ing reconciled data to derived data.

For a thorough review of data warehouse metadata, see Marco (2000).

SOME CHARACTERISTICS OF DATA WAREHOUSE DATA

To understand and model the data in each of the three layers of the data architecture for
a data warehouse, you need to learn some basic characteristics of data as they are stored
in data warehouse databases.

Status Versus Event Data

The difference between status data and event data is shown in Figure 9-6. The figure
shows a typical log entry recorded by a DBMS when processing a business transaction
for a banking application. This log entry contains both status and event data: The
“before image” and “after image” represent the status of the bank account before and
then after a withdrawal. Data representing the withdrawal (or update event) are shown
in the middle of the figure.

Transactions, which are discussed further in Chapter 11, are business activities
that cause one or more business events to occur at a database level. An event results in
one or more database actions (create, update, or delete). The withdrawal transaction in
Figure 9-6 leads to a single update, which is the reduction in the account balance from
750 to 700. On the other hand, the transfer of money from one account to another would
lead to two actions: two updates to handle a withdrawal and a deposit. Sometimes non-
transactions, such as an abandoned online shopping cart, busy signal or dropped net-
work connection, or an item put in a shopping cart and then taken out before checkout,
can also be important activities that need to be recorded in the data warehouse.

Both status data and event data can be stored in a database. However, in practice,
most of the data stored in databases (including data warehouses) are status data. A data
warehouse likely contains a history of snapshots of status data or a summary (say, an
hourly total) of transaction or event data. Event data, which represent transactions, may
be stored for a defined period but are then deleted or archived to save storage space.

Chapter 9 • Data Warehousing 391

Both status and event data are typically stored in database logs (as represented in
Figure 9-6) for backup and recovery purposes. As will be explained later, the database
log plays an important role in filling the data warehouse.

Transient Versus Periodic Data

In data warehouses, it is typical to maintain a record of when events occurred in the
past. This is necessary, for example, to compare sales or inventory levels on a particular
date or during a particular period with the previous year’s sales on the same date or
during the same period.

Most operational systems are based on the use of transient data. Transient data
are data in which changes to existing records are written over previous records, thus
destroying the previous data content. Records are deleted without preserving the previ-
ous contents of those records.

You can easily visualize transient data by again referring to Figure 9-6. If the after
image is written over the before image, the before image (containing the previous bal-
ance) is lost. However, because this is a database log, both images are normally preserved.

Periodic data are data that are never physically altered or deleted once added to
the store. The before and after images in Figure 9-6 represent periodic data. Notice that
each record contains a time stamp that indicates the date (and time, if needed) when the
most recent update event occurred. (We introduced the use of time stamps in Chapter 2.)

An Example of Transient and Periodic Data

A more detailed example comparing transient and periodic data is shown in Figures 9-7
and 9-8.

TRANSIENT DATA Figure 9-7 shows a relation (Table X) that initially contains four
rows. The table has three attributes: a primary key and two nonkey attributes, A and B.
The values for each of these attributes on the date 10/09 are shown in the figure. For
example, for record 001, the value of attribute A on this date is a.

On date 10/10, three changes are made to the table (changes to rows are indicated by
arrows to the left of the table). Row 002 is updated, so the value of A is changed from c to r.
Row 004 is also updated, so the value of A is changed from g to y. Finally, a new row
(with key 005) is inserted into the table.

Event (withdrawal)

K1234

Before image

abcdef 04/22/2010 750

K1234

After image

abcdef 04/27/2010 700

Update

K1234

04/27/2010

–50

FIGURE 9-6 Example of a
DBMS log entry

Transient data
Data in which changes to existing
records are written over previous
records, thus destroying the
previous data content.

Periodic data
Data that are never physically
altered or deleted once they have
been added to the store.

392 Part IV • Implementation

Table X (10/09)

A B

a b

c d

e f

g h

Key

001

002

003

004

Table X (10/10)

A B

a b

r d

e f

y h

m n

Key

001

002

003

004

005

Table X (10/11)

A B

a b

r d

e t

Key

001

002

003

005 m n

FIGURE 9-7 Transient
operational data

Table X (10/09)

A Action

C

B

10/09

10/09

Date

a b

Cc d

Ce f

g h

10/09

10/09 C

Key

001

002

003

004

Table X (10/10)

A Action

C

B

10/09

10/09

Date

a b

Cc d

Ur d

e f

10/10

10/09 C

C10/09

10/10

g h

Uy h

Cm n10/10

Key

001

002

002

003

004

004

005

Table X (10/11)

A Action

C

B

10/09

10/09

Date

a b

Cc d

Ur d

e f

10/10

10/09 C

U10/11

10/09

e t

Cg h

Uy h10/10

Dy h10/11

C

Key

001

002

002

003

003

004

004

004

005 m n10/10

FIGURE 9-8 Periodic warehouse data

Chapter 9 • Data Warehousing 393

Notice that when rows 002 and 004 are updated, the new rows replace the previ-
ous rows. Therefore, the previous values are lost; there is no historical record of these
values. This is characteristic of transient data.

More changes are made to the rows on date 10/11 (to simplify the discussion, we
assume that only one change can be made to a given row on a given date). Row 003 is
updated, and row 004 is deleted. Notice that there is no record to indicate that row 004
was ever stored in the database. The way the data are processed in Figure 9-7 is charac-
teristic of the transient data typical in operational systems.

PERIODIC DATA One typical objective for a data warehouse is to maintain a historical
record of key events or to create a time series for particular variables such as sales. This
often requires storing periodic data, rather than transient data. Figure 9-8 shows the
table used in Figure 9-7, now modified to represent periodic data. The following
changes have been made in Figure 9-8:

1. Two new columns have been added to Table X:
a. The column named Date is a time stamp that records the most recent date when

a row has been modified.
b. The column named Action is used to record the type of change that occurred.

Possible values for this attribute are C (Create), U (Update), and D (Delete).
2. Once a record has been stored in the table, that record is never changed. When an

update operation occurs on a record, both the before image and the after image are
stored in the table. Although a record may be logically deleted, a historical version
of the deleted record is maintained in the database for as much history (at least
five quarters) as needed to analyze trends.

Now let’s examine the same set of actions that occurred in Figure 9-7. Assume that
all four rows were created on the date 10/09, as shown in the first table.

In the second table (for 10/10), rows 002 and 004 have been updated. The table
now contains both the old version (for 10/09) and the new version (for 10/10) for these
rows. The table also contains the new row (005) that was created on 10/10.

The third table (for 10/11) shows the update to row 003, with both the old and
new versions. Also, row 004 is deleted from this table. This table now contains three
versions of row 004: the original version (from 10/09), the updated version (from
10/1010), and the deleted version (from 10/11). The D in the last row for record 004
indicates that this row has been logically deleted, so that it is no longer available to
users or their applications.

If you examine Figure 9-8, you can see why data warehouses tend to grow very
rapidly. Storing periodic data can impose large storage requirements. Therefore, users
must choose very carefully the key data that require this form of processing.

OTHER DATA WAREHOUSE CHANGES Besides the periodic changes to data values out-
lined previously, six other kinds of changes to a warehouse data model must be accom-
modated by data warehousing:

1. New descriptive attributes For example, new characteristics of products or cus-
tomers that are important to store in the warehouse must be accommodated. Later in
the chapter we call these attributes of dimension tables. This change is fairly easily
accommodated by adding columns to tables and allowing null values for existing
rows (if historical data exist in source systems, null values do not have to be stored).

2. New business activity attributes For example, new characteristics of an event
already stored in the warehouse, such as a column C for the table in Figure 9-8,
must be accommodated. This can be handled as in item 1, but is more difficult
when the new facts are more refined, such as a data associated with days of the
week, not just month and year, as in Figure 9-8.

3. New classes of descriptive attributes This is equivalent to adding new tables to
the database.

4. Descriptive attributes become more refined For example, data about stores must
be broken down by individual cash register to understand sales data. This change

394 Part IV • Implementation

is in the grain of the data, an extremely important topic, which we discuss later in
the chapter. This can be a very difficult change to accommodate.

5. Descriptive data are related to one another For example, store data are related to
geography data. This causes new relationships, often hierarchical, to be included
in the data model.

6. New source of data This is a very common change, in which some new business
need causes data feeds from an additional source system or some new operational
system is installed that must feed the warehouse. This change can cause almost
any of the previously mentioned changes, as well as the need for new extract,
transform, and load processes.

It is usually not possible to go back and reload a data warehouse to accommodate all of
these kinds of changes for the whole data history maintained. But it is critical to accom-
modate such changes smoothly to enable the data warehouse to meet new business con-
ditions and information and business intelligence needs. Thus, designing the warehouse
for change is very important.

THE DERIVED DATA LAYER

We turn now to the derived data layer. This is the data layer associated with logical or
physical data marts (see Figure 9-5). It is the layer with which users normally interact
for their decision support applications. Ideally, the reconciled data level is designed
first and is the basis for the derived layer, whether data marts are dependent, inde-
pendent, or logical. In order to derive any data mart we might need, it is necessary that
the EDW be a fully normalized relational database accommodating transient and peri-
odic data; this gives us the greatest flexibility to combine data into the simplest form
for all user needs, even those which are unanticipated when the EDW is designed. In
this section, we first discuss the characteristics of the derived data layer. We then intro-
duce the star schema (or dimensional model), which is the data model most commonly
used today to implement this data layer. A star schema is a specially designed, denor-
malized relational data model. We emphasize that the derived data layer can use nor-
malized relations in the enterprise data warehouse; however, most organizations still
build many data marts.

Characteristics of Derived Data

Earlier we defined derived data as data that have been selected, formatted, and
aggregated for end-user decision support applications. In other words, derived data
are information instead of raw data. As shown in Figure 9-5, the source of the
derived data is the reconciled data, created from what can be a rather complex data
process to integrate and make consistent data from many systems of record inside
and outside the organization. Derived data in a data mart are generally optimized
for the needs of particular user groups, such as departments, workgroups, or even
individuals, to measure and analyze business activities and trends. A common
mode of operation is to select the relevant data from the enterprise data warehouse
on a daily basis, format and aggregate those data as needed, and then load and
index those data in the target data marts. A data mart typically is accessed via
online analytical processing (OLAP) tools, which we describe and illustrate in a
later section of this chapter.

The objectives that are sought with derived data are quite different from the objec-
tives of reconciled data. Typical objectives are the following:

• Provide ease of use for decision support applications
• Provide fast response for predefined user queries or requests for information

(information usually in the form of metrics used to gauge the health of the organ-
ization in areas such as customer service, profitability, process efficiency, or sales
growth)

• Customize data for particular target user groups
• Support ad hoc queries and data mining and other analytical applications

Chapter 9 • Data Warehousing 395

To satisfy these needs, we usually find the following characteristics in derived data:

• Both detailed data and aggregate data are present:
a. Detailed data are often (but not always) periodic—that is, they provide a his-

torical record.
b. Aggregate data are formatted to respond quickly to predetermined (or com-

mon) queries.
• Data are distributed to separate data marts for different user groups.
• The data model that is most commonly used for a data mart is a dimensional

model, usually in the form of a star schema, which is a relational-like model (such
models are used by relational online analytical processing [ROLAP] tools).
Proprietary models (which often look like hypercubes) are also sometimes used
(such models are used by multidimensional online analytical processing
[MOLAP] tools); these tools will be illustrated later in this chapter.

The Star Schema

A star schema is a simple database design (particularly suited to ad hoc queries) in
which dimensional data (describing how data are commonly aggregated for reporting)
are separated from fact or event data (describing business activity). A star schema is
one version of a dimensional model (Kimball, 1996a). Although the star schema is
suited to ad hoc queries (and other forms of informational processing), it is not suited
to online transaction processing, and therefore is not generally used in operational sys-
tems, operational data stores, or an EDW. It is called a star schema because of its visual
appearance, not because it has been recognized on the Hollywood Walk of Fame.

FACT TABLES AND DIMENSION TABLES A star schema consists of two types of tables: one
fact table and one or more dimension tables. Fact tables contain factual or quantitative data
(measurements that are numerical, continuously valued, and additive) about a business,
such as units sold, orders booked, and so on. Dimension tables hold descriptive data (con-
text) about the subjects of the business. The dimension tables are usually the source of
attributes used to qualify, categorize, or summarize facts in queries, reports, or graphs;
thus, dimension data are usually textual and discrete (even if numeric). A data mart might
contain several star schemas with similar dimension tables but each with a different fact
table. Typical business dimensions (subjects) are Product, Customer, and Period. Period,
or time, is always one of the dimensions. This structure is shown in Figure 9-9, which con-
tains four dimension tables. As we will see shortly, there are variations on this basic star
structure that provide further abilities to summarize and categorize the facts.

Each dimension table has a one-to-many relationship to the central fact table. Each
dimension table generally has a simple primary key, as well as several nonkey attrib-
utes. The primary key, in turn, is a foreign key in the fact table (as shown in Figure 9-9).
The primary key of the fact table is a composite key that consists of the concatenation of
all of the foreign keys (four keys in Figure 9-9), plus possibly other components that do
not correspond to dimensions. The relationship between each dimension table and the
fact table provides a join path that allows users to query the database easily, using SQL
statements for either predefined or ad hoc queries.

By now you have probably recognized that the star schema is not a new data
model, but instead a denormalized implementation of the relational data model. The
fact table plays the role of a normalized n-ary associative entity that links the instances
of the various dimensions, which are in second, but possibly not third, normal form. To
review associative entities, see Chapter 2, and for an example of the use of an associa-
tive entity, see Figures 2-11 and 2-14. The dimension tables are denormalized. Most
experts view this denormalization as acceptable because dimensions are not updated
and avoid costly joins; thus the star is optimized around certain facts and business
objects to respond to specific information needs. Relationships between dimensions are
not allowed; although such a relationship might exist in the organization (e.g., between
employees and departments), such relationships are outside the scope of a star schema.
As we will see later, there may be other tables related to dimensions, but these tables are
never related directly to the fact table.

Star schema
A simple database design in
which dimensional data are
separated from fact or event data.
A dimensional model is another
name for a star schema.

396 Part IV • Implementation

EXAMPLE STAR SCHEMA A star schema provides answers to a domain of business
questions. For example, consider the following questions:

1. Which cities have the highest sales of large products?
2. What is the average monthly sales for each store manager?
3. In which stores are we losing money on which products? Does this vary by quarter?

A simple example of a star schema that could provide answers to such questions is
shown in Figure 9-10. This example has three dimension tables: PRODUCT, PERIOD,
and STORE, and one fact table, named SALES. The fact table is used to record three
business facts: total units sold, total dollars sold, and total dollars cost. These totals are
recorded for each day (the lowest level of PERIOD) a product is sold in a store.

Could these three questions be answered from a fully normalized data model of
transactional data? Sure, a fully normalized and detailed database is the most flexible, able

FIGURE 9-9 Components
of a star schema

Dimension table

Dimension table

Key 1 (PK)

Attribute

Attribute

• • •

Attribute

Key 2 (PK)

Attribute

Attribute

• • •

Attribute

Dimension table

Dimension table

Key 3 (PK)

Attribute

Attribute

• • •

Attribute

Key 4 (PK)

Attribute

Attribute

• • •

Attribute

Fact table

Key 1 (PK)(FK)

Key 2 (PK)(FK)

Key 3 (PK)(FK)

Key 4 (PK)(FK)

Key 5 (PK)

Data column

Data column

• • •

Data column

Store Name

City

Telephone

Manager

Store Code

PRODUCT

SALES

Units Sold

Dollars Sold

Dollars Cost

Product Code

Period Code

Store Code

STORE

PERIOD

Description

Color

Size

Product Code

Year

Quarter

Month

Day

Period Code

FIGURE 9-10 Star schema
example

Chapter 9 • Data Warehousing 397

to support answering almost any question. However, more tables and joins would be
involved, data need to be aggregated in standard ways, and data need to be sorted in an
understandable sequence. These tasks might make it more difficult for the typical business
manager to interrogate the data (especially using raw SQL), unless the business intelligence
(OLAP) tool they use can mask such complexity from them (see sections later in this chap-
ter on the user interface). And sufficient sales history would have to be kept, more than
would be needed for transaction processing applications. With a data mart, the work of
joining and summarizing data (which can cause extensive database processing) into the
form needed to directly answer these questions has been shifted to the reconciliation layer,
and processes in which the end user does not need to be involved. However, exactly what
range of questions will be asked must be known in order to design the data mart for suffi-
cient, optimal, and easy processing. Further, once these three questions become no longer
interesting to the organization, the data mart (if it is physical) can be thrown away, and new
ones built to answer new questions, whereas fully normalized models tend to be built for
the long term to support less dynamic database needs (possibly with logical data marts that
exist to meet transient needs). Later in this chapter, we will show some simple methods to
use to determine how to determine a star schema model from such business questions.

Some sample data for this schema are shown in Figure 9-11. From the fact table,
we find (for example) the following facts for product number 110 during period 002:

1. Thirty units were sold in store S1. The total dollar sale was 1500, and total dollar
cost was 1200.

2. Forty units were sold in store S3. The total dollar sale was 2000, and total dollar
cost was 1200.

Sales

Period
Code

Period

Year Quarter Month

001
002
003
• • •

2010
2010
2010

1
1
1

4
5
6

Period
Code

Store
Code

Units
Sold

Dollars
Sold

Dollars
Cost

002
003
001
002
003

30
50
40
40
30

S1
S2
S1
S3
S2

1500
1000
1600
2000
1200

1200
600

1000
1200
750

Product
Code

110
125
100
110
100
• • •

Store

Store
Code

Store
Name City Telephone Manager

San Antonio
Portland
Boulder

Jan's
Bill's
Ed's

S1
S2
S3
• • •

683-192-1400
943-681-2135
417-196-8037

Burgess
Thomas
Perry

Product

Description

Sweater
Shoes
Gloves

Color

Blue
Brown
Tan

Size

40
10 1/2
M

Product
Code

100
110
125
• • •

FIGURE 9-11 Star schema
sample data

398 Part IV • Implementation

Additional detail concerning the dimensions for this example can be obtained
from the dimension tables. For example, in the PERIOD table, we find that period 002
corresponds to year 2010, quarter 1, month 5. Try tracing the other dimensions in a sim-
ilar manner.

SURROGATE KEY Every key used to join the fact table with a dimension table should be
a surrogate (nonintelligent, or system-assigned) key, not a key that uses a business value
(sometimes called a natural, smart, or production key). That is, in Figure 9-10, Product
Code, Store Code, and Period Code should all be surrogate keys in both the fact and
dimension tables. If, for example, it is necessary to know the product catalog number,
engineering number, or inventory item number for a product, these attributes would be
stored along with Description, Color, and Size as attributes of the product dimension
table. The following are the main reasons for this surrogate-key rule (Kimball, 1998a):

• Business keys change, often slowly, over time, and we need to remember old and
new business key values for the same business object. As we will see in a later sec-
tion on slowly changing dimensions, a surrogate key allows us to handle chang-
ing and unknown keys with ease.

• Using a surrogate key also allows us to keep track of different nonkey attribute
values for the same production key over time. Thus, if a product package changes
in size, we can associate the same product production key with several surrogate
keys, each for the different package sizes.

• Surrogate keys are often simpler and shorter, especially when the production key
is a composite key.

• Surrogate keys can be of the same length and format for all keys, no matter what
business dimensions are involved in the database, even dates.

The primary key of each dimension table is its surrogate key. The primary key of the
fact table is the composite of all the surrogate keys for the related dimension tables, and each
of the composite key attributes is obviously a foreign key to the associated dimension table.

GRAIN OF THE FACT TABLE The raw data of a star schema are kept in the fact table. All the
data in a fact table are determined by the same combination of composite key elements;
so, for example, if the most detailed data in a fact table are daily values, then all measure-
ment data must be daily in that fact table, and the lowest level of characteristics for the
period dimension must also be a day. Determining the lowest level of detailed fact data
stored is arguably the most important and difficult data mart design step. The level of
detail of this data is specified by the intersection of all of the components of the primary
key of the fact table. This intersection of primary keys is called the grain of the fact table.
Determining the grain is critical and must be determined from business decision-making
needs (i.e., the questions to be answered from the data mart). There is always a way to
summarize fact data by aggregating using dimension attributes, but there is no way in the
data mart to understand business activity at a level of detail finer than the fact table grain.

A common grain would be each business transaction, such as an individual line
item or an individual scanned item on a product sales receipt, a personnel change order,
a line item on a material receipt, a claim against an insurance policy, a boarding pass, or
an individual ATM transaction. A transactional grain allows users to perform analytics
such as a market basket analysis, which is the study of buying behavior of individual
customers. A grain higher than the transaction level might be all sales of a product on a
given day, all receipts of a raw material in a given month at a specific warehouse, or the
net effect of all ATM transactions for one ATM session. The finer the grain of the fact
table, the more dimensions exist, the more fact rows exist, and often, the closer the data
mart model is to a data model for the operational data store.

With the explosion of Web-based commerce, clicks become the possible lowest
level of granularity. An analysis of Web site buying habits requires clickstream data
(e.g., time spent on page, pages migrated from and to). Such an analysis may be useful
to understand Web site usability and to customize messages based on navigational paths
taken. However, this very fine level of granularity actually may be too low to be useful. It
has been estimated that 90 percent or more of clickstream data are worthless (Inmon,
2006); for example, there is no business value to knowing a user moved a cursor when

Grain
The level of detail in a fact table,
determined by the intersection of
all the components of the primary
key, including all foreign keys and
any other primary key elements.

Chapter 9 • Data Warehousing 399

such movements are due to irrelevant events such as exercising the wrist, bumping a
mouse, or moving a mouse to get it out of the way of something on the person’s desk.

Kimball (2001) and others recommend using the smallest grain possible, given the
limitations of the data mart technology. Even when data mart user information require-
ments imply a certain level of aggregated grain, often after some use, users ask more
detailed questions (drill down) as a way to explain why certain aggregated patterns
exist. You cannot “drill down” below the grain of the fact tables (without going to other
data sources, such as the EDW, ODS, or the original source systems, which may add
considerable effort to the analysis).

DURATION OF THE DATABASE As in the case of the EDW or ODS, another important
decision in the design of a data mart is the amount of history to be kept; that is, the
duration of the database. The natural duration is about 13 months or 5 calendar quar-
ters, which is sufficient to see annual cycles in the data. Some businesses, such as finan-
cial institutions, have a need for longer durations. Older data may be difficult to source
and cleanse if additional attributes are required from data sources. Even if sources of
old data are available, it may be most difficult to find old values of dimension data,
which are less likely than fact data to have been retained. Old fact data without associ-
ated dimension data at the time of the fact may be worthless.

SIZE OF THE FACT TABLE As you would expect, the grain and duration of the fact table
have a direct impact on the size of that table. We can estimate the number of rows in the
fact table as follows:

1. Estimate the number of possible values for each dimension associated with the
fact table (in other words, the number of possible values for each foreign key in
the fact table).

2. Multiply the values obtained in the first step after making any necessary
adjustments.

Let’s apply this approach to the star schema shown in Figure 9-11. Assume the
following values for the dimensions:

Total number of stores � 1000
Total number of products � 10,000
Total number of periods � 24 (2 years’ worth of monthly data)

Although there are 10,000 total products, only a fraction of these products are
likely to record sales during a given month. Because item totals appear in the fact table
only for items that record sales during a given month, we need to adjust this figure.
Suppose that on average 50 percent (or 5000) items record sales during a given month.
Then an estimate of the number of rows in the fact table is computed as follows:

Total rows � 1000 stores � 5000 active products � 24 months
� 120,000,000 rows (!)

Thus, in our relatively small example, the fact table that contains two years’ worth
of monthly totals can be expected to have well over 100 million rows. This example
clearly illustrates that the size of the fact table is many times larger than the dimension
tables. For example, the STORE table has 1000 rows, the PRODUCT table 10,000 rows,
and the PERIOD table 24 rows.

If we know the size of each field in the fact table, we can further estimate the size (in
bytes) of that table. The fact table (named SALES) in Figure 9-11 has six fields. If each of these
fields averages four bytes in length, we can estimate the total size of the fact table as follows:

Total size � 120,000,000 rows � 6 fields � 4 bytes/field
� 2,880,000,000 bytes (or 2.88 gigabytes)

400 Part IV • Implementation

The size of the fact table depends on both the number of dimensions and the grain
of the fact table. Suppose that after using the database shown in Figure 9-11 for a short
period of time, the marketing department requests that daily totals be accumulated in
the fact table. (This is a typical evolution of a data mart.) With the grain of the table
changed to daily item totals, the number of rows is computed as follows:

Total rows � 1000 stores � 2000 active products � 720 days (2 years)
� 1,440,000,000 rows

In this calculation, we have assumed that 20 percent of all products record sales on
a given day. The database can now be expected to contain well over 1 billion rows. The
database size is calculated as follows:

Total size � 1,440,000,000 rows � 6 fields � 4 bytes/field
� 34,560,000,000 bytes (or 34.56 gigabytes)

Many large retailers e.g., Wal-Mart, Kmart, Sears) and e-businesses (e.g.,
Travelocity.com, MatchLogic.com) now have data warehouses (or data marts). The size
of most of these data warehouses is in the multiple-terabyte range and growing rapidly
as marketing people continue to press for more dimensions and an ever-finer grain in
the fact table.

MODELING DATE AND TIME Because data warehouses and data marts record facts about
dimensions over time, date and time (henceforth simply called date) is always a dimen-
sion table, and a date surrogate key is always one of the components of the primary key of
any fact table. Because a user may want to aggregate facts on many different aspects of
date or different kinds of dates, a date dimension may have many nonkey attributes. Also,
because some characteristics of dates are country or event specific (e.g., whether the date
is a holiday or there is some standard event on a given day, such as a festival or football
game), modeling the date dimension can be more complex than illustrated so far.

Figure 9-12 shows a typical design for the date dimension. As we have seen before, a
date surrogate key appears as part of the primary key of the fact table and is the primary
key of the date dimension table. The nonkey attributes of the date dimension table include
all of the characteristics of dates that users use to categorize, summarize, and group facts
that do not vary by country or event. For an organization doing business in several coun-
tries (or several geographical units in which dates have different characteristics), we have
added a Country Calendar table to hold the characteristics of each date in each country.
Thus, the Date key is a foreign key in the Country Calendar table, and each row of the
Country Calendar table is unique by the combination of Date key and Country, which form

Country Calendar Table

Date key [PK][FK]
Country [PK]
Holiday flag
Religious holiday flag
Civil holiday flag
Holiday name
Season

Event Table

Event key [PK]
Event type
Event name

Date Dimension Table

Date key [PK]
Full date
Day of week
Day number in month
Day number overall
Week number in year
Week number overall
Month
Month number overall
Quarter
Fiscal period
Weekday flag
Last day in month flag
Event key [FK]

Fact Table

Date key [PK][FK]
Other PKs
 (Country PK needed
 if facts relate to a
 specific country)

Fact 1
• • •

FIGURE 9-12 Modeling dates

Chapter 9 • Data Warehousing 401

the composite primary key for this table. A special event may occur on a given date. (We
assume here, for simplicity, no more than one special event may occur on a given date.) We
have normalized the Event data by creating an Event table, so descriptive data on each
event (e.g., the “Strawberry Festival” or the “Homecoming Game”) are stored only once.

It is possible that there will be several kinds of dates associated with a fact, includ-
ing the date the fact occurred, the date the fact was reported, the date the fact was
recorded in the database, and the date the fact changed values. Each of these may be
important in different analyses.

Variations of the Star Schema

The simple star schema introduced earlier is adequate for many applications. However,
various extensions to this schema are often required to cope with more complex modeling
problems. In this section, we briefly describe several such extensions: multiple fact tables
with conformed dimensions and factless fact tables. For a discussion of additional exten-
sions and variations, see subsequent sections, Poe (1996), and www.ralphkimball.com.

MULTIPLE FACT TABLES It is often desirable for performance or other reasons to define
more than one fact table in a given star schema. For example, suppose that various
users require different levels of aggregation (in other words, a different table grain).
Performance can be improved by defining a different fact table for each level of aggre-
gation. The obvious trade-off is that storage requirements may increase dramatically
with each new fact table. More commonly, multiple fact tables are needed to store facts
for different combinations of dimensions, possibly for different user groups.

Figure 9-13 illustrates a typical situation of multiple fact tables with two related
star schemas. In this example, there are two fact tables, one at the center of each star:

1. Sales—facts about the sale of a product to a customer in a store on a date
2. Receipts—facts about the receipt of a product from a vendor to a warehouse on

a date

As is common, data about one or more business subjects (in this case, Product and
Date) need to be stored in dimension tables for each fact table, Sales and Receipts. Two
approaches have been adopted in this design to handle shared dimension tables. In one
case, because the description of product is quite different for sales and receipts, two sep-
arate product dimension tables have been created. On the other hand, because users
want the same descriptions of dates, one date dimension table is used. In each case, we
have created a conformed dimension, meaning that the dimension means the same

Store

Store key

Sales-Product

Product key

Purchased-Product

Product key

Warehouse

Warehouse key

Customer

Customer keySales

Date

Date key

Vendor

Vendor key

Receipts

FIGURE 9-13 Conformed
dimensions

Conformed dimension
One or more dimension tables
associated with two or more fact
tables for which the dimension
tables have the same business
meaning and primary key with
each fact table.

www.ralphkimball.com

402 Part IV • Implementation

thing with each fact table, and hence, uses the same surrogate primary keys. Even when
the two star schemas are stored in separate physical data marts, if dimensions are con-
formed, there is a potential for asking questions across the data marts (e.g., Do certain
vendors recognize sales more quickly, and are they able to supply replenishments with
less lead time?). In general, conformed dimensions allow users to do the following:

• Share nonkey dimension data
• Query across fact tables with consistency
• Work on facts and business subjects for which all users have the same meaning

FACTLESS FACT TABLES As strange as it may seem, there are applications for fact tables
that do not have nonkey (fact) data but do have foreign keys for the associated dimen-
sions. The two general situations in which factless fact tables may apply are tracking
events (see Figure 9-14a) and taking inventory of the set of possible occurrences (called
coverage) (see Figure 9-14b). The star schema in Figure 9-14a tracks which students
attend which courses at which time in which facilities with which instructors. All that
needs to be known is whether this event occurs, represented by the intersection of the
five foreign keys. The star schema in Figure 9-14b shows the set of possible sales of a

Time key [PK]
Full date
Day of week
Week number

Course key [PK]
Name
Department
Course number
Laboratory flag

Facility key [PK]
Type
Location
Department
Seating
Size

Attendance Fact Table

Time key [PK][FK]
Student key [PK][FK]
Course key [PK][FK]
Teacher key [PK][FK]
Facility key [PK][FK]

Student key [PK]
Student ID
Name
Address
Major
Minor
First enrolled
Graduation class

Teacher key [PK]
Employee ID
Name
Address
Department
Title
Degree

FIGURE 9-14 Factless fact
tables
(a) Factless fact table
showing occurrence of
an event

Time key [PK]
Full date
Day of week
Week number
Month

Store key [PK]
Store ID
Store name
Address
District
Region

Promotion Fact Table

Time key [PK][FK]
Product key [PK][FK]
Store key [PK][FK]
Promo key [PK][FK]

Product key [PK]
SKU
Description
Brand
Category
Package type
Size
Flavor

Promotion key [PK]
Promo name
Promo type
Price treatment
Ad treatment
Display treatment
Coupon type

(b) Factless fact table
showing coverage

Chapter 9 • Data Warehousing 403

product in a store at a particular time under a given promotion. A second sales fact table,
not shown in Figure 9-14b, could contain the dollar and unit sales (facts) for this same
combination of dimensions (i.e., with the same four foreign keys as the Promotion fact
table plus these two nonkey facts). With these two fact tables and four conformed dimen-
sions, it is possible to discover which products that were on a specific promotion at a
given time in a specific store did not sell (i.e., had zero sales), which can be discovered by
finding a combination of the four key values in the promotion fact table, which are not in
the sales fact table. The sales fact table, alone, is not sufficient to answer this question
because it is missing rows for a combination of the four key values, which has zero sales.

Normalizing Dimension Tables

Fact tables are fully normalized because each fact depends on the whole composite pri-
mary key and nothing but the composite key. However, dimension tables may not be
normalized. Most data warehouse experts find this acceptable for a data mart opti-
mized and simplified for a given user group, so that all the dimension data are only one
join away from associated facts. (Remember that this can be done with logical data
marts, so duplicate data do not need to be stored.) Sometimes, as with any other rela-
tional database, the anomalies of a denormalized dimension table cause add, update,
and delete problems. In this section, we address various situations in which it makes
sense or is essential to further normalize dimension tables.

MULTIVALUED DIMENSIONS There may be a need for facts to be qualified by a set of
values for the same business subject. For example, consider the hospital example in
Figure 9-15. In this situation, a particular hospital charge and payment for a patient on
a date (e.g., for all foreign keys in the Finances fact table) is associated with one or more
diagnoses. (We indicate this with a dashed M:N relationship line between the Diagnosis
and Finances tables.) We could pick the most important diagnosis as a component key
for the Finances table, but that would mean we lose potentially important information
about other diagnoses associated with a row. Or, we could design the Finances table
with a fixed number of diagnosis keys, more than we think is ever possible to associate
with one row of the Finances table, but this would create null components of the pri-
mary key for many rows, which violates a property of relational databases.

The best approach (the normalization approach) is to create a table for an associative
entity between Diagnosis and Finances, in this case the Diagnosis group table. (Thus the
dashed relationship in Figure 9-15 is not needed.) In the data warehouse database world,
such an associative entity table is called a “helper table,” and we will see more examples
of helper tables as we progress through subsequent sections. A helper table may have
nonkey attributes (as can any table for an associative entity); for example, the weight

Diagnosis dimension table

Diagnosis group table

Diagnosis key [PK]
Description
Type
Category

Helper Table

Diagnosis key [PK][FK]
Diagnosis group key [PK][FK]
Weight factor

Date key [PK][FK]
Patient key [PK][FK]
Provider key [PK][FK]
Location key [PK][FK]
Service performed key [PK][FK]
Diagnosis group key [PK][FK]
Payer key [PK][FK]
Amount charged
Amount paid

Finances fact table

FIGURE 9-15 Multivalued
dimension

404 Part IV • Implementation

factor in the Diagnosis group table of Figure 9-15 indicates the relative role each diagnosis
plays in each group, presumably normalized to a total of 100 percent for all the diagnoses
in a group. Also note that it is not possible for more than one Finances row to be associ-
ated with the same Diagnosis group key; thus, the Diagnosis group key is really a surro-
gate for the composite primary key of the Finances fact table.

HIERARCHIES Many times a dimension in a star schema forms a natural, fixed depth
hierarchy. For example, there are geographical hierarchies (e.g., markets with a state,
states within a region, and regions within a country) and product hierarchies (packages
or sizes within a product, products within bundles, and bundles within product groups).
When a dimension participates in a hierarchy, a database designer has two basic choices:

1. Include all the information for each level of the hierarchy in a single denormalized
dimension table for the most detailed level of the hierarchy, thus creating consid-
erable redundancy and update anomalies. Although it is simple, this is usually not
the recommended approach.

2. Normalize the dimension into a nested set of a fixed number of tables with 1:M re-
lationships between them. Associate only the lowest level of the hierarchy with
the fact table. It will still be possible to aggregate the fact data at any level of the
hierarchy, but now the user will have to perform nested joins along the hierarchy
or be given a view of the hierarchy that is prejoined.

In the situation when the depth of the hierarchy can be fixed, each level of the
hierarchy is a separate dimensional entity. Some hierarchies can more easily use this
scheme than can others. Consider the product hierarchy in Figure 9-16. Here each prod-
uct is part of a product family (e.g., Crest with Tartar Control is part of Crest), and a
product family is part of a product category (e.g., toothpaste), and a category is part of
a product group (e.g., health and beauty). This works well if every product follows this
same hierarchy. Such hierarchies are very common in data warehouses and data marts.

Now, consider the more general example of a typical consulting company that
invoices customers for specified time periods on projects. A revenue fact table in this sit-
uation might show how much revenue is billed and for how many hours on each
invoice, which is for a particular time period, customer, service, employee, and project.
Because consulting work may be done for different divisions of the same organization,
if we want to understand the total role of consulting in any level of a customer organi-
zation, we need a customer hierarchy. This hierarchy is a recursive relationship between
organizational units. As shown in Figure 4-17 for a supervisory hierarchy, the standard
way to represent this in a normalized database is to put into the company row a foreign
key of the Company key for its parent unit.

Product
Group

Product
Category

Product
Family

Product
Dimension

Fact
Table

Product Hierarchy

FIGURE 9-16 Fixed product hierarchy

Chapter 9 • Data Warehousing 405

Recursive relationships implemented in this way are difficult for the typical end
user because specifying how to aggregate at any arbitrary level of the hierarchy requires
complex SQL programming. One solution is to transform the recursive relationship into
a fixed number of hierarchical levels by combining adjacent levels into general cate-
gories; for example, for an organizational hierarchy the recursive levels above each unit
could be grouped into enterprise, division, and department. Each instance of an entity
at each hierarchical level gets a surrogate primary key and attributes to describe the
characteristics of that level needed for decision making. Work done in the reconciliation
layer will form and maintain these instances.

Another simple but more general alternative appears in Figure 9-17. Figure 9-17a
shows how this hierarchy is typically modeled in a data warehouse using a helper table
(Chisholm, 2000; Kimball, 1998b). Each customer organizational unit the consulting firm
serves is assigned a different surrogate customer key and row in the Customer dimension
table, and the customer surrogate key is used as a foreign key in the Revenue fact table;
this foreign key relates to the Sub customer key in the Helper table because the revenue
facts are associated at the lowest possible level of the organizational hierarchy. The prob-
lem with joining in a recursive relationship of arbitrary depth is that the user has to write
code to join an arbitrary number of times (once for each level of subordination) and these
joins in a data warehouse, because of its massive size, can be very time-consuming

Revenue fact tableHelper/bridge table
Customer dimension table

Customer key [PK]

Customer name
Customer address
Customer type

Parent customer key [PK][FK]
Sub customer key [PK] [FK]
Depth from parent
Lowest flag
Topmost flag

Date key [PK][FK]
Customer key [PK][FK]
Service key [PK][FK]
Employee key [PK][FK]
Project key [PK][FK]
Invoice number [PK]
Revenue
Hours

FIGURE 9-17 Representing hierarchical relationships within a dimension

Parent key
C0000001
C0000001
C0000001
C0000001
C0000001
C0000002
C0000002
C0000002
C0000003
C0000004
C0000005

Sub key
C0000001
C0000002
C0000003
C0000004
C0000005
C0000002
C0000004
C0000005
C0000003
C0000004
C0000005

Depth
0
1
1
2
2
0
1
1
0
0
0

Lowest
N
N
N
Y
Y
N
Y
Y
Y
Y
Y

Topmost
Y
N
N
N
N
N
N
N
N
N
N

Hierarchy Helper Table

Customer key
C0000001
C0000002
C0000003
C0000004
C0000005

Name
ABC Automotive
ABC Auto Sales
ABC Repair
ABC Auto New Sales
ABC Auto Used Sales

Address
100 1st St.
110 1st St.
130 1st St.
110 1st St.
110 1st St.

Type
Dealer
Sales
Service
Sales
Sales

Customer Table

Repair

ABC Automotive

Sales

UsedNew

(a) Use of a helper table

(b) Sample hierarchy with customer and helper tables

406 Part IV • Implementation

(except for some high-performance data warehouse technologies that use parallel pro-
cessing). To avoid this problem, the helper table flattens out the hierarchy by recording a
row for each organizational subunit and each of its parent organizational units (including
itself) all the way up to the top unit of the customer organization. Each row of this helper
table has three descriptors: the number of levels the subunit is from its parent unit for that
table row, a flag indicating whether this subunit is the lowest in the hierarchy, and a flag
indicating whether this subunit is the highest in the hierarchy. Figure 9-17b depicts an
example customer organizational hierarchy and the rows that would be in the helper
table to represent that total organization. (There would be other rows in the helper table
for the subunit-parent unit relationships within other customer organizations.)

The Revenue fact table in Figure 9-17a includes a primary key attribute of Invoice
number. Invoice number is an example of a degenerative dimension, which has no inter-
esting dimension attributes. (Thus no dimension table exists and Invoice number is not
part of the table’s primary key.) Invoice number also is not a fact that will be used for
aggregation because mathematics on this attribute has no meaning. This attribute may
be helpful if there is a need to explore an ODS or source systems to find additional
details about the invoice transaction or to group together related fact rows (e.g., all the
revenue line items on the same invoice).

When the dimension tables are further normalized by using helper tables (some-
times called bridge tables, or reference tables), the simple star schema turns into a snowflake
schema. A snowflake schema resembles a segment of an ODS or source database centered
on the transaction tables summarized into the fact table and all of the tables directly and
indirectly related to these transaction tables. Many data warehouse experts discourage
the use of snowflake schemas because they are more complex for users and require
more joins to bring the results together into one table. A snowflake may be desirable if the
normalization saves significant redundant space (e.g., when there are many redundant,
long textual attributes) or when users may find browsing through the normalized tables
themselves useful.

Slowly Changing Dimensions

Recall that data warehouses and data marts track business activities over time, often for
many years. The business does not remain static over time; products change size and
weight, customers relocate, stores change layouts, and sales staff are assigned to differ-
ent locations. Most systems of record keep only the current values for business subjects
(e.g., the current customer address), and an operational data store keeps only a short
history of changes to indicate that changes have occurred and to support business
processes handling the immediate changes. But in a data warehouse or data mart, we
need to know the history of values to match the history of facts with the correct dimen-
sional descriptions at the time the facts happened. For example, we need to associate
a sales fact with the description of the associated customer during the time period of
the sales fact, which may not be the description of that customer today. Of course, busi-
ness subjects change slowly compared with most transactional data (e.g., inventory
level). Thus, dimensional data change, but change slowly.

We might handle slowly changing dimension (SCD) attributes in one of three
ways (Kimball, 1996b, 1999):

1. Overwrite the current value with the new value, but this is unacceptable because
it eliminates the description of the past that we need to interpret historical facts.
Kimball calls this the Type 1 method.

2. For each dimension attribute that changes, create a current value field and as many
old value fields as we wish (i.e., a multivalued attribute with a fixed number of
occurrences for a limited historical view). This schema might work if there were a
predictable number of changes over the length of history retained in the data ware-
house (e.g., if we need to keep only 24 months of history and an attribute changes
value monthly). However, this works only under this kind of restrictive assump-
tion and cannot be generalized to any slowly changing dimension attribute.
Further, queries can become quite complex because which column is needed may
have to be determined within the query. Kimball calls this the Type 3 method.

Snowflake schema
An expanded version of a star
schema in which dimension
tables are normalized into several
related tables.

Chapter 9 • Data Warehousing 407

3. Create a new dimension table row (with a new surrogate key) each time the
dimension object changes; this new row contains all the dimension characteristics at
the time of the change; the new surrogate key is the original surrogate key plus the
start date for the period when these dimension values are in effect. A fact row is as-
sociated with the surrogate key whose attributes apply at the date/time of the fact
(i.e., the fact date/time falls between the start and end dates of a dimension row for
the same original surrogate key). We likely also want to store in a dimension row the
date/time the change ceases being in effect (which will be the maximum possible
date or null for the current row for each dimension object) and a reason code for the
change. This approach allows us to create as many dimensional object changes as nec-
essary. However, it becomes unwieldy if rows frequently change or if the rows are
very long. Kimball calls this the Type 2 method, and it is the one most often used.

Changes in some dimensional attributes may not be important. Hence, the first
policy can be used for these attributes. The Type 2 scheme is the most frequently used
approach for handling slowly changing dimensions for which changes matter. Under
this scheme, we likely also store in a dimension row the surrogate key value for the
original object; this way, we can relate all changes to the same object. In fact, the pri-
mary key of the dimension table becomes a composite of the original surrogate key plus
the date of the change, as depicted in Figure 9-18. In this example, each time an attrib-
ute of Customer changes, a new customer row is written to the Customer dimension
table; the PK of that row is the original surrogate key for that customer plus the date of
the change. The nonkey elements are the values for all the nonkey attributes at the time
of the change (i.e., some attributes will have new values due to the change, but proba-
bly most will remain the same as for the most recent row for the same customer).
Finding the dimension row for a fact row is a little more complex; the SQL WHERE
clause would include the following:

WHERE Fact.CustomerKey = Customer.CustomerKey
AND Fact.DateKey BETWEEN Customer.StartDate and Customer.EndDate

For this to work, EndDate for the last change to the customer dimension data must
be the largest date possible. If not, the EndDate for the last change could be null, and the
WHERE clause can be modified to handle this possibility. Another common feature of
the Type 2 approach is to include a reason code (Kimball, 2006) with each new dimen-
sion row to document why the change occurred; in some cases, the reason code itself is
useful for decision making (e.g., to see trends in correcting errors, resolve recurring
issues, or see patterns in the business environment).

As noted, however, this schema can cause an excessive number of dimension table
rows when dimension objects frequently change or when dimension rows are large
“monster dimensions.” Also, if only a small portion of the dimension row has changing
values, there are excessive redundant data created. Figure 9-19 illustrates one approach,
dimension segmentation, which handles this situation as well as the more general case
of subsets of dimension attributes that change at different frequencies. In this example,
the Customer dimension is segmented into two dimension tables; one segment may

Fact Table

Product Key
. . . (other keys)

. . . (other measures)
Dollar Sales

Customer

End Date
Address
. . . (other dimension

attributes)

Start Date
Customer Key

Date Key
Customer Key

FIGURE 9-18 Example
of Type 2 SCD Customer
dimension table

408 Part IV • Implementation

hold nearly constant or very slowly changing dimensions and other segments (we show
only two in this example) hold clusters of attributes that change more rapidly and, for
attributes in the same cluster, often change at the same time. These more rapidly chang-
ing attributes are often called “hot” attributes by data warehouse designers.

Another aspect of this segmentation is that for hot attributes, we changed individual
dimension attributes, such as customer income (e.g., $75,400/year), into an attribute for a
band, or range, of income values (e.g., $60,000–$89,999/year). Bands are defined as
required by users and are as narrow or wide as can be useful, but certainly some precision
is lost. Bands make the hot attributes less hot, because a change within a band does not
cause a new row to be written. This design is more complex for users because they now
may have to join facts with multiple dimension segments, depending on the analysis.

One other common variation for handling slowly changing dimensions is to seg-
ment the dimension table horizontally into two tables, one to hold only the current val-
ues for the dimension entities and the other table to hold all the history, possibly
including the current row. The logic to this approach is that many queries need to access
only the current values, which can be done quickly from a smaller table of only current
rows; when a query needs to look at history, the full dimension history table is used.
Another version of this same kind of approach is to use only the one dimension table
but to add a column (a flag attribute) to indicate whether that row contains the most
current or out-of-date values. See Kimball (2002) for additional ideas on handling
slowly changing dimensions.

Determining Dimensions and Facts

Which dimensions and facts are required for a data mart is driven by the context for deci-
sion making. Each decision is based on specific metrics to monitor the status of some
important factor (e.g., inventory turns) or to predict some critical event (e.g., customer
churn). Many decisions are based on a mixture of metrics, balancing financial, process effi-
ciency, customer, and business growth factors. Decisions usually start with questions such
as how much did we sell last month, why did we sell what we did, how much do we think
we will sell next month, and what can we do to sell the amount we want to sell?

The answers to questions often cause us to ask new questions. Consequently,
although for a given domain we can anticipate the initial questions someone might ask of a
data mart, we cannot perfectly predict everything the users will want to know. This is why
independent data marts are discouraged. With dependent data marts, it is much easier to

Customer key [PK]
Name
Address
DOB
First order date

Demographic key [PK]
Income band
Education level
Number of children
Marital status
Credit band
Purchase band

“Constant” or slowly
changing attributes

Two segments of a
customer dimension table

“Hot” or rapidly changing
attributes

Customer key [PK][FK]
Demographic key [PK][FK]
Other keys [PK][FK]
Facts
…

FIGURE 9-19 Dimension
segmentation

Chapter 9 • Data Warehousing 409

expand an existing data mart or for the user to be given access to other data marts or to the
EDW when their new questions require data in addition to what is in the current data mart.

The starting point for determining what data should be in a data mart are the initial
questions the users want answered. Each question can be broken down into discrete items
of business information the user wants to know (facts) and the criteria used to access, sort,
group, summarize, and present the facts (dimension attributes). An easy way to model
the questions is through a matrix, such as that illustrated in Figure 9-20a. In this figure the

1. What was the dollar sales of health and beauty products in North America
to customers over the age of 50 in each of the past three years?
2. What is the name of the salesperson who had the highest dollar sales of
each product in the first quarter of this year?
3. How many European customer complaints did we receive on pet food
products during the past year? How has it changed from month to month this
year?
4. What is the name of the stores that had the highest average monthly
quantity sales of casual clothing during the summer?

do
lla

r
sa

le
s

nu
m

be
r

of
 c

om
pl

ai
nt

s

av
g.

 q
ty

. s
al

es

product category 1 3 4
customer territory 1 3
customer age 1
year 1 3
salesperson name 2
product 2
quarter 2
month 3
store 4
season 4

FIGURE 9-20 Determining dimensions and facts

PRODUCT
CATEGORY

SALES FACTS
STORE

SALESPERSON

CUSTOMER

CUSTOMER
TERRITORY

TerritoryID
TerritoryName

CustomerID
CustomerAge

StoreID
StoreName

SalespersonID
SalespersonName

ProductID
MonthID
CustomerID
StoreID
SalesPersonID
DollarSales
UnitsSales

MONTH

COMPLAINT FACTS

MonthID

ProductID
MonthID
CustomerID
#ofComplaints

MonthID
MonthName RegionID

Season

SEASON

Quarter
Year

CategoryID
CategoryTitle

ProductID
ProductName

PRODUCT

(a) Fact-qualifier matrix for sales and customer service tracking

(b) Star schema for sales and customer service tracking

410 Part IV • Implementation

rows are the qualifiers (dimension or dimension attributes) and the columns are the met-
rics (facts) referenced in the questions. The cells of the matrix contain codes to indicate
which qualifiers and metrics are included in each question. For example, question 3 uses
the fact number of complaints and the dimension attributes of product category, customer
territory, year, and month. One or several star schemas may be required for any set of
questions. For the example in Figure 9-20a we have designed two fact tables, shown in
Figure 9-20b because the grain of the facts are different (e.g., we determined complaints
have nothing to do with stores or salespersons). We also created hierarchical relationships
between product and product category and between customer and customer territory;
alternatively it would have been possible, for example, to collapse product category into
product, with resulting redundancy. We also understood season as a separate concept
from month, and to be territory dependent. Product, Customer, and Month are con-
formed dimensions because they are shared by two fact tables.

So, if the type of analysis depicted in Figure 9-20 represents the starting point for
determining the dimensions and facts of a dimensional model, when do you know you
are done? We don’t know of a definitive answer to this question (and let’s hope you
really are never done, but simply need to continue to expand the coverage of the data
model). However, Ross (2009) has identified what the consulting practice for Ralph
Kimball and Kimball University considers to be the 10 essential rules of dimensional
modeling. We summarize these rules in Table 9-3; we think you will find these rules to
be a helpful synthesis of many principles outlined in this chapter. When these rules are
satisfied, you are done (for the time being).

COLUMN DATABASES: A NEW ALTERNATIVE
FOR DATA WAREHOUSES

RDBMS vendors (e.g., Oracle, IBM) have typically added features to accommodate ana-
lytical query processing, and RDBMS vendors (e.g., Teradata, Netezza) have developed
whole new database engines to handle data warehousing and business intelligence pro-
cessing. These vendors have built their technologies around the standard relational
data model of tables of rows and columns and physical structures that store data as files

TABLE 9-3 Ten Essential Rules of Dimensional Modeling

1. Use atomic facts: Eventually, users want detailed data, even if their initial requests are
for summarized facts.

2. Create single-process fact tables: Each fact table should address the important
measurements for one business process, such as taking a customer order or placing a
material purchase order.

3. Include a date dimension for every fact table: A fact should be described by the
characteristics of the associated day (or finer) date/time to which that fact is related.

4. Enforce consistent grain: Each measurement in a fact table must be atomic for the
same combination of keys (the same grain).

5. Disallow null keys in fact tables: Facts apply to the combination of key values, and
helper tables may be needed to represent some M:N relationships.

6. Honor hierarchies: Understand the hierarchies of dimensions and carefully choose to
snowflake the hierarchy or denormalize into one dimension.

7. Decode dimension tables: Store descriptions of surrogate keys and codes used
in fact tables in associated dimension tables, which can then be used to report labels
and query filters.

8. Use surrogate keys: All dimension table rows should be identified by a surrogate key, with
descriptive columns showing the associated production and source system keys.

9. Conform dimensions: Conformed dimensions should be used across multiple fact tables.
10. Balance requirements with actual data: Unfortunately, source data may not precisely

support all business requirements, so you must balance what is technically possible with
what users want and need.

Source: Based on Ross (2009).

Chapter 9 • Data Warehousing 411

of records for rows, with columns as fields in each record. Emerging, but viable, ven-
dors claim different storage structures are needed for analytical queries—ones that
store data on a column basis rather than a row basis. That is, values are stored in
sequence for one column, followed by the values for another column, and so on, thus
virtually turning a table of data 90 degrees.

Data warehousing and business intelligence (BI) queries typically access many
rows based on common values for a few columns, such as summarizing sales data to
find the top 10 selling products in the Northwest region. This tends to be the opposite of
transaction processing tasks, which seek values for many of the columns but for one
row and some related rows, such as a particular customer order and its related cus-
tomer record, line items, and associated product details. Vendors of column-based
products claim to reduce storage space (because a value is stored only once) and to
speed query processing time because the data are physically organized to support ana-
lytical queries. The conceptual and logical data models for the data warehouse do not
change. SQL is still the query language, and you don’t have to write queries any differ-
ently; the DBMS simply stores and accesses the data differently than in traditional row-
oriented RDBMSs.

Column database technologies trade off storage space savings (data compression
of over 70 percent is common) for computing time. For example, a customer ID might be
stored only once in the database for all the places it appears, such as the identifier of cus-
tomer data but also as foreign keys associated with customer orders, payments, product
returns, service visits, and other activities. This would be true for any column of data,
such as city names, street names, names of all types of parties, etc. Internal encoding of
data is used to associate the business data value with physical database references to that
value throughout the database. A query can then search rapidly through very condensed
storage space for the codes associated with the column value used in the query. The
claims for the advantage of column databases over row-based relational databases are
based on the assumption that disk storage space and the bandwidth to access disk stor-
age are more expensive than CPU time to reconstruct the business data from compressed
storage. And, with compressed storage, overall query processing time is reduced.

Details about column database technology are beyond the scope of this book
because the discussion would address the design of a DBMS rather than the design of a
database. However, it is important for you to understand that new DBMS technologies
designed from the ground up for analytical queries are emerging and should be consid-
ered in the overall architecture design of a data warehousing environment. Major ven-
dors of column-based databases include Sybase and Vertica, and there is an open source
option from Infobright that works with MySQL.

THE USER INTERFACE

Although we have covered most of what you need to know to get started designing
a data warehouse, you may still wonder “what can I do with it?” Even a well-designed
data mart or enterprise data warehouse, loaded with relevant data, may not be used
unless users are provided with a powerful, intuitive interface that allows them to access
and analyze those data easily. In this section, we provide a brief introduction to contem-
porary interfaces for data warehouses and marts.

A variety of tools are available to query and analyze data stored in data ware-
houses and data marts. These tools may be classified as follows:

• Traditional query and reporting tools
• OLAP, MOLAP, and ROLAP tools
• Data visualization tools
• Business performance management and dashboard tools
• Data-mining tools

Traditional query and reporting tools include spreadsheets, personal computer
databases, and report writers and generators. For reasons of space (and because they
are covered elsewhere), we do not describe these tools in this chapter. We describe the
remaining four categories of tools after discussing the role of metadata.

412 Part IV • Implementation

Role of Metadata

The first requirement for building a user-friendly interface is a set of metadata that
describes the data in the data mart in business terms that users can easily understand.
We show the association of metadata with data marts in the overall three-level data
architecture in Figure 9-5.

The metadata associated with data marts are often referred to as a “data catalog,”
“data directory,” or some similar term. Metadata serve as kind of a “yellow pages”
directory to the data in the data marts. The metadata should allow users to easily
answer questions such as the following:

1. What subjects are described in the data mart? (Typical subjects are customers,
patients, students, products, courses, and so on.)

2. What dimensions and facts are included in the data mart? What is the grain of the
fact table?

3. How are the data in the data mart derived from the enterprise data warehouse
data? What rules are used in the derivation?

4. How are the data in the enterprise data warehouse derived from operational data?
What rules are used in this derivation?

5. What reports and predefined queries are available to view the data?
6. What drill-down and other data analysis techniques are available?
7. Who is responsible for the quality of data in the data marts, and to whom are re-

quests for changes made?

SQL OLAP Querying

The most common database query language, SQL (see Chapters 6 and 7), is being
extended to support some types of calculations and querying needed for a data ware-
housing environment. In general, however, SQL is not an analytical language (Mundy,
2001). At the heart of analytical queries is the ability to perform categorization (e.g., group
data by dimension characteristics), aggregation (e.g., create averages per category), and
ranking (e.g., find the customer in some category with the highest average monthly sales).
Consider the following business question:

Which customer has bought the most of each product we sell? Show the product ID
and description, customer ID and name, and the total quantity sold of that product to
that customer; show the results in sequence by product ID.

Even with the limitations of standard SQL, this analytical query can be written without
the OLAP extensions to SQL. One way to write this query, using the large version of the
Pine Valley Furniture database provided with this textbook, is as follows:

SELECT P1.ProductId, ProductDescription, C1.CustomerId,
CustomerName,SUM(OL1.OrderedQuantity) AS TotOrdered
FROM Customer_T AS C1, Product_T AS P1, OrderLine_T

AS OL1, Order_T AS O1
WHERE C1.CustomerId = O1.CustomerId

AND O1.OrderId = OL1.OrderId
AND OL1.ProductId = P1.ProductId

GROUP BY P1.ProductId, ProductDescription,
C1.CustomerId, CustomerName

HAVING TotOrdered >= ALL
(SELECT SUM(OL2.OrderedQuantity)
FROM OrderLine_T AS OL2, Order_T AS O2
WHERE OL2.ProductId = P1.ProductId

AND OL2.OrderId = O2.OrderId
AND O2.CustomerId <> C1.CustomerId

GROUP BY O2.CustomerId)
ORDER BY P1.ProductId;

This approach uses a correlated subquery to find the set of total quantity ordered
across all customers for each product, and then the outer query selects the customer whose

Chapter 9 • Data Warehousing 413

total is greater than or equal to all of these (in other words, equal to the maximum of the set).
Until you write many of these queries, this can be very challenging to develop, and is often
beyond the capabilities of even well-trained end users. And even this query is rather simple
because it does not have multiple categories, does not ask for changes over time, or does not
want to see the results graphically, Finding the second in rank is even more difficult.

Some versions of SQL support special clauses that make ranking questions easier
to write. For example, Microsoft SQL Server and some other RDBMSs support clauses
of FIRST n, TOP n, LAST n, and BOTTOM n rows. Thus, the query shown previously
could be greatly simplified by adding TOP 1 in front of the SUM in the outer query and
eliminating the HAVING and subquery. TOP 1 was illustrated in Chapter 7, in the sec-
tion on “More Complicated SQL Queries.”

Recent versions of SQL include some data warehousing and business intelligence
extensions. Because many data warehousing operations deal with categories of objects,
possibly ordered by date, the SQL standard includes a WINDOW clause to define
dynamic sets of rows. (In many SQL systems, the word OVER is used instead of WIN-
DOW, which is what we illustrate next.) For example, an OVER clause can be used to
define three adjacent days as the basis for calculating moving averages. (Think of a win-
dow moving between the bottom and top of its window frame, giving you a sliding
view of rows of data.) PARTITION BY within an OVER clause is similar to GROUP BY;
PARTITION BY tells an OVER clause the basis for each set, an ORDER BY clause
sequences the elements of a set, and the ROWS clause says how many rows in sequence
to use in a calculation. For example, consider a SalesHistory table (columns TerritoryID,
Quarter, and Sales) and the desire to show a three-quarter moving average of sales. The
following SQL will produce the desired result using these OLAP clauses:

SELECT TerritoryID, Quarter, Sales,
AVG(Sales) OVER (PARTITION BY TerritoryID

ORDER BY Quarter ROWS 2 PRECEDING) AS 3QtrAverage
FROM SalesHistory;

The PARTITION BY clause groups the rows of the SalesHistory table by TerritoryID
for the purpose of computing 3QtrAverage, and then the ORDER BY clause sorts by quarter
within these groups. The ROWS clause indicates how many rows over which to calculate
the AVG(Sales). The following is a sample of the results from this query:

TerritoryID Quarter Sales 3QtrAverage

Atlantic 1 20 20

Atlantic 2 10 15

Atlantic 3 6 12

Atlantic 4 29 15

East 1 5 5

East 2 7 6

East 3 12 8

East 4 11 10

. . .

In addition, but not shown here, a QUALIFY clause can be used similarly to a
HAVING clause to eliminate the rows of the result based on the aggregate referenced by
the OVER clause.

The RANK windowing function calculates something that is very difficult to calculate
in standard SQL, which is the row of a table in a specific relative position based on some cri-
teria (e.g., the customer with the third-highest sales in a given period). In the case of ties,
RANK will cause gaps (e.g., if there is a two-way tie for third, then there is no rank of 4,
rather the next rank is 5). DENSE_RANK works the same as RANK but creates no gaps.

414 Part IV • Implementation

The CUME_DIST function finds the relative position of a specified value in a group of values;
this function can be used to find the break point for percentiles (e.g., what value is the break
point for the top 10 percent of sales or which customers are in the top 10 percent of sales?).

Different DBMS vendors will implement some or all of the SQL:1999 OLAP exten-
sion commands and possibly others specific to their products. For example, Teradata
supports a SAMPLE clause, which allows samples of rows to be returned for the query.
Samples can be random, with or without replacement, a percentage or count of rows can
be specified for the answer set, and conditions can be placed to eliminate certain rows
from the sample. SAMPLE is used to create subsets of a database that will be, for exam-
ple, given different product discounts to see consumer behavior differences, or one sam-
ple will be used for a trial and another for a final promotion. SQL:1999 still is not a
full-featured data warehouse querying and analysis tool, but it is a start at recognizing
the special querying needs of decision support systems and business intelligence.

Online Analytical Processing (OLAP) Tools

A specialized class of tools has been developed to provide users with multidimensional
views of their data. Such tools also usually offer users a graphical interface so that they
can easily analyze their data. In the simplest case, data are viewed as a simple three-
dimensional cube.

Online analytical processing (OLAP) is the use of a set of query and reporting
tools that provides users with multidimensional views of their data and allows them to
analyze the data using simple windowing techniques. The term online analytical process-
ing is intended to contrast with the more traditional term online transaction processing
(OLTP). The differences between these two types of processing were summarized in
Table 9-1. The term multidimensional analysis is often used as a synonym for OLAP.

An example of a “data cube” (or multidimensional view) of data that is typical of
OLAP is shown in Figure 9-21. This three-dimensional view corresponds quite closely to the
star schema introduced in Figure 11-10. Two of the dimensions in Figure 9-21 correspond to
the dimension tables (PRODUCT and PERIOD) in Figure 9-10, whereas the third dimension
(named measures) corresponds to the data in the fact table (named SALES) in Figure 9-10.

OLAP is actually a general term for several categories of data warehouse and data
mart access tools (Dyché, 2000). Relational OLAP (ROLAP) tools use variations of SQL

Products

Months

Measu
res

Shoes

Units

January

February

March

April

May

Revenue

Measure

Product: Shoes

Cost

250 1564 1020

200 1275 875

350 1800 1275

400 1935 1500

485 2000 1560

FIGURE 9-21 Slicing a data cube

Online analytical
processing (OLAP)
The use of a set of graphical
tools that provides users with
multidimensional views of their
data and allows them to analyze
the data using simple windowing
techniques.

Relational OLAP (ROLAP)
OLAP tools that view the database
as a traditional relational database
in either a star schema or other
normalized or denormalized set
of tables.

Chapter 9 • Data Warehousing 415

and view the database as a traditional relational database, in either a star schema or
another normalized or denormalized set of tables. ROLAP tools access the data ware-
house or data mart directly. Multidimensional OLAP (MOLAP) tools load data into an
intermediate structure, usually a three- or higher-dimensional array (hypercube). We
illustrate MOLAP in the next few sections because of its popularity. It is important to
note with MOLAP that the data are not simply viewed as a multidimensional hyper-
cube, but rather a MOLAP data mart is created by extracting data from the data ware-
house or data mart and then storing the data in a specialized separate data store
through which data can be viewed only through a multidimensional structure. Other,
less-common categories of OLAP tools are database OLAP (DOLAP), which includes
OLAP functionality in the DBMS query language (there are proprietary, non-ANSI stan-
dard SQL systems that do this), and hybrid OLAP (HOLAP), which allows access via
both multidimensional cubes or relational query languages.

SLICING A CUBE Figure 9-21 shows a typical MOLAP operation: slicing the data cube
to produce a simple two-dimensional table or view. In Figure 9-21, this slice is for the
product named shoes. The resulting table shows the three measures (units, revenues,
and cost) for this product by period (or month). Other views can easily be developed by
the user by means of simple “drag and drop” operations. This type of operation is often
called slicing and dicing the cube.

Another operation closely related to slicing and dicing is data pivoting (similar to
the pivoting possible in Microsoft Excel). This term refers to rotating the view for a par-
ticular data point to obtain another perspective. For example, Figure 9-21 shows sales of
400 units of shoes for April. The analyst could pivot this view to obtain (for example)
the sales of shoes by store for the same month.

DRILL-DOWN Another type of operation often used in multidimensional analysis is
drill-down—that is, analyzing a given set of data at a finer level of detail. An example of
drill-down is shown in Figure 9-22. Figure 9-22a shows a summary report for the total
sales of three package sizes for a given brand of paper towels: 2-pack, 3-pack, and 6-pack.
However, the towels come in different colors, and the analyst wants a further breakdown
of sales by color within each of these package sizes. Using an OLAP tool, this breakdown
can be easily obtained using a “point-and-click” approach with a mouse device.

The result of the drill-down is shown in Figure 9-22b. Notice that a drill-down
presentation is equivalent to adding another column to the original report. (In this case,
a column was added for the attribute color.)

Executing a drill-down (as in this example) may require that the OLAP tool “reach
back” to the data warehouse to obtain the detail data necessary for the drill-down. This
type of operation can be performed by an OLAP tool (without user participation) only
if an integrated set of metadata is available to that tool. Some tools even permit the
OLAP tool to reach back to the operational data if necessary for a given query.

SUMMARIZING MORE THAN THREE DIMENSIONS It is straightforward to show a three-
dimensional hypercube in a spreadsheet-type format using columns, rows, and sheets
(pages) as the three dimensions. It is possible, however, to show data in more than three
dimensions by cascading rows or columns and using drop-down selections to show dif-
ferent slices. Figure 9-23 shows a portion of a report from a Microsoft Excel pivot table
with four dimensions, with travel method and number of days in cascading columns.
OLAP query and reporting tools usually allow this way to handle sharing dimensions
within the limits of two-dimension printing or display space. Data visualization tools,
to be shown in the next section, allow using shapes, colors, and other properties of mul-
tiples of graphs to include more than three dimensions on the same display.

Data Visualization

Often the human eye can best discern patterns when data are represented graphically.
Data visualization is the representation of data in graphical and multimedia formats
for human analysis. Benefits of data visualization include the ability to better observe

Multidimensional OLAP
(MOLAP)
OLAP tools that load data into an
intermediate structure, usually a
three- or higher-dimensional array.

Data visualization
The representation of data in
graphical and multimedia formats
for human analysis.

416 Part IV • Implementation

Package size Sales

2-pack $75

3-pack $100

Brand

SofTowel

SofTowel

SofTowel 6-pack $50

FIGURE 9-22 Example
of drill-down
(a) Summary report

Package size SalesColor

2-pack $30

2-pack $25

2-pack $20

White

Yellow

Pink

3-pack $50

3-pack $25

3-pack $25

White

Green

Yellow

6-pack $30

Brand

SofTowel

SofTowel

SofTowel

SofTowel

SofTowel

SofTowel

SofTowel

SofTowel 6-pack $20

White

Yellow

(b) Drill-down with color
attribute added

Average of Price Travel Method No. of Days

Coach Coach Total Plane Plane Total

Resort Name 4 5 7 6 7 8 10 14 16 21 32 60

Aviemore 135 135
Barcelona
Black Forest 69 69
Cork 269 269
Grand Canyon 1128 1128
Great Barrier Reef 750 750
Lake Geneva 699 699
London
Los Angeles 295 375 335
Lyon 399 399
Malaga 234 234
Nerja 198 255 226.5
Nice 289 289
Paris–Euro Disney
Prague 95 95
Seville 199 199
Skiathos 429 429
Grand Total 69 95 135 99.66666667 198 292 484 199 343 234 429 750 1128 424.5384615

Country (All)

FIGURE 9-23 Sample pivot table with four dimensions: Country (pages), Resort Name (rows), Travel Method,
and No. of Days (columns)

Chapter 9 • Data Warehousing 417

trends and patterns and to identify correlations and clusters. Data visualization is often
used in conjunction with data mining and other analytical techniques.

In essence, data visualization is a way to show multidimensional data not as num-
bers and text but as graphs. Thus, precise values are often not shown, but rather the intent
is to more readily show relationships between the data. As with OLAP tools, the data for
the graphs are computed often from SQL queries against a database (or possibly from
data in a spreadsheet). The SQL queries are generated automatically by the OLAP or data
visualization software simply from the user indicating what he or she wants to see.

Figure 9-24 shows a simple visualization of sales data using the data visualization
tool Tableau. This visualization uses a common technique called small multiples, which
places many graphs on one page to support comparison. Each small graph plots metrics
of SUM(Total Sales) on the horizontal axis and SUM(Gross Profit) on the vertical axis.
There is a separate graph for the dimensions region and year; different market segments
are shown via different symbols for the plot points. The user simply drags and drops
these metrics and dimensions to a menu and then selects the style of visualization or
lets the tool pick what it thinks would be the most illustrative type of graph. The user
indicates what he or she wants to see and in what format, not how to retrieve the data
from the data mart or data warehouse.

Business Performance Management and Dashboards

A business performance management (BPM) system allows managers to measure,
monitor, and manage key activities and processes to achieve organizational goals.
Dashboards are often used to provide an information system in support of BPM.
Dashboards, just as those in a car or airplane cockpit, include a variety of displays to
show different aspects of the organization. Often the top dashboard, an executive
dashboard, is based on a balanced scorecard, in which different measures show met-
rics from different processes and disciplines, such as operations efficiency, financial
status, customer service, sales, and human resources. Each display of a dashboard will
address different areas in different ways. For example, one display may have alerts
about key customers and their purchases. Another display may show key performance
indicators for manufacturing, with “stoplight” symbols of red, yellow, and green to
indicate if the measures are inside or outside tolerance limits. Each area of the organi-
zation may have its own dashboard to determine health of that function. For example,
Figure 9-25 is a simple dashboard for one financial measure, revenue. The left panel
shows dials about revenue over the past three years, with needles indicating where
these measures fall within a desirable range. Other panels show more details to help a
manager find the source of out-of-tolerance measures.

Sheet 1

2001

40K

20K

0K

40K

20K

0K

40K

20K

0K

Note: Sum of Sales Total versus sum of Gross Profit broken down by Order Date Year versus Region. Shape shows details about Market Segment. Details are shown for Order Priority.

0K 150K100K50K 0K 150K100K50K 0K 150K100K50K 0K 150K100K50K

SUM(Sales Total)SUM(Sales Total)SUM(Sales Total)SUM(Sales Total)

S
U

M
(G

ro
ss

 P
ro

fit
)

S
U

M
(G

ro
ss

 P
ro

fit
)

E
A

S
T

C
E

N
TR

A
L

W
E

S
T

S
U

M
(G

ro
ss

 P
ro

fit
)

2002 2003 2004 Market Segment
CONSUMER

CORPORATE

HOME OFFICE

SMALL BUSINESS
+

++

+
++

+ +

+

+

+ ++ +
+

+
+

+

+

+
+ +

+
+

+

+++++
+

+
++

+
++ + +++

+++

FIGURE 9-24 Sample data visualization with small multiples

418 Part IV • Implementation

Each of the panels is a result of complex queries to a data mart or data warehouse.
As a user wants to see more details, there often is a way to click on a graph to get a
menu of choices for exploring the details behind the icon or graphic. A panel may be the
result of running some predictive model against data in the data warehouse to forecast
future conditions (so-called predictive modeling).

Integrative dashboard displays are possible only when data are consistent across
each display, which requires a data warehouse and dependent data marts. Stand-alone
dashboards for independent data marts can be developed, but then it is difficult to trace
problems between areas (e.g., production bottlenecks due to higher sales than forecast).

Data-Mining Tools

With OLAP, users are searching for answers to questions, such as “Are health-care costs
greater for single or married persons?” With data mining, users are looking for patterns
or trends in a collection of facts or observations. Data mining is knowledge discovery
using a sophisticated blend of techniques from traditional statistics, artificial intelli-
gence, and computer graphics (Weldon, 1996).

The goals of data mining are threefold:

1. Explanatory To explain some observed event or condition, such as why sales of
pickup trucks have increased in Colorado

2. Confirmatory To confirm a hypothesis, such as whether two-income families are
more likely to buy family medical coverage than single-income families

3. Exploratory To analyze data for new or unexpected relationships, such as what
spending patterns are likely to accompany credit card fraud

DATA-MINING TECHNIQUES Several different techniques are commonly used for data
mining. See Table 9-4 for a summary of the most common of these techniques. The
choice of an appropriate technique depends on the nature of the data to be analyzed, as
well as the size of the data set. Data mining can be performed against either the data
marts or the enterprise data warehouse (or both).

$600

$460

$300

$160

–$160

–$300

Last 14 Day Revenue

Net Profit Margin Review

2008 2009 2010 1st Half 2010 Q3 2010 Q4

8%

12%

18%

4%

0%

–4%

–8%

$0

$470
$555

$200
$157 $151

$2,500

$0

17
-D

ec

18
-D

ec

19
-D

ec

20
-D

ec

21
-D

ec

22
-D

ec

23
-D

ec

24
-D

ec

25
-D

ec

26
-D

ec

27
-D

ec

28
-D

ec

29
-D

ec

30
-D

ec

$5,000

$7,500

Revenue

Gross Profit

2010

2009

2008

Revenue
Net Profit Margin

FIGURE 9-25 Sample
dashboard

Data mining
Knowledge discovery, using a
sophisticated blend of techniques
from traditional statistics, artificial
intelligence, and computer
graphics.

Chapter 9 • Data Warehousing 419

DATA-MINING APPLICATIONS Data-mining techniques have been successfully used for
a wide range of real-world applications. A summary of some of the typical types of
applications, with examples of each type, is presented in Table 9-5. Data-mining appli-
cations are growing rapidly, for the following reasons:

• The amount of data in data warehouses and data marts is growing exponentially.
Users need the type of automated techniques provided by data-mining tools to
mine the knowledge in these data.

• New data-mining tools with expanded capabilities are continually being introduced.
• Increasing competitive pressures are forcing companies to make better use of the

information and knowledge contained in their data.

For thorough coverage of data mining and all analytical aspects of business intel-
ligence from a data warehousing perspective, see Turban et al. (2008).

TABLE 9-4 Data-Mining Techniques

Technique Function

Regression Test or discover relationships from historical data

Decision tree induction Test or discover if . . . then rules for decision propensity

Clustering and signal processing Discover subgroups or segments

Affinity Discover strong mutual relationships

Sequence association Discover cycles of events and behaviors

Case-based reasoning Derive rules from real-world case examples

Rule discovery Search for patterns and correlations in large data sets

Fractals Compress large databases without losing information

Neural nets Develop predictive models based on principles modeled
after the human brain

TABLE 9-5 Typical Data-Mining Applications

Data-Mining Application Example

Profiling populations Developing profiles of high-value customers, credit risks,
and credit-card fraud.

Analysis of business trends Identifying markets with above-average (or below-average)
growth.

Target marketing Identifying customers (or customer segments) for
promotional activity.

Usage analysis Identifying usage patterns for products and services.

Campaign effectiveness Comparing campaign strategies for effectiveness.

Product affinity Identifying products that are purchased concurrently or
identifying the characteristics of shoppers for certain
product groups.

Customer retention and churn Examining the behavior of customers who have left for
competitors to prevent remaining customers from leaving.

Profitability analysis Determining which customers are profitable, given the total
set of activities the customer has with the organization.

Customer value analysis Determining where valuable customers are at different
stages in their life.

Upselling Identifying new products or services to sell to a customer
based upon critical events and life-style changes.

Source: Based on Dyché (2000).

420 Part IV • Implementation

Summary

Despite the vast quantities of data collected in organiza-
tions today, most managers have difficulty obtaining the
information they need for decision making. Two major
factors contribute to this “information gap.” First, data
are often heterogeneous and inconsistent as a result of the
piecemeal systems development approaches that have
commonly been used. Second, systems are developed (or
acquired) primarily to satisfy operational objectives, with
little thought given to the information needs of managers.

There are major differences between operational
and informational systems and between the data that
appear in those systems. Operational systems are used to
run the business on a current basis, and the primary
design goal is to provide high performance to users who
process transactions and update databases. Informational
systems are used to support managerial decision making,
and the primary design goal is to provide ease of access
and use for information workers.

The purpose of a data warehouse is to consolidate
and integrate data from a variety of sources and to format
those data in a context for making accurate business deci-
sions. A data warehouse is an integrated and consistent
store of subject-oriented data obtained from a variety
of sources and formatted into a meaningful context to
support decision making in an organization.

Most data warehouses today follow a three-layer
architecture. The first layer consists of data distributed
throughout the various operational systems. The sec-
ond layer is an enterprise data warehouse, which is a
centralized, integrated data warehouse that is the con-
trol point and single source of all data made available
to end users for decision support applications. The
third layer is a series of data marts. A data mart is
a data warehouse whose data are limited in scope for
the decision-making needs of a particular user group.
A data mart can be independent of an enterprise data
warehouse (EDW), derived from the EDW, or a logical
subset of the EDW.

The data layer in an enterprise data warehouse is
called the reconciled data layer. The characteristics of this
data layer (ideally) are the following: It is detailed, histor-
ical, normalized, comprehensive, and quality controlled.

Reconciled data are obtained by filling the enterprise
data warehouse or operational data store from the vari-
ous operational systems. Reconciling the data requires
four steps: capturing the data from the source systems,
scrubbing the data (to remove inconsistencies), trans-
forming the data (to convert it to the format required in
the data warehouse), and loading and indexing the data
in the data warehouse. Reconciled data are not normally
accessed directly by end users.

The data layer in the data marts is referred to as the
derived data layer. These are the data that are accessed by
end users for their decision support applications.

Data are most often stored in a data mart using a
variation of the relational model called the star schema,
or dimensional model. A star schema is a simple database
design where dimensional data are separated from fact or
event data. A star schema consists of two types of tables:
dimension tables and fact tables. The size of a fact table
depends, in part, on the grain (or level of detail) in that
table. Fact tables with over one billion rows are common
in data warehouse applications today. There are several
variations of the star schema, including models with
multiple fact tables and snowflake schemas that arise
when one or more dimensions have a hierarchical struc-
ture. The emerging technology of column-based data-
bases provide new options for storing and accessing data
warehouse and data mart data.

A variety of end-user interfaces are available to
access and analyze decision support data. Online analyt-
ical processing (OLAP) is the use of a set of graphical
tools that provides users with multidimensional views
of their data (data are normally viewed as a cube).
Increasingly data visualization tools make multidimen-
sional data easier to understand. OLAP facilitates data
analysis operations such as slice and dice, data pivoting,
and drill-down. Dashboards and business performance
monitoring provide high-level views to assist managers
in identifying into which areas to drill-down or where to
pivot data. Data mining is a form of knowledge discov-
ery that uses a sophisticated blend of techniques from
traditional statistics, artificial intelligence, and computer
graphics.

Chapter Review

Key Terms

Conformed dimension
401

Data mart 383
Data mining 418
Data visualization 415
Data warehouse 377
Dependent data mart 385
Derived data 389

Enterprise data ware-
house (EDW) 385

Grain 398
Independent data

mart 383
Informational

system 381
Logical data mart 386

Multidimensional OLAP
(MOLAP) 415

Online analytical
processing (OLAP) 414

Operational data store
(ODS) 386

Operational system 380
Periodic data 391

Real-time data warehouse
387

Reconciled data 389
Relational OLAP

(ROLAP) 414
Snowflake schema 406
Star schema 395
Transient data 391

Chapter 9 • Data Warehousing 421

Review Questions

1. Define each of the following terms:
a. data warehouse
b. data mart
c. reconciled data
d. derived data
e. online analytical processing
f. data mining
g. star schema
h. snowflake schema
i. grain
j. conformed dimension

2. Match the following terms and definitions:
_____ periodic data
_____ data mart
_____ star schema
_____ data mining

_____ reconciled data
_____ dependent data mart

_____ data visualization

_____ transient data

_____ snowflake schema

5. Briefly describe the major components of a data warehouse
architecture.

6. List the three types of metadata that appear in a three-layer
data warehouse architecture and briefly describe the pur-
pose of each.

7. List four characteristics of a data warehouse.
8. List five claimed limitations of independent data marts.
9. List two claimed benefits of independent data marts.

10. Briefly describe three types of operations that can easily be
performed with OLAP tools.

11. List four objectives of derived data.
12. Is a star schema a relational data model? Why or why not?
13. Explain how the volatility of a data warehouse is different

from the volatility of a database for an operational informa-
tion system.

14. Explain the pros and cons of logical data marts.
15. What is a helper table, and why is it often used to help

organize derived data?
16. Describe the characteristics of a surrogate key as used in a

data warehouse or data mart.
17. Why is time almost always a dimension in a data ware-

house or data mart?
18. What is the purpose of conformed dimensions for dif-

ferent star schemas within the same data warehousing
environment?

19. Can a fact table have no nonkey attributes? Why or why not?
20. In what ways are dimension tables often not normalized?
21. What is a hierarchy as it relates to a dimension table?
22. What is the meaning of the phrase “slowly changing

dimension”?
23. Explain the most common approach used to handle slowly

changing dimensions.
24. One of the claimed characteristics of a data warehouse is

that it is nonupdateable. What does this mean?
25. In what ways are a data staging area and an enterprise data

warehouse different?

Problems and Exercises

1. Examine the three tables with student data shown in Figure 9-1.
Design a single-table format that will hold all of the data
(nonredundantly) that are contained in these three tables.
Choose column names that you believe are most appropriate
for these data.

2. The following table shows some simple student data as of
the date 06/20/2010:

The following transactions occur on 06/21/2010:
• Student 004 changes major from Math to Business.
• Student 005 is deleted from the file.
• New student 006 is added to the file: Name is Jim, Major

is Phys Ed.
The following transactions occur on 06/22/2010:

• Student 003 changes major from Art to History.
• Student 006 changes major from Phys Ed to Basket

Weaving.
Your assignment involves two parts:

a. Construct tables for 06/21/2010 and 06/22/2010,
reflecting these transactions; assume that the data are
transient (refer to Figure 9-7).

b. Construct tables for 06/21/2010 and 06/22/2010,
reflecting these transactions; assume that the data are
periodic (refer to Figure 9-8).

Key Name Major

001 Amy Music

002 Tom Business

003 Sue Art

004 Joe Math

005 Ann Engineering

a. lost previous data content
b. detailed historical data
c. data not altered or deleted
d. data warehouse of limited

scope
e. dimension and fact tables
f. form of knowledge

discovery
g. data filled from a data

warehouse
h. structure that results from

hierarchical dimensions
i. data represented in

graphical formats
3. Contrast the following terms:

a. transient data; periodic data
b. data warehouse; data mart; operational data store
c. reconciled data; derived data
d. fact table; dimension table
e. star schema; snowflake schema
f. independent data mart; dependent data mart; logical

data mart
4. List the five major trends that necessitate data warehous-

ing in many organizations today.

422 Part IV • Implementation

3. Millennium College wants you to help design a star schema
to record grades for courses completed by students. There
are four dimension tables, with attributes as follows:

Facts to be recorded for each combination of these dimensions
are PolicyPremium, Deductible, and NumberOfTransactions.
a. Design a star schema for this problem. See Figure 9-10

for the format you should follow.
b. Estimate the number of rows in the fact table, using the

assumptions stated previously.
c. Estimate the total size of the fact table (in bytes), assum-

ing an average of 5 bytes per field.
6. Simplified Automobile Insurance Company would like to add

a Claims dimension to its star schema (see Problem and
Exercise 5). Attributes of Claim are ClaimID, ClaimDescription,
and ClaimType. Attributes of the fact table are now
PolicyPremium, Deductible, and MonthlyClaimTotal.
a. Extend the star schema from Problem and Exercise 5 to

include these new data.
b. Calculate the estimated number of rows in the fact table,

assuming that the company experiences an average of
2000 claims per month.

7. Millennium College (see Problem and Exercise 3) now
wants to include new data about course sections: the
department offering the course, the academic unit to which
the department reports, and the budget unit to which the
department is assigned. Change your answer to Problem
and Exercise 3 to accommodate these new data require-
ments. Explain why you implemented the changes in the
star schema the way you did.

8. As mentioned in the chapter, Kimball (1997), Inmon (1997,
2000), and Armstrong (2000) have debated the merits of
independent and dependent data marts and normalized
versus denormalized data marts. Obtain copies of these
articles from your library or from online sources and sum-
marize the arguments made by each side of this debate.
See also www.intelligententerprise.com/030917/615ware-
house1_1.shtml for a 2003 article clarifying the Kimball
position.

9. A food manufacturing company needs a data mart to sum-
marize facts about orders to move goods. Some orders
transfer goods internally, some are sales to customers, some
are purchases from vendors, and some are returns of goods
from customers. The company needs to treat customers,
vendors, plants, and storage locations as distinct dimen-
sions that can be involved at both ends of a movement
event. For each type of destination or origin, the company
wants to know the type of location (i.e., customer, vendor,
etc.), name, city, and state. Facts about each movement
include dollar volume moved, cost of movement, and
revenue collected from the move (if any, and this can be
negative for a return). Design a star-type schema to repre-
sent this data mart. Hint: After you design a typical star
schema, think about how you might simplify the design
through the use of generalization.

10. Visit www.ralphkimball.com and locate Kimball University
Design Tip 37. Study this design tip and draw the dimen-
sional model for the recommended design for a “pipeline”
application for university admissions.

11. Visit www.teradatastudentnetwork.com and download
the dimensional modeling tool located under the down-
loadable software section. (Your instructor will have to
give you the current password to access this site.) Use this
tool to draw your answers to Problems and Exercises 3, 5,
6, and 9. Write a report that comments on the usefulness
of this modeling tool. What other features would you like
the tool to have?

CourseSection Attributes: CourseID, SectionNumber,
CourseName, Units, RoomID, and
RoomCapacity. During a given semester,
the college offers an average of 500 course
sections.

Professor Attributes: ProfID, ProfName, Title,
DepartmentID, and DepartmentName.
There are typically 200 professors at
Millennium at any given time.

Student Attributes: StudentID, StudentName, and
Major. Each course section has an average
of 40 students, and students typically
take five courses per period.

Period Attributes: SemesterID, and Year. The
database will contain data for 30 periods
(a total of 10 years).

The only fact that is to be recorded in the fact table is
CourseGrade.
a. Design a star schema for this problem. See Figure 9-10

for the format you should follow.
b. Estimate the number of rows in the fact table, using the

assumptions stated previously.
c. Estimate the total size of the fact table (in bytes), assum-

ing that each field has an average of 5 bytes.
d. If you didn’t want to or didn’t have to stick with a strict

star schema for this data mart, how would you change
the design? Why?

e. Various characteristics of sections, professors, and stu-
dents change over time. How do you propose designing
the star schema to allow for these changes? Why?

4. Having mastered the principles of normalization described in
Chapter 4, you recognize immediately that the star schema you
developed for Millennium College (Problem and Exercise 3)
is not in third normal form. Using these principles, convert
the star schema to a snowflake schema. What impact (if any)
does this have on the size of the fact table for this problem?

5. You are to construct a star schema for Simplified Automobile
Insurance Company (see Kimball, 1996b, for a more realistic
example). The relevant dimensions, dimension attributes,
and dimension sizes are as follows:

InsuredParty Attributes: InsuredPartyID and Name. There
is an average of two insured parties for each
policy and covered item.

CoverageItem Attributes: CoverageKey and Description.
There is an average of 10 covered items
per policy.

Agent Attributes: AgentID and AgentName.
There is one agent for each policy and
covered item.

Policy Attributes: PolicyID and Type. The company
has approximately 1 million policies at the
present time.

Period Attributes: DateKey and FiscalPeriod.

www.intelligententerprise.com/030917/615ware-house1_1.shtml
www.intelligententerprise.com/030917/615ware-house1_1.shtml
www.ralphkimball.com
www.teradatastudentnetwork.com

Chapter 9 • Data Warehousing 423

12. Pine Valley Furniture wants you to
help design a data mart for analy-
sis of sales. The subjects of the data
mart are as follows:

residing on a Novell network consisting of approxi-
mately 600 different flat files. For the purposes of our
case study, we can assume that 30 different flat files are
going to be used for the data mart. Some of these flat
files are transaction files that change constantly. The
OLTP system is shut down overnight on Friday
evening beginning at 6 P.M. for backup. During that
time, the flat files are copied to another server, an
extraction process is run, and the extracts are sent via
FTP to a UNIX server. A process is run on the UNIX
server to load the extracts into Oracle and rebuild the
star schema. For the initial loading of the data mart, all
information from the 30 files was extracted and loaded.
On a weekly basis, only additions and updates will be
included in the extracts.

Although the data contained in the OLTP system are
broad, the sales and marketing organization would like
to focus on the sales data only. After substantial analy-
sis, the ERD shown in Figure 9-26 was developed to
describe the data to be used to populate the data mart.

From this ERD, we get the set of relations shown in
Figure 9-27. Sales and marketing is interested in view-
ing all sales data by territory, effective date, type of pol-
icy, and face value. In addition, the data mart should be
able to provide reporting by individual agent on sales
as well as commissions earned. Occasionally, the sales
territories are revised (i.e., zip codes are added or
deleted). The Last Redistrict attribute of the Territory
table is used to store the date of the last revision. Some
sample queries and reports are listed here:
• Total sales per month, by territory, by type of policy
• Total sales per quarter by territory, by type of policy
• Total sales per month by agent, by type of policy
• Total sales per month by agent, by zip code
• Total face value of policies, by month of effective date
• Total face value of policies by month of effective date,

by agent
• Total face value of policies, by quarter of effective date
• Total number of policies in force, by agent
• Total number of policies not in force, by agent
• Total face value of all policies sold by an individ-

ual agent
• Total initial commission paid on all policies to an agent

Data for this data mart come from an enterprise data ware-
house, but there are many systems of record that feed this
data to the data warehouse. The only fact that is to be
recorded in the fact table is Dollar Sales.
a. Design a typical multidimensional schema to represent

this data mart.
b. Among the various dimensions that change is Customer

information. In particular, over time, customers may
change their location and size. Redesign your answer to
part a to accommodate keeping the history of these
changes so that the history of DollarSales can be
matched with the precise customer characteristics at the
time of the sales.

Problems 13 through 18 are based upon the Fitchwood Insurance
Company case study, which is described next.

Fitchwood Insurance Company, which is primarily
involved in the sale of annuity products, would like to
design a data mart for its sales and marketing organiza-
tion. Presently, the OLTP system is a legacy system

Salesperson Attributes: SalespersonID, Years with PVFC,
SalespersonName, and SupervisorRating.

Product Attributes: ProductID, Category, Weight,
and YearReleasedToMarket.

Customer Attributes: CustomerID, CustomerName,
CustomerSize, and Location. Location is
also a hierarchy over which they want to be
able to aggregate data. Each Location has
attributes LocationID, AverageIncome,
PopulationSize, and NumberOfRetailers.
For any given customer, there is an arbitrary
number of levels in the Location hierarchy.

Period Attributes: DayID, FullDate, WeekdayFlag,
and LastDay of MonthFlag.

CUSTOMER

Sells_In

CustomerID
CustomerName
{Address
 (Street, City,
 State, Zipcode)}

AGENT
AgentID
AgentName
DateofHire

TERRITORY
TerritoryID
LastRedistrict
{Zipcode}

POLICY
PolicyNo
Type
FaceValue
InitComm
InForce
Commission
EffectiveDate

FIGURE 9-26 Fitchwood
Insurance Company ERD

424 Part IV • Implementation

FK

Territory

TerritoryRegion (this was derived from the Zipcode multivalued attribute. Some additional fields have been
added, which can be derived from U.S. Census data)

LastRedistrict

Customer

AddressID

CustomerAddress

CustomerID Street City State Zipcode

PolicyNo

Policies (InForce means a policy has not lapsed due to nopayment of premium. InitComm is the initial commission)

AgentID CustomerID Type InForce EffectiveDate FaceValue InitComm Commission

TerritoryID

TerritoryID Zipcode MedianIncome PopulationDensity MedianAge

CustomerID Name

FK

FK to
Customer

FK to
Customer

FK to
Agent

AgentID

Agent

Name DateofHire TerritoryID

FIGURE 9-27 Relations for Fitchwood Insurance Company

• Total initial commission paid on policies sold in a
given month by agent

• Total commissions earned by month, by agent
• Top-selling agent by territory, by month
Commissions are paid to an agent upon the initial sale
of a policy. The InitComm field of the policy table con-
tains the percentage of the face value paid as an initial
commission. The Commission field contains a percent-
age that is paid each month as long as a policy remains
active or in force. Each month, commissions are calcu-
lated by computing the sum of the commission on each
individual policy that is in force for an agent.

13. Create a star schema for this case study. How did you handle
the time dimension?

14. Would you prefer to normalize (snowflake) the star schema
of your answer to Problem and Exercise 13? If so, how and
why? Redesign the star schema to accommodate your rec-
ommended changes.

15. Agents change territories over time. If necessary, redesign
your answer to Problem and Exercise 14 to handle this
changing dimensional data.

16. Customers may have relationships with one another
(e.g., spouses, parents and children). Redesign your answer to
Problem and Exercise 15 to accommodate these relationships.

17. Management would like to use the data mart for drill-down
online reporting. For example, a sales manager might want
to view a report of total sales for an agent by month and
then drill down into the individual types of policies to see
how sales are broken down by type of policy. What type of
tool would you recommend for this? What additional
tables, other than those required by the tool for administra-
tion, might need to be added to the data mart?

18. Do you see any opportunities for data mining using the
Fitchwood data mart? Research data-mining tools and
recommend one or two for use with the data mart.

Problems and Exercises 19 through 26 deal with the Sales Analysis
Module data mart available on Teradata Student Network (www.
teradatastudentnetwork.com). To use Teradata Student Network,
you will need to obtain the current TSN password from your
instructor. Go to the Assignments section of Teradata Student
Network or the this textbook's Website to find the document
“MDBM 10e SAM Assignment Instructions” in order to prepare to
do the following Problems and Exercises. When requested, use
course password MDBM10e to set up your SQL Assistant account.

19. Review the metadata file for the db_samwh database
and the definitions of the database tables. (You can use
SHOW TABLE commands to display the DDL for tables.)

www.teradatastudentnetwork.com
www.teradatastudentnetwork.com

Chapter 9 • Data Warehousing 425

Explain the methods used in this database for modeling
hierarchies. Are hierarchies modeled as described in this
chapter?

20. Review the metadata file for the db_samwh database and
the definitions of the database tables. (You can use SHOW
TABLE commands to display the DDL for tables.) Explain
what dimension data, if any, are maintained to support
slowly changing dimensions. If there are slowly changing
dimension data, are they maintained as described in this
chapter?

21. Review the metadata file for the db_samwh database and
the definitions of the database tables. (You can use SHOW
TABLE commands to display the DDL for tables.) Are
dimension table conformed in this data mart? Explain.

22. The database you are using was developed by
MicroStrategy, a leading business intelligence software ven-
dor. The MicroStrategy software is also available on TSN.
Most business intelligence tools generate SQL to retrieve
the data they need to produce the reports and charts and
to run the models users want. Go to the Apply & Do area
on the Teradata Student Network main screen and select
MicroStrategy, then select MicroStrategy Application
Modules, and then the Sales Force Analysis Module. Then
make the following selections: Shared Reports ➔ Sales
Performance Analysis ➔ Quarterly Revenue Trend by Sales
Region ➔ 2005 ➔ Run Report. Go to the File menu and
select the Report Details option. You will then see the SQL
statement that was used, along with some MicroStrategy
functionality, to produce the chart in the report. Cut and
paste this SQL code into SQL Assistant and run this query in
SQL Assistant. (You may want to save the code as an inter-
mediate step to a Word file so you don’t lose it.) Produce a
file with the code and the SQL Assistant query result
(answer set) for your instructor. You have now done what is
called screen scrapping the SQL. This is often necessary to
create data for analysis that is beyond the capabilities of a
business intelligence package.

23. Take the query you scrapped from Problem and Exercise 22
and modify it to show only the U.S. region grouped by
each quarter, not just for 2005 but for all years available, in
order by quarter. Label the total orders by quarter with the

heading TOTAL and the region ID simply as ID in the result.
Produce a file with the revised SQL code and the answer set
for your instructor.

24. Using the MDIFF “ordered analytical function” in Teradata
SQL (see the Functions and Operators manual), show
the differences (label the difference CHANGE) in TOTAL
(which you calculated in the previous Problem and Exercise)
from quarter to quarter. Hint: You will likely create a
derived table based on your query above, similar to what
is shown in examples in the Functions and Operators
manual; when you do so, you will need to give the derived
table an alias name and then use that alias name in the
outer select statement when you ask to display the results
of the query. Save your query and answer set to a file to
give your instructor. (By the way, MDIFF is not standard
SQL; this is an analytical SQL function proprietary to
Teradata.)

25. Because data warehouses and even data marts can become
very large, it may be sufficient to work with a subset of data
for some analyses. Create a sample of orders from 2004
using the SAMPLE SQL command (which is standard SQL);
put a randomized allocation of 10% of the rows into the sam-
ple. Include in the sample results the order ID, product ID,
sales rep region ID, month description, and order amount.
Show the results, in sequence, by month. Run the query
two times to check that the sample is actually random. Put
your SQL query and a portion of the two answer sets
(enough to show that they are different) into a file for your
instructor.

26. GROUP BY by itself creates subtotals by category, and the
ROLLUP extension to GROUP BY creates even more cate-
gories for subtotals. Using all the orders, do a rollup to get
total order amounts by product, sales region, and month
and all combinations, including a grand total. Display the
results sorted by product, region, and month. Put your
query and the first portion of the answer set, including all of
product 1 and a few rows for product 2, into a file for your
instructor. Also, do a regular GROUP BY and put this query
and the similar results from it into the file and then place an
explanation in the file of how GROUP BY and GROUP BY
with ROLLUP are different.

Field Exercises

1. Visit an organization that has developed a data warehouse
and interview the data administrator or other key partici-
pant. Discuss the following issues:
a. How satisfied are users with the data warehouse?

In what ways has it improved their decision making?
b. Does the warehouse employ a three-tier architecture?
c. Does the architecture employ one or more data marts?

If so, are they dependent or independent?
d. What end-user tools are employed? Is data mining

used?
e. What were the main obstacles or difficulties overcome

in developing the data warehouse environment?
2. Visit the following Web sites. Browse these sites for addi-

tional information on data warehouse topics, including case
examples of warehouse implementations, descriptions of

the latest warehouse-related products, and announcements
of conferences and other events.
a. The Data Warehousing Institute: www.tdwi.org
b. Knowledge Discovery Mine: www.kdnuggets.com
c. Data Mining Institute: www.datamining.org
d. An electronic data warehousing journal: www.tdan

.com
3. Visit www.teradatastudentnetwork.com and use the vari-

ous business intelligence software products available on
this site. Compare the different products, based on the
types of business intelligence problems for which they
are most appropriate. Also, search the content of this Web
site for articles, case studies, podcasts, training materials,
and other items related to data warehousing. Select one item,
study it, and write an executive briefing on its contents.

www.tdwi.org
www.kdnuggets.com
www.datamining.org
www.tdan.com
www.tdan.com
www.teradatastudentnetwork.com

426 Part IV • Implementation

Further Reading

Gallo, J. 2002. “Operations and Maintenance in a Data Warehouse
Environment.” DM Review 12,12 (2003 Resource Guide):
12–16.

Goodhue, D., M. Mybo, and L. Kirsch. 1992. “The Impact of
Data Integration on the Costs and Benefits of Information
Systems.” MIS Quarterly 16,3 (September): 293–311.

Jenks, B. 1997. “Tiered Data Warehouse.” DM Review 7,10
(October): 54–57.

Mundy, J., W. Thornthwaite, and R. Kimball. 2006. The
Microsoft Data Warehouse Toolkit: With SQL Server 2005
and the Microsoft Business Intelligence Toolset. Hoboken,
NJ: Wiley.

Web Resources
www.teradata.com/tdmo Web site of Teradata magazine, which

contains articles on the technology and application of the
Teradata data warehouse system. (This magazine recently
changed its name. Articles under the magazine’s new and
previous names can be found at www.teradatamagazine
.com.)

www.dmreview.com Web site of DM Review, a monthly trade
magazine that contains articles and columns about data
warehousing.

www.tdan.com An electronic journal on data warehousing.
http://www.inmoncif.com/home/ Web site of Bill Inmon, a lead-

ing authority on data management and data warehousing.

References

Armstrong, R. 1997. “A Rebuttal to the Dimensional Modeling
Manifesto.” A white paper produced by NCR Corporation.

Armstrong, R. 2000. “Avoiding Data Mart Traps.” Teradata
Review (Summer): 32–37.

Chisholm, M. 2000. “A New Understanding of Reference Data.”
DM Review 10,10 (October): 60, 84–85.

Devlin, B., and P. Murphy. 1988. “An Architecture for a Business
Information System.” IBM Systems Journal 27,1 (March): 60–80.

Dyché, J. 2000. e-Data: Turning Data into Information with Data
Warehousing. Reading, MA: Addison-Wesley.

Hackathorn, R. 1993. Enterprise Database Connectivity. New
York: Wiley.

Hackathorn, R. 2002. “Current Practices in Active Data
Warehousing,” available at www.teradata.com under
White Papers.

Hays, C. 2004. “What They Know About You.” New York Times.
November 14: section 3, page 1.

Imhoff, C. 1998. “The Operational Data Store: Hammering
Away.” DM Review 8,7 (July) available at www.dmreview.
com/article_sub.cfm?articleID=470.

Imhoff, C. 1999. “The Corporate Information Factory.” DM
Review 9,12 (December), available at www.dmreview.
com/article_sub.cfm?articleID=1667.

Inmon, B. 1997. “Iterative Development in the Data
Warehouse.” DM Review 7,11 (November): 16, 17.

Inmon, W. 1998. “The Operational Data Store: Designing
the Operational Data Store.” DM Review 8,7 (July),
available at www.dmreview.com/article_sub.cfm?
articleID=469.

Inmon, W. 1999. “What Happens When You Have Built the Data
Mart First?” TDAN accessed at www.tdan.com/i012fe02.
htm (no longer available as of June, 2009).

Inmon, W. 2000. “The Problem with Dimensional Modeling.”
DM Review 10,5 (May): 68–70.

Inmon, W. 2006. “Granularity of Data: Lowest Level of
Usefulness.” B-Eye Network (December 14) available at
www.b-eye-network.com/view/3276.

Inmon, W., and R. D. Hackathorn. 1994. Using the Data Warehouse.
New York: Wiley.

Kimball, R. 1996a. The Data Warehouse Toolkit. New York: Wiley.

Kimball, R. 1996b. “Slowly Changing Dimensions.” DBMS 9,4
(April): 18–20.

Kimball, R. 1997. “A Dimensional Modeling Manifesto.” DBMS
10,9 (August): 59.

Kimball, R. 1998a. “Pipelining Your Surrogates.” DBMS 11,6
(June): 18–22.

Kimball, R. 1998b. “Help for Hierarchies.” DBMS 11,9
(September) 12–16.

Kimball, R. 1999. “When a Slowly Changing Dimension Speeds
Up.” Intelligent Enterprise 2,8 (August 3): 60–62.

Kimball, R. 2001. “Declaring the Grain.” from Kimball University,
Design Tip 21, available at www.ralphkimball.com.

Kimball, R. 2002. “What Changed?” Intelligent Enterprise 5,8
(August 12): 22, 24, 52.

Kimball, R. 2006. “Adding a Row Change Reason Attribute.”
from Kimball University, Design Tip 80, available at
www.ralphkimball.com.

Marco, D. 2000. Building and Managing the Meta Data Repository:
A Full Life-Cycle Guide. New York: Wiley.

Marco, D. 2003. “Independent Data Marts: Stranded on Islands
of Data, Part 1.” DM Review 13,4 (April): 30, 32, 63.

Meyer, A. 1997. “The Case for Dependent Data Marts.” DM
Review 7,7 (July–August): 17–24.

Mundy, J. 2001. “Smarter Data Warehouses.” Intelligent Enterprise
4,2 (February 16): 24–29.

Poe, V. 1996. Building a Data Warehouse for Decision Support.
Upper Saddle River, NJ: Prentice Hall.

Ross, M. 2009. “Kimball University: The 10 Essential Rules of
Dimensional Modeling.” (May 29), available at www.
intelligententerprise.com/showArticle.jhtml?articleID=2
17700810.

TDWI. 2006. “What Works: Best Practice Awards 2006.”
(November), available at www.tdwi.org/Publications/
WhatWorks/display.aspx?id=8209.

Turban, E., R. Sharda, J. Aronson, and D. King 2008. Business
Intelligence. Upper Saddle River, NJ: Prentice Hall.

Weldon, J. L. 1996. “Data Mining and Visualization.” Database
Programming & Design 9,5 (May): 21–24.

Whiting, R. 2003. “The Data-Warehouse Advantage.”
InformationWeek 648 (July 28): 63–66.

www.teradata.com/tdmo
www.teradatamagazine.com
www.teradatamagazine.com
www.dmreview.com
www.tdan.com
http://www.inmoncif.com/home/
www.teradata.com
www.dmreview.com/article_sub.cfm?articleID=470
www.dmreview.com/article_sub.cfm?articleID=470
www.dmreview.com/article_sub.cfm?articleID=1667
www.dmreview.com/article_sub.cfm?articleID=1667
www.dmreview.com/article_sub.cfm?articleID=469
www.tdan.com/i012fe02.htm
www.b-eye-network.com/view/3276
www.ralphkimball.com
www.ralphkimball.com
www.intelligententerprise.com/showArticle.jhtml?articleID=217700810
www.intelligententerprise.com/showArticle.jhtml?articleID=217700810
www.tdwi.org/Publications/WhatWorks/display.aspx?id=8209
www.tdwi.org/Publications/WhatWorks/display.aspx?id=8209
www.dmreview.com/article_sub.cfm?articleID=469
www.intelligententerprise.com/showArticle.jhtml?articleID=217700810
www.tdan.com/i012fe02.htm

Chapter 9 • Data Warehousing 427

www.ralphkimball.com Web site of Ralph Kimball, a leading
authority on data warehousing.

www.tdwi.org Web site of The Data Warehousing Institute, an
industry group that focuses on data warehousing meth-
ods and applications.

www.datawarehousing.org The Data Warehousing Knowledge
Center, which contains links to many vendors.

www.olapreport.com Web site that provides detailed informa-
tion about OLAP products and applications.

www.information-quality.com Web site for Larry English, one
of the leaders in data quality management.

www.teradatastudentnetwork.com A portal to resources for
databases, data warehousing, and business intelligence.
Data sets from this textbook are stored on the software
site, from which you can use SQL, data mining, dimen-
sional modeling, and other tools. Also, some very large
data warehouse databases are available through this site
to resources at the University of Arkansas. New articles
and Webinars are added to this site all the time, so visit it
frequently or subscribe to its RSS feed service to know
when new materials are added. You will need to obtain a
password to this site from your instructor.

www.ralphkimball.com
www.tdwi.org
www.datawarehousing.org
www.olapreport.com
www.information-quality.com
www.teradatastudentnetwork.com

428 Part IV • Implementation

CASE
Mountain View Community Hospital

Case Description

In most respects, Mountain View Community Hospital (MVCH)
has followed a carefully planned approach to designing, select-
ing, and installing its information systems. The organization
developed an enterprise data model to guide its database
development (Chapters 2–7). The hospital installed computer
systems to support most of the routine operations in the organ-
ization. For example, there are systems for patient accounting,
administrative services, and financial management. Many
systems were acquired from outside vendors after a careful
selection process.

Despite this careful planning, management is aware that
there are some deficiencies and limitations in the present hospital
information systems. In addition to the challenge of interfacing
systems in MVCH’s heterogeneous environment of platforms
and applications, two further problems have been noted:

1. Data are often duplicated in different files and databases,
in different formats, and even in different media. For
example, one set of patient data (used for billing pur-
poses) resides in a patient accounting system based on a
relational database. On the other hand, many patient
medical records are maintained in a manual system (one
folder per patient), or other applications, such as Dr. Z’s
MS management system.

2. The systems are designed primarily to support opera-
tional (or transaction) processing but are not generally
well suited to providing management information or to
support analytical studies that are increasingly required
for modern hospital management.

Management feels that these problems must be addressed,
and that better and more centralized access to the hospital’s
operational, financial, and clinical information is a strategic
necessity for two reasons. First, like many other hospitals,
MVCH is being driven by the trend to managed care and the
resulting need to contain costs while maintaining or improving
clinical outcomes. As a consequence, MVCH must closely track
and analyze its clinical and financial data related to patient care
services and provide that data to its administrative and clinical
decision makers in a timely fashion. Second, Sarbanes-Oxley is
beginning to have an impact. MVCH, as a not-for-profit organi-
zation, is not a covered entity under SOX. However, both
Mr. Lopez, MVCH’s CFO, and Ms. Baker, the hospital’s CEO,
have come under pressure from board members from the corpo-
rate world to certify the accuracy of financial statements, certify
the accuracy of the hospital’s annual information return filed
with the IRS, and provide timely reports. As a result, both
Mr. Lopez and Ms. Baker have begun to demand more timely
access to financial data for decision making, business intelli-
gence, and financial reporting. The board of directors is also
asking that reports include trend information and graphic pre-
sentations. In light of these issues, management wishes to inves-
tigate whether the techniques of data warehousing might be
successfully applied in their organization.

A typical hospital data warehouse often contains four
types of data: patient records; doctor, clinic, and hospital

records; drug and pharmaceutical company records; and HMO
and insurance company records. However, the small size of the
hospital may not justify a large-scale data warehouse develop-
ment project. Instead, several smaller data marts may be more
feasible. After some investigation, MVCH plans to test the con-
cept with two small prototype data marts:

1. A data mart that will record summary information
regarding tests and procedures performed by physicians
at the hospital.

2. A more detailed data mart that will record the details of
tests and procedures performed by physicians for indi-
vidual patients.

Case Questions

1. What are some of the advantages that a hospital such as
MVCH might realize from a data warehouse and/or data
mart(s)? How can a data warehouse/ data mart help with
improving the following?
• Operational efficiency
• Treatment efficiency
• Clinical outcomes
• Patient safety
• Clinical research

2. How could a data mart be used to improve the quality of
emergency room care?

3. Should MVCH consider developing data marts (such as
those proposed) without an established data warehouse?
What are the risks associated with that approach? Do you
think that an organization can develop a prototype data
mart to investigate “proof of concept” without an estab-
lished data warehouse? Discuss some of the likely advan-
tages and disadvantages of this approach.

4. How would you address concerns about security and
HIPAA’s privacy mandates that prohibit unauthorized use
of patient-identifiable information?

5. If MVCH were to develop a data mart, do you think that
OLAP tools should be used? If yes, which type (OLAP,
ROLAP, or MOLAP)?

6. What types of data-mining operations could be used
(e.g., predictive modeling, cluster analysis, etc.)? For what
purposes?

7. The case segment mentions the Sarbanes-Oxley Act
(described in Chapter 5). How can a data warehouse or
data mart help Ms. Baker and Mr. Lopez respond to pres-
sures from the board of directors for the following:
a. Ensuring the accuracy of financial data
b. Providing reports in a timely manner
c. Providing reports that include trend information and

graphic presentations

Case Exercises

1. MVCH Table 9-1 provides some details regarding the two
data marts MVCH is considering.
a. Design a star schema for each data mart.
b. Calculate the expected number of rows in each fact table

and its estimated size (bytes).

Chapter 9 • Data Warehousing 429

c. For the detailed data mart, why is it necessary to assume
that a given treatment may be performed only once by a
given physician for a given patient on a given day?
Suggest a way to overcome this.

d. Would you recommend that MVCH implement both data
marts? Why or why not? If yes, then what should MVCH
do to ensure consistency across the two data marts?

e. Using SQL, create two star queries for each of the
data marts.

2. After hearing about the data mart prototypes, Dr. Jefferson,
chief of surgery, expresses an interest in a surgery data
mart. Some of the reports he wishes to receive include the
number of surgeries, by surgeon; the number of inpatient
and outpatient surgeries per week and per month; the
number of canceled surgeries, by reason, surgeon, and
month; surgeries per week, operating room (MVCH has a
suite of six operating rooms), and surgeon; mortality rates
by surgeon; average surgery time, by type of surgery;

MVCH TABLE 9-1 MVCH Prototype Data Mart Details

Summary Data Mart Detailed Data Mart

Physician dimension PhysicianID (pk): 5 bytes Same as summary data mart

PhysicianName: 10 bytes

Specialty: 5 bytes

PhysicianAddress: 10 bytes

PhysicianTelephone: 5 bytes

Treatment dimension TreatmentID (pk): 3 bytes Same as summary data mart

TreatmentDescription: 6 bytes

Period dimension PeriodID (pk): 2 bytes PeriodID (pk): 3 bytes

Month: 1 byte Date: 5 bytes

Year: 2 bytes

Patient dimension none PatientID (pk): 5 bytes

PatientName: 10 bytes

PatientAddress: 10 bytes

PatientTelephone: 5 bytes

Treatment (fact) table Grain: Monthly summary of treatments and
average treatment costs, by physician
and treatment

Grain: Detail for each treatment occurrence
administered to a patient by a physician

MonthlyTotal: 3 bytes TreatmentCost: 4 bytes

AverageCost: 5 bytes TreatmentResult: 20 bytes

Assumptions • Treatments: Approximately 500 different
treatments are performed at the hospital.
During a typical month, approximately
30 percent (or 150 different treatments)
are performed.

• Treatments: An average of 200 total treatments
are performed for patients on a given day
(this is based on an average patient census
of 200, and an average of 2 treatments per
patient per day).

• Physicians: Each treatment is performed by
one physician.

• Patients: Each treatment is performed for
one patient. To simplify matters, assume that
a given treatment may only be performed once
by a given physician and for a particular patient
on a given day.

• Periods: If a full-scale data mart is developed,
it is anticipated that 36 periods (or 3 years) of
data will be accumulated.

• Physicians: Each treatment is performed by
one physician.

• Periods: If a full-scale data mart is developed,
it is anticipated that approximately 1,000 days
(nearly 3 years) of data will be collected.

430 Part IV • Implementation

average surgery time, by OR; and number of negative
patient reactions to blood transfusions by surgeon and by
patient gender and age. Dr. Jefferson also wishes to ana-
lyze surgeries in terms of the duration of anesthesia, total
time in the operating room, and amount of time in the
operating room before the start and after the end of the
surgery. He wants to be able to slice and dice the surgery
data by diagnosis, patient age, gender, insurance com-
pany, acuity code (patient acuity at MVCH is rated on a
five-point scale, with 1 reflecting the highest acuity and 5
the lowest acuity), operating room, and surgeon.

Given this information, you have the following tasks:
a. Identify the dimensions and facts for this data mart.
b. Create the star schema.
c. Use SQL to create three queries that satisfy some of

Dr. Jefferson’s information requirements.
d. Develop a business case for this data mart.

3. Identify dimensions and facts for two other possible data
marts at MVCH: an emergency room data mart and a data
mart for Dr. Z’s MS Center. Use Microsoft Visio (or a simi-
lar tool) to draw the star schema.

Chapter 10
Data Quality and
Integration

Chapter 11
Data and Database
Administration

Chapter 12
Overview: Distributed
Databases

Chapter 13
Overview:
Object-Oriented
Data Modeling

Chapter 14
Overview: Using
Relational Databases
to Provide Object
Persistence

V
AN OVERVIEW OF PART FIVE

Parts II through IV have prepared you to develop useful and efficient databases.
Part V introduces some additional important database design and management
issues. These issues include preserving data quality (including complying with reg-
ulations for accuracy of data reporting) and integrating across decentralized orga-
nizational databases (Chapter 10); database security, backup, recovery, and
control of concurrent access to data, and advanced topics in database perform-
ance tuning (Chapter 11); distributed databases (Chapter 12) and object-oriented
databases (Chapter 13); and using relational databases with object-oriented sys-
tems development environments (Chapter 14). Chapters 10 and 11 are included in
their entirety in the printed text; full versions of Chapters 12 through 14 are
included on the textbook’s Web site, and summaries of these chapters are included
in the printed text. Following Part V are three appendices, covering alternative E-R
notations (Appendix A, complementing Chapters 2 and 3), advanced normal forms
(Appendix B, supplementing Chapter 4), and data structures (Appendix C, supple-
menting Chapter 5).

Modern organizations are quickly realizing that one of their most prized
assets is data and that effectively governing and managing data across an enter-
prise can be a potential source of competitive advantage. Chapter 10 (“Data
Quality and Integration”) focuses on key topics that are critical to enterprise
data management: data governance, data quality, master data management, and
data integration. Today data quality has become a major organizational issue for
two reasons: Data quality is poor in many organizations, and new U.S. and interna-
tional regulations impose criminal penalties for reporting erroneous financial and
health data. Although data quality has been a theme throughout this book,
Chapter 10 gives special attention to processes organizations can use (including
data stewardship and governance) to systematically deal with data quality.
Another major issue for data management is providing consistent and transparent
access for users to data from multiple databases. Data warehousing, covered in the
last chapter of Part IV, is one approach to achieving this goal. Other data integra-
tion strategies are outlined in Chapter 10. Data quality is a special concern when
integrating disparate data sources.

You are likely to conclude from reading this text that data are corporate
resources that are too valuable to be managed casually. In Chapter 11 (“Data and
Database Administration”), you will learn about the roles of the following:

• A data administrator—a person who takes overall responsibility for data,
metadata, and policies about data use

P A R T

Advanced Database Topics

432 Part V • Advanced Database Topics

• A database administrator—a person who is responsible for physical database
design and for dealing with the technical issues—such as security enforce-
ment, database performance, and backup and recovery—associated with
managing a database

Specialized data and database administrator roles for Web-based data warehouses
and mobile systems are also defined in Chapter 11. Finally, in Chapter 11 you will
learn about the challenges in managing security of data in a database and tech-
niques that are available to help overcome these challenges. You will learn about
views, integrity controls, authorization rules, encryption, and authentication—all
key mechanisms to help manage data security. You will also understand the role of
databases in Sarbanes-Oxley compliance, a hot topic in publicly traded companies
in the United States. Finally, you will learn about open source DBMSs, concurrency
control, deadlock, information repositories, locking, database recovery and backup,
system catalogs, transactions, and versioning—all core topics today for managing
data resources.

In larger organizations, a database may be distributed across multiple com-
puters and locations. Special issues arise when an organization tries to manage
distributed data as one database rather than as many decentralized, separate data-
bases. In Chapter 12 (“Distributed Databases”), you learn about homogeneous and
heterogeneous distributed databases, the objectives and trade-offs for distributed
databases, and several alternative architectures for such databases. You learn
about the important concepts of data replication and partitioning and how to syn-
chronize multiple instances of the same data across a distributed database. You
also study the special features of a distributed DBMS, including distributed transac-
tion controls (such as commit protocols). There is a review of the evolution of dis-
tributed DBMSs and of the range of distributed DBMS products.

Chapter 13 (“Object-Oriented Data Modeling”) introduces an alternative to
E-R modeling. Object-oriented models of data and other system aspects are becom-
ing increasingly popular because of their ability to represent complex ideas using
highly related modeling notations. This chapter uses the Unified Modeling
Language (UML), a standard in this field, particularly focusing on one of the static
diagrams, the class diagram. In UML, an object is an entity that has three properties:
state, behavior, and identity. The behavior of an object is determined by one or
more operations that are encapsulated in the object. Associations, generalization,
inheritance, and polymorphism are important concepts. This chapter presents an
object-oriented version (in the form of a class diagram) of the Pine Valley Furniture
Company case from Chapter 2.

Chapter 14 (“Using Relational Databases to Provide Object Persistence”)
addresses issues related to making relational databases, still the standard for orga-
nizational database management systems, available as a data repository for object-
oriented systems development environments. This is necessary because true
object-oriented DBMSs have never become mainstream, yet the object-oriented
development approach and the relational data model are not directly compatible.
This chapter addresses the mismatches between the relational and object-oriented
models of data and systems and different approaches to dealing with the mis-
matches when building information systems using Java EE, .NET, and other object-
oriented development environments. Several object-relational technologies are
discussed and illustrated (including JDBC), with in-depth examples of Hibernate,
one of the most common object-relational mapping frameworks.

433

Data Quality and Integration

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: data governance, data steward,
master data management (MDM), changed data capture (CDC), data federation,
static extract, incremental extract, data scrubbing, refresh mode, update mode,
data transformation, selection, joining, and aggregation.

� Describe the importance of data governance and identify key goals of a data
governance program.

� Describe the importance of data quality and list several measures to improve quality.
� Define the characteristics of quality data.
� Describe the reasons for poor-quality data in organizations.
� Describe a program for improving data quality in organizations, including data

stewardship.
� Describe the purpose and role of master data management.
� Describe the three types of data integration approaches.
� Describe the four steps and activities of the ETL process for data integration for a

data warehouse.
� Explain the various forms of data transformations needed to prepare data for a

data warehouse.

INTRODUCTION

Quality data are the foundation for all of information processing and are essential
for well-run organizations. Consider the following:

This past February [2001], a war of words erupted between shoe and
apparel manufacturer Nike Inc. and i2 Technologies, the software developer
that provided Nike with a new demand and supply inventory system. Nike
cited order problems that led to expensive manufacturing problems during
deployment of the new system.

For example, some shoe orders were placed twice, once each in the old
and new systems, while the new system allowed other orders to fall
through the cracks. This resulted in overproduction of some models and
underproduction of others. Nike was even forced to make some shoes at
the last minute and ship them via air to meet buyers’ deadlines.

C H A P T E R

10

434 Part V • Advanced Database Topics

Ultimately Nike blames these system problems for a $80 million to
$100 million cut in third-quarter sales that caused the company to miss
earnings estimates by as much as 13 cents. The day that Nike announced
this, its stock price dropped 25 percent in value from $49.17 to $38.80. On
the other side, i2’s senior management claimed that their software was not
responsible for Nike’s shortfalls. (Loshin, 2001)

We have addressed data quality throughout this book, from designing data
models that accurately represent the rules by which an organization operates, to
including data integrity controls in database definitions, to data security and
backup procedures that protect data from loss and contamination. However, with
the increased emphasis on accuracy in financial reporting, the burgeoning supply
of data inside and outside an organization, and the need to integrate data from
disparate data sources for business intelligence, data quality deserves special
attention by all database professionals.

Quality data is in the eye of the beholder. Data may be of high quality within
one information system, meeting the standards of users of that system. But when
users look beyond their system to match, say, their customer data with customer
data from other systems, the quality of data can be called into question. Thus,
data quality is but one component of a set of highly related enterprise data
management topics that also includes data governance, master data management,
and data integration.

This chapter on data quality and integration reviews the major issues related to
the four topics identified above. First, we present an overview of data governance
and how it lays the foundation for enterprise-wide data management activities.
We then review why data quality is important and how to measure data quality,
using seven important characteristics of quality data: identity uniqueness, accuracy,
consistency, completeness, timeliness, currency, conformance, and referential
integrity. Next, we explain why many organizations have difficulty achieving high-
quality data, and then we review a program for data quality improvement that can
overcome these difficulties. Part of this program involves creating new organizational
roles of data stewards and organizational oversight for data quality via a data
governance process. We then examine the topic of master data management and its
role as a critical asset in enabling sharing of data across applications.

Managers and executives increasingly need data from many data systems
and require this data in a consistent and consolidated way that makes the data
appear to come from one database. Data integration methods of consolidation,
federation, and propagation, along with master data management, make this
possible. Data warehousing (see Chapter 9), a significant data management
approach used to support decision making and business intelligence, often uses
one consolidation approach called extract–transform–load (ETL); we explain ETL in
detail in this chapter. First, the four major steps of ETL—mapping source to target
and metadata management, extract, load, and finally transformation—are
explained. The chapter illustrates the two types of extracts: static and incremental.
Data cleansing is the ETL step most related to achieving quality data from the
perspective of the data warehouse, so the chapter explains special data quality
concerns for data warehousing. Then different types of data transformations are
reviewed at the record and field levels. Finally, we introduce a few selected tools to
assist in ETL.

DATA GOVERNANCE

Data governance is a set of processes and procedures aimed at managing the data
within an organization with an eye toward high-level objectives such as availability,
integrity, and compliance with regulations. Data governance oversees data access poli-
cies by measuring risk and security exposures (Leon, 2007). Data governance provides a
mandate for dealing with data issues. According to a TDWI 2005 (Russom, 2006) survey,
only about 25 to 28 percent of organizations (depending on how the question was
asked) have a data governance approach. Certainly, broad-based data governance

Data governance
High-level organizational groups
and processes that oversee data
stewardship across the
organization. It usually guides
data quality initiatives, data
architecture, data integration and
master data management, data
warehousing and business
intelligence, and other data-related
matters.

Chapter 10 • Data Quality and Integration 435

programs are still emerging. Data governance is a function that has to be jointly owned
by IT and the business. Successful data governance will require support from upper
management in the firm. A key role in enabling success of data governance in an organ-
ization is that of a data steward.

The Sarbanes-Oxley Act of 2002 has made it imperative that organizations under-
take actions to ensure data accuracy, timeliness, and consistency (Laurent, 2005).
Although not mandated by regulations, many organizations require the CIO as well as
the CEO and CFO to sign off on financial statements, recognizing the role of IT in build-
ing procedures to ensure data quality. Establishment of a business information advisory
committee consisting of representatives from each major business unit who have the
authority to make business policy decisions can contribute to the establishment of high
data quality (Carlson, 2002; Moriarty, 1996). These committee members act as liaisons
between IT and their business unit and consider not only their functional unit’s data
needs but also enterprise-wide data needs. The members are subject matter experts for
the data they steward and hence need to have a strong interest in managing information
as a corporate resource, an in-depth understanding of the business of the organization,
and good negotiation skills. Such members (typically high-level managers) are some-
times referred to as data stewards, people who have the responsibility to ensure that
organizational applications properly support the organization’s enterprise goals.

A data governance program needs to include the following:

• Sponsorship from both senior management and business units
• A data steward manager to support, train, and coordinate the data stewards
• Data stewards for different business units, data subjects, source systems, or com-

binations of these elements
• A governance committee, headed by one person, but composed of data steward

managers, executives and senior vice presidents, IT leadership (e.g., data adminis-
trators), and other business leaders, to set strategic goals, coordinate activities,
and provide guidelines and standards for all data management activities

The goals of data governance are transparency—within and outside the organiza-
tion to regulators—and increasing the value of data maintained by the organization.
The data governance committee measures data quality and availability, determines tar-
gets for quality and availability, directs efforts to overcome risks associated with bad or
unsecured data, and reviews the results of data audit processes. Data governance is best
chartered by the most senior leadership in the organization.

Data governance also provides the key guidelines for the key areas of enterprise
data management identified in the introduction section: data quality initiatives, data
architecture, master data management, data integration, data warehousing/business
intelligence, and other data-related matters (Russom, 2006). We have already examined
data warehousing issues in Chapter 9. In the next few sections, we examine the key
issues in each of the other areas.

MANAGING DATA QUALITY

The importance of high-quality data cannot be overstated. According to Brauer (2002):

Critical business decisions and allocation of resources are made based on
what is found in the data. Prices are changed, marketing campaigns created,
customers are communicated with, and daily operations evolve around
whatever data points are churned out by an organization’s various systems.
The data that serves as the foundation of these systems must be good data.
Otherwise we fail before we ever begin. It doesn’t matter how pretty the
screens are, how intuitive the interfaces are, how high the performance rock-
ets, how automated the processes are, how innovative the methodology is,
and how far-reaching the access to the system is, if the data are bad—the systems
fail. Period. And if the systems fail, or at the very least provide inaccurate
information, every process, decision, resource allocation, communication, or
interaction with the system will have a damaging, if not disastrous impact
on the business itself.

Data steward
A person assigned the responsibility
of ensuring that organizational
applications properly support
the organization’s enterprise goals
for data quality.

436 Part V • Advanced Database Topics

This quote is, in essence, a restatement of the old IT adage “garbage-in, garbage-out”
(GIGO), but with increased emphasis on the dramatically high stakes in today’s
environment.

High-quality data—that is, data that are accurate, consistent, and available in a
timely fashion—are essential to the management of organizations today. Organizations
must strive to identify the data that are relevant to their decision making to develop
business policies and practices that ensure the accuracy and completeness of the data,
and to facilitate enterprise-wide data sharing. Managing the quality of data is an organ-
ization-wide responsibility, with data administration (the topic of Chapter 11) often
playing a leading role in planning and coordinating the efforts.

What is your data quality ROI? In this case, we don’t mean return on investment;
rather, we mean risk of incarceration. According to Yugay and Klimchenko (2004), “The
key to achieving SOX (Sarbanes-Oxley) compliance lies within IT, which is ultimately
the single resource capable of responding to the charge to create effective reporting
mechanisms, provide necessary data integration and management systems, ensure data
quality and deliver the required information on time”. Poor data quality can put execu-
tives in jail. Specifically, SOX requires organizations to measure and improve metadata
quality; ensure data security; measure and improve data accessibility and ease of use;
measure and improve data availability, timeliness, and relevance; measure and improve
accuracy, completeness, and understandability of general ledger data; and identify and
eliminate duplicates and data inconsistencies. According to Informatica (2005), a lead-
ing provider of technology for data quality and integration, data quality is important to

• Minimize IT project risk Dirty data can cause delays and extra work on infor-
mation systems projects, especially those that involve reusing data from existing
systems.

• Make timely business decisions The ability to make quick and informed busi-
ness decisions is compromised when managers do not have high-quality data or
when they lack confidence in their data.

• Ensure regulatory compliance Not only is quality data essential for SOX and
Basel II (Europe) compliance, quality data can also help an organization in justice,
intelligence, and antifraud activities.

• Expand the customer base Being able to accurately spell a customer’s name or to
accurately know all aspects of customer activity with your organization will help
in up-selling and cross-selling new business.

Characteristics of Quality Data

What, then, are quality data? Redman (2004) summarizes data quality as “fit for their
intended uses in operations, decision making, and planning.” In other words, this
means that data are free of defects and possess desirable features (relevant, comprehen-
sive, proper level of detail, easy to read, and easy to interpret). Loshin (2006) and
Russom (2006) further delineate the characteristics of quality data:

• Uniqueness Uniqueness means that each entity exists no more than once within
the database, and there is a key that can be used to uniquely access each entity.
This characteristic requires identity matching (finding data about the same
entity) and resolution to locate and remove duplicate entities.

• Accuracy Accuracy has to do with the degree to which any datum correctly rep-
resents the real-life object it models. Often accuracy is measured by agreement
with some recognized authority data source (e.g., one source system or even some
external data provider). Data must be both accurate and precise enough for their
intended use. For example, knowing sales accurately is important, but for many
decisions, knowing sales only to the nearest $1000 per month for each product is
sufficient. Data can be valid (i.e., satisfy a specified domain or range of values)
and not be accurate.

• Consistency Consistency means that values for data in one data set (database)
are in agreement with the values for related data in another data set (database).
Consistency can be within a table row (e.g., the weight of a product should

Chapter 10 • Data Quality and Integration 437

have some relationship to its size and material type), between table rows (e.g., two
products with similar characteristics should have about the same prices, or data
that are meant to be redundant should have the same values), between the same
attributes over time (e.g., the product price should be the same from one month to
the next unless there was a price change event), or within some tolerance (e.g., total
sales computed from orders filled and orders billed should be roughly the same
values). Consistency also relates to attribute inheritance from super- to subtypes.
For example, a subtype instance cannot exist without a corresponding supertype,
and overlap or disjoint subtype rules are enforced.

• Completeness Completeness refers to data having assigned values if they need
to have values. This characteristic encompasses the NOT NULL and foreign key
constraints of SQL, but more complex rules might exist (e.g., male employees do
not need a maiden name but female employees may have a maiden name).
Completeness also means that all data needed are present (e.g., if we want to
know total dollar sales, we may need to know both total quality sold and unit
price, or if an employee record indicates that an employee has retired, we need to
have a retirement date recorded). Sometimes completeness has an aspect of
precedence. For example, an employee in an employee table who does not exist in
an applicant table may indicate a data quality issue.

• Timeliness Timeliness means meeting the expectation for the time between
when data are expected and when they are readily available for use. As organiza-
tions attempt to decrease the latency between when a business activity occurs and
when the organization is able to take action on that activity, timeliness is becoming
a more important quality of data characteristic (i.e., if we don’t know in time to
take action, we don’t have quality data). A related aspect of timeliness is retention,
which is the span of time for which data represent the real world. Some data need
to be time-stamped to indicate from when to when they apply, and missing from
or to dates may indicate a data quality issue.

• Currency Currency is the degree to which data are recent enough to be useful.
For example, we may require that customers’ phone numbers be up-to-date so we
can call them at any time, but the number of employees may not need to be
refreshed in real-time. Varying degrees of currency across data may indicate a
quality issue (e.g., if the salaries of different employees have drastically different
updated dates).

• Conformance Conformance refers to whether data are stored, exchanged, or pre-
sented in a format that is as specified by their metadata. The metadata include
both domain integrity rules (e.g., attribute values come from a valid set or range of
values) and actual format (e.g., specific location of special characters, precise
mixture of text, numbers, and special symbols).

• Referential integrity Data that refer to other data need to be unique and satisfy
requirements to exist (i.e., satisfy any mandatory one or optional one cardinalities).

These are high standards. Quality data requires more than defect correction; it also
requires prevention and reporting. Because data are frequently updated, achieving
quality data requires constant monitoring and measurement as well as improvement
actions. Quality data are also not perfectly achievable nor absolutely necessary in some
situations (there are obvious situations of life and death where perfection is the goal);
“just enough quality” may be the best business decision to trade off costs versus returns.

Table 10-1 lists four important reasons why the quality of data in organizational
databases has deteriorated in the past few years; we describe these reasons in the fol-
lowing sections.

EXTERNAL DATA SOURCES Much of an organization’s data originates outside the
organization, where there is less control over the data sources to comply with expecta-
tions of the receiving organization. For example, a company receives a flood of data via
the Internet from Web forms filled out by users. Such data are often inaccurate or
incomplete, or even purposely wrong. (Have you ever entered a wrong phone number
in a Web-based form because a phone number was required and you didn’t want to

438 Part V • Advanced Database Topics

TABLE 10-1 Reasons for Deteriorated Data Quality

Reason Explanation

External data sources Lack of control over data quality

Redundant data storage and inconsistent
metadata

Proliferation of databases with uncontrolled
redundancy and metadata

Data entry problems Poor data capture controls

Lack of organizational commitment Not recognizing poor data quality as an
organizational issue

divulge your actual phone number?) Other data for B2B transactions arrive via XML
channels, and these data may also contain inaccuracies. Also, organizations often pur-
chase data files or databases from external organizations, and these sources may con-
tain data that are out-of-date, inaccurate, or incompatible with internal data.

REDUNDANT DATA STORAGE AND INCONSISTENT METADATA Many organizations
have allowed the uncontrolled proliferation of spreadsheets, desktop databases, legacy
databases, data marts, data warehouses, and other repositories of data. These data
may be redundant and filled with inconsistencies and incompatibilities. Data can be
wrong because the metadata are wrong (e.g., a wrong formula to aggregate data in a
spreadsheet or an out-of-date data extraction routine to refresh a data mart). Then if
these various databases become sources for integrated systems, the problems can
cascade further.

DATA ENTRY PROBLEMS According to a TDWI survey (Russom, 2006), user interfaces
that do not take advantage of integrity controls—such as automatically filling in data,
providing drop-down selection boxes, and other improvements in data entry control—
are tied for the number-one cause of poor data. And the best place to improve data
entry across all applications is in database definitions, where integrity controls, valid
value tables, and other controls can be documented and enforced.

LACK OF ORGANIZATIONAL COMMITMENT For a variety of reasons, many organiza-
tions simply have not made the commitment or invested the resources to improve their
data quality. Some organizations are simply in denial about having problems with data
quality. Others realize they have a problem but fear that the solution will be too costly
or that they cannot quantify the return on investment. The situation is improving; in a
2001 TDWI survey (Russom, 2006), about 68 percent of respondents reported no plans
or only considering data quality initiatives, but by 2005 this percentage had dropped to
about 58 percent.

Data Quality Improvement

Implementing a successful quality improvement program will require the active com-
mitment and participation of all members of an organization. Following is a brief out-
line of some of the key steps in such a program (see Table 10-2).

GET THE BUSINESS BUY-IN Data quality initiatives need to be viewed as business
imperatives rather than as an IT project. Hence, it is critical that the appropriate level of
executive sponsorship be obtained and that a good business case be made for the
improvement. In addition, it is important to identify and define key performance indi-
cators and metrics that can quantify the results of the improvement efforts.

With the competing demands for resources today, management must be con-
vinced that a data quality program will yield a sufficient ROI (in this case, we do mean
return on investment). Fortunately (or unfortunately), this is not difficult to do in most
organizations today. There are two general types of benefits from such a program: cost
avoidance and avoidance of opportunity losses.

Chapter 10 • Data Quality and Integration 439

TABLE 10-2 Key Steps in a Data Quality Program

Step Motivation

Get the business buy-in Show the value of data quality management to
executives

Conduct a data quality audit Understand the extent and nature of data quality
problems

Establish a data stewardship program Achieve organizational commitment and involvement

Improve data capture processes Overcome the “garbage in, garbage out” phenomenon

Apply modern data management
principles and technology

Use proven methods and techniques to make more
thorough data quality activities easier to execute

Apply TQM principles and practices Follow best practices to deal with all aspects of data
quality management

Consider a simple example. Suppose a bank has 500,000 customers in its customer
file. The bank plans to advertise a new product to all of its customers by means of a
direct mailing. Suppose the error rate in the customer file is 10 percent, including dupli-
cate customer records, obsolete addresses, and so on (such an error rate is not unusual).
If the direct cost of mailing is $5.00 (including postage and materials), the expected loss
due to bad data is 500,000 customers × .10 × $5, or $250,000.

Often, the opportunity loss associated with bad data is greater than direct costs.
For example, suppose the average bank customer generates $2000 revenue annually
from interest charges, service fees, and so on. This equates to $10,000 over a five-year
period. Suppose the bank implements an enterprise-wide data quality program that
improves its customer relationship management, cross-selling, and other related activi-
ties. If this program results in a net increase of only 2 percent new business (an educated
guess), the results over five years will be remarkable: 500,000 customers × $10,000 × .02,
or $50 million. This is why it is sometimes stated that “quality is free.”

CONDUCT A DATA QUALITY AUDIT An organization without an established data quality
program should begin with an audit of data to understand the extent and nature of data
quality problems. A data quality audit includes many procedures, but one simple task is
to statistically profile all files. A profile documents the set of values for each field. By
inspection, obscure and unexpected extreme values can be identified. Patterns of data
(distribution, outliers, frequencies) can be analyzed to see if the distribution makes
sense. (An unexpected high frequency of one value may indicate that users are entering
an easy number or a default is often being used, thus accurate data are not being
recorded.) Data can be checked against relevant business rules to be sure that controls
that are in place are effective and somehow not being bypassed (e.g., some systems
allow users to override warning messages that data entered violates some rule; if this
happens too frequently, it can be a sign of lax enforcement of business rules). Data qual-
ity software, such as the programs mentioned later in this chapter for ETL processes,
can be used to check for valid addresses, find redundant records due to insufficient
methods for matching customer or other subjects across different sources, and viola-
tions of specified business rules.

Business rules to be checked can be as simple as an attribute value must be greater
than zero, or can involve more complex conditions (e.g., loan accounts with a greater
than zero balance and open more than 30 days must have an interest rate greater than
zero). Rules can be implemented in the database (e.g., foreign keys), but if there are
ways for operators to override rules, there is no guarantee that even these rules will be
strictly followed. The business rules are reviewed by a panel of application and data-
base experts, and the data to be checked are identified. Rules often do not have to be
checked against all existing data, rather a random but representative sample is usually
sufficient. Once the data are checked against the rules, a panel judges what actions
should be taken to deal with broken rules, usually addressed in some priority order.

440 Part V • Advanced Database Topics

Using specialized tools for data profiling makes a data audit more productive,
especially considering that data profiling is not a one-time task. Because of changes to
the database and applications, data profiling needs to be done periodically. In fact,
some organizations regularly report data profiling results as critical success factors for
the information systems organization. Informatica’s PowerCenter tool is representa-
tive of the capabilities of specialized tools to support data profiling. PowerCenter can
profile a wide variety of data sources and supports complex business rules in a busi-
ness rules library. It can track profile results over time to show improvements and new
problem areas. Rules can check on column values (e.g., valid range of values), sources
(e.g., row counts and redundancy checks), and multiple tables (e.g., inner versus outer
join results). It is also recommended that any new application for a database, which
may be analyzing data in new ways, could benefit from a specialized data profile to
see if new queries, using previously hidden business rules, would fail because the
database was never protected against violations of these rules. With a specialized data
profiling tool, new rules can be quickly checked and inventoried against all rules as
part of a total data quality audit program.

An audit will thoroughly review all process controls on data entry and mainte-
nance. Procedures for changing sensitive data should likely involve actions by at
least two people with separated duties and responsibilities. Primary keys and impor-
tant financial data fall into this category. Proper edit checks should be defined and
implemented for all fields. Error logs from processing data from each source (e.g.,
user, workstation, or source system) should be analyzed to identify patterns or high
frequencies of errors and rejected transactions, and actions should be taken to
improve the ability of the sources to provide high-quality data. For example, users
should be prohibited from entering data into fields for which they are not intended.
Some users who do not have a use for certain data may use that field to store data
they need but for which there is not appropriate field. This can confuse other users
who do use these fields and see unintended data.

ESTABLISH A DATA STEWARDSHIP PROGRAM As pointed out in the section on data gov-
ernance, stewards are held accountable for the quality of the data for which they are
responsible. They must also ensure that the data that are captured are accurate and con-
sistent throughout the organization, so that users throughout the organization can rely
on the data. Data stewardship is a role, not a job; as such, data stewards do not own the
data, and data stewards usually have other duties inside and usually outside the data
administration area.

Seiner (2005) outlines a comprehensive set of roles and responsibilities for data
stewards. Roles include oversight of the data stewardship program, managers of
data subject areas (e.g., customer, product, etc.), stewards for data definitions of each
data subject, stewards for accurate and efficient production/maintenance of data
for each subject, and stewards for proper use of data for each subject area.

There is debate about whether data steward roles should report through the busi-
ness or IT organizations. Data stewards need to have business acumen, understand
data requirements and usage, and understand the finer details of metadata. Business
data stewards can articulate specific data uses and understand the complex relation-
ships between data from a grounded business perspective. Business data stewards
emphasize the business ownership of data and can represent the business on access
rights, privacy, and regulations/policies that affect data. They should know why data
are the way they are and can see data reuse possibilities.

But, as Dyché (2007) has discovered, a business data steward often is myopic, see-
ing data from only the depths of the area or areas of the organization from which he or
she comes. If data do not originate in the area of the data steward, the steward will have
limited knowledge, and may be at a disadvantage in debates with other data stewards.
Dyché argues also for source data stewards, who understand the systems of record, lin-
eage, and formatting of different data systems. Source data stewards can help to deter-
mine the best source for user data requirements by understanding the details of how a
source system acquires and processes data.

Chapter 10 • Data Quality and Integration 441

IMPROVE DATA CAPTURE PROCESSES As noted earlier, lax data entry is a major source
of poor data quality, so improving data capture processes is a fundamental step in a
data quality improvement program. Inmon (2004) identifies three critical points of data
entry: where data are (1) originally captured (e.g., a customer order entry screen),
(2) pulled into a data integration process (e.g., an ETL process for data warehousing),
and (3) loaded into an integrated data store, such as a data warehouse. A database pro-
fessional can improve data quality at each of these steps. For simplicity, we summarize
what Inmon recommends only for the original data capture step (and we discuss the
process of cleansing data during ETL in a later section of this chapter):

• Enter as much of the data as possible via automatic, not human, means (e.g., from
data stored in a smart card or pulled from a database, such as retrieving current
values for addresses, account numbers, and other personal characteristics).

• Where data must be entered manually, ensure that it is selected from preset options
(e.g., drop-down menus of selections pulled from the database), if possible.

• Use trained operators when possible (help systems and good prompts/examples
can assist end users in proper data entry).

• Follow good user interface design principles (see Hoffer et al., 2010, for guide-
lines) that create consistent screen layouts, easy to follow navigation paths, clear
data entry masks and formats (which can be defined in DDL), minimal use of
obscure codes (full values of codes can be looked up and displayed from the data-
base, not in the application programs), etc.

• Immediately check entered data for quality against data in the database, so use
triggers and user-defined procedures liberally to make sure that only high-quality
data enter the database; when questionable data are entered (e.g., “T for gender),
immediate and understandable feedback should be given to the operator, ques-
tioning the validity of the data.

APPLY MODERN DATA MANAGEMENT PRINCIPLES AND TECHNOLOGY Powerful software
is now available that can assist users with the technical aspects of data quality improve-
ment. This software often employs advanced techniques such as pattern matching,
fuzzy logic, and expert systems. These programs can be used to analyze current data for
quality problems, identify and eliminate redundant data, integrate data from multiple
sources, and so on. Some of these programs are discussed later in this chapter, under the
topic of data extract, transform, and load.

Of course, in a database management book, we certainly cannot neglect sound
data modeling as a central ingredient in a data quality program. Chapters 3 through 6
introduced the principles of conceptual to physical data modeling and design that are
the basis for a high-quality data model. Hay (2005) (drawing on prior work) has sum-
marized these into six principles for high-quality data models.

APPLY TQM PRINCIPLES AND PRACTICES Data quality improvements should be con-
sidered as an ongoing effort and not treated as one-time projects. With this mind,
many leading organizations are applying total quality management (TQM) to
improve data quality, just as in other business areas. Some of the principles of TQM
that apply are defect prevention (rather than correction), continuous improvement of
the processes that touch data, and the use of enterprise data standards. For example,
where data in legacy systems are found defective, it is better to correct the legacy
systems that generate that data than to attempt to correct the data when moving it to
a data warehouse.

TQM balances a focus on the customer (in particular, customer satisfaction) and
the product or service (in our case, the data resource). Ultimately, TQM results in
decreased costs, increased profits, and reduced risks. As stated earlier in this chapter,
data quality is in the eye of the beholder, so the right mix of the seven characteristics of
quality data will depend on data users. TQM builds on a strong foundation of measure-
ments, such as what we have discussed as data profiling. For an in-depth discussion of
applying TQM to data quality improvement, see English (1999a, 1999b, 2004).

442 Part V • Advanced Database Topics

Summary of Data Quality

Ensuring the quality of data that enters databases and data warehouses is essential if
users are to have confidence in their systems. Users have their own perceptions of the
quality of data, based on balancing the characteristics of uniqueness, accuracy, consis-
tency, completeness, timeliness, currency, conformance, and referential integrity.
Ensuring data quality is also now mandated by regulations such as the Sarbanes-Oxley
Act and the Basel II Accord. Many organizations today do not have proactive data
quality programs, and poor-quality data is a widespread problem. We have outlined in
this section a proactive data quality program that employs the use of data audits and
profiling, best practices in data capture and entry, data stewards, proven TQM princi-
ples and practices, modern data management software technology, and appropriate
ROI calculations.

MASTER DATA MANAGEMENT

If one were to examine the data used in applications across a large organization, one
would likely find that certain categories of data are referenced more frequently than
others across the enterprise in operational and analytical systems. For example, almost
all information systems and databases refer to common subject areas of data (people,
things, places) and often enhance those common data with local (transactional) data
relevant to only the application or database. The challenge for an organization is to
ensure that all applications that use common data from these areas, such as customer,
product, employee, invoice, and facility, have a “single source of truth” they can use.
Master data management (MDM) refers to the disciplines, technologies, and methods
to ensure the currency, meaning, and quality of reference data within and across vari-
ous subject areas (Imhoff and White , 2006). MDM ensures that everyone knows the
current description of a product, the current salary of an employee, and the current
billing address of a customer. Master data can be as simple as a list of acceptable city
names and abbreviations. MDM does not address sharing transactional data, such as
customer purchases. MDM can also be realized in specialized forms. One of the most
discussed is customer data integration (CDI), which is MDM that focuses just on
customer data (Dyché and Levy, 2006). Another is product data integration (PDI).

MDM has become more common due to active mergers and acquisitions and to
meet regulations, such as the Sarbanes-Oxley Act. While many vendors (consultants
and technology suppliers) exist to provide MDM approaches and technologies, it is
important for firms to acknowledge that master data is a key strategic asset for a firm. It
is therefore imperative that MDM projects have the appropriate level of executive buy-
in and be treated as enterprise-wide initiatives. MDM projects also need to work closely
with ongoing data quality and data governance initiatives.

No one source system usually contains the “golden record” of all relevant facts
about a data subject. For example, customer master data might be integrated from
customer relationship management, billing, ERP, and purchased data sources. MDM
determines the best source for each piece of data (e.g., customer address or name)
and makes sure that all applications reference the same virtual “golden record.”
MDM also provides analysis and reporting services to inform data quality managers
about the quality of master data across databases (e.g., what percentage of city data
stored in individual databases conforms with the master city values). Finally,
because master data are “golden records,” no application owns master data. Rather,
master data are truly enterprise assets, and business managers must take responsibility
for the quality of master data.

There are three popular architectures for master data management: identity reg-
istry, integration hub, and persistent. In the identity registry approach, the master data
remains in their source systems, and applications refer to the registry to determine
where the agreed upon source of particular data (e.g., customer address) resides. The
registry helps each system match its master record with corresponding master records
in other source systems by using a global identifier for each instance of a subject area.
The registry maintains a complete list of all master data elements and knows which

Master data management (MDM)
Disciplines, technologies, and
methods used to ensure the
currency, meaning, and quality of
reference data within and across
various subject areas.

Chapter 10 • Data Quality and Integration 443

source system to access for the best value for each attribute. Thus, an application may
have to access several databases to retrieve all the data it needs, and a database may
need to allow more applications to access it. This is similar to the federation style of
data integration.

In the integration hub approach, data changes are broadcast (typically asynchro-
nously) through a central service to all subscribing databases. Redundant data are
kept, but there are mechanisms to ensure consistency, yet each application does not
have to collect and maintain all of the data it needs. When this style of integration hub
is created, it acts like a propagation form of data integration. In some cases, however,
a central master data store is also created for some master data, thus it may be a com-
bination of propagation and consolidation. However, even with consolidation, the
systems of record or entry—the distributed transaction systems—still maintain their
own databases including the local and propagated data they need for their most
frequent processing.

In the persistent approach, one consolidated record is maintained, and all applica-
tions draw on that one “golden record” for the common data. Thus, considerable work
is necessary to push all data captured in each application to the persistent record so that
the record contains the most recent values and to go to the persistent record when any
system needs common data. Data redundancy is possible with the persistent approach
because each application database may also maintain a local version of any data ele-
ments at its discretion, even those maintained in the persistent consolidated table. This
is a pure consolidated data integration approach for master data.

It is important to realize that MDM is not intended to replace a data warehouse,
principally because only master data and usually only current master data are inte-
grated, whereas a data warehouse needs a historical view of both master and transac-
tional data. MDM is strictly about getting a single view of data about each instance for
each master data type. A data warehouse, however, might be (and often is) one of the
systems that uses master data, either as a source to feed the warehouse or as an exten-
sion of the warehouse for the most current data when warehouse users want to drill
through to source data. MDM does do data cleansing, similar to what is done with data
warehousing. For this reason, MDM also is not an operational data store (see Chapter 9
for a description of ODSs). MDM is also considered by most people to be part of the
data infrastructure of an organization, whereas an ODS, and even data warehousing,
are considered application platforms.

DATA INTEGRATION: AN OVERVIEW

Many databases, especially enterprise-level databases, are built by consolidating
data from existing internal and external data sources possibly with new data to
support new applications. Most organizations have different databases for different
purposes (see Chapter 1), some for transaction processing in different parts of the
enterprise (e.g., production planning and control and order entry); some for local,
tactical, or strategic decision making (e.g., for product pricing and sales forecasting);
and some for enterprise-wide coordination and decision making (e.g., for customer
relationship management and supply chain management). Organizations are dili-
gently working to break down silos of data, yet allow some degree of local auton-
omy. To achieve this coordination, at times data must be integrated across disparate
data sources.

It is safe to say that you cannot avoid dealing with data integration issues. As a
database professional or even a user of a database created from other existing data
sources, there are many data integration concepts you should understand to do your
job or to understand the issues you might face. This is the purpose of the following sec-
tions of this chapter.

We have already studied one such data integration approach, data warehousing,
in Chapter 9. Data warehousing creates data stores to support decision making and
business intelligence. We will review in a subsequent section how data are brought
together through an ETL process into what we called in Chapter 9 the reconciled data
layer of the data warehousing approach to data integration. But before we dig in to this

444 Part V • Advanced Database Topics

approach in detail, it is helpful to overview the two other general approaches, data
federation and data propagation, that can be used for data integration, each with a
different purpose and each ideal approaches under different circumstances.

General Approaches to Data Integration

Data integration creates a unified view of business data. This view can be created via a
variety of techniques, which we will outline in the following subsections. However,
data integration is not the only way data can be consolidated across an enterprise.
Other ways to consolidate data are as follows (White, 2005):

• Application integration Achieved by coordinating the flow of event information
between business applications (a service-oriented architecture can facilitate appli-
cation integration)

• Business process integration Achieved by tighter coordination of activities
across business processes (e.g., selling and billing) so that applications can be
shared and more application integration can occur

• User interaction integration Achieved by creating fewer user interfaces that feed
different data systems (e.g., using an enterprise portal to interact with different
data reporting and business intelligence systems)

Core to any method of data integration are techniques to capture changed data
(changed data capture [CDC]), so only data that have changed need to be refreshed
by the integration methods. Changed data can be identified by flags or a date of last
update (which, if it is after the last integration action, indicates new data to integrate).
Alternatively, transaction logs can be analyzed to see which data were updated when.

Three techniques form the building blocks of any data integration approach:
data consolidation, data federation, and data propagation. Data consolidation is
exemplified by the ETL processes used for data warehousing; we devote later sec-
tions of this chapter to an extensive explanation of this approach. The other two
approaches are overviewed here. A detailed comparison of the three approaches is
presented in Table 10-3.

DATA FEDERATION Data federation provides a virtual view of integrated data (as if
they were all in one database) without actually bringing the data all into one physical,
centralized database. Rather, when an application wants data, a federation engine (no,
not from the Starship Enterprise!) retrieves relevant data from the actual sources (in real-
time) and sends the result to the requesting application (so the federation engine looks
like a database to the requesting application). Data transformations are done dynami-
cally as needed. Enterprise information integration (EII) is one common term used to
apply to data federation approaches. XML is often used as the vehicle for transferring
data and metadata between data sources and application servers.

A main advantage of the federation approach is access to current data: There is no
delay due to infrequent refreshes of a consolidated data store. Another advantage is
that this approach hides the intricacies of other applications and the way data are stored
in them from a given query or application. However, the workload can be quite burden-
some for large amounts of data or for applications that need frequent data integration
activities. Federation requires some form of a distributed query to be composed and
run, but EII technology will hide this from the query writer or application developer.
Federation works best for query and reporting (read-only) applications and when secu-
rity of data, which can be concentrated at the source of data, is of high importance. The
federation approach is also used as a stop-gap technique until more tightly integrated
databases and applications can be built.

DATA PROPAGATION This approach duplicates data across databases, usually with
near-real-time delay. Data are pushed to duplicate sites as updates occur (so-called
event-driven propagation). These updates can be synchronous (a true distributed
database technique in which a transaction does not complete until all copies of the
data are updated; see Chapter 12) or asynchronous, which decouples the updates

Changed data capture (CDC)
Technique that indicates which
data have changed since the last
data integration activity.

Data federation
A technique for data integration
that provides a virtual view of
integrated data without actually
creating one centralized database.

Chapter 10 • Data Quality and Integration 445

TABLE 10-3 Comparison of Consolidation, Federation, and Propagation Forms of Data Integration

Method Pros Cons

Consolidation (ETL) • Users are isolated from conflicting workloads
on source systems, especially updates.

• It is possible to retain history, not just current
values.

• A data store designed for specific requirements
can be accessed quickly.

• It works well when the scope of data needs
are anticipated in advance.

• Data transformations can be batched for
greater efficiency.

• Network, storage, and data maintenance costs
can be high.

• Performance can degrade when the data
warehouse becomes quite large (with some
technologies).

Federation (EII) • Data are always current (like relational views)
when requested

• It is simple for the calling application.
• It works well for read-only applications because

only requested data need to be retrieved.
• It is ideal when copies of source data are

not allowed.
• Dynamic ETL is possible when one cannot

anticipate data integration needs in advance
or when there is a one-time need.

• Heavy workloads are possible for each request
due to performing all integration tasks for each
request.

• Write access to data sources may not be
supported.

Propagation (EAI & ERD) • Data are available in near real-time.
• It is possible to work with ETL for real-time data

warehousing.
• Transparent access is available to the data source.

• There is considerable (but background)
overhead associated with synchronizing
duplicate data.

to the remote copies. Enterprise application integration (EAI) and enterprise data
replication (EDR) techniques are used for data propagation.

The major advantage of the data propagation approach to data integration is the
near-real-time cascading of data changes throughout the organization. Very specialized
technologies are needed for data propagation in order to achieve high performance and
to handle frequent updates. Real-time data warehousing applications, which were dis-
cussed in Chapter 9, require data propagation (what are often called “trickle feeds” in
data warehousing).

DATA INTEGRATION FOR DATA WAREHOUSING:
THE RECONCILED DATA LAYER

Now that you have studied data integration approaches in general, let’s look at one
approach in detail. Although we detail only one approach, there are many activities in
common across all approaches. These common tasks include extracting data from source
systems, identity matching to match records from different source systems that pertain to
the same entity instance (e.g., the same customer), cleansing data into a value all users
agree is the true value for that data, transforming data into the desired format and detail
users want to share, and loading the reconciled data into a shared view or storage location.

As indicated in Figure 9-5 for data warehousing, we use the term reconciled data to
refer to the data layer associated with the operational data store and enterprise data
warehouse. This is the term IBM used in 1993 to describe data warehouse architectures.
Although the term is not widely used, it accurately describes the nature of the data that
should appear in the enterprise data warehouse and the way they are derived. More
commonly, reconciled data are referred to as the result of the ETL process. An EDW or
ODS usually is a normalized, relational database because it needs the flexibility to sup-
port a wide variety of decision support needs.

446 Part V • Advanced Database Topics

Characteristics of Data After ETL

The goal of the ETL process is to provide a single, authoritative source for data that sup-
port decision making. Ideally, this data layer has the following characteristics:

1. Detailed The data are detailed (rather than summarized), providing maximum
flexibility for various user communities to structure the data to best suit their needs.

2. Historical The data are periodic (or point-in-time) to provide a historical
perspective.

3. Normalized The data are fully normalized (i.e., third normal form or higher).
(We discussed normalization in Chapter 4.) Normalized data provide greater
integrity and flexibility of use than denormalized data do. Denormalization is not
necessary to improve performance because reconciled data are usually accessed
periodically using batch processes. We will see, however, that some popular data
warehouse data structures are denormalized.

4. Comprehensive Reconciled data reflect an enterprise-wide perspective, whose
design conforms to the enterprise data model.

5. Timely Except for real-time data warehousing, data need not be (near) real-time,
but data must be current enough that decision making can react in a timely manner.

6. Quality controlled Reconciled data must be of unquestioned quality and inte-
grity because they are summarized into the data marts and used for decision
making.

Notice that these characteristics of reconciled data are quite different from the
typical operational data from which they are derived. Operational data are typically
detailed, but they differ strongly in the other four dimensions described earlier:

1. Operational data are transient rather than historical.
2. Operational data are not normalized. Depending on their roots, operational data

may never have been normalized or may have been denormalized for perform-
ance reasons.

3. Rather than being comprehensive, operational data are generally restricted in
scope to a particular application.

4. Operational data are often of poor quality, with numerous types of inconsistencies
and errors.

The data reconciliation process is responsible for transforming operational data to
reconciled data. Because of the sharp differences between these two types of data, data
reconciliation clearly is the most difficult and technically challenging part of building a
data warehouse. The Data Warehousing Institute supports this claim, finding that 60 to
80 percent of work on a business intelligence project, often the reason for data ware-
housing, is spent on ETL activities (Eckerson and White, 2003). Fortunately, several
sophisticated software products are available to assist with this activity. (See Krudop,
2005, for a summary of why ETL tools are useful and how to successfully implement
them in an organization.)

The ETL Process

Data reconciliation occurs in two stages during the process of filling an enterprise data
warehouse:

1. During an initial load, when the EDW is first created
2. During subsequent updates (normally performed on a periodic basis) to keep the

EDW current and/or to expand it

Data reconciliation can be visualized as a process, shown in Figure 10-1, consist-
ing of five steps: mapping and metadata management (the result shown as a metadata
repository in Figure 10-1), capture, scrub, transform, and load and index. In reality, the
steps may be combined in different ways. For example, data capture and scrub might
be combined as a single process, or scrub and transform might be combined. Typically,
data rejected from the cleansing step cause messages to be sent to the appropriate

Chapter 10 • Data Quality and Integration 447

Staging Area

Capture/Extract

Metadata
repository

Messages about
rejected data

Scrub/Cleanse Transform

Load
and

index

Enterprise data
warehouse or

operational data
store

Operational
systems

FIGURE 10-1 Steps in data
reconciliation

operational systems to fix the data at the source and to be resent in a later extract.
Figure 10-1 actually simplifies ETL considerably. Eckerson (2003) outline seven compo-
nents of an ETL process, whereas Kimball (2004) outlines 38 subsystems of ETL. We do
not have space to detail all of these subsystems. The fact that there are as many as
38 subsystems highlights why so much time is spent on ETL for data warehousing and
why selecting ETL tools can be so important and difficult. We discuss mapping and
metadata management, capture, scrub, and load and index next, followed by a thor-
ough discussion of transform.

MAPPING AND METADATA MANAGEMENT ETL begins with a design step in which data
(detailed or aggregate) needed in the warehouse are mapped back to the source data to
be used to compose the warehouse data. This mapping could be shown graphically, or
in a simple matrix with rows as source data elements, columns as data warehouse table
columns, and the cells as explanations of any reformatting, transformations, and cleans-
ing actions to be done. The process flows take the source data through various steps of
consolidation, merging, de-duping, and simply conversion into one consistent stream
of jobs to feed the scrubbing and transformation steps. And to do this mapping, which
involves selecting the most reliable source for data, one must have good metadata suffi-
cient to understand fine differences between apparently the same data in multiple
sources. Metadata are then created to explain the mapping and job flow process. This
mapping and any further information needed (e.g., explanation of why certain sources
were chosen, the timing and frequencies of extracts needed to create the desired target
data) are documented in a metadata repository. Choosing among several sources for
target warehouse data is based on the kinds of data quality characteristics discussed
earlier in this chapter.

EXTRACT Capturing the relevant data from the source files and databases used to fill
the EDW is typically called extracting. Usually, not all data contained in the various
operational source systems are required; just a subset are required. Extracting the subset
of data is based on an extensive analysis of both the source and target systems, which is
best performed by a team directed by data administration and composed of both end
users and data warehouse professionals.

Technically, an alternative to this classical beginning to the ETL process is sup-
ported by a newer class of tools called enterprise application integration (EAI),
which we outlined earlier in this chapter. EAI tools enable event-driven (i.e., real-time)
data to be captured and used in an integrated way across disparate source systems.
EAI can be used to capture data when they change not on a periodic basis, which

448 Part V • Advanced Database Topics

is common of many ETL processes. So-called trickle feeds are important for the
real-time data warehouse architecture to support active business intelligence. EAI
tools can also be used to feed ETL tools, which often have richer abilities for cleansing
and transformation.

The two generic types of data extracts are static extract and incremental extract.
Static extract is used to fill the data warehouse initially, and incremental extract is used
for ongoing warehouse maintenance. Static extract is a method of capturing a snapshot
of the required source data at a point in time. The view of the source data is independ-
ent of the time at which it was created. Incremental extract captures only the changes
that have occurred in the source data since the last capture. The most common method
is log capture. Recall that the database log contains after images that record the most
recent changes to database records (see Figure 9-6). With log capture, only images that
are logged after the last capture are selected from the log.

English (1999a) and White (2000) address in detail the steps necessary to qualify
which systems of record and other data sources to use for extraction into the staging
area. A major criterion is the quality of the data in the source systems. Quality depends
on the following:

• Clarity of data naming, so the warehouse designers know exactly what data exist
in a source system

• Completeness and accuracy of business rules enforced by a source system, which
directly affects the accuracy of data; also, the business rules in the source should
match the rules to be used in the data warehouse

• The format of data (Common formats across sources help to match related data.)

It is also important to have agreements with the owners of source systems so that
they will inform the data warehouse administrators when changes are made in the
metadata for the source system. Because transaction systems frequently change to meet
new business needs and to utilize new and better software and hardware technologies,
managing changes in the source systems is one of the biggest challenges of the extraction
process. Changes in the source system require a reassessment of data quality and the
procedures for extracting and transforming data. These procedures map data in the
source systems to data in the target data warehouse (or data marts). For each data element
in the data warehouse, a map says which data from which source systems to use to derive
that data; transformation rules, which we address in a separate section, then state how to
perform the derivation. For custom-built source systems, a data warehouse administrator
has to develop customized maps and extraction routines; predefined map templates can
be purchased for some packaged application software, such as ERP systems.

Extraction may be done by routines written with tools associated with the source
system, say, a tool to export data. Data are usually extracted in a neutral data format,
such as comma-delimited ANSI format. Sometimes the SQL command SELECT . . .
INTO can be used to create a table. Once the data sources have been selected and extrac-
tion routines written, data can be moved into the staging area, where the cleansing
process begins.

CLEANSE It is generally accepted that one role of the ETL process (as with any other
data integration activity) is to identify erroneous data, not fix them. Experts generally
agree that fixes should be made in the appropriate source systems, so such erroneous
data, created by systematic procedural mistakes, do not reoccur. Rejected data are
eliminated from further ETL steps and will be reprocessed in the next feed from the
relevant source system. Some data can be fixed by cleansing so that loading data into
the warehouse is not delayed. In any case, messages need to be sent to the offending
source system(s) to prevent future errors or confusions.

Poor data quality is the bane of ETL. In fact, it is the bane of all information
systems (“garbage in, garbage out”). Unfortunately, this has always been true and
remains so. Eckerson and While (2003) found that ensuring adequate data quality was
the number-one challenge of ETL, followed closely by understanding source data, a highly
related issue. Procedures should be in place to ensure data are captured “correctly” at
the source. But what is correct depends on the source system, so the cleansing step of

Static extract
A method of capturing a snapshot
of the required source data at a
point in time.

Incremental extract
A method of capturing only the
changes that have occurred in the
source data since the last capture.

Chapter 10 • Data Quality and Integration 449

ETL must, at a minimum, resolve differences between what each source believes is
quality data. The issue may be timing; that is, one system is ahead of another on
updating common or related data. (As you will see later, time is a very important
factor in data warehouses, so it is important for data warehousing to understand the
time stamp for a piece of data.) So there is a need for further data quality steps to be
taken during ETL.

Data in the operational systems are of poor quality or are inconsistent across
source systems for many common reasons, including data entry errors by employees
and customers, changes to the source systems, bad and inconsistent metadata, and
system errors or corrupted data from the extract process. You cannot assume that data
are clean even when the source system works fine (e.g., the source system may have
used default but inaccurate values). Some of the errors and inconsistencies typical of
these data that can be troublesome to data warehousing are as follows:

1. Misspelled names and addresses, odd formats for names and addresses (e.g., leading
spaces, multiple spaces between words, missing periods for abbreviations, use of
different capitalizations like all caps instead of upper- and lowercase letters)

2. Impossible or erroneous dates of birth
3. Fields used for purposes for which they were not intended or for different pur-

poses in different table rows (essentially, multiple meanings for the same column)
4. Mismatched addresses and area codes
5. Missing data
6. Duplicate data
7. Inconsistencies (e.g., different addresses) in values or formats across sources

(e.g., data could be kept at different levels of detail or for different time periods)
8. Different primary keys across sources

Thorough data cleansing involves both detecting such errors and repairing them
and preventing them from occurring in the future. Some of these types of errors can be
corrected during cleansing, and the data can be made ready for loading; in any case,
source system owners need to be informed of errors so that processes can be fixed in the
source systems to prevent such errors from occurring in the future.

Let’s consider some examples of such errors. Customer names are often used as
primary keys or as search criteria in customer files. However, these names are often
misspelled or spelled in various ways in these files. For example, the name The Coca-
Cola Company is the correct name for the soft-drink company. This name may be
entered in customer records as Coca-Cola, Coca Cola, TCCC, and so on. In one study, a
company found that the name McDonald’s could be spelled 100 different ways!

A feature of many ETL tools is the ability to parse text fields to assist in discern-
ing synonyms and misspellings, and also to reformat data. For example, name and
address fields, which could be extracted from source systems in varying formats, can
be parsed to identify each component of the name and address so they can be stored
in the data warehouse in a standardized way, and can be used to help match records
from different source systems. These tools can also often correct name misspellings
and resolve address discrepancies. In fact, matched records can be found through
address analysis.

Another type of data pollution occurs when a field is used for purposes for which
it was not intended. For example, in one bank, a record field was designed to hold a
telephone number. However, branch managers who had no such use for this field
instead stored the interest rate in it. Another example, reported by a major UK bank,
was even more bizarre. The data-scrubbing program turned up a customer on their files
whose occupation was listed as “steward on the Titanic” (Devlin, 1997).

You may wonder why such errors are so common in operational data. The quality
of operational data is largely determined by the value of data to the organization
responsible for gathering them. Unfortunately, it often happens that the data-gathering
organization places a low value on some data whose accuracy is important to down-
stream applications, such as data warehousing.

Given the common occurrence of errors, the worst thing a company can do is sim-
ply copy operational data to the data warehouse. Instead, it is important to improve the

450 Part V • Advanced Database Topics

quality of the source data through a technique called data scrubbing. Data scrubbing
(also called data cleansing) involves using pattern recognition and other techniques to
upgrade the quality of raw data before transforming them and moving the data to a
data warehouse. How to scrub each piece of data varies by attribute, so considerable
analysis goes into the design of each ETL scrubbing step. Also, the data scrubbing tech-
niques must be reassessed each time changes are made to the source system. Some
scrubbing will reject obviously bad data outright, and the source system will be sent a
message to fix the erroneous data and get them ready for the next extract. Other results
from scrubbing may flag the data for more detailed manual analysis (e.g., why did one
salesperson sell more than three times any other salesperson?) before rejecting the data.

Successful data warehousing requires that a formal program in TQM be imple-
mented. TQM focuses on defect prevention rather than defect correction. Although
data scrubbing can help upgrade data quality, it is not a long-term solution to the
data quality problem. (See the earlier section in this chapter on TQM in data quality
management.)

The type of data cleansing required depends on the quality of data in the source
system. Besides fixing the types of problems identified earlier, other common cleansing
tasks include the following:

• Decoding data to make them understandable for data warehousing applications.
• Parsing text fields to break them into finer components (e.g., breaking apart an

address field into its constituent parts).
• Standardizing data, such as in the prior example for variations on customer

names; standardization involves even simple actions such as using fixed vocabu-
laries across all values (e.g., Inc. for incorporated and Jr. for junior).

• Reformatting and changing data types and performing other functions to put data
from each source into the standard data warehouse format, ready for transformation.

• Adding time stamps to distinguish values for the same attribute over time.
• Converting between different units of measure.
• Generating primary keys for each row of a table. (We discuss the formation of data

warehouse table primary and foreign keys later in this chapter.)
• Matching and merging separate extractions into one table or file and matching

data to go into the same row of the generated table. (This can be a very difficult
process when different keys are used in different source systems, when naming
conventions are different, and when the data in the source systems are erroneous.)

• Logging errors detected, fixing those errors, and reprocessing corrected data with-
out creating duplicate entries.

• Finding missing data to complete the batch of data necessary for subsequent
loading.

The order in which different data sources are processed may matter. For example,
it may be necessary to process customer data from a sales system before new customer
demographic data from an external system can be matched to customers.

Once data are cleansed in the staging area, the data are ready for transforma-
tion. Before we discuss the transformation process in some detail, however, we
briefly review in the next section the procedures used to load data into the data ware-
house or data marts. It makes sense to discuss transformation after discussing load.
There is a trend in data warehousing to reformulate ETL into ELT, utilizing the
power of the data warehouse technology to assist in the cleansing and transforma-
tion activities.

LOAD AND INDEX The last step in filling an enterprise data warehouse (see Figure 10-1)
is to load the selected data into the target data warehouse and to create the necessary
indexes. The two basic modes for loading data to the target EDW are refresh and update.

Refresh mode is an approach to filling a data warehouse that involves bulk
rewriting of the target data at periodic intervals. That is, the target data are written
initially to fill the warehouse. Then, at periodic intervals, the warehouse is rewrit-
ten, replacing the previous contents. This mode has become less popular than
update mode.

Data scrubbing
A process of using pattern
recognition and other artificial
intelligence techniques to upgrade
the quality of raw data before
transforming and moving the data
to the data warehouse. Also called
data cleansing.

Refresh mode
An approach to filling a data
warehouse that involves bulk
rewriting of the target data at
periodic intervals.

Chapter 10 • Data Quality and Integration 451

Update mode is an approach in which only changes in the source data are written
to the data warehouse. To support the periodic nature of warehouse data, these new
records are usually written to the data warehouse without overwriting or deleting pre-
vious records (see Figure 9-8).

As you would expect, refresh mode is generally used to fill a warehouse when it is
first created. Update mode is then generally used for ongoing maintenance of the target
warehouse. Refresh mode is used in conjunction with static data capture, whereas
update mode is used in conjunction with incremental data capture.

With both refresh and update modes, it is necessary to create and maintain the
indexes that are used to manage the warehouse data. Two types of indexing, called bit-
mapped indexing and join indexing (see Chapter 5), are often used in a data warehouse
environment.

Because a data warehouse keeps historical data, integrated from disparate source
systems, it is often important to those who use the data warehouse to know where the
data came from. Metadata may provide this information about specific attributes, but
the metadata, too, must show history (e.g., the source may change over time). More
detailed procedures may be necessary if there are multiple sources or if knowing which
specific extract or load file placed the data in the warehouse or what transformation
routine created the data. (This may be necessary for uncovering the source of errors dis-
covered in the warehouse.) Variar (2002) outlines the intricacies of tracing the origins of
warehouse data.

Westerman (2001), based on the highly publicized and successful data warehous-
ing at Wal-Mart Corporation, discusses factors in determining how frequently to
update the data warehouse. His guideline is to update a data warehouse as frequently
as is practical. Infrequent updating causes massive loads and requires users to wait for
new data. Near-real-time loads are necessary for active data warehousing but may be
inefficient and unnecessary for most data-mining and analysis applications. Westerman
suggests that daily updates are sufficient for most organizations. (Statistics show that
75 percent of organizations do daily updates.) However, daily updates make it impossi-
ble to react to some changing conditions, such as repricing or changing purchase orders
for slow-moving items. Wal-Mart updates its data warehouse continuously, which is
practical given the massively parallel data warehouse technology it uses. The industry
trend is toward updates several times a day, in near-real-time, and less use of more
infrequent refresh intervals, such as monthly (Agosta, 2003).

Loading data into a warehouse typically means appending new rows to tables in
the warehouse. It may also mean updating existing rows with new data (e.g., to fill in
missing values from an additional data source), and it may mean purging identified
data from the warehouse that have become obsolete due to age or that were incorrectly
loaded in a prior load operation. Data may be loaded from the staging area into a ware-
house by the following:

• SQL commands (e.g., INSERT or UPDATE)
• Special load utilities provided by the data warehouse vendor or a third-party vendor
• Custom-written routines coded by the warehouse administrators (a very common

practice, which uses the previously mentioned two approaches)

In any case, these routines must not only update the data warehouse but must
also generate error reports to show rejected data (e.g., attempting to append a row
with a duplicate key or updating a row that does not exist in a table of the data
warehouse).

Load utilities may work in batch or continuous mode. With a utility, you write a
script that defines the format of the data in the staging area and which staging area data
maps to which data warehouse fields. The utility may be able to convert data types for
a field in the staging area to the target field in the warehouse and may be able to per-
form IF . . . THEN . . . ELSE logic to handle staging area data in various formats or to
direct input data to different data warehouse tables. The utility can purge all data in a
warehouse table (DELETE * FROM tablename) before data loading (refresh mode) or can
append new rows (update mode). The utility may be able to sort input data so that rows
are appended before they are updated. The utility program runs as would any stored

Update mode
An approach to filling a data
warehouse in which only changes
in the source data are written to the
data warehouse.

452 Part V • Advanced Database Topics

procedure for the DBMS, and ideally all the controls of the DBMS for concurrency as
well as restart and recovery in case of a DBMS failure during loading will work.
Because the execution of a load can be very time-consuming, it is critical to be able to
restart a load from a checkpoint in case the DBMS crashes in the middle of executing a
load. See Chapter 11 for a thorough discussion of restart and recovery of databases.

DATA TRANSFORMATION

Data transformation (or transform) is at the very center of the data reconciliation
process. Data transformation involves converting data from the format of the source
operational systems to the format of the enterprise data warehouse. Data transforma-
tion accepts data from the data capture component (after data scrubbing, if it applies),
maps the data to the format of the reconciled data layer, and then passes the data to the
load and index component.

Data transformation may range from a simple change in data format or represen-
tation to a highly complex exercise in data integration. Following are three examples
that illustrate this range:

1. A salesperson requires a download of customer data from a mainframe database
to her laptop computer. In this case, the transformation required is simply map-
ping the data from EBCDIC to ASCII representation, which can easily be per-
formed by off-the-shelf software.

2. A manufacturing company has product data stored in three different legacy
systems: a manufacturing system, a marketing system, and an engineering appli-
cation. The company needs to develop a consolidated view of these product data.
Data transformation involves several different functions, including resolving
different key structures, converting to a common set of codes, and integrating data
from different sources. These functions are quite straightforward, and most of the
necessary software can be generated using a standard commercial software package
with a graphical interface.

3. A large health-care organization manages a geographically dispersed group of
hospitals, clinics, and other care centers. Because many of the units have been
obtained through acquisition over time, the data are heterogeneous and uncoordi-
nated. For a number of important reasons, the organization needs to develop a
data warehouse to provide a single corporate view of the enterprise. This effort
will require the full range of transformation functions described next, including
some custom software development.

The functions performed in data scrubbing and the functions performed in data
transformation blend together. In general, the goal of data scrubbing is to correct errors
in data values in the source data, whereas the goal of data transformation is to convert
the data format from the source to the target system. Note that it is essential to scrub the
data before they are transformed because if there are errors in the data before they are
transformed, the errors will remain in the data after transformation.

Data Transformation Functions

Data transformation encompasses a variety of different functions. These functions may
be classified broadly into two categories: record-level functions and field-level func-
tions. In most data warehousing applications, a combination of some or even all of these
functions is required.

RECORD-LEVEL FUNCTIONS Operating on a set of records, such as a file or table, the most
important record-level functions are selection, joining, normalization, and aggregation.

Selection (also called subsetting) is the process of partitioning data according
to predefined criteria. For data warehouse applications, selection is used to extract
the relevant data from the source systems that will be used to fill the data warehouse.
In fact, selection is typically a part of the capture function discussed earlier. When
the source data are relational, SQL SELECT statements can be used for selection.
(See Chapter 6 for a detailed discussion.) For example, recall that incremental capture

Data transformation
The component of data
reconciliation that converts data
from the format of the source
operational systems to the format
of the enterprise data warehouse.

Selection
The process of partitioning data
according to predefined criteria.

Chapter 10 • Data Quality and Integration 453

is often implemented by selecting after images from the database log that have been
created since the previous capture. A typical after image was shown in Figure 9-6. Suppose
that the after images for this application are stored in a table named AccountHistory_T
Then the after images that have been created after 12/31/2010 can be selected with the
following statements:

SELECT *
FROM AccountHistory_T
WHERE CreateDate > 12/31/2010;

Joining combines data from various sources into a single table or view. Data
joining is an important function in data warehouse applications because it is often
necessary to consolidate data from various sources. For example, an insurance com-
pany may have client data spread throughout several different files and databases.
When the source data are relational, SQL statements can be used to perform a join
operation. (See Chapter 6 for details.)

Joining is often complicated by factors such as the following:

• Often the source data are not relational (the extracts are flat files), in which case
SQL statements cannot be used. Instead, procedural language statements must be
coded or the data must first be moved into a staging area that uses an RDBMS.

• Even for relational data, primary keys for the tables to be joined are often from
different domains (e.g., engineering part number versus catalog number). These
keys must then be reconciled before an SQL join can be performed.

• Source data may contain errors, which makes join operations hazardous.

Normalization is the process of decomposing relations with anomalies to produce
smaller, well-structured relations. (See Chapter 4 for a detailed discussion.) As indi-
cated earlier, source data in operational systems are often denormalized (or simply not
normalized). The data must therefore be normalized as part of data transformation.

Aggregation is the process of transforming data from a detailed level to a summary
level. For example, in a retail business, individual sales transactions can be summarized
to produce total sales by store, product, date, and so on. Because (in our model) the
enterprise data warehouse contains only detailed data, aggregation is not normally asso-
ciated with this component. However, aggregation is an important function in filling the
data marts, as explained next.

FIELD-LEVEL FUNCTIONS A field-level function converts data from a given format in a
source record to a different format in the target record. Field-level functions are of two
types: single-field and multifield functions.

A single-field transformation converts data from a single source field to a single
target field. Figure 10-2a is a basic representation of this type of transformation
(designated by the letter T in the diagram). An example of a single-field transfor-
mation is converting a textual representation, such as Yes/No, into a numeric 1/0
representation.

As shown in Figures 10-2b and 10-2c, there are two basic methods for performing
a single-field transformation: algorithmic and table lookup. An algorithmic transformation
is performed using a formula or logical expression. Figure 10-2b shows a conversion
from Fahrenheit to Celsius temperature using a formula. When a simple algorithm
does not apply, a lookup table can be used instead. Figure 10-2c shows the use of a
table to convert state codes to state names. (This type of conversion is common in data
warehouse applications.)

A multifield transformation converts data from one or more source fields to one or
more target fields. This type of transformation is very common in data warehouse
applications. Two multifield transformations are shown in Figure 10-3.

Figure 10-3a is an example of a many-to-one transformation. (In this case, two
source fields are mapped to one target field.) In the source record, the combination of
employee name and telephone number is used as the primary key. This combination is
awkward and may not uniquely identify a person. Therefore, in creating a target record,

Joining
The process of combining data
from various sources into a single
table or view.

Aggregation
The process of transforming
data from a detailed level to a
summary level.

454 Part V • Advanced Database Topics

T

Key x

Source Record

Key f(x)

Target Record

FIGURE 10-2 Single-field
transformations
(a) Basic representation

(b) Algorithmic

(c) Table lookup

the combination is mapped to a unique employee ID (EmpID). A lookup table would be
created to support this transformation. A data scrubbing program might be employed
to help identify duplicates in the source data.

Figure 10-3b is an example of a one-to-many transformation. (In this case, one
source field has been converted to two target fields.) In the source record, a product
code has been used to encode the combination of brand name and product name. (The
use of such codes is common in operational data.) However, in the target record, it is
desired to display the full text describing product and brand names. Again, a lookup
table would be employed for this purpose.

In Figure 10-3, the multifield transformations shown involve only one source
record and one target record. More generally, multifield transformations may involve
more than one source record and/or more than one target record. In the most complex
cases, these records may even originate in different operational systems and in different
time zones (Devlin, 1997).

T

Key Temperature (Fahrenheit)

Source Record

Key

Target Record

C = 5(F–32)/9

Temperature (Celsius)

T

Key

Source Record

Key State name

State code

Target Record

Code Name
AL Alabama

AK Alaska

AZ Arizona

…

Chapter 10 • Data Quality and Integration 455

T

EmpName Address TelephoneNo • • •

Source Record

EmpName Address • • •

Target Record

EmpID

FIGURE 10-3 Multifield
transformations
(a) Many sources to one
target

(b) One source to many
targets

Chapter Review

Key Terms

Aggregation 453
Changed data capture

(CDC) 444
Data federation 444

Data governance 434
Data scrubbing 450
Data steward 435
Data transformation 452

Incremental extract 448
Joining 453
Master data management

(MDM) 442

Refresh mode 450
Selection 452
Static extract 448
Update mode 451

T

ProductID ProductName • • •

Target Record

BrandName

ProductID Location

Source Record

ProductCode

Summary

Ensuring the quality of data that enter databases and
data warehouses is essential if users are to have confi-
dence in their systems. Ensuring data quality is also now
mandated by regulations such as the Sarbanes-Oxley Act
and the Basel II Accord. Data quality is often a key part of
an overall data governance initiative. Data governance is
often the backbone of enterprise-wide data management
initiatives in an organization.

Many organizations today do not have proactive
data quality programs, and poor quality data is a
widespread problem. A proactive data quality program
will start with a good business case to address any

organizational barriers, be a part of an overall data
governance program, employ the use of data stewards,
apply proven TQM principles and practices, and use
modern data management software technology. Data
quality is of special concern when data are integrated
across sources from inside and outside the organiza-
tion. Fairly modern techniques of data integration—
consolidation (including ETL for data warehouses),
federation, propagation, and master data management—
are vastly improving opportunities for sharing data
while allowing for local controls and databases opti-
mized for local uses.

456 Part V • Advanced Database Topics

Problems and Exercises

Problems 1 through 5 are based on the Fitchwood Insurance Company
case study, which was described in the Problems and Exercises for
Chapter 9, and the associated Figure 9-26.

1. The OLTP system data for the Fitchwood Insurance
Company is in a series of flat files. What process do you
envision would be needed in order to extract the data and
create the ERD shown in Figure 9-26? How often should the
extraction process be performed? Should it be a static
extract or an incremental extract?

2. What types of data pollution/cleansing problems might
occur with the Fitchwood OLTP system data?

3. Research some tools that perform data scrubbing. What
tool would you recommend for the Fitchwood Insurance
Company?

4. What types of data transformations might be needed in
order to build the Fitchwood data mart?

5. After some further analysis, you discover that the commis-
sion field in the Policies table is updated yearly to reflect
changes in the annual commission paid to agents on exist-
ing policies. Would knowing this information change the
way in which you extract and load data into the data mart
from the OLTP system?

6. The Pine Valley databases for
this textbook (one small
version illustrated in queries
throughout the text and a
larger version) are available to

your instructor to download from the book’s Web site. Your
instructor can make those databases available to you.
Alternatively, these and other databases are available at
www.teradatastudentnetwork.com (your instructor will
tell you the login password, and you will need to register
and then create an SQL Assistant log-in for the parts of this
question). There may actually be another database your
instructor wants you to use for this series of questions.
Regardless of how you gain access to a database, answer
the following exercises for that database.
a. Develop a plan for performing a data profile analysis on

this database. Base your plan on the eight characteristics
of quality data, on other concepts introduced in the
chapter, and on a set of business rules you will need to
create for this database. Justify your plan.

b. Perform your data profile plan for one of the tables in
the database (pick the table you think might be the most
vulnerable to data quality issues). Develop an audit
report on the quality of data in this table.

c. Execute your data profile plan for a set of three or four
related tables. Develop an audit report on the quality of
data in these tables.

d. Based on the potential errors you discover in the data to
the previous two exercises (assuming that you find
some potential errors), recommend some ways the cap-
ture of the erroneous data could be improved to pre-
vent errors in future data entry for this type of data.

Review Questions

1. Define each of the following terms:
a. static extract
b. incremental extract
c. data steward
d. master data management
e. refresh mode

2. Match the following terms and definitions:
_____ data transformation
_____ data scrubbing
_____ selection

_____ data steward

_____ changed data
capture

8. Define the eight characteristics of quality data.
9. Explain four reasons why the quality of data is poor in

many organizations.
10. Describe the key steps to improve data quality in an

organization.
11. What is data profiling, and what role does it play in a data

quality program?
12. How can data capture processes be improved to improve

data quality?
13. Why is master data management important in an organization?
14. Describe the three major approaches to master data man-

agement.
15. What are the major differences between the data federation

and data propagation forms of data integration?
16. What distinguishes master data management from other

forms of data integration?
17. List six typical characteristics of reconciled data.
18. List and briefly describe five steps in the data reconciliation

process.
19. List five errors and inconsistencies that are commonly

found in operational data.
20. Explain how the phrase “extract–transform– load” relates to

the data reconciliation process.
21. List common tasks performed during data cleansing.
22. Describe some field-level and record-level data transforma-

tions that often occur during the ETL process for loading a
data warehouse.

a. converts data formats
b. corrects errors in source data
c. partitioning of data based

on predefined criteria
d. oversees data quality for a

particular data subject
e. information needed in

order to integrate
updated data

3. Contrast the following terms:
a. static extract; incremental extract
b. data scrubbing; data transformation
c. consolidation; federation
d. ETL; master data management

4. What are the key components of a data governance program?
5. How does data stewardship relate to data governance?
6. What are four reasons why data quality is important to an

organization?
7. Explain the effect of the Sarbanes-Oxley Act on the need for

organizations to improve data quality.

www.teradatastudentnetwork.com

Chapter 10 • Data Quality and Integration 457

e. Evaluate the ERD for the database. (You may have to
reverse-engineer the ERD if one is not available with the
database.) Is this a high-quality data model? If not, how
should it be changed to make it a high-quality data
model?

f. Assume that you are working with a Pine Valley
Furniture Company (PVFC) database in this exercise.
Consider the large and small PVFC databases as two
different source systems within PVFC. What type
of approach would you recommend (consolidation,
federation, propagation, master data management),
and why, for data integration across these two data-
bases? Presume that you do not know a specific list of
queries or reports that need the integrated database;
therefore, design your data integration approach to
support any requirements against any data from these
databases.

7. Perform a search of companies and products that are avail-
able to help with data reconciliation and integration.
Document your results by filling in the table below. We have
provided a sample example:

Product
Name Company

Data Integration
Steps Supported

Data Bridger Taurus Software Extract, transform,
load, and index

Field Exercises

1. Master data management and the related specialty cus-
tomer data integration are rapidly changing disciplines.
Find a recent article or book on these topics (or some other
specialty area for master data management, such as in
health care, operations, or human resources) and prepare a
summary of new ideas introduced in that resource that
expand on the discussion from this chapter.

2. Access the resources at Teradata Student Network (www
.teradatastudentnetwork.com) for a Webinar or Webcast
(produced after 2007) on the topic of data integration or
master data management that was. Prepare a summary of
new ideas introduced in that Webcast that expand on the
discussion from this chapter.

3. Interview data warehouse managers in an organization
where you have contacts about their ETL processes. What
lessons did you learn from your interviews about the design
of sound ETL processes?

4. Interview a data administrator in an organization that has
established a data governance committee and data stew-
ards. Document the different roles provided by the data
administrator(s), data stewards, and data governance com-
mittee members. What is the charter for the data gover-
nance committee? How are issues about data planning,
quality, security, and ownership resolved? What would the
data administrator like to change about the data governance
process, and why?

References

Agosta, L. 2003. “Data Warehouse Refresh Rates.” DM Review
13,6 (June): 49.

Brauer, B. 2002. “Data Quality—Spinning Straw into Gold,”
www2.sas.com/proceedings/sugi26/p117-26.pdf.

Carlson, D. 2002. “Data Stewardship Action,” DM Review 12,5
(May): 37,62.

Devlin, B. 1997. Data Warehouse: From Architecture to Implementation.
Reading, MA: Addison-Wesley Longman.

Dyché, J. 2007. “The Myth of the Purebred Data Steward.”
(February 22) available at www.b-eye-network.com/
print/3971.

Dyché, J., and E. Levy. 2006. Customer Data Integration: Reaching
a Single Version of the Truth. Hoboken, NJ: Wiley.

Eckerson, W. 2003. “The Evolution of ETL.” Business Intelligence
Journal (Fall): 4–8.

Eckerson, W., and C. White. 2003. Evaluating ETL and Data
Integration Platforms. The Data Warehouse Institute, avail-
able at www.tdwi.org, under “Research Reports.”

English, L. 1999a. Business Information Quality: Methods for
Reducing Costs and Improving Profits. New York: Wiley.

English, L. P. 1999b. Improving Data Warehouse and Business
Information Quality. New York: Wiley.

English, L. P. 2004. “Six Sigma and Total Information Quality
Management (TIQM).” DM Review 14,10 (October):
44–49, 73.

Hay, D. C. 2005. “Data Model Quality: Where Good Data
Begin.” Published online at www.tdan.com (January).

Hoffer, J., J. George, and J. Valacich. 2010. Modern Systems Analysis
and Design, 5th ed. Upper Saddle River, NJ. Prentice Hall.

Imhoff, C., and C.White. 2006. “Master Data Management:
Creating a Single View of the Business,” available at
www.beyeresearch.com/study/3360.

Informatica. 2005. “Addressing Data Quality at the Enterprise
Level.” (October).

Inmon, B. 2004. “Data Quality.” (June 24) available at www
.b-eye-network.com/view/188.

Kimball, R. 2004. “The 38 Subsystems of ETL.” Intelligent
Enterprise 8,12 (December 4): 16, 17, 46.

Krudop, M. E. 2005. “Maximizing Your ETL Tool Investment.”
DM Review 15,3 (March): 26–28.

Laurent, W. 2005. “The Case for Data Stewardship.” DM Review
15,2 (February): 26–28.

Leon, M. 2007. “Escaping Information Anarchy.” DB2 Magazine
12,1: 23–26.

Loshin, D. 2001. “The Cost of Poor Data Quality.” DM Review
(June 29) available at www.information-management
.com/infodirect/20010629/3605-1.html.

Loshin, D. 2006. “Monitoring Data Quality Performance Using
Data Quality Metrics.” A white paper from Informatica
(November).

www.teradatastudentnetwork.com
www.teradatastudentnetwork.com
www2.sas.com/proceedings/sugi26/p117-26.pdf
www.b-eye-network.com/print/3971
www.b-eye-network.com/print/3971
www.tdwi.org
www.tdan.com
www.beyeresearch.com/study/3360
www.b-eye-network.com/view/188
www.b-eye-network.com/view/188
www.information-management.com/infodirect/20010629/3605-1.html
www.information-management.com/infodirect/20010629/3605-1.html

458 Part V • Advanced Database Topics

Moriarty, T. 1996. “Better Business Practices.” Database
Programming & Design 9,7 (September): 59–61.

Redman, T. 2004. “Data: An Unfolding Quality Disaster.” DM
Review 14,8 (August): 21–23, 57.

Russom, P. 2006. “Taking Data Quality to the Enterprise
through Data Governance.” TDWI Report Series. (March).

Seiner, R. 2005. “Data Steward Roles & Responsibilities,” avail-
able at www.tdan.com, July, 2005.

Yugay, I., and V. Klimchenko. 2004. “SOX Mandates Focus on Data
Quality & Integration.” DM Review 14,2 (February): 38–42.

Variar, G. 2002. “The Origin of Data.” Intelligent Enterprise 5,2
(February 1): 37–41.

Westerman, P. 2001. Data Warehousing: Using the Wal-Mart
Model. San Francisco: Morgan Kaufmann.

White, C. 2000. “First Analysis.” Intelligent Enterprise 3,9 (June):
50–55.

Further Reading

Eckerson, W. 2002. “Data Quality and the Bottom Line:
Achieving Business Success Through a Commitment to
Data Quality.” www.tdwi.org.

Weill, P., and J. Ross. 2004. IT Governance: How Top Performers
Manage IT Decision Rights for Superior Results. Boston:
Harvard Business School Press.

Web Resources

www.informationintegrity.org Web site of a not-for-profit
organization that promotes the awareness and under-
standing of information integrity.

www.knowledge-integrity.com Web site of David Loshin, a
leading consultant in the data quality and business intelli-
gence fields.

http://mitiq.mit.edu Web site for data quality research done at
Massachusetts Institute of Technology.

www.tdwi.org Web site of The Data Warehousing Institute,
which produces a variety of white papers, research

reports, and Webinars that are available to the general
public, as well as a wider array that are available only to
members.

www.teradatastudentnetwork.com The Teradata Student
Network (and the associated University Network for
faculty), a free portal service to a wide variety of journal
articles, training materials, Webinars, and other special
reports on data quality, data integration, and related
topics.

www.tdan.com
www.tdwi.org
www.informationintegrity.org
www.knowledge-integrity.com
http://mitiq.mit.edu
www.tdwi.org
www.teradatastudentnetwork.com

Chapter 10 • Data Quality and Integration 459

CASE
Mountain View Community Hospital

Case Description

At the end of Chapter 1, you learned about the Mountain View
Community Hospital (MVCH) special study team that is develop-
ing a long-term strategic and information systems plan for the
next five years. The team, composed of Mr. Heller, Mr. Lopez,
Dr. Jefferson, and a consultant, is trying to devise a plan that will
meet the hospital’s goals of high-quality health care, cost contain-
ment, and expansion into new services, such as Dr. Browne’s
anticipated Geriatric Medicine department. Mr. Heller, MVCH’s
CIO, is a member of the Healthcare Information and Management
Systems Society (HIMMS) and regularly reads IT-related maga-
zines to keep up with developments and new technologies
(e.g., Computerworld, CIO Magazine, Health Management Technology,
Health Data Management, and Healthcare Informatics). He also
attends health-care IT conferences that allow him to interact with
his peers and find out what’s new.

In response to issues with existing systems and recent
trends in health-care IT (e.g., electronic medical records [EMRs],
work-flow automation, etc.), the study team has been evaluating
various options for integrating the hospital’s operational, clini-
cal, and financial information. An EMR system would allow
physicians to access all medical information for a patient, even
though that information is from different systems and locations,
including various physician, hospital, laboratory, and insurance
records. As part of a transition from the paper chart to EMRs,
and as a way of addressing medical errors, hospitals, including
MVCH, are also beginning to take a closer look at computerized
physician order entry (CPOE) systems. (You may recall that the
enterprise model developed by the study team included an
ORDER entity.) Primarily implemented in large metropolitan
areas and leading government hospitals at the present time,
CPOE allows physicians to electronically enter their orders for
labs, medications, radiology, and so on. CPOE not only elimi-
nates problems stemming from illegible handwriting, it also pro-
vides decision support capabilities, intercepting medication
errors at the time of order or alerting a physician to potential
interactions with other medications a patient may be taking.

EMR and CPOE systems, however, represent a significant
change in the way health-care information is collected and
used. And change is often difficult. After a conversation with
Dr. Z, who worked at a large hospital that used a CPOE system
prior to joining MVCH, Mr. Heller realizes that physicians may
not readily embrace such a system. For example, a physician
who wants to prescribe an antibiotic for 10 days or 2 weeks may
find that the default in the computer is 1 week. The physician
would then have to manually override the default. Not only
would this extra step consume extra time, it would also require
greater knowledge of the computerized order system on the
part of the physician. A handwritten order would have been
more convenient. And, according to Dr. Z, this example is just
one of a million little things that would be more difficult. While
advocating the technology, Dr. Z believes that CPOE’s steep
learning curve and need for relearning can make the practice of
medicine more difficult. Dr. Z also remembers a situation in
which the pharmacy went into the system and unilaterally
changed one of his orders.

In addition to his involvement with the hospital’s special
study team, Mr. Heller is facing a number of data management
issues as a result of HIPAA’s security rules to protect patient
information. Contingency planning is one of them. HIPAA’s
contingency plan standard has five components: a data backup
plan, a disaster recovery plan, an emergency mode operation
plan, testing and revision procedures, and applications and
data criticality analysis. The latter involves identifying all
potential data security threats and determining their level of
risk. HIPAA also has audit trail requirements that were briefly
described in the Chapter 7 case segment.

Password management has become a huge issue lately.
MVCH upgraded its security policies in response to HIPAA’s
information access management requirements. Users must have
unique names and passwords for many applications and are
required to change their passwords regularly. Physicians in par-
ticular are complaining about the many passwords they have
to keep track of and the problems they have with logging on
to an application when they forget a password. As a result,
Mr. Heller’s staff is working on making single sign-on (SSO) a
reality at MVCH.

Other data management issues of concern to Mr. Heller
include the hospital’s data storage needs and data quality.
Storage needs at MVCH continue to grow at an unprecedented
rate as data (clinical and nonclinical) and diagnostic images are
being created. HIPAA and other new regulations are increasing
data volumes even more. HIPAA, for example, requires that
some types of medical information be retained for many
years—even beyond the lifetime of a patient. The study team’s
discussions of data warehousing technologies (see MVCH
Chapter 9) have also brought data quality to the forefront. At
one of the team’s meetings, Mr. Lopez, the hospital’s CFO,
wanted to know just how much poor-quality data cost the hos-
pital every year. He had read that poor data quality costs
account for approximately 4 percent of a hospital’s expenses.1

Given the need for cost containment, Mr. Heller is beginning to
feel the pressure to shift away from the current focus on fixing
after the fact and moving toward proactively preventing data
quality problems and building quality into the process.

Case Questions

1. Do you think that data quality at MVCH is a strategic
issue? Why or why not?

2. In light of HIPAA and other regulations, securing and pro-
tecting patient records is a primary requirement for
MVCH. Examine the organization chart for MVCH in
Chapter 1 (MVCH Figure 1-1). Who would be the best
choice for a data steward for patient data? Please explain
your answer. What recommendations would you make for
establishing a data governance committee for MVCH?
Who should be on that committee?

1Barlow, R. D. 2005. “Routine Database Maintenance Can Lead to
Hospital Treasure,” Health Care Purchasing News 29:1 (January): 48-51.

460 Part V • Advanced Database Topics

3. Refer to the MVCH case in Chapter 9 and your answers to
case questions and exercises there. How can a data ware-
house help improve data quality at MVCH? Can it actually
do so? Under what circumstance would a data warehouse
improve data quality?

4. Refer to the MVCH case in Chapter 9 and your answers to
case questions and exercises there. What data quality chal-
lenges may arise if MVCH develops a data warehouse
and/or data mart(s)? Do you think that there is a need for
data scrubbing? If so, is it necessary to scrub all tables or
just some?

5. Commercial off-the-shelf (COTS) packages for EMR could
replace all of the data systems that would have to be inte-
grated to form an EMR system in-house at MVCH. (You
might want to research a few as background to this ques-
tion.) Develop a list of pros and cons for purchasing a
COTS EMR system versus developing a program for data

integration to provide EMR capabilities on top of the exist-
ing disparate data source systems within MVCH.

Case Exercises

1. Investigate data quality management in greater detail and
outline a data quality strategy that would address the
issues raised in the case description. What should be the
first step? What would be considered high-quality data at
MVCH? How could data quality be built into the process?
Who should be part of it? What would be the ROI of a data
quality initiative?

2. Assume that the result of an analysis to your answer to
Case Question 5 is to develop an EMR system via data inte-
gration in-house. What approach to data integration would
you recommend: consolidation, federation, propagation, or
master data management? Justify your answer.

461

Data and Database
Administration

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: data administration, database
administration, open source DBMS, database security, authorization rules, user-
defined procedures, encryption, smart card, database recovery, backup facilities,
journalizing facilities, transaction, transaction log, database change log, before
image, after image, checkpoint facility, recovery manager, restore/rerun,
transaction boundaries, backward recovery (rollback), forward recovery
(rollforward), aborted transaction, database destruction, concurrency control,
inconsistent read problem, locking, locking level (lock granularity), shared lock
(S lock, or read lock), exclusive lock (X lock, or write lock), deadlock, deadlock
prevention, two-phase locking protocol, deadlock resolution, versioning, data
dictionary, system catalog, information repository, Information Resource
Dictionary System (IRDS), data archiving, and heartbeat query.

� List several major functions of data administration and of database administration.
� Describe the changing roles of the data administrator and database administrator

in the current business environment.
� Describe the role of data dictionaries and information repositories and how they

are used by data administration.
� Compare the optimistic and pessimistic systems of concurrency control.
� Describe the problem of database security and list five techniques that are used

to enhance security.
� Understand the role of databases in Sarbanes-Oxley compliance.
� Describe the problem of database recovery and list four basic facilities that are

included with a DBMS to recover databases.
� Describe the problem of tuning a database to achieve better performance, and list

five areas where changes may be made when tuning a database.
� Describe the importance of data availability and list several measures to improve

availability.

C H A P T E R

11

462 Part V • Advanced Database Topics

INTRODUCTION

ChoicePoint—More ID theft warnings: ID company says criminals able to obtain
almost 140,000 names, addresses and other information.

ChoicePoint, Inc., a national provider of identification and credential
verification services, says it will send an additional 110,000 statements to
people informing them of possible identity theft after a group of well-
organized criminals was able to obtain personal information on almost
140,000 consumers through the company.

According to a statement on the ChoicePoint Web site, the incident was
not the result of its systems being hacked but rather caused by criminals
posing as legitimate businesses seeking to gain access to personal information.

ChoicePoint said the criminals may have gained access to people’s
names, addresses, Social Security numbers, and credit reports.

The company said Tuesday it sent warning letters to 30,000 to 35,000
consumers in California, the only state that requires companies to disclose
security breaches.

Although the company knew about the fraud last fall, it said it did not
reveal the information until now at the request of authorities, who said it
would jeopardize the investigation.

ChoicePoint said 35,000 California residents have already been notified
and another 110,000 people outside of California will receive notice soon.

Alpharetta, Ga.-based ChoicePoint maintains personal profiles of nearly
every U.S. consumer, which it sells to employers, landlords, marketing
companies and about 35 U.S. government agencies.

ChoicePoint’s databases contain 19 billion public records, including
driving records, sex-offender lists, and FBI lists of wanted criminals and
suspected terrorists.

The company says its records enable law enforcers to track down serial
killers and have helped find 822 missing children.
(Source: CNN Money Web site, February 17, 2005.)

The critical importance of data to organizations is widely recognized. Data are
a corporate asset, just as personnel, physical resources, and financial resources are
corporate assets. Like these other assets, data and information are too valuable to
be managed casually. The development of information technology has made
effective management of corporate data far more possible, but data are also
vulnerable to accidental and malicious damage and misuse. Data and database
administration activities have been developed to help achieve organizations’ goals
for the effective management of data.

Ineffective data administration, on the other hand, leads to poor data quality,
security, and availability and can be characterized by the following conditions,
which are all too common in organizations:

1. Multiple definitions of the same data entity and/or inconsistent representa-
tions of the same data elements in separate databases, making integration of
data across different databases hazardous

2. Missing key data elements, whose loss eliminates the value of existing data
3. Low data quality levels due to inappropriate sources of data or timing of data

transfers from one system to another, thus reducing the reliability of the data
4. Inadequate familiarity with existing data, including awareness of data loca-

tion and meaning of stored data, thus reducing the capability to use the data
to make effective strategic or planning decisions

5. Poor and inconsistent query response time, excessive database downtime, and
either stringent or inadequate controls to ensure agreed upon data privacy
and security

6. Lack of access to data due to damaged, sabotaged, or stolen files or due to
hardware failures that eliminate paths to data users need

7. Embarrassment to the organization because of unauthorized access to data

Chapter 11 • Data and Database Administration 463

Many of these conditions put an organization at risk for failing to comply with
regulations, such as the Sarbanes-Oxley Act (SOX), the Health Insurance Portability
and Accountability Act (HIPAA), and the Gramm-Leach-Bliley Act for adequate
internal controls and procedures in support of financial control, data transparency,
and data privacy. Manual processes for data control are discouraged, so organizations
need to implement automated controls, in part through a DBMS (e.g., sophisticated
data validation controls, security features, triggers, and stored procedures), to
prevent and detect accidental damage of data and fraudulent activities. Databases
must be backed-up and recovered to prevent permanent data loss. The who, what,
when, and where of data must be documented in metadata repositories for auditor
review. Data stewardship programs, aimed at reviewing data quality control
procedures, are becoming popular. Collaboration across the organization is needed
so data consolidation across distributed databases is accurate. Breaches of data
accuracy or security must be communicated to executives and managers.

Morrow (2007) views data as the lifeblood of an organization. Good
management of data involves managing data quality (as discussed in Chapter 10)
as well as data security and availability (which we cover in this chapter).
Organizations have responded to these data management issues with different
strategies. Some have created a function called data administration. The person
who heads this function is called the data administrator (DA), or information
resource manager, and he or she takes responsibility for the overall management
of data resources. A second function, database administration, has been regarded
as being responsible for physical database design and for dealing with the
technical issues, such as security enforcement, database performance, and backup
and recovery, associated with managing a database. Other organizations combine
the data administration and database administration functions. The rapidly
changing pace of business has caused the roles of the data administrator and the
database administrator (DBA) to change, in ways that are discussed next.

THE ROLES OF DATA AND DATABASE ADMINISTRATORS

Several new technologies and trends are driving the changes in the data administration
and database administration roles (Mullins, 2001):

1. The proliferation of proprietary and open source technologies and databases on
diverse platforms that must be managed concurrently in many organizations

2. Rapid growth in the size of databases, fueled by the storage of complex data types
and the business intelligence needs of today’s organizations

3. The embedding of business rules in databases in the form of triggers, stored
procedures, and user-defined functions

4. The explosion of e-business applications that require linking corporate databases
to the Internet and tracking Internet activity, thus making databases more open for
unauthorized access from outside the organization

Against the background of these changes, it is important to understand traditional
role distinctions. This will help us understand the ways in which the roles are being
blended in organizations that have different information technology architectures.

Traditional Data Administration

Databases are shared resources that belong to the entire enterprise; they are not the
property of a single function or individual within the organization. Data administration
is the custodian of the organization’s data, in much the same sense that the controller is
custodian of the financial resources. Like the controller, the data administrator must
develop procedures to protect and control the resource. Also, data administration must
resolve disputes that may arise when data are centralized and shared among users and
must play a significant role in deciding where data will be stored and managed. Data
administration is a high-level function that is responsible for the overall management
of data resources in an organization, including maintaining corporate-wide data defini-
tions and standards.

Data administration
A high-level function that is
responsible for the overall
management of data resources
in an organization, including
maintaining corporate-wide
definitions and standards.

464 Part V • Advanced Database Topics

Selecting the data administrator and organizing the function are extremely impor-
tant organizational decisions. The data administrator must be a highly skilled manager
capable of eliciting the cooperation of users and resolving differences that normally
arise when significant change is introduced into an organization. The data administra-
tor should be a respected, senior-level manager selected from within the organization,
rather than a technical computer expert or a new individual hired for the position.
However, the data administrator must have sufficient technical skills to interact effec-
tively with technical staff members such as database administrators, system adminis-
trators, and programmers.

Following are some of the core roles of traditional data administration:

• Data policies, procedures, and standards Every database application requires
protection established through consistent enforcement of data policies, proce-
dures, and standards. Data policies are statements that make explicit the goals of
data administration, such as “Every user must have a valid password.” Data pro-
cedures are written outlines of actions to be taken to perform a certain activity.
Backup and recovery procedures, for example, should be communicated to all
involved employees. Data standards are explicit conventions and behaviors that
are to be followed and that can be used to help evaluate database quality. Naming
conventions for database objects should be standardized for programmers, for
example. Increased use of external data sources and increased access to organiza-
tional databases from outside the organization have increased the importance of
employees’ understanding of data policies, procedures, and standards. Such poli-
cies and procedures need to be well documented to comply with the transparency
requirements of financial reporting, security, and privacy regulations.

• Planning A key administration function is providing leadership in developing
the organization’s information architecture. Effective administration requires both
an understanding of the needs of the organization for data and information and
the ability to lead the development of an information architecture that will meet
the diverse needs of the typical organization.

• Data conflict resolution Databases are intended to be shared and usually
involve data from several different departments of the organization. Ownership
of data is a ticklish issue at least occasionally in every organization. Those in data
administration are well placed to resolve data ownership issues because they are
not typically associated with a certain department. Establishing procedures for
resolving such conflicts is essential. If the administration function has been given
sufficient authority to mediate and enforce the resolution of the conflict, they may
be very effective in this capacity.

• Managing the information repository Repositories contain the metadata that
describe an organization’s data and data processing resources. Information repos-
itories are replacing data dictionaries in many organizations. Whereas data dic-
tionaries are simple data element documentation tools, information repositories
are used by data administrators and other information specialists to manage the
total information processing environment. An information repository serves as an
essential source of information and functionality for each of the following:
1. Users who must understand data definitions, business rules, and relationships

among data objects
2. Automated CASE tools that are used to specify and develop information

systems
3. Applications that access and manipulate data (or business information) in the

corporate databases
4. Database management systems, which maintain the repository and update

system privileges, passwords, object definitions, and so on
• Internal marketing While the importance of data and information to an organi-

zation has become more widely recognized within organizations, it is not neces-
sarily true that an appreciation for data management issues—such as information
architecture, data modeling, metadata, data quality, and data standards—has also
evolved. The importance of following established procedures and policies must be

Chapter 11 • Data and Database Administration 465

proactively instituted through data (and database) administrators. Effective inter-
nal marketing may reduce resistance to change and data ownership problems.

When the data administration role is not separately defined in an organization,
these roles are assumed by database administration and/or others in the IT organization.

Traditional Database Administration

Typically, the role of database administration is taken to be a hands-on, physical involve-
ment with the management of a database or databases. Database administration is a
technical function responsible for logical and physical database design and for dealing
with technical issues, such as security enforcement, database performance, backup and
recovery, and database availability. A database administrator (DBA) must understand
the data models built by data administration and be capable of transforming them into
efficient and appropriate logical and physical database designs (Mullins, 2002). The DBA
implements the standards and procedures established by the data administrator, includ-
ing enforcing programming standards, data standards, policies, and procedures.

Just as a data administrator needs a wide variety of job skills, so does a DBA.
Having a broad technical background, including a sound understanding of current
hardware and software (operating system and networking) architectures and capa-
bilities and a solid understanding of data processing is essential. An understanding
of the database development life cycle, including traditional and prototyping
approaches, is also necessary. Strong design and data modeling skills are essential,
especially at the logical and physical levels. But managerial skills are also critical;
a DBA must manage other information systems (IS) personnel while the database
is analyzed, designed, and implemented, and the DBA must also interact with
and provide support for the end users who are involved with the design and use of
the database.

Following are some of the core roles assumed by database administration:

• Analyzing and designing the database The key role played by a DBA in the data-
base analysis stage is the definition and creation of the data dictionary repository.
The key task in database design for a DBA includes prioritizing application trans-
actions by volume, importance, and complexity. Because these transactions are
going to be most critical to the application, specifications for them should be
reviewed as quickly as the transactions are developed. Logical data modeling,
physical database modeling, and prototyping may occur in parallel. DBAs should
strive to provide adequate control of the database environment while allowing the
developers space and opportunity to experiment.

• Selecting DBMS and related software tools The evaluation and selection of
hardware and software is critical to an organization’s success. The database
administration group must establish policies regarding the DBMS and related sys-
tem software (e.g., compilers, system monitors, etc.) that will be supported within
the organization. This requires evaluating vendors and their software products,
performing benchmarks, and so on.

• Installing and upgrading the DBMS Once the DBMS is selected, it must be
installed. Before installation, benchmarks of the workload against the database
on a computer supplied by the DBMS vendor should be taken. Benchmarking
anticipates issues that must be addressed during the actual installation. A DBMS
installation can be a complex process of making sure all the correct versions of
different modules are in place, all the proper device drivers are present, and the
DBMS works correctly with any third-party software products. DBMS vendors
periodically update package modules; planning for, testing, and installing
upgrades to ensure that existing applications still work properly can be time-
consuming and intricate. Once the DBMS is installed, user accounts must be
created and maintained.

• Tuning database performance Because databases are dynamic, it is improbable
that the initial design of a database will be sufficient to achieve the best processing
performance for the life of the database. The performance of a database (query

Database administration
A technical function that is
responsible for physical database
design and for dealing with
technical issues, such as security
enforcement, database performance,
and backup and recovery.

466 Part V • Advanced Database Topics

and update processing time as well as data storage utilization) needs to be con-
stantly monitored. The design of a database must be frequently changed to meet
new requirements and to overcome the degrading effects of many content
updates. The database must periodically be rebuilt, reorganized, and re-indexed
to recover wasted space and to correct poor data allocation and fragmentation
with the new size and use of the database.

• Improving database query processing performance The workload against a data-
base will expand over time as more users find more ways to use the growing
amount of data in a database. Thus, some queries that originally ran quickly
against a small database may need to be rewritten in a more efficient form to run
in a satisfactory time against a fully populated database. Indexes may need to be
added or deleted to balance performance across all queries. Data may need to be
relocated to different devices to allow better concurrent processing of queries and
updates. The vast majority of a DBA’s time is likely to be spent on tuning data-
base performance and improving database query processing time.

• Managing data security, privacy, and integrity Protecting the security, privacy,
and integrity of organizational databases rests with the database administration
function. More detailed explanations of the ways in which privacy, security, and
integrity are ensured are included later in the chapter. Here it is important to real-
ize that the advent of the Internet and intranets to which databases are attached,
along with the possibilities for distributing data and databases to multiple sites,
have complicated the management of data security, privacy, and integrity.

• Performing data backup and recovery A DBA must ensure that backup proce-
dures are established that will allow for the recovery of all necessary data should
a loss occur through application failure, hardware failure, physical or electrical
disaster, or human error or malfeasance. Common backup and recovery strategies
are also discussed later in this chapter. These strategies must be fully tested and
evaluated at regular intervals.

Reviewing these data administration and database administration functions
should convince any reader of the importance of proper administration, at both the
organizational and project levels. Failure to take the proper steps can greatly reduce an
organization’s ability to operate effectively and may even result in its going out of busi-
ness. Pressures to reduce application development time must always be reviewed to be
sure that necessary quality is not being forgone in order to react more quickly, for such
shortcuts are likely to have very serious repercussions. Figure 11-1 summarizes how
these data administration and database administration functions are typically viewed
with respect to the steps of the systems development life cycle.

Trends in Database Administration

Rapidly changing business conditions are leading to the need for DBAs to possess skills
that go above and beyond the ones described above. Here we describe three of these
trends and the associated new skills needed:

1. Increased used of procedural logic Features such as triggers, stored procedures,
and persistent stored modules (all described in Chapter 7) provide the ability to
define business rules to the DBMS rather than in separate application programs.
Once developers begin to rely on the use of these objects, a DBA must address the
issues of quality, maintainability, performance, and availability. A DBA is now
responsible for ensuring that all such procedural database logic is effectively
planned, tested, implemented, shared, and reused (Mullins, 2002). A person filling
such a role will typically need to come from the ranks of application programming
and be capable of working closely with that group.

2. Proliferation of e-business applications When a business goes online, it never
closes. People expect the site to be available and fully functional on a 24/7 basis.
A DBA in such an environment needs to have a full range of DBA skills and also be
capable of managing applications and databases that are Internet enabled
(Mullins, 2001). Major priorities in this environment include high data availability

Chapter 11 • Data and Database Administration 467

DA = typically performed by data administration
DBA = typically performed by database administration

DA

DBA

DBA

DA/DBA

DA/DBA

DBA

DA/DBA

Develop corporate database strategy/policies

Develop enterprise model (information architecture)

Develop cost/benefit models

Design database environment/select technologies

Develop and market data administration plan

Database planning

Define and model data requirements (conceptual)

Define and model business rules

Define operational requirements

Resolve requirements conflicts

Maintain corporate data dictionary/repository

Database analysis

Perform logical database design

Design external model (subschemas)

Design internal (physical) models

Design integrity controls

Database design

Specify database access policies

Establish security controls

Supervise database loading

Install DBMS

Specify test procedures

Develop application programming standards

Establish procedures for backup and recovery

Conduct user training

Database implementation

Monitor database performance

Tune and reorganize databases

Enforce standards and procedures

Tune and rewrite queries

Resolve access conflict

Support users

Operations and maintenance

Implement change-control procedures

Plan growth and change

Growth and change

Evaluate new technology

Upgrade DBMS

Backup and recover databases

Life-Cycle Phase

Function

FIGURE 11-1 Functions of
data administration and
database administration

468 Part V • Advanced Database Topics

(24/7), integration of legacy data with Web-based applications, tracking of Web
activity, and performance engineering for the Internet.

3. Increase use of smartphones Use of smartphones in organizations is exploding.
Most DBMS vendors (e.g., Oracle, IBM, and Sybase) offer small-footprint versions
of their products to run on these smartphones, typically in support of specific ap-
plications. (This is an example of the personal databases described in Chapter 1.)
A small amount of critical data is typically stored on a smartphone, which then is
periodically synchronized with data stored on the enterprise data servers. In such
an environment, DBAs will often be asked questions about how to design these
personal databases (or how to rescue users when they get in trouble). A greater
issue is how to manage data synchronization from hundreds (or possibly thou-
sands) of such smartphones while maintaining the data integrity and data avail-
ability requirements of the enterprise. However, a number of applications are now
available on smartphones that enable DBAs to remotely monitor databases and
solve minor issues without requiring physical possession of the devices.

Data Warehouse Administration

The significant growth in data warehousing (see Chapter 9) in the past five years has
caused a new role to emerge: that of a data warehouse administrator (DWA). Two gen-
eralizations are true about the DWA role:

1. A DWA plays many of the same roles as do DAs and DBAs for the data warehouse
and data mart databases for the purpose of supporting decision-making applica-
tions (rather than transaction-processing applications for the typical DA and DBA).

2. The role of a DWA emphasizes integration and coordination of metadata and data
(extraction agreements, operational data stores, and enterprise data warehouses)
across many data sources, not necessarily the standardization of data across these
separately managed data sources outside the control and scope of the DWA.
Specifically, Inmon (1999) suggests that a DWA has a unique charter to perform
the following functions:
• Build and administer an environment supportive of decision support applica-

tions. Thus, a DWA is more concerned with the time to make a decision than
with query response time.

• Build a stable architecture for the data warehouse. A DWA is more concerned
with the effect of data warehouse growth (scalability in the amount of data and
number of users) than with redesigning existing applications. Inmon refers to
this architecture as the corporate information factory. For a detailed discussion of
this architecture, see Chapter 9 and Inmon, Imhoff, and Sousa (2001).

• Develop service-level agreements with suppliers and consumers of data for the
data warehouse. Thus, a DWA works more closely with end users and opera-
tional system administrators to coordinate vastly different objectives and to
oversee the development of new applications (data marts, ETL procedures, and
analytical services) than do DAs and DBAs.

3. These responsibilities are in addition to the responsibilities typical of any DA or
DBA, such as selecting technologies, communicating with users about data needs,
making performance and capacity decisions, and budgeting and planning data
warehouse requirements.

Inmon (1999)has estimated that every 100 gigabytes of data in an EDW necessi-
tates another DWA. Another metric is that a DWA is needed for each year of data kept
in the EDW. The use of custom-built tools for ETL usually increases the number of
DWAs needed.

DWAs typically report through the IT unit of an organization but have strong rela-
tionships with marketing and other business areas that depend on the EDW for applica-
tions, such as customer or supplier relationship management, sales analysis, channel
management, and other analytical applications. DWAs should not be part of traditional
systems development organizations, as are many DBAs, because data warehousing
applications are developed differently than operational systems are and need to be

Chapter 11 • Data and Database Administration 469

viewed as independent from any particular operational system. Alternatively, DWAs
can be placed in the primary end-user organization for the EDW, but this runs the risk
of creating many data warehouses or marts, rather than leading to a true, scalable EDW.

Summary of Evolving Data Administration Roles

The DA and DBA roles are some of the most challenging roles in any organization. The
DA has renewed visibility with the recent enactment of financial control regulations
and greater interest in data quality. The DBA is always expected to keep abreast of rap-
idly changing new technologies and is usually involved with mission-critical applica-
tions. A DBA must be constantly available to deal with problems, so the DBA is
constantly on call. In return, the DBA position ranks among the best compensated in the
IS profession.

Many organizations have blended together the data administration and database
administration roles. These organizations emphasize the capability to build a database
quickly, tune it for maximum performance, and restore it to production quickly when
problems develop. These databases are more likely to be departmental, client/server
databases that are developed quickly using newer development approaches, such as
prototyping, which allow changes to be made more quickly. The blending of data
administration and database administration roles also means that DBAs in such organ-
izations must be able to create and enforce data standards and policies.

It is expected that the DBA role will continue to evolve toward increased special-
ization, with skills such as distributed database/network capacity, server program-
ming, customization of off-the-shelf packages, and support for data warehousing DBAs
(Dowgiallo et al., 1997) becoming more important. The ability to work with multiple
databases, communication protocols, and operating systems will continue to be highly
valued. DBAs who gain broad experience and develop the ability to adapt quickly to
changing environments will have many opportunities. It is possible that some current
DBA activities, such as tuning, will be replaced by decision support systems able to
tune systems by analyzing usage patterns. Some operational duties, such as backup and
recovery, can be outsourced and offshored with remote database administration serv-
ices. Opportunities in large companies to continue working with very large databases
(VLDBs) and opportunities in small and midsize companies to manage desktop and
midrange servers should remain strong.

THE OPEN SOURCE MOVEMENT AND DATABASE MANAGEMENT

As mentioned previously, one role of a DBA is to select the DBMS(s) to be used in the
organization. Database administrators and systems developers in all types of organiza-
tions have new alternatives when selecting a DBMS. Increasingly, organizations of all
sizes are seriously considering open source DBMSs, such as MySQL and PostgreSQL, as
viable choices along with Oracle, DB2, Microsoft SQL Server, Informix, and Teradata.
This interest is spurred by the success of the Linux operating system and the Apache
Web server. The open source movement began in roughly 1984, with the start of the Free
Software Foundation. Today, the Open Source Initiative (www.opensource.org) is a non-
profit organization dedicated to managing and promoting the open source movement.

Why has open source software become so popular? It’s not all about cost.
Advantages of open source software include the following:

• A large pool of volunteer testers and developers facilitate the construction of reli-
able, low-cost software in a relatively short amount of time. (But be aware that
only the most widely used open source software comes close to achieving this
advantage; for example, MySQL has over 11 million installations.)

• The availability of the source code allows people to make modifications to add
new features, which are easily inspected by others. (In fact, the agreement is that
you do share all modifications for the good of the community.)

• Because the software is not proprietary to one vendor, you do not become locked
into the product development plans (i.e., new features, time lines) of a single ven-
dor, which might not be adding the features you need for your environment.

www.opensource.org

470 Part V • Advanced Database Topics

• Open source software often comes in multiple versions, and you can select the
version that is right for you (from simple to complex, from totally free to some
costs for special features).

• Distributing application code dependent on and working with the open source
software does not incur any additional costs for copies or licenses. (Deploying
software across multiple servers even within the same organization has no mar-
ginal cost for the DBMS.)

There are, however, some risks or disadvantages of open source software:

• Often there is not complete documentation (although for-fee services might pro-
vide quite sufficient documentation).

• Systems with specialized or proprietary needs across organizations do not have
the commodity nature that makes open source software viable, so not all kinds of
software lend themselves to being provided via an open source arrangement.
(However, DBMSs are viable.)

• There are different types of open source licenses, and not all open source software
is available under the same terms; thus, you have to know the ins and outs of each
type of license (see Michaelson, 2004).

• An open source tool may not have all the features needed. For example, early ver-
sions of MySQL did not support subqueries (although it has now supported sub-
queries for several releases). An open source tool may not have options for certain
functionality, so it may require that “one size fits all.”

• Open source software vendors often do not have certification programs. This may
not be a major factor for you, but some organizations (often software development
contractors) want staff to be certified as a way to demonstrate competence in com-
petitive bidding.

An open source DBMS is free or nearly free database software whose source code
is publicly available. (Some people refer to open source as “sharing with rules.”) The
free DBMS is sufficient to run a database, but vendors provide additional fee-based
components and support services that make the product more full featured and compa-
rable to the more traditional product leaders. Because many vendors often provide the
additional fee-based components, use of an open source DBMS means that an organiza-
tion is not tied to one vendor’s proprietary product.

A core open source DBMS is not competitive with IBM’s DB2, Oracle, or Teradata,
but it is more than competitive against Microsoft Access and other PC-oriented pack-
ages. As of this chapter’s writing, the commercial version of MySQL is priced at $495 for
one license, compared to $5,000 to $40,000 for Oracle, DB2, or Microsoft SQL Server,
depending on the edition chosen. According to Hall (2003), a typical Oracle database
annual license is $300,000, and a comparable MySQL annual subscription for bug fixes
and code updates would be $4,000.

Open source DBMSs are improving rapidly to include more powerful features,
such as the transaction controls described later in this chapter, needed for mission-
critical applications. Open source DBMSs are fully SQL compliant and run on most pop-
ular operating systems. For organizations that cannot afford to spend a lot on software or
staff (e.g., small businesses, nonprofits, and educational institutions), an open source
DBMS can be an ideal choice. For example, many Web sites are supported by MySQL or
PostgreSQL database back ends. Visit www.postgresql.org and www.mysql.com for
more details on these two leading open source DBMSs.

When choosing an open source (or really any) DBMS, you need to consider the fol-
lowing types of factors:

• Features Does the DBMS include capabilities you need, such as subqueries,
stored procedures, views, and transaction integrity controls?

• Support How widely is the DBMS used, and what alternatives exist for helping
you solve problems? Does the DBMS come with documentation and ancillary tools?

• Ease of use This often depends on the availability of tools that make any piece of
system software, such as a DBMS, easier to use through things like a GUI interface.

Open source DBMS
Free DBMS source code software
that provides the core functionality
of an SQL-compliant DBMS.

www.postgresql.org
www.mysql.com

Chapter 11 • Data and Database Administration 471

• Stability How frequently and how seriously does the DBMS malfunction over
time or with high-volume use?

• Speed How rapid is the response time to queries and transactions with proper
tuning of the database? (Because open source DBMSs are often not as fully loaded
with advanced, obscure features, their performance can be attractive.)

• Training How easy is it for developers and users to learn to use the DBMS?
• Licensing What are the terms of the open source license, and are there commer-

cial licenses that would provide the types of support needed?

MANAGING DATA SECURITY

Consider the following situations:

• At the university of one of this book’s authors, anyone with access to the univer-
sity’s main automated system for student and faculty data can see everyone’s
Social Security number.

• A previously loyal employee is given access to sensitive documents, and within a
few weeks leaves the organization, purportedly with a trove of trade secrets to
share with competing firms.

• The FBI reports (Morrow, 2007) that there are 3,000 clandestine organizations in
the United States whose sole purpose is to steal secrets and acquire technology for
foreign organizations.

• Sarbanes-Oxley requires that companies audit the access of privileged users to
sensitive data, and the payment card industry standards require companies to
track user identity information whenever credit card data are used.

The goal of database security is to protect data from accidental or intentional threats
to their integrity and access. The database environment has grown more complex, with
distributed databases located on client/server architectures and personal computers as
well as on mainframes. Access to data has become more open through the Internet and
corporate intranets and from mobile computing devices. As a result, managing data secu-
rity effectively has become more difficult and time-consuming. Some security procedures
for client/server and Web-based systems were introduced in Chapter 8.

Because data are a critical resource, all persons in an organization must be sensi-
tive to security threats and take measures to protect the data within their domains. For
example, computer listings or computer disks containing sensitive data should not be
left unattended on desktops. Data administration is often responsible for developing
overall policies and procedures to protect databases. Database administration is typi-
cally responsible for administering database security on a daily basis. The facilities that
database administrators have to use in establishing adequate data security are dis-
cussed later, but first it is important to review potential threats to data security.

Threats to Data Security

Threats to data security may be direct threats to the database. For example, those who
gain unauthorized access to a database may then browse, change, or even steal the data
to which they have gained access. (See the news story at the beginning of this chapter
for a good example.) Focusing on database security alone, however, will not ensure a
secure database. All parts of the system must be secure, including the database, the net-
work, the operating system, the building(s) in which the database resides physically,
and the personnel who have any opportunity to access the system. Figure 11-2 dia-
grams many of the possible locations for data security threats. Accomplishing this level
of security requires careful review, establishment of security procedures and policies,
and implementation and enforcement of those procedures and policies. The following
threats must be addressed in a comprehensive data security plan:

• Accidental losses, including human error, software, and hardware-caused breaches
Establishing operating procedures such as user authorization, uniform software
installation procedures, and hardware maintenance schedules are examples of
actions that may be taken to address threats from accidental losses. As in any effort

Database security
Protection of database data against
accidental or intentional loss,
destruction, or misuse.

472 Part V • Advanced Database Topics

that involves human beings, some losses are inevitable, but well-thought-out poli-
cies and procedures should reduce the amount and severity of losses. Of potentially
more serious consequence are the threats that are not accidental.

• Theft and fraud These activities are going to be perpetrated by people, quite pos-
sibly through electronic means, and may or may not alter data. Attention here
should focus on each possible location shown in Figure 11-2. For example, physi-
cal security must be established so that unauthorized persons are unable to gain
access to rooms where computers, servers, telecommunications facilities, or com-
puter files are located. Physical security should also be provided for employee
offices and any other locations where sensitive data are stored or easily accessed.
Establishment of a firewall to protect unauthorized access to inappropriate parts
of the database through outside communication links is another example of a
security procedure that will hamper people who are intent on theft or fraud.

• Loss of privacy or confidentiality Loss of privacy is usually taken to mean loss
of protection of data about individuals, whereas loss of confidentiality is usually
taken to mean loss of protection of critical organizational data that may have
strategic value to the organization. Failure to control privacy of information may
lead to blackmail, bribery, public embarrassment, or stealing of user passwords.
Failure to control confidentiality may lead to loss of competitiveness. State and
federal laws now exist to require some types of organizations to create and com-
municate policies to ensure privacy of customer and client data. Security mecha-
nisms must enforce these policies, and failure to do so can mean significant
financial and reputation loss.

• Loss of data integrity When data integrity is compromised, data will be invalid
or corrupted. Unless data integrity can be restored through established backup
and recovery procedures, an organization may suffer serious losses or make incor-
rect and expensive decisions based on the invalid data.

• Loss of availability Sabotage of hardware, networks, or applications may cause the
data to become unavailable to users, which again may lead to severe operational diffi-
culties. This category of threat includes the introduction of viruses intended to corrupt
data or software or to render the system unusable. It is important to counter this threat
by always installing the most current antivirus software, as well as educating employ-
ees on the sources of viruses. We discuss data availability later in this chapter.

Communication link

External communication link

Building

Equipment Room

NetworkHardware
Users

Users

Operating System
DBMS

Communication link

FIGURE 11-2 Possible
locations of data security
threats

Chapter 11 • Data and Database Administration 473

As noted earlier, data security must be provided within the context of a total pro-
gram for security. Two critical areas that strongly support data security are client/
server security and Web application security. We address these two topics next, before
outlining approaches aimed more directly at data security.

Establishing Client/Server Security

Database security is only as good as the security of the whole computing environment.
Physical security, logical security, and change control security must be established
across all components of the client/server environment, including the servers, the client
workstations, the network and its related components, and the users.

SERVER SECURITY In a modern client/server environment, multiple servers, including
database servers, need to be protected. Each should be located in a secure area, accessi-
ble only to authorized administrators and supervisors. Logical access controls, includ-
ing server and administrator passwords, provide layers of protection against intrusion.

Most modern DBMSs have database-level password security that is similar to
system-level password security. Database management systems, such as Oracle and
SQL Server, provide database administrators with considerable capabilities that can
provide aid in establishing data security, including the capability to limit each user’s
access and activity permissions (e.g., select, update, insert, or delete) to tables within the
database. While, it is also possible to pass authentication information through from the
operating system’s authentication capability, this reduces the number of password
security layers. Thus, in a database server, sole reliance on operating system authentica-
tion should not be encouraged.

NETWORK SECURITY Securing client/server systems includes securing the network
between client and server. Networks are susceptible to breaches of security through
eavesdropping, unauthorized connections, or unauthorized retrieval of packets of
information that are traversing the network. Thus, encryption of data so that attackers
cannot read a data packet that is being transmitted is obviously an important part of
network security. (We discuss encryption later in the chapter.) In addition, authentica-
tion of the client workstation that is attempting to access the server also helps to enforce
network security, and application authentication gives the user confidence that the
server being contacted is the real server needed by the user. Audit trails of attempted
accesses can help administrators identify unauthorized attempts to use the system.
Other system components, such as routers, can also be configured to restrict access to
authorized users, IP addresses, and so forth.

Application Security Issues in Three-Tier
Client/Server Environments

The explosion of Web sites that make data accessible to viewers through their Internet
connections raises new issues that go beyond the general client/server security issues
just addressed. In a three-tier environment, the dynamic creation of a Web page from a
database requires access to the database, and if the database is not properly protected, it
is vulnerable to inappropriate access by any user. This is a new point of vulnerability
that was previously avoided by specialized client access software. Also of interest is pri-
vacy. Companies are able to collect information about those who access their Web sites.
If they are conducting e-commerce activities, selling products over the Web, they can
collect information about their customers that has value to other businesses. If a com-
pany sells customer information without those customers’ knowledge or if a customer
believes that may happen, ethical and privacy issues are raised that must be addressed.

Figure 11-3 illustrates a typical environment for Web-enabled databases. The Web
farm includes Web servers and database servers supporting Web-based applications. If
an organization wishes to make only static HTML pages available, protection must be
established for the HTML files stored on a Web server. Creation of a static Web page
with extracts from a database uses traditional application development languages
such as Visual Basic.NET or Java, and thus their creation can be controlled by using

474 Part V • Advanced Database Topics

standard methods of database access control. If some of the HTML files loaded on the
Web server are sensitive, they can be placed in directories that are protected using
operating system security or they may be readable but not published in the directory.
Thus, the user must know the exact file name to access the sensitive HTML page. It is
also common to segregate the Web server and limit its contents to publicly browsable
Web pages. Sensitive files may be kept on another server accessible through an organi-
zation’s intranet.

Security measures for dynamic Web page generation are different. Dynamic Web
pages are stored as a template into which the appropriate and current data are inserted
from the database or user input once any queries associated with the page are run. This
means that the Web server must be able to access the database. To function appropri-
ately, the connection usually requires full access to the database. Thus, establishing ade-
quate server security is critical to protecting the data. The server that owns the database
connection should be physically secure, and the execution of programs on the server
should be controlled. User input, which could embed SQL commands, also needs to be
filtered so unauthorized scripts are not executed.

Access to data can also be controlled through another layer of security: user-
authentication security. Use of an HTML login form will allow the database administra-
tor to define each user’s privileges. Each session may be tracked by storing a piece of
data, or cookie, on the client machine. This information can be returned to the server
and provide information about the login session. Session security must also be estab-
lished to ensure that private data are not compromised during a session, because infor-
mation is broadcast across a network for reception by a particular machine and is thus
susceptible to being intercepted. TCP/IP is not a very secure protocol, and encryption
systems, such as the ones discussed later in this chapter, are essential. A standard
encryption method, Secure Sockets Layer (SSL), is used by many developers to encrypt
all data traveling between client and server during a session. URLs that begin with
https:// use SSL for transmission.

Public Client

WWW TCP/IP

Firewall

Business Systems

Intrusion Detection System

Router

Router

Firewall

Web Farm

FIGURE 11-3 Establishing Internet security

Chapter 11 • Data and Database Administration 475

Additional methods of Web security include ways to restrict access to Web
servers:

• Restrict the number of users on the Web server as much as possible. Of those
users, give as few as possible superuser or administrator rights. Only those given
these privileges should also be allowed to load software or edit or add files.

• Restrict access to the Web server, keeping a minimum number of ports open. Try
to open a minimum number of ports, and preferably only http and https ports.

• Remove any unneeded programs that load automatically when setting up the
server. Demo programs are sometimes included that can provide a hacker with
the access desired. Compilers and interpreters such as Perl should not be on a path
that is directly accessible from the Internet.

DATA PRIVACY Protection of individual privacy when using the Internet has become
an important issue. E-mail, e-commerce and marketing, and other online resources
have created new computer-mediated communication paths. Many groups have an
interest in people’s Internet behavior, including employers, governments, and busi-
nesses. Applications that return individualized responses require that information be
collected about the individual, but at the same time proper respect for the privacy and
dignity of employees, citizens, and customers should be observed.

Concerns about the rights of individuals to not have personal information
collected and disseminated casually or recklessly have intensified as more of the
population has become familiar with computers and as communications among
computers have proliferated. Information privacy legislation generally gives indi-
viduals the right to know what data have been collected about them and to correct
any errors in those data. As the amount of data exchanged continues to grow, the
need is also growing to develop adequate data protection. Also important are
adequate provisions to allow the data to be used for legitimate legal purposes so
that organizations that need the data can access them and rely on their quality.
Individuals need to be given the opportunity to state with whom data retained about
them may be shared, and then these wishes must be enforced; enforcement is more
reliable if access rules based on privacy wishes are developed by the DBA staff and
handled by the DBMS.

Individuals must guard their privacy rights and must be aware of the privacy
implications of the tools they are using. For example, when using a browser, users
may elect to allow cookies to be placed on their machines, or they may reject
that option. To make a decision with which they would be comfortable, they must
know several things. They must be aware of cookies, understand what they are, eval-
uate their own desire to receive customized information versus their wish to keep
their browsing behavior to themselves, and learn how to set their machine to accept
or reject cookies. Browsers and Web sites have not been quick to help users under-
stand all of these aspects. Abuses of privacy, such as selling customer information
collected in cookies, has helped increase general awareness of the privacy issues that
have developed as use of the Web for communication, shopping, and other uses has
developed.

At work, the individual needs to realize that communication executed through
their employer’s machines and networks is not private. Courts have upheld the rights
of employers to monitor all employee electronic communication.

On the Internet, privacy of communication is not guaranteed. Encryption prod-
ucts, anonymous remailers, and built-in security mechanisms in commonly used soft-
ware help to preserve privacy. Protecting the privately owned and operated computer
networks that now make up a very critical part of our information infrastructure is
essential to the further development of electronic commerce, banking, health care, and
transportation applications over the Web.

The W3C has created a standard, the Platform for Privacy Preferences (P3P), that
will communicate a Web site’s stated privacy policies and compare that statement with
the user’s own policy preferences. P3P uses XML code on Web site servers that can be
fetched automatically by any browser or plug-in equipped for P3P. The client browser

476 Part V • Advanced Database Topics

or plug-in can then compare the site’s privacy policy with the user’s privacy prefer-
ences and inform the user of any discrepancies. P3P addresses the following aspects of
online privacy:

• Who is collecting the data?
• What information is being collected, and for what purpose?
• What information will be shared with others, and who are those others?
• Can users make changes in the way their data will be used by the collector?
• How are disputes resolved?
• What policies are followed for retaining data?
• Where can the site’s detailed policies be found, in readable form?

Anonymity is another important facet of Internet communication that has come
under pressure. Although U.S. law protects a right to anonymity, chat rooms and e-mail
forums have been required to reveal the names of people who have posted messages
anonymously. A 1995 European Parliament directive that would cut off data exchanges
with any country lacking adequate privacy safeguards has led to an agreement that the
United States will provide the same protection to European customers as European
businesses do. This may lead Congress to establish legislation that is more protective
than that previously enacted.

DATABASE SOFTWARE DATA SECURITY FEATURES

A comprehensive data security plan will include establishing administrative policies
and procedures, physical protections, and data management software protections.
Physical protections, such as securing data centers and work areas, disposing of obso-
lete media, and protecting portable devices from theft, are not covered here. We discuss
administrative policies and procedures later in this section. All the elements of a data
security plan work together to achieve the desired level of security. Some industries, for
example health care, have regulations that set standards for the security plan and,
hence, put requirements on data security. (See Anderson, 2005, for a discussion of the
HIPAA security guidelines.) The most important security features of data management
software follow:

1. Views or subschemas, which restrict user views of the database
2. Domains, assertions, checks, and other integrity controls defined as database

objects, which are enforced by the DBMS during database querying and updating
3. Authorization rules, which identify users and restrict the actions they may take

against a database
4. User-defined procedures, which define additional constraints or limitations in

using a database
5. Encryption procedures, which encode data in an unrecognizable form
6. Authentication schemes, which positively identify persons attempting to gain

access to a database
7. Backup, journaling, and checkpointing capabilities, which facilitate recovery

procedures

Views

In Chapter 6, we defined a view as a subset of a database that is presented to one or more
users. A view is created by querying one or more of the base tables, producing a dynamic
result table for the user at the time of the request. Thus, a view is always based on the cur-
rent data in the base tables from which it is built. The advantage of a view is that it can be
built to present only the data (certain columns and/or rows) to which the user requires
access, effectively preventing the user from viewing other data that may be private or
confidential. The user may be granted the right to access the view, but not to access the
base tables upon which the view is based. So, confining a user to a view may be more
restrictive for that user than allowing him or her access to the involved base tables.

For example, we could build a view for a Pine Valley employee that provides
information about materials needed to build a Pine Valley furniture product without

Chapter 11 • Data and Database Administration 477

SELECT * FROM MATERIALS_V;

ProductID ProductName Footage FootageOnHand

1 End Table 4 1

2 Coffee Table 6 11

3 Computer Desk 15 11

4 Entertainment

Center 20 84

5 Writer’s Desk 13 68

6 8-Drawer Desk 16 66

7 Dining Table 16 11

8 Computer Desk 15 9

8 rows selected.

providing other information, such as unit price, that is not relevant to the employee’s
work. This command creates a view that will list the wood required and the wood avail-
able for each product:

CREATE VIEW MATERIALS_V AS
SELECT Product_T.ProductID, ProductName, Footage,

FootageOnHand
FROM Product_T, RawMaterial_T, Uses_T
WHERE Product_T.ProductID = Uses_T.ProductID
AND RawMaterial_T.MaterialID = Uses_T.MaterialID;

The contents of the view created will be updated each time the view is accessed, but
here are the current contents of the view, which can be accessed with the SQL command:

The user can write SELECT statements against the view, treating it as though it
were a table. Although views promote security by restricting user access to data, they
are not adequate security measures because unauthorized persons may gain knowl-
edge of or access to a particular view. Also, several persons may share a particular view;
all may have authority to read the data, but only a restricted few may be authorized to
update the data. Finally, with high-level query languages, an unauthorized person may
gain access to data through simple experimentation. As a result, more sophisticated
security measures are normally required.

Integrity Controls

Integrity controls protect data from unauthorized use and update. Often, integrity con-
trols limit the values a field may hold and the actions that can be performed on data, or
trigger the execution of some procedure, such as placing an entry in a log to record
which users have done what with which data.

One form of integrity control is a domain. In essence, a domain can be used to
create a user-defined data type. Once a domain is defined, any field can be assigned
that domain as its data type. For example, the following PriceChange domain
(defined in SQL) can be used as the data type of any database field, such as
PriceIncrease and PriceDiscount, to limit the amount standard prices can be aug-
mented in one transaction:

CREATE DOMAIN PriceChange AS DECIMAL
CHECK (VALUE BETWEEN .001 and .15);

478 Part V • Advanced Database Topics

Then, in the definition of, say, a pricing transaction table, we might have the following:

PriceIncrease PriceChange NOT NULL,

One advantage of a domain is that, if it ever has to change, it can be changed in
one place—the domain definition—and all fields with this domain will be changed
automatically. Alternatively, the same CHECK clause could be included in a constraint
on both the PriceIncrease and PriceDiscount fields, but in this case, if the limits of the
check were to change, a DBA would have to find every instance of this integrity control
and change it in each place separately.

Assertions are powerful constraints that enforce certain desirable database condi-
tions. Assertions are checked automatically by the DBMS when transactions are run
involving tables or fields on which assertions exist. For example, assume that an
employee table has the fields EmpID, EmpName, SupervisorID, and SpouseID.
Suppose that a company rule is that no employee may supervise his or her spouse. The
following assertion enforces this rule:

CREATE ASSERTION SpousalSupervision
CHECK (SupervisorID < > SpouseID);

If the assertion fails, the DBMS will generate an error message.
Assertions can become rather complex. Suppose that Pine Valley Furniture has a

rule that no two salespersons can be assigned to the same territory at the same time.
Suppose a Salesperson table includes the fields SalespersonID and TerritoryID. This
assertion can be written using a correlated subquery, as follows:

CREATE ASSERTION TerritoryAssignment
CHECK (NOT EXISTS

(SELECT * FROM Salesperson_T SP WHERE SP.TerritoryID IN
(SELECT SSP.TerritoryID FROM Salesperson_T SSP WHERE

SSP.SalespersonID < > SP.SalespersonID)));

Finally, triggers (defined and illustrated in Chapter 7) can be used for security pur-
poses. A trigger, which includes an event, a condition, and an action, is potentially more
complex than an assertion. For example, a trigger can do the following:

• Prohibit inappropriate actions (e.g., changing a salary value outside the normal
business day)

• Cause special handling procedures to be executed (e.g., if a customer invoice
payment is received after some due date, a penalty can be added to the account
balance for that customer)

• Cause a row to be written to a log file to echo important information about the
user and a transaction being made to sensitive data, so that the log can be re-
viewed by human or automated procedures for possible inappropriate behavior
(e.g., the log can record which user initiated a salary change for which employee)

As with domains, a powerful benefit of a trigger, as with any other stored proce-
dure, is that the DBMS enforces these controls for all users and all database activities.
The control does not have to be coded into each query or program. Thus, individual
users and programs cannot circumvent the necessary controls.

Assertions, triggers, stored procedures, and other forms of integrity controls may
not stop all malicious or accidental use or modification of data. Thus, it is recom-
mended (Anderson, 2005) that a change audit process be used in which all user activi-
ties are logged and monitored to check that all policies and constraints are enforced.
Following this recommendation means that every database query and transaction is
logged to record characteristics of all data use, especially modifications: who accessed
the data, when it was accessed, what program or query was run, where in the computer
network the request was generated, and other parameters that can be used to investi-
gate suspicious activity or actual breaches of security and integrity.

Chapter 11 • Data and Database Administration 479

Authorization rules
Controls incorporated in a data
management systems that restrict
access to data and also restrict the
actions that people may take when
they access data.

Subject Object Action Constraint

Sales Dept. Customer record Insert Credit limit LE $5000

Order trans. Customer record Read None

Terminal 12 Customer record Modify Balance due only

Acctg. Dept. Order record Delete None

Ann Walker Order record Insert Order aml LT $2000

Program AR4 Order record Modify None

FIGURE 11-4 Authorization
matrix

Authorization Rules

Authorization rules are controls incorporated in a data management system that
restrict access to data and also restrict the actions that people may take when they
access data. For example, a person who can supply a particular password may be
authorized to read any record in a database but cannot necessarily modify any of those
records.

Fernandez et al. (1981) have developed a conceptual model of database security.
Their model expresses authorization rules in the form of a table (or matrix) that
includes subjects, objects, actions, and constraints. Each row of the table indicates that a
particular subject is authorized to take a certain action on an object in the database, per-
haps subject to some constraint. Figure 11-4 shows an example of such an authorization
matrix. This table contains several entries pertaining to records in an accounting data-
base. For example, the first row in the table indicates that anyone in the Sales
Department is authorized to insert a new customer record in the database, provided
that the customer’s credit limit does not exceed $5,000. The last row indicates that the
program AR4 is authorized to modify order records without restriction. Data adminis-
tration is responsible for determining and implementing authorization rules that are
implemented at the database level. Authorization schemes can also be implemented at
the operating system level or the application level.

Most contemporary database management systems do not implement an authori-
zation matrix such as the one shown in Figure 11-4; they normally use simplified ver-
sions. There are two principal types: authorization tables for subjects and authorization
tables for objects. Figure 11-5 shows an example of each type. In Figure 11-5a, for exam-
ple, we see that salespersons are allowed to modify customer records but not delete
these records. In Figure 11-5b, we see that users in Order Entry or Accounting can mod-
ify order records, but salespersons cannot. A given DBMS product may provide either
one or both of these types of facilities.

Authorization tables, such as those shown in Figure 11-5, are attributes of an orga-
nization’s data and their environment; they are therefore properly viewed as metadata.
Thus, the tables should be stored and maintained in the repository. Because authoriza-
tion tables contain highly sensitive data, they themselves should be protected by strin-
gent security rules. Normally, only selected persons in data administration have
authority to access and modify these tables.

For example, in Oracle, the privileges included in Figure 11-6 can be granted to
users at the database level or table level. INSERT and UPDATE can be granted at the
column level. Where many users, such as those in a particular job classification, need
similar privileges, roles may be created that contain a set of privileges, and then all the
privileges can be granted to a user simply by granting the role. To grant the ability to
read the product table and update prices to a user with the log in ID of SMITH, the fol-
lowing SQL command may be given:

GRANT SELECT, UPDATE (UnitPrice) ON Product_T TO SMITH;

There are eight data dictionary views that contain information about privileges
that have been granted. In this case, DBA_TAB_PRIVS contains users and objects for
every user who has been granted privileges on objects, such as tables. DBA_COL_PRIVS
contains users who have been granted privileges on columns of tables.

480 Part V • Advanced Database Topics

User-Defined Procedures

Some DBMS products provide user exits (or interfaces) that allow system designers or
users to create their own user-defined procedures for security, in addition to the
authorization rules we have just described. For example, a user procedure might be
designed to provide positive user identification. In attempting to log on to the com-
puter, the user might be required to supply a procedure name in addition to a simple
password. If valid password and procedure names are supplied, the system then calls
the procedure, which asks the user a series of questions whose answers should be
known only to that password holder (e.g., mother’s maiden name).

Encryption

Data encryption can be used to protect highly sensitive data such as customer credit
card numbers or account balances. Encryption is the coding or scrambling of data so
that humans cannot read them. Some DBMS products include encryption routines that
automatically encode sensitive data when they are stored or transmitted over commu-
nications channels. For example, encryption is commonly used in electronic funds
transfer (EFT) systems. Other DBMS products provide exits that allow users to code
their own encryption routines.

Any system that provides encryption facilities must also provide complementary
routines for decoding the data. These decoding routines must be protected by adequate
security, or else the advantages of encryption are lost. They also require significant com-
puting resources.

Two common forms of encryption exist: one key and two key. With a one-key
method, also called Data Encryption Standard (DES), both the sender and the receiver
need to know the key that is used to scramble the transmitted or stored data. A two-key
method, also called asymmetric encryption, employs a private and a public key. Two-key
methods (see Figure 11-7) are especially popular in e-commerce applications to provide
secure transmission and database storage of payment data, such as credit card numbers.

Customer records Order records

Read Y
Insert Y
Modify Y
Delete N

Y
Y
N
N

FIGURE 11-5 Implementing
authorization rules
(a) Authorization table for
subjects (salespersons)

Salespersons Order entry Accounting
(password BATMAN) (password JOKER) (password TRACY)

Read Y Y Y
Insert N Y N
Modify N Y Y
Delete N N Y

(b) Authorization table for
objects (order records)

Privilege Capability

SELECT
INSERT

Query the object.
Insert records into the table/view.
Can be given for specific columns.

UPDATE Update records in table/view.
Can be given for specific columns.

DELETE
ALTER
INDEX
REFERENCES
EXECUTE

Delete records from table/view.
Alter the table.
Create indexes on the table.
Create foreign keys that reference the table.
Execute the procedure, package, or function.

FIGURE 11-6 Oracle
privileges

User-defined procedures
User exits (or interfaces) that allow
system designers to define their
own security procedures in
addition to the authorization rules.

Encryption
The coding or scrambling of data
so that humans cannot read them.

Chapter 11 • Data and Database Administration 481

A popular implementation of the two-key method is Secure Sockets Layer (SSL),
developed by Netscape Communications Corporation. SSL is built into most major
browsers and Web servers. It provides data encryption, server authentication, and other
services in a TCP/IP connection. For example, the U.S. banking industry uses a 128-bit
version of SSL (the most secure level in current use) to secure online banking transactions.

Details about encryption techniques are beyond the scope of this book and are gen-
erally handled by the DBMS without significant involvement of a DBA; it is simply
important to know that database data encryption is a strong measure available to a DBA.

Authentication Schemes

A long-standing problem in computer circles is how to identify persons who are trying
to gain access to a computer or its resources, such as a database or DBMS. In an elec-
tronic environment, a user can prove his or her identity by supplying one or more of the
following factors:

1. Something the user knows, usually a password or personal identification
number (PIN)

2. Something the user possesses, such as a smart card or token
3. Some unique personal characteristic, such as a fingerprint or retinal scan

Authentication schemes are called one-factor, two-factor, or three-factor authenti-
cation, depending on how many of these factors are employed. Authentication becomes
stronger as more factors are used.

PASSWORDS The first line of defense is the use of passwords, which is a one-factor
authentication scheme. With such a scheme, anyone who can supply a valid password
can log on to a database system. (A user ID may also be required, but user IDs are typi-
cally not secured.) A DBA (or perhaps a system administrator) is responsible for manag-
ing schemes for issuing or creating passwords for the DBMS and/or specific applications.

Although requiring passwords is a good starting point for authentication, it is
well known that they this method has a number of deficiencies. People assigned pass-
words for different devices quickly devise ways to remember these passwords, ways
that tend to compromise the password scheme. The passwords get written down,
where others may find them. They get shared with other users; it is not unusual for an
entire department to use one common password for access. Passwords get included in

Encryption
Algorithm

Plain Text
xxxx

yyyy Cipher

Key 1 (Public)

Decryption
Algorithm

xxxx
Plain Text

Key 2 (Private)

FIGURE 11-7 Basic two-key
encryption

482 Part V • Advanced Database Topics

automatic logon scripts, which removes the inconvenience of remembering them and
typing them but also eliminates their effectiveness. And passwords usually traverse a
network in cleartext, not encrypted, so if intercepted they may be easily interpreted.
Also, passwords cannot, by themselves, ensure the security of a computer and its data-
bases because they give no indication of who is trying to gain access. Thus, for example,
a log should be kept and analyzed of attempted logons with incorrect passwords.

STRONG AUTHENTICATION More reliable authentication techniques have become a
business necessity, with the rapid advances in e-commerce and increased security
threats in the form of hacking, identity theft, and so on.

Two-factor authentication schemes require two of the three factors: something the
user has (usually a card or token) and something the user knows (usually a PIN). You are
already familiar with this system from using automated teller machines (ATMs). This
scheme is much more secure than using only passwords because (barring carelessness) it
is quite difficult for an unauthorized person to obtain both factors at the same time.

Although an improvement over password-only authentication, two-factor schemes
are not infallible. Cards can be lost or stolen, and PINs can be intercepted. Three-factor
authentication schemes add an important third factor: a biometric attribute that is unique
for each individual user. Personal characteristics that are commonly used include finger-
prints, voiceprints, eye pictures, and signature dynamics.

Three-factor authentication is normally implemented with a high-tech card called
a smart card (or smart badge). A smart card is a credit card–sized plastic card with an
embedded microprocessor chip that can store, process, and output electronic data in a
secure manner. Smart cards are replacing the familiar magnetic-stripe-based cards we
have used for decades. Using smart cards can be a very strong means to authenticate a
database user. In addition, smart cards can themselves be database storage devices;
today smart cards can store well over 100MB bytes of data, and this number is increas-
ing rapidly. Smart cards can provide secure storage of personal data such as medical
records or a summary of medications taken.

All of the authentication schemes described here, including use of smart cards, can
be only as secure as the process that is used to issue them. For example, if a smart card is
issued and personalized to an imposter (either carelessly or deliberately), it can be used
freely by that person. Thus, before allowing any form of authentication—such as issuing
a new card to an employee or other person—the issuing agency must validate beyond
any reasonable doubt the identity of that person. Because paper documents are used in
this process—birth certificates, passports, driver’s licenses, and so on—and these types
of documents are often unreliable because they can be easily copied, forged, and so on,
significant training of the personnel, use of sophisticated technology, and sufficient over-
sight of the process are needed to ensure that this step is rigorous and well controlled.

SARBANES-OXLEY (SOX) AND DATABASES

The Sarbanes-Oxley Act (SOX) and other similar global regulations were designed to
ensure the integrity of public companies’ financial statements. A key component of this
is ensuring sufficient control and security over the financial systems and IT infrastruc-
ture in use within an organization. This has resulted in an increased emphasis on
understanding controls around information technology. Given that the focus of SOX is
on the integrity of financial statements, controls around the databases and applications
that are the source of these data is key.

The key focus of SOX audits is around three areas of control:

1. IT change management
2. Logical access to data
3. IT operations

Most audits start with a walkthrough—that is, a meeting with business owners
(of the data that fall under the scope of the audit) and technical architects of the applica-
tions and databases. During this walkthrough, the auditors will try to understand how
the above three areas are handled by the IT organization.

Smart card
A credit card–sized plastic card
with an embedded microprocessor
chip that can store, process, and
output electronic data in a secure
manner.

Chapter 11 • Data and Database Administration 483

IT Change Management

IT change management refers to the process by which changes to operational systems and
databases are authorized. Typically any change to a production system or database has
to be approved by a change control board that is made up of representatives from the
business and IT organizations. Authorized changes must then be put through a rigor-
ous process (essentially a mini systems development life cycle) before being put into
production. From a database perspective, the most common types of changes are
changes to the database schema, changes to database configuration parameters, and
patches/updates to the DBMS software itself.

A key issue related to change management that was a top deficiency found by SOX
auditors was adequate segregation of duties between people who had access to data-
bases in the three common environments: development, test, and production. SOX
mandates that the DBAs who have the ability to modify data in these three environments
be different. This is primarily to ensure that changes to the operating environment have
been adequately tested before being implemented. In cases where the size of the organi-
zation does not allow this, other personnel should be authorized to do periodic reviews
of database access by DBAs, using features such as database audits (described in the
next section).

Logical Access to Data

Logical access to data is essentially about the security procedures in place to prevent
unauthorized access to the data. From a SOX perspective, the two key questions to ask
are: Who has access to what? and Who has access to too much? In response to these two
questions, organizations must establish administrative policies and procedures that
serve as a context for effectively implementing these measures. Two types of security
policies and procedures are personnel controls and physical access controls.

PERSONNEL CONTROLS Adequate controls of personnel must be developed and fol-
lowed, for the greatest threat to business security is often internal rather than external.
In addition to the security authorization and authentication procedures just discussed,
organizations should develop procedures to ensure a selective hiring process that vali-
dates potential employees’ representations about their backgrounds and capabilities.
Monitoring to ensure that personnel are following established practices, taking regular
vacations, working with other employees, and so forth should be done. Employees
should be trained in those aspects of security and quality that are relevant to their jobs
and encouraged to be aware of and follow standard security and data quality measures.
Standard job controls, such as separating duties so no one employee has responsibility
for an entire business process or keeping application developers from having access to
production systems, should also be enforced. Should an employee need to be let go,
there should be an orderly and timely set of procedures for removing authorizations
and authentications and notifying other employees of the status change. Similarly, if an
employee’s job profile changes, care should be taken to ensure that his or her new set of
roles and responsibilities do not lead to violations of separation of duties.

PHYSICAL ACCESS CONTROLS Limiting access to particular areas within a building is
usually a part of controlling physical access. Swipe, or proximity access, cards can be
used to gain access to secure areas, and each access can be recorded in a database, with
a time stamp. Guests, including vendor maintenance representatives, should be issued
badges and escorted into secure areas. Access to sensitive equipment, including hard-
ware and peripherals such as printers (which may be used to print classified reports)
can be controlled by placing these items in secure areas. Other equipment may be
locked to a desk or cabinet or may have an alarm attached. Backup data tapes should
be kept in fireproof data safes and/or kept offsite, at a safe location. Procedures that
make explicit the schedules for moving media and disposing of media and that estab-
lish labeling and indexing of all materials stored must be established.

Placement of computer screens so that they cannot be seen from outside the build-
ing may also be important. Control procedures for areas external to the office building

484 Part V • Advanced Database Topics

should also be developed. Companies frequently use security guards to control access
to their buildings or use a card swipe system or handprint recognition system (smart
badges) to automate employee access to the building. Visitors should be issued an iden-
tification card and required to be accompanied throughout the building.

New concerns are raised by the increasingly mobile nature of work. Laptop com-
puters are very susceptible to theft, which puts data on a laptop at risk. Encryption and
multiple-factor authentication can protect data in the event of laptop theft. Antitheft
devices (e.g., security cables, geographic tracking chips) can deter theft or help quickly
recover stolen laptops on which critical data are stored.

IT Operations

IT operations refers to the policies and procedures in place related to the day-to-day man-
agement of the infrastructure, applications, and databases in an organization. Key areas
in this regard that are relevant to data and database administrators are database backup
and recovery, as well as data availability. These are discussed in detail in later sections.

An area of control that helps to maintain data quality and availability but that is
often overlooked is vendor management. Organizations should periodically review
external maintenance agreements for all hardware and software they are using to
ensure that appropriate response rates are agreed to for maintaining system quality and
availability. It is also important to consider reaching agreements with the developers of
all critical software so that the organization can get access to source code should the
developer go out of business or stop supporting the programs. One way to accomplish
this is by having a third party hold the source code, with an agreement that it will be
released if such a situation develops. Controls should be in place to protect data from
inappropriate access and use by outside maintenance staff and other contract workers.

DATABASE BACKUP AND RECOVERY

Database recovery is database administration’s response to Murphy’s law. Inevitably,
databases are damaged or lost or become unavailable because of some system problem
that may be caused by human error, hardware failure, incorrect or invalid data, pro-
gram errors, computer viruses, network failures, conflicting transactions, or natural
catastrophes. It is the responsibility of a DBA to ensure that all critical data in a database
are protected and can be recovered in the event of loss. Because an organization
depends heavily on its databases, a DBA must be able to minimize downtime and other
disruptions while a database is being backed up or recovered. To achieve these objec-
tives, a database management system must provide mechanisms for backing up data
with as little disruption of production time as possible and restoring a database quickly
and accurately after loss or damage.

Basic Recovery Facilities

A database management system should provide four basic facilities for backup and
recovery of a database:

1. Backup facilities, which provide periodic backup (sometimes called fallback)
copies of portions of or the entire database

2. Journalizing facilities, which maintain an audit trail of transactions and data-
base changes

3. A checkpoint facility, by which the DBMS periodically suspends all processing
and synchronizes its files and journals to establish a recovery point

4. A recovery manager, which allows the DBMS to restore the database to a correct
condition and restart processing transactions

BACKUP FACILITIES A DBMS should provide backup facilities that produce a backup
copy (or save) of the entire database plus control files and journals. Each DBMS nor-
mally provides a COPY utility for this purpose. In addition to the database files, the
backup facility should create a copy of related database objects including the repository

Database recovery
Mechanisms for restoring a
database quickly and accurately
after loss or damage.

Backup facility
A DBMS COPY utility that
produces a backup copy (or save)
of an entire database or a subset
of a database.

Chapter 11 • Data and Database Administration 485

(or system catalog), database indexes, source libraries, and so on. Typically, a backup
copy is produced at least once per day. The copy should be stored in a secured location
where it is protected from loss or damage. The backup copy is used to restore the data-
base in the event of hardware failure, catastrophic loss, or damage.

Some DBMSs provide backup utilities for a DBA to use to make backups; other
systems assume that the DBA will use the operating system commands, export com-
mands, or SELECT . . . INTO SQL commands to perform backups. Because performing
the nightly backup for a particular database is repetitive, creating a script that auto-
mates regular backups will save time and result in fewer backup errors.

With large databases, regular full backups may be impractical because the time
required to perform a backup may exceed the time available. Or, a database may be a
critical system that must always remain available; in such a case, a cold backup, where
the database is shut down, is not practical. As a result, backups may be taken of dynamic
data regularly (a so-called hot backup, in which only a selected portion of the database is
shut down from use), but backups of static data, which don’t change frequently, may be
taken less often. Incremental backups, which record changes made since the last full
backup, but which do not take so much time to complete, may also be taken on an
interim basis, allowing for longer periods of time between full backups. Thus, backup
strategies must be based on the demands being placed on the database systems.

Database downtime can be very expensive. The lost revenue from downtime (e.g.,
inability to take orders or place reservations) needs to be balanced against the cost of
additional technology, primarily disk storage, to achieve a desired level of availability.
To help achieve the desired level of reliability, some DBMSs will automatically make
backup (often called fallback) copies of the database in real time as the database is
updated. These fallback copies are usually stored on separate disk drives and disk con-
trollers, and they are used as live backup copies if portions of the database become inac-
cessible due to hardware failures. As the cost of secondary storages steadily decreases,
the cost to make redundant copies becomes more practical in more situations. Fallback
copies are different from RAID storage, discussed in Chapter 5, because the DBMS
is making copies of only the database as database transactions occur, whereas RAID is
used by the operating system for making redundant copies of all storage elements as
any page is updated.

JOURNALIZING FACILITIES A DBMS must provide journalizing facilities to produce an
audit trail of transactions and database changes. In the event of a failure, a consistent
database state can be reestablished, using the information in the journals together with
the most recent complete backup. As Figure 11-8 shows, there are two basic journals, or
logs. The first is the transaction log, which contains a record of the essential data for each
transaction that is processed against the database. Data that are typically recorded for
each transaction include the transaction code or identification, action or type of transac-
tion (e.g., insert), time of the transaction, terminal number or user ID, input data values,
table and records accessed, records modified, and possibly the old and new field values.

The second kind of log is a database change log, which contains before and after
images of records that have been modified by transactions. A before image is simply a
copy of a record before it has been modified, and an after image is a copy of the same
record after it has been modified. Some systems also keep a security log, which can alert
the DBA to any security violations that occur or are attempted. The recovery manager
uses these logs to undo and redo operations, which we explain later in this chapter.
These logs may be kept on disk or tape; because they are critical to recovery, they, too,
must be backed up.

CHECKPOINT FACILITY A checkpoint facility in a DBMS periodically refuses to accept
any new transactions. All transactions in progress are completed, and the journal files
are brought up-to-date. At this point, the system is in a quiet state, and the database and
transaction logs are synchronized. The DBMS writes a special record (called a checkpoint
record) to the log file, which is like a snapshot of the state of the database. The check-
point record contains information necessary to restart the system. Any dirty data blocks
(i.e., pages of memory that contain changes that have not yet been written out to disk)

Journalizing facility
An audit trail of transactions
and database changes.

Transaction
A discrete unit of work that must
be completely processed or not
processed at all within a computer
system. Entering a customer order
is an example of a transaction.

Transaction log
A record of the essential data for
each transaction that is processed
against the database.

Database change log
A log that contains before and after
images of records that have been
modified by transactions.

Before image
A copy of a record (or page of
memory) before it has been
modified.

After image
A copy of a record (or page of
memory) after it has been
modified.

Checkpoint facility
A facility by which a DBMS
periodically refuses to accept any
new transactions. The system is in
a quiet state, and the database and
transaction logs are synchronized.

486 Part V • Advanced Database Topics

are written from memory to disk storage, thus ensuring that all changes made prior to
taking the checkpoint have been written to long-term storage.

A DBMS may perform checkpoints automatically (which is preferred) or in
response to commands in user application programs. Checkpoints should be taken
frequently (say, several times an hour). When failures occur, it is often possible to resume
processing from the most recent checkpoint. Thus, only a few minutes of processing
work must be repeated, compared with several hours for a complete restart of the day’s
processing.

RECOVERY MANAGER The recovery manager is a module of a DBMS that restores the
database to a correct condition when a failure occurs and then resumes processing user
requests. The type of restart used depends on the nature of the failure. The recovery
manager uses the logs shown in Figure 11-8 (as well as the backup copy, if necessary) to
restore the database.

Recovery and Restart Procedures

The type of recovery procedure that is used in a given situation depends on the
nature of the failure, the sophistication of the DBMS recovery facilities, and opera-
tional policies and procedures. Following is a discussion of the techniques that are
most frequently used.

DISK MIRRORING To be able to switch to an existing copy of a database, the database
must be mirrored. That is, at least two copies of the database must be kept and updated
simultaneously. When a media failure occurs, processing is switched to the duplicate
copy of the database. This strategy allows for the fastest recovery and has become
increasingly popular for applications requiring high availability as the cost of long-term
storage has dropped. Level 1 RAID systems implement mirroring. A damaged disk can
be rebuilt from the mirrored disk with no disruption in service to the user. Such disks
are referred to as being hot-swappable. This strategy does not protect against loss of
power or catastrophic damage to both databases, though. See Chapter 5 for a more
detailed discussion of RAID.

Recovery manager
A module of a DBMS that restores
the database to a correct condition
when a failure occurs and then
resumes processing user questions.

Database
management

system

Transaction Recovery action

Copy of database affected
by transaction

Effect of transaction or
recovery action Copy of

transaction

Database
(current)

Transaction
log

Database
change

log

Database
(backup)

FIGURE 11-8 Database audit
trail

Chapter 11 • Data and Database Administration 487

RESTORE/RERUN The restore/rerun technique involves reprocessing the day’s transac-
tions (up to the point of failure) against the backup copy of the database or portion of
the database being recovered. First, the database is shut down, and then the most recent
copy of the database or file to be recovered (say, from the previous day) is mounted, and
all transactions that have occurred since that copy (which are stored on the transaction
log) are rerun. This may also be a good time to make a backup copy and clear out the
transaction, or redo, log.

The advantage of restore/rerun is its simplicity. The DBMS does not need to create
a database change journal, and no special restart procedures are required. However,
there are two major disadvantages. First, the time to reprocess transactions may be pro-
hibitive. Depending on the frequency with which backup copies are made, several
hours of reprocessing may be required. Processing new transactions will have to be
deferred until recovery is completed, and if the system is heavily loaded, it may be
impossible to catch up. The second disadvantage is that the sequencing of transactions
will often be different from when they were originally processed, which may lead to
quite different results. For example, in the original run, a customer deposit may be
posted before a withdrawal. In the rerun, the withdrawal transaction may be attempted
first and may lead to sending an insufficient funds notice to the customer. For these rea-
sons, restore/rerun is not a sufficient recovery procedure and is generally used only as
a last resort in database processing.

MAINTAINING TRANSACTION INTEGRITY A database is updated by processing transac-
tions that result in changes to one or more database records. If an error occurs during
the processing of a transaction, the database may be compromised, and some form of
database recovery is required. Thus, to understand database recovery, we must first
understand the concept of transaction integrity.

A business transaction is a sequence of steps that constitute some well-defined
business activity. Examples of business transactions are Admit Patient in a hospital and
Enter Customer Order in a manufacturing company. Normally, a business transaction
requires several actions against the database. For example, consider the transaction
Enter Customer Order. When a new customer order is entered, the following steps may
be performed by an application program:

1. Input the order data (keyed by the user).
2. Read the CUSTOMER record (or insert record if a new customer).
3. Accept or reject the order. If Balance Due plus Order Amount does not exceed

Credit Limit, accept the order; otherwise, reject it.
4. If the order is accepted, increase Balance Due by Order Amount. Store the updated

CUSTOMER record. Insert the accepted ORDER record in the database.

When processing transactions, a DBMS must ensure that the transactions follow
four well-accepted properties, called the ACID properties:

1. Atomic, meaning that the transaction cannot be subdivided and, hence, it must
be processed in its entirety or not at all. Once the whole transaction is processed,
we say that the changes are committed. If the transaction fails at any midpoint,
we say that it has aborted. For example, suppose that the program accepts a new
customer order, increases Balance Due, and stores the updated CUSTOMER
record. However, suppose that the new ORDER record is not inserted success-
fully (perhaps due to a duplicate Order Number key or insufficient physical file
space). In this case, we want none of the parts of the transaction to affect the
database.

2. Consistent, meaning that any database constraints that must be true before the
transaction must also be true after the transaction. For example, if the inventory
on-hand balance must be the difference between total receipts minus total issues,
this will be true both before and after an order transaction, which depletes the
on-hand balance to satisfy the order.

3. Isolated, meaning that changes to the database are not revealed to users until
the transaction is committed. For example, this property means that other users

Restore/rerun
A technique that involves
reprocessing the day’s transactions
(up to the point of failure) against
the backup copy of the database.

488 Part V • Advanced Database Topics

do not know what the on-hand inventory is until an inventory transaction is
complete; this property then usually means that other users are prohibited from
simultaneously updating and possibly even reading data that are in the process
of being updated. We discuss this topic in more detail later under concurrency
controls and locking. A consequence of transactions being isolated from one
another is that concurrent transactions (i.e., several transactions in some partial
state of completion) all affect the database as if they were presented to the DBMS
in serial fashion.

4. Durable, meaning that changes are permanent. Thus, once a transaction is
committed, no subsequent failure of the database can reverse the effect of the
transaction.

To maintain transaction integrity, the DBMS must provide facilities for the user or
application program to define transaction boundaries—that is, the logical beginning
and end of a transaction. In SQL, the BEGIN TRANSACTION statement is placed in
front of the first SQL command within the transaction, and the COMMIT command is
placed at the end of the transaction. Any number of SQL commands may come in
between these two commands; these are the database processing steps that perform
some well-defined business activity, as explained earlier. If a command such as ROLL-
BACK is processed after a BEGIN TRANSACTION is executed and before a COMMIT
is executed, the DBMS aborts the transaction and undoes the effects of the SQL state-
ments processed so far within the transaction boundaries. The application would likely
be programmed to execute a ROLLBACK when the DBMS generates an error message
performing an UPDATE or INSERT command in the middle of the transaction. The
DBMS thus commits (makes durable) changes for successful transactions (those that
reach the COMMIT statement) and effectively rejects changes from transactions that are
aborted (those that encounter a ROLLBACK). Any SQL statement encountered after a
COMMIT or ROLLBACK and before a BEGIN TRANSACTION is executed as a single
statement transaction, automatically committed if it executed without error, aborted if
any error occurs during its execution.

Although conceptually a transaction is a logical unit of business work, such as a
customer order or receipt of new inventory from a supplier, you may decide to break
the business unit of work into several database transactions for database processing
reasons. For example, because of the isolation property, a transaction that takes many
commands and a long time to process may prohibit other uses of the same data at
the same time, thus delaying other critical (possibly read-only) work. Some database
data are used frequently, so it is important to complete transactional work on these
so-called hotspot data as quickly as possible. For example, a primary key and its
index for bank account numbers will likely need to be accessed by every ATM trans-
action, so the database transaction must be designed to use and release this data
quickly. Also, remember, all the commands between the boundaries of a transaction
must be executed, even those commands seeking input from an online user. If a user
is slow to respond to input requests within the boundaries of a transaction, other
users may encounter significant delays. Thus, if possible, collect all user input before
beginning a transaction. Also, to minimize the length of a transaction, check for pos-
sible errors, such as duplicate keys or insufficient account balance, as early in the
transaction as possible, so portions of the database can be released as soon as possible
for other users if the transaction is going to be aborted. Some constraints (e.g., balanc-
ing the number of units of an item received with the number placed in inventory less
returns) cannot be checked until many database commands are executed, so the
transaction must be long to ensure database integrity. Thus, the general guideline is
to make a database transaction as short as possible while still maintaining the
integrity of the database.

BACKWARD RECOVERY With backward recovery (also called rollback), the DBMS
backs out of or undoes unwanted changes to the database. As Figure 11-9a shows,
before images of the records that have been changed are applied to the database.

Transaction boundaries
The logical beginning and end
of a transaction.

Backward recovery (rollback)
The backout, or undo, of unwanted
changes to a database. Before
images of the records that have
been changed are applied to the
database, and the database is
returned to an earlier state.
Rollback is used to reverse the
changes made by transactions that
have been aborted, or terminated
abnormally.

Chapter 11 • Data and Database Administration 489

As a result, the database is returned to an earlier state; the unwanted changes are
eliminated.

Backward recovery is used to reverse the changes made by transactions that
have aborted, or terminated abnormally. To illustrate the need for backward recovery
(or UNDO), suppose that a banking transaction will transfer $100 in funds from
the account for customer A to the account for customer B. The following steps are
performed:

1. The program reads the record for customer A and subtracts $100 from the account
balance.

2. The program then reads the record for customer B and adds $100 to the account
balance. Now the program writes the updated record for customer A to the data-
base. However, in attempting to write the record for customer B, the program en-
counters an error condition (e.g., a disk fault) and cannot write the record. Now
the database is inconsistent—record A has been updated but record B has not—
and the transaction must be aborted. An UNDO command will cause the recovery
manager to apply the before image for record A to restore the account balance to
its original value. (The recovery manager may then restart the transaction and
make another attempt.)

FORWARD RECOVERY With forward recovery (also called rollforward), the DBMS
starts with an earlier copy of the database. Applying after images (the results of good
transactions) quickly moves the database forward to a later state (see Figure 11-9b).

Database
(without
changes)

DBMS

Database
(with

changes)

Before
images

FIGURE 11-9 Basic recovery
techniques
(a) Rollback

Database
(with

changes)

DBMS

Database
(without
changes)

After
images

Forward recovery (rollforward)
A technique that starts with an
earlier copy of a database. After
images (the results of good
transactions) are applied to the
database, and the database is
quickly moved forward to a
later state.

(b) Rollforward

490 Part V • Advanced Database Topics

Forward recovery is much faster and more accurate than restore/rerun, for the follow-
ing reasons:

• The time-consuming logic of reprocessing each transaction does not have to be
repeated.

• Only the most recent after images need to be applied. A database record may have
a series of after images (as a result of a sequence of updates), but only the most
recent, “good” after image, is required for rollforward.

With rollforward, the problem of different sequencing of transactions is avoided,
because the results of applying the transactions (rather than the transactions them-
selves) are used.

Types of Database Failure

A wide variety of failures can occur in processing a database, ranging from the input of
an incorrect data value to complete loss or destruction of the database. Four of the most
common types of problems are aborted transactions, incorrect data, system failure, and
database loss or destruction. Each of these types of problems is described in the follow-
ing sections, and possible recovery procedures are indicated (see Table 11-1).

ABORTED TRANSACTIONS As we noted earlier, a transaction frequently requires a
sequence of processing steps to be performed. An aborted transaction terminates
abnormally. Some reasons for this type of failure are human error, input of invalid data,
hardware failure, and deadlock (covered in the next section). A common type of hard-
ware failure is the loss of transmission in a communications link when a transaction is
in progress.

When a transaction aborts, we want to “back out” the transaction and remove any
changes that have been made (but not committed) to the database. The recovery man-
ager accomplishes this through backward recovery (applying before images for the
transaction in question). This function should be accomplished automatically by the
DBMS, which then notifies the user to correct and resubmit the transaction. Other pro-
cedures, such as rollforward or transaction reprocessing, could be applied to bring the
database to the state it was in just prior to the abort occurrence, but rollback is the pre-
ferred procedure in this case.

INCORRECT DATA A more complex situation arises when the database has been
updated with incorrect, but valid, data. For example, an incorrect grade may be
recorded for a student, or an incorrect amount could be input for a customer payment.

Incorrect data are difficult to detect and often lead to complications. To begin with,
some time may elapse before an error is detected and the database record (or records)

Aborted transaction
A transaction in progress that
terminates abnormally.

TABLE 11-1 Responses to Database Failure

Type of Failure Recovery Technique

Aborted transaction Rollback (preferred)

Rollforward/return transactions to state just prior to abort

Incorrect data (update inaccurate) Rollback (preferred)

Reprocess transactions without inaccurate data updates

Compensating transactions

System failure (database intact) Switch to duplicate database (preferred)

Rollback

Restart from checkpoint (rollforward)

Database destruction Switch to duplicate database (preferred)

Rollforward

Reprocess transactions

Chapter 11 • Data and Database Administration 491

corrected. By this time, numerous other users may have used the erroneous data, and a
chain reaction of errors may have occurred as various applications made use of the
incorrect data. In addition, transaction outputs (e.g., documents and messages) based
on the incorrect data may be transmitted to persons. An incorrect grade report, for
example, may be sent to a student or an incorrect statement sent to a customer.

When incorrect data have been processed, the database may be recovered in one
of the following ways:

• If the error is discovered soon enough, backward recovery may be used.
(However, care must be taken to ensure that all subsequent errors have been
reversed.)

• If only a few errors have occurred, a series of compensating transactions may be
introduced through human intervention to correct the errors.

• If the first two measures are not feasible, it may be necessary to restart from the
most recent checkpoint before the error occurred, and subsequent transactions
processed without the error.

Any erroneous messages or documents that have been produced by the erroneous
transaction will have to be corrected by appropriate human intervention (letters of
explanation, telephone calls, etc.).

SYSTEM FAILURE In a system failure, some component of the system fails, but the data-
base is not damaged. Some causes of system failure are power loss, operator error, loss
of communications transmission, and system software failure.

When a system crashes, some transactions may be in progress. The first step in
recovery is to back out those transactions, using before images (backward recovery).
Then, if the system is mirrored, it may be possible to switch to the mirrored data and
rebuild the corrupted data on a new disk. If the system is not mirrored, it may not be
possible to restart because status information in main memory has been lost or dam-
aged. The safest approach is to restart from the most recent checkpoint before the sys-
tem failure. The database is rolled forward by applying after images for all transactions
that were processed after that checkpoint.

DATABASE DESTRUCTION In the case of database destruction, the database itself is
lost, destroyed, or cannot be read. A typical cause of database destruction is a disk
drive failure (or head crash).

Again, using a mirrored copy of the database is the preferred strategy for recover-
ing from such an event. If there is no mirrored copy, a backup copy of the database is
required. Forward recovery is used to restore the database to its state immediately
before the loss occurred. Any transactions that may have been in progress when the
database was lost are restarted.

Disaster Recovery

Every organization requires contingency plans for dealing with disasters that may
severely damage or destroy its data center. Such disasters may be natural (e.g., floods,
earthquakes, tornadoes, hurricanes) or human-caused (e.g., wars, sabotage, terrorist
attacks). For example, the 2001 terrorist attacks on the World Trade Center resulted in
the complete destruction of several data centers and widespread loss of data.

Planning for disaster recovery is an organization-wide responsibility. Database
administration is responsible for developing plans for recovering the organization’s
data and for restoring data operations. Following are some of the major components of
a recovery plan (Mullins, 2002):

• Develop a detailed written disaster recovery plan. Schedule regular tests of
the plan.

• Choose and train a multidisciplinary team to carry out the plan.
• Establish a backup data center at an offsite location. This site must be located a

sufficient distance from the primary site so that no foreseeable disaster will dis-
rupt both sites. If an organization has two or more data centers, each site may

Database destruction
The database itself is lost,
destroyed, or cannot be read.

492 Part V • Advanced Database Topics

serve as a backup for one of the others. If not, the organization may contract with
a disaster recovery service provider.

• Send backup copies of databases to the backup data center on a scheduled basis.
Database backups may be sent to the remote site by courier or transmitted by
replication software.

CONTROLLING CONCURRENT ACCESS

Databases are shared resources. Database administrators must expect and plan for the
likelihood that several users will attempt to access and manipulate data at the same
time. With concurrent processing involving updates, a database without concurrency
control will be compromised due to interference between users. There are two basic
approaches to concurrency control: a pessimistic approach (involving locking) and an
optimistic approach (involving versioning). We summarize both of these approaches in
the following sections.

If users are only reading data, no data integrity problems will be encountered
because no changes will be made in the database. However, if one or more users are
updating data, then potential problems with maintaining data integrity arise. When more
than one transaction is being processed against a database at the same time, the transac-
tions are considered to be concurrent. The actions that must be taken to ensure that data
integrity is maintained are called currency control actions. Although these actions are
implemented by a DBMS, a database administrator must understand these actions and
may expect to make certain choices governing their implementation.

Remember that a CPU can process only one instruction at a time. As new transac-
tions are submitted while other processing is occurring against the database, the trans-
actions are usually interleaved, with the CPU switching among the transactions so that
some portion of each transaction is performed as the CPU addresses each transaction in
turn. Because the CPU is able to switch among transactions so quickly, most users will
not notice that they are sharing CPU time with other users.

The Problem of Lost Updates

The most common problem encountered when multiple users attempt to update a
database without adequate concurrency control is lost updates. Figure 11-10 shows a
common situation. John and Marsha have a joint checking account, and both want to
withdraw some cash at the same time, each using an ATM terminal in a different loca-
tion. Figure 11-10 shows the sequence of events that might occur in the absence of a
concurrency control mechanism. John’s transaction reads the account balance (which
is $1,000) and he proceeds to withdraw $200. Before the transaction writes the new
account balance ($800), Marsha’s transaction reads the account balance (which is still
$1,000). She then withdraws $300, leaving a balance of $700. Her transaction then
writes this account balance, which replaces the one written by John’s transaction. The
effect of John’s update has been lost due to interference between the transactions, and
the bank is unhappy.

Another similar type of problem that may occur when concurrency control is not
established is the inconsistent read problem. This problem occurs when one user reads
data that have been partially updated by another user. The read will be incorrect, and is
sometimes referred to as a dirty read or an unrepeatable read. The lost update and incon-
sistent read problems arise when the DBMS does not isolate transactions, part of the
ACID transaction properties.

Serializability

Concurrent transactions need to be processed in isolation so that they do not interfere
with each other. If one transaction were entirely processed before another transaction, no
interference would occur. Procedures that process transactions so that the outcome is the
same as this are called serializable. Processing transactions using a serializable schedule
will give the same results as if the transactions had been processed one after the other.

Concurrency control
The process of managing
simultaneous operations against a
database so that data integrity is
maintained and the operations do
not interfere with each other in a
multiuser environment.

Inconsistent read problem
An unrepeatable read, one that
occurs when one user reads data
that have been partially updated
by another user.

Chapter 11 • Data and Database Administration 493

Schedules are designed so that transactions that will not interfere with each other can
still be run in parallel. For example, transactions that request data from different tables in
a database will not conflict with each other and can be run concurrently without causing
data integrity problems. Serializability is achieved by different means, but locking mech-
anisms are the most common type of concurrency control mechanism. With locking, any
data that are retrieved by a user for updating must be locked, or denied to other users,
until the update is complete or aborted. Locking data is much like checking a book out of
the library; it is unavailable to others until the borrower returns it.

Locking Mechanisms

Figure 11-11 shows the use of record locks to maintain data integrity. John initiates a
withdrawal transaction from an ATM. Because John’s transaction will update this
record, the application program locks this record before reading it into main memory.
John proceeds to withdraw $200, and the new balance ($800) is computed. Marsha has
initiated a withdrawal transaction shortly after John, but her transaction cannot access
the account record until John’s transaction has returned the updated record to the data-
base and unlocked the record. The locking mechanism thus enforces a sequential updat-
ing process that prevents erroneous updates.

LOCKING LEVEL An important consideration in implementing concurrency control is
choosing the locking level. The locking level (also called lock granularity) is the extent
of the database resource that is included with each lock. Most commercial products
implement locks at one of the following levels:

• Database The entire database is locked and becomes unavailable to other users.
This level has limited application, such as during a backup of the entire database
(Rodgers, 1989).

• Table The entire table containing a requested record is locked. This level is
appropriate mainly for bulk updates that will update the entire table, such as giv-
ing all employees a 5 percent raise.

Time

ERROR!

Marsha

1. Read account balance
(Balance = $1,000)

2. Withdraw $300
(Balance = $700)

3. Write account balance
(Balance = $700)

John

1. Read account balance
(Balance = $1,000)

2. Withdraw $200
(Balance = $800)

3. Write account balance
(Balance = $800)

FIGURE 11-10 Lost update
(no concurrency control in
effect)

Locking
A process in which any data that
are retrieved by a user for updating
must be locked, or denied to other
users, until the update is
completed or aborted.

Locking level (lock granularity)
The extent of a database resource
that is included with each lock.

494 Part V • Advanced Database Topics

• Block or page The physical storage block (or page) containing a requested record
is locked. This level is the most commonly implemented locking level. A page will
be a fixed size (4K, 8K, etc.) and may contain records of more than one type.

• Record Only the requested record (or row) is locked. All other records, even
within a table, are available to other users. It does impose some overhead at run
time when several records are involved in an update.

• Field Only the particular field (or column) in a requested record is locked.
This level may be appropriate when most updates affect only one or two fields
in a record. For example, in inventory control applications the quantity-on-
hand field changes frequently, but other fields (e.g., description and bin loca-
tion) are rarely updated. Field-level locks require considerable overhead and
are seldom used.

TYPES OF LOCKS So far, we have discussed only locks that prevent all access to
locked items. In reality, a database administrator can generally choose between two
types of locks:

1. Shared locks Shared locks (also called S locks, or read locks) allow other trans-
actions to read (but not update) a record or other resource. A transaction should
place a shared lock on a record or data resource when it will only read but not
update that record. Placing a shared lock on a record prevents another user from
placing an exclusive lock, but not a shared lock, on that record.

Time
Marsha

1. Request account balance
(denied)

2. Lock account balance

6. Unlock account balance

3. Read account balance
(Balance = $800)

4. Withdraw $300
(Balance = $500)

5. Write account balance
(Balance = $500)

John

1. Request account balance

2. Lock account balance

6. Unlock account balance

3. Read account balance
(Balance = $1,000)

4. Withdraw $200
(Balance = $800)

5. Write account balance
(Balance = $800)

FIGURE 11-11 Updates with
locking (concurrency control)

Shared lock (S lock, or read lock)
A technique that allows other
transactions to read but not update
a record or another resource.

Chapter 11 • Data and Database Administration 495

2. Exclusive locks Exclusive locks (also called X locks, or write locks) prevent
another transaction from reading (and therefore updating) a record until it is
unlocked. A transaction should place an exclusive lock on a record when it is
about to update that record (Descollonges, 1993). Placing an exclusive lock on a
record prevents another user from placing any type of lock on that record.

Figure 11-12 shows the use of shared and exclusive locks for the checking account
example. When John initiates his transaction, the program places a read lock on his
account record, because he is reading the record to check the account balance. When
John requests a withdrawal, the program attempts to place an exclusive lock (write
lock) on the record because this is an update operation. However, as you can see in
the figure, Marsha has already initiated a transaction that has placed a read lock on the
same record. As a result, his request is denied; remember that if a record is a read lock,
another user cannot obtain a write lock.

DEADLOCK Locking solves the problem of erroneous updates but may lead to a prob-
lem called deadlock—an impasse that results when two or more transactions have
locked a common resource, and each must wait for the other to unlock that resource.
Figure 11-12 shows a simple example of deadlock. John’s transaction is waiting for
Marsha’s transaction to remove the read lock from the account record, and vice versa.
Neither person can withdraw money from the account, even though the balance is more
than adequate.

Figure 11-13 shows a slightly more complex example of deadlock. In this example,
user A has locked record X, and user B has locked record Y. User A then requests record Y
(intending to update), and user B requests record X (also intending to update). Both
requests are denied, because the requested records are already locked. Unless the
DBMS intervenes, both users will wait indefinitely.

MANAGING DEADLOCK There are two basic ways to resolve deadlocks: deadlock
prevention and deadlock resolution. When deadlock prevention is employed, user
programs must lock all records they will require at the beginning of a transaction,
rather than one at a time. In Figure 11-13, user A would have to lock both records X
and Y before processing the transaction. If either record is already locked, the

Exclusive lock (X lock,
or write lock)
A technique that prevents another
transaction from reading and
therefore updating a record until
it is unlocked.

Time
John

1. Place read lock

2. Check balance
(Balance = $1,000)

3. Request write lock
(denied)

(Wait)

Marsha

1. Place read lock

2. Check balance
(Balance = $1,000)

3. Request write lock
(denied)

(Wait)

FIGURE 11-12 The problem
of deadlock

Deadlock
An impasse that results when two
or more transactions have locked a
common resource, and each waits
for the other to unlock that
resource.

Deadlock prevention
A method for resolving deadlocks
in which user programs must lock
all records they require at the
beginning of a transaction (rather
than one at a time).

496 Part V • Advanced Database Topics

Deadlock!

1. Lock record X

2. Request record Y

(Wait for Y)

1. Lock record Y

2. Request record X

(Wait for X)

User BUser A
Time

FIGURE 11-13 Another
example of deadlock

program must wait until it is released. Where all locking operations necessary for a
transaction occur before any resources are unlocked, a two-phase locking protocol is
being used. Once any lock obtained for the transaction is released, no more locks may
be obtained. Thus, the phases in the two-phase locking protocol are often referred to
as a growing phase (where all necessary locks are acquired) and a shrinking phase
(where all locks are released). Locks do not have to be acquired simultaneously.
Frequently, some locks will be acquired, processing will occur, and then additional
locks will be acquired as needed.

Locking all the required records at the beginning of a transaction (called
conservative two-phase locking) prevents deadlock. Unfortunately, it is often difficult to
predict in advance what records will be required to process a transaction. A typical pro-
gram has many processing parts and may call other programs in varying sequences. As
a result, deadlock prevention is not always practical.

Two-phase locking, in which each transaction must request records in the same
sequence (i.e., serializing the resources), also prevents deadlock, but again this may not
be practical.

The second, and more common, approach is to allow deadlocks to occur but to
build mechanisms into the DBMS for detecting and breaking the deadlocks. Essentially,
these deadlock resolution mechanisms work as follows: The DBMS maintains a matrix
of resource usage, which, at a given instant, indicates what subjects (users) are using
what objects (resources). By scanning this matrix, the computer can detect deadlocks as
they occur. The DBMS then resolves the deadlocks by “backing out” one of the dead-
locked transactions. Any changes made by that transaction up to the time of deadlock
are removed, and the transaction is restarted when the required resources become
available. We will describe the procedure for backing out shortly.

Versioning

Locking, as described here, is often referred to as a pessimistic concurrency control
mechanism because each time a record is required, the DBMS takes the highly cautious
approach of locking the record so that other programs cannot use it. In reality, in most
cases other users will not request the same documents, or they may only want to read
them, which is not a problem (Celko, 1992). Thus, conflicts are rare.

A newer approach to concurrency control, called versioning, takes the optimistic
approach that most of the time other users do not want the same record, or if they do,
they only want to read (but not update) the record. With versioning, there is no form of

Two-phase locking protocol
A procedure for acquiring the
necessary locks for a transaction
in which all necessary locks are
acquired before any locks are
released, resulting in a growing
phase when locks are acquired and
a shrinking phase when they are
released.

Deadlock resolution
An approach to dealing with
deadlocks that allows deadlocks
to occur but builds mechanisms
into the DBMS for detecting and
breaking the deadlocks.

Versioning
An approach to concurrency
control in which each transaction is
restricted to a view of the database
as of the time that transaction
started, and when a transaction
modifies a record, the DBMS
creates a new record version
instead of overwriting the old
record. Hence, no form of locking
is required.

Chapter 11 • Data and Database Administration 497

locking. Each transaction is restricted to a view of the database as of the time that trans-
action started, and when a transaction modifies a record, the DBMS creates a new
record version instead of overwriting the old record.

The best way to understand versioning is to imagine a central records room, corre-
sponding to the database (Celko, 1992). The records room has a service window. Users
(corresponding to transactions) arrive at the window and request documents (corre-
sponding to database records). However, the original documents never leave the
records room. Instead, the clerk (corresponding to the DBMS) makes copies of the
requested documents and time stamps them. Users then take their private copies (or
versions) of the documents to their own workplace and read them and/or make
changes. When finished, they return their marked-up copies to the clerk. The clerk
merges the changes from marked-up copies into the central database. When there is no
conflict (e.g., when only one user has made changes to a set of database records), that
user’s changes are merged directly into the public (or central) database.

Suppose instead that there is a conflict; for example, say that two users have made
conflicting changes to their private copy of the database. In this case, the changes made
by one of the users are committed to the database. (Remember that the transactions
are time-stamped, so that the earlier transaction can be given priority.) The other user
must be told that there was a conflict, and his work cannot be committed (or incorpo-
rated into the central database). He must check out another copy of the data records and
repeat the previous work. Under the optimistic assumption, this type of rework will be
the exception rather than the rule.

Figure 11-14 shows a simple example of the use of versioning for the checking
account example. John reads the record containing the account balance, successfully
withdraws $200, and the new balance ($800) is posted to the account with a COMMIT
statement. Meanwhile, Marsha has also read the account record and requested a with-
drawal, which is posted to her local version of the account record. However, when the
transaction attempts to COMMIT, it discovers the update conflict, and her transaction is
aborted (perhaps with a message such as “Cannot complete transaction at this time”).
Marsha can then restart the transaction, working from the correct starting balance of $800.

The main advantage of versioning over locking is performance improvement.
Read-only transactions can run concurrently with updating transactions, without loss
of database consistency.

Time
Marsha

1. Read balance
(Balance = $1,000)

2. Attempt to withdraw $300

3. Rollback

4. Restart transaction

John

1. Read balance
(Balance = $1,000)

2. Withdraw $200
(Balance = $800)

3. Commit

FIGURE 11-14 The use of
versioning

498 Part V • Advanced Database Topics

DATA DICTIONARIES AND REPOSITORIES

In Chapter 1, we defined metadata as data that describe the properties or characteristics of
end-user data and the context of that data. To be successful, an organization must develop
sound strategies to collect, manage, and utilize its metadata. These strategies should
address identifying the types of metadata that need to be collected and maintained and
developing methods for the orderly collection and storage of that metadata. Data admin-
istration is usually responsible for the overall direction of the metadata strategy.

Metadata must be stored and managed using DBMS technology. The collection of
metadata is referred to as a data dictionary (an older term) or a repository (a modern
term). We describe each of these terms in this section. Some facilities of RDBMSs to
access the metadata stored with a database were described in Chapter 7.

Data Dictionary

An integral part of relational DBMSs is the data dictionary, which stores metadata, or
information about the database, including attribute names and definitions for each
table in the database. The data dictionary is usually a part of the system catalog that is
generated for each database. The system catalog describes all database objects, includ-
ing table-related data such as table names, table creators or owners, column names and
data types, foreign keys and primary keys, index files, authorized users, user access
privileges, and so forth. The system catalog is created and maintained automatically by
the database management system, and the information is stored in systems tables,
which may be queried in the same manner as any other data table, if the user has suffi-
cient access privileges.

Data dictionaries may be either active or passive. An active data dictionary is man-
aged automatically by the database management software. Active systems are always
consistent with the current structure and definition of the database because they are
maintained by the system itself. Most relational database management systems now
contain active data dictionaries that can be derived from their system catalog. A passive
data dictionary is managed by the user(s) of the system and is modified whenever the
structure of the database is changed. Because this modification must be performed
manually by the user, it is possible that the data dictionary will not be current with the
current structure of the database. However, the passive data dictionary may be main-
tained as a separate database. This may be desirable during the design phase because it
allows developers to remain independent from using a particular RDBMS for as long as
possible. Also, passive data dictionaries are not limited to information that can be dis-
cerned by the database management system. Because passive data dictionaries are
maintained by the user, they may be extended to contain information about organiza-
tional data that is not computerized.

Repositories

Whereas data dictionaries are simple data element documentation tools, information
repositories are used by data administrators and other information specialists to man-
age the total information processing environment. The information repository is an
essential component of both the development environment and the production envi-
ronment. In the application development environment, people (either information spe-
cialists or end users) use CASE tools, high-level languages, and other tools to develop
new applications. CASE tools may tie automatically to the information repository. In
the production environment, people use applications to build databases, keep the data
current, and extract data from databases. To build a data warehouse and develop busi-
ness intelligence applications, it is absolutely essential that an organization build and
maintain a comprehensive repository.

As indicated previously, CASE tools often generate information that should be a
part of the information repository, as do documentation tools, project management tools,
and, of course, the database management software itself. When they were first devel-
oped, the information recorded by each of these products was not easily integrated.
Now, however, there has been an attempt to make this information more accessible

Data dictionary
A repository of information about
a database that documents data
elements of a database.

System catalog
A system-created database that
describes all database objects,
including data dictionary
information, and also includes
user access information.

Information repository
A component that stores metadata
that describe an organization’s
data and data processing resources,
manages the total information
processing environment, and
combines information about
an organization’s business
information and its application
portfolio.

Chapter 11 • Data and Database Administration 499

and shareable. The Information Resource Dictionary System (IRDS) is a computer
software tool that is used to manage and control access to the information repository.
It provides facilities for recording, storing, and processing descriptions of an organi-
zation’s significant data and data processing resources (Lefkovitz, 1985). When
systems are compliant with IRDS, it is possible to transfer data definitions among the
data dictionaries generated by the various products. IRDS, which has been adopted as
a standard by the International Standards Organization as the ISO/IEC 10027 stan-
dard www.iso.org/iso/catalogue_detail.htm?csnumber=17985 includes a set of rules
for storing data dictionary information and for accessing it.

Figure 11-15 shows the three components of a repository system architecture
(Bernstein, 1996). First is an information model. This model is a schema of the informa-
tion stored in the repository, which can then be used by the tools associated with the
database to interpret the contents of the repository. Next is the repository engine, which
manages the repository objects. Services, such as reading and writing repository
objects, browsing, and extending the information model, are included. Last is the repos-
itory database, in which the repository objects are actually stored. Notice that the repos-
itory engine supports five core functions (Bernstein, 1996):

Information Resource Dictionary
System (IRDS)
A computer software tool that is
used to manage and control access
to the information repository.

Repository
Database

Information
Model

Repository Engine:

Objects Relationships Extensible
Types

Version &
Configuration
Management

FIGURE 11-15 Three
components of repository
system architecture

Source: Based on Bernstein (1996)

1. Object management Object-oriented repositories store information about
objects. As databases become more object oriented, developers will be able to use
the information stored about database objects in the information repository. The
repository can be based on an object-oriented database or it can add the capability
to support objects.

2. Relationship management The repository engine contains information about
object relationships that can be used to facilitate the use of software tools that
attach to the database.

3. Dynamic extensibility The repository information model defines types, which
should be easy to extend, that is, to add new types or to extend the definitions of
those that already exist. This capability can make it easier to integrate a new soft-
ware tool into the development process.

4. Version management During development, it is important to establish version
control. The information repository can be used to facilitate version control for

www.iso.org/iso/catalogue_detail.htm?csnumber=17985

500 Part V • Advanced Database Topics

software design tools. Version control of objects is more difficult to manage than
version control of files, because there are many more objects than files in an appli-
cation, and each version of an object may have many relationships.

5. Configuration management It is necessary to group versioned objects into con-
figurations that represent the entire system, which are also versioned. It may help
you to think of a configuration as similar to a file directory, except configurations
can be versioned and they contain objects rather than files. Repositories often use
checkout systems to manage objects, versions, and configurations. A developer
who wishes to use an object checks it out, makes the desired changes, and then
checks the object back in. At that time, a new version of the object will be created,
and the object will become available to other developers.

As object-oriented database management systems become more available, and as
object-oriented programming associated with relational databases increases, the impor-
tance of the information repository is also going to increase because object-oriented
development requires the use (and reuse) of the metadata contained in the information
repository. Also, the metadata and application information generated by different soft-
ware tools will be more easily integrated into the information repository now that the
IRDS standard has been accepted. Although information repositories are already
included in the enterprise-level development tools, the increasing emphasis on object-
oriented development and the explosion of data warehouse solutions are leading to
more widespread use of information repositories.

OVERVIEW OF TUNING THE DATABASE FOR PERFORMANCE

Effective database support results in a reliable database where performance is not
subject to interruption from hardware, software, or user problems and where optimal
performance is achieved. Tuning a database is not an activity that is undertaken at the
time of DBMS installation and/or at the time of implementation of a new application
and then disregarded. Rather, performance analysis and tuning is an ongoing part of
managing any database, as hardware and software configurations change and as user
activity changes. Five areas of DBMS management that should be addressed when
trying to maintain a well-tuned database are addressed here: installation of the DBMS,
memory and storage space usage, input/output contention, CPU usage, and applica-
tion tuning. The extent to which the database administrator can affect each of these
areas will vary across DBMS products. Oracle 11g will be used as the exemplar DBMS
throughout this section, but it should be noted that each product has its own set of
tuning capabilities.

Tuning a database application requires familiarity with the system environment, the
DBMS, the application, and the data used by the application. It is here that the skills of
even an experienced database administrator are tested. Achieving a quiet environment,
one that is reliable and allows users to secure desired information in a timely manner,
requires skills and experience that are obtained by working with databases over time. The
areas discussed next are quite general and are intended to provide an initial understand-
ing of the scope of activities involved in tuning a database rather than providing the type
of detailed understanding necessary to tune a particular database application.

Installation of the DBMS

Correct installation of the DBMS product is essential to any environment. Products
often include README files, which may include detailed installation instructions, revi-
sions of procedures, notification of increased disk space needed for installation, and so
on. A quick review of any README files may save time during the installation process
and result in a better installation. Failing to review general installation instructions may
result in default parameter values being set during installation that are not optimal for
the situation. Some possible considerations are listed here.

Before beginning installation, the database administrator should ensure that
adequate disk space is available. You will need to refer to manuals for the specific

Chapter 11 • Data and Database Administration 501

DBMS to be able to translate logical database size parameters (e.g., field length, number
of table rows, and estimated growth) into actual physical space requirements. It is pos-
sible that the space allocation recommendations are low, as changes made to a DBMS
tend to make it larger, but the documentation may not reflect that change. To be safe,
allocate at least 20 percent more space than suggested by standard calculations. After
installation, review any log files generated during the installation process. Their con-
tents will reveal installation problems that were not noticed or provide assurance that
the installation proceeded as expected.

Allocation of disk space for the database should also receive consideration. For
example, some UNIX backup systems have trouble with data files that exceed a giga-
byte in size. Keeping data files under one gigabyte will avoid possible problems.
Allocation of data files in standard sizes will make it easier to balance I/O, because data
file locations can be swapped more easily should a bottleneck need to be resolved.

Memory and Storage Space Usage

Efficient usage of main memory involves understanding how the DBMS uses main
memory, what buffers are being used, and what needs the programs in main memory
have. For example, Oracle has many background processes that reside in memory
and handle database management functions when a database is running. Some oper-
ating systems require a contiguous chunk of memory to be able to load Oracle, and a
system with insufficient memory will have to free up memory space first. Oracle
maintains in main memory a data dictionary cache that ideally should be large
enough so that at least 90 percent of the requests to the data dictionary can be located
in the cache rather than having to retrieve information from disk. Each of these is an
example of typical memory management issues that should be considered when
tuning a database.

Storage space management may include many activities, some of which have
already been discussed in this book, such as denormalization and partitioning. One
other activity is data archiving. Any database that stores history, such as transaction
history or a time series of values for some field, will eventually include obsolete data—
data that no longer has any use. Database statistics showing location access frequencies
for records or pages can be a clue that data no longer has a purpose. Business rules may
also indicate that data older than some value (e.g., seven years) does not need to be kept
for active processing. However, there may be legal reasons or infrequently needed
business intelligence queries that suggest data should simply not be discarded. Thus,
database administrations should develop a program of archiving inactive data. Data
may be archived to separate database tables (thus making active tables more compact
and, hence, more likely to be more quickly processed) or to files stored outside the
database (possibly on magnetic tape or optical storage). Archive files may also be com-
pressed to save space. Methods also need to be developed to restore, in an acceptable
time, archived data to the database if and when they are needed. (Remember, archived
data are inactive, not totally obsolete.) Archiving reclaims disk space, saves disk storage
costs, and may improve database performance by allowing the active data to be stored
in less expansive space.

Input/Output (I/O) Contention

Database applications are very I/O intensive; a production database will usually
both read and write large amounts of data to disk as it works. While CPU clock
speeds have increased dramatically, I/O speeds have not increased proportionately,
and increasingly complex distributed database systems have further complicated
I/O functioning.

Understanding how data are accessed by end users is critical to managing I/O
contention. When hot spots (physical disk locations that are accessed repeatedly)
develop, understanding the nature of the activity that is causing the hot spot affords
the database administrator a much better chance of reducing the I/O contention being
experienced. Oracle allows the DBA to control the placement of tablespaces, which
contain data files. The DBA’s in-depth understanding of user activity facilitates her or

Data archiving
The process of moving inactive
data to another storage location
where it can be accessed when
needed.

502 Part V • Advanced Database Topics

his ability to reduce I/O contention by separating data files that are being accessed
together. Where possible, large database objects that will be accessed concurrently
may be striped across disks to reduce I/O contention and improve performance. An
overall objective of distributing I/O activity evenly across disks and controllers
should guide the DBA in tuning I/O.

CPU Usage

Most database operations will require CPU work activity. Because of this, it is important
to evaluate CPU usage when tuning a database. Using multiple CPUs allows query pro-
cessing to be shared when the CPUs are working in parallel, and performance may be
dramatically improved. DBAs need to maximize the performance of their existing CPUs
while planning for the gains that may be achieved with each new generation of CPUs.

Monitoring CPU load so that typical load throughout a 24-hour period is known
provides DBAs with basic information necessary to begin to rebalance CPU loading.
The mixture of online and background processing may need to be adjusted for each
environment. For example, establishing a rule that all jobs that can be run in off-hours
must be run in off-hours will help to unload the machine during peak working hours.
Establishing user accounts with limited space will help manage the CPU load also.

Application Tuning

The previous sections have concentrated on activities to tune a DBMS. Examining the
applications that end users are using with the database may also increase performance.
While normalization to at least 3NF is expected in many organizations that are using
relational data models, carefully planned denormalization (see Chapter 5) may improve
performance, often by reducing the number of tables that must be joined when running
an SQL query.

Examination and modification of the SQL code in an application may also lead to
performance improvement. Queries that do full table scans should be avoided, for
example, because they are not selective and may not remain in memory very long. This
necessitates more retrievals from long-term storage. Multitable joins should be actively
managed when possible with the DBMS being used, because the type of join can dra-
matically affect performance, especially if a join requires a full table join. A general rule
of thumb is that any query whose ratio of CPU to I/O time exceeds 13:1 is probably
poorly designed. Active monitoring of queries by the DBMS can be used to actually ter-
minate a query of job that exhibits exceeding this ratio. Alternatively, such queries may
be put into a “penalty box” to wait until the job scheduler determines that sufficient
CPU time is available to continue processing the query.

Similarly, statements containing views and those containing subqueries should be
actively reviewed. Tuning of such statements so that components are resolved in the
most efficient manner possible may achieve significant performance gains. Chapter 5
discussed a variety of techniques a DBA could use to tune application processing speed
and disk space utilization (e.g., re-indexing, overriding automatic query plans, chang-
ing data block sizes, reallocating files across storage devices, and guidelines for more
efficient query design). A DBA plays an important role in advising programmers and
developers which techniques will be the most effective.

The same database activity may take vastly different amounts of time, depend-
ing on the workload mix at the time the query or program is run. Some DBMSs have
job schedulers that look at statistics about the history of running queries and will
schedule batch jobs to achieve a desirable mix of CPU usage and I/O. A DBA can
actively monitor query processing times by running so called “heartbeat” or “canary”
queries. A heartbeat query is a very simple query (possibly SELECT * FROM table
WHERE some condition) that a DBA runs many times during the day to monitor vari-
ations in processing times. When heartbeat queries are taking extraordinarily long to
run, there is probably either an inappropriate mix of jobs running or some inefficient
queries are consuming too many DBMS resources. A heartbeat query may also be
exactly like certain regularly run user queries for which there are service-level agreements
(SLAs) with users on maximum response times. In this case, the heartbeat query is

Heartbeat query
A query submitted by a DBA to
test the current performance of a
database or to predict the response
time for queries that have promised
response times. Also called a
canary query.

Chapter 11 • Data and Database Administration 503

run periodically to make sure that if the user were to submit this query, the SLA goals
would be met.

Another aspect of application tuning is setting realistic user expectations. Users
should be trained to realize that more complex queries, especially if submitted ad hoc,
will take more processing and response time. Users should also be trained to submit
queries first using the EXPLAIN or similar function that will not actually run the query
but rather estimate the time for query processing from database statistics. This way,
many poorly written queries can be avoided. To effectively set realistic user expecta-
tions, the DBA needs to realize that database statistics (e.g., number of table rows and
distribution of values for certain fields often used for qualifications) must to be recalcu-
lated frequently. Recalculation of statistics should occur at least after every batch load of
a table, and more frequently for tables that are constantly being updated online.
Statistics affect the query optimizer, so reasonable up-to-date statistics are essential for
the DBMS to develop a very good query processing plan (i.e., which indexes to use and
in which order to execute joins).

The preceding description of potential areas where database performance may be
affected should convince you of the importance of effective database management and
tuning. As a DBA achieves an in-depth understanding of a DBMS and the applications
for which responsibility is assigned, the importance of tuning the database for perform-
ance should become apparent. Hopefully this brief section on database tuning will whet
your appetite for learning more about one or more database products in order to
develop tuning skills.

DATA AVAILABILITY

Ensuring the availability of databases to their users has always been a high-priority
responsibility of database administrators. However, the growth of e-business has ele-
vated this charge from an important goal to a business imperative. An e-business must
be operational and available to its customers 24/7. Studies have shown that if an online
customer does not get the service he or she expects within a few seconds, the customer
will take his or her business to a competitor.

Costs of Downtime

The costs of downtime (when databases are unavailable) include several components:
lost business during the outage, costs of catching up when service is restored, inven-
tory shrinkage, legal costs, and permanent loss of customer loyalty. These costs are
often difficult to estimate accurately and vary widely from one type of business to
another. Table 11-2 shows the estimated hourly costs of downtime for several business
types (Mullins, 2002).

A DBA needs to balance the costs of downtime with the costs of achieving the desired
availability level. Unfortunately, it is seldom (if ever) possible to provide 100 percent
service levels. Failures may occur (as discussed earlier in this chapter) that may

TABLE 11-2 Cost of Downtime, by Type of Business

Type of Business Estimated Hourly Cost

Retail brokerage $6.45 million

Credit card sales authorization $2.6 million

Home shopping channel $113,750

Catalog sales centers $90,000

Airline reservation centers $89,500

Package shipping service $28,250

ATM service fees $14,500

Source: Mullins (2002), p. 226

504 Part V • Advanced Database Topics

TABLE 11-3 Cost of Downtime, by Availability

Downtime Per Year

Availability Minutes Hours Cost Per Year

99.999% 5 .08 $8,000

99.99% 53 .88 $88,000

99.9% 526 8.77 $877,000

99.5% 2,628 43.8 $4,380,000

99% 5,256 87.6 $8,760,000

Source: Mullins (2002), p. 226

interrupt service. Also, it is necessary to perform periodic database reorganizations or
other maintenance activities that may cause service interruptions. It is the responsibility
of database administration to minimize the impact of these interruptions. The goal is to
provide a high level of availability that balances the various costs involved. Table 11-3
shows several availability levels (stated as percentages) and, for each level, the approxi-
mate downtime per year (in minutes and hours). Also shown is the annual cost of down-
time for an organization whose hourly cost of downtime is $100,000 (say, a shopping
network or online auction). Notice that the annual costs escalate rapidly as the availabil-
ity declines, yet in the worst case shown in the table the downtime is only 1 percent.

Measures to Ensure Availability

A new generation of hardware, software, and management techniques has been devel-
oped (and continues to be developed) to assist database administrators in achieving the
high availability levels expected in today’s organizations. We have already discussed
many of these techniques in this chapter (e.g., database recovery) or in earlier ones (e.g.,
RAID storage); in this section we provide only a brief summary of potential availability
problems and measures for coping with them. A number of other techniques, such as
component failure impact analysis (CFIA), fault-tree analysis (FTA), CRAMM, and so
on, as well as a wealth of guidance on how to manage availability are described in the
IT Infrastructure Library (ITIL) framework (www.itil-officialsite.com).

HARDWARE FAILURES Any hardware component, such as a database server, disk sub-
system, power supply, or network switch, can become a point of failure that will disrupt
service. The usual solution is to provide redundant or standby components that replace
a failing system. For example, with clustered servers, the workload of a failing server
can be reallocated to another server in the cluster.

LOSS OR CORRUPTION OF DATA Service can be interrupted when data are lost or
become inaccurate. Mirrored (or backup) databases are almost always provided in
high-availability systems. Also, it is important to use the latest backup and recovery
systems (discussed earlier in this chapter).

HUMAN ERROR “Most . . . outages . . . are not caused by the technology, they’re
caused by people making changes” (Morrow, 2007, p. 32). The use of standard operat-
ing procedures, which are mature and repeatable, is a major deterrent to human errors.
In addition, training, documentation, and insistence on following internationally recog-
nized standard procedures (see, for example, COBIT [www.isaca.org/cobit] or ITIL
[www.itil-officialsite.com]) are essential for reducing human errors.

MAINTENANCE DOWNTIME Historically, the greatest source of database downtime was
attributed to planned database maintenance activities. Databases were taken offline
during periods of low activity (nights, weekends) for database reorganization, backup,
and other activities. This luxury is no longer available for high-availability applications.
New database products are now available that automate maintenance functions. For
example, some utilities (called nondisruptive utilities) allow routine maintenance to be

www.itil-officialsite.com
www.isaca.org/cobit
www.itil-officialsite.com

Chapter 11 • Data and Database Administration 505

performed while the systems remain operational for both read and write operations,
without loss of data integrity.

NETWORK-RELATED PROBLEMS High-availability applications nearly always depend on
the proper functioning of both internal and external networks. Both hardware and soft-
ware failures can result in service disruption. However, the Internet has spawned new
threats that can also result in interruption of service. For example, a hacker can mount a
denial-of-service attack by flooding a Web site with computer-generated messages. To
counter these threats, an organization should carefully monitor its traffic volumes and
develop a fast-response strategy when there is a sudden spike in activity. An organiza-
tion also must employ the latest firewalls, routers, and other network technologies.

Summary

The importance of managing data was emphasized in
this chapter. The functions of data administration, which
takes responsibility for the overall management of data
resources, include developing procedures to protect and
control data, resolving data ownership and use issues,
conceptual data modeling, and developing and main-
taining corporate-wide data definitions and standards.
The functions of database administration, on the other
hand, are those associated with the direct management
of a database or databases, including DBMS installation
and upgrading, database design issues, and technical
issues such as security enforcement, database perform-
ance, data availability, and backup and recovery. The
data administration and database administration roles
are changing in today’s business environment, with
pressure being exerted to maintain data quality while
building high-performing systems quickly.

Threats to data security include accidental losses,
theft and fraud, loss of privacy, loss of data integrity, and
loss of availability. A comprehensive data security plan
will address all of these potential threats, partly through
the establishment of views, authorization rules, user-
defined procedures, and encryption procedures.

Databases, especially data security, play a key
role in an organization’s compliance with Sarbanes-
Oxley (SOX). SOX audits focus on three key areas:
IT change management, logical access to data, and IT
operations.

Database recovery and backup procedures are
another set of essential database administration activi-
ties. Basic recovery facilities that should be in place
include backup facilities, journalizing facilities, check-
point facilities, and a recovery manager. Depending on
the type of problem encountered, backward recovery
(rollback) or forward recovery (rollforward) may be
needed.

The problems of managing concurrent access in
multiuser environments must also be addressed. A DBMS
must ensure that database transactions possess the ACID
properties: atomic, consistent, isolated, and durable. Proper
transaction boundaries must be chosen to achieve these
properties at an acceptable performance. If concurrency
controls on transactions are not established, lost updates
may occur, which will cause data integrity to be impaired.
Locking mechanisms, including shared and exclusive
locks, can be used. Deadlocks may also occur in multiuser
environments and may be managed by various means,
including using a two-phase locking protocol or other
deadlock-resolution mechanism. Versioning is an opti-
mistic approach to concurrency control.

Managing the data dictionary, which is part of the
system catalog in most relational database management
systems, and the information repository help the DBA
maintain high-quality data and high-performing database
systems. The establishment of the Information Resource
Dictionary System (IRDS) standard has helped with the
development of repository information that can be inte-
grated from multiple sources, including the DBMS itself,
CASE tools, and software development tools.

Ensuring the availability of databases to users has
become a high priority for the modern DBA. Use of batch
windows to perform periodic maintenance (e.g., data-
base reorganization) is no longer permissible for mission-
critical applications. A new generation of hardware,
software, and management techniques is being intro-
duced to assist the DBA in managing data availability.

Effective data administration is not easy, and it
encompasses all of the areas summarized here. Increasing
emphasis on object-oriented development methods and
rapid development are changing the data administration
function, but better tools to achieve effective administra-
tion and database tuning are becoming available.

Chapter Review

Key Terms

Aborted transaction 490
After image 485
Authorization

rules 479
Backup facility 484

Backward recovery
(rollback) 488

Before image 485
Checkpoint facility 485
Concurrency control 492

Data administration 463
Data archiving 501
Data dictionary 498
Database administration

465

Database change log 485
Database

destruction 491
Database recovery 484
Database security 471

Review Questions

1. Define each of the following terms:
a. data administration
b. database administration
c. two-phase locking protocol
d. information repository
e. locking
f. versioning
g. deadlock
h. transaction
i. encryption
j. data availability
k. data archiving
l. heartbeat query

2. Match the following terms to the appropriate definitions:

5. Indicate whether data administration or database administra-
tion is typically responsible for each of the following functions:
a. Managing the data repository
b. Installing and upgrading the DBMS
c. Conceptual data modeling
d. Managing data security and privacy
e. Database planning
f. Tuning database performance
g. Database backup and recovery
h. Running heartbeat queries

6. Describe the changing roles of a data administrator and
database administrator in the current business environment.

7. List four common problems of ineffective data administration.
8. List four job skills necessary for data administrators. List

four job skills necessary for database administrators.
9. Briefly describe four new specialized DBA roles that are

emerging today.
10. What changes can be made in data administration at each

stage of the traditional database development life cycle to
deliver high-quality, robust systems more quickly?

11. List and discuss five areas where threats to data security
may occur.

12. Explain how creating a view may increase data security.
Also explain why one should not rely completely on using
views to enforce data security.

13. List and briefly explain how integrity controls can be used
for database security.

14. What is the difference between an authentication scheme
and an authorization scheme?

15. What are the key areas of IT that are examined during a
Sarbanes-Oxley audit?

16. What are the two key types of security policies and procedures
that must be established to aid in Sarbanes-Oxley compliance?

17. What is the advantage of optimistic concurrency control
compared with pessimistic concurrency control?

18. What is the difference between shared locks and exclusive
locks?

19. What is the difference between deadlock prevention and
deadlock resolution?

20. Briefly describe four DBMS facilities that are required for
database backup and recovery.

21. What is transaction integrity? Why is it important?
22. List and describe four common types of database failure.
23. Briefly describe four threats to high data availability and at

least one measure that can be taken to counter each of these
threats.

24. What is an Information Resource Dictionary System (IRDS)?
25. List and briefly explain the ACID properties of a database

transaction.
26. Explain the two common forms of encryption.

506 Part V • Advanced Database Topics

Deadlock 495
Deadlock prevention 495
Deadlock resolution 496
Encryption 480
Exclusive lock (X lock, or

write lock) 495
Forward recovery

(rollforward) 489
Heartbeat query 502

Inconsistent read
problem 492

Information
repository 498

Information Resource
Dictionary System
(IRDS) 499

Journalizing facility 485
Locking 493

Locking level (lock
granularity) 493

Open source DBMS 470
Recovery manager 486
Restore/rerun 487
Shared lock (S lock, or

read lock) 494
Smart card 482
System catalog 498

Transaction 485
Transaction boundaries

488
Transaction log 485
Two-phase locking

protocol 496
User-defined procedures

480
Versioning 496

_____ backup facilities

_____ biometric device

_____ checkpoint facility

_____ database recovery

_____ database security
_____ granularity

_____ recovery manager

_____ rollback

_____ rollforward

_____ system catalog

a. protects data from loss or
misuse

b. reversal of abnormal or
aborted transactions

c. describes all database
objects

d. automatically produces a
saved copy of an entire
database

e. application of after images
f. might analyze your

signature
g. restoring a database after

a loss
h. DBMS module that

restores a database after a
failure

i. extent to which a database
is locked for transaction

j. records database state
at moment of synchro-
nization

3. Compare and contrast the following terms:
a. data administration; database administration
b. repository; data dictionary
c. deadlock prevention; deadlock resolution
d. backward recovery; forward recovery
e. active data dictionary; passive data dictionary
f. optimistic concurrency control; pessimistic concurrency

control
g. shared lock; exclusive lock
h. before image; after image
i. two-phase locking protocol; versioning
j. authorization; authentication
k. data backup; data archiving

4. What is an open source DBMS?

27. Briefly describe four components of a disaster recovery plan.
28. Explain the purpose of heartbeat queries.
29. How can views be used as part of data security? What are

the limitations of views for data security?

30. What is the purpose of the GRANT and REVOKE SQL com-
mands? List some actions that can be granted to or revoked
from a user.

Problems and Exercises

Chapter 11 • Data and Database Administration 507

1. Fill in the two authorization tables for Pine Valley Furniture
Company below, based on the following assumptions (enter
Y for yes or N for no):

• Salespersons, managers, and carpenters may read
inventory records but may not perform any other opera-
tions on these records.

• Persons in Accounts Receivable and Accounts Payable
may read and/or update (insert, modify, delete) receiv-
ables records and customer records.

• Inventory clerks may read and/or update (modify,
delete) inventory records. They may not view receiv-
ables records or payroll records. They may read but not
modify customer records.

2. Five recovery techniques are listed below. For each situation
described, decide which of the following recovery tech-
niques is most appropriate.
• Backward recovery
• Forward recovery (from latest checkpoint)
• Forward recovery (using backup copy of database)
• Reprocessing transactions
• Switch
a. A phone disconnection occurs while a user is entering a

transaction.
b. A disk drive fails during regular operations.
c. A lightning storm causes a power failure.
d. An incorrect amount is entered and posted for a student

tuition payment. The error is not discovered for several
weeks.

e. Data entry clerks have entered transactions for two
hours after a full database backup when the database
becomes corrupted. It is discovered that the journalizing
facility of the database has not been activated since the
backup was made.

3. Whitlock Department Stores runs a multiuser DBMS on a
LAN file server. Unfortunately, at the present time, the
DBMS does not enforce concurrency control. One Whitlock
customer had a balance due of $250.00 when the following
three transactions related to this customer were processed at
about the same time:
• Payment of $250.00
• Purchase on credit of $100.00
• Merchandise return (credit) of $50.00
Each of the three transactions read the customer record
when the balance was $250.00 (i.e., before any of the other
transactions were completed). The updated customer
record was returned to the database in the order shown in
the bulleted list above.
a. What balance will be included for the customer after the

last transaction was completed?
b. What balance should be included for the customer after

the three transactions have been processed?
4. For each of the situations described below, indicate which of

the following security measures is most appropriate:
• Authorization rules
• Encryption
• Authentication schemes
a. A national brokerage firm uses an electronic funds

transfer (EFT) system to transmit sensitive financial data
between locations.

b. An organization has set up an offsite computer-based
training center. The organization wishes to restrict access
to the site to authorized employees. Because each employee’s
use of the center is occasional, the center does not wish to
provide the employees with keys to access the center.

c. A manufacturing firm uses a simple password system to
protect its database but finds it needs a more compre-
hensive system to grant different privileges (e.g., read,
versus create or update) to different users.

d. A university has experienced considerable difficulty
with unauthorized users accessing files and databases
by appropriating passwords from legitimate users.

5. Metro Marketers, Inc., wants to build a data warehouse for
storing customer information that will be used for data
marketing purposes. Building the data warehouse will
require much more capacity and processing power than
they have previously needed, and they are considering
Oracle and Red Brick as their database and data warehous-
ing products. As part of their implementation plan, Metro
has decided to organize a data administration function. At
present, they have four major candidates for the data
administrator position:
a. Monica Lopez, a senior database administrator with five

years of experience as an Oracle database administrator
managing a financial database for a global banking firm,
but no data warehousing experience.

b. Gerald Bruester, a senior database administrator with six
years of experience as an Informix database administra-
tor managing a marketing-oriented database for a Fortune
1000 food products firm. Gerald has been to several data

Authorizations for Inventory Clerks

Inventory
Records

Receivables
Records

Payroll
Records

Customer
Records

Read

Insert

Modify

Delete

Authorizations for Inventory Records

Salespersons
A/R
Personnel

Inventory
Clerks Carpenters

Read

Insert

Modify

Delete

508 Part V • Advanced Database Topics

warehousing seminars over the past 12 months and is
interested in being involved with a data warehouse.

c. Jim Reedy, currently project manager for Metro Marketers.
Jim is very familiar with Metro’s current systems envi-
ronment and is well respected by his coworkers. He has
been involved with Metro’s current database system but
does not have any data warehousing experience.

d. Marie Weber, a data warehouse administrator with two
years of experience using a Red Brick–based application
that tracks accident information for an automobile
insurance company.

Based on this limited information, rank the four candidates
for the data administration position. Support your rankings
by indicating your reasoning.

6. Referring to Problem and Exercise 5, rank the four candi-
dates for the position of data warehouse administrator at
Metro Marketing. Again, support your rankings.

7. Referring to Problem and Exercise 5, rank the four candi-
dates for the position of database administrator at Metro
Marketing. Again, support your rankings.

8. What concerns would you have if you accept a job as a data-
base administrator and discover that the database users are
entering one common password to log on to the database
each morning when they arrive for work? You also learn
that they leave their workstations connected to the database
all day, even when they are away from their machines for
extended periods of time.

9. During the Sarbanes-Oxley audit of a financial services
company, you note the following issues. Categorize each of
them into the area to which they belong: IT change manage-
ment, logical access to data, and IT operations.
a. Five database administrators have access to the sa (system

administrator) account that has complete access to the
database.

b. Several changes to database structures did not have
appropriate approval by management.

c. Some users continued to have access to the database
even after having been terminated.

d. Databases are backed up on a regular schedule, using an
automated system.

10. Revisit the four issues identified in Problem and Exercise 9.
What risk, if any, do each of them pose to the firm?

11. An organization has a database server with three disk
devices. The accounting and payroll applications share one
of these disk devices and are experiencing performance
problems. You have been asked to investigate the problem
and tune the databases. What might you suggest to reduce
I/O contention?

12. You take a new job as a database administrator at an organ-
ization that has a globally distributed database. You are
asked to analyze the performance of the database, and as
part of your analysis, you discover that all of the processing
for regional monthly sales reports is being conducted at the
corporate headquarters location. Operations are categorized
by five regions: Eastern United States, Western United
States, Canada, South America, and Mexico. Data for each
region are kept on a server located at the regional headquar-
ters. What would you try to improve the time needed to cre-
ate the monthly sales reports?

13. An e-business operates a high-volume catalog sales center.
Through the use of clustered servers and mirrored disk
drives, the data center has been able to achieve data avail-
ability of 99.9 percent. Although this exceeds industry
norms, the organization still receives periodic customer
complaints that the Web site is unavailable (due to data out-
ages). A vendor has proposed several software upgrades as
well as expanded disk capacity to improve data availability.
The cost of these proposed improvements would be about
$25,000 per month. The vendor estimates that the improve-
ments should improve availability to 99.99 percent.
a. If this company is typical for a catalog sales center, what

is the current annual cost of system unavailability? (You
will need to refer to Tables 11-2 and 11-3 to answer this
question.)

b. If the vendor’s estimates are accurate, can the organiza-
tion justify the additional expenditure?

14. Review the tables for data availability (Tables 11-2 and 11-3).
For the retail brokerage firm shown in Table 11-2, calculate
the expected annual cost of downtime for the following avail-
ability levels: 99.9 percent and 99.5 percent. Do you think that
either of these levels are acceptable for this organization?

15. The mail order firm described in Problem and Exercise 13
has about 1 million customers. The firm is planning a mass
mailing of its spring sales catalog to all of its customers.
The unit cost of the mailing (postage and catalog) is $6.00.
The error rate in the database (duplicate records, erroneous
addresses, etc.) is estimated to be 12 percent. Calculate the
expected loss of this mailing due to poor-quality data.

16. The average annual revenue per customer for the mail order
firm described in Problems and Exercises 13 and 15 is $100.
The organization is planning a data quality improvement
program that it hopes will increase the average revenue per
customer by 5 percent per year. If this estimate proves accu-
rate, what will be the annual increase in revenue due to
improved quality?

17. Referring to the Fitchwood Insurance Company case
study at the end of Chapter 9, what types of security
issues would you expect to encounter when building a
data warehouse? Would there be just one set of security
concerns related to user access to the data warehouse, or
would you also need to be concerned with security of data
during the extracting, cleansing, and loading processes?

18. How would Fitchwood’s security have to be different if the
data mart were made available to customers via the Internet?

19. What security and data quality issues need to be addressed
when developing a B2B application using Web services?

20. Research available data quality software. Describe in detail
at least one technique employed by one of these tools (e.g.,
an expert system).

21. Visit some Web sites for open source databases, such as
www.postgresql.org and www.mysql.com. What do you
see as major differences in administration between open
source databases, such as MySQL, and commercial database
products, such as Oracle? How might these differences come
into play when choosing a database platform? Summarize
the DBA functions of MySQL versus PostgreSQL.

22. Compare the concurrency issues that must be dealt with
when developing an OLTP system versus a data warehouse.

www.postgresql.org
www.mysql.com

Chapter 11 • Data and Database Administration 509

Field Exercises
1. Visit an organization that has implemented a database

approach. Evaluate each of the following:
a. The organizational placement of data administration, data-

base administration, and data warehouse administration
b. The assignment of responsibilities for each of the func-

tions listed in part a
c. The background and experience of the person chosen as

head of data administration
d. The status and usage of an information repository (pas-

sive, active-in-design, active-in-production)
2. Visit an organization that has implemented a database

approach and interview an MIS department employee who
has been involved in disaster recovery planning. Before you
go for the interview, think carefully about the relative proba-
bilities of various disasters for the organization you are
visiting. For example, is the area subject to earthquakes, tor-
nadoes, or other natural disasters? What type of damage
might the physical plant be subject to? What is the back-
ground and training of the employees who must use the sys-
tem? Find out about the organization’s disaster recovery
plans and ask specifically about any potential problems you
have identified.

3. Visit an organization that has implemented a database
approach and interview individuals there about the security
measures they take routinely. Evaluate each of the following
at the organization:
a. Database security measures
b. Network security measures
c. Operating system security measures
d. Physical plant security measures
e. Personnel security measures

4. Identify an organization that handles large, sporadic data
loads. For example, organizations that have implemented

data warehouses may have large data loads as they populate
their data warehouses. Determine what measures the
organization has taken to handle these large loads as part of
its capacity planning.

5. Databases tend to grow larger over time, not smaller, as new
transaction data are added. Interview at least three compa-
nies that use databases extensively and identify their crite-
ria and procedures for purging or archiving old data. Find
out how often data are purged and what type of data are
purged. Identify the data each organization archives and
how long those data are archived.

6. Visit an organization that relies heavily on e-commerce appli-
cations. Interview the database administrator (or a senior
person in that organization) to determine the following:
a. What is the organizational goal for system availability?

(Compare with Table 11-3.)
b. Has the organization estimated the cost of system

downtime ($/hour)? If not, use Table 11-2 and select a
cost for a similar type of organization.

c. What is the greatest obstacle to achieving high data
availability for this organization?

d. What measures has the organization taken to ensure
high availability? What measures are planned for the
future?

7. Visit an organization that uses an open source DBMS. Why
did the organization choose open source software? Does it
have other open source software besides a DBMS? Has
it purchased any fee-based components or services? Does

it have a DA or DBA staff, and, if so, how do these people
evaluate the open source DBMS they are using? (This
could especially provide insight if the organization also
has some traditional DBMS products, such as Oracle
or DB2.)

References

Anderson, D. 2005. “HIPAA Security and Compliance,” available
at www.tdan.com (July).

Bernstein, P. A. 1996. “The Repository: A Modern Vision.”
Database Programming & Design 9,12 (December): 28–35.

Celko, J. 1992. “An Introduction to Concurrency Control.”
DBMS 5,9 (September): 70–83.

Descollonges, M. 1993. “Concurrency for Complex Processing.”
Database Programming & Design 6,1 (January): 66–71.

Dowgiallo, E., H. Fosdick, Y. Lirov, A. Langer, T. Quinlan, and
C. Young. 1997. “DBAof the Future.” Database Programming &
Design 10,6 (June): 33–41.

Fernandez, E. B., R. C. Summers, and C. Wood. 1981. Database
Security and Integrity. Reading, MA: Addison-Wesley.

Hall, M. 2003. “MySQL Breaks into the Data Center,” available at
www.computerworld.com/printthis/2003/0,4814,85900,00
.html.

Inmon, W. H. 1999. “Data Warehouse Administration.” Found
at www.billinmon.com/library/other/dwaadmin.asp (no
longer available).

Inmon, W. H., C. Imhoff, and R. Sousa. 2001. Corporate
Information Factory, 2nd ed. New York: Wiley.

Lefkovitz, H. C. 1985. Proposed American National Standards
Information Resource Dictionary System. Wellesley, MA:
QED Information Sciences.

Michaelson, J. 2004. “What Every Developer Should Know
About Open Source Licensing.” Queue 2,3 (May):
41–47. (Note: This whole issue of Queue is devoted to
the open source movement and contains many interest-
ing articles.)

Morrow, J. T. 2007. “The Three Pillars of Data.” InfoWorld
(March 12): 20–33.

Mullins, C. 2001. “Modern Database Administration, Part 1.”
DM Review 11,9 (September): 31, 55–57.

Mullins, C. 2002. Database Administration: The Complete Guide to
Practices and Procedures. Boston: Addison-Wesley.

Rodgers, U. 1989. “Multiuser DBMS Under UNIX.” Database
Programming & Design 2,10 (October): 30–37.

www.tdan.com
www.computerworld.com/printthis/2003/0,4814,85900,00.html
www.computerworld.com/printthis/2003/0,4814,85900,00.html
www.billinmon.com/library/other/dwaadmin.asp

510 Part V • Advanced Database Topics

Further Reading

Loney, K. 2000. “Protecting Your Database.” Oracle Magazine.
14,3 (May/June): 101–106.

Surran, M. 2003. “Making the Switch to Open Source Software.”
THE Journal. 31,2 (September): 36–41. (This journal is
available at www.thejournal.com)

Quinlan, T. 1996. “Time to Reengineer the DBA?” Database
Programming & Design 9,3 (March): 29–34.

Web Resources

http://gost.isi.edu/publications/kerberos-neuman-tso.html
A guide to the Kerberos method of user authentication.

www.abanet.org/scitech/ec/isc/dsg-tutorial.html An excellent
guide to digital signatures from the American Bar Associa-
tion Section of Science and Technology, Information
Security Committee.

http://tpc.org Web site of the Transaction Processing Perfor-
mance Council, a nonprofit corporation founded to

define transaction processing and database benchmarks
and to disseminate objective, verifiable transaction pro-
cessing performance data to the industry. This is an
excellent site for learning more about evaluating DBMSs
and database designs through technical articles on data-
base benchmarking.

www.thejournal.com
http://gost.isi.edu/publications/kerberos-neuman-tso.html
www.abanet.org/scitech/ec/isc/dsg-tutorial.html
http://tpc.org

Chapter 11 • Data and Database Administration 511

CASE
Mountain View Community Hospital

Case Description

Refer to the case presented for Mountain View Community
Hospital (MVCH) in Chapter 10.

Case Questions

1. Do EMR and CPOE systems seem to have the potential to
help MVCH achieve its goals of achieving high-quality care
and cost containment? Support your answers with examples
of how you think these goals may or may not be achieved.

2. In light of HIPAA and other regulations, securing and pro-
tecting patient records is a primary requirement for MVCH.
a. What data security issues would you expect MVCH to

encounter if an EMR system is implemented that is
accessible by physicians in the community, by laborato-
ries, and by health-care organizations?

b. What data security techniques described in this chapter
could be used to address these issues?

3. If MVCH decides to implement a CPOE system, how could
access problems such as the one that Dr. Z experienced at
another hospital be prevented?

4. Given that the MVCH database you developed in SQL
Server already includes tables for physicians, orders, and
so on, do you think a full-fledged CPOE system could or
should be developed internally? Why or why not?

5. Dr. Z indicated that physicians might resist the implemen-
tation of a CPOE system. Do you think that would also be
true for an EMR system? Why or why not? What would be
critical success factors for implementing an electronic med-
ical record at MVCH?

6. Should MVCH adopt a continuous data protection (CDP)
system? Why or why not? What other backup strategies
might the hospital pursue?

7. Do you think data storage at MVCH should be treated as a
strategic issue? Why or why not?

8. Which data and database administration issues described
in this chapter should be addressed by MVCH’s special
study team as part of the long-range business and informa-
tion systems plan? Why?

Case Exercises

1. List all the possible types of users who would need author-
ization to use (a) an ERM system and (b) a CPOE system at
MVCH. Include user groups external to the hospital that
may need to be included.

2. For each user type you listed in Case Exercise 1, indicate
what permissions (read, insert, delete, modify) you would
grant.

3. Investigate how a hospital such as MVCH could use RFID
in connection with an EMR system. How would that affect
data storage requirements?

4. In light of HIPAA’s security rules (data backup, access to
data, data retention, etc.) and the tremendous growth of
data at MVCH, outline the pros and cons of various data
storage options that the hospital may be using. Are there
storage media that can potentially lead to violations under
HIPAA? Which ones? Why?

5. Access HIPAA’s security requirements online and outline a
contingency plan for MVCH.

Project Assignments

P1. Password protect the MVCH database you created in SQL
Server (or other database management systems required by
your instructor).

P2. Create a matrix to indicate the permissions (read, insert,
delete, modify) you would grant to different users of the
database you identify.

P3. Create at least two different users and implement their per-
missions using SQL statements.

512

12
C H A P T E R

Overview: Distributed
Databases

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define the following key terms: distributed database, decentralized
database, location transparency, local autonomy, synchronous distributed database,
asynchronous distributed database, local transaction, global transaction, replication
transparency, transaction manager, failure transparency, commit protocol, two-phase
commit, concurrency transparency, time-stamping, and semijoin.

� Explain the business conditions that are drivers for the use of distributed databases
in organizations.

� Describe the salient characteristics of a variety of distributed database environments.
� Explain the potential advantages and risks associated with distributed databases.
� Explain four strategies for the design of distributed databases, options within each

strategy, and the factors to consider in selecting among these strategies.
� State the relative advantages of synchronous and asynchronous data replication and

partitioning as three major approaches for distributed database design.
� Outline the steps involved in processing a query in a distributed database and

several approaches used to optimize distributed query processing.
� Explain the salient features of several distributed database management systems.

A complete version of this chapter is available on the textbook’s Web site
(www.pearsonhighered.com/hoffer). The following is a brief overview.

OVERVIEW

When an organization is geographically dispersed, it may choose to store its databases
on a central database server or to distribute them to local servers (or a combination of
both). A distributed database is a single logical database that is spread physically
across computers in multiple locations that are connected by a data communications
network. We emphasize that a distributed database is truly a database, not a loose
collection of files. The distributed database is still centrally administered as a corporate
resource while providing local flexibility and customization. The network must

Distributed database
A single logical database that
is spread physically across
computers in multiple locations
that are connected by a data
communication link.

www.pearsonhighered.com/hoffer

Chapter 12 • Overview: Distributed Databases 513

Location transparency
A design goal for a distributed
database, which says that a user
(or user program) using data need
not know the location of the data.

Local autonomy
A design goal for a distributed
database, which says that a site
can independently administer
and operate its database when
connections to other nodes
have failed.

allow the users to share the data; thus a user (or program) at location A must be able to
access (and perhaps update) data at location B. The sites of a distributed system may
be spread over a large area (e.g., the United States or the world) or over a small area
(e.g., a building or campus). The computers may range from PCs to large-scale servers
or even supercomputers.

A distributed database requires multiple instances of a database management sys-
tem (or DBMSs) running at each remote site. The degree to which these different DBMS
instances cooperate, or work in partnership, and whether there is a master site that
coordinates requests involving data from multiple sites distinguish different types of
distributed database environments.

Various business conditions encourage the use of distributed databases: distribution
and autonomy of business units, data sharing, data communications costs and relia-
bility, environments with multiple applications and vendors, database recovery, and
the satisfying of both transaction and analytical processing.

Objectives and Trade-offs

A major objective of distributed databases is to provide ease of access to data for users
at many different locations. To meet this objective, the distributed database system
must provide location transparency, which means that a user (or user program) using
data for querying or updating need not know the location of the data. Any request to
retrieve or update data from any site is automatically forwarded by the system to the
site or sites related to the processing request. Ideally, the user is unaware of the distribu-
tion of data, and all data in the network appear as a single logical database stored at one
site. In this ideal case, a single query can join data from tables in multiple sites as if the
data were all in one site.

A second objective of distributed databases is local autonomy, which is the capa-
bility to administer a local database and to operate independently when connections to
other nodes have failed (Date, 2003). With local autonomy, each site has the capability
to control local data, administer security, log transactions, recover when local failures
occur, and provide full access to local data to local users when any central or coordi-
nating site cannot operate. In this case, data are locally owned and managed, even
though they are accessible from remote sites. This implies that there is no reliance on a
central site.

Compared with centralized databases, either form of a distributed database has
numerous advantages. The most important are increased reliability and availability,
local control, modularity, lower communication costs, and faster response. A distrib-
uted database system also faces certain costs and disadvantages: software cost and
complexity, processing overhead, data integrity, and slow response (if the data are not
distributed properly).

Options for Distributing a Database

How should a database be distributed among the sites (or nodes) of a network? We dis-
cussed this important issue of physical database design in Chapter 5, which introduced
an analytical procedure for evaluating alternative distribution strategies. In that chap-
ter, we noted that there are four basic strategies for distributing databases: data replica-
tion, horizontal partitioning, vertical partitioning, and combinations of the above.

There are many forms of data replication, which are discussed in detail in the com-
plete online version of this chapter. There are five advantages to data replication: relia-
bility, fast response, possible avoidance of complicated distributed transaction integrity
routines, node decoupling, and reduced network traffic at prime time. Replication has
three primary disadvantages: storage requirements, complexity, and cost of updating.

With horizontal partitioning (see Chapter 5 for a description of different forms of
table partitioning), some of the rows of a table (or relation) are put into a base relation at
one site, and other rows are put into a base relation at another site. More generally, the
rows of a relation are distributed to many sites. Horizontal partitions for a distributed
database have four major advantages: efficiency, local optimization, security, and ease of
querying. Thus, horizontal partitions are usually used when an organizational function

514 Part V • Advanced Database Topics

is distributed, but each site is concerned with only a subset of the entity instances (fre-
quently based on geography). Horizontal partitions also have two primary disadvan-
tages: inconsistent access speed and backup vulnerability.

Distributed DBMS

To have a distributed database, there must be a database management system that coor-
dinates the access to data at the various nodes. We will call such a system a distributed
DBMS. Although each site may have a DBMS managing the local database at that site, a
distributed DBMS will perform the following functions (Buretta, 1997; Elmasri and
Navathe, 2006):

1. Keep track of where data are located in a distributed data dictionary. This means,
in part, presenting one logical database and schema to developers and users.

2. Determine the location from which to retrieve requested data and the location at
which to process each part of a distributed query without any special actions by
the developer or user.

3. If necessary, translate the request at one node using a local DBMS into the proper
request to another node using a different DBMS and data model and return data
to the requesting node in the format accepted by that node.

4. Provide data management functions, such as security, concurrency and deadlock
control, global query optimization, and automatic failure recording and recovery.

5. Provide consistency among copies of data across the remote sites (e.g., by using
multiphase commit protocols).

6. Present a single logical database that is physically distributed. One ramification of
this view of data is global primary key control, meaning that data about the same
business object are associated with the same primary key no matter where in the
distributed database the data are stored, and different objects are associated with
different primary keys.

7. Be scalable. Scalability is the ability to grow, reduce in size, and become more het-
erogeneous as the needs of the business change. Thus, a distributed database must
be dynamic and be able to change within reasonable limits and without having to
be redesigned. Scalability also means that there are easy ways for new sites to be
added (or to subscribe) and to be initialized (e.g., with replicated data).

8. Replicate both data and stored procedures across the nodes of the distributed
database. The need to distribute stored procedures is motivated by the same rea-
sons as those for distributing data.

9. Transparently use residual computing power to improve the performance of data-
base processing. This means, for example, the same database query may be
processed at different sites and in different ways when submitted at different
times, depending on the particular workload across the distributed database at
the time of query submission.

10. Permit different nodes to run different DBMSs. Middleware (see Chapter 8) can be
used by the distributed DBMS and each local DBMS to mask the differences in
query languages and nuances of local data.

11. Allow different versions of application code to reside on different nodes of the dis-
tributed database. In a large organization with multiple, distributed servers, it may
not be practical to have each server/node running the same version of software.

A distributed DBMS provides location transparency (defined earlier), replication
transparency, failure transparency, and concurrency transparency. A distributed
DBMS uses a commit protocol to ensure data integrity for real-time, distributed update
operations. The most common commit protocol is two-phase commit (which is detailed
in the complete online version of this chapter).

Query Optimization

With distributed databases, the response to a query may require a DBMS to assemble
data from several different sites (although with location transparency, the user is
unaware of this need). A major decision for the DBMS is how to process a query, which

Replication transparency
A design goal for a distributed
database, which says that although a
given data item may be replicated
at several nodes in a network,
a programmer or user may treat
the data item as if it were a single
item at a single node. Also called
fragmentation transparency.

Failure transparency
A design goal for a distributed
database, which guarantees that
either all the actions of each
transaction are committed or else
none of them is committed.

Concurrency transparency
A design goal for a distributed
database, with the property that
although a distributed system runs
many transactions, it appears that
a given transaction is the only
activity in the system. Thus, when
several transactions are processed
concurrently, the results must be
the same as if each transaction
were processed in serial order.

Commit protocol
An algorithm to ensure that a
transaction is either successfully
completed or aborted.

Two-phase commit
An algorithm for coordinating
updates in a distributed database.

Chapter 12 • Overview: Distributed Databases 515

is affected by both the way a user formulates a query and the intelligence of the distributed
DBMS to develop a sensible plan for processing. Several plausible query-processing
strategies are detailed in the complete chapter. Depending on the choice of strategy, the
time required to satisfy a query might range from one second to several days!

One technique used to make processing a distributed query more efficient is to use
a semijoin operation (Elmasri and Navathe, 2006). In a semijoin, only the joining attrib-
ute is sent from one site to another, and then only the required rows are returned. If only
a small percentage of the rows participate in the join, the amount of data being trans-
ferred is minimal.

Semijoin
A joining operation used with
distributed databases in which
only the joining attribute from
one site is transmitted to the other
site, rather than all the selected
attributes from every qualified row.

Bell, D., and J. Grimson. 1992. Distributed Database Systems.
Reading, MA: Addison-Wesley.

Buretta, M. 1997. Data Replication: Tools and Techniques for
Managing Distributed Information. New York: Wiley.

Date, C. J. 2003. An Introduction to Database Systems, 8th ed.
Reading, MA: Addison-Wesley.

Edelstein, H. 1993. “Replicating Data.” DBMS 6,6 (June): 59–64.
Edelstein, H. 1995. “The Challenge of Replication, Part I.”

DBMS 8,3 (March): 46–52.
Elmasri, R., and S. Navathe. 2006. Fundamentals of Database

Systems, 5th ed. Menlo Park, CA: Benjamin Cummings.
Froemming, G. 1996. “Design and Replication: Issues with

Mobile Applications—Part 1.” DBMS 9,3 (March): 48–56.

References

Koop, P. 1995. “Replication at Work.” DBMS 8,3 (March): 54–60.
McGovern, D. 1993. “Two-Phased Commit or Replication.”

Database Programming & Design 6,5 (May): 35–44.
Özsu, M. T., and P. Valduriez. 1992. “Distributed Database

Systems: Where Were We?” Database Programming &
Design 5,4 (April): 49–55.

Thé, L. 1994. “Distribute Data without Choking the Net.”
Datamation 40,1 (January 7): 35–38.

Thompson, C. 1997. “Database Replication: Comparing Three
Leading DBMS Vendors’ Approaches to Replication.”
DBMS 10,5 (May): 76–84.

Edelstein, H. 1995. “The Challenge of Replication, Part II.”
DBMS 8,4 (April): 62–70, 103.

Further Reading

http://databases.about.com Web site that contains a variety of
news and reviews about various database technologies,
including distributed databases.

http://dsonline.computer.org The IEEE Web site, which pro-
vides material regarding various aspects of distributed

computing, including distributed databases in a section that
focuses on this topic area. The newest material is available
through IEEE’s Computing Now (http:///computingnow.
computer.org).

Web Resources

For coverage of key terms, review questions, problems and exer-
cises, and field questions, see the complete chapter on the text-
book’s Web site. The following are the full set of references for the

chapter, followed by information about additional sources of
information on distributed databases.

Chapter Review

http://databases.about.com
http://dsonline.computer.org
http://computingnow.computer.org
http://computingnow.computer.org

516

Overview: Object-Oriented
Data Modeling

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: class, object, state, behavior, class
diagram, object diagram, operation, encapsulation, constructor operation, query
operation, update operation, class-scope operation, association, association role,
multiplicity, association class, abstract class, concrete class, class-scope attribute,
abstract operation, method, polymorphism, overriding, multiple classification,
aggregation, and composition.

� Describe the activities in the different phases of the object-oriented development
life cycle.

� State the advantages of object-oriented modeling vis-à-vis structured approaches.
� Compare the object-oriented model with the E-R and EER models.
� Model a real-world domain by using a Unified Modeling Language (UML) class

diagram
� Provide a snapshot of the detailed state of a system at a point in time, using a

UML object diagram.
� Recognize when to use generalization, aggregation, and composition relationships.
� Specify different types of business rules in a class diagram.

OVERVIEW

In Chapters 2 and 3, you learned about data modeling using the E-R and EER models.
In those chapters, you discovered how to model the data needs of an organization using
entities, attributes, and a wide variety of relationships. In this chapter, you will be intro-
duced to the object-oriented model, which is becoming increasingly popular because of
its ability to thoroughly represent complex relationships, as well as to represent data
and system behavior in a consistent, integrated notation. Fortunately, most of the con-
cepts you learned in those chapters correspond to concepts in object-oriented modeling,
but the object-oriented model has even more expressive power than the EER model.

C H A P T E R

13

A complete version of this chapter is available on the textbook’s Web site
(www.pearsonhighered.com/hoffer). The following is a brief overview.

www.pearsonhighered.com/hoffer

An object-oriented model is built around objects, just as the E-R model is built
around entities. An object encapsulates both data and behavior, implying that we can use
the object-oriented approach not only for data modeling, but also for modeling system
behavior. To thoroughly model any real-world system, you need to model both the data,
and the processes and behavior that act on the data (recall the discussion in Chapter 1
about information planning objects). By allowing you to capture them together within a
common representation, and by offering benefits such as inheritance and code reuse, the
object-oriented modeling approach provides a powerful environment for developing
complex systems.

Coad and Yourdon (1991) identify several motivations and benefits of object-
oriented modeling: the ability to tackle more challenging problem domains; improved
communication between the users, analysts, designers, and programmers; increased
consistency among analysis, design, and programming activities; explicit representation
of commonality among system components; robustness of systems; reusability of analy-
sis, design, and programming results; and increased consistency among all the models
developed during object-oriented analysis, design, and programming.

In this chapter, we present object-oriented data modeling as a high-level concep-
tual activity. As you will learn in Chapter 14, a good conceptual model is invaluable
for designing and implementing an object-oriented application that uses a relational
database for providing persistence for the objects.

Unified Modeling Language

Unified Modeling Language (UML) is a set of graphical notations backed by a common
metamodel that is widely used both for business modeling and for specifying, designing,
and implementing software systems artifacts. For representing a complex system effec-
tively, the model you develop must consist of a set of independent views or perspectives.
UML allows you to represent multiple perspectives of a system by providing different
types of graphical diagrams, such as the use-case diagram, class diagram, state diagram,
sequence diagram, component diagram, and deployment diagram. If these diagrams are
used correctly together in the context of a well-defined modeling process, UML allows you
to analyze, design, and implement a system based on one consistent conceptual model.

Because this text is about databases, we will describe only the class diagram, which
is one of the static diagrams in UML, addressing primarily structural characteristics of
the domain of interest. The class diagram allows us also to capture the responsibilities
that classes can perform, without any specifics of the behaviors. We will not describe the
other diagram types because they provide perspectives that are not directly related to a
database system, for example, the dynamic aspects of a system. Keep in mind that a
database system is usually part of an overall system, whose underlying model should
encompass all the different perspectives. For a discussion of other UML diagrams, see
Hoffer et al. (2010) and George et al. (2007). It is important to note that the UML class
diagrams can be used for multiple purposes at various stages of the life cycle model.

Object-Oriented Data Modeling

A class is an entity type that has a well-defined role in the application domain about
which the organization wishes to maintain state, behavior, and identity. A class is a con-
cept, an abstraction, or a thing that makes sense in an application context (Blaha and
Rumbaugh, 2005). A class could represent a tangible or visible entity type (e.g., a person,
place, or thing); it could be a concept or an event (e.g., Department, Performance,
Marriage, Registration, etc.); or it could be an artifact of the design process (e.g., User
Interface, Controller, Scheduler, etc.). An object is an instance of a class (e.g., a particular
person, place, or thing) that encapsulates the data and behavior we need to maintain
about that object. A class of objects shares a common set of attributes and behaviors.

The state of an object encompasses its properties (attributes and relationships)
and the values those properties have, and its behavior represents how an object acts
and reacts (Booch, 1994). Thus, an object’s state is determined by its attribute values and
links to other objects. An object’s behavior depends on its state and the operation being
performed. An operation is simply an action that one object performs in order to give a

Class
An entity that has a well-defined
role in the application domain
about which the organization
wishes to maintain state, behavior,
and identity.

Object
An instance of a class that
encapsulates data and behavior.

State
An object’s properties (attributes
and relationships) and the values
those properties have.

Behavior
The way in which an object
acts and reacts.

Chapter 13 • Overview: Object-Oriented Data Modeling 517

518 Part V • Advanced Database Topics

response to a request. You can think of an operation as a service provided by an object
(supplier) to its clients. A client sends a message to a supplier, which delivers the
desired service by executing the corresponding operation.

Consider an example of the Student class and a particular object in this class, Mary
Jones. The state of this object is characterized by its attributes, say, name, date of birth,
year, address, and phone, and the values these attributes currently have. For example,
name is “Mary Jones,” year is “junior,” and so on. The object’s behavior is expressed
through operations such as calcGpa, which is used to calculate a student’s current grade
point average. The Mary Jones object, therefore, packages its state and its behavior
together. Every object has a persistent identity; that is, no two objects are the same, and an
object maintains its own identity over its life. For example, if Mary Jones gets married
and, thus, the values of the attributes name, address, and phone change for her, she will
still be represented by the same object.

You can depict the classes graphically in a class diagram as in Figure 13-2a. (Note:
figure numbers are not continuous in this overview because only selected figures from the
complete chapter on the textbook’s Web site are included in this overview). A class
diagram shows the static structure of an object-oriented model: the object classes, their
internal structure, and the relationships in which they participate. The figure shows two
classes, Student and Course, along with their attributes and operations. All students have in
common the properties of name, dateOfBirth, year, address, and phone. They also exhibit
common behavior by sharing the calcAge, calcGpa, and registerFor(course) operations.

An operation, such as calcGpa in Student (see Figure 13-2a), is a function or a serv-
ice that is provided by all the instances of a class. Typically, other objects can access or
manipulate the information stored in an object only through such operations. The opera-
tions, therefore, provide an external interface to a class; the interface presents the outside
view of the class without showing its internal structure or how its operations are imple-
mented. This technique of hiding the internal implementation details of an object from
its external view is known as encapsulation, or information hiding. So although we pro-
vide the abstraction of the behavior common to all instances of a class in its interface, we
encapsulate within the class its structure and the secrets of the desired behavior.

Class diagram
A diagram that shows the static
structure of an object-oriented
model: the object classes, their
internal structure, and the
relationships in which they
participate.

Operation
A function or a service that
is provided by all the instances
of a class.

Encapsulation
The technique of hiding the
internal implementation details of
an object from its external view.

FIGURE 13-2 UML class and
object diagrams
(a) Class diagram showing
two classes

crseCode
crseTitle
creditHrs

enrollment()

CourseStudent

name
dateOfBirth
year
address
phone

calcAge()
calcGpa()
registerFor(course)

Class name

List of
attributes

List of
operations

name = Mary Jones
dateOfBirth = 4/15/88
year = junior

Mary Jones: Student

crseCode = MIS385
crseTitle = Database Mgmt
creditHrs = 3

:Course

. . .

(b) Object diagram with two
instances

Chapter 13 • Overview: Object-Oriented Data Modeling 519

FIGURE 13-3 Examples of
association relationships
of different degrees
(a) Unary relationships

Parallel to the definition of a relationship for the E-R model, an association is a
named relationship between or among instances of object classes. In Figure 13-3, we use
examples from Figure 3-12 to illustrate how the object-oriented model can be used to rep-
resent association relationships of different degrees. The end of an association where it
connects to a class is called an association role (Rumbaugh et al., 2004). A role may be
explicitly named with a label near the end of an association (see the “manager” role in
Figure 13-3a).

Each role has a multiplicity, which indicates the number of objects that partici-
pate in a given relationship. In a class diagram, a multiplicity specification is shown as
a text string representing an interval (or intervals) of integers in the following format:

lower-bound..upper-bound

In addition to integer values, the upper bound of a multiplicity can be a star character (*),
which denotes an infinite upper bound. If a single integer value is specified, it means
that the range includes only that value.

Multiplicity
A specification that indicates how
many objects participate in a given
relationship.

Person

0..1

Is Married To

0..1

ManagesEmployee

manager

*

0..1

One-to-one

One-to-many

Employee Parking
Place

Student Course

Product
Line

Product

Many-to-many

Is Assigned

Contains

Registers For

0..1

1

*

0..1

1..*

*

Part

WarehouseSupplies

*

* *Vendor

Association
A named relationship between
or among object classes.

Association role
The end of an association, where
it connects to a class.

(b) Binary relationships

(c) Ternary relationship

520 Part V • Advanced Database Topics

When an association itself has attributes or operations of its own, or when it
participates in relationships with other classes, it is useful to model the association as an
association class (just as we used an “associative entity” in Chapter 3). For example, in
Figure 13-6a, the attributes term and grade and the operation checkEligibility really
belong to the many-to-many association between Student and Course.

You have the option of showing the name of an association class on the association
path, or the class symbol, or both. When an association has only attributes but does not
have any operations or does not participate in other associations, the recommended
option is to show the name on the association path, but to omit it from the association
class symbol, to emphasize its “association nature” (UML Notation Guide, 2003). That is
how we have shown the Tutors association. On the other hand, we have displayed the
name of the Registration association—which has two attributes and one operation of its
own, as well as an association called Issues with Computer Account—within the class
rectangle to emphasize its “class nature.”

You were introduced to generalization and specialization in Chapter 3. In object data
modeling, the classes that are generalized are called subclasses, and the class they are
generalized into is called a superclass, in perfect correspondence to subtypes and super-
types for EER diagramming.

Consider the example shown in Figure 13-9a (see Figure 3-8 for the corresponding
EER diagram). A generalization path is shown as a solid line from the subclass to the
superclass, with a hollow triangle at the end of, and pointing toward, the superclass. You
can show a group of generalization paths for a given superclass as a tree with multiple
branches connecting the individual subclasses, and a shared segment with a hollow

FIGURE 13-6 Association
class and link object
(a) Class diagram showing
association classes

tutor

Issues
0..1

* *

*

*pupil
Tutors

Student
*

Course

acctID
password
serverSpace

Computer Account

checkEligibility()

term
grade

Registration

beginDate
numberOfHrs

term = Fall2010
grade = W

:Registration

acctID = jones385
password = 12345
serverSpace = 10

:Computer Account

term = Fall2010

:Registration

Mary Jones

MKT350

MIS385

(b) Object diagram showing
link objects

Association class
An association that has attributes
or operations of its own or that
participates in relationships with
other classes.

Chapter 13 • Overview: Object-Oriented Data Modeling 521

FIGURE 13-9 Examples of
generalization, inheritance,
and constraints
(a) Employee superclass with
three subclasses

registrants

*
*

*** 1

/participants

{age = currentDate – dateOfBirth}

/Takes

Scheduled ForRegisters For

Student

name
ssn
dateOfBirth
/age

Course

crseCode
crseTitle
creditHrs

term
section

Course
Offering

FIGURE 13-8 Derived
attribute, association,
and role

employee
type

employee
type

employee
type

{disjoint, incomplete}

computeFees()

contractNumber
billingRate

Consultant

contributePension()

annualSalary
stockOption

Salaried
Employee

computeWages()

hourlyRate

Hourly
Employee

Employee

empName
empNumber
address
dateHired

printLabel()

Treated By* 1

{complete, disjoint}
residency
<<dynamic>>

Assigned To0..1 1

Physician

physicianID

Patient
{abstract}

patientID
patientName
admitDate

Outpatient

checkbackDate

Resident Patient

dateDischarged

Bed

bedNumber

(b) Abstract Patient class with
two concrete subclasses

522 Part V • Advanced Database Topics

Registers For Scheduled For*** 1Course
Offering

term
section

enrollment()

Course

crseCode
crseTitle
creditHrs = 3

enrollment()

Student

name
ssn
dateOfBirth
address
phone

registerFor(class)
calcTuition()

{abstract}

undergradMajor
greScore
gmatScore
tuitionPerCred = 900

calc-tuition()

Graduate
Student

satScore
actScore
tuitionPerCred = 750

calc-tuition()

Undergrad
Student

{ordered}

FIGURE 13-11 Polymorphism,
abstract operation, class-scope
attribute, and ordering

Class-scope attribute
An attribute of a class that specifies
a value common to an entire class
rather than a specific value for an
instance.

triangle pointing toward the superclass. In Figure 13-9b (corresponding to Figure 3-3),
for instance, we have combined the generalization paths from Outpatient to Patient, and
from Resident Patient to Patient, into a shared segment with a triangle pointing toward
Patient. We also specify that this generalization is dynamic, meaning that an object may
change subtypes.

Notice that in Figure 13-9b the Patient class is in italics, implying that it is an
abstract class. An abstract class is a class that has no direct instances but whose descen-
dants may have direct instances (Booch, 1994; Rumbaugh et al., 1991). (Note: You can
additionally write the word abstract within braces just below or next to the class name.
This is especially useful when you generate a class diagram by hand.) A class that can
have direct instances (e.g., Outpatient or Resident Patient) is called a concrete class. In
this example, therefore, Outpatient and Resident Patient can have direct instances, but
Patient cannot have any direct instances of its own.

In Figures 13-9a and 13-9b, the words “complete,” “incomplete,” and “disjoint” have
been placed within braces, next to the generalization. They indicate semantic constraints
among the subclasses. (In the EER notation, complete corresponds to total specialization,
and incomplete corresponds to partial specialization.) Any of the following UML
keywords for constraints may be used: overlapping, disjoint, complete, and incomplete,
corresponding to overlapping, disjoint, total, and partial from EER modeling.

In Figure 13-11, we represent both graduate and undergraduate students in
a model developed for student billing. The calcTuition operation computes the
tuition a student has to pay; this sum depends on the tuition per credit hour
(tuitionPerCred), the courses taken, and the number of credit hours (creditHrs) for
each of those courses. The tuition per credit hour, in turn, depends on whether the
student is a graduate or an undergraduate student. In this example, that amount is
$900 for all graduate students and $750 for all undergraduate students. To denote
that, we have underlined the tuitionPerCred attribute in each of the two subclasses,
along with its value. Such an attribute is called a class-scope attribute because it
specifies a value common to an entire class rather than a specific value for an
instance (Rumbaugh et al., 1991).

Abstract class
A class that has no direct instances
but whose descendants may have
direct instances.

Concrete class
A class that can have direct
instances.

Chapter 13 • Overview: Object-Oriented Data Modeling 523

It is important to note that although the Graduate Student and Undergraduate
Student classes share the same calcTuition operation, they might implement the oper-
ation in quite different ways. For example, the method that implements the operation
for a graduate student might add a special graduate fee for each course the student
takes. The fact that an operation with the same name may respond in different ways
depending on the class context is known as polymorphism, a key concept in object-
oriented systems. The enrollment operation in Figure 13-11 illustrates another exam-
ple of polymorphism. While the enrollment operation within Course Offering
computes the enrollment for a particular course offering or section, an operation with
the same name within Course computes the combined enrollment for all sections of a
given course.

Representing Aggregation

An aggregation expresses a Part-of relationship between a component object and an
aggregate object. It is a stronger form of association relationship (with the added
“part-of” semantics) and is represented with a hollow diamond at the aggregate end. For
example, Figure 13-14 shows a personal computer as an aggregate of CPU (up to four
for multiprocessors), hard disks, monitor, keyboard, and other objects (a typical
bill-of-materials structure). It is also possible for component objects to exist without
being part of a whole (e.g., there can be a Monitor that is not part of any PC). In
composition, a part object belongs to one and only one whole object; for example, a
room is part of only one building and cannot exist by itself.

Polymorphism
The ability of an operation with
the same name to respond in
different ways depending on
the class context.

Aggregation
A part-of relationship between
a component object and an
aggregate object.

Composition
A part-of relationship in which
parts belong to only one whole
object and live and die with the
whole object.

FIGURE 13-14 Example of
aggregation

. . .CPU Hard Disk Monitor Keyboard

Personal
Computer

0..1

1..4 1 11..*

References

Blaha, M., and Rumbaugh, J. 2005. Object-Oriented Modeling
and Design with UML, 2nd ed. Upper Saddle River, NJ:
Prentice Hall.

Booch, G. 1994. Object-Oriented Analysis and Design with Applications,
2nd ed. Redwood City, CA: Benjamin/Cummings.

Coad, P., and E. Yourdon. 1991. Object-Oriented Design. Upper
Saddle River, NJ: Prentice Hall.

Fowler, M. 2003. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 3rd ed. Reading, MA:
Addison-Wesley-Longman.

Chapter Review

For coverage of key terms, review questions, problems and
exercises, and field questions, see the complete chapter on the
textbook’s Web site. The following is the full set of references

for the chapter, followed by information about additional
sources of information on object data modeling.

524 Part V • Advanced Database Topics

Further Reading

Arlow, J., and I. Neustadt. 2005. UML 2 and the Unified Process:
Practical Object-Oriented Analysis and Design, 2nd ed.
Reading, MA: Addison-Wesley.

Pilone, D., and N. Pitman. 2005. UML 2.0 in a Nutshell.
Sebastopol, CA: O’Reilly.

Web Resources

www.omg.org Web site of the Object Management Group, a
leading industry association concerned with object-oriented
analysis and design.

www.omg.org/technology/documents/formal/uml.htm
OMG’s official UML Web site.

George, J., D. Batra, J. Valacich, and J. Hoffer. 2007. Object-
Oriented Systems Analysis and Design, 2nd ed. Upper
Saddle River, NJ: Prentice Hall.

Hoffer, J., J. George, and J. Valacich. 2010. Modern Systems
Analysis and Design, 6th ed. Upper Saddle River, NJ:
Prentice Hall.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. 1992.
Object-Oriented Software Engineering: A Use Case Driven
Approach. Reading, MA: Addison-Wesley.

Larman, C. 2004. Applying UML and Patterns: An Introduction
to Object-Oriented Analysis and Design and Iterative
Development, 3rd ed. Upper Saddle River, NJ: Prentice Hall.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W.
Lorensen. 1991. Object-Oriented Modeling and Design.
Upper Saddle River, NJ: Prentice Hall.

Rumbaugh, J., I. Jacobson, and G. Booch. 2004. The Unified
Modeling Language Reference Manual. Reading, MA:
Addison-Wesley.

UML Notation Guide. 2003. Needham, MA: Object Management
Group, available at www.omg.org/cgi-bin/doc?formal/
03-03-10.pdf (accessed September 12, 2009).

UML Superstructure Specification. 2009. Needham, MA: Object
Management Group, available at www.omg.org/technology/
documents/formal/uml.htm (accessed September 12, 2009).

www.omg.org
www.omg.org/technology/documents/formal/uml.htm
www.omg.org/cgi-bin/doc?formal/03-03-10.pdf
www.omg.org/cgi-bin/doc?formal/03-03-10.pdf
www.omg.org/technology/documents/formal/uml.htm
www.omg.org/technology/documents/formal/uml.htm

525

C H A P T E R

14
Overview: Using Relational
Databases to Provide
Object Persistence

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following terms: persistence, serialization, object-
relational mapping (ORM), object-relational impedance mismatch, object identity,
accessor method, call-level application programming interface, transparent
persistence, separation of concerns, pooling of database connections, entity class,
fetching strategy, N+1 selects problem, declarative mapping schema, and value type.

� Understand the fundamental mismatch between the object-oriented paradigm and
the relational model and the consequences of this mismatch for the use of relational
databases with object-oriented development environments.

� Understand the similarities and differences between the approaches that are used to
address the object-relational impedance mismatch.

� Create a mapping between core object-oriented structures and relational structures
using Hibernate.

� Identify the primary contexts in which the various approaches to addressing the
object-relational impedance mismatch can be most effectively used.

� Understand possible effects of the use of the object-relational mapping approaches
on database performance, concurrency control, and security.

� Use HQL to formulate various types of queries.

A complete version of this chapter is available on the textbook’s Web site
(www.pearsonhighered.com/hoffer). The following is a brief overview.

OVERVIEW

One of the key characteristics of the object-oriented development approach is that
the same core concepts can be applied at all stages of development. The same domain
model that is identified at the conceptual level during requirements specification
and analysis (as you learned in Chapter 13) will be directly transformed into a model of

www.pearsonhighered.com/hoffer

526 Part V • Advanced Database Topics

Persistence
An object’s capability to maintain
its state between application
execution sessions.

Object-relational impedance
mismatch
The conceptual differences
between the object-oriented
approach to application design and
the relational model for database
design and implementation.

TABLE 14-1 Elements of the Object-Relational Impedance Mismatch

• Nature and granularity of data types
• Structural relationships:

• Inheritance structures
• Representation of associations

• Defining the identity of objects/entity instances
• Methods of accessing persistent data
• Focus on data (relational databases) versus integrated data and behavior (the object-oriented

approach)
• Architectural styles
• Support for managing transactions

interconnected software objects. Many of the core object-oriented concepts (modeling
the world with classes of objects, integrating behavior and data, inheritance, encapsula-
tion, and polymorphism) can be applied seamlessly at different levels of abstraction. The
object-oriented principles are applied across a broad spectrum of systems development
activities, except in data management. For a long time, it was widely believed that
object-oriented database management systems (OODBMSs) would gradually become
very popular. These systems were intended to provide direct, transparent persistence for
objects in object-oriented applications, and they were expected to become as widely used
as object-oriented languages and systems analysis and design methods are. For a variety
of reasons, they never took off.

It is not practical for object-oriented applications to maintain all relevant objects in
run-time memory all the time. Therefore, object-oriented development environments
need a mechanism for storing object states between the application execution sessions
(i.e., provide persistence to the objects). In practice, relational database management
systems have to be used to provide persistence because of their dominant role in organiza-
tional data management. There are, however, significant conceptual differences between
the object-oriented and relational approaches; these differences, often collectively called
object-relational impedance mismatch, have been summarized in Table 14-1.

Thus, system architects and application developers currently face a significant
challenge: In application development, the object-oriented approach has gradually
reached a dominant position, and a large percentage of software projects that include
development of new applications is based on the object-oriented philosophy in some
way. The most commonly used application development frameworks, Java EE and
Microsoft .NET, are both object-oriented. At the same time, relational databases are
almost invariably used as the mechanism to provide long-term persistence for organi-
zational data. This is unlikely to change any time soon. Also, we have no choice but to
provide long-term object persistence for any realistic organizational application; the
key reason we have information systems in organizations is to maintain long-term
information about the objects that are important for the business. Object-oriented appli-
cations need object persistence, and in the foreseeable future, the only technology that
will provide that in a reliable, scalable way in the enterprise context are relational data-
base management systems. Therefore, solutions for closing the gap between these two
approaches are an essential component of the modern computing infrastructure.

Providing Persistence for Objects Using Relational Databases

Many different approaches have been proposed for addressing the need to provide per-
sistence for objects using relational databases. Most modern relational database man-
agement systems offer object-oriented extensions, which are typically used for dealing
with nonstandard, complex, and user-defined data types. In this chapter, however, our
focus is on mechanisms that provide persistence support to a genuine object-oriented
design and implementation model, and we will review the most common of those.

Chapter 14 • Overview: Using Relational Databases to Provide Object Persistence 527

CALL-LEVEL APPLICATION PROGRAMMING INTERFACES Since the early days of Java,
Java Database Connectivity (JDBC) has been an industry standard for a call-level appli-
cation programming interface (API) with which Java programs can access relational
databases. If you are developing software using Microsoft’s .NET Framework, ADO.NET
provides similar types of capabilities for providing access to relational databases. Open
database connectivity (ODBC) is another widely used API for accessing data stored in
relational databases from different types of application programs. All of these mecha-
nisms are based on the same idea: An SQL query hand-coded by a developer is passed
as a string parameter to the driver, which passes it on to the DBMS, which, in turn,
returns the result as a set of rows consisting of (untyped) columns. The mechanisms
have their differences (e.g., ADO.NET provides an intermediate DataSet construct), but
conceptually they are very similar.

SQL QUERY MAPPING FRAMEWORKS The next category of tools provides additional
support and a higher level of abstraction for using a relational database to provide
object persistence by linking classes in an object-oriented solution to parameters and
results of SQL queries (instead of database tables). These tools are not full-blown
object-relational mapping tools because they do not generate the needed SQL based on
a mapping between descriptions of tables and classes. They are, however, an “elegant
compromise” (in the words of Tate and Gehtland, 2005) that hide some of the complex-
ity of a pure JDBC or ADO.NET solution but still give the developers full access to
SQL. The best-known tools in this category are iBATIS and iBATIS.NET. They consist
of two components: iBATIS Data Mapper/SQL Maps, which are structures used to cre-
ate a bridge between an SQL query and a Java object, and iBATIS Data Access Objects,
which form an abstraction layer between the details of your persistence solution and
the actual application.

OBJECT-RELATIONAL MAPPING FRAMEWORKS Comprehensive object-relational map-
ping (ORM) frameworks, such as the Java Persistence API (JPA) specification and its
implementations Hibernate, OpenJPA, and EclipseLink, hide the relational data access
methods from the object-oriented applications and provide an entirely transparent per-
sistence layer. These frameworks, when integrated with an object-oriented application,
move the management of the concerns related to persistence outside the core structure
of the object-oriented applications. They provide a declarative mapping schema that
links domain classes needing persistence to relational tables and mechanisms for man-
aging database transactions, security, and performance in ways that are hidden from
the applications. The classes for which an ORM framework provides persistence do not
know that they are persistent: Persistent objects in these classes are created, loaded, and
deleted by the ORM framework. Many ORM frameworks also include a query lan-
guage, improve performance by optimizing the time when objects are loaded from the
database, use caching to manage performance, and allow applications to detach objects
that can be modified and, at a suitable time, made persistent again (Richardson 2006).
The number of options in this category is quite large. The most widely used of them is
Hibernate (and its .NET counterpart NHibernate), which is one of several implementa-
tions of the JPA. In addition to Hibernate, Apache’s OpenJPA and Eclipse Foundation’s
EclipseLink (together with Oracle’s older, closely related TopLink) are widely used JPA
implementations. The past few years have seen the parallel development of multiple
ORM frameworks. At this time, JPA has emerged as the overall framework specification
and Hibernate as the most popular implementation. In this chapter, we have chosen to
use Hibernate as our vehicle for presenting the examples because of its long-standing
status as the most widely used ORM framework and because its XML-based mapping
specifications provide us with more visibility to the internal mapping structures.

PROPRIETARY APPROACHES Finally, there are many proprietary approaches for inte-
grating data access directly into object-oriented environments and languages, such as
Microsoft’s Language Integrated Query (LINQ), which is a component of the .NET
Framework. The goal of LINQ is to very closely integrate data access queries into pro-
gramming languages, not limiting the access to relational databases or XML but offering

Call-level application
programming interface
A mechanism that provides an
application program with access
to an external service, such as a
database management system.

Object-relational mapping
Definition of structural relationships
between object-oriented and
relational representations of data,
typically to enable the use of a
relational database to provide
persistence for objects.

Declarative mapping schema
A structure that defines the
relationships between domain
classes in the object-oriented model
and relations in the relational
model.

528 Part V • Advanced Database Topics

access any type of data store. The first version of LINQ, titled LINQ to SQL, was released
as part of the first version of the .NET Framework 3.5; a more sophisticated but also more
complex version of the technology, called LINQ to Entities, was released with .NET 3.5
SP1. LINQ to Entities is significantly closer to offering a full set of comprehensive ORM
framework capabilities than LINQ to SQL, and it appears to form the foundation of
Microsoft’s future efforts in this area.

SELECTING THE RIGHT APPROACH Which one of the four principal approaches to pro-
viding persistence for objects using relational databases should be used in a specific
project? To help you understand the issues affecting this decision, Tables 14-2, 14-3,
and 14-4 summarize the advantages and disadvantages of the first three approaches.
We will not include the proprietary approaches in the comparison because no one of
them has yet become widely used, but we encourage you to follow developments in this
area. All of the approaches have strengths and weaknesses, and at the detailed level, they
will change over time. Therefore, a detailed comparison of any specific products is

TABLE 14-2 Advantages and Disadvantages of the Call-Level API Approach

Advantages Disadvantages

• Low overhead
• Highest level of control over the details

of the database connection

• Proliferation of code related to database
connectivity

• Need to write a lot of detailed code
• Little reuse of code
• Developers need a detailed understanding

of DBMS capabilities and the database
schema

• SQL code not generated automatically
• The approach does not provide transparent

persistence

TABLE 14-3 Advantages and Disadvantages of the SQL Query Mapping Frameworks

Advantages Disadvantages

• Direct access to all DBMS capabilities
provided through SQL

• Mapping to legacy database schemas easier
• Amount of code required significantly less

than with call-level APIs
• Database access code easier to manage

than with call-level APIs

• More overhead than with call-level APIs
• Developers need a detailed understanding

of DBMS capabilities and the database
schema

• SQL code not generated automatically
• The approach does not provide transparent

persistence

TABLE 14-4 Advantages and Disadvantages of the Object-Relational Mapping
Frameworks

Advantages Disadvantages

• They provide the highest level of
persistence transparency

• Developers do not need to have a detailed
understanding of the DBMS or the
database schema

• The implementation of persistence is fully
separated from the rest of the code

• They enable true object-oriented design

• There is more overhead than with call-level
APIs and with query mapping frameworks

• Complex cases often need detailed
attention

• Legacy databases lead to difficulties

Chapter 14 • Overview: Using Relational Databases to Provide Object Persistence 529

-yearMatriculated : int
-studentID : string

-semester : string

1

1

1

-sectionNbr : string
-sectionRegNbr : string

+getAvgGrade() : long

-enrolledStudents

-student
-facultyMember

Student

Section

-firstName : string
-lastName : string

Person

-office : string

Faculty

-facultyID : string

-status : string
-grade : string
-numGrade : float

Registration

0..*

0..*

0..*

1

-sections

Course

-courseNbr : string
-courseTitle : string

+getNbrStudents(in semester : string)

0..*

FIGURE 14-4 Object-oriented design model

beyond the scope of this text. It is, however, important that you know what the most
important implementation options are and continuously evaluate their fit with your
own development environment and projects.

Object-Relational Mapping Example

In this section, we will present a brief overview of mapping between a relational data-
base schema and an object-oriented model. Figure 14-4 includes a UML class diagram
that represents an object-oriented design model of our area of interest. (Note: figure
numbers are not continuous in this overview because only selected figures from the
complete chapter on the textbook’s Web site are included in this overview). Figure 14-5
presents a Java representation of the design model included in Figure 14-4. Note that
each of the classes would also need a constructor without parameters (so called no-arg
constructor) and getter and setter methods; Hibernate requires these to operate cor-
rectly. Figure 14-6, in turn, includes a possible relational model for a database serving
this application. With both the object solution and the relational solution defined, we
can now analyze the characteristics of the solution that links the two using Hibernate as
the object-relational mapping tool.

MAPPING FILES The core element of Hibernate that defines the relationship between
the object-oriented classes and relational tables is XML mapping files, which are typi-
cally named <Class name>.hbm.xml. The following example appears to be relatively
simple, but it reveals interesting mapping challenges.

530 Part V • Advanced Database Topics

public abstract class Person {
private Long id;

private String lastName;
private String firstName;

}

public class Student extends Person {
private int yearMatriculated;
private String studentID;

}

public class Faculty extends Person {

private String office;
private String facultyID;

}

}

public class Course {

private Long id;

private String courseNbr;
private String courseTitle;
private Set<Section> sections;

public int getNbrStudents(String semester) {

// the body of the method is intentionally missing

}

public class Section {

private Long id;

private String sectionRegNbr;
private String sectionNbr;
private String semester;
private Faculty facultyMember;
private Set<Registration> enrolledStudents;

public double getAvgGrade() {
// the body of the method is intentionally missing
}

}

public class Registration {

private Long id;

private Student student;
private String status;
private String grade;
private float numGrade ;

}

FIGURE 14-5 Java implementation of the design model

PERSON (PersonID, LastName, FirstName)
FACULTY (FacultyPersonID, FacultyID, Office)
STUDENT (StudentPersonID, StudentID, YearMatriculated)
COURSE (CourseID, CourseNbr, CourseTitle)
SECTION (SectionID, SectionRegNbr, SectionNbr, Semester, CourseID, FacultyPersonID)
REGISTRATION (SectionID, StudentPersonID, Status, Grade, NumGrade)

FIGURE 14-6 Relational
representation of the
design model

In some cases, mapping files are very straightforward, as in the case of Course:

<class name = “registrations.Course” table = “Course_T”>
<id column = “courseID”>
<generator class=”native”/>
</id>
<property name = “courseNbr” column = “courseNbr”/>
<property name = “courseTitle” column = “courseTitle”/>
<set name = “sections” inverse = “true” table = “Section_T”>
<key column = “courseID”/>
<one-to-many class=“registrations.Section”/>
</set>

</class>

Chapter 14 • Overview: Using Relational Databases to Provide Object Persistence 531

Note that the mapping is based on the classes in the programming language (in this
case, Java), not on the database structure. Therefore, the fundamental element is the
class, followed by its attributes name and table, specifying the name of the programming
language class (Course) and the corresponding table (Course_T). The <id> element spec-
ifies the primary key of the database table, which in this case is a nonintelligent key,
Course_ID. The <generator> element gives the DBMS instructions regarding how to cre-
ate the primary key values. The <property> tags specify a relationship between an attrib-
ute of the programming language class and the name of the database column. Finally, we
need to specify that a course has multiple sections (maintained in the Java attribute sec-
tions) and that those sections are persistently stored in table Section_T.

In the same way, we will specify the mapping for the class Section:

<class name = “registrations.Section”>
<id name = “id” column = “sectionID”>

<generator class = “native”/>
</id>
<property name = “sectionRegNbr” column = “sectionRegNbr”/>
<property name = “sectionNbr” column = “sectionNbr”/>
<property name = “semester” column = “semester”/>

<many-to-one name = “course” class = “registrations.Course” column =
“courseID”/>

<many-to-one name = “faculty” class = “registrations.Faculty” column =
“facultyID” not-null = “true”/>

<set name = “enrolledStudents” table = “Registration_T”>
<key column = “sectionID”/>
<composite-element class = “registrations.Registration”>

<parent name=“Section”/>

<many-to-one name = “student” column = “studentPersonID” class =
“registrations.Student” not-null = “true”/>

<property name = “status” column = “status”/>
<property name = “grade” column = “grade”/>
<property name = “numGrade” column = “numGrade”/>

</composite-element>
</set>

</class>

In this mapping, we are using the <many-to-one> tags to tell Hibernate that there
is one course and there is one faculty member per course but that a course can have
multiple sections, and a faculty member can be responsible for multiple sections. In
addition, we are mapping the table Registration_T to the class Registration. They both
represent the many-to-many relationship between Student and Section. In the
Hibernate configuration file, this structure is called composite-element.

The final configuration file that is needed for mapping the original Java represen-
tation to relational tables describes the mapping for the abstract superclass Person and
its two subclasses, Student and Faculty. It is as follows:

<class name = “registrations.Person” table = “Person_T”>
<id name = “id” column = “personID”>

<generator class = “native”/>
</id>

532 Part V • Advanced Database Topics

<property name = “firstName” column = “firstName”/>
<property name = “lastName” column = “lastName”/>

<joined-subclass name=“registrations.Student” table = “Student_T”>
<key column = “studentPersonID”/>

<property name = “studentID” column=“studentID”/>
<property name = “yearMatriculated” column=“yearMatriculated”/>

</joined-subclass>
<joined-subclass name=“registrations.Faculty” table = “Faculty_T”>

<key column = “facultyPersonID”/>

<property name = “facultyID” column=“facultyID”/>
<property name = “office” column=“office”/>

</joined-subclass>
</class>

Hibernate offers multiple ways to take care of the mapping of an inheritance hier-
archy. In this case, we have chosen to use an approach often called “table per subclass.”
This name is somewhat misleading because the approach requires a table for each class
and subclass that requires persistence. The configuration file first specifies the way the
superclass is mapped and then uses the <joined-subclass> tab to map the subclasses.
Note that you do not need a separate configuration file for the Student or Faculty sub-
classes; this is all that is needed to map them.

A more comprehensive explanation of these mapping files is included in the com-
plete version of this chapter, available on the book’s Web site.

Responsibilities of Object-Relational Mapping Frameworks

This section summarizes the responsibilities of the ORM frameworks in greater detail.
First, an ORM framework provides a layer of abstraction that separates object-

oriented applications from the details of a specific database implementation. The
manipulation of the persistence status of objects takes place using statements of the
programming language, not with a separate database language.

Second, although one should not use the ORM frameworks without understand-
ing the characteristics of the underlying databases and DBMSs, the frameworks have
the responsibility for generating the SQL code for database access, which means appli-
cation developers do not have to worry about that. An added benefit is that the code for
database access does not have to be written for each of the classes separately, but the
relationships between the class structures and the database schema are systematically
and centrally defined.

Third, the ORM frameworks include tools for managing database performance in
the context of object-oriented applications. A typical ORM framework is capable of
using the services of a connection pool (e.g., C3P0) for the efficient management of
expensive database connections. Another performance-related issue that is central in
the use of ORM frameworks is the specification of fetching strategies, which define
when and how the framework retrieves persistent objects to run-time memory during a
navigation process. A specific issue that has to be addressed is the N+1 selects problem,
which refers to a situation in which a poorly defined fetching strategy might lead to a
separate SELECT statement for each associated object in a one-to-many relationship.
For example, Hibernate uses, by default, so-called lazy loading, in which objects are
retrieved from a database only when they are needed. The alternative is eager loading,
in which all associated objects are always retrieved together with the object to which
they are linked. Careful design of fetching strategies is very important from the per-
spective of achieving a high level of performance in applications based on an ORM
framework.

Fourth, the ORM frameworks provide support for transactions and transaction
integrity. This topic was covered in Chapter 11, so we will not discuss it again here in

N+1 selects problem
A performance problem caused by
too many SELECT statements
generated by an ORM framework.

Fetching strategy
A model for specifying when and
how an ORM framework retrieves
persistent objects to the run-time
memory during a navigation
process.

Chapter 14 • Overview: Using Relational Databases to Provide Object Persistence 533

detail. The transaction support mechanisms in the ORM frameworks work together
with standard transaction management tools, such as Java Transaction API (JTA), that
are provided by many application servers (e.g., JBoss and WebSphere). The develop-
ment of enterprise-level applications would not, in general, be possible without trans-
action support. It is particularly important in the ORM world because, in many cases, a
change in a persistent object leads to cascading changes in the database, which all have
to be either accepted or rejected.

The ORM frameworks provide services for concurrency control, which was also
covered in Chapter 11. Hibernate uses, by default, optimistic concurrency control, but
its behavior can be modified when more stringent isolation guarantees are needed. The
highest level of isolation in Hibernate is fully serializable isolation, which ensures—
with a performance penalty—that transactions are executed one after another.

Finally, the ORM frameworks often include a custom query language, such as
HQL in Hibernate, and other mechanisms to run queries, such as direct SQL and the
Criteria application programming interface (API) in Hibernate. HQL, the query lan-
guage in Hibernate, resembles SQL in many ways. Based on what you have learned
about SQL in Chapters 6 and 7, you will be able to learn HQL easily.

Summary

The object-oriented approach has become very popular
in application development and systems analysis and
design, but object-oriented database management sys-
tems never gained widespread acceptance. Instead, rela-
tional database management systems continue to maintain
their dominant role as the primary data management
technology. Therefore, it is essential that relational data-
bases be used effectively with object-oriented application
development approaches.

In this chapter, we first reviewed the reasons
underlying the object-relational impedance mismatch—
that is, the conceptual conflict between the object-
oriented and relational models. These reasons include
differences in the representation of complex data types
and structural relationships (including inheritance and
associations), representation of object/entity instance
identity, importance and implementation of the transac-
tion concept, and methods of accessing persistent data.
In addition, the approaches have a different core focus
because the relational model focuses entirely on data,
whereas the object-oriented approach, by definition,
integrates data and behavior. Also, the predominant
architectural styles within each approach are different. It
is essential that the gap between the two approaches be
closed because, in practice, both will be used widely in
the foreseeable future.

There are four basic categories of mechanisms
through which relational databases can be used to pro-
vide persistence to objects. Call-level application pro-
gramming interfaces (APIs), such as Java Database
Connectivity (JDBC), require that application developers
embed SQL statements in the program code through a
low-level interface. SQL query mapping frameworks,
such as iBATIS, raise the level of abstraction by provid-
ing a mechanism for declaring links between class speci-
fications and SQL queries and by hiding the details of
the call-level APIs. Object-relational mapping (ORM)
frameworks, such as Java Persistence API and its imple-
mentations Hibernate, EclipseLink, and OpenJPA
provide a transparent persistence solution by creating

declarative mapping between classes and database
tables. They hide the database structure and the rela-
tional query language from developers. Finally, there are
many proprietary persistence solutions that intend to
integrate data access directly into object-oriented envi-
ronments and languages, such as Microsoft’s LINQ.
Each of the approaches has strengths and weaknesses,
and it is essential that you carefully evaluate the specific
needs of your project before selecting a tool for linking
relational databases to an object-oriented development
environment.

Object-relational mapping frameworks have multi-
ple responsibilities: They provide a layer of abstraction
between object-oriented applications and a database
schema implemented with a DBMS to provide trans-
parent persistence for the applications. They generate
the SQL code that is needed for database access, and
they centralize this code so that it does not proliferate
throughout the application. These frameworks provide
support for concurrency control and transaction integrity
and management. They also typically include a query
language (such as HQL in Hibernate) that provides capa-
bilities similar to those of SQL.

Understanding the mechanisms used for linking
object-oriented applications and relational databases is
very important for both those whose specialty is data
management and those who focus on application devel-
opment. For data management specialists, an increasing
number of the applications that they support are devel-
oped using the object-oriented approach. To provide
high-quality service to these applications (and their devel-
opers), it is essential that data specialists understand how
these applications connect to relational databases.
Application developers, on the other hand, benefit greatly
from understanding at least the principles of the mecha-
nisms that provide persistence for the objects in their solu-
tions. It is particularly important that both sides be able to
communicate effectively with each other. The quality of
the object-relational connection solution directly affects
application performance, reliability, and security.

534 Part V • Advanced Database Topics

Ambler, S. 2006. Mapping Objects to Relational Databases: O/R
Mapping in Detail. Available at www.agiledata.org/
essays/mappingObjects.html. (accessed September 19,
2009).

Bauer, C., and G. King. 2006. Java Persistence with Hibernate.
Greenwich, CT: Manning.

References

Neward, T. 2005. Comparing LINQ and Its Contemporaries.
Available at http://msdn2.microsoft.com/en-us/library/
aa479863.aspx (accessed September 19, 2009).

Richardson, C. 2006. POJOs in Action. Greenwich, CT: Manning.
Tate, B., and J. Gehtland. 2005. Spring: A Developer’s Notebook.

Sebastopol, CA: O’Reilly.

For coverage of key terms, review questions, problems and
exercises, and field questions, see the complete chapter on the

Chapter Review

textbook’s Web site. The following is the full set of references for
the chapter.

Elliott, J., T. O’Brien, and R. Fowler. 2008. Harnessing Hibernate.
Sebastopol, CA: O’Reilly.

Keith, M., and M. Schincariol. 2006. Pro EJB 3: Java Persistence
API. Berkeley, CA: Apress.

Further Reading

Minter, D., and J. Linwood. 2006. Beginning Hibernate: From
Novice to Professional. Berkeley, CA: Apress.

Panda, D., R. Rahman, and D. Lane. 2007. EJB 3 in Action.
Greenwich, CT: Manning.

Web Resources

www.java-source.net/open-source/persistence A collection of
links to various open source persistence frameworks.

www.hibernate.org The Hibernate Web site.

http://java.sun.com/javaee/overview/faq/persistence.jsp An
official Sun site that provides a description of the persist-
ence standard in Java EE.

www.agiledata.org/essays/mappingObjects.html
www.agiledata.org/essays/mappingObjects.html
http://msdn2.microsoft.com/en-us/library/aa479863.aspx
http://msdn2.microsoft.com/en-us/library/aa479863.aspx
www.java-source.net/open-source/persistence
www.hibernate.org
http://java.sun.com/javaee/overview/faq/persistence.jsp

A
A P P E N D I X

Data Modeling Tools
and Notation

Chapters 2 and 3 present several common notations for representing conceptual
data models. Depending on the software tool available for depicting a data model,
your ability to replicate these notations will vary. Just as business rules and policies
are not universal, neither are the symbols and notation used in the various data
modeling tools. Each uses different graphical constructs and methodologies that
may or may not be able to convey the meaning of a particular business rule.

This appendix is intended to help you compare the book’s notations with your
modeling tool’s notation. Four commonly used tools are covered: CA ERwin Data
Modeler r7.3, Oracle Designer 10g, Sybase PowerDesigner 15, and Microsoft Visio
Pro 2003. Table A-1a and Table A-1b chart samples of the notation used in each
tool for entities, relationships, attributes, rules, constraints, and so forth.

Figure 2-22, a data modeling diagram for Pine Valley Furniture Company
(PVFC), is the basis for the examples pictured in this appendix. That figure shows the
data model drawn from the narrative of PVFC business rules included in Chapter 2,
using the Visio notation system, which is very similar to the notation used in this
textbook. Figure A-1, included here, is this same figure. Table A-1 shows a comparison
of the textbook notation with that available in the four software tools.

COMPARING E-R MODELING CONVENTIONS

As can be seen from Table A-1, modeling tools can differ significantly in the notation
available to create a data model. While not intended as an in-depth comparison of the var-
ious tools, the following explanation provides a means to analyze the tools’ differences,
using the PVFC data model depicted in Figures 2-22 and A-1. Pay particular attention to
differences in depicting many-to-many relationships, cardinalities and/or optionalities,
foreign keys, and supertype/subtype relationships. Each tool offers multiple sets of nota-
tion. We have chosen entity/relationship sets of symbols for each tool. Note, in particular,
how associative entities are drawn; the foreign key relationships are included.

Visio Professional 2003 Notation

The Professional version of Visio includes a database diagramming tool for modeling a
conceptual or physical diagram. Visio provides three database modeling templates.
Selecting Database Model Diagram for a new data model allows a further choice of
relational or IDEF1X symbols. Both of these choices allow reverse engineering of existing
physical databases. The two other template choices are Express-G and ORM, which allow
you to use the notation associated with each of those methods, and do not provide for

535

TABLE A-1 A Comparison of Hoffer, Ramesh, and Topi Modeling Notation with Four Software Tools
(a) Common modeling tools, notations

Basic
Entity

Associative
Entity

Subtypes

Recursive
Relationship

Attributes

Hoffer-Ramesh-
Topi Notation

Visio PRO
2003

CA ERWin Data
Modeler r7.3

Sybase PowerDesigner
15

Oracle Designer
10g

Strong Weak

Associative

EMPLOYEE

HOURLY
EMPLOYEE

SALARIED
EMPLOYEE

EMPLOYEE

Manages

PRODUCT LINE
PRODUCT_LINE_ID
* PRODUCT_LINE_NAME

(No special symbol.
Uses regular Entity

symbol.)

PRODUCT LINE

SUPERTYPE

SUBTYPE A SUBTYPE B

536

(co
n

tin
u

ed
)

TABLE A-1 (continued) (b) Common modeling tools’ cardinality/optionality notations

Mandatory
1:1

1:1

1:M

M:N

Mandatory
1:M

Optional
1:M

(Not available
without cardinality)

(Not available
without cardinality)

1

P

Hoffer-Ramesh-Topi
Notation

CA ERWin Data
Modeler r7.3

Sybase PowerDesigner
15

Oracle Designer
10g

(Not available
without cardinality)

(Not available
without cardinality)

(Not allowed)

Visio PRO
2003

0,1 0,1

0,1 0,n

0,n 0,n

0,1 0,n

537

538 Appendix A • Data Modeling Tools and Notation

Salesperson ID

Salesperson Name

Salesperson Telephone

Salesperson Fax

PK

SALESPERSON

Customer ID

Customer Name

Customer Address

Customer Postal Code

PK

CUSTOMER

Product ID

Product Description

Product Finish

Product Standard Price

PK

PRODUCT

Material ID

Material Name

Material Standard Cost

Unit Of Measure

PK

RAW MATERIAL

Order ID

Order Date

PK

ORDER

SkillPK

SKILL

Ordered Quantity

ORDER LINE

Product Line ID

Product Line Name

PK

PRODUCT LINE

Serves

Submits

Includes

Is Supervised By

Supervises

Territory IDPK

Territory Name

TERRITORY DOES BUSINESS IN

Vendor ID

Vendor Name

Vendor Address

PK

VENDOR

Employee ID

Employee Name

Employee Address

PK

EMPLOYEE

Work Center ID

Work Center Location

PK

WORK CENTER

Goes Into Quantity

USES PRODUCED IN

WORKS IN

HAS SKILL

Supply Unit Price

SUPPLIES

FIGURE A-1 Visio PRO 2003 model

Appendix A • Data Modeling Tools and Notation 539

reverse engineering unless you are using Visio Enterprise. Each template may be cus-
tomized to indicate primary key (PK), foreign keys (FK), secondary indexes, nonkey
fields, data types, and so on. You can also elect to display the primary key fields at the top
of each entity or in their actual physical order. This text uses the relational template.

ENTITIES All entities are depicted as square rectangles with optional horizontal and
vertical lines used to partition entity information. Keys (primary, alt, foreign), nonkey
attributes, referential integrity, and so on can be optionally displayed within the entity
box. Subtype/supertype connectors are available.

RELATIONSHIPS Lines can be labeled in one or both directions or neither, and the rela-
tionship types are either identifying (solid line) or nonidentifying (dashed line).
Cardinality and optionality notation differ according to the symbol set chosen, relational
or IDEF1X. Notation samples for the relational symbol set chosen for our diagram can be
seen in Table A-1b. This tool provides a helpful “range” option, where a minimum and a
maximum value can also be set for cardinality. When identifying or nonidentifying rela-
tionships are established, keys are automatically migrated above or below, respectively,
the entity’s horizontal separator line. The recursive Supervises relationship shows the
business rule that a supervisor may supervise none or any number of employees, but
cannot show that the president has no supervisor, only that each employee has exactly
one supervisor. A many-to-many relationship between two entities cannot be estab-
lished; a new (associative) entity must be added to resolve it. The many and varied line
connectors provided by the tool can be used to draw a many-to-many relationship, but
these connector objects do not establish the functional relationship within the tool.

CA ERwin Data Modeler r7.3 Notation

Here, for physical or logical modeling, one has the choice among IDEF1X, IE (Information
Engineering), or DM (Dimensional Modeling) notation. The examples used here demon-
strate IE. ERwin has very robust capabilities for adding many types of metadata to the
entities, attributes, and relationships. The user can choose to display the model in several
Display Levels, including only entities and relationships, entities with key attributes, and
fully attributed entities. As with many of the other tools, both logical and physical data
models can be developed and displayed. The key difference between most conceptual
and logical data models is that the tools want to resolve all primary keys in a logical data
model, which is necessary to migrate to a physical data model. Thus, many tools, like
ERwin, do not support development of what is purely a conceptual data model.

ENTITIES An independent entity is represented as a box with a horizontal line and
square corners. If an entity is a child (weak) entity in an identifying relationship, it
appears as a dependent entity—a box with rounded corners. Associative entity symbols
are also represented this way. ERwin determines the entity type based on the relation-
ship in which it is involved. For example, when you initially place an entity in a model,
it displays as an independent entity. When you connect it to another entity using a rela-
tionship, ERwin determines whether the entity is independent or dependent, based on
the relationship type selected.

RELATIONSHIPS ERwin represents a relationship as a solid or dashed line connecting two
entities. Depending on the notation you choose, the symbols at either end of the line may
change. Cardinality options are flexible and may be specified unambiguously. A parent
may be connected to “Zero, One, or More,” signified by a blank space; “One or More,” sig-
nified by a P; “Zero or One,” signified by a Z; or “Exactly,” some number of instances; P or
Z may optionally appear on the ERD. Many-to-many relationships can be depicted or the
user may opt to automatically or manually resolve them. Figure 2-22 (A-1) does not have
any many-to-many relationships because it already shows all possible ones as associative
entities (e.g., DOES BUSINESS IN). (Visio does not support M:N relationships.) In
Figure A-2 we show what would result from manually telling ERwin to resolve each M:N
by creating an associative entity. For example, consider the many-to-many SUPPLIES rela-
tionship between Vendor and Raw Materials. The user selects a “Show Association Entity”
option on the relationship line that then automatically eliminates the many-to-many

540 Appendix A • Data Modeling Tools and Notation

Serves

Submits

Supervises

SALES PERSON

Salesperson ID

Salesperson Name
Salesperson Telephone
Salesperson Fax
Territory ID (FK)

SALES TERRITORY

Territory ID

Territory Name

CUSTOMER

Customer ID

Customer Name
Customer Address
Customer Postal Code

ORDER

Order ID

Order Date
Customer ID (FK)

ORDER LINE

Order ID (FK)
Product ID (FK)

Ordered Quantity

Includes

PRODUCT

Product ID

Product Description
Product Finish
Product Standard Price
Product Line ID (FK)

RAW MATERIAL

Material ID

Material Name
Material Standard Cost
Unit of Measure

EMPLOYEE

Employee ID

Supervisor ID (FK)

WORK CENTER

Work Center ID

Mork Center Location

VENDOR

Vendor ID

Vendor Name
Vendor Address

SKILL

Skill

PRODUCT LINE

Product Line ID

Product Line Name

DOES BUSINESS IN

Territory ID (FK)
Customer ID (FK)

PRODUCED IN

Work Center ID (FK)
Product ID (FK)

WORKS IN

Employee ID (FK)
Work Center ID (FK)

HAS SKILL

Skill (FK)
Employee ID (FK)

SUPPLIES

Vendor ID (FK)
Material ID (FK)

Supply Unit Price

USES

Material ID (FK)
Product ID (FK)

FIGURE A-2 CA ERwin Data Modeler r7.3 model

Appendix A • Data Modeling Tools and Notation 541

relationship, establishes new ones with cardinality and optionality notations, creates the
associative entity, and allows the “Supply Unit Price” attribute for the SUPPLIES relation-
ship to be displayed in the diagram. SUPPLIES would not be the name automatically
given this associative entity, so we have renamed it. ORDER LINE is also shown as an
associative entity by ERwin. The recursive nonidentifying Supervises relationship, where
parent and child are shown as the same entity, shows that an Employee (a Supervisor) may
supervise many employees, but not all employees are supervisors. The notation also indi-
cates that nulls are allowed, which shows that a supervisor may have no employees and an
employee (the president) may have no supervisor. The diagram introduces a Role Name
(Supervisor ID) for the PK attribute in its role as a nonkey FK attribute for the Supervises
relationship. Keys migrate automatically when relationships are established, and foreign
keys are notated “FK.” In an identifying relationship, the FK migrates above the horizontal
line in the entity and becomes part of the primary key of the child entity. In a nonidentify-
ing relationship, the foreign key migrates below the line and becomes a nonkey attribute in
the child entity. In ERwin, a dashed line represents a nonidentifying relationship.

The chart captured from ERwin’s online help and shown in Figure A-3 depicts
the range of cardinality symbols for different ER notation sets that may be used from
this product.

Sybase PowerDesigner 15 Notation

PowerDesigner projects are contained within a workspace that can be customized and
includes a hierarchy of folders and models. Links to model files, report files, and exter-
nal files are also stored in the workspace. Where a data modeler is working on multiple
projects or on a part of a project with different requirements, multiple workspaces may
be defined as needed. Each is kept locally and is reusable. It is only possible to work in
one workspace at a time. PowerDesigner 15 includes various integrated modeling tools

Cardinality
Description

IDEF1X Notation IE Notation DM Notation
Identifying Nonidentifying

Nulls No Nulls
Identifying Nonidentifying

Nulls No Nulls
Identifying Nonidentifying

Nulls No Nulls
One to zero,
one, or more

One to one
or more (P)

One to zero
or one (Z)

One to
exactly (N)

4 4 4

Z Z Z

P P P

4 4 4

Z Z Z

P P P

4 4 4

Z Z Z

P P P

FIGURE A-3 ERwin
cardinality/optionality
symbols

542 Appendix A • Data Modeling Tools and Notation

besides data modeling, including XML modeling, data movement modeling, and vari-
ous enterprise information architecture tools.

The examples in this appendix use the Conceptual Data Model graphics with the
Information Engineering notation. Other conceptual modeling notations supported are
Barker and IDEF 1/x. Conceptual designs can be used to generate first logical and then
physical data models. Further, PowerDesigner 15 has added data warehouse design capa-
bilities, including the ability to identify dimension and fact tables, and generate cubes.

ENTITIES The amount of detail that is displayed in the data model is selected by the
modeler and may include primary identifiers, a predetermined number of attributes,
data type, optionality, and/or domain. A double-click of the entity allows access to the
entity’s property sheet. Properties shown include name, technical code name, a com-
ment field that contains a descriptive label if desired, stereotype (subclassification of
entity), estimated number of occurrences, and the possibility of generating a table in the
physical data model. Additional entity properties include attributes, identifiers, and
rules. Each of these properties has its own property sheet.

RELATIONSHIPS PowerDesigner uses a solid line between entities to establish any rela-
tionship. Crows foot notation is used to establish cardinality and the circle and line estab-
lish optionality, similar to the Hoffer notation. Relationship properties include name,
technical code name, comment, stereotype, the related pair of entities (only binary and
unary relationships are supported), and a generation capability. It is possible to model
a many-to-many relationship without breaking it down to include the associative entity.
If desired, however, an associative entity may be modeled and displayed. Recursive
(reflexive) relationships may be modeled easily, and subtypes may also be presented.

Oracle Designer Notation

Diagrams drawn using Oracle Designer’s Entity Relationship Diagrammer tool can be
set to show only the entity names, the entity names and the primary key, or the entity
names and all of the attribute labels.

ENTITIES No specific symbols exist for the different entity types, including associative
entities and supertypes or subtypes. All entities are depicted as rounded rectangles, and
attributes can be displayed within the box. Unique identifiers are preceded by a # sign
and must be mandatory, mandatory attributes are tagged with *, and optional attributes
are tagged with °.

RELATIONSHIPS Lines must be labeled in both directions, not just one direction, and are
challenging to manipulate and align. Cardinality is read by picking up the cardinality
sign attached to the other entity. Thus, a Customer may place an order or not, but when
an order is placed, it must be related to a particular customer. Looking at the
EMPLOYEE entity, the recursive supervisory relationship is depicted by the “pig’s ear”
attached to the entity. It shows that an Employee may supervise one or more employees
and that an employee must be supervised by one employee, or supervisor. It is ambigu-
ous as to whether the multiple cardinality is zero, one, or many.

When working with Oracle Designer, it is important to sketch your data model
carefully and completely before attempting to use the tool. Editing the model can be
challenging, and deleting an object from the diagram does not automatically delete it
from the Repository.

COMPARISON OF TOOL INTERFACES AND E-R DIAGRAMS

For each of the software modeling tools included in Table A-1, the data model for
Figure 2-22 (A-1) is included here. These figures should give you a better idea of what
the symbol notation looks like in actual use. Figure A-1 was drawn using Visio PRO
2003 and its relational template. Figure A-2 was drawn using CA ERwin Data
Modeler r7.3 and the Information Engineering (IE) option. Foreign keys are included
in this diagram. Figure A-4 shows Sybase PowerDesigner 15, using the Conceptual

Appendix A • Data Modeling Tools and Notation 543

Product ID

Product Description

Product Finish

Product Standard Price

PRODUCT

Material ID

Material Name

Material Standard Cost

Unit of Measure

RAW MATERIAL

Order ID

Order Date

ORDER

Ordered Quantity

ORDER LINE

Goes into Quantity

USES

Product Line ID

Product Line Name

PRODUCT LINE

Serves

Submits

Includes

Is Supervised By

Supervision

Territory ID

Territory Name

TERRITORY

Vendor ID

Vendor Name

Vendor Address

VENDOR

Employee ID

Employee Name

Employee Address

EMPLOYEE

Work Center ID

Work Center Location

WORK CENTER

PRODUCED IN

WORKS IN

SUPPLIES

Supply Unit Price

HAS SKILL

Supervises

Salesperson ID

Salesperson Name

Salesperson Telephone

Salesperson Fax

SALESPERSON

SKILL
Skill

DOES BUSINESS IN

Customer ID

Customer Name

Customer Address

Customer Postal Code

CUSTOMER

FIGURE A-4 Sybase PowerDesigner 15 model

544 Appendix A • Data Modeling Tools and Notation

Data Model template. Figure A-5 was drawn using Oracle Designer 10g with the
Information Engineering (IE) option selected. Note that we use uppercase for all data
names and include an underscore between words in Figure A-5, which is different
from other E-R diagrams in this book. We do this for two reasons: (1) This is what
many Oracle practitioners do, and (2) Oracle, like many other RDBMSs, always dis-
plays data names in SQL and repository query results in all-capital letters, so creating
data names in this format may be easier for some people to read.

supervised by

employs

works in

has

requested by
appears on

supervises

has

belongs to

belongs to

is used by used to produce

uses
produced in

requests

supplies

serves
is served by

belongs to
includes

is submitted by

submits

has business with

does business in

supplied by

PRODUCT LINE
PRODUCT_LINE_ID
* PRODUCT_LINE_NAME

appears on

RAW MATERIAL
MATERIAL_ID
* MATERIAL_NAME
* UNIT_OF_MEASURE
O STANDARD_COST

ORDER LINE
* ORDERED_QUANTITY

WORK CENTER
WORK_CENTER_ID
O WORK_CENTER_LOCATION

EMPLOYEE
EMPLOYEE_ID
* EMPLOYEE_NAME
O EMPLOYEE_ADDRESS

SKILL
SKILL_CODE
O SKILL_DESCR

VENDOR
VENDOR_ID
O VENDOR_NAME
O VENDOR_ADDRESS

SALESPERSON
SALESPERSON_ID
* SALESPERSON_NAME
O SALESPERSON_FAX
O SALESPERSON_TELEPHONE ORDER

ORDER_ID
* ORDER_DATE

PRODUCT
PRODUCT_ID
* PRODUCT_DESCRIPTION
O PRODUCT_FINISH
O STANDARD_PRICE

HAS_SKILL

CUSTOMER
CUSTOMER_ID
* CUSTOMER_NAME
O CUSTOMER_ADDRESS

SALES TERRITORY
TERRITORY_ID
* TERRITORY_NAME

FIGURE A-5 Oracle Designer 10g model

B
A P P E N D I X

Advanced Normal Forms

In Chapter 4, we introduced the topic of normalization and described first through
third normal forms in detail. Relations in third normal form (3NF) are sufficient for
most practical database applications. However, 3NF does not guarantee that all
anomalies have been removed. As indicated in Chapter 4, several additional normal
forms are designed to remove these anomalies: Boyce-Codd normal form, fourth
normal form, and fifth normal form (see Figure 4-22). We describe Boyce-Codd nor-
mal form and fourth normal form in this appendix.

BOYCE-CODD NORMAL FORM

When a relation has more than one candidate key, anomalies may result even though
that relation is in 3NF. For example, consider the STUDENT ADVISOR relation shown
in Figure B-1. This relation has the following attributes: SID (student ID), Major,
Advisor, and MajGPA. Sample data for this relation are shown in Figure B-1a, and the
functional dependencies are shown in Figure B-1b.

As shown in Figure B-1b, the primary key for this relation is the composite key con-
sisting of SID and Major. Thus, the two attributes Advisor and MajGPA are functionally
dependent on this key. This reflects the constraint that although a given student may have
more than one major, for each major a student has exactly one advisor and one GPA.

There is a second functional dependency in this relation: Major is functionally
dependent on Advisor. That is, each advisor advises in exactly one major. Notice that
this is not a transitive dependency. In Chapter 4, we defined a transitive dependency as
a functional dependency between two nonkey attributes. In contrast, in this example a
key attribute (Major) is functionally dependent on a nonkey attribute (Advisor).

Anomalies in STUDENT ADVISOR

The STUDENT ADVISOR relation is clearly in 3NF, because there are no partial func-
tional dependencies and no transitive dependencies. Nevertheless, because of the func-
tional dependency between Major and Advisor, there are anomalies in this relation.
Consider the following examples:

1. Suppose that in Physics, the advisor Hawking is replaced by Einstein. This change
must be made in two (or more) rows in the table (update anomaly).

2. Suppose we want to insert a row with the information that Babbage advises in
Computer Science. This, of course, cannot be done until at least one student major-
ing in Computer Science is assigned Babbage as an advisor (insertion anomaly).

3. Finally, if student number 789 withdraws from school, we lose the information
that Bach advises in Music (deletion anomaly).

545

546 Appendix B • Advanced Normal Forms

Definition of Boyce-Codd Normal Form (BCNF)

The anomalies in STUDENT ADVISOR result from the fact that there is a determinant
(Advisor) that is not a candidate key in the relation. R. F. Boyce and E. F. Codd identi-
fied this deficiency and proposed a stronger definition of 3NF that remedies the prob-
lem. We say a relation is in Boyce-Codd normal form (BCNF) if and only if every
determinant in the relation is a candidate key. STUDENT ADVISOR is not in BCNF
because although the attribute Advisor is a determinant, it is not a candidate key. (Only
Major is functionally dependent on Advisor.)

Converting a Relation to BCNF

A relation that is in 3NF (but not BCNF) can be converted to relations in BCNF using a
simple two-step process. This process is shown in Figure B-2.

In the first step, the relation is modified so that the determinant in the relation that
is not a candidate key becomes a component of the primary key of the revised relation.
The attribute that is functionally dependent on that determinant becomes a nonkey
attribute. This is a legitimate restructuring of the original relation because of the func-
tional dependency.

The result of applying this rule to STUDENT ADVISOR is shown in Figure B-2a.
The determinant Advisor becomes part of the composite primary key. The attribute
Major, which is functionally dependent on Advisor, becomes a nonkey attribute.

If you examine Figure B-2a, you will discover that the new relation has a partial
functional dependency. (Major is functionally dependent on Advisor, which is just
one component of the primary key.) Thus the new relation is in first (but not second)
normal form.

The second step in the conversion process is to decompose the relation to elimi-
nate the partial functional dependency, as we learned in Chapter 4. This results in two
relations, as shown in Figure B-2b. These relations are in 3NF. In fact, the relations are
also in BCNF because there is only one candidate key (the primary key) in each relation.
Thus, we see that if a relation has only one candidate key (which therefore becomes the
primary key), 3NF and BCNF are equivalent.

The two relations (now named STUDENT and ADVISOR) with sample data are
shown in Figure B-2c. You should verify that these relations are free of the anomalies

Boyce-Codd normal form (BCNF)
A normal form of a relation in
which every determinant is a
candidate key.

FIGURE B-1 Relation in 3NF
but not in BCNF
(a) Relation with sample data

(b) Functional dependencies
in STUDENT ADVISOR

STUDENT ADVISOR

SID Major Advisor MajGPA

4.0123

3.3123

3.2456

3.7789

Hawking

Mahler

Michener

Bach

Hawking 3.5678

Physics

Music

Literature

Music

Physics

SID Major Advisor MajGPA

Appendix B • Advanced Normal Forms 547

that were described for STUDENT ADVISOR. You should also verify that you can
recreate the STUDENT ADVISOR relation by joining the two relations STUDENT
and ADVISOR.

Another common situation in which BCNF is violated is when there are two (or
more) overlapping candidate keys of the relation. Consider the relation in Figure B-3a.
In this example, there are two candidate keys, (SID, CourseID) and (SName, CourseID),
in which CourseID appears in both candidate keys. The problem with this relation-
ship is that we cannot record student data (SID and SName) unless the student has
taken a course. Figure B-3b shows two possible solutions, each of which creates two
relations that are in BCNF.

FOURTH NORMAL FORM

When a relation is in BCNF, there are no longer any anomalies that result from func-
tional dependencies. However, there may still be anomalies that result from multival-
ued dependencies (defined in the next section). For example, consider the user view
shown in Figure B-4a. This user view shows for each course the instructors who teach
that course and the textbooks that are used. (These appear as repeating groups in the
view.) In this table view, the following assumptions hold:

1. Each course has a well-defined set of instructors (e.g., Management has three
instructors).

2. Each course has a well-defined set of textbooks that are used (e.g., Finance has two
textbooks).

3. The textbooks that are used for a given course are independent of the instructor
for that course (e.g., the same two textbooks are used for Management regardless
of which of the three instructors is teaching Management).

FIGURE B-2 Converting a
relation to BCNF relations

(a) Revised STUDENT
ADVISOR relations (1NF)

(b) Two relations in BCNF

(c) Relations with sample
data

SID Advisor Major MajGPA

Advisor MajorSID Advisor MajGPA

ADVISOR

Major

Hawking

Mahler

Michener

Bach

Physics

Music

Literature

Music

Advisor

STUDENT

SID Advisor MajGPA

4.0123

3.3123

3.2456

3.7789

Hawking

Mahler

Michener

Bach

Hawking 3.5678

548 Appendix B • Advanced Normal Forms

In Figure B-4b, this table view has been converted to a relation by filling in all of
the empty cells. This relation (named OFFERING) is in 1NF. Thus, for each course, all
possible combinations of instructor and text appear in OFFERING. Notice that the
primary key of this relation consists of all three attributes (Course, Instructor, and
Textbook). Because there are no determinants other than the primary key, the relation is
actually in BCNF. Yet it does contain much redundant data that can easily lead to
update anomalies. For example, suppose that we want to add a third textbook (author:
Middleton) to the Management course. This change would require the addition of three

FIGURE B-3 Converting a
relation with overlapping
candidate keys to BCNF

(a) Relation with overlapping
candidate keys SID SName CourseID Grade

OR

CourseID GradeSID SIDSName

SIDSName SName CourseID Grade

(b) Two alternative pairs of
relations in BCNF

FIGURE B-4 Data with multivalued dependencies

(a) View of courses, instructors, and textbooks (b) Relation in BCNF

COURSE STAFF AND BOOK ASSIGNMENTS

Course Instructor Textbook

Management

Jones
Chang

Finance

White
Green
Black

Drucker
Peters

Gray

Instructor Textbook

Management White Drucker

Management White Peters

Management Green Drucker

Management Green Peters

Management Black Drucker

Management Black Peters

Finance Gray Jones

Finance Gray Chang

Course

OFFERING

Appendix B • Advanced Normal Forms 549

new rows to the relation in Figure B-4b, one for each Instructor (otherwise that text
would apply to only certain instructors).

Multivalued Dependencies

The type of dependency shown in this example is called a multivalued dependency,
and it exists when there are at least three attributes (e.g., A, B, and C) in a rela-
tion, and for each value of A there is a well-defined set of values of B and a well-
defined set of values of C. However, the set of values of B is independent of set C,
and vice versa.

To remove the multivalued dependency from a relation, we divide the relation
into two new relations. Each of these tables contains two attributes that have a multival-
ued relationship in the original relation. Figure B-5 shows the result of this decomposi-
tion for the OFFERING relation of Figure B-4b. Notice that the relation called
TEACHER contains the Course and Instructor attributes, because for each course there
is a well-defined set of instructors. Also, for the same reason, TEXT contains the attrib-
utes Course and Textbook. However, there is no relation containing the attributes
Instructor and Course because these attributes are independent.

A relation is in fourth normal form (4NF) if it is in BCNF and contains no multi-
valued dependencies. You can easily verify that the two relations in Figure B-5 are in
4NF and are free of the anomalies described earlier. Also, you can verify that you can
reconstruct the original relation (OFFERING) by joining these two relations. In addi-
tion, notice that there are fewer data in Figure B-5 than in Figure B-4b. For simplicity,
assume that Course, Instructor, and Textbook are all of equal length. Because there are
24 cells of data in Figure B-4b and 16 cells of data in Figure B-5, there is a space savings
of 33 percent for the 4NF tables.

HIGHER NORMAL FORMS

At least two higher-level normal forms have been defined: fifth normal form (5NF)
and domain-key normal form (DKNF). Fifth normal form deals with a property called
“lossless joins.” According to Elmasri and Navathe (2006), 5NF is not of practical sig-
nificance because lossless joins occur very rarely and are difficult to detect. For this
reason (and also because 5NF has a complex definition), we do not describe 5NF in
this text.

Domain-key normal form is an attempt to define an “ultimate normal form” that
takes into account all possible types of dependencies and constraints (Elmasri and
Navathe, 2006). Although the definition of DKNF is quite simple, its practical value is
minimal. For this reason, we do not describe DKNF in this text.

For more information concerning these two higher normal forms see Elmasri and
Navathe (2006) and Dutka and Hanson (1989).

Multivalued dependency
The type of dependency that exists
when there are at least three
attributes (e.g., A, B, and C) in a
relation, with a well-defined set of
B and C values for each A value,
but those B and C values are
independent of each other.

Fourth normal form (4NF)
A normal form of a relation in
which the relation is in BCNF and
contains no multivalued
dependencies.

TEXT

Textbook

Finance

Finance

Drucker

Peters

Jones

Chang

Course

TEACHER

Instructor

Management

Management

Management

Management

Management

Finance

White

Green

Black

Gray

Course

FIGURE B-5 Relations in 4NF

550 Appendix B • Advanced Normal Forms

Appendix Review

Key Terms

Boyce-Codd normal
form (BCNF) 546

Fourth normal form
(4NF) 548

Multivalued
dependency 548

References

Dutka, A., and H. Hanson. 1989. Fundamentals of Data
Normalization. Reading, MA: Addison-Wesley.

Elmasri, R., and S. Navathe. 2006. Fundamentals of Database
Systems, 5th ed. Reading, MA: Addison-Wesley.

Web Resource

www.bkent.net/Doc/simple5.htm A simple, understandable
guide to first through fifth normal forms.

www.bkent.net/Doc/simple5.htm

C
A P P E N D I X

Data Structures

Data structures are the basic building blocks of any physical database architecture.
No matter what file organization or DBMS you use, data structures are used to
connect related pieces of data. Although many modern DBMSs hide the underlying
data structures, the tuning of a physical database requires understanding the
choices a database designer can make about data structures. This appendix
addresses the fundamental elements of all data structures and overviews some
common schemes for storing and locating physical elements of data.

POINTERS

The concept of pointers was introduced in Chapter 5. As described in that chapter, a
pointer is used generically as any reference to the address of another piece of data. In
fact, there are three types of pointers, as illustrated in Figure C-1:

1. Physical address pointer Contains the actual, fully resolved disk address
(device, cylinder, track, and block number) of the referenced data. Using a physi-
cal pointer is the fastest way to locate another piece of data, but it is also the most
restrictive: If the address of the referenced data changes, all pointers to it must also
be changed. Physical pointers are commonly used in legacy database applications
with network and hierarchical database architectures.

2. Relative address pointer Contains the relative position (or “offset”) of the asso-
ciated data from some base, or starting, point. The relative address could be a byte
position, a record, or a row number. A relative pointer has the advantage that
when the whole data structure changes location, all relative references to that
structure are preserved. Relative pointers are used in a wide variety of DBMSs;
a common use is in indexes in which index keys are matched with row identifiers
(a type of relative pointer) for the record(s) with that key value.

3. Logical key pointer Contains meaningful data about the associated data ele-
ment. A logical pointer must be transformed into a physical or relative pointer
by some table lookup, index search, or mathematical calculation to actually lo-
cate the referenced data. Foreign keys in a relational database are often logical
key pointers.

Table C-1 summarizes the salient features of each of these three types of pointers.
A database designer may be able to choose which type of pointer to use in different
situations in a database. For example, a foreign key in a relation can be implemented
using any of these three types of pointers. In addition, when a database is damaged, a
database administrator who understands what types of pointers are used may be able
to rebuild broken links between database contents.

551

552 Appendix C • Data Structures

DATA STRUCTURE BUILDING BLOCKS

All data structures are built from several alternative basic building blocks for connect-
ing and locating data. Connecting methods allow movement between related elements
of data. Locating methods allow data within a structure to first be placed or stored and
then found.

There are only two basic methods for connecting elements of data:

1. Address-sequential connection A successor (or related) element is placed and
located in the physical memory space immediately following the current element
(see Figures C-2a and C-2c). Address-sequential connections perform best for
reading the entire set of data or reading the next record in the stored sequence. In
contrast, address-sequential structures are inefficient for retrieving arbitrary

TABLE C-1 Comparison of Types of Pointers

Type of Pointer

Characteristic Physical Relative Logical

Form Actual secondary
memory (disk)
address

Offset from reference
point (beginning
of file)

Meaningful business
data

Speed of access Fastest Medium Slowest

Sensitivity to data
movement

Most Only sensitive to relative
position changes

Least

Sensitivity to
destruction

Vary Vary Often can be easily
reconstructed

Space requirement Fixed, usually short Varies, usually shortest Varies, usually
longest

FIGURE C-1 Types of pointers

(a) Physical address pointer

(b) Relative address pointer
for Rth record in file

(c) Logical key pointer for
record with key

Address P

P

R

Calculate absolute
address as

Base + (R – 1) ×
(record length).

Address P

Base

R th relative
record

Key Address P Key
Use access method

to search for
record with key.

Appendix C • Data Structures 553

FIGURE C-2 Basic location methods

Element
1

Element
2

Element
3

Element
4

• • •

• • •
Element

1
Pointer to
element 2

Element
4

Pointer to
element 5

Element
2

Pointer to
element 3

Element
3

Pointer to
element 4

Element
1

Element
2

Element
3 Element

4

• • •

Element 1 key

Pointer to
element 1

Element 2 key

Pointer to
element 2

Element 3 key

Pointer to
element 3

Element 4 key

Pointer to
element 4

Element
1

Element
2

Element
3

Element
4

Element 4
key

Pointer to
pointer 5

Pointer to
element 4

Element 2
key

Pointer to
pointer 3

Pointer to
element 2

Element 3
key

Pointer to
pointer 4

Pointer to
element 3

Element 1
key

Pointer to
pointer 2

Pointer to
element 1

Connection pointer
Location pointer

(b) Pointer sequential connection (simple chain or linear list)

(c) Address sequential, data indirect connection (key index)

(d) Pointer sequential, data indirect connection (chain key index)

(a) Address sequential connection (sequential)

554 Appendix C • Data Structures

records and data update (add, delete, and change) operations. Update operations
are also inefficient because the physical order must be constantly maintained,
which usually requires immediate reorganization of the whole set of data.

2. Pointer-sequential connection A pointer (or pointers) is stored with one data
element to identify the location of the successor (or related) data element (see
Figures C-2b and C-2d). Pointer sequential is more efficient for data update oper-
ations because data may be located anywhere as long as links between related
data are maintained. Another major feature of pointer-sequential schemes is the
ability to maintain many different sequential linkages among the same set of data
by using several pointers. We review various common forms of pointer-sequential
schemes (linear data structures) shortly.

Also, there are two basic methods for placement of data relative to the connection
mechanism:

1. Data-direct placement The connection mechanism links an item of data
directly with its successor (or related) item (see Figures C-2a and C-2b). Direct
placement has the advantage of immediately finding the data once a connection
is traversed. The disadvantage is that the actual data are spread across large parts
of disk storage because space for the actual data must be allocated among the
connection elements.

2. Data-indirect placement The connection mechanism links pointers to the data,
not the actual data (see Figures C-2c and C-2d). The advantage of indirect place-
ment is that scanning a data structure for data with specified characteristics is usu-
ally more efficient because the scanning can be done through compact entries of
key characteristics and pointers to the associated data. Also, the connection and
placement of data are decoupled, so the physical organization of the data records
can follow the most desirable scheme (e.g., physically sequential for a specified
sorting order). The disadvantage is the extra access time required to retrieve both
references to data and the data, and the extra space required for pointers.

Any data structure, file organization, or database architecture uses a combination
of these four basic methods for connecting and placing elements of data.

LINEAR DATA STRUCTURES

Pointer-sequential data structures have been popular for storing highly volatile data,
typical of what is found in operational databases. Transactional data (e.g., customer
orders or personnel change requests) and historical data (e.g., product price quotes and
student class registrations) make up a large portion of operational databases. Also,
because users of operational databases want to view data in many different sequences
(e.g., customer orders in sequence by order date, product numbers, or customer num-
bers), the ability to maintain several chains of pointers running through the same data
can support a range of user needs with one set of data.

The ability of a linear data structure (a pointer-sequential structure that maintains
a sorted sequence on the data) to handle data updates is illustrated in Figure C-3.
Figure C-3a shows how easy it is to insert a new record into a linear (or chain) structure.
This figure illustrates a file of product records. For simplicity, we represent each prod-
uct record by only the product number and a pointer to the next product record in
sequence by product number. A new record is stored in an available location (S) and
patched into the chain by changing pointers associated with the records in locations
R and S. In Figure C-3b the act of deleting a record is equally easy, as only the pointer
for the record in location R is changed. Although there is extra space to store the pointers,
this space is minimal compared to what may be hundreds of bytes needed to store all
the product data (product number, description, quantity on hand, standard price, and
so forth). It is easy to find records in product number order given this structure, but the
actual time to retrieve records in sequence can be extensive if logically sequential
records are stored far apart on disk.

Appendix C • Data Structures 555

With this simple introduction to linear data structures, we now consider four spe-
cific versions of such structures: stacks, queues, sorted lists, and multilists. We conclude
this section with some cautions about linear, chain data structures.

Stacks

A stack has the property that all record insertions and deletions are made at the same
end of the data structure. Stacks exhibit a last-in/first-out (LIFO) property. A common
example of a stack is a vertical column of plates in a cafeteria. In business information
systems, stacks are used to maintain non-prioritized or unsorted records (e.g., the line
items associated with the same customer order).

Queues

A queue has the property that all insertions occur at one end and all deletions occur at
the other end. A queue exhibits a first-in/first-out (FIFO) property. A common example
of a queue is a checkout lane at a grocery store. In business information systems, queues
are used to maintain lists of records in chronological order of insertion. For example,
Figure C-4 illustrates a chained queue of Order Line records kept in order of arrival for
a common Product record in Pine Valley Furniture.

In this example, the Product record acts as the head-of-chain node in the data
structure. The value of the OldestOrderLine field is a pointer to the oldest (first entered)
Order Line record for product 0100. The NextOrderLine field in the OrderLine record
contains the pointers to the next record in reverse chronological sequence. The value Ø
in a pointer is called a null pointer and signifies the end of the chain.

FIGURE C-3 Maintaining a
pointer sequential data
structure

(a) Insertion

(b) Deletion

Before

After

S

200

R

100 S

X

350 Y

Y

625 Z

Insert

R

100 X

X

X

350 Y

Y

625 Z

S

200

After

R

100 Y

X

350

Y

625 Z

Before

R

100 X

Delete

X

350 Y

Y

625 Z

556 Appendix C • Data Structures

This example also introduces the concept of a bidirectional chain, which has both
forward and backward pointers. The benefit of next and prior pointers is that data in
the records can be retrieved and presented in either forward or backward order, and the
code to maintain the chain is easier to implement than with single-directional chains.

Sorted Lists

A sorted list has the property that insertions and deletions may occur anywhere within the
list; records are maintained in logical order based on a key field value. A common example
of a sorted list is a telephone directory. In business information systems, sorted lists occur
frequently. Figure C-5a illustrates a single-directional, pointer sequential sorted list of
Order records related to a Customer record, in which records are sorted by DeliveryDate.

Maintaining a sorted list is more complex than maintaining a stack or a queue
because insertion or deletion can occur anywhere in a chain, which may have zero or

Product

OrderLine

Start = P

X

Y

Z

ProductNumber
Quantity
Ordered

Extended
Price

Next
OrderLine

Prior
OrderLineOrderNumber

Description
Oldest

OrderLine
Newest

OrderLinePrice
Quantity
OnHandProductNumber

0100 TABLE 500.00 42 X Z

1234 0100 1 500.00 Y Ø

2743 0100 6 3000.00 Z X

2833 0100 2 1000.00 Ø Y

FIGURE C-4 Example of a queue with bidirectional pointers

FIGURE C-5 Example of a
sorted list

(a) Before new Order record
insertion and without dummy
first and dummy last Order
records

Customer

Order

New Order

Start = P

NEW = R

Order
Date

Delivery
Date

Total
AmountOrderNumber

6726 123 Spruce – X

Next
OrderX

1378 121782 121882 650.00 Y

Y

2386 121082 121982 1275.00 Z

Z

3217 021283 031283 850.00 Ø

3318 022483 031083 1100.00

CustomerNumber
Customer

Details
First

Order
Customer
Address

(continued)

Appendix C • Data Structures 557

many existing records. To guarantee that insertions and deletions always occur in the
interior of the chain, “dummy” first and last records are often included (see Figure C-5b).
Figure C-5c shows the result of inserting a new Order record into the sorted list of
Figure C-5b. To perform the insertion, the list is scanned starting from the address in the
pointer FirstOrder. Once the proper position in the chain is found, there must be a rule
for deciding where to store a record with a duplicate key value, if duplicates are allowed,

(b) Before new Order record
insertion and with dummy
first and dummy last Order
recordsCustomer

Dummy First
Order

New Order

Dummy Last

Start = P

Z

Order
Date

Delivery
Date

Total
AmountOrderNumber

CustomerNumber

6726 123 Spruce

Customer
Details

–

First
Order

A

Next
OrderA

– – 000000 – X

X

1378 121782 121882 650.00 Y

Y

2386 121082 121982 1275.00 Z

3217 021283 031283 850.00

NEW = R

3318 022483 031083 1100.00

Customer
Address

B

B

– – 999999 – Ø

Customer

Dummy First
Order

New Order

Dummy Last

Start = P

Z

Order
Date

Delivery
Date

Total
AmountOrderNumber

CustomerNumber

6726 123 Spruce

Customer
Details

–

First
Order

A

Next
OrderA

– – 000000 – X

X

1378 121782 121882 650.00 Y

Y

2386 121082 121982 1275.00

3217 021283 031283 850.00

NEW = R

3318 022483 031083 1100.00

Customer
Address

B

B

– – 999999 – Ø

R 8

9Z

(c) After new Order record
insertion (Circled numbers
next to pointers indicate the
step number in the associated
maintenance procedure of
Figure C-6 that changes
pointer value.)

558 Appendix C • Data Structures

as in this example. Usually this location for a duplicate record will be first among the
duplicates because this requires the least scanning.

If you use a file organization or DBMS that supports chains, and in particular sorted
lists, you will not have to write the code to maintain lists. Rather, this code will exist within
the technology you use. Your program will simply issue an insert, delete, or update com-
mand, and the support software will do the chain maintenance. Figure C-6 contains an
outline of the code needed to insert a new record in the sorted list of Figure C-5b. In this
outline, position variables PRE and AFT are used to hold the values of the predecessor and
successor, respectively, of the new Order record. Step 7 is included in brackets to show
where a check for duplicate keys would appear if required. The symbol ← means replace
the value of the variable on the left with the value of the variable on the right. Steps 8
and 9, which change pointer values in Figure C-5, show exactly which pointers would
change for the example of this figure. You may want to desk check this routine by manu-
ally executing it to see how variables’ values are set and changed.

Multilists

A multilist data structure is one for which more than one sequence is maintained
among the same records. Thus, multiple chains are threaded through the same records,
and records can be scanned in any of the maintained sequences without duplicating
the data records. The trade-off for this flexible accessing is the extra storage space and
maintenance for each chain. With a multilist, it is possible to walk through one associ-
ation and in the middle decide to follow another. For example, while accessing the
Order records for a given Customer (one list), we could find all the Orders to be deliv-
ered on the same day of delivery for a given Order record. Such a multilist is depicted
in Figure C-7.

A multilist provides some of the same benefits as multiple indexes. (See Chapter 6
for a discussion of primary and secondary key indexes.) The major disadvantages of
multilists, and the main reasons they are not used in relational DBMSs, is that the cost to
scan a list is high compared with the cost to access an index, and there is no quick way
to respond to multiple-key qualifications with multilists (e.g., find all the orders for cus-
tomers in the Northwest region and products in the Paper product line). For this and
other reasons, indexes have generally replaced linear data structures in modern data-
base technologies. However, legacy applications may still use technologies employing
single- and multilist structures.

HAZARDS OF CHAIN STRUCTURES

Besides the limitation of chains that prohibits their use in quickly responding to multiple-
key qualifications, chains also have the following hazards and limitations:

1. Long chains can take an enormous amount of time to scan because records in
sequence are not necessarily stored physically close to one another.

FIGURE C-6 Outline of record
insertion code /* Establish position variables beginning values */

1 PRE FirstOrder(START)
2 AFT NextOrder(PRE)
/* Skip/scan through chain until proper position is found */
3 DO WHILE DeliveryDate(AFT) < DeliveryDate(NEW)

4 PRE AFT
5 AFT NextOrder(AFT)

6 ENDO
7 [If DeliveryDate(AFT) = DeliveryDate(NEW) then indicate a Duplicate Error and

terminate procedure]
/* Weld in new chain element */
8 NextOrder(PRE) NEW
9 NextOrder(NEW) AFT

Appendix C • Data Structures 559

2. Chains are vulnerable to being broken. If an abnormal event occurs in the middle
of a chain maintenance routine, the chain can be partially updated, and the chain
becomes incomplete or inaccurate. Some safety measures can be taken to cope
with such mistakes, but these measures add extra storage or processing overhead.

TREES

The problem that a linear data structure may become long, and hence time-consuming
to scan, is an inherent issue with any linear structure. Fortunately, nonlinear structures,
which implement a divide-and-conquer strategy, have been developed. A popular type
of nonlinear data structure is a tree. A tree (see Figure C-8) is a data structure that con-
sists of a set of nodes that branch out from a node at the top of the tree (thus the tree is
upside down!). Trees have a hierarchical structure. The root node is the node at the top
of a tree. Each node in the tree, except the root node, has exactly one parent and may
have zero, one, or more than one child nodes. Nodes are defined in terms of levels: the
root is level zero, and the children of this node are at level one, and so on.

A leaf node is a node in a tree that has no child nodes (e.g., nodes J, F, C, G, K, L,
and I in Figure C-8). A subtree of a node consists of that node and all the descendants of
that node.

Balanced Trees

The most common use of trees in database management systems today is as a way to
organize the entries within a key index. As with linear data structures, a database pro-
grammer does not have to maintain the tree structure because this is done by the DBMS
software. However, a database designer may have the opportunity to control the struc-
ture of an index tree to tune the performance of index processing.

ORDER 1
CUSTOMER A

ORDER
data

NextOrder
same day

NextOrder
CUSTOMER A

ORDER 3
CUSTOMER A

ORDER
data

NextOrder
same day

NextOrder
CUSTOMER A

ORDER 2
CUSTOMER A

ORDER
data

NextOrder
day C

NextOrder
CUSTOMER A

ORDER X
CUSTOMER T

ORDER
data

NextOrder
day C

NextOrder
CUSTOMER T

ORDER Y
CUSTOMER M

ORDER
data

NextOrder
day C

NextOrder
CUSTOMER M

CUSTOMER A
CUSTOMER

data
CUSTOMER A

FirstOrder

FIGURE C-7 Example of multilist structures

560 Appendix C • Data Structures

The most common form of tree used to build key indexes is a balanced tree
(B-tree). In a B-tree, all leaves are the same distance from the root. For this reason,
B-trees have a predictable efficiency. B-trees support both random and sequential
retrieval of records. The most popular form of B-tree is the B+-tree. A B+-tree of degree
m has the following special balanced tree property:

• Every node has between m/2 and m children (where m is an integer greater than
or equal to 3 and usually odd), except the root (which does not obey this lower
bound).

It is this property that leads to the dynamic reorganization of nodes, which we illustrate
later in this section.

Virtual sequential access method (VSAM), a data access method supported by
many operating systems, is based on the B+-tree data structure. VSAM is a more mod-
ern version of indexed sequential access method (ISAM). There are two primary differ-
ences between ISAM and VSAM: (1) The locations of index entries under ISAM are
limited by the physical boundaries of a disk drive, whereas in VSAM index entries may
span the physical boundaries, and (2) an ISAM file needs to be occasionally rebuilt
when its structure becomes inefficient after many key additions and deletions, whereas
in VSAM the index is dynamically reorganized in incremental ways when segments of
the index become unwieldy.

An example of a B+-tree (of degree 3) appears in Figure C-9 for the Product file of
Pine Valley Furniture Company. In this diagram, each vertical arrow represents the path
followed for values that are equal to the number to the left of the arrow but less than the
number to the right of the arrow. For example, in the nonleaf node that contains the val-
ues 625 and 1000, the middle arrow leaving the bottom of this node is the path followed
for values equal to 625 but less than 1000. Horizontal arrows are used to connect the leaf
nodes so that sequential processing can occur without having to move up and down
through the levels of the tree.

Suppose you wanted to retrieve the data record for product number 1425. Notice
that the value in the root node is 1250. Because 1425 is greater than 1250, you follow the
arrow to the right of this node down to the next level. In this node you find the target
value (1425), so you follow the middle arrow down to the leaf node that contains the
value 1425. This node contains a pointer to the data record for product number 1425, so
this record can now be retrieved. You should trace a similar path to locate the record for
product number 1000. Because the data records are stored outside the index, multiple
B+-tree indexes can be maintained on the same data.

Level 1

Level 2

Level 0Root node

Leaf node
Subtree
for node D

A

IHG

LK

FE

DC

J Level 3

B

FIGURE C-8 Example of a
tree data structure

Appendix C • Data Structures 561

A B+-tree also easily supports the addition and deletion of records. Any necessary
changes to the B+-tree structure are dynamic and retain the properties of a B+-tree.
Consider the case of adding a record with key 1800 to the B+-tree in Figure C-9. The
result of this addition is shown in Figure C-10a. Because node 1 still has only three chil-
dren (the horizontal pointer does not count as a child pointer), the B+-tree in Figure C-10a
still satisfies all B+-tree properties. Now consider the effect of adding another record, this
time with key 1700, to the B+-tree in Figure C-10a. An initial result of this insertion
appears in Figure C-10b. In this case, node 1 violates the degree limitation, so this node
must be split into two nodes. Splitting node 1 will cause a new entry in node 2, which
then will make this node have four children, one too many. So, node 2 must also be split,
which will add a new entry to node 3. The final result is shown in Figure C-10c.

An interesting situation occurs when the root becomes too large (has more than
m children). In this case, the root is split, which adds an additional level to the tree.

Actual
data
records

Le
av

es
N

on
le

av
es

1250

1425 20000625 1000

0350

0350

0625

0625

1000

1000

1250 1300

1250 1300

1425 1600

1425 1600 2000

2000 Ø

FIGURE C-9 Example of a B+-tree of degree 3

FIGURE C-10 Inserting records in a B+-tree

1250

1425 20000625 1000

1

0350

0350

0625

0625

1000

1000

1250 1300

1250 1300

1425 18001600

1425 1600 1800 2000

2000 Ø

(a) Insertion of record 1800

(continued)

The deletion of a record causes an entry in a leaf to be eliminated. If this elimination
causes a leaf to have fewer than m/2 children, that leaf is then merged with an adjacent
leaf; if the merged leaf is too large (more than m children), the merged leaf is split,
resulting simply in a less skewed redistribution of keys across nodes. The result is that
a B+-tree is dynamically reorganized to keep the tree balanced (equal depth along any
path from the root) and with a limited number of entries per node (which controls the
business, or width, of the tree).

If you are interested in learning more about B-trees, see Comer (1979), a classic
article on B-tree properties and design.

562 Appendix C • Data Structures

Reference

Comer, D. 1979. “The Ubiquitous B-tree.” ACM Computing
Surveys 11,2 (June): 121–37.

1250

1425 20000625 1000

1

2

3

0350

0350

0625

0625

1000

1000

1250 1300

1250 1300

1425 18001600 1700

1425 1600 1700 1800 2000

2000 Ø

1250 1600

1700 20000625 1000 1425

0350

0350

0625

0625

1000

1000

1250 1300

1250 1300

1425

1425 1600

1600 18001700

1700 1800 2000

2000 Ø

(c) Final B+-tree after insertion of record 1700

(b) Initial attempt to insert record 1700

FIGURE C-10 (continued)

563

GLOSSARY OF ACRONYMS

ACID Atomic, consistent, isolated, and durable

ACM Association for Computing Machinery

AITP Association of Information Technology
Professionals

ANSI American National Standards Institute

API Application programming interface

ASCII American Standard Code for Information
Interchange

ASP Active Server Pages

ATM Automated teller machine

BCNF Boyce-Codd normal form

BOM Bill of materials

BPM Business performance management

B2B Business-to-business

B2C Business-to-consumer

CAD/CAM Computer-aided design/computer-aided
manufacturing

CASE Computer-aided software engineering

CDC Changed data capture

CDI Customer data integration

CD-ROM Compact disc–read-only memory

CEO Chief executive officer

CFO Chief financial officer

CGI Common Gateway Interface

CIF Corporate information factory

CIO Chief information officer

CLI Call-level interface

COM Component Object Model

COO Chief operating officer

CPU Central processor unit

CRM Customer relationship management

C/S Client/server

CSF Critical success factor

DA Data administrator (or data administration)

DBA Database administrator (or database
administration)

DBD Database description

DBMS Database management system

DB2 Data Base2 (an IBM Relational DBMS)

DCL Data control language

DDL Data definition language

DES Data Encryption Standard

DFD Data flow diagram

DKNF Domain-key normal form

DML Data manipulation language

DNS Domain Name System

DSS Decision support system

DTD Data type definitions

DWA Data warehouse administrator

DVD Digital versatile disc

EAI Enterprise application integration

EDI Electronic data interchange

EDW Enterprise data warehouse

EDR Enterprise data replication

EER Extended entity-relationship

EFT Electronic funds transfer

EII Enterprise information integration

EJB Enterprise JavaBeans

E-R Entity-relationship

ERD Entity-relationship diagram

ERP Enterprise resource planning

ETL Extract–transform–load

FDA Food and Drug Administration

FK Foreign key

FTC Federal Trade Commission

FTP File Transfer Protocol

GPA Grade point average

GUI Graphical user interface

HIPAA Health Insurance Portability and
Accountability Act

HQL Hibernate Query Language

HTML Hypertext Markup Language

HTTP Hypertext Transfer Protocol

IBM International Business Machines

I-CASE Integrated computer-aided software
engineering

ID Identifier

IDE Integrated development environment

IE Information engineering

INCITS International Committee for Information
Technology Standards

I/O Input/output

IP Internet Protocol

IRDS Information Resource Dictionary System

IRM Information resource management

IS Information system

ISAM Indexed sequential access method

ISO International Standards Organization

IT Information technology

ITAA Information Technology Association
of America

J2EE Java 2 Enterprise Edition

JDBC Java Database Connectivity

JDO Java Data Objects

564 Glossary of Acronyms

JPA Java Persistence API

JSP Java Server Pages

LAN Local area network

LDB Logical database

LDBR Logical database record

LDM Logical data model

LINQ Language Integrated Query

MB Megabytes (million bytes)

MDM Master data management

MIS Management information system

M:N Many-to-many

M:1 Many-to-one

MOLAP Multidimensional online analytical
processing

MMS Multi-messaging service

MOM Message-oriented middleware

MRN Medical record number

MRP Materials requirements planning

MS Microsoft

MVCH Mountain View Community Hospital

NIST National Institute of Standards and
Technology

ODBC Open database connectivity

OODBMS Object-oriented database management
system

ODL Object definition language

ODS Operational data store

OLAP Online analytical processing

OLTP Online transaction processing

OO Object-oriented

OODM Object-oriented data model

OQL Object Query Language

O/R Object/relational

ORB Object request broker

ORDBMS Object-relational database management
system

ORM Object-relational mapping

P3P Platform for Privacy Preferences

PC Personal computer

PDA Personal digital assistant

PIN Personal identification number

PK Primary key

PL/SQL Programming Language/SQL

PVFC Pine Valley Furniture Company

RAD Rapid application development

RAID Redundant array of inexpensive disks

RAM Random access memory

RDBMS Relational database management system

ROI Return on investment

ROLAP Relational online analytical processing

RPC Remote procedure call

SCD Slowly changing dimension

SDLC Systems development life cycle

SGML Standard Generalized Markup Language

SOA Service-oriented architecture

SOAP Simple Object Access Protocol

SOX Sarbanes-Oxley Act

SPL Structured Product Labeling

SQL Structured Query Language

SQL/CLI SQL/Call Level Interface

SQL/DS Structured Query Language/Data System
(an IBM relational DBMS)

SQLJ SQL for Java

SQL/PSM SQL/Persistent Stored Modules

SSL Secure Sockets Layer

TCP/IP Transmission Control Protocol/Internet
Protocol

TDWI The Data Warehousing Institute

TQM Total quality management

UDDI Universal Description, Discovery, and
Integration

UDF User-defined function

UDT User-defined data type

UML Unified Modeling Language

URI Universal resource identifier

URL Uniform resource locator

VLDB Very large database

W3C World Wide Web Consortium

WSDL Web Services Description Language

WYSIWYG What you see is what you get

WWW World Wide Web

XBRL Extensible Business Reporting Language

XHTML Extensible Hypertext Markup Language

XML Extensible Markup Language

XSL Extensible Style Language

XSLT XML Stylesheet Language Transformation

1:1 One-to-one

1:M One-to-many

1NF First normal form

2NF Second normal form

3GL Third-generation language

3NF Third normal form

4NF Fourth normal form

5NF Fifth normal form

GLOSSARY OF TERMS

Aborted transaction A transaction in progress that terminates
abnormally. (11)

Abstract class A class that has no direct instances but whose
descendants may have direct instances. (13)

Abstract operation An operation whose form or protocol is
defined but whose implementation is not defined. (w13)

Accessor method A method that provides other objects with
access to the state of an object. (w14)

After image A copy of a record (or page of memory) after it has
been modified. (11)

Aggregation A part-of relationship between a component
object and an aggregate object. (w13) The process of transform-
ing data from a detailed level to a summary level. (10)

Agile software development An approach to database and soft-
ware development that emphasizes “individuals and interactions
over processes and tools, working software over comprehensive
documentation, customer collaboration over contract negotiation,
and response to change over following a plan.” (1)

Alias An alternative name used for an attribute. (4)

Anomaly An error or inconsistency that may result when a
user attempts to update a table that contains redundant data.
The three types of anomalies are insertion, deletion, and modifi-
cation anomalies. (4)

Application partitioning The process of assigning portions of
application code to client or server partitions after it is written
to achieve better performance and interoperability (ability of a
component to function on different platforms). (8)

Application program interface (API) Sets of routines that an
application program uses to direct the performance of proce-
dures by the computer’s operating system. (8)

Association A named relationship between or among object
classes. (13)

Association class An association that has attributes or opera-
tions of its own or that participates in relationships with other
classes. (13)

Association role The end of an association, where it connects
to a class. (13)

Associative entity An entity type that associates the
instances of one or more entity types and contains attributes
that are peculiar to the relationship between those entity
instances. (2)

Asynchronous distributed database A form of distributed
database technology in which copies of replicated data are kept
at different nodes so that local servers can access data without
reaching out across the network. (12)

Attribute A property or characteristic of an entity or relation-
ship type that is of interest to the organization. (2)

Attribute inheritance A property by which subtype entities
inherit values of all attributes and instances of all relationships
of their supertype. (3)

Authorization rules Controls incorporated in a data manage-
ment systems that restrict access to data and also restrict the
actions that people may take when they access data. (11)

Backup facility A DBMS COPY utility that produces a
backup copy (or save) of an entire database or a subset of
a database. (11)

Backward recovery (rollback) The backout, or undo, of
unwanted changes to a database. Before images of the records
that have been changed are applied to the database, and the
database is returned to an earlier state. Rollback is used to
reverse the changes made by transactions that have been
aborted, or terminated abnormally. (11)

Base table A table in the relational data model containing the
inserted raw data. Base tables correspond to the relations that
are identified in the database’s conceptual schema. (6)

Before image A copy of a record (or page of memory) before it
has been modified. (11)

Behavior The way in which an object acts and reacts. (13)

Binary relationship A relationship between the instances of
two entity types. (2)

Boyce-Codd normal form (BCNF) A normal form of a relation
in which every determinant is a candidate key. (B)

Business rule A statement that defines or constrains some
aspect of the business. It is intended to assert business structure
or to control or influence the behavior of the business. (2)

Call-level application programming interface A mechanism
that provides an application program with access to an external
service, such as a database management system. (14)

Candidate key An attribute, or combination of attributes, that
uniquely identifies a row in a relation. (4)

Cardinality constraint A rule that specifies the number of
instances of one entity that can (or must) be associated with
each instance of another entity. (2)

Catalog A set of schemas that, when put together, constitute a
description of a database. (6)

Changed data capture (CDC) Technique that indicates
which data have changed since the last data integration
activity. (10)

Checkpoint facility A facility by which a DBMS periodically
refuses to accept any new transactions. The system is in a quiet
state, and the database and transaction logs are synchronized. (11)

Class An entity type that has a well-defined role in the applica-
tion domain about which the organization wishes to maintain
state, behavior, and identity. (13)

Class diagram A diagram that shows the static structure of an
object-oriented model: the object classes, their internal struc-
ture, and the relationships in which they participate. (13)

Class-scope attribute An attribute of a class that specifies a
value common to an entire class rather than a specific value for
an instance. (13)

565

Note: Number (letter) in parenthesis corresponds to the chapter (appendix) in which the term is found. Terms in Chapters 12 through 14 will best
be found in the full versions of the chapters on the book’s Web site.

566 Glossary of Terms

Class-scope operation An operation that applies to a class
rather than to an object instance. (w13)

Client/server system A networked computing model that dis-
tributes processes between clients and servers, which supply
the requested services. In a database system, the database gen-
erally resides on a server that processes the DBMS. The clients
may process the application systems or request services from
another server that holds the application programs. (8)

Commit protocol An algorithm to ensure that a transaction is
either successfully completed or aborted. (12)

Completeness constraint A type of constraint that addresses
whether an instance of a supertype must also be a member of at
least one subtype. (3)

Composite attribute An attribute that has meaningful compo-
nent parts (attributes). (2)

Composite identifier An identifier that consists of a composite
attribute. (2)

Composite key A primary key that consists of more than one
attribute. (4)

Composition A part-of relationship in which parts belong to
only one whole object and live and die with the whole object. (13)

Computer-aided software engineering (CASE) tools Software
tools that provide automated support for some portion of the
systems development process. (1)

Conceptual schema A detailed, technology-independent speci-
fication of the overall structure of organizational data. (1)

Concrete class A class that can have direct instances. (13)

Concurrency control The process of managing simultaneous
operations against a database so that data integrity is main-
tained and the operations do not interfere with each other in a
multiuser environment. (11)

Concurrency transparency A design goal for a distributed
database, with the property that although a distributed system
runs many transactions, it appears that a given transaction is
the only activity in the system. Thus, when several transactions
are processed concurrently, the results must be the same as if
each transaction were processed in serial order. (12)

Conformed dimension One or more dimension tables associ-
ated with two or more fact tables for which the dimension
tables have the same business meaning and primary key with
each fact table. (9)

Constraint A rule that cannot be violated by database users. (1)

Constructor operation An operation that creates a new
instance of a class. (w13)

Correlated subquery In SQL, a subquery in which processing
the inner query depends on data from the outer query. (7)

Data Stored representations of objects and events that have
meaning and importance in the user’s environment. (1)

Data administration A high-level function that is responsible
for the overall management of data resources in an organiza-
tion, including maintaining corporate-wide definitions and
standards. (11)

Data archiving The process of moving inactive data to another
storage location where it can be accessed when needed. (11)

Data control language (DCL) Commands used to control a
database, including those for administering privileges and com-
mitting (saving) data. (6)

Data definition language (DDL) Commands used to define a
database, including those for creating, altering, and dropping
tables and establishing constraints. (6)

Data dictionary A repository of information about a database
that documents data elements of a database. (11)

Data federation A technique for data integration that provides
a virtual view of integrated data without actually creating one
centralized database. (10)

Data governance High-level organizational groups and
processes that oversee data stewardship across the organization.
It usually guides data quality initiatives, data architecture, data
integration and master data management, data warehousing
and business intelligence, and other data-related matters. (10)

Data independence The separation of data descriptions from
the application programs that use the data. (1)

Data manipulation language (DML) Commands used to
maintain and query a database, including those for updating,
inserting, modifying, and querying data. (6)

Data mart A data warehouse that is limited in scope, whose
data are obtained by selecting and summarizing data from a
data warehouse or from separate extract, transform, and load
processes from source data systems. (9)

Data mining Knowledge discovery, using a sophisticated
blend of techniques from traditional statistics, artificial intelli-
gence, and computer graphics. (9)

Data model Graphical systems used to capture the nature and
relationships among data. (1)

Data scrubbing A process of using pattern recognition and
other artificial intelligence techniques to upgrade the quality of
raw data before transforming and moving the data to the data
warehouse. Also called data cleansing. (10)

Data steward A person assigned the responsibility of ensuring
that organizational applications properly support the organiza-
tion’s enterprise goals for data quality. (10)

Data transformation The component of data reconciliation that
converts data from the format of the source operational systems
to the format of the enterprise data warehouse. (10)

Data type A detailed coding scheme recognized by system soft-
ware, such as a DBMS, for representing organizational data. (5)

Data visualization The representation of data in graphical and
multimedia formats for human analysis. (9)

Data warehouse A subject-oriented, integrated, time-variant,
nonupdateable collection of data used in support of manage-
ment decision-making processes. (9) An integrated decision
support database whose content is derived from the various oper-
ational databases. (1)

Database An organized collection of logically related data. (1)

Database administration A technical function that is responsi-
ble for physical database design and for dealing with technical
issues, such as security enforcement, database performance,
and backup and recovery. (11)

Database application An application program (or set of
related programs) that is used to perform a series of database
activities (create, read, update, and delete) on behalf of database
users. (1)

Database change log A log that contains before and after
images of records that have been modified by transactions. (11)

Glossary of Terms 567

Database destruction The database itself is lost, destroyed, or
cannot be read. (11)

Database management system (DBMS) A software system
that is used to create, maintain, and provide controlled access to
user databases. (1)

Database recovery Mechanisms for restoring a database
quickly and accurately after loss or damage. (11)

Database security Protection of database data against acciden-
tal or intentional loss, destruction, or misuse. (11)

Database server A computer that is responsible for database
storage, access, and processing in a client/server environment.
Some people also use this term to describe a two-tier client/
server applications. (8)

Deadlock An impasse that results when two or more transac-
tions have locked a common resource, and each waits for the
other to unlock that resource. (11)

Deadlock prevention A method for resolving deadlocks in
which user programs must lock all records they require at the
beginning of a transaction (rather than one at a time). (11)

Deadlock resolution An approach to dealing with deadlocks
that allows deadlocks to occur but builds mechanisms into the
DBMS for detecting and breaking the deadlocks. (11)

Decentralized database A database that is stored on comput-
ers at multiple locations; these computers are not intercon-
nected by network and database software that make the data
appear in one logical database. (w12)

Declarative mapping schema A structure that defines the rela-
tionships between domain classes in the object-oriented model
and relations in the relational model. (14)

Degree The number of entity types that participate in a rela-
tionship. (2)

Denormalization The process of transforming normalized
relations into non-normalized physical record specifications. (5)

Dependent data mart A data mart filled exclusively from an
enterprise data warehouse and its reconciled data. (9)

Derived attribute An attribute whose values can be calculated
from related attribute values. (2)

Derived data Data that have been selected, formatted, and
aggregated for end-user decision support applications. (9)

Determinant The attribute on the left side of the arrow in a
functional dependency. (4)

Disjoint rule A rule that specifies that an instance of a super-
type may not simultaneously be a member of two (or more)
subtypes. (3)

Disjointness constraint A constraint that addresses whether
an instance of a supertype may simultaneously be a member of
two (or more) subtypes. (3)

Distributed database A single logical database that is spread
physically across computers in multiple locations that are con-
nected by a data communication link. (12)

Dynamic SQL Specific SQL code generated on the fly while an
application is processing. (7)

Dynamic view A virtual table that is created dynamically upon
request by a user. A dynamic view is not a temporary table.
Rather, its definition is stored in the system catalog, and the
contents of the view are materialized as a result of an SQL query
that uses the view. It differs from a materialized view, which

may be stored on a disk and refreshed at intervals or when
used, depending on the RDBMS. (6)

Embedded SQL Hard-coded SQL statements included in a
program written in another language, such as C or Java. (7)

Encapsulation The technique of hiding the internal implemen-
tation details of an object from its external view. (13)

Encryption The coding or scrambling of data so that humans
cannot read them. (11)

Enhanced entity-relationship (EER) model A model that has
resulted from extending the original E-R model with new mod-
eling constructs. (3)

Enterprise data modeling The first step in database develop-
ment, in which the scope and general contents of organizational
databases are specified. (1)

Enterprise data warehouse (EDW) A centralized, integrated data
warehouse that is the control point and single source of all data
made available to end users for decision support applications. (9)

Enterprise key A primary key whose value is unique across all
relations. (4)

Enterprise resource planning (ERP) A business management
system that integrates all functions of the enterprise, such as
manufacturing, sales, finance, marketing, inventory, account-
ing, and human resources. ERP systems are software applica-
tions that provide the data necessary for the enterprise to
examine and manage its activities. (1)

Entity A person, a place, an object, an event, or a concept in the
user environment about which the organization wishes to
maintain data. (1, 3)

Entity class A class that represents a real-world entity. (w14)

Entity cluster A set of one or more entity types and associated
relationships grouped into a single abstract entity type. (3)

Entity instance A single occurrence of an entity type. (2)

Entity integrity rule A rule that states that no primary key attrib-
ute (or component of a primary key attribute) may be null. (4)

Entity type A collection of entities that share common proper-
ties or characteristics. (2)

Entity-relationship diagram (E-R diagram, or ERD) A graphi-
cal representation of an entity-relationship model. (2)

Entity-relationship model (E-R model) A logical representa-
tion of the data for an organization or for a business area, using
entities for categories of data and relationships for associations
between entities. (2)

Equi-join A join in which the joining condition is based on
equality between values in the common columns. Common
columns appear (redundantly) in the result table. (7)

Exclusive lock (X lock, or write lock) A technique that pre-
vents another transaction from reading and therefore updating
a record until it is unlocked. (11)

Extensible Markup Language (XML) A text-based scripting
language used to describe data structures hierarchically, using
HTML-like tags. (8)

Extensible Stylesheet Language Transformation (XSLT) A
language used to transform complex XML documents and also
used to create HTML pages from XML documents. (8)

Extent A contiguous section of disk storage space. (5)

Fact An association between two or more terms. (2)

568 Glossary of Terms

Failure transparency A design goal for a distributed database,
which guarantees that either all the actions of each transaction
are committed or else none of them is committed. (12)

Fat client A client PC that is responsible for processing presen-
tation logic, extensive application and business rules logic, and
many DBMS functions. (8)

Fetching strategy A model for specifying when and how an
ORM framework retrieves persistent objects to the run-time
memory during a navigation process. (14)

Field The smallest unit of application data recognized by system
software. (5)

File organization A technique for physically arranging the
records of a file on secondary storage devices. (5)

First normal form (1NF) A relation that has a primary key and
in which there are no repeating groups. (4)

Foreign key An attribute in a relation that serves as the pri-
mary key of another relation in the same database. (4)

Forward recovery (rollforward) A technique that starts with an
earlier copy of a database. After images (the results of good
transactions) are applied to the database, and the database is
quickly moved forward to a later state. (11)

Fourth normal form (4NF) A normal form of a relation in
which the relation is in BCNF and contains no multivalued
dependencies. (B)

Function A stored subroutine that returns one value and has
only input parameters. (7)

Functional dependency A constraint between two attributes in
which the value of one attribute is determined by the value of
another attribute. (4)

Generalization The process of defining a more general entity
type from a set of more specialized entity types. (3)

Global transaction In a distributed database, a transaction that
requires reference to data at one or more nonlocal sites to satisfy
the request. (w12)

Grain The level of detail in a fact table, determined by the
intersection of all the components of the primary key, including
all foreign keys and any other primary key elements. (9)

Hash index table A file organization that uses hashing to map
a key into a location in an index, where there is a pointer to the
actual data record matching the hash key. (5)

Hashed file organization A storage system in which the address
for each record is determined using a hashing algorithm. (5)

Hashing algorithm A routine that converts a primary key
value into a relative record number or relative file address. (5)

Heartbeat query A query submitted by a DBA to test the cur-
rent performance of a database or to predict the response time
for queries that have promised response times. Also called a
canary query. (11)

Homonym An attribute that may have more than one
meaning. (4)

Horizontal partitioning Distribution of the rows of a logical
relation into several separate tables. (5)

Identifier An attribute (or combination of attributes) whose
value distinguishes instances of an entity type. (2)

Identifying owner The entity type on which the weak entity
type depends. (2)

Identifying relationship The relationship between a weak
entity type and its owner. (2)

Inconsistent read problem An unrepeatable read, one that
occurs when one user reads data that have been partially
updated by another user. (11)

Incremental extract A method of capturing only the changes
that have occurred in the source data since the last capture. (10)

Independent data mart A data mart filled with data extracted
from the operational environment, without the benefit of a data
warehouse. (9)

Index A table or other data structure used to determine in a file
the location of records that satisfy some condition. (5)

Indexed file organization The storage of records either
sequentially or nonsequentially with an index that allows soft-
ware to locate individual records. (5)

Information Data that have been processed in such a way as to
increase the knowledge of the person who uses the data. (1)

Information repository A component that stores metadata that
describe an organization’s data and data processing resources,
manages the total information processing environment, and
combines information about an organization’s business infor-
mation and its application portfolio. (11)

Information Resource Dictionary System (IRDS) A computer
software tool that is used to manage and control access to the
information repository. (11)

Informational system A system designed to support decision
making based on historical point-in-time and prediction data
for complex queries or data-mining applications. (9)

Java servlet A Java program that is stored on the server and
contains the business and database logic for a Java-based
application. (8)

Join A relational operation that causes two tables with a com-
mon domain to be combined into a single table or view. (7)

Join index An index on columns from two or more tables that
come from the same domain of values. (5)

Joining The process of combining data from various sources
into a single table or view. (10)

Journalizing facility An audit trail of transactions and data-
base changes. (11)

Local autonomy A design goal for a distributed database,
which says that a site can independently administer and
operate its database when connections to other nodes have
failed. (12)

Local transaction In a distributed database, a transaction that
requires reference only to data that are stored at the site where
the transaction originates. (w12)

Location transparency A design goal for a distributed data-
base, which says that a user (or user program) using data need
not know the location of the data. (12)

Locking A process in which any data that are retrieved by a
user for updating must be locked, or denied to other users, until
the update is completed or aborted. (11)

Locking level (lock granularity) The extent of a database
resource that is included with each lock. (11)

Logical data mart A data mart created by a relational view of a
data warehouse. (9)

Glossary of Terms 569

Logical schema The representation of a database for a particu-
lar data management technology. (1)

Master data management (MDM) Disciplines, technologies,
and methods used to ensure the currency, meaning, and quality
of reference data within and across various subject areas. (10)

Materialized view Copies or replicas of data, based on SQL
queries created in the same manner as dynamic views. However,
a materialized view exists as a table and thus care must be taken
to keep it synchronized with its associated base tables. (6)

Maximum cardinality The maximum number of instances of
one entity that may be associated with each instance of another
entity. (2)

Metadata Data that describe the properties or characteristics of
end-user data and the context of those data. (1)

Method The implementation of an operation. (w13)

Middleware Software that allows an application to interoper-
ate with other software without requiring the user to under-
stand and code the low-level operations necessary to achieve
interoperability. (8)

Minimum cardinality The minimum number of instances of
one entity that may be associated with each instance of another
entity. (2)

Multidimensional OLAP (MOLAP) OLAP tools that load data
into an intermediate structure, usually a three- or higher-
dimensional array. (9)

Multiple classification A situation in which an object is an
instance of more than one class. (w13)

Multiplicity A specification that indicates how many objects
participate in a given relationship. (13)

Multivalued attribute An attribute that may take on more than
one value for a given entity (or relationship) instance. (2)

Multivalued dependency The type of dependency that exists
when there are at least three attributes (e.g., A, B, and C) in a rela-
tion, with a well-defined set of B and C values for each A value,
but those B and C values are independent of each other. (B)

N+1 selects problem A performance problem caused by too
many SELECT statements generated by an ORM framework. (14)

Natural join A join that is the same as an equi-join except that
one of the duplicate columns is eliminated in the result table. (7)

Normal form A state of a relation that requires that certain
rules regarding relationships between attributes (or functional
dependencies) are satisfied. (4)

Normalization The process of decomposing relations with
anomalies to produce smaller, well-structured relations. (4)

Null A value that may be assigned to an attribute when no
other value applies or when the applicable value is unknown. (4)

Object An instance of a class that encapsulates data and
behavior. (13)

Object diagram A graph of objects that are compatible with a
given class diagram. (w13)

Object identity A property of an object that separates it from
other objects based on its existence. (w14)

Object-relational impedance mismatch The conceptual differ-
ences between the object-oriented approach to application
design and the relational model for database design and imple-
mentation. (14)

Object-relational mapping Definition of structural relation-
ships between object-oriented and relational representations of
data, typically to enable the use of a relational database to pro-
vide persistence for objects. (14)

Online analytical processing (OLAP) The use of a set of
graphical tools that provides users with multidimensional
views of their data and allows them to analyze the data using
simple windowing techniques. (9)

Open database connectivity (ODBC) An application program-
ming interface that provides a common language for applica-
tion programs to access and process SQL databases
independent of the particular DBMS that is accessed. (8)

Open source DBMS Free DBMS source code software that pro-
vides the core functionality of an SQL-compliant DBMS. (11)

Operation A function or a service that is provided by all the
instances of a class. (13)

Operational data store (ODS) An integrated, subject-oriented,
continuously updateable, current-valued (with recent history),
enterprise-wide, detailed database designed to serve opera-
tional users as they do decision support processing. (9)

Operational system A system that is used to run a business
in real-time, based on current data. Also called a system of
record. (9)

Optional attribute An attribute that may not have a value
for every entity (or relationship) instance with which it is
associated. (2)

Outer join A join in which rows that do not have matching val-
ues in common columns are nevertheless included in the result
table. (7)

Overlap rule A rule that specifies that an instance of a super-
type may simultaneously be a member of two (or more)
subtypes. (3)

Overriding The process of replacing a method inherited from a
superclass by a more specific implementation of that method in
a subclass. (w13)

Partial functional dependency A functional dependency in
which one or more nonkey attributes are functionally depend-
ent on part (but not all) of the primary key. (4)

Partial specialization rule A rule that specifies that an entity
instance of a supertype is allowed not to belong to any sub-
type. (3)

Periodic data Data that are never physically altered or deleted
once they have been added to the store. (9)

Persistence An object’s capability to maintain its state between
application execution sessions. (14)

Persistent Stored Modules (SQL/PSM) Extensions defined
in SQL:1999 that include the capability to create and drop
modules of code stored in the database schema across user
sessions. (7)

Physical file A named portion of secondary memory (such as
a hard disk) allocated for the purpose of storing physical
records. (5)

Physical schema Specifications for how data from a logical
schema are stored in a computer’s secondary memory by a
database management system. (1)

Pointer A field of data indicating a target address that can be
used to locate a related field or record of data. (5)

570 Glossary of Terms

Polymorphism The ability of an operation with the same name
to respond in different ways depending on the class context. (13)

Pooling of database connections The process of using a lim-
ited number of database connections that are shared by multi-
ple applications and users. (w14)

Primary key An attribute or a combination of attributes that
uniquely identifies each row in a relation. (4)

Procedure A collection of procedural and SQL statements that
are assigned a unique name within the schema and stored in the
database. (7)

Project A planned undertaking of related activities to reach an
objective that has a beginning and an end. (1)

Prototyping An iterative process of systems development in
which requirements are converted to a working system that is
continually revised through close work between analysts and
users. (1)

Query operation An operation that accesses the state of an
object but does not alter the state. (w13)

Real-time data warehouse An enterprise data warehouse that
accepts near-real-time feeds of transactional data from the sys-
tems of record, analyzes warehouse data, and in near-real-time
relays business rules to the data warehouse and systems of
record so that immediate action can be taken in response to
business events. (9)

Reconciled data Detailed, current data intended to be the sin-
gle, authoritative source for all decision support applications. (9)

Recovery manager A module of a DBMS that restores the data-
base to a correct condition when a failure occurs and then
resumes processing user questions. (11)

Recursive foreign key A foreign key in a relation that refer-
ences the primary key values of the same relation. (4)

Referential integrity constraint A rule that states that either
each foreign key value must match a primary key value in
another relation or the foreign key value must be null. (4)

Refresh mode An approach to filling a data warehouse that
involves bulk rewriting of the target data at periodic intervals. (10)

Relation A named two-dimensional table of data. (4)

Relational database A database that represents data as a col-
lection of tables in which all data relationships are represented
by common values in related tables. (1)

Relational DBMS (RDBMS) A database management system
that manages data as a collection of tables in which all data
relationships are represented by common values in related
tables. (6)

Relational OLAP (ROLAP) OLAP tools that view the database
as a traditional relational database in either a star schema or
other normalized or denormalized set of tables. (9)

Relationship instance An association between (or among)
entity instances where each relationship instance associates
exactly one entity instance from each participating entity
type. (2)

Relationship type A meaningful association between (or
among) entity types. (2)

Replication transparency A design goal for a distributed data-
base, which says that although a given data item may be repli-
cated at several nodes in a network, a developer or user may
treat the data item as if it were a single item at a single node.
Also called fragmentation transparency. (12)

Repository A centralized knowledge base of all data defini-
tions, data relationships, screen and report formats, and other
system components. (1)

Required attribute An attribute that must have a value for every
entity (or relationship) instance with which it is associated. (2)

Restore/rerun A technique that involves reprocessing the day’s
transactions (up to the point of failure) against the backup copy
of the database. (11)

Scalar aggregate A single value returned from an SQL query
that includes an aggregate function. (6)

Schema A structure that contains descriptions of objects cre-
ated by a user, such as base tables, views, and constraints, as
part of a database. (6)

Second normal form (2NF) A relation in first normal form in
which every nonkey attribute is fully functionally dependent
on the primary key. (4)

Secondary key One field or a combination of fields for which
more than one record may have the same combination of val-
ues. Also called a nonunique key. (5)

Selection The process of partitioning data according to prede-
fined criteria. (10)

Semijoin A joining operation used with distributed databases
in which only the joining attribute from one site is transmitted
to the other site, rather than all the selected attributes from
every qualified row. (12)

Separation of concerns The approach of dividing an applica-
tion or a system into feature or behavior sets that overlap with
each other as little as possible. (w14)

Sequential file organization The storage of records in a file in
sequence according to a primary key value. (5)

Serialization The writing of an object onto a storage medium
or a communication channel as a data stream. (w14)

Service-oriented architecture (SOA) A collection of services
that communicate with each other in some manner, usually by
passing data or coordinating a business activity. (8)

Shared lock (S lock, or read lock) A technique that allows
other transactions to read but not update a record or another
resource. (11)

Simple (or atomic) attribute An attribute that cannot be bro-
ken down into smaller components that are meaningful to the
organization. (2)

Simple Object Access Protocol (SOAP) An XML-based com-
munication protocol used for sending messages between appli-
cations via the Internet. (8)

Smart card A credit card-sized plastic card with an embedded
microprocessor chip that can store, process, and output elec-
tronic data in a secure manner. (11)

Snowflake schema An expanded version of a star schema in
which dimension tables are normalized into several related
tables. (9)

Specialization The process of defining one or more subtypes
of the supertype and forming supertype/subtype relation-
ships. (3)

Star schema A simple database design in which dimensional
data are separated from fact or event data. A dimensional
model is another name for a star schema. (9)

State An object’s properties (attributes and relationships) and
the values those properties have. (13)

Glossary of Terms 571

Static extract A method of capturing a snapshot of the required
source data at a point in time. (10)

Strong entity type An entity that exists independently of other
entity types. (2)

Subtype A subgrouping of the entities in an entity type that is
meaningful to the organization and that shares common attrib-
utes or relationships distinct from other subgroupings. (3)

Subtype discriminator An attribute of a supertype whose val-
ues determine the target subtype or subtypes. (3)

Supertype A generic entity type that has a relationship with
one or more subtypes. (3)

Supertype/subtype hierarchy A hierarchical arrangement of
supertypes and subtypes in which each subtype has only one
supertype. (3)

Surrogate primary key A serial number or other system-
assigned primary key for a relation. (4)

Synchronous distributed database A form of distributed
database technology in which all data across the network are
continuously kept up to date so that a user at any site can
access data anywhere on the network at any time and get the
same answer. (w12)

Synonyms Two (or more) attributes that have different names
but the same meaning. (4)

System catalog A system-created database that describes all
database objects, including data dictionary information, and
also includes user access information. (11)

Systems development life cycle (SDLC) The traditional
methodology used to develop, maintain, and replace informa-
tion systems. (1)

Tablespace A named logical storage unit in which data from
one or more database tables, views, or other database objects
may be stored. (5)

Term A word or phrase that has a specific meaning for the
business. (2)

Ternary relationship A simultaneous relationship among the
instances of three entity types. (2)

Thin client An application where the client (PC) accessing the
application primarily provides the user interfaces and some appli-
cation processing, usually with no or limited local data storage. (8)

Third normal form (3NF) A relation that is in second normal
form and has no transitive dependencies. (4)

Three-tier architecture A client/server configuration that
includes three layers: a client layer and two server layers.
Although the nature of the server layers differs, a common config-
uration contains an application server and a database server. (8)

Time stamp A time value that is associated with a data value,
often indicating when some event occurred that affected the
data value. (2)

Time-stamping In distributed databases, a concurrency control
mechanism that assigns a globally unique time stamp to each
transaction. Time-stamping is an alternative to the use of locks
in distributed databases. (w14)

Total specialization rule A rule that specifies that each entity
instance of a supertype must be a member of some subtype in
the relationship. (3)

Transaction A discrete unit of work that must be completely
processed or not processed at all within a computer system.
Entering a customer order is an example of a transaction. (11)

Transaction boundaries The logical beginning and end of a
transaction. (11)

Transaction log A record of the essential data for each transac-
tion that is processed against the database. (11)

Transaction manager In a distributed database, a software
module that maintains a log of all transactions and an appropri-
ate concurrency control scheme. (w12)

Transient data Data in which changes to existing records are
written over previous records, thus destroying the previous
data content. (9)

Transitive dependency A functional dependency between the
primary key and one or more nonkey attributes that are
dependent on the primary key via another nonkey attribute. (4)

Transparent persistence A persistence solution that hides the
underlying storage technology. (w14)

Trigger A named set of SQL statements that are considered
(triggered) when a data modification (i.e., INSERT, UPDATE,
DELETE) occurs or if certain data definitions are encountered. If
a condition stated within a trigger is met, then a prescribed
action is taken. (7)

Two-phase commit An algorithm for coordinating updates in a
distributed database. (12)

Two-phase locking protocol A procedure for acquiring the
necessary locks for a transaction in which all necessary locks are
acquired before any locks are released, resulting in a growing
phase when locks are acquired and a shrinking phase when
they are released. (11)

Unary relationship A relationship between instances of a sin-
gle entity type. (2)

Universal data model A generic or template data model that
can be reused as a starting point for a data modeling project. (3)

Universal Description, Discovery, and Integration (UDDI) A
technical specification for creating a distributed registry of Web
services and businesses that are open to communicating
through Web services. (8)

Update mode An approach to filling a data warehouse in
which only changes in the source data are written to the data
warehouse. (10)

Update operation An operation that alters the state of an
object. (w13)

User view A logical description of some portion of the data-
base that is required by a user to perform some task. (1)

User-defined data type (UDT) A data type that a user can
define by making it a subclass of a standard type or creating a
type that behaves as an object. UDTs may also have defined
functions and methods. (7)

User-defined procedures User exits (or interfaces) that allow
system designers to define their own security procedures in
addition to the authorization rules. (11)

Value type A class specification for objects that exist for storing
the value of a property of another object. (w14)

Vector aggregate Multiple values returned from an SQL query
that includes an aggregate function. (6)

Versioning An approach to concurrency control in which each
transaction is restricted to a view of the database as of the time
that transaction started, and when a transaction modifies a
record, the DBMS creates a new record version instead of over-
writing the old record. Hence, no form of locking is required. (11)

572 Glossary of Terms

Vertical partitioning Distribution of the columns of a logical
relation into several separate physical tables. (5)

Virtual table A table constructed automatically as needed by a
DBMS. Virtual tables are not maintained as real data. (6)

Weak entity type An entity type whose existence depends on
some other entity type. (2)

Web services A set of emerging standards that define protocols
for automatic communication between software programs over
the Web. Web services are XML based and usually run in the
background to establish transparent communication among
computers. (8)

Web Services Description Language (WSDL) An XML-based
grammar or language used to describe a Web service and spec-
ify a public interface for that service. (8)

Well-structured relation A relation that contains minimal
redundancy and allows users to insert, modify, and delete the
rows in a table without errors or inconsistencies. (4)

World Wide Web Consortium (W3C) An international con-
sortium of companies working to develop open standards
that foster the development of Web conventions so that Web
documents can be consistently displayed across all plat-
forms. (8)

XHTML A hybrid scripting language that extends HTML code
to make it XML compliant. (8)

XML Schema Definition (XSD) Language used for defining
XML databases that has been recommended by the W3C. (8)

XPath One of a set of XML technologies that supports XQuery
development. XPath expressions are used to locate data in XML
documents. (8)

XQuery An XML transformation language that allows applica-
tions to query both relational databases and XML data. (8)

A
Aborted transaction, 487–489, 490, 493
Abstract class, 522, w13-14, w13-14, w13-16
Abstract operation, 522, w13-17
Accessor method, w14-5
Addresses, w14-4
Address-sequential connection, 552–554, 553
After image, 485
Aggregation, 453, 523, 523, w13-19–21,

w13-19–22
Agile software development, 29
Agosta, L., 451
Alerts, 4
Alias, 189
ALTER TABLE command (SQL), 256–257
Ambler, S., w14-3, w14-17
AND (SQL), 268
Anderson, D., 476, 478
Anderson-Lehman, R., 3
AND operator (SQL), 328
Anomaly, 164

Boyce-Codd Normal Form, 545
deletion, 164–165, 185
first normal form (1NF), 181, 184–185
insertion, 164, 184
modification, 165
update, 185

ANSI three-schema architecture, 30, 30–31
Apache Web Server, 347
Apollo moon-landing project, 23
Application partitioning, 338
Application Program Interface (API), 340,

343, 353
Application programs, 17

logic components, 337
Application server, 347
Application tuning, 502–503
Aranow, E. B., 66
Architecture(s). See Client/server, Data

warehouse, Database server,
Information systems, Internet, Three-
layer, Three-schema, and Three-tier

Armstrong, R., 385, 386
Aronson, J., 419
Arvin, T., 244
ASP.NET application, 353–355, 357
Association, 519, 521, w13-7, w13-13
Association class, 520, 520, w13-10–12,

w13-11–12
Association role, 519, w13-7
Associative entity, 79–81, 80, 166

denormalization, 215
mapping EER model to relations, 171–173,

172–173
ternary relationship, 84

Asynchronous distributed database, w12-5
Atomic attribute, 73
Attribute inheritance, 117
Attribute(s), 72

coding techniques, 212–214
composite, 166–167
composite, 73, 75, 75
derived, 74, 74
domain definitions, 162
identifier, 74–75
inheritance, 117
linking, 85
multivalued, 74, 74

mapping, 167
removing, 158–159, 159

INDEX

multivalued, 74
naming and defining, 76–77
optional, 72
on relationships, 79
representing entities, 37, 39, 84–86
required vs. optional, 72, 72–73
sample (Pine Valley Furniture), 37, 39
simple vs. composite, 73, 75
single valued vs. multivalued, 73–74
stored vs. derived, 74
when to represent data as, 84–86

Audit trail, 486
Authentication services, 365
Authorization rules, 479–480

matrix, 479
passwords, 481–482
strong authentication, 482
tables, 480

B
Babad, Y. M., 214
Backup and recovery, 15, 484–492

aborted transactions, 490
database destruction, 491
disaster recovery, 491–492
facilities, 484–486
incorrect data, 490–491
procedures, 486–490
system failure, 491

Backup facility, 484–485
Backward recovery (rollback), 488–490, 489
Bank of America, 382
Basel Convention, 23
Base table, 278
Batra, D., 517, w13-4
Bauer, C., w14-3, w14-16, w14-17, w14-21
Before image, 485
Behavior, 517, w13-4
Bell, D., w12-2–4
Berners-Lee, Tim, 348
Bernstein, P. A., 499
BETWEEN operator (SQL), 271
Bieniek, D., 218
BIGINT data type (SQL), 318
BINARY LARGE OBJECT (BLOB) data type,

249
Binary relationship, 82–83, 169–171, 519

examples, w13-8–9
many-to-many, 83, 170
mapping, 169–171
one-to-many, 169
one-to-one, 170–171, 171

BIT data type (SQL), 318
BIT VARYING data type (SQL), 318
Blaha, M., 517, 519, 522, w13-4, w13-6, w13-14,

w13-16, w13-17, w13-21
BLOB data type, 212
Booch, G., 517, 522, w13-3, w13-4, w13-7,

w13-14, w13-17
BOOLEAN data type, 249
Boolean operators, 268–271

NOT (SQL), 268
OR (SQL), 268–270
queries, Venn diagrams of, 269–270
AND (SQL), 268–270

Bostrom, R. B., 107
Boyce-Codd normal form (BCNF), 179,

545–547, 546
Brauer, B., 435
Brobst, S., 218, 220

Bruce, T. A., 75
Building blocks, 552, 554
Buretta, M., 514, w12-7, w12-13
Business analysts, 31
Business performance management (BPM),

417–418
Business rule(s), 58, 63, 65

data quality audit, 439–440
function-to-data entity matrix, 24
gathering, 64
good, 64, 65
modeling, 62–65
object-oriented data modeling, w13-22,

w13-22–23
paradigm, 63–64
scope of, 64

Business-to-business (B2B) relationships, 20
Business-to-customer (B2C) relationships, 20

C
Caching, 346
Call-level application program interface,

527, w14-6, w14-8
Candidate key, 180–182, 181, 189
Cardinality constraint(s), 86–87, 87–89

examples of, 87–89
maximum, 87
minimum, 87
in ternary relationship, 88–89

Carlson, D., 435
CASE statement (SQL), 307, 307–308, 320
Catalog, 247
Catterall, R., 230
CEILING function (SQL), 317
Celko, J., 496, 497
Central Processing Unit (CPU), 502
Chain structures, 558–559
Champlin, B., 31
Changed data capture (CDC), 444
CHARACTER (CHAR) data type, 212, 249
CHARACTER VARYING (VARCHAR or

VARCHAR2) data type, 249
CHECK clause (SQL), 253–254

WITH CHECK, 280
Checkpoint facility, 485–486
Chen, P. P.-S., 58
Chisholm, M., 405
Chouinard, P., 176
Christerson, M., w13-2, w13-3
Class, 517, w13-4

mapping, w14-17
Class diagram, 518, 518, w13-5, w13-24
Class-scope attribute, 522, 522, w13-16, w13-16
Class-scope operation, w13-7
Cleansing, 445, 448–450
Client/server system, 336

architecture, 19–20, 336–339
partitioning, 337–339

history, 23
two-tier applications, 18, 18–19, 339–344

Java example, 343–344
VB.NET example, 341–343

CLOB data type, 212
Clustering files, 227–228
Coad, P., 517, w13-3
Codd, E. F., 21, 23, 156, 161, 245
Code lookup table example, 213
Coleman, D., 31
Column databases, 410–411
COMMIT command (SQL), 313–314, 326

573

Page references in bold signify where the term is defined, those in italics represent the use of the term in figures and tables, and those with a w refer
to pages in chapters that appear on the book's Web site.

574 Index

Commit protocol, 514, w12-17–18
Committee of Sponsoring Organizations

(COSO), 209
Comparison operators (SQL), 267, 267
Completeness constraint, 121, 121

partial specialization rule, 122
total specialization rule, 121

Compliance regulations, 90
Composite attribute, 73, 73, 75

mapping EER model, 166–167
Composite key, 157
Composition, 523, w13-20, w13-20
Computer-aided software engineering

(CASE) tools, 16
Conceptual data modeling, 25, 26–27, 55–56, 58
Conceptual schema, 30
Concrete class, 522, w13-14
Concurrency control, 492

locking, 493–496
lost updates, 492
serializability, 492–493
versioning, 496–497

Concurrency transparency, 514, w12-18–19
Conditional expressions, 307–308
Conformed dimension, 401, 401
Constraint, 14, 521, w13-14

completeness, 121, 121–122
disjointness, 122
disjoint rule, 122
overlap rule, 122–125, 123, w13-16
referential integrity, 162–163, 163

Constructor operation, w13-6
Continental Airlines, 2–3, 381–382
Control Objectives for Information and

Related Technology (COBIT), 209
Corporate information factory (CIF), 386
Correlated subquery, 303–304
CREATE TABLE LIKE options (SQL), 319
CREATE TABLE statement, 253
CUBE function (SQL), 317
Cupoli, P., 31

D
Darwen, H., 246
Dashboards, 417–418, 418
Data, 5

converting to information, 6
in file processing systems, 9
heterogeneous, 379
information versus, 6–7
metadata, 7
slicing cube, 414
summarized, 6
visualization with small multiples, 417

Data administration, 463, 465
functions, 467
trends, 466–468

Data administrator, 31, 431
Data archiving, 501
Database, 5
Database administration, 465

functions, 467
traditional, 465–466
trends, 466, 468

Database administrator, 432, 467
Database analysts, 31
Database application, 9, 21
Database architects, 31
Database change log, 485
Database connections, three-tier applications,

359
Database destruction, 491
Database management system (DBMS), 11–12

advantages, 12, 12–15
applications, 17–21

enterprise, 20–21
multiple client/server databases, 19–20

personal databases, 18
two-tier client/server databases, 18–19

backup and recovery
facilities, 484–486
procedures, 486–490

components, 16, 16–17
costs and risks, 15, 15–16
development process, 24–31, 25, 28

administration, 42
data model, 33–35
design stage, 38–41
implementation, 41–42
managing people, 31
Pine Valley Furniture example, 24,

31–42
project planning, 36–37
prototyping, 28–29
requirements analysis, 37–38
systems development life cycle (SDLC),

25–28
three-schema architecture, 29–31

distributed, 514, w12-13–15
history, 21–24, 22
log entry, 391
open source movement, 469–471
performance tuning, 500–503

application tuning, 502–503
CPU usage, 502
input/output (I/O) contention, 501–502
installation, 500–501
memory and storage space usage, 501

terminology, 222
Database recovery, 484
Database security, 471
Database server, 339, 346
Data Base Task Group, 23
Data capture processes, 441
Data control language (DCL), 248, 251
Data/database administrators, 17, 431–432
Data definition language (DDL), 248, 251,

252–255, w14-15
Data dictionary, 314–316, 498
Data-direct placement, 554
Data distribution strategy, w12-12–13
Data federation, 464
Data governance, 434–435
Data independence, 13, 23
Data-indirect placement, 554
Data integration, 443–452

approaches to, 444–445
comparison of, 445
data federation, 444
data propagation, 444–445

for data warehousing, reconciled data
layer, 389

master data management, 442–443
Data integrity, 156

with replication, w12-8
updates, 256

Data manipulation, 156
Data manipulation language (DML), 248, 251
Data mart, 383

data warehouse versus, 388
dependent, 384–386, 385
independent, 382–384, 383, 383
logical, 386–389

Data mining, 418
applications, 418–419, 419
goals of, 418
techniques, 418–419, 419

Data model, 10
enterprise, 10, 11, 11
example (Pine Valley Furniture), 33–36,

41, 96
packaged, 114, 133–142
relational, 23, 156–160
universal, 56, 134–135, 138, 139, 141

Data modelers, 31
Data propagation, 444–445
Data quality, 433–442

characteristics of, 436–438
data integration, 445–452
data reconciliation, 445–452
data transformation, 452–455
deterioration, reasons for, 438
improvements in, 438–441, 439
managing, 435–442

importance of, 434
Data reconciliation, 445–452

steps, 447
tools to support, 449–450

Data replication, w12-6–9
Data scrubbing, 450
Data security, managing, 471–484

authentication schemes, 481–482
passwords, 481–482
strong authentication, 482

authorization rules, 479–480
challenges of, 15
client/server security

establishing, 473
three-tier environments, 473–476

concurrent access, controlling, 492–497
encryption, 480–481
enforcement of, 21
integrity control, 477–478
software data security features, 476–482
threats, 471–473, 472
user-defined procedures, 480
views, 476–477

Data steward, 435, 440
Data storage location, 335–336
Data structures, 156, 551–562

basic location methods, 553
building blocks, 552, 554
chain structure hazards, 558–559
linear, 554–558

multilists, 558, 559
queues, 555–556, 556
sorted lists, 556–557, 556–558
stacks, 555

outline of record insertion code, 558
pointers, 551, 552, 555
trees, balanced, 559–562, 560–562

Data transformation, 452–455
functions, 452–455

complex, 452
field-level, 453–455
record-level, 452–453

illustrated, 454–455
Data type, 212

commonly used, 212
SQL, 249, 249, 318

Data visualization, 415–417
Data volume and usage analysis, 210–211
Data warehouse administrator (DWA), 468–469
Data warehouse/warehousing, 20, 21, 23,

375–419, 377
administrator, 468–469
architectures, 382–390

dependent data mart, 384–386, 385
independent data mart, 382–384
logical data mart, 386–389
real-time data warehouse, 387–389
three-layer, 389–390

characteristics of data in, 390–394
other data warehouse changes, 393–394
status vs. event, 390–391
transient vs. periodic, 391–394

column databases, 410–411
concepts of, basic, 377–382
Continental Airlines data warehousing

project, 2–3, 381–382
conversion costs, 15

Index 575

data mart versus, 388
data reconciliation, 445–452
definition of data warehouse, key terms in,

377–378
derived data layer, 394–395 ((see also Star

schema))
characteristics of, 394–395

enterprise, 390
history of, 378
integration, 445–452
metadata management, 390
need for, 378–381

company-wide view, 378–380
operational and informational systems

separate, 380–381
success in data warehousing, 381–382

three-layer data architecture, 389
user interface, 411–419

business performance management, 417
dashboards, 417–418
data-mining tools, 418–419
data visualization, 415–417
metadata, role of, 412
OLAP tools, 414–415
SQL OLAP querying, 412–414

vs. data mart, 387
The Data Warehousing Institute (TDWI), 14
Date, C. J., 161, 246, 513, w12-4, w12-18–20
Date and time

modeling in data warehouses and data
marts, 400, 400–401

SQL values, 244
DATE data type, 212
DBMS. See Database management system

(DBMS)
Deadlock, 495, 495–496
Deadlock prevention, 495–496
Deadlock resolution, 496
Decentralized database, w12-2
Decision support applications, 14–15
Declarative mapping schema, 527, w14-7
Default value, 213
Defining

entity types, 70–72
relationships, 93–94

Definitions, data, 66–68
Degree, 81, 82
DELETE command (SQL), 259, 261, 280
Deletion anomaly, 164–165, 185
DeLoach, A., 312
Denormalization, 214–215, 216–217
DENSE_RANK function (SQL), 317
Departmental/divisional databases, 14
Departments, 14
Dependent data mart, 384–386, 385, 385

operational data store architecture, 386
Derived attribute, 74, 521, w13-13
Derived data, 389

characteristics, 394–395
Derived tables, 304–305
Descollonges, M., 495
Designer (Oracle)

model, 544
notation, 536–537, 542

Determinant, 181, 187
Devlin, B., 378, 449, 454
Dimension table, 385–386, 394

hierarchical relationships, 405
normalizing, 403–406
sample, 407
segmentation, 408
slowly changing dimension (SCD)

attributes, 406–408
ten essential modeling rules, 410
ten essential rules, 410

Disaster recovery, 491–492
Discount percentages, w14-15

Disjointness constraint, 122, 122, 123,
w15.17

Disjoint rule, 122
Disk mirroring, 486
DISTINCT values (SQL), 271–273, 311
Distributed database(s), 512–515, w12-3–4

distributed DBMS, 514, w12-13–15
commit protocol, w12-17–18
concurrency transparency, w12-18–19
distributed DBMS products, w12-23–24
evolution of, w12-21–23

distributed request, w12-23
distributed unit of work, w12-22–23
remote unit of work, w12-22

failure transparency, w12-17
location transparency, w12-15–16
replication transparency, w12-16–17

distributed DBMS products, w12-23–24
environments

distributed, w12-21, w12-22–23
remote, w12-22

objectives and trade-offs, 513, w12-4–5
options for, 513–515, w12-6–9, w12-13–14,

w12-23
combinations of, w12-11–12
data replication, w12-6–9

database integrity with replication,
w12-8

near real-time replication, w12-8
pull replication, w12-8
snapshot replication, w12-7–8
when to use replication, w12-8–9

horizontal partitioning, w12-9–10
selecting, w12-12–13
vertical partitioning, w12-10–11

query optimization, 514–515, w12-19–21,
w12-20

Distributed processing system, w12-10
Distributed unit of work, w12-22–23
Divisions, 14
Document Structure Description (DSD), 360
Document type declarations (DTDs),

348, 360
Domain constraint, 160
Domain-key normal form, 549
Domain model, object-oriented, w14-11
Dowgiallo, E., 469
Downtime, 503–504, 503–504
Drill-down, 415, 416
Dutka, A. F., 180, 181
Dyché, J., 414, 419, 440, 442
Dynamic SQL, 326–328
Dynamic view, 278, 278

E
Eager loading, w14-20
Eckerson, W., 446, 447, 448
E-commerce

application partitioning, 338
Internet’s affect on, 338
n-tier architectures, 338

Eddy, F., 517, 519, 522, w13-14, w13-16, w13-17,
w13-21

Edelstein, H., w12-7, w12-8
Eisenberg, A., 244, 318
Electronic discovery and evidence, 24
Elmasri, R., 78, 121, 125, 190, 514, 515, 549,

w12-13, w12-20
Embedded SQL, 326
Encapsulation, 518, w13-6
Encryption, 480–481, 481
End-user computing, 17–21
End users, 17
English, L., 441, 448
Enhanced entity-relationship (EER) model,

113. See also Business rule(s), Data
modeling, tools and notations

diagrams, transforming into relations, 165–178
associative entity mapping, 171–173
binary relationship mapping, 169–171
regular entity mapping, 166–167
supertype/subtype mapping, 176–178
ternary (and n-ary) mapping, 175–176
unary relationship mapping, 173–175
weak entity mapping, 167–169

entity cluster, 130–133, 131
modeling example (Pine Valley Furniture),

95–97, 127–130, 128–129
packaged data models, 133–142
relational transformations, 178
supertypes and subtypes

constraints in, specifying, 158–165
representing, 114–121
transforming into relations, 165–178

Step 1: map regular entities, 166–167
Step 2: map weak entities, 167–169
Step 3: map binary relationships, 169–171
Step 4: map associative entities, 171–173
Step 5: map unary relationships, 173–175
Step 6: map ternary (and n-ary)

relationships, 175–176
Step 7: map supertype/subtype

relationships, 176–178
summary of, 178

Enterprise databases, 20–21
Enterprise data model, 10, 11, 11–12

role of, in three-layer data architecture, 390
Enterprise data modeling, 24
Enterprise data warehouse (EDW), 385
Enterprise key, 191, 192–193
Enterprise resource planning (ERP), 20, 21

operational data store, 386
Entity class, w14-16
Entity cluster, 130–133, 131–133
Entity/entities, 10, 68

associative, 79–81, 80
inappropriate, 69
multivalued and derived attributes, 74
notations

Designer, 542
ERwin, 539
PowerDesigner, 542
Visio, 539

required and optional attributes, 72
weak, 70
when to represent data as, 84–86

Entity instance, 68–69, 78, 87
Entity integrity rule, 161
Entity-relationship diagram (E-R diagram),

58, 59–61
notations used in, 61–62, 62
sample of, 59–61, 60

Entity-relationship model (E-R model), 59.
See also Entity/entities

case example of (Pine Valley Furniture
Company), 95–100

conventions, 535–542
ERwin, 539–541
Oracle Designer, 542
Sybase PowerDesigner, 541–542
Visio, 535, 539

model notation, 61–62
sample diagram, 59–61
tool interfaces and E-R diagrams, 542–544

Entity type(s), 68, 68
associative, 79–81
attributes represented by, 84–86
mapping, 166–168
multiple relationships, 92–93
naming and defining, 70–72
relationships between, 10
strong vs. weak, 69–70
vs. instance, 68
vs. system input, output, or user, 69

576 Index

Equi-join, 291–292
ERwin Data Modeler (CA), 539–541, 540

cardinality/optionality symbols, 541
modeling tool notations, 536–537

Evans, M., 58, 84
Event data, 390–391
Exclusive lock (X lock, or write lock), 495
Expressions, 263–264
eXtensible Business Reporting Language

(XBRL), 361
Extensible Hypertext Markup Language

(XHTML). See XHTML
Extensible Markup Language (XML). See XML
Extensible Stylesheet Language

Transformation. See XSLT
Extent, 221
External schema, 30
Extract-Transform-Load (ETL) process,

444–452
cleanse, 448–450
data after, characteristics of, 446
extract, 447–448
load and index, 450–452
mapping and metadata management, 447
process of, 446–452

Extranets, 20

F
Fact, 66
Factless fact table, 402, 402–403
Fact table, 395–396, 399–400

factless, 402–403
grain, 398–399
multiple, 401–402
size, 399–400

Failure transparency, 514, w12-17
Fat client, 338
FBI, 3
Fernandez, E. B., 479
Fetching strategy, 532, w14-20
Field, 211. See also attributes

choosing data type, 212–214
coding and compression, 212–214
designing, 211–214
integrity controls, 213–214
missing data, 214

Fifth normal form (5NF), 179, 549
File, 8–10
File organization, 221–227

comparative features, 223–224, 227
hashed, 225–227
indexed, 222–225
sequential, 222

File processing systems, 8
case example of (Pine Valley Furniture

Company), 8, 8
disadvantages of, 9, 9–10

development times, lengthy, 9
duplication of data, 9
program-data dependence, 9
program maintenance, excessive, 9–10

history, 21
File server, 337
Finkelstein, R., 217
Firewalls, 346
First normal form (1NF), 179, 183. See also

Normalization
anomaly, 184–185

Fleming, C. C., 156
FLOOR function (SQL), 317
FLWOR expression, 363–364
Foreign key, 158

recursive, 173
FOR statement (SQL), 320
Fortune magazine Most Admired Global

Companies, 3
Forward recovery (rollforward), 489, 489–490

Fosdick, H., 469
Fourth normal form (4NF), 179, 547–549
Fowler, M., 29, w13-6, w13-7, w13-18, w13-20,

w13-22
Fragmentation transparency, 514, w12-16
Froemming, G., w12-8–9
FROM clause (SQL), 261–263, 262, 266, 277,

304–305
Fry, J. P., 58
Function (in SQL), 264–266, 323

AVG, 304, 318
BOTTOM, 413
CEILING, 317
CUBE, 317
DENSE_RANK, 317, 318
FIRST, 413
FLOOR, 317
LAST, 413
OLAP, 413
OVER, 317, 413
PARTITION BY, 413
RANK, 317, 318
ROLLUP, 317
SAMPLE, 317
SQRT, 317
SUM, 265, 266, 275, 304, 318
TOP, 413
WINDOW, 317

Functional dependency, 179–180, 181, 184

G
Gant, S., 218, 220
Gehtland, J., 527, w14-7
Generalization, 118–119, 119, 521, w13-12–17,

w13-14, w13-20, w13-25
George, J., 53, 58, 130, 441, 517, w13-4
Global transaction, w12-15
Gorman, M. M., 244
Gottesdiener, E., 63, 65
Government regulations, 23–24

master data management, 442
physical database design, 209–210
Sarbanes-Oxley (SOX), 482–484

Grain, 398–399
Gramm-Leach-Bliley, 463
Gray, J., 23
Grimes, S., 23
Grimson, J., w12-2–4
GROUP BY clause (SQL), 275–276, 311, 317

HAVING, 276–277
GUIDE Business Rules Project, 63, 66
Gulutzan, P., 308, 323, 324

H
Hackathorn, R., 377–378, 388
Hall, M., 470
Hanson, H. H., 180, 181
Hardware failures, 504
Hashed file organization, 224, 225–227
Hash index table, 226
Hashing algorithm, 225
Hash partitioning, 219, 220
HAVING clause (SQL), 276–277, 298, 311
Hay, D. C., 58, 140, 441
Hays, C., 376
Health Insurance Portability and

Accountability Act (HIPAA), 23, 51,
89, 459, 463, 476

Heartbeat query, 502–503
Henschen, D., 361
Heterogeneous distributed database, w12-2
Hibernate, w14-14
Hierarchical database model, 22
Hierarchies, 404–406

fixed products, 404
representing within dimension, 405, 407

Hoberman, S., 134, 169, 218

Hoffer, J., 3, 25, 31, 32, 53, 58, 107, 130, 214, 441,
517, 536–537, w13-4

Holmes, J., 312
Homogeneous distributed database, w12-2–4
Homonym, 189
Horizontal partitioning, 218, w12-9, w12-9–10
Howarth, L., 31
HQL, w14-21–24
Human error, 504
Hurwitz, J., 340
Hypertext Markup Language (HTML),

348–353, 360

I
IBATIS, w14-7, w14-9
IBM

data warehouse architecture, 445
product distribution capabilities, w12-23
relational data model, 156
SQL, 245, 246, 324
stored procedures, 324

Identifier, 74–75, 172–173
assigned, 172–173
natural, 172
not assigned, 171–172

Identifying owner, 70
Identifying relationship, 70
Identity registry, 442–443
IF statement (SQL), 320
IIS Web Server, 347
Imhoff, C., 386, 442
Inconsistent read problem, 492
Incremental extract, 448
Independent data mart, 382–384, 383, 383
Index, 222–225

choosing, 230–231
compared to other file organizations,

223–224, 227
creating, 229–231, 260–261
ETL, 450–452
hash table, 226–227
join, 224–225, 225–226
query processing, 312
secondary key, 222
secondary (nonunique) key index, 229
sorting, 313
unique key, 229
unique primary (UPI), 229

Indexed file organization, 222–225
Information, 6–7
Informational processing, 376–377
Informational system, 381, 381
Information repository, 498
Information Resource Dictionary System

(IRDS), 499
Information Systems Architecture (ISA), 35
Information systems planning, 28–31, 36–37
Inheritance, 517, 521, 521, w13-14, w13-17–19

mapping, w14-18
multiple, w13-19
overriding, w13-18

Inmon, W.H. (B.), 215, 377–378, 385, 386, 398,
441, 468

IN operator (SQL), 273–274
INPUT command (SQL), 258
Input/output (I/O) contention, 501–502
INSERT command (SQL), 257–260, 319
Insertion anomaly, 164, 184
Instance

entity, 68–70, 72, 77–78, 87, 97
relationship, 74, 78–79, 87, 94

INTEGER (INT) data type, 212, 249
Integration hub, 443
Integrity constraint, 160–165
Integrity controls, SQL, 255–256, 313–314

as security feature, 477–478
Internal schema, 30–31

Index 577

Internet
application site, 346–347
ASP.NET example, 353, 355, 357
data security, 474
e-commerce, affect on, 338
JSP application, 349–353
PDAs connecting to, 18
PHP script, 354–355
server-side extensions, 347
Web-enabled databases, 13, 20, 346
Web page creation language, 348

Intranet, 20, 346
Invoice, sample, 182–183
Iowa Department of Revenue, 382
ISO/IEC, 65, 66
IT change management, 483
ITERATE statement (SQL), 320
IT Infrastructure Library (ITIL), 209, 504
IT operations, 484

J
Jacobson, I., w13-2, w13-3, w13-7
Java, 340

annotations, w14-7
application connection to database,

343–344
browser display, 351–352
class, w14-16
database access, 343
design model implementation, 529–530,

w14-13
mapping, w14-14
SQL transaction snippet, 359
stored procedure, 356–357, 358

Java Database Connectivity (JDBC), 343, 527,
w14-6–7

Java Persistence API (JPA), w14-7
JavaScript, 347, 348
Java Server Pages (JSP) Web application,

349–353, 350–352
Java servlet, 353
Java Transaction API (JTA), w14-20
Johnson, T., 92
Johnston, T., 191
Join, 290, 293, 299

equi-join, 291–292
natural join, 292–293
outer join, 293–295
sample with four tables, 295–297, 296–297
self-join, 297–298
semijoin, 515, w12-20–21
UNION JOIN, 295, 307

Join index, 224–225, 225–226
Joining, 453
Jonsson, P., w13-2, w13-3
Jordan, A., 14
Journalizing facility, 485

K
Kellner, Larry, 3
Kimball, R., 385, 395, 398, 399, 405, 406–407,

410, 447
King, D., 419
King, G., w14-3, w14-16, w14-17, w14-21
Klimchenko, V., 436
Koop, P., w12-6
Krudop, M. E., 446
Kulkarni, K., 244, 318

L
Lai, E., 246
Langer, A., 469
Larman, C., w13-2
Larson, J., 190
Laurent, W., 435
Lazy loading, 532
LEAVE statement (SQL), 320

Lefkovitz, H. C., 499
Legacy system, 4, 15
Legislative requirements, 90
Leon, M., 434
Levy, E., 442
Linear data structure, 554–558

multilists, 558, 559
queues, 555–556, 556
sorted lists, 556–557, 556–558
stacks, 555
updates, handling, 554–555

Link objects, w13-11
Lirov, Y., 469
List partitioning, 219
Lists

multilists, 558, 559
sorted, 556–557, 556–558
SQL with IN and NOT IN, 273–274

Local autonomy, 513, w12-4
Local transaction, w12-15
Location transparency, 513, w12-4
Locking, 493

deadlock, 495–496
types, 494, 494–495

Locking level (lock granularity), 493–494
Logical database design, 155–192. see also

Enhanced entity-relationship (EER)
model; Normalization

integrity constraints, 160–165
domain, 160
entity integrity, 160–161
referential integrity, 162–163
relational tables, creating, 163–164
well-structured relations, 164–165

merging relations, 188–190
relational data model, 156–160
relational keys, defining, 190–192
SDLC, 25–28

Logical data mart, 386–389
Logical key pointer, 551, 552
Logical schema, 30–31
Long, D., 13
LOOP statement (SQL), 320
Lorensen, W., 517, 519, 522, w13-14, w13-16,

w13-17, w13-21
Loshin, D., 434, 436–437, 522
Lost update problem, 492, 493
Lyle, B., 318

M
Maintenance

database environment, 14–15
downtime, 504–505
file processing systems, 9–10

Management role, 16
Manufacturing resources planning

(MRP-II), 20
Many-to-many (M:N) relationship, 10, 80, 90,

92, 519–520
binary, 82–83, 170
denormalization, 215–216
mapping, 75, 170, 170
sample, 83
unary, 174–175

Marco, D., 384, 385, 390
Master data management (MDM), 442–443
Materialized view, 278
Materials requirements planning (MRP), 20
Maximum cardinality, 87
McGovern, D., w12-18
Melton, J., 318
Memory and storage space usage, 501
MERGE command (SQL), 319
Merging relations, 188–190
Metadata, 7

data dictionary, 498
ETL process, 447

inconsistency, 438
repositories, 498–500
role of

in three-layer data architecture, 390
in user interface for data warehouses

and data marts, 412
Method, w13-17
Meyer, A., 384
Michaelson, J., 470
Michels, J. E., 244, 318
Microsoft

Access, 38, 244, 251, 254, 267, 292
distribution capabilities, w12-23
.NET, 368, 526, 527, w14-6, w14-7
ODBC connectivity, 340
product distribution capabilities,

w12-23
SQL Server, 251, 266, 323, 413, w12-23
stored procedures, 324
VBScript, 348
Viso drawing tool, 62, 74, 79–80, 96, 115,

131–132, 538
Middleware, 340

server-side extensions, 347
Minimum cardinality, 87
Missing data, 214
Modeling data in the organization, 57–100.

See also Attribute(s); Business rule(s);
Entity-relationship model (E-R
model); Entity type(s)

case example of (Pine Valley Furniture
Company), 95–97

data definitions, 66–68
data names, 65–66
dates, 400
Pine Valley Furniture Company example,

95–100
relationships, 77–94
rules, 62–68
ten rules of dimensional modeling, 410
time-dependent data, 89–92

Modification anomaly, 165
Moriarty, T., 64, 435
Morrow, J. T., 463, 471, 504
Mountain View Community Hospital, 49–52,

111, 149–150, 203, 238, 288, 334, 373,
428–430, 459, 511

Mullins, C., 463, 465, 466, 491–492, 503, 504
Mullins, C. S., 11, 321
Multidimensional data, 21
Multidimensional database model, 22
Multidimensional OLAP (MOLAP), 415
Multifield transformation, 453–454
Multilists, 558, 559
Multimedia data, 5
Multiple classification, w13-18
Multiplicity, 519, w13-7
MULTISET data type (SQL), 318
Multitier client/server databases, 19–20
Multivalued attribute, 74, 167

mapping EER model, 167, 167
removing, 158–159, 159

Multivalued dependencies, 549
Multivalued dimensions, 403, 403–404
Mundy, J., 412
Murphy, P., 378
MySQL product distribution capabilities,

w12-23

N
N+1 selects problem, 532, w14-20
Naming

data objects, 65–66
entity types, 70–72
relation integration problems, 189–190
relationships, 93–94

Natural join, 292–293

578 Index

Navathe, S., 78, 121, 125, 514, 515, 549, w12-13,
w12-20

Near-real-time replication, w12-8
Network database model, 22
Neward, T., w14-3
Newcomer, E., 365–366, 368
Normal form, 179
Normalization, 178–182, 179

example (Pine Valley Furniture Company),
182–188

functional dependencies and keys, 179–182
candidate keys, 181–182
determinants, 181

steps in, 179, 180
NOT (SQL), 268
NOT BETWEEN operator (SQL), 271
NOT IN qualifier, 302
NOT operator (SQL), 268, 328
Null, 161
Null value control, 213
Null values, 268
NUMBER data type, 212
NUMERIC data type, 249

O
OAG Airline of the Year awards, 3
Object, 517, w13-4
Object diagram, 518, 520, w13-5, w13-10
Object identity, w14-5
Object Management Group, w13-4
Object-oriented data modeling, 22, 23,

516–524, 529, w13-1–25, w13-2
aggregation, representing, 523, w13-9–22,

w13-19–22
associations, representing, w13-10–12
associations classes, representing, w13-10–12
business rules, w13-22, w13-22–23
derived attributes, associations, and roles,

representing, w13-12
design model, w14-12
domain model, w14-11
example of (Pine Valley Furniture

Company), w13-23–25
generalization, representing, w13-12–17
inheritance

multiple, representing, w13-18–19
overriding, interpreting, w13-17–19

objects and classes, representing, w13-4–6
operations, types of, w13-6–7
Unified Modeling Language (UML), 517,

w13-3–4
Object-relational impedance mismatch,

w14-3, w14-3, w14-3–6
mismatch, w14-3, w14-3–6

Object-relational mapping (ORM), 526, 527,
w14-3, w14-5, w14-9–10

advantages and disadvantages, w14-8
aggregation, w14-19
call-level application programming

interfaces (API), w14-6–7, w14-8–9
class, w14-16–17, w14-17
composition, w14-19
declarative mapping schema, w14-7
example using Hibernate, w14-10–19
inheritance, w14-17
many-to-many associations, w14-19
many-to-one and one-to-many association,

w14-17–19, w14-18–19
mapping files, 529–532, w14-11–15
one-to-one association, w14-17
proprietary approaches, w14-7
responsibilities, 532–533, w14-20, w14-20–24
SQL frameworks, w14-7–9
transparent persistence layer, w14-7

One-to-many (1:M) relationship, 10
mapping, 169, 170–171, w14-19
unary, mapping, 173–174, 174

One-to-one relationship, 83, 85
denormalization, 215, 216
mapping, 170–171

Online analytical processing (OLAP), 414
SQL OLAP querying, 412–414
tools, 414–415

drill-down, 415–416
slicing a cube, 414, 415
summarizing more than three

dimensions, 415
Open database connectivity (ODBC)

standard, 340
Open source DBMS, 470
Open Source Initiative, 469
Open source movement, 469–471
Operation, 518, w13-6
Operational data store (ODS), 386
Operational system, 380–381, 381
Optional attribute, 72–73
OR (SQL), 268
Oracle

clustering files, 227–228
clusters, 228
configuration, 232
data modeling, 135, 140, 142
data type, 212, 249
Designer notation, 536, 542, 544
indexes, 230, 260–261
Java, 343
joins, 292
JPA specification, 527
memory and storage space usage, 501
partitioning, 218–220
PL/SQL stored procedure, 358
privileges, 479–480, 480
product distribution capabilities, w12-23
query optimizer, 311
SQL, 245, 246, 250, 253–254, 258–259, 262,

263, 266, 280, 281, 326
SQL:1999, 289, 317, 320, 323, 327
stored procedures, 324, 356
tables, 316
tablespaces, 221
terminology, 222
triggers, 321
VB.NET, 341
views, 278–279, 315
XML document storage, 362

ORDER BY clause (SQL), 274–275
Ordering, 522, w13-16
Outer join, 293–295
Output, entity type versus, 69
OVER function (SQL), 317
Overgaard, G., w13-2, w13-3
Overlap rule, 122–123, 123, 125
Overriding, w13-17

Overriding for extension, w13-17
Overriding for restriction, w13-17–18

Owen, J., 64
Özsu, M. T., w12-20

P
Packaged data models, 133–142

examples, 137–142
process, 135–137

Park, E. K., 58, 84
Partial functional dependency, 185
Partial specialization rule, 121, 122, 122
PARTITION clause (SQL), 318
Partitioning, 218–220

advantages and disadvantages, 219
client/server architecture, 337–339
composite, 219–220
horizontal, 218–219
vertical, 220, w12-11

Pascal, F., 217–218
Pelzer, T., 308, 324

Periodic data, 391–393, 392
Persistence, w14-2
Persistent Stored Modules (SQL/PSM), 319
Personal databases, 18, 21
Personnel data access controls, 483
PHP application, 353–356, 354–356
Physical access data controls, 483–484
Physical address pointer, 551, 552
Physical database design, 208–232

data volume and usage analysis,
210–211

denormalizing, 214–218
fields, 211–214

data type, 212–214
government regulations, 209–210
indexes, 229–231

secondary (nonunique) key index, 229
unique key, 229
when to use, 230–231

optimal query performance, 231–232
partitioning, 218–220
physical files, 220–228

clustering, 227–228
controls, 228
organization, 221–227

Physical file, 220–221
Pine Valley Furniture example, 8, 8, 24, 31–42,

95–97, 127–130, 182–188, 254, 290,
308–310, 560, w13-23–25

Pivot table, 416
Plotkin, D., 65
Poe, V., 401
Pointer, 226, 551, 552
Pointer-sequential connection, 553, 554
Polymorphism, 522, 523, w13-16, w13-17
Pooling of database connections, w14-16
PowerDesigner (Sybase) notation, 536–537,

541–542, 543
Premerlani, W., 517, 519, 522, w13-14, w13-16,

w13-17, w13-21
Primary key, 157

first normal form, selecting, 184
surrogate, 168–169

Procedure, 323
Programmers, 31
Project, 31
Project managers, 31
Prototyping, 28, 28
Pull replication, w12-8

Q
Queries, 17

SQL, combining, 305–307, 307
Query operation, w13-6–7
Query performance

distributed databases, 514–515, w12-20
optimization, w12-19–21
overriding automatic query optimization,

232
parallel query processing, 231–232

Queues, 555–556, 556
Quinlan, T., 345, 356, 469

R
Ramesh, 536
Range control, 213
Range partitioning, 219
RANK function (SQL), 317, 318
Read lock, 494
Real-time data warehouse, 387–389
Reconciled data, 389
Recovery manager, 486
Recursive foreign key, 173
Redman, T., 436
Reference data, 217
Referential integrity constraint, 162–163,

163, 214

Index 579

Refresh mode, 450
Relation, 34, 157

converting to BCNF, 546–547
EER diagram transformation, 165–178

associative entity mapping, 171–173
binary relationship mapping, 169–171
regular entity mapping, 166–167
supertype/subtype mapping, 176–178
ternary (and n-ary) mapping, 175–176
unary relationship mapping, 173–175
weak entity mapping, 167–169

merging, 188–190
Relational databases, 10–11, 22–23, 530

mapping example, 529–532, w14-11–15
mapping frameworks, responsibilities of,

532–533, w14-20–24
object persistence, 526–529, w14-1–24
object-relational mapping (ORM), 526, 527,

w14-3, w14-9–10
aggregation, w14-19
call-level application programming

interfaces (API), w14-6–7,
w14-8–9

class, w14-16–17
composition, w14-19
declarative mapping schema, w14-7
example using Hibernate, w14-10–19
inheritance, w14-17, w14-18
many-to-many associations, w14-19
many-to-one and one-to-many

association, w14-17–19
mapping files, 529–532, w14-11–15
mismatch, w14-3, w14-3–6
one-to-one association, w14-17
proprietary approaches, w14-7
responsibilities, 532–533, w14-20–24
SQL frameworks, w14-7–9
transparent persistence layer, w14-7

Relational data model, 156–165
Relational DBMS (RDBMS), 247

internal schema definition, 260–261
Relational OLAP (ROLAP), 414
Relational tables, 163–164
Relationship instance, 78, 78
Relationship modeling, 77–94

associative entities, 79–81
attributes, 79
binary relationships, 82–83
cardinality constraints, 86–89
choosing attributes or entities, 84–86
instance, 78
multiple between entity types, 92, 92–93
naming and defining, 93–94
notations

Designer, 542
ERwin, 539
PowerDesigner, 542
Visio, 539

ternary relationships, 83–84
time-dependent data, 89–92
type, 78
unary relationships, 81–82

Relationship type, 78
Relative address pointer, 551, 552
Remote unit of work, w12-22
Rennhackkamp, M., 322
REPEAT statement (SQL), 320
Replication transparency, 514, w12-16–17
Repository, 16, 498–500, 499
Request, distributed, w12-23
Required attribute, 72–73
Restore/rerun, 487
Richardson, C., 527, w14-3, w14-7
Ritter, D., 15
Rodgers, U., 493
Rogers, U., 215
Rollback. See Backward recovery

Rollforward. See Forward recovery
ROLLUP function (SQL), 317
Ross, M., 410
Routines, 323–326, 324
Royal Bank of Canada, 382
Rules. See Business rules
Rumbaugh, J., 517, 519, 522, w13-3, w13-4,

w13-6, w13-7, w13-14, w13-16,
w13-17, w13-21

Russom, P., 434–435, 436, 438

S
Salin, T., 65–66
SAMPLE function (SQL), 317
Sarbanes-Oxley Act (SOX), 482–484

data access, 483–484
IT change management, 483
IT operations, 484
personnel controls, 482
physical access controls, 483–484

Scalar aggregate, 275
Scatter index table. See Hash index table
Schema, 247

examples of relational, 161, 187
for four relations, 160

Schumacher, R., 230–232
Secondary key, 222, 229
Second normal form (2NF), 179, 185, 185
Security, data, 471–484

authentication schemes, 481–482
passwords, 481–482
strong authentication, 482

authorization rules, 479–480
challenges of, 15
client/server security

establishing, 473
three-tier environments, 473–476

concurrent access, controlling, 492–497
encryption, 480–481
enforcement of, 21
integrity control, 477–478
Internet, 474
software data security features, 476–482
threats, 471–473, 472
user-defined procedures, 480
views, 476–477

Seiner, R., 440
Selection, 452–453
SELECT statement (SQL), 248, 261–263, 311
Semijoin, 515, w12-20–21
Separation of concerns, w14-9
Sequential file organization, 222–223, 227
Serializability, 492–493
Serialization, w14-2
Service-oriented architecture (SOA), 368
Sharda, R., 419
Shared lock (S lock, or read lock), 494
Silverston, L., 133, 134, 140
Simple (or atomic) attribute, 73
Simple Object Access Protocol (SOAP),

367
S lock, 494
Slowly changing dimension (SCD) attributes,

406–408
Smart card, 482
Smartphones, 468
Snapshot replication, w12-7–8
Snowflake schema, 406
Song, I.-Y., 58, 84
Sorted lists, 556–557, 556–558
Specialization, 119–121, 120
SQL, 21, 243–328

analytical and OLAP functions, 317–318,
412–414

data dictionary facilities, 314–316
data types, 249, 318
date and time values, 244

defining database, 251–257
changing table definitions, 40, 256–257
data integrity controls, 255–256
generating definitions, 252
removing tables, 257
table creation, 252–255

deleting data, 259
dynamic, 326–328
embedded, 326
environment, 246–251, 247
inserting data, 257–258

batches, 258
internal schema definition in RDBMSS,

260–261
multiple table processing, 290–310

combining queries, 305–307
conditional expressions, 307–308
correlated subqueries, 303–304
derived tables, 304–305
equi-join, 291–292
example (Pine Valley Furniture

Company), 308–310
natural join, 292–293
outer join, 293–295
sample, 295–297
self-join, 297–298
subqueries, 298–303
UNION JOIN, 295, 307

origins of standard, 245–246
programming extensions, 319–320
query language tips, 310–313
query mapping frameworks, w14-8
sample (Pine Valley Furniture), 40
single table processing, 261–281

Boolean operators, 268–271
comparison operators, 267, 267
distinct values, 271–273
expressions, 263–264
functions, 264–266
GROUP BY clause, 275–276
HAVING clause, 276–277
IN and NOT IN with lists, 273–274
null values, 268
ORDER BY clause, 274–275
ranges for qualification, 271
SELECT statement clauses, 261–263
wildcards, 267

SQL:200N enhancements and extensions,
317, 317–326

statement processing order, 277, 277
table creation, 164, 319
transactions, 357, 359

integrity, 313–314
triggers and routines, 320–326
updating content, 259–260
views, 278–281

SQL:1999/IBM stored procedures, 324
SQRT function (SQL), 317
Stacks, 555
Standards enforcement, 13–14
Star schema, 22, 395

components, 396
duration of the database, 399
example, 396, 396–398
factless fact tables, 402–403
grain of the fact table, 398–399
modeling date and time, 400–401
multiple fact tables, 401–402
sample data, 397
size of the fact table, 399–400
surrogate key, 398

State, 517, w13-4
Static extract, 448
Status data, 390–391
Storage space usage, 501
Stored procedures, 321, 324, 356, 358
Storey, V. C., 58

580 Index

Strong entity type, 69
Structured Query Language. See SQL
Subqueries, SQL, 298–304

correlated, 303–304
processing, 304–305

Subtype discriminator, 123, 124
Subtype(s), 114–116, 117

attribute inheritance, 117
constraints, 121–124

disjointness, 122
disjoint rule, 122
overlap rule, 122–125, 123, 125

constraints
completeness, 121–122

example, 116–117
generalization, 118–119
hierarchies, 125–127, 126
mapping EER model to relations, 176–178
relationships, 118, 177, 190
specialization, 119–121
when to use, 117–118

Summarized data, 6
Summers, R. C., 479
Supertype(s), 114–116, 117

attribute inheritance, 117
basic notation, 115
constraints, 121–124

disjoint rule, 122
overlap rule, 122–125, 123

constraints
completeness, 121–122

example, 116–117
generalization, 118–119
hierarchies, 125–127, 126

Supertype/subtype hierarchy, 125–127
Surrogate key, 398
Surrogate primary key, 168

when to create, 169
Sybase

PowerDesigner notation, 541–542, 543
product distribution capabilities, w12-23
SQL standard, 245–246
stored procedures, 324

Synchronous distributed database, w12-5
Synonyms, 189
System catalog, 498
System developers, 17
System failure, 490, 491
System input, 69
Systems analysts, 31

T
Tables, SQL

Boolean operators, 268–271
comparison operators, 267
comparison operators and, 271
creating, 252–255
definitions, changing, 256–257
distinct values, 271–273
expressions, 263–264
functions, 264–266
GROUP BY clause, 275–276
HAVING clause, 276–277
multiple, 290–310

combining queries, 305–307
correlated subqueries, 303–304
derived tables, 304–305
equi-join, 291–292
natural join, 292–293
outer join, 293–295
sample join, 295–297
self-join, 297–298
subqueries, 298–303
UNION JOIN, 295, 307

IN and NOT IN with lists, 273–274
null values, 268

ORDER BY clause, 274–275
processing single, 261–291
removing, 257
SELECT statement clauses, 261–263
temporary, 312
views, 278–281
wildcards, 267

Tablespace, 221
Tate, B., 527, w14-7
TDWI, 381
Teorey, T., 130
Term, 66
Ternary relationship, 83–84, 519, w13-12

as associative entity, 84
cardinality constraints, 88–89, 89
example, w13-8
mapping EER model to relations, 175–176, 176

Thé, L., w12-7
Thin client, 345
Third normal form (3NF), 179, 186–187
Thompson, C., 359, w12-24
Thompson, F., 218, 220
Three-schema architecture, 29–31, 30
Three-tier architecture, 19, 19–20, 344–346,

348–360
ASP.NET example, 353–355
benefits, 359–360
database connections, 359
illustrated, 344–345
information flow, 349
JSP example, 349–353
PHP example, 353–356
stored procedures, 356–357
transactions, 357–359
Web application, 346–353

Time-dependent data modeling, 89–92
Time modeling, 400–401
Time stamp, 89, 90, 91
Time-stamping, w12-19
TIMESTAMPTIMESTAMP WITH LOCAL

TIME ZONE data type, 249
Time values, SQL, 244
Topi, 536
Total quality management (TQM), 441
Total specialization rule, 121
Toyota Motor Sales USA, 382
Transaction, 357, 359, 485

integrity, maintaining, 487–489
Transaction boundaries, 488
Transaction log, 485
Transaction manager, w12-17
Transformation. See Data transformation
Transient data, 391–392, 392
Transitive dependency, 186

in merged 3NF relations, 190
removing, 186, 186–187

Transparent persistence, w14-7
Treadway Commission, 209
Trees, balanced, 559–562, 560–562
Triggers, 320–323, 321, 321–322
Turban, E., 419
Two-phase commit, 514, w12-17
Two-phase locking protocol, 496
Two-tier client/server databases, 18, 18–19,

21, 339–344
diagram, 340
logic components, 339

U
Ullman, L., 353, 356
UML Notation Guide, 520, w13-6, w13-11,

w13-18, w13-22, w13-23
UML Superstructure Specification, w13-15
Unary relationship, 81–82, 519

example, w13-8
mapping EER model, 173–175, 174

Unified Modeling Language (UML), 517, 518,
w13-3–4, w13-5

UNION JOIN, 295, 307
Unique key index, 229
Universal data model, 134–135, 138,

139, 141
Universal Description, Discovery, and

Integration (UDDI), 365–366
Update anomaly, 185
UPDATE command (SQL), 259–260
Update inaccurate, 490
Update mode, 451
Update operation, w13-7
Updates

linear data structures, 554–555
locking, 494
lost, 492, 493

Usage map, 210
User, 31

data capture processes, 441
entity type versus, 69
registration

ASP.NET sample, 357
PHP sample, 354–356

User-defined data type (UDT), 317
User-defined procedures, 480
User interface, 17

concurrent access controls, 492–497
data warehouse, 411–417

data visualization, 415–417
metadata, 412
OLAP tools, 414–415
SQL OLAP querying, 412–414

registration page, 357
User view, 13

sample, 99

V
Valacich, J., 53, 58, 130, 441, 517, w13-4
Valduriez, P., w12-20
Value type, w14-16
van der Lans, R. F., 277
VARCHAR2 data type, 212
Variar, G., 451
VB.NET code sample, 341–342
Vector aggregate, 275
Versioning, 496–497, 497
Vertical partitioning, 220, w12-10–11
Viehman, P., 230
Views, 476–477

dynamic, pros and cons of using, 278
using and defining, 278–281

Virtual sequential access method (VSAM),
560

Virtual table, 278
Viso (Microsoft) drawing tool, 62, 74, 79–80,

96, 115, 131–132, 187
Professional notation, 535, 536–538, 539

von Halle, B., 63, 156

W
Warehouse/warehousing. See data

warehouse/warehousing
Watson, H.J., 3
Weak entity type, 70

mapping EER model, 167–169, 168
Web 2.0 applications, 23
Web browser, 347
Web database environment, 346–369, 347

architecture components
common, 346–347

Web server, 346–347
Web services, 365–369

deployment, 368
order entry system, 366
protocol stack, 366

Index 581

Web Services Description Language (WSDL),
366–367

Weis, R., 92
Weldon, J. L., 418
Well-structured relation, 164–165
Westerman, P., 451
WHERE clause (SQL), 261, 311
WHILE statement (SQL), 320
White, C., 444, 446, 448
Whiting, R., 381
Wildcards (SQL), 267
WINDOW clause (SQL), 317, 318
Winter, R., 5
Witkowski, A., 318
Wixom, B., 3, 5
Wood, C., 479

Workgroup databases, 19–20
World Wide Web Consortium (W3C),

348

X
XHTML, 348
X lock, 495
XML, 360–369

code segments, 363
displaying data, 365
retrieving documents, 362–365
standardizations, 360–362
storing documents, 362
tags, 360
Web services, 365–369

XML data type (SQL), 318

XML Schema Definition (XSD),
360–362

XML Web services, 13
XPath, 362
XQuery, 362, 362–365
XSLT, 364, 365

Y
Yang, D., 58
“Year 2000” problem, 14
Young, C., 469
Yourdon, E., 517, w13-3
Yugay, I., 436

Z
Zemke, F., 244, 318

Teradata University and Student Networks

Both PVFC databases are pre-loaded into an SQL-compliant database at the Teradata
University Network and Teradata Student Network. Additional production-sized sample
databases are also pre-loaded. Teradata SQL Assistant allows students to run SQL
commands from a Web browser from any PC. Students can create their own databases
and manage usage rights for team projects. On-line SQL exams can be administered, too.

Faculty: Register at www.teradatauniversitynetwork.com, and then access
Teradata Database under the Apply & Do menu and follow the instructions to create
a course environment for your students with one or more of our textbook databases.
You may also use this site to upload additional databases for your students to access.
Information is available on the Teradata Database page for all the features available
under Teradata SQL Assistant.

Students: Point your browser to www.teradatastudentnetwork.com. The general
password for the Teradata Student Network must be obtained from your referring
professor. Access the Teradata Database under the Apply & Do link, and obtain an
SQL Assistant Account for the course environment your instructor has created. Your
instructor may assign a special password for this environment.

Students and faculty can conduct a trial of Teradata SQL Assistant Web Edition by clicking
on Teradata SQL Assistant Trial in the Access Content category of Quick Links. This trial and
associated video and documentation can work effectively with Chapter 1 of this text.

Instructors: Additional materials for faculty are available on the Instructor
Resource Center for this book.

Instructors can register for access to faculty-only material at
www.pearsonhighered.com/irc. Once you register, you will not have
additional forms to fill out, or multiple usernames and passwords to
remember in order to access new titles and/or editions. As a registered
faculty member, you can login directly to download resource files.

Need help? Our dedicated Technical Support team is ready to assist instructors
with questions about the media supplements that accompany this text. Visit:
http://247pearsoned.custhelp.com for answers to frequently asked questions
and toll-free user support phone numbers.

www.teradatauniversitynetwork.com
www.teradatauniversitynetwork.com
www.pearsonhighered.com/irc
http://247pearsoned.custhelp.com

QUICK GUIDE TO MDBM TEXTBOOK RESOURCES

MDBM Companion Website

www.pearsonhighered.com/hoffer or
wps.prenhall.com/bp_hoffer_mdm_10/

Many of these files require the free Adobe Reader in order to open and read
them. Adobe Reader can be downloaded at www.adobe.com.

A. Full-text of chapters 12-14 of the textbook. These files require the free Adobe Reader
to be viewed. The textbook includes condensed versions of these chapters.

a. Chapter 12: Distributed Databases
b. Chapter 13: Object-Oriented Data Modeling
c. Chapter 14: Using Relational Databases to Provide Object Persistence

B. A download of all the data and documentation files for the Pine Valley Furniture
Company case study. You can download the case study files for the Pine Valley Furniture
Company. These files are provided in ZIP archives to facilitate downloading. You will need
a file decompression utility, such as WinZip (www.winzip.com/downwz.htm), to unzip
the file. Each database is available in MS-Access, Oracle script, and comma-delimited files,
and the book version of the database is also available in MS-SQL.

Pine Valley Furniture Company case study files:

◆ BookPVFC: Use this database to study some of the queries included in Chapter 6.
◆ BigPVFC: This database is a more complete implementation of Figure 2-22 and

is intended for critical review (not all of the design is optimal), for continued
development and improvement, and to address some of the Problems and
Exercises in Chapters 6 and 7.

◆ Instructions for setting up MS-SQL Server on your computer.

C. Links to all the Web resources mentioned in the text, organized by chapter.
D. Glossaries of acronyms and terms.
E. Additional topical materials. Baird, Willard. (2004) Optimizing Database Performance:

The Example of Tuning an Oracle Database.
F. Downloadable file of this page’s information with hyperlinks. This file requires the free

Adobe Reader to be viewed.
G. Camtasia video tutorials. You can download and play without any special software

video tutorials to support Chapters 1 (Introduction to Databases), 2 and 3
(Entity-Relationship Data Modeling), 4 (Data Normalization), and 6 and 7 (SQL).
These videos supplement the associated chapters with content on more difficult
concepts and offer helpful hints.

www.pearsonhighered.com/hoffer
www.adobe.com
www.winzip.com/downwz.htm

This page intentionally left blank

12-1

Distributed Databases

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define the following key terms: distributed database, decentralized
database, location transparency, local autonomy, synchronous distributed
database, asynchronous distributed database, local transaction, global transaction,
replication transparency, transaction manager, failure transparency, commit
protocol, two-phase commit, concurrency transparency, time-stamping, and
semijoin.

� Explain the business conditions that are drivers for the use of distributed databases
in organizations.

� Describe the salient characteristics of a variety of distributed database environments.
� Explain the potential advantages and risks associated with distributed databases.
� Explain four strategies for the design of distributed databases, options within each

strategy, and the factors to consider in selecting among these strategies.
� State the relative advantages of synchronous and asynchronous data replication and

partitioning as three major approaches for distributed database design.
� Outline the steps involved in processing a query in a distributed database and

several approaches used to optimize distributed query processing.
� Explain the salient features of several distributed database management systems.

INTRODUCTION

When an organization is geographically dispersed, it may choose to store its
databases on a central database server or to distribute them to local servers (or a
combination of both). A distributed database is a single logical database that is
spread physically across computers in multiple locations that are connected by a
data communications network. We emphasize that a distributed database is truly
a database, not a loose collection of files. The distributed database is still
centrally administered as a corporate resource while providing local flexibility
and customization. The network must allow the users to share the data; thus a user
(or program) at location A must be able to access (and perhaps update) data at
location B. The sites of a distributed system may be spread over a large area
(e.g., the United States or the world) or over a small area (e.g., a building or campus).
The computers may range from PCs to large-scale servers or even supercomputers.

C H A P T E R

12

Distributed database
A single logical database that is
spread physically across computers
in multiple locations that are
connected by a data
communication link.

12-2 Part V • Advanced Database Topics

A distributed database requires multiple instances of a database management
system (or several DBMSs), running at each remote site. The degree to which these
different DBMS instances cooperate, or work in partnership, and whether there is
a master site that coordinates requests involving data from multiple sites
distinguish different types of distributed database environments.

It is important to distinguish between distributed and decentralized databases.
A decentralized database is also stored on computers at multiple locations;
however, the computers are not interconnected by network and database software
that make the data appear to be in one logical database. Thus, users at the various
sites cannot share data. A decentralized database is best regarded as a collection of
independent databases, rather than having the geographical distribution of a
single database.

Various business conditions encourage the use of distributed databases:

• Distribution and autonomy of business units Divisions, departments, and
facilities in modern organizations are often geographically distributed, often
across national boundaries. Often each unit has the authority to create its own
information systems, and often these units want local data over which they can
have control. Business mergers and acquisitions often create this environment.

• Data sharing Even moderately complex business decisions require sharing
data across business units, so it must be convenient to consolidate data
across local databases on demand.

• Data communications costs and reliability The cost to ship large quantities
of data across a communications network or to handle a large volume of
transactions from remote sources can still be high, even if data communi-
cation costs have decreased substantially recently. It is in many cases more
economical to locate data and applications close to where they are needed.
Also, dependence on data communications always involves an element of
risk, so keeping local copies or fragments of data can be a reliable way to
support the need for rapid access to data across the organization.

• Multiple application vendor environment Today, many organizations
purchase packaged application software from several different vendors. Each
“best in breed” package is designed to work with its own database, and
possibly with different database management systems. A distributed database
can possibly be defined to provide functionality that cuts across the separate
applications.

• Database recovery Replicating data on separate computers is one strategy
for ensuring that a damaged database can be quickly recovered and users can
have access to data while the primary site is being restored. Replicating data
across multiple computer sites is one natural form of a distributed database.

• Satisfying both transaction and analytical processing As you learned in
Chapter 9, the requirements for database management vary across OLTP and
OLAP applications. Yet, the same data are in common between the two
databases supporting each type of application. Distributed database technology
can be helpful in synchronizing data across OLTP and OLAP platforms.

The ability to create a distributed database has existed since at least the 1980s. As
you might expect, a variety of distributed database options exist (Bell and Grimson,
1992). Figure 12-1 outlines the range of distributed database environments. These
environments are briefly explained as follows:

I. Homogeneous The same DBMS is used at each node.
A. Autonomous Each DBMS works independently, passing messages back

and forth to share data updates.
B. Nonautonomous A central, or master, DBMS coordinates database access

and updates across the nodes.
II. Heterogeneous Potentially different DBMSs are used at each node.

A. Systems Supports some or all of the functionality of one logical database.
1. Full DBMS functionality Supports all of the functionality of a distrib-

uted database, as discussed in the remainder of this chapter.

Decentralized database
A database that is stored on
computers at multiple locations;
these computers are not
interconnected by network and
database software that make
the data appear in one logical
database.

Chapter 12 • Distributed Databases 12-3

Homogeneous Heterogeneous

Full DBMS functionality Partial-multidatabase

Autonomous Nonautonomous

Loose integration Tight integration

Systems Gateways

Federated Unfederated

Distributed database environments

FIGURE 12-1 Distributed
database environments

Source: Based on Bell and Grimson

(1992)

2. Partial-multidatabase Supports some features of a distributed data-
base, as discussed in the remainder of this chapter.
a. Federated Supports local databases for unique data requests.

i. Loose integration Many schemas exist, for each local database,
and each local DBMS must communicate with all local schemas.

ii. Tight integration One global schema exists that defines all the
data across all local databases.

b. Unfederated Requires all access to go through a central coordinating
module.

B. Gateways Simple paths are created to other databases, without the ben-
efits of one logical database.

A homogeneous distributed database environment is depicted in Figure 12-2.
This environment is typically defined by the following characteristics (related to
the nonautonomous category described previously):

• Data are distributed across all the nodes.
• The same DBMS is used at each location.
• All data are managed by the distributed DBMS (so there are no exclusively

local data).

Global User Global User

Global
SchemaDistributed

DBMS

DBMS
Software

DBMS
Software

DBMS
Software

DBMS
Software

Node:

•••

n1 2 3

FIGURE 12-2 Homogeneous
distributed database
environment

Source: Based on Bell and Grimson

(1992)

12-4 Part V • Advanced Database Topics

Local User

Global User

DBMS-3DBMS-2 •••

Local User

DBMS-1 DBMS-n

Distributed
DBMS

Global
Schema

FIGURE 12-3 Heterogeneous
distributed database
environment

Source: Based on Bell and Grimson

(1992)

• All users access the database through one global schema or database
definition.

• The global schema is simply the union of all the local database schemas.

It is difficult in most organizations to force a homogeneous environment, yet
heterogeneous environments are much more difficult to manage.

As listed previously, there are many variations of heterogeneous distributed
database environments. In the remainder of the chapter, however, a heterogene-
ous environment will be defined by the following characteristics (as depicted in
Figure 12-3):

• Data are distributed across all the nodes.
• Different DBMSs may be used at each node.
• Some users require only local access to databases, which can be accomplished

by using only the local DBMS and schema.
• A global schema exists, which allows local users to access remote data.

Objectives and Trade-offs

A major objective of distributed databases is to provide ease of access to data for users
at many different locations. To meet this objective, the distributed database system
must provide location transparency, which means that a user (or user program) using
data for querying or updating need not know the location of the data. Any request to
retrieve or update data from any site is automatically forwarded by the system to the
site or sites related to the processing request. Ideally, the user is unaware of the distribu-
tion of data, and all data in the network appear as a single logical database stored at one
site. In this ideal case, a single query can join data from tables in multiple sites as if the
data were all in one site.

A second objective of distributed databases is local autonomy, which is the capa-
bility to administer a local database and to operate independently when connections to
other nodes have failed (Date, 2003). With local autonomy, each site has the capability to
control local data, administer security, and log transactions and recover when local fail-
ures occur and to provide full access to local data to local users when any central or
coordinating site cannot operate. In this case, data are locally owned and managed,
even though they are accessible from remote sites. This implies that there is no reliance
on a central site.

Location transparency
A design goal for a distributed
database, which says that a user (or
user program) using data need not
know the location of the data.

Local autonomy
A design goal for a distributed
database, which says that a site can
independently administer and
operate its database when
connections to other nodes have
failed.

Chapter 12 • Distributed Databases 12-5

A significant trade-off in designing a distributed database environment is whether
to use synchronous or asynchronous distributed technology. With synchronous
distributed database technology, all data across the network are continuously kept
up-to-date so that a user at any site can access data anywhere on the network at any
time and get the same answer. With synchronous technology, if any copy of a data item
is updated anywhere on the network, the same update is immediately applied to all
other copies or it is aborted. Synchronous technology ensures data integrity and mini-
mizes the complexity of knowing where the most recent copy of data are located.
Synchronous technology can result in unsatisfactorily slow response time because the
distributed DBMS is spending considerable time checking that an update is accurately
and completely propagated across the network.

Asynchronous distributed database technology keeps copies of replicated data at
different nodes so that local servers can access data without reaching out across the
network. With asynchronous technology, there is usually some delay in propagating
data updates across the remote databases, so some degree of at least temporary incon-
sistency is tolerated. Asynchronous technology tends to have acceptable response time
because updates happen locally and data replicas are synchronized in batches and pre-
determined intervals, but may be more complex to plan and design to ensure exactly
the right level of data integrity and consistency across the nodes.

Compared with centralized databases, either form of a distributed database has
numerous advantages. The following are the most important of them:

• Increased reliability and availability When a centralized system fails, the data-
base is unavailable to all users. A distributed system will continue to function at
some reduced level, however, even when a component fails. The reliability and
availability will depend (among other things) on the way the data are distributed
(discussed in the following sections).

• Local control Distributing the data encourages local groups to exercise greater
control over “their” data, which promotes improved data integrity and administra-
tion. At the same time, users can access nonlocal data when necessary. Hardware
can be chosen for the local site to match the local, not global, data processing work.

• Modular growth Suppose that an organization expands to a new location or
adds a new work group. It is often easier and more economical to add a local com-
puter and its associated data to the distributed network than to expand a large
central computer. Also, there is less chance of disruption to existing users than is
the case when a central computer system is modified or expanded.

• Lower communication costs With a distributed system, data can be located
closer to their point of use. This can reduce communication costs, compared with
a central system.

• Faster response Depending on the way data are distributed, most requests for
data by users at a particular site can be satisfied by data stored at that site. This
speeds up query processing since communication and central computer delays are
minimized. It may also be possible to split complex queries into subqueries that
can be processed in parallel at several sites, providing even faster response.

A distributed database system also faces certain costs and disadvantages:

• Software cost and complexity More complex software (especially the DBMS) is
required for a distributed database environment. We discuss this software later in
the chapter.

• Processing overhead The various sites must exchange messages and perform
additional calculations to ensure proper coordination among data at the differ-
ent sites.

• Data integrity A by-product of the increased complexity and need for coordina-
tion is the additional exposure to improper updating and other problems of data
integrity.

• Slow response If the data are not distributed properly according to their usage,
or if queries are not formulated correctly, response to requests for data can be
extremely slow. These issues are discussed later in the chapter.

Synchronous distributed database
A form of distributed database
technology in which all data across
the network are continuously
kept up to date so that a user at
any site can access data anywhere
on the network at any time and get
the same answer.

Asynchronous distributed
database
A form of distributed database
technology in which copies of
replicated data are kept at different
nodes so that local servers can
access data without reaching out
across the network.

12-6 Part V • Advanced Database Topics

AcctNumber

200

324

153

426

500

683

252

CustomerName

Jones

Smith

Gray

Dorman

Green

McIntyre

Elmore

BranchName

Lakeview

Valley

Valley

Lakeview

Valley

Lakeview

Lakeview

Balance

1000

250

38

796

168

1500

330

FIGURE 12-4 Customer
relation for a bank

OPTIONS FOR DISTRIBUTING A DATABASE

How should a database be distributed among the sites (or nodes) of a network? We dis-
cussed this important issue of physical database design in Chapter 5, which introduced
an analytical procedure for evaluating alternative distribution strategies. In that chap-
ter, we noted that there are four basic strategies for distributing databases:

1. Data replication
2. Horizontal partitioning
3. Vertical partitioning
4. Combinations of the above

We will explain and illustrate each of these approaches using relational databases.
The same concepts apply (with some variations) for other data models, such as hierar-
chical and network models.

Suppose that a bank has numerous branches located throughout a state. One of
the base relations in the bank’s database is the Customer relation. Figure 12-4 shows the
format for an abbreviated version of this relation. For simplicity, the sample data in the
relation apply to only two of the branches (Lakeview and Valley). The primary key in
this relation is account number (AcctNumber). BranchName is the name of the branch
where customers have opened their accounts (and therefore where they presumably
perform most of their transactions).

Data Replication

A popular option for data distribution as well as for fault tolerance of a database is to
store a separate copy of the database at each of two or more sites. Replication may allow
an IS organization to move a database off a centralized mainframe onto less expensive
departmental or location-specific servers, close to end users (Koop, 1995). Replication
may use either synchronous or asynchronous distributed database technologies,
although asynchronous technologies are more typical in a replicated environment. The
customer relation in Figure 12-4 could be stored at Lakeview or Valley, for example. If a
copy is stored at every site, we have the case of full replication, which may be impractical
except for only relatively small databases.

There are five advantages to data replication:

1. Reliability If one of the sites containing the relation (or database) fails, a copy
can always be found at another site without network traffic delays. Also, available
copies can all be updated as soon as transactions occur, and unavailable nodes will
be updated once they return to service.

2. Fast response Each site that has a full copy can process queries locally, so queries
can be processed rapidly.

3. Possible avoidance of complicated distributed transaction integrity routines
Replicated databases are usually refreshed at scheduled intervals, so most forms
of replication are used when some relaxing of synchronization across database
copies is acceptable.

Chapter 12 • Distributed Databases 12-7

4. Node decoupling Each transaction may proceed without coordination across the
network. Thus, if nodes are down, busy, or disconnected (e.g., in the case of
mobile personal computers), a transaction is handled when the user desires. In the
place of real-time synchronization of updates, a behind-the-scenes process coordi-
nates all data copies.

5. Reduced network traffic at prime time Often updating data happens during
prime business hours, when network traffic is highest and the demands for rapid
response greatest. Replication, with delayed updating of copies of data, moves
network traffic for sending updates to other nodes to non-prime-time hours.

Replication has three primary disadvantages:

1. Storage requirements Each site that has a full copy must have the same storage
capacity that would be required if the data were stored centrally. Each copy
requires storage space (the cost for which is constantly decreasing), and process-
ing time is required to update each copy on each node.

2. Complexity related to maintaining database integrity Unless very costly mech-
anisms for maintaining identical copies of the database in real-time are used, it is
essential ensure that potential discrepancies between the copies do not lead to
business problems caused by inconsistent data. This requires potentially complex
coordination requirements at the application level. This may cause undesirable
coupling between the database and applications.

3. Complexity and cost of updating Whenever a relation is updated, it must (even-
tually) be updated at each site that holds a copy. Synchronizing updating in near-
real-time can require careful coordination, as will be clear later under the topic of
commit protocol.

For these reasons, data replication is favored where most process requests are
read-only and where the data are relatively static, as in catalogs, telephone directories,
train schedules, and so on. Replication is used for “noncollaborative data,” where
one location does not need a real-time update of data maintained by other locations
(Thé, 1994). In these applications, data eventually need to be synchronized, as quickly
as is practical. Replication is not a viable approach for online applications such as
airline reservations, ATM transactions, and other financial activities—applications for
which each user wants data about the same, nonsharable resource.

SNAPSHOT REPLICATION Different schemes exist for updating data copies. Some appli-
cations, such as those for decision support and data warehousing or mining, which
often do not require current data, are supported by simple table copying or periodic
snapshots. This might work as follows, assuming that multiple sites are updating the
same data. First, updates from all replicated sites are periodically collected at a master,
or primary, site, where all the updates are made to form a consolidated record of all
changes. With some distributed DBMSs, this list of changes is collected in a snapshot
log, which is a table of row identifiers for the records to go into the snapshot. Then a
read-only snapshot of the replicated portion of the database is taken at the master site.
Finally, the snapshot is sent to each site where there is a copy. (It is often said that these
other sites “subscribe” to the data owned at the primary site.) This is called a full refresh
of the database (Buretta, 1997; Edelstein, 1995). Alternatively, only those pages that have
changed since the last snapshot can be sent, which is called a differential, or incremental,
refresh. In this case, a snapshot log for each replicated table is joined with the associated
base to form the set of changed rows to be sent to the replicated sites.

Some forms of replication management allow dynamic ownership of data, in
which the right to update replicated data moves from site to site, but at any point in
time, only one site owns the right. Dynamic ownership would be appropriate as busi-
ness activities move across time zones or when the processing of data follows a work
flow across business units supported by different database servers.

A final form of replication management allows shared ownership of data. Shared
updates introduce significant issues for managing update conflicts across sites. For
example, what if tellers at two bank branches try to update a customer’s address at the

12-8 Part V • Advanced Database Topics

same time? Asynchronous technology will allow conflicts to exist temporarily. This may
be fine as long as the updates are not critical to business operations and such conflicts
can be detected and resolved before real business problems arise.

The cost to perform a snapshot refresh may depend on whether the snapshot is
simple or complex. A simple snapshot is one that references all or a portion of only one
table. A complex snapshot involves multiple tables, usually from transactions that
involve joins, such as the entry of a customer order and associated line items. With
some distributed DBMSs, a simple snapshot can be handled by a differential refresh,
whereas complex snapshots require more time-consuming full refreshes. Some distrib-
uted DBMSs support only simple snapshots.

NEAR-REAL-TIME REPLICATION For near-real-time requirements, store and forward
messages for each completed transaction can be broadcast across the network inform-
ing all nodes to update data as soon as possible, without forcing a confirmation to the
originating node (as is the case with a coordinated commit protocol, discussed later)
before the database at the originating node is updated. One way to generate such mes-
sages is by using triggers (discussed in Chapter 7). A trigger can be stored at each local
database so that when a piece of replicated data is updated, the trigger executes corre-
sponding update commands against remote database replicas (Edelstein, 1993). With
the use of triggers, each database update event can be handled individually and trans-
parently to programs and users. If network connections to a node are down or the node
is busy, these messages informing the node to update its database are held in a queue to
be processed when possible.

PULL REPLICATION The schemes just presented for synchronizing replicas are examples of
push strategies. Pull strategies also exist. In a pull strategy, the target, not the source node,
controls when a local database is updated. With pull strategies, the local database deter-
mines when it needs to be refreshed and requests a snapshot or the emptying of an update
message queue. Pull strategies have the advantage that the local site controls when it needs
and can handle updates. Thus, synchronization is less disruptive and occurs only when
needed by each site, not when a central master site thinks it is best to update.

DATABASE INTEGRITY WITH REPLICATION For both periodic and near-real-time
replication, consistency across the distributed, replicated database is compromised.
Whether delayed or near-real-time, the DBMS managing replicated databases still
must ensure the integrity of the databases. Decision support applications permit
synchronization on a table-by-table basis, whereas near-real-time applications require
transaction-by-transaction synchronization. But in both cases, the DBMS must ensure
that copies are synchronized per application requirements.

The difficulty of handling updates with a replicated database also depends on the
number of nodes at which updates may occur (Froemming, 1996). In a single-updater
environment, updates will usually be handled by periodically sending read-only data-
base snapshots of updated database segments to the nonupdater nodes. In this case, the
effects of multiple updates are effectively batched for the read-only sites. This would be
the situation for product catalogs, price lists, and other reference data for a mobile sales
force. In a multiple-updater environment, the most obvious issue is data collisions. Data
collisions arise when the independently operating updating nodes are each attempting
to update the same data at the same time. In this case, the DBMS must include mecha-
nisms to detect and handle data collisions. For example, the DBMS must decide if
processing at nodes in conflict should be suspended until the collision is resolved.

WHEN TO USE REPLICATION Whether replication is a viable alternative design for a dis-
tributed database depends on several factors (Froemming, 1996):

1. Data timeliness Applications that can tolerate out-of-date data (whether this is
for a few seconds or a few hours) are better candidates for replication.

2. DBMS capabilities An important DBMS capability is whether it will support a
query that references data from more than one node. If not, the replication is a

Chapter 12 • Distributed Databases 12-9

better candidate than the partitioning schemes, which are discussed in the following
sections.

3. Performance implications Replication means that each node is periodically
refreshed. When this refreshing occurs, the distributed node may be very busy
handling a large volume of updates. If the refreshing occurs by event triggers
(e.g., when a certain volume of changes accumulate), refreshing could occur at a
time when the remote node is busy doing local work.

4. Heterogeneity in the network Replication can be complicated if different nodes
use different operating systems and DBMSs, or, more commonly, use different
database designs. Mapping changes from one site to n other sites could mean n
different routines to translate the changes from the originating node into the
scheme for processing at the other nodes.

5. Communications network capabilities Transmission speeds and capacity in a
data communications network may prohibit frequent, complete refreshing of very
large tables. Replication does not require a dedicated communications connection,
however, so less expensive, shared networks could be used for database snapshot
transmissions.

Horizontal Partitioning

With horizontal partitioning (see Chapter 5 for a description of different forms of table
partitioning), some of the rows of a table (or relation) are put into a base relation at one
site, and other rows are put into a base relation at another site. More generally, the rows
of a relation are distributed to many sites.

Figure 12-5 shows the result of taking horizontal partitions of the Customer rela-
tion. Each row is now located at its home branch. If customers actually conduct most of
their transactions at the home branch, the transactions are processed locally and
response times are minimized. When a customer initiates a transaction at another
branch, the transaction must be transmitted to the home branch for processing and the
response transmitted back to the initiating branch. (This is the normal pattern for per-
sons using ATMs.) If a customer’s usage pattern changes (perhaps because of a move),
the system may be able to detect this change and dynamically move the record to the
location where most transactions are being initiated. In summary, horizontal partitions
for a distributed database have four major advantages:

1. Efficiency Data are stored close to where they are used and separate from other
data used by other users or applications.

2. Local optimization Data can be stored to optimize performance for local access.

AcctNumber CustomerName BranchName Balance

200

426

683

252

Jones

Dorman

McIntyre

Elmore

Lakeview

Lakeview

Lakeview

Lakeview

1000

796

1500

330

324

153

500

Smith

Gray

Green

Valley

Valley

Valley

AcctNumber CustomerName BranchName Balance

250

38

168

FIGURE 12-5 Horizontal
partitions

(a) Lakeview branch

(b) Valley branch

12-10 Part V • Advanced Database Topics

3. Security Data not relevant to usage at a particular site are not made available.
4. Ease of querying Combining data across horizontal partitions is easy because

rows are simply merged by unions across the partitions.

Thus, horizontal partitions are usually used when an organizational function is distributed
but each site is concerned with only a subset of the entity instances (frequently based
on geography).

Horizontal partitions also have two primary disadvantages:

1. Inconsistent access speed When data from several partitions are required, the
access time can be significantly different from local-only data access.

2. Backup vulnerability Because data are not replicated, when data at one site
become inaccessible or damaged, usage cannot switch to another site where a
copy exists; data may be lost if proper backup is not performed at each site.

Vertical Partitioning

With the vertical partitioning approach (again, see Chapter 5), some of the columns of a
relation are projected into a base relation at one of the sites, and other columns are pro-
jected into a base relation at another site (more generally, columns may be projected to
several sites). The relations at each of the sites must share a common domain so that the
original table can be reconstructed.

To illustrate vertical partitioning, we use an application for the manufacturing
company shown in Figure 12-6. Figure 12-7 shows the Part relation with PartNumber
as the primary key. Some of these data are used primarily by manufacturing, whereas
others are used mostly by engineering. The data are distributed to the respective
departmental computers using vertical partitioning, as shown in Figure 12-8. Each of
the partitions shown in Figure 12-8 is obtained by taking projections (i.e., selected
columns) of the original relation. The original relation, in turn, can be obtained by tak-
ing natural joins of the resulting partitions.

Engineering
Network

Departmental
Network

CAD/CAM workstations

Manufacturing stations

Client workstations

Corporate
Core

Network

Corporate
Data

Center

Manufacturing
Network

Manufacturing
Database

Server

Corporate
Database
Servers

Departmental
Database

Server

Engineering
Database

Server

FIGURE 12-6 Distributed processing system for a manufacturing company

Chapter 12 • Distributed Databases 12-11

FIGURE 12-7 Part relation

FIGURE 12-8 Vertical partitions

In summary, the advantages and disadvantages of vertical partitions are identi-
cal to those for horizontal partitions, except that combining data across vertical
partitions is more difficult than combining data across horizontal partitions. This
difficulty arises from the need to match primary keys or other qualifications to join
rows across partitions. Horizontal partitions support an organizational design in
which functions are replicated, often on a regional basis, whereas vertical partitions
are typically applied across organizational functions with reasonably separate data
requirements.

Combinations of Operations

To complicate matters further, there are almost unlimited combinations of the preceding
strategies. Some data may be stored centrally, whereas other data may be replicated at
the various sites. Also, for a given relation, both horizontal and vertical partitions
may be desirable for data distribution. Figure 12-9 is an example of a combination
strategy:

1. Engineering Parts, Accounting, and Customer data are each centralized at differ-
ent locations.

2. Standard parts data are partitioned (horizontally) among the three locations.
3. The Standard Price List is replicated at all three locations.

The overriding principle in distributed database design is that data should be
stored at the sites where they will be accessed most frequently (although other consid-
erations, such as security, data integrity, and cost, are also likely to be important). A data
administrator plays a critical and central role in organizing a distributed database to
make it distributed, not decentralized.

PartNumber Name Cost DrawingNumber QtyOnHand

P2 Widget 100 123-7 20

P7 Gizmo 550 621-0 100

P3 Thing 48 174-3 0

P1 Whatsit 220 416-2 16

P8 Thumzer 16 321-2 50

P9 Bobbit 75 400-1 200

P6 Nailit 125 129-4 200

PartNumber DrawingNumber

P2 123-7

P7 621-0

P3 174-3

P1 416-2

P8 321-2

P9 400-1

P6 129-4

PartNumber Name Cost QtyOnHand

P2 Widget 100 20

P7 Gizmo 550 100

P3 Thing 48 0

P1 Whatsit 220 16

P8 Thumzer 16 50

P9 Bobbit 75 200

P6 Nailit 125 200

(a) Engineering (b) Manufacturing

12-12 Part V • Advanced Database Topics

Selecting the Right Data Distribution Strategy

Based on the prior sections, a distributed database can be organized in five unique ways:

1. Totally centralized at one location accessed from many geographically distrib-
uted sites

2. Partially or totally replicated across geographically distributed sites, with each
copy periodically updated with snapshots

3. Partially or totally replicated across geographically distributed sites, with near-
real-time synchronization of updates

4. Partitioned into segments at different geographically distributed sites, but still
within one logical database and one distributed DBMS

5. Partitioned into independent, nonintegrated segments spanning multiple com-
puters and database software

None of these five approaches is always best. Table 12-1 summarizes the comparative
features of these five approaches, using the key dimensions of reliability, expandabil-
ity for adding nodes, communications overhead or demand on communications net-
works, manageability, and data consistency. A distributed database designer needs
to balance these factors to select a good strategy for a given distributed database
environment. The choice of which strategy is best in a given situation depends on
several factors:

• Organizational forces These forces include funding availability, autonomy of
organizational units, and the need for security.

• Frequency and locality or clustering of reference to data In general, data should
be located close to the applications that use those data.

• Need for growth and expansion The availability of processors on the network
will influence where data may be located and applications can be run and may
indicate the need for expansion of the network.

• Technological capabilities Capabilities at each node and for DBMSs, coupled
with the costs for acquiring and managing technology, must be considered.
Storage costs tend to be low, but the costs for managing complex technology can
be great.

• Need for reliable service Mission-critical applications and very frequently required
data encourage replication schemes.

San Mateo
Parts

Engineering
Parts

Standard
Price List

Tulsa
Parts

Accounting

Standard
Price List

San Mateo Tulsa

New York
Parts

Customers

Standard
Price List

New York

FIGURE 12-9 Hybrid data
distribution strategy

Source: Copyright © Database

Programming & Design, April, 1989,

Vol. 2, No. 4. Reprinted by

permission of Miller Freeman

Publications.

Chapter 12 • Distributed Databases 12-13

TABLE 12-1 Comparison of Distributed Database Design Strategies

Strategy Reliability Expandability
Communications
Overhead Manageability

Data
Consistency

Centralized POOR:
Highly dependent

on central server

POOR:
Limitations are

barriers to
performance

VERY HIGH:
High traffic to

one site

VERY GOOD:
One monolithic

site requires little
coordination

EXCELLENT:
All users always

have the
same data

Replicated with
snapshots

GOOD:
Redundancy and

tolerated delays

VERY GOOD:
Cost of additional

copies may be less
than linear

LOW to MEDIUM:
Not constant, but

periodic snapshots
can cause bursts of
network traffic

VERY GOOD:
Each copy is like

every other one

MEDIUM:
Fine as long as

delays are
tolerated by
business needs

Synchronized
replication

EXCELLENT:
Redundancy and

minimal delays

VERY GOOD:
Cost of additional

copies may be low
and synchronization
work only linear

MEDIUM:
Messages are

constant, but
some delays are
tolerated

MEDIUM:
Collisions add

some complexity
to manageability

MEDIUM to
VERY GOOD:

Close to precise
consistency

Integrated
partitions

VERY GOOD:
Effective use of

partitioning and
redundancy

VERY GOOD:
New nodes get only

data they need
without changes in
overall database
design

LOW to MEDIUM:
Most queries are

local, but queries
that require data
from multiple sites
can cause a
temporary load

DIFFICULT:
Especially difficult

for queries that
need data from
distributed tables,
and updates must be
tightly coordinated

VERY POOR:
Considerable

effort; and
inconsistencies
not tolerated

Decentralized
with
independent
partitions

GOOD:
Depends on only

local database
availability

GOOD:
New sites independent

of existing ones

LOW:
Little if any need to

pass data or queries
across the network
(if one exists)

VERY GOOD:
Easy for each site,

until there is a
need to share data
across sites

LOW:
No guarantees of

consistency; in
fact, pretty sure
of inconsistency

DISTRIBUTED DBMS

To have a distributed database, there must be a database management system that coordi-
nates the access to data at the various nodes. We will call such a system a distributed DBMS.
Although each site may have a DBMS managing the local database at that site, a distributed
DBMS will perform the following functions (Buretta, 1997; Elmasri and Navathe, 2006):

1. Keep track of where data are located in a distributed data dictionary. This means,
in part, presenting one logical database and schema to developers and users.

2. Determine the location from which to retrieve requested data and the location at
which to process each part of a distributed query without any special actions by
the developer or user.

3. If necessary, translate the request at one node using a local DBMS into the proper
request to another node using a different DBMS and data model and return data
to the requesting node in the format accepted by that node.

4. Provide data management functions such as security, concurrency and deadlock
control, global query optimization, and automatic failure recording and recovery.

5. Provide consistency among copies of data across the remote sites (e.g., by using
multiphase commit protocols).

6. Present a single logical database that is physically distributed. One ramification of
this view of data is global primary key control, meaning that data about the same
business object are associated with the same primary key no matter where in the
distributed database the data are stored, and different objects are associated with
different primary keys.

7. Be scalable. Scalability is the ability to grow, reduce in size, and become more het-
erogeneous as the needs of the business change. Thus, a distributed database must

12-14 Part V • Advanced Database Topics

Clients Clients

Distributed
DBMS

Application
programs

Local
DBMS

Database

site 1

Database

site n

Distributed
DBMS

Application
programs

Local
DBMS

•
•
•

•
•
•

Distributed/
data

repository

Distributed/
data

repository

FIGURE 12-10 Distributed DBMS architecture

be dynamic and be able to change within reasonable limits without having to be
redesigned. Scalability also means that there are easy ways for new sites to be
added (or to subscribe) and to be initialized (e.g., with replicated data).

8. Replicate both data and stored procedures across the nodes of the distributed
database. The need to distribute stored procedures is motivated by the same rea-
sons for distributing data.

9. Transparently use residual computing power to improve the performance of data-
base processing. This means, for example, the same database query may be
processed at different sites and in different ways when submitted at different
times, depending on the particular workload across the distributed database at
the time of query submission.

10. Permit different nodes to run different DBMSs. Middleware (see Chapter 8) can be
used by the distributed DBMS and each local DBMS to mask the differences in
query languages and nuances of local data.

11. Allow different versions of application code to reside on different nodes of the
distributed database. In a large organization with multiple, distributed servers,
it may not be practical to have each server/node running the same version of
software.

Not all distributed DBMSs are capable of performing all of the functions described here.
The first six functions are present in almost every viable distributed DBMS. We have
listed the remaining functions in approximately decreasing order of importance and
how often they are provided by current technologies.

Conceptually, there could be different DBMSs running at each local site, with one
master DBMS controlling the interaction across database parts. Such an environment is
called a heterogeneous distributed database, as defined earlier in the chapter. Although
ideal, complete heterogeneity is not practical today; limited capabilities exist with some
products when each DBMS follows the same data architecture (e.g., relational).

Figure 12-10 shows one popular architecture for a computer system with a distrib-
uted DBMS capability. Each site has a local DBMS that manages the database stored at
that site. Also, each site has a copy of the distributed DBMS and the associated distri-
buted data dictionary/directory (DD/D). The distributed DD/D contains the location
of all data in the network, as well as data definitions. Requests for data by users or

Chapter 12 • Distributed Databases 12-15

Local transaction
In a distributed database, a
transaction that requires reference
only to data that are stored at the
site where the transaction
originates.

Global transaction
In a distributed database, a
transaction that requires reference
to data at one or more nonlocal
sites to satisfy the request.

application programs are first processed by the distributed DBMS, which determines
whether the transaction is local or global. A local transaction is one in which the
required data are stored entirely at the local site. A global transaction requires reference
to data at one or more nonlocal sites to satisfy the request. For local transactions, the dis-
tributed DBMS passes the request to the local DBMS; for global transactions, the distrib-
uted DBMS routes the request to other sites as necessary. The distributed DBMSs at the
participating sites exchange messages as needed to coordinate the processing of the
transaction until it is completed (or aborted, if necessary). This process may be quite
complex, as we will see.

The DBMS (and its data model) at one site may be different from that at another
site; for example, site A may have a relational DBMS, whereas site B has a network
DBMS. In this case, the distributed DBMS must translate the request so that it can be
processed by the local DBMS. The capability for handling mixed DBMSs and data mod-
els is a state-of-the-art development that is beginning to appear in some commercial
DBMS products.

In our discussion of an architecture for a distributed system (Figure 12-10), we
assumed that copies of the distributed DBMS and DD/D exist at each site. (Thus, the
DD/D is itself an example of data replication.) An alternative is to locate the distributed
DBMS and DD/D at a central site, and other strategies are also possible. However, the
centralized solution is vulnerable to failure and therefore is less desirable.

A distributed DBMS should isolate users as much as possible from the complexi-
ties of distributed database management. Stated differently, the distributed DBMS
should make transparent the location of data in the network as well as other features of
a distributed database. Four key objectives of a distributed DBMS, when met, ease the
construction of programs and the retrieval of data in a distributed system. These objec-
tives, which are described next, are location transparency, replication transparency, fail-
ure transparency, and concurrency transparency. To fully understand failure and
concurrency transparency, we also discuss the concept of a commit protocol. Finally, we
describe query optimization, which is an important function of a distributed DBMS.

Location Transparency

Although data are geographically distributed and may move from place to place, with
location transparency, users (including developers) can act as if all the data were located
at a single node. To illustrate location transparency, consider the distributed database in
Figure 12-9. This company maintains warehouses and associated purchasing functions
in San Mateo, California; Tulsa, Oklahoma; and New York City. The company’s engi-
neering offices are in San Mateo, and its sales offices are in New York City. Suppose that
a marketing manager in San Mateo, California, wanted a list of all company customers
whose total purchases exceed $100,000. From a client in San Mateo, with location trans-
parency, the manager could enter the following request:

SELECT *
FROM Customer_T
WHERE TotalSales < 100,000;

Notice that this SQL request does not require the user to know where the data
are physically stored. The distributed DBMS at the local site (San Mateo) will consult
the distributed DD/D and determine that this request must be routed to New York.
When the selected data are transmitted and displayed in San Mateo, it appears to
the user at that site that the data were retrieved locally (unless there is a lengthy
communications delay!).

Now consider a more complex request that requires retrieval of data from more than
one site. For example, consider the Parts logical file in Figure 12-9, which is geographi-
cally partitioned into physically distributed database files stored on computers near their
respective warehouse location: San Mateo parts, Tulsa parts, and New York parts.
Suppose that an inventory manager in Tulsa wishes to construct a list of orange-colored

12-16 Part V • Advanced Database Topics

parts (regardless of location). This manager could use the following query to assemble
this information from the three sites:

SELECT DISTINCT PartNumber, PartName
FROM Part_T
WHERE Color = ‘Orange’
ORDER BY PartNo;

In forming this query, the user need not be aware that the parts data exist at
various sites (assuming location transparency) and that therefore this is a global trans-
action. Without location transparency, the user would have to reference the parts data at
each site separately and then assemble the data (possibly using a UNION operation) to
produce the desired results.

If the DBMS does not directly support location transparency, a database adminis-
trator can accomplish virtual location transparency for users by creating views. (See
Chapter 7 for a discussion of views in SQL.) For the distributed database in Figure 12-9,
the following view virtually consolidates part records into one table:

CREATE VIEW AllParts AS
(SELECT PartNumber, PartName FROM SanMateoPart_T
UNION
SELECT PartNumber, PartName FROM TulsaPart_T
UNION
SELECT PartNumber, PartName FROM NewYorkPart_T);

In this case, the three part table names are synonyms for the tables at three
remote sites.

The preceding examples concern read-only transactions. Can a local user also
update data at a remote site (or sites)? With today’s distributed DBMS products, a user
can certainly update data stored at one remote site, such as the Customer data in this
example. Thus, a user in Tulsa could update bill-of-material data stored in San Mateo.
A more complex problem arises in updating data stored at multiple sites, such as the
Vendor file. We discuss this problem in the next section.

To achieve location transparency, the distributed DBMS must have access to an
accurate and current data dictionary/directory that indicates the location (or locations) of
all data in the network. When the directories are distributed (as in the architecture shown
in Figure 12-9), they must be synchronized so that each copy of the directory reflects the
same information concerning the location of data. Although much progress has been
made, true location transparency is not yet available in most distributed systems today.

Replication Transparency

Although the same data item may be replicated at several nodes in a network, with
replication transparency (sometimes called fragmentation transparency), the developer
(or other user) may treat the item as if it were a single item at a single node.

To illustrate replication transparency, see the Standard Price List table (Figure 12-9).
An identical copy of this file is maintained at all three nodes (full replication). First, con-
sider the problem of reading part (or all) of this file at any node. The distributed DBMS
will consult the data directory and determine that this is a local transaction (i.e., it can
be completed using data at the local site only). Thus, the user need not be aware that the
same data are stored at other sites.

Now suppose that the data are replicated at some (but not all) sites (partial repli-
cation). If a read request originates at a site that does not contain the requested data,
that request will have to be routed to another site. In this case, the distributed DBMS
should select the remote site that will provide the fastest response. The choice of site
will probably depend on current conditions in the network (such as availability of
communications lines). Thus, the distributed DBMS (acting in concert with other

Replication transparency
A design goal for a distributed
database, which says that although
a given data item may be
replicated at several nodes in a
network, a developer or user may
treat the data item as if it were a
single item at a single node. Also
called fragmentation transparency.

Chapter 12 • Distributed Databases 12-17

Transaction manager
In a distributed database, a
software module that maintains a
log of all transactions and an
appropriate concurrency control
scheme.

network facilities) should dynamically select an optimum route. Again, with replication
transparency, the requesting user need not be aware that this is a global (rather than
local) transaction.

A more complex problem arises when one or more users attempt to update repli-
cated data. For example, suppose that a manager in New York wants to change the price
of one of the parts. This change must be accomplished accurately and concurrently at all
three sites, or the data will not be consistent. With replication transparency, the New
York manager can enter the data as if this were a local transaction and be unaware that
the same update is accomplished at all three sites. However, to guarantee that data
integrity is maintained, the system must also provide concurrency transparency and
failure transparency, which we discuss next.

Failure Transparency

Each site (or node) in a distributed system is subject to the same types of failure as in a
centralized system (erroneous data, disk head crash, and so on). However, there is the
additional risk of failure of a communications link (or loss of messages). For a system to
be robust, it must be able to detect a failure, reconfigure the system so that computation
may continue, and recover when a processor or link is repaired.

Error detection and system reconfiguration are probably the functions of the
communications controller or processor, rather than the DBMS. However, the distrib-
uted DBMS is responsible for database recovery when a failure has occurred. The dis-
tributed DBMS at each site has a component called the transaction manager that
performs two functions:

1. Maintains a log of transactions and before and after database images
2. Maintains an appropriate concurrency control scheme to ensure data integrity

during parallel execution of transactions at that site

For global transactions, the transaction managers at each participating site cooper-
ate to ensure that all update operations are synchronized. Without such cooperation,
data integrity can be lost when a failure occurs. To illustrate how this might happen,
suppose (as we did earlier) that a manager in New York wants to change the price of a
part in the Standard Price List file (Figure 12-9). This transaction is global: Every copy of
the record for that part (three sites) must be updated. Suppose that the price list records
in New York and Tulsa are successfully updated; however, due to transmission failure,
the price list record in San Mateo is not updated. Now the data records for this part are
in disagreement, and an employee may access an inaccurate price for that part.

With failure transparency, either all the actions of a transaction are committed
or none of them are committed. Once a transaction occurs, its effects survive hard-
ware and software failures. In the vendor example, when the transaction failed at one
site, the effect of that transaction was not committed at the other sites. Thus, the old
vendor rating remains in effect at all sites until the transaction can be successfully
completed.

Commit Protocol

To ensure data integrity for real-time, distributed update operations, the cooperating
transaction managers execute a commit protocol, which is a well-defined procedure
(involving an exchange of messages) to ensure that a global transaction is either success-
fully completed at each site or else aborted. The most widely used protocol is called a
two-phase commit. A two-phase commit protocol ensures that concurrent transactions
at multiple sites are processed as though they were executed in the same, serial order at
all sites. A two-phase commit works something like arranging a meeting between many
people. First, the site originating the global transaction or an overall coordinating site
(like the person trying to schedule a meeting) sends a request to each of the sites that will
process some portion of the transaction. In the case of scheduling a meeting, the message
might be “Are you available at a given date and time?” Each site processes the subtrans-
action (if possible) but does not immediately commit (or store) the result to the local
database. Instead, the result is stored in a temporary file. In our meeting analogy, each

Failure transparency
A design goal for a distributed
database, which guarantees that
either all the actions of each
transaction are committed or else
none of them is committed.

Commit protocol
An algorithm to ensure that a
transaction is either successfully
completed or aborted.

Two-phase commit
An algorithm for coordinating
updates in a distributed database.

12-18 Part V • Advanced Database Topics

person writes the meeting on his or her calendar in pencil. Each site does, however, lock
(prohibit other updating) its portion of the database being updated (as each person
would prohibit other appointments at the same tentative meeting time). Each site noti-
fies the originating site when it has completed its subtransaction. When all sites have
responded, the originating site now initiates the two-phase commit protocol:

1. A message is broadcast to every participating site, asking whether that site is will-
ing to commit its portion of the transaction at that site. Each site returns an “OK”
or “not OK” message. This would be like a message that each person can or cannot
attend the meeting. This is often called the prepare phase. An “OK” says that the
remote site promises to allow the initiating request to govern the transaction at the
remote database.

2. The originating site collects the messages from all sites. If all are “OK,” it broadcasts
a message to all sites to commit the portion of the transaction handled at each site. If
one or more responses are “not OK,” it broadcasts a message to all sites to abort the
transaction. This is often called the commit phase. Again, our hypothetical meeting
arranger would confirm or abort plans for the meeting, depending on the response
from each person. It is possible for a transaction to fail during the commit phase (i.e.,
between commits among the remote sites), even though it passed the prepare phase;
in this case, the transaction is said to be in limbo. A limbo transaction can be identi-
fied by a timeout or polling. With a timeout (no confirmation of commit for a speci-
fied time period), it is not possible to distinguish between a busy or failed site.
Polling can be expensive in terms of network load and processing time.

This description of a two-phase commit protocol is highly simplified. For a more
detailed discussion of this and other protocols, see Date (2003).

With a two-phase commit strategy for synchronizing distributed data, committing
a transaction is slower than if the originating location were able to work alone. Later
improvements to this traditional approach to two-phase commit are aimed at reducing
the delays caused by the extensive coordination inherent in this approach. Three
improvement strategies have been developed (McGovern, 1993):

1. Read-only commit optimization This approach identifies read-only portions of
a transaction and eliminates the need for confirmation messages on these por-
tions. For example, a transaction might include checking an inventory balance
before entering a new order. The reading of the inventory balance within the
transaction boundaries can occur without the callback confirmation.

2. Lazy commit optimization This approach allows those sites that can update to
proceed to update, and other sites that cannot immediately update are allowed to
“catch up” later.

3. Linear commit optimization This approach permits each part of a transaction to
be committed in sequence, rather than holding up a whole transaction when sub-
transaction parts are delayed from being processed.

Concurrency Transparency

The problem of concurrency control for a single (centralized) database was discussed in
depth in Chapter 11. When multiple users access and update a database, data integrity
may be lost unless locking mechanisms are used to protect the data from the effects of
concurrent updates. The problem of concurrency control is more complex in a distrib-
uted database, because the multiple users are spread out among multiple sites and the
data are often replicated at several sites, as well.

The objective of concurrency management is easy to define but often difficult to
implement in practice. Although the distributed system runs many transactions
concurrently, concurrency transparency allows each transaction to appear as if it were
the only activity in the system. Thus, when several transactions are processed concur-
rently, the results must be the same as if each transaction were processed in serial order.

The transaction managers (introduced previously) at each site must cooperate to
provide concurrency control in a distributed database. Three basic approaches may
be used: locking and versioning, which were explained in Chapter 11 as concurrency

Concurrency transparency
A design goal for a distributed
database, with the property that
although a distributed system runs
many transactions, it appears that a
given transaction is the only
activity in the system. Thus, when
several transactions are processed
concurrently, the results must be
the same as if each transaction
were processed in serial order.

Chapter 12 • Distributed Databases 12-19

Time-stamping
In distributed databases, a
concurrency control mechanism
that assigns a globally unique
time stamp to each transaction.
Time-stamping is an alternative to
the use of locks in distributed
databases.

control methods in any database environment, and time-stamping. A few special
aspects of locking in a distributed database are discussed in Date (2003). The next sec-
tion reviews the time-stamping approach.

TIME-STAMPING With this approach, every transaction is given a globally unique time
stamp, which generally consists of the clock time when the transaction occurred and the
site ID. Time-stamping ensures that even if two events occur simultaneously at differ-
ent sites, each will have a unique time stamp.

The purpose of time-stamping is to ensure that transactions are processed in serial
order, thereby avoiding the use of locks (and the possibility of deadlocks). Every record
in the database carries the time stamp of the transaction that last updated it. If a new
transaction attempts to update that record and its time stamp is earlier than that carried
in the record, the transaction is assigned a new time stamp and restarted. Thus, a trans-
action cannot process a record until its time stamp is later than that carried in the record,
and therefore it cannot interfere with another transaction.

To illustrate time-stamping, suppose that a database record carries the time stamp
168, which indicates that a transaction with time stamp 168 was the most recent transac-
tion to update that record successfully. A new transaction with time stamp 170 attempts
to update the same record. This update is permitted because the transaction’s time
stamp is later than the record’s current time stamp. When the update is committed,
the record time stamp will be reset to 170. Now, suppose instead that a record with time
stamp 165 attempts to update the record. This update will not be allowed because the
time stamp is earlier than that carried in the record. Instead, the transaction time stamp
will be reset to that of the record (168), and the transaction will be restarted.

The major advantage of time-stamping is that locking and deadlock detection
(and the associated overhead) are avoided. The major disadvantage is that the approach
is conservative, in that transactions are sometimes restarted even when there is no con-
flict with other transactions.

Query Optimization

With distributed databases, the response to a query may require the DBMS to assemble
data from several different sites (although with location transparency, the user is
unaware of this need). A major decision for the DBMS is how to process a query, which
is affected by both the way a user formulates a query and the intelligence of the distrib-
uted DBMS to develop a sensible plan for processing. Date (2003) provides an excellent
yet simple example of this problem. Consider the following situation adapted from
Date. A simplified procurement database has the following three tables:

Supplier_T(SupplierNumber,City) 10,000 records, stored in Detroit
Part_T(PartNumber, Color) 100,000 records, stored in Chicago
Shipment_T(SupplierNumber, 1,000,000 records, stored in Detroit

PartNumber)

A query, written in SQL, is made to list the supplier numbers for Cleveland sup-
pliers of red parts:

SELECT Supplier_T.SupplierNumber
FROM Supplier_T, Shipment_T, Part_T
WHERE Supplier_T.City = ‘Cleveland’
AND Shipment_T.PartNumber = Part_T.PartNumber
AND Part_T.Color = ‘Red’;

Each record in each relation is 100 characters long, and there are 10 red parts, a history
of 100,000 shipments from Cleveland, and a negligible query computation time com-
pared with communication time. Also, there is a communication system with a data
transmission rate of 10,000 characters per second and 1-second access delay to send a
message from one node to another. These data rates and times are quite slow compared

12-20 Part V • Advanced Database Topics

to the modern standards, but they are still useful for illustrating the drastic differences
between different query processing strategies.

Date (2003) identifies six plausible strategies for this situation and develops the
associated communication times; these strategies and times are summarized in
Table 12-2. Depending on the choice of strategy, the time required to satisfy the
query ranges from 1 second to 2.3 days! Although the last strategy is best, the fourth
strategy is also acceptable. The technology described in Date’s article is somewhat
dated, but the strategies and the relative times are still valid.

In general, this example indicates that it is often advisable to break a query in a
distributed database environment into components that are isolated at different sites,
determine which site has the potential to yield the fewest qualified records, and then
move this result to another site where additional work is performed. Obviously, more
than two sites require even more complex analyses and more complicated heuristics to
guide query processing.

A distributed DBMS typically uses the following three steps to develop a query
processing plan (Özsu and Valduriez, 1992):

1. Query decomposition In this step, the query is simplified and rewritten into a
structured, relational algebra form.

2. Data localization Here, the query is transformed from a query referencing data
across the network as if the database were in one location into one or more frag-
ments that each explicitly reference data at only one site.

3. Global optimization In this final step, decisions are made about the order in
which to execute query fragments, where to move data between sites, and where
parts of the query will be executed.

Certainly, the design of the database interacts with the sophistication of the distributed
DBMS to yield the performance for queries. A distributed database will be designed
based on the best possible understanding of how and where the data will be used. Given
the database design (which allocates data partitions to one or more sites), however, all
queries, whether anticipated or not, must be processed as efficiently as possible.

One technique used to make processing a distributed query more efficient is to use
a semijoin operation (Elmasri and Navathe, 2006). In a semijoin, only the joining attrib-
ute is sent from one site to another, and then only the required rows are returned. If only
a small percentage of the rows participate in the join, the amount of data being trans-
ferred is minimal.

For example, consider the distributed database in Figure 12-11. Suppose that a
query at site 1 asks to display the CustName, SIC, and OrderDate for all customers in a

Semijoin
A joining operation used with
distributed databases in which
only the joining attribute from one
site is transmitted to the other site,
rather than all the selected
attributes from every qualified row.

TABLE 12-2 Query-Processing Strategies in a Distributed Database Environment

Method Time

Move PART relation to Detroit and process whole query at Detroit computer. 18.7 minutes

Move SUPPLIER and SHIPMENT relations to Chicago and process whole query
at Chicago computer.

28 hours

Join SUPPLIER and SHIPMENT at the Detroit computer, PROJECT these down
to only tuples for Cleveland suppliers, and then for each of these check at
the Chicago computer to determine if the associated PART is red.

2.3 days

PROJECT PART at the Chicago computer down to just the red items, and
for each check at the Detroit computer to see if there is some SHIPMENT
involving that PART and a Cleveland SUPPLIER.

20 seconds

JOIN SUPPLIER and SHIPMENT at the Detroit computer, PROJECT just
SupplierNumber and PartNumber for only Cleveland SUPPLIERs, and
move this qualified projection to Chicago for matching with red PARTs.

16.7 minutes

Select just red PARTs at the Chicago computer and move the result to
Detroit for matching with Cleveland SUPPLIERs.

1 second

Source: Adapted from Date (2003)

Chapter 12 • Distributed Databases 12-21

Site 1

Customer_T table

CustNo

CustName

ZipCode

SIC

Site 2

Order_T table

10,000 rows 400,000 rows

OrderNo

CustNo

OrderDate

OrderAmount

10 bytes

50 bytes

10 bytes

5 bytes

10 bytes

10 bytes

4 bytes

6 bytes

FIGURE 12-11 Distributed
database, with one table at
each of two sites

particular ZipCode range and an OrderAmount above a specified limit. Assume that 10
percent of the customers fall in the ZipCode range and 2 percent of the orders are above
the amount limit. A semijoin would work as follows:

1. A query is executed at site 1 to create a list of the CustNo values in the desired
ZipCode range. So 10 percent of 10,000 customers—1000 rows—satisfy the
ZipCode qualification. Thus, 1000 rows of 10 bytes each for the CustNo attribute
(the joining attribute), or 10,000 bytes, will be sent to site 2.

2. A query is executed at site 2 to create a list of the CustNo and OrderDate values to
be sent back to site 1 to compose the final result. If we assume roughly the same
number of orders for each customer, then 40,000 rows of the Order table will
match with the customer numbers sent from site 1. If we assume that any cus-
tomer order is equally likely to be above the limit, then 800 (2 percent of 40,000) of
the Order table rows are relevant to this query. For each row, the CustNo and
OrderDate need to be sent to site 1, or 14 bytes × 800 rows, thus 11,200 bytes.

The total data transferred is only 21,200 bytes, using the semijoin just described. Compare
this total to simply sending the subset of each table needed at one site to the other site:

• To send data from site 1 to site 2 would require sending the CustNo, CustName,
and SIC (65 bytes) for 1000 rows of the Customer table (65,000 bytes) to site 2.

• To send data from site 2 to site 1 would require sending CustNo and OrderDate
(14 bytes) for 8000 rows of the Order table (112,000 bytes).

Clearly, the semijoin approach saves network traffic, which can be a major contributing
factor to the overall time to respond to a user’s query.

A distributed DBMS uses a cost model to predict the execution time (for data pro-
cessing and transmission) of alternative execution plans. The cost model is performed
before the query is executed based on general network conditions; consequently, the
actual cost may be more or less, depending on the actual network and node loads,
database reorganizations, and other dynamic factors. Thus, the parameters of the cost
model should be periodically updated as general conditions change in the network
(e.g., as local databases are redesigned, network paths are changed, and DBMSs at
local sites are replaced).

Evolution of Distributed DBMSs

Distributed database management is still an emerging, rather than established, technology.
Current releases of distributed DBMS products do not provide all of the features
described in the previous sections. For example, some products provide location trans-
parency for read-only transactions but do not yet support global updates. To illustrate
the evolution of distributed DBMS products, we briefly describe three stages in this
evolution: remote unit of work, distributed unit of work, and distributed request. Then,
in the next section, we summarize the major features of leading distributed DBMSs
(those present in these packages at the time of writing this text).

12-22 Part V • Advanced Database Topics

In the following discussion, the term unit of work refers to the sequence of instructions
required to process a transaction. That is, it consists of the instructions that begin with a
“begin transaction” operation and end with either a “commit” or a “rollback” operation.

REMOTE UNIT OF WORK The first stage allows multiple SQL statements to be origi-
nated at one location and executed as a single unit of work on a single remote DBMS.
Both the originating and receiving computers must be running the same DBMS. The
originating computer does not consult the data directory to locate the site containing
the selected tables in the remote unit of work. Instead, the originating application must
know where the data reside and connect to the remote DBMS prior to each remote unit
of work. Thus, the remote unit of work concept does not support location transparency.

A remote unit of work (also called a remote transaction) allows updates at the sin-
gle remote computer. All updates within a unit of work are tentative until a commit
operation makes them permanent or a rollback undoes them. Thus transaction integrity
is maintained for a single remote site; however, an application cannot assure transaction
integrity when more than one remote location is involved. Referring to the database in
Figure 12-9, an application in San Mateo could update the Part file in Tulsa and transac-
tion integrity would be maintained. However, that application could not simultaneously
update the Part file in two or more locations and still be assured of maintaining transac-
tion integrity. Thus the remote unit of work also does not provide failure transparency.

DISTRIBUTED UNIT OF WORK A distributed unit of work allows various statements within
a unit of work to refer to multiple remote DBMS locations. This approach supports some
location transparency, because the data directory is consulted to locate the DBMS contain-
ing the selected table in each statement. However, all tables in a single SQL statement must
be at the same location. Thus, a distributed unit of work would not allow the following
query, designed to assemble parts information from all three sites in Figure 12-9:

SELECT DISTINCT PartNumber, PartName
FROM Part_T
WHERE Color = ‘ORANGE’
ORDER BY PartNumber;

Similarly, a distributed unit of work would not allow a single SQL statement that
attempts to update data at more than one location. For example, the following SQL
statement is intended to update the part file at three locations:

UPDATE Part_T
SET Unit_Price = 127.49
WHERE PartNumber = 12345;

This update (if executed) would set the unit price of part number 12345 to $127.49 at
Tulsa, San Mateo, and New York (Figure 12-9). The statement would not be acceptable as a
distributed unit of work, however, because the single SQL statement refers to data at more
than one location. The distributed unit of work does support protected updates involving
multiple sites, provided that each SQL statement refers to a table (or tables) at one site only.
For example, suppose in Figure 12-9 we want to increase the balance of part number 12345
in Tulsa and at the same time decrease the balance of the same part in New York (perhaps
to reflect an inventory adjustment). The following SQL statements could be used:

UPDATE Part_T
SET Balance = Balance – 50
WHERE PartNumber = 12345 AND Location = ‘Tulsa’;
UPDATE Part_T
SET Balance = Balance + 50
WHERE PartNumber = 12345 AND Location = ‘New York’;

Chapter 12 • Distributed Databases 12-23

TABLE 12-3 Distribution Capabilities in Key DBMSs

Vendor Product Important Features

IBM • DB2 Data Propagator
• Distributed Relational Database
• Architecture (DRDA)
• DB2 Information Integrator

• Works with DB2; replicates data to “regional transactional” databases
• Primary site and asynchronous updates
• Read-only sites subscribe to primary site
• Supports both distribution and consolidation
• Heterogeneous databases
• Integrates data from multiple types of sources

Sybase • Replication Server
• SQL Anywhere Studio

• Primary site and distributed read-only sites
• Update to read-only site as one transaction
• Hierarchical replication
• Data and stored procedures replicated
• Databases located outside the traditional data center

Oracle • Oracle Streams
• Oracle Advanced Replication

• Sharing data with both Oracle and non-Oracle data stores
• Hub-and-spoke replication
• Synchronous capture for table replication
• Multi-master replication supporting distributed applications

MySQL • Built-in replication capabilities • Scale-out solutions
• Analytics
• Long-distance data distribution

Microsoft • SQL Server 2008 • Multiple types of replication: transactional, merge, and snapshot
• Microsoft Sync Framework

Under the distributed unit of work concept, either this update will be committed
at both locations or it will be rolled back and (perhaps) attempted again. We conclude
from these examples that the distributed unit of work supports some (but not all) of the
transparency features described earlier in this section.

DISTRIBUTED REQUEST The distributed request allows a single SQL statement to refer
to tables in more than one remote DBMS, overcoming a major limitation of the distrib-
uted unit of work. The distributed request supports true location transparency, because
a single SQL statement can refer to tables at multiple sites. However, the distributed
request may or may not support replication transparency or failure transparency. It will
probably be some time before a true distributed DBMS, one that supports all of the
transparency features we described earlier, appears on the market.

DISTRIBUTED DBMS PRODUCTS

Most of the leading vendors of database management systems have distributed versions.
In most cases, to utilize all distributed database capabilities, one vendor’s DBMS must be
running at each node (a homogeneous distributed database environment). Client/server
forms of a distributed database are arguably the most common form in existence today.
In a client/server environment (see Chapter 8 for an explanation of client/server data-
bases), it is very easy to define a database with tables on several nodes in a local or wide
area network. Once a user program establishes a linkage with each remote site, and suit-
able database middleware is loaded, full location transparency is achieved. So, in a
client/server database form, distributed databases are readily available to any informa-
tion systems developer, and heterogeneity of DBMS is possible.

Although their approaches are constantly changing, it is illustrative to overview
how different vendors address distributed database management. Probably the most
interesting aspect is the differences across products. These differences (summarized
in Table 12-3) suggest how difficult it is to select a distributed DBMS product because
the exact capabilities of the DBMS must be carefully matched with the needs of an

12-24 Part V • Advanced Database Topics

organization. Also, with so many options, and with each product handling distributed
data differently, it is almost impossible to outline general principles for managing a
distributed database. The design of any distributed database requires careful analysis
of both the business’s needs and the intricacies of the DBMS. Thompson (1997) also
recommends that a distributed DBMS product should be used only when you really
need a distributed DBMS. Do not use a distributed DBMS to create a backup database
for a mission-critical application; easier technical solutions, such as redundant array
of independent disks (RAID), exist for simpler needs.

Summary

This chapter covered various issues and technologies for
distributed databases. We saw that a distributed data-
base is a single logical database that is spread across
computers in multiple locations, connected by a data
communications network. A distributed database differs
from a decentralized database, in which distributed data
are not interconnected. In a distributed database, the net-
work must allow users to share the data as transparently
as possible, yet must allow each node to operate
autonomously, especially when network linkages are
broken or specific nodes fail. Business conditions today
encourage the use of distributed databases: dispersion
and autonomy of business units (including globalization
of organizations), need for data sharing, and the costs
and reliability of data communications. A distributed
database environment may be homogeneous, involving
the same DBMS at each node, or heterogeneous, with
potentially different DBMSs at different nodes. Also, a
distributed database environment may keep all copies of
data and related data in immediate synchronization or
may tolerate planned delays in data updating through
asynchronous methods.

There are numerous advantages to distributed data-
bases. The most important of these are increased reliabil-
ity and availability of data, local control by users over
their data, modular (or incremental) growth, reduced
communications costs, and faster response to requests for
data. There are also several costs and disadvantages of
distributed databases: Software is more costly and com-
plex, processing overhead often increases, maintaining
data integrity is often more difficult, and if data are not
distributed properly, response to requests for data may
be very slow.

There are several options for distributing data in a
network: data replication, horizontal partitioning, verti-
cal partitioning, and combinations of these approaches.
With data replication, a separate copy of the database (or
part of the database) is stored at each of two or more sites.
Data replication can result in improved reliability and
faster response, can be done simply under certain circum-
stances, allows nodes to operate more independently (yet
coordinated) of each other, and reduces network traffic;
however, additional storage capacity is required, and
immediate updating at each of the sites may be difficult.
Replicated data can be updated by taking periodic snap-
shots of an official record of data and sending the snap-
shots to replicated sites. These snapshots can involve all
data or only the data that have changed since the last
snapshot. With horizontal partitioning, some of the rows

of a relation are placed at one site, and other rows are
placed in a relation at another site (or several sites). On
the other hand, vertical partitioning distributes the
columns of a relation among different sites. The objectives
of data partitioning include improved performance and
security. Combinations of data replication and horizontal
and vertical partitioning are often used. Organizational
factors, frequency and location of queries and transac-
tions, possible growth of data and node, technology, and
the need for reliability influence the choice of a data distri-
bution design.

To have a distributed database, there must be a dis-
tributed DBMS that coordinates the access to data at the
various nodes. Requests for data by users or application
programs are first processed by the distributed DBMS,
which determines whether the transaction is local (can be
processed at the local site), remote (can be processed at
some other site), or global (requires access to data at sev-
eral nonlocal sites). For global transactions, the distrib-
uted DBMS consults the data directory and routes parts
of the request as necessary, and then consolidates results
from the remote sites.

A distributed DBMS should isolate users from the
complexities of distributed database management. By
location transparency, we mean that although data are
geographically distributed, the data appear to users as if
they were all located at a single node. By replication
transparency, we mean that although a data item may be
stored at several different nodes, the user may treat the
item as if it were a single item at a single node. With fail-
ure transparency, either all the actions of a transaction are
completed at each site, or else none of them are commit-
ted. Distributed databases can be designed to allow tem-
porary inconsistencies across the nodes, when immediate
synchronization is not necessary. With concurrency trans-
parency, each transaction appears to be the only activity
in the system. Failure and concurrency transparency can
be managed by commit protocols, which coordinate
updates across nodes, locking data, and time-stamping.

A key decision made by a distributed DBMS is how
to process a global query. The time to process a global
query can vary from a few seconds to many hours,
depending on how intelligent the DBMS is in producing
an efficient query-processing plan. A query-processing
plan involves decomposing the query into a structured
set of steps, identifying different steps with local data at
different nodes in the distributed database, and, finally,
choosing a sequence and location for executing each step
of the query.

Chapter 12 • Distributed Databases 12-25

Chapter Review

Key Terms

Asynchronous distributed
database 12-5

Commit protocol 12-17
Concurrency

transparency 12-18
Decentralized database 12-2

Distributed database 12-1
Failure transparency 12-17
Global transaction 12-15
Local autonomy 12-4
Local transaction 12-15
Location transparency 12-4

Replication transparency
12-16

Semijoin 12-20
Synchronous distributed

database 12-5
Time-stamping 12-19

Transaction manager
12-17

Two-phase commit
12-17

Review Questions

1. Define each of the following terms:
a. distributed database
b. location transparency
c. two-phase commit
d. global transaction
e. local autonomy
f. time-stamping
g. transaction manager

2. Match the following terms to the appropriate definition:
_____ replication

transparency

_____ unit of work

_____ global
transaction

_____ concurrency
transparency

_____ replication

_____ failure
transparency

6. Briefly describe five major characteristics of homogeneous
distributed databases.

7. Briefly describe four major characteristics of heterogeneous
distributed databases.

8. Briefly describe five advantages for distributed databases
compared with centralized databases.

9. Briefly describe four costs and disadvantages of distributed
databases.

10. Briefly describe five advantages to the data replication form
of distributed databases.

11. Briefly describe two disadvantages to the data replication
form of distributed databases.

12. Explain under what circumstances a snapshot replication
approach would be best.

13. Explain under what circumstances a near-real-time replica-
tion approach would be best.

14. Briefly describe five factors that influence whether data
replication is a viable distributed database design strategy
for an application.

15. Explain the advantages and disadvantages of horizontal
partitioning for distributed databases.

16. Explain the advantages and disadvantages of vertical parti-
tioning for distributed databases.

17. Briefly describe five factors that influence the selection of a
distributed database design strategy.

18. Briefly describe six unique functions performed by a dis-
tributed database management system.

19. Briefly explain the effect of location transparency on an
author of an ad hoc database query.

20. Briefly explain the effect of replication transparency on an
author of an ad hoc database query.

21. Briefly explain in what way two-phase commit can still fail
to create a completely consistent distributed database.

22. Briefly describe three improvements to the two-phase commit
protocol.

23. Briefly describe the three steps in distributed query processing.
24. Briefly explain the conditions that suggest the use of a semi-

join will result in faster distributed query processing.

Few (if any) distributed DBMS products provide
all forms of transparency, all forms of data replication
and partitioning, and the same level of intelligence in
distributed query processing. These products are, how-
ever, improving rapidly as the business pressures for

distributed systems increase. Leading vendors of rela-
tional database products have introduced distributed
versions with tools to help a database administrator
design and manage a distributed database.

a. guarantees that all or none of the
updates occur in a transaction
across a distributed database

b. the appearance that a given
transaction is the only transaction
running against a distributed
database

c. treating copies of data as if there
were only one copy

d. references data at more than one
location

e. a sequence of instructions
required to process a transaction

f. a good database distribution
strategy for read-only data

3. Contrast the following terms:
a. distributed database; decentralized database
b. homogeneous distributed database; heterogeneous dis-

tributed database
c. location transparency; local autonomy
d. asynchronous distributed database; synchronous dis-

tributed database
e. horizontal partition; vertical partition
f. full refresh; differential refresh
g. push replication; pull replication
h. local transaction; global transaction

4. Briefly describe six business conditions that are encouraging
the use of distributed databases.

5. Explain two types of homogeneous distributed databases.

12-26 Part V • Advanced Database Topics

Problems and Exercises

Problems and Exercises 1–3 refer to the distributed database shown in
Figure 12-9.
1. Name the type of transparency (location, replication, failure,

concurrency) that is indicated by each statement.
a. End users in New York and Tulsa are updating the

Engineering Parts database in San Mateo at the same
time. Neither user is aware that the other is accessing
the data, and the system protects the data from lost
updates due to interference.

b. An end user in Tulsa deletes an item from the Standard
Price List at the site. Unknown to the user, the distrib-
uted DBMS also deletes that item from the Standard
Price List in San Mateo and New York.

c. A user in San Mateo initiates a transaction to delete a part
from San Mateo parts and simultaneously to add that
part to New York parts. The transaction is completed in
San Mateo but, due to transmission failure, is not com-
pleted in New York. The distributed DBMS automatically
reverses the transaction at San Mateo and notifies the
user to retry the transaction. What if the distributed
DBMS remembers the failed transaction component and
repeats it immediately when New York becomes avail-
able? What risks would this type of approach create?

d. An end user in New York requests the balance on hand
for part number 33445. The user does not know where the
record for this part is located. The distributed DBMS con-
sults the directory and routes the request to San Mateo.

2. Consider the Standard Price List in Figure 12-9.
a. Write an SQL statement that will increase the UnitPrice

of PartNumber 98756 by 10 percent.
b. Indicate whether the statement you wrote in part a is

acceptable under each of the following:
• Remote unit of work
• Distributed unit of work
• Distributed request

3. Consider the four parts databases in Figure 12-9.
a. Write an SQL statement that will increase the Balance in

PartNumber 98765 in Tulsa Parts by 20 percent and
another SQL statement that will decrease the Balance in
PartNumber 12345 in New York Parts by 20 percent.

b. Indicate whether the statement you wrote in part a is
acceptable under each of the following:
• Remote unit of work
• Distributed unit of work
• Distributed request

4. Speculate on why you think a truly heterogeneous distrib-
uted database environment is difficult to achieve. What
specific difficulties exist in this environment?

5. Explain the major factors at work in creating the drastically
different results for the six query-processing strategies out-
lined in Table 12-2.

6. Do any of the six query-processing strategies in Table 12-2
utilize a semijoin? If so, explain how a semijoin is used. If not,
explain how you might use a semijoin to create an efficient
query-processing strategy or why the use of a semijoin will
not work in this situation.

7. Consider the SUPPLIER, PART, and SHIPMENT relations
and distributed database mentioned in the section on query
optimization in this chapter.

a. Write a global SQL query (submitted in Columbus) to
display the PartNumber and Color for every part that is
not supplied by a supplier in Chicago.

b. Design three alternative query-processing strategies for
your answer to part a.

c. Develop a table similar to Table 12-2 to compare the pro-
cessing times for these three strategies.

d. Which of your three strategies was best and why?
e. Would data replication or horizontal or vertical parti-

tioning of the database allow you to create an even more
efficient query-processing strategy? Why or why not?

8. Consider the following normalized relations for a database
in a large retail store chain:

STORE (StoreID, Region, ManagerID, SquareFeet)
EMPLOYEE (EmployeeID, WhereWork,

EmployeeName, EmployeeAddress)
DEPARTMENT (DepartmentID, ManagerID, SalesGoal)
SCHEDULE (DepartmentID, EmployeeID, Date)

Assume that a data communications network links a com-
puter at corporate headquarters with a computer in each
retail outlet. The chain includes 75 stores with an average of
150 employees per store. There are 10 departments in each
store. A daily schedule is maintained for five months (the
previous two months, the current month, and next two
months). Further assume that the following:
• Each store manager updates the employee work sched-

ule for her or his store roughly 10 times per hour.
• An external payroll provider generates all payroll

checks, employee notices, and other mailings for all
employees for all stores.

• The corporation establishes a new sales goal each month
for each department, in collaboration with the respec-
tive store managers.

• The corporation hires and fires store managers and con-
trols all information about store managers; store man-
agers hire and fire all store employees and control all
information about employees in that store.
a. Would you recommend a distributed database, a

centralized database, or a set of decentralized data-
bases for this retail store chain?

b. Assuming that some form of distributed database is
justified, what would you recommend as a data dis-
tribution strategy for this retail store chain?

Problems and Exercises 9 through 14 refer to the Fitchwood Insurance
Company, a case study introduced in the Problems and Exercises for
Chapter 9.

9. Assume that the data mart needs to be accessed by Fitchwood’s
main office as well as its service center in Florida. Keeping
in mind that data are updated weekly, would you recom-
mend a distributed database, a centralized database, or
set of decentralized databases? State any assumptions.

10. Assuming that a distributed database is justified, what
would you recommend for a data distribution strategy?
Justify your decision.

11. Explain how you would accomplish weekly updates of the
data mart if a distributed database were justified.

Chapter 12 • Distributed Databases 12-27

12. The sales and marketing organization would like to enable
agents to access the data mart in order to produce commission
reports and to follow up on clients. Assuming that there are
30 different offices, what strategy would you recommend for
distributing the data mart? What if there were 150 of them?

13. How would your strategy change for Problem and Exercise
12 if management did not want agents to have a copy of any
data but their own? Explain how you would accomplish this.

14. How would your overall distribution strategy differ if this
were an OLTP system instead of a data mart?

15. Research the Web for relevant articles on Web services and
how they may impact distributed databases. Report on your
findings.

Problems and Exercises 16
through 23 relate to the Pine
Valley Furniture Company case
study discussed throughout
the text.

16. Pine Valley Furniture has opened up another office for
receiving and processing orders. This office will deal exclu-
sively with customers west of the Mississippi River. The
order processing center located at the manufacturing plant
will process orders for customers west of the Mississippi
River as well as international customers. All products will
still be shipped to customers from the manufacturing facil-
ity; thus, inventory levels must be accessed and updated
from both offices. Would you recommend a distributed
database or a centralized database? Explain you answer.

17. Management would like to consider utilizing one centralized
database at the manufacturing facility that can be accessed
via a wide area network from the remote order processing
center. Discuss the advantages and disadvantages of this.

18. Assuming that management decides on a distributed data-
base, what data distribution strategy would you recommend?

19. Certain items are available to only international customers
and customers on the East Coast. How would this change
your distribution strategy?

20. Management has decided to add an additional warehouse
for customers west of the Mississippi. Items that are
not custom built are shipped from this warehouse.
Custom-built and specialty items are shipped from the
manufacturing facility. What additional tables and changes
in distribution strategy, if any, would be needed in order to
accommodate this?

21. Assume that PVFC has expanded its operations signifi-
cantly and added sales offices in both Stuttgart, Germany,
and Moscow, Russia. Each of these sales offices has about
10 staff members, and their primary role is to manage the
collaboration between PVFC and its regional distributors
in their respective areas and take care of order processing
for the region. What additional factors should PVFC take
into account in designing its data distribution strategy
compared to the scenario presented in Problem and
Exercise 16?

22. How would your database distribution strategy planning
process change if you could assume that you have unlim-
ited, error-free bandwidth between all the locations from
which the data have to be accessed?

23. Assume that an organization operates using a model in
which most of its employees are either telecommuting from
home or working from client sites all the time. What type of
impact would this model operation have on the selection of
your data distribution strategies?

Field Exercises

1. Visit an organization that has installed a distributed data-
base management system. Explore the following questions:
a. Does the organization have a truly distributed data-

base? If so, how are the data distributed: via replication,
horizontal partitioning, or vertical partitioning?

b. What commercial distributed DBMS products are used?
What were the reasons the organization selected these
products? What problems or limitations has the organi-
zation found with these products?

c. To what extent does this system provide each of the
following:
• Location transparency
• Replication transparency
• Concurrency transparency
• Failure transparency
• Query optimization

d. What are the organization’s plans for future evolution of
its distributed databases?

e. Talk with a database administrator in the organization to
explore how decisions are made concerning the location
of data in the network. What factors are considered in
this decision? Are any analytical tools used? If so, is the
database administrator satisfied that the tools help to
make the processing of queries efficient?

2. Investigate the latest distributed database product offerings
from the DBMS vendors mentioned in this chapter. Update
the description of the features for one of the distributed
DBMS products listed. Search for distributed DBMS prod-
ucts from other vendors and include information about
these products in your answer.

3. Visit an organization that has installed a client/server data-
base environment. Explore the following questions:
a. What distributed database features do the client/server

DBMSs in use offer?
b. Is the organization attempting to achieve the same ben-

efits from a client/server environment as are outlined in
this chapter for distributed databases? Which of these
benefits are they achieving? Which cannot be achieved
with client/server technologies?

4. Visit an organization that uses a large-scale enterprise sys-
tem (such as an ERP, SCM, or CRM) from multiple locations.
Find out what type of a database distribution approach the
organization has chosen to adopt.

5. Find examples of cases in which the emergence of fast
Internet-based virtual private networks has changed the
context for designing data distribution strategies.

12-28 Part V • Advanced Database Topics

Further Reading

Edelstein, H. 1995. “The Challenge of Replication, Part II.” DBMS
8,4 (April): 62–70, 103.

Web Resources

http://databases.about.com
Web site that contains a variety of news and reviews about var-

ious database technologies, including distributed databases.
http://dsonline.computer.org
The IEEE Web site, which provides material regarding various

aspects of distributed computing, including distributed

databases in a section that focuses on this topic area. The
newest material is available through IEEE’s Computing
Now (http://computingnow.computer.org).

References

Bell, D., and J. Grimson. 1992. Distributed Database Systems.
Reading, MA: Addison-Wesley.

Buretta, M. 1997. Data Replication: Tools and Techniques for
Managing Distributed Information. New York: Wiley.

Date, C. J. 2003. An Introduction to Database Systems, 8th ed.
Reading, MA: Addison-Wesley.

Edelstein, H. 1993. “Replicating Data.” DBMS 6, 6 (June): 59–64.
Edelstein, H. 1995. “The Challenge of Replication, Part I.”

DBMS 8,3 (March): 46–52.
Elmasri, R., and S. Navathe. 2006. Fundamentals of Database

Systems, 5th ed. Menlo Park, CA: Benjamin Cummings.
Froemming, G. 1996. “Design and Replication: Issues with

Mobile Applications—Part 1.” DBMS 9,3 (March): 48–56.

Koop, P. 1995. “Replication at Work.” DBMS 8,3 (March):
54–60.

McGovern, D. 1993. “Two-Phased Commit or Replication.”
Database Programming & Design 6,5 (May): 35–44.

Özsu, M. T., and P. Valduriez. 1992. “Distributed Database
Systems: Where Were We?” Database Programming &
Design 5,4 (April): 49–55.

Thé, L. 1994. “Distribute Data without Choking the Net.”
Datamation 40,1 (January 7): 35–38.

Thompson, C. 1997. “Database Replication: Comparing Three
Leading DBMS Vendors’ Approaches to Replication.”
DBMS 10,5 (May): 76–84.

http://databases.about.com
http://computingnow.computer.org
http://dsonline.computer.org

13
C H A P T E R

Object-Oriented Data Modeling

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following key terms: class, object, state, behavior, class
diagram, object diagram, operation, encapsulation, constructor operation, query
operation, update operation, class-scope operation, association, association role,
multiplicity, association class, abstract class, concrete class, class-scope attribute,
abstract operation, method, polymorphism, overriding, multiple classification,
aggregation, and composition.

� Describe the activities in the different phases of the object-oriented development
life cycle.

� State the advantages of object-oriented modeling vis-à-vis structured approaches.
� Compare the object-oriented model with the E-R and EER models.
� Model a real-world domain by using a Unified Modeling Language (UML) class

diagram
� Provide a snapshot of the detailed state of a system at a point in time, using a UML

object diagram.
� Recognize when to use generalization, aggregation, and composition relationships.
� Specify different types of business rules in a class diagram.

INTRODUCTION

In Chapters 2 and 3, you learned about data modeling using the E-R and
EER models. In those chapters, you discovered how to model the data needs of an
organization using entities, attributes, and a wide variety of relationships. In this
chapter, you will be introduced to the object-oriented model, which is becoming
increasingly popular because of its ability to thoroughly represent complex
relationships, as well as to represent data and system behavior in a consistent,
integrated notation. Fortunately, most of the concepts you learned in those
chapters correspond to concepts in object-oriented modeling, but the object-
oriented model has even more expressive power than the EER model.

As you learned in Chapters 2 and 3, a data model is an abstraction of the real
world. It allows you to deal with the complexity inherent in a real-world problem by
focusing on the essential and interesting features of the data an organization
needs. An object-oriented model is built around objects, just as the E-R model is
built around entities. However, an object encapsulates both data and behavior,
implying that we can use the object-oriented approach not only for data modeling,

13-1

13-2 Part V • Advanced Database Topics

- system architecture
- subsystems

Implementation

Object Design

System Design

- data structures
- algorithms
- controls

- programming
- database access

Analysis

- application
- what

FIGURE 13-1 Phases of the
object-oriented systems
development cycle

but also for modeling system behavior. To thoroughly model any real-world system,
you need to model both the data and the processes and behavior that act on the
data (recall the discussion in Chapter 1 about information planning objects). By
allowing you to capture them together within a common representation, and by
offering benefits such as inheritance and code reuse, the object-oriented modeling
approach provides a powerful environment for developing complex systems.

The object-oriented systems development cycle, depicted in Figure 13-1,
consists of progressively and iteratively developing object representation through
three phases—analysis, design, and implementation—similar to the heart of the
systems development life cycle explained in Chapter 1. In an iterative development
model, the focus shifts from more abstract aspects of the development process
(Analysis) to the more concrete ones over the lifetime of a project. Thus, in the
early stages of development, the model you develop is abstract, focusing on
external qualities of the system. As the model evolves, it becomes more and more
detailed, the focus shifting to how the system will be built and how it should
function. The emphasis in modeling should be on analysis and design, focusing on
front-end conceptual issues rather than back-end implementation issues that
unnecessarily restrict design choices (Larman, 2004).

In the analysis phase, you develop a model of a real-world application, showing
its important properties. The model abstracts concepts from the application domain
and describes what the intended system must do, rather than how it will be done. It
specifies the functional behavior of the system independent of concerns relating to
the environment in which it is to be finally implemented. You need to devote
sufficient time to clearly understand the requirements of the problem, while
remembering that in the iterative development models, analysis activities will
be revisited multiple times during a development project so that you can apply the
lessons learned from the early stage design and implementation activities to
analysis. Please note that during the analysis activities, your focus should be on
analyzing and modeling the real world domain of interest, not the internal
characteristics of the software system.

In the object-oriented design phase, you define how the application-oriented
analysis model will be realized in the implementation environment. Therefore, your
focus will move to modeling the software system, which will be very strongly
informed by the models that you created during the analysis activities. Jacobson et al.
(1992) cite three reasons for using object-oriented design:

1. The analysis model is not formal enough to be implemented directly in a pro-
gramming language. Moving seamlessly into the source code requires refin-
ing the objects by making decisions about what operations an object will
provide, what the communication between objects should look like, what
messages are to be passed, and so forth.

Chapter 13 • Object-Oriented Data Modeling 13-3

2. The system must be adapted to the environment in which the system will
actually be implemented. To accomplish that, the analysis model has to be
transformed into a design model, considering different factors such as per-
formance requirements, real-time requirements and concurrency, the target
hardware and systems software, the DBMS and programming language to be
adopted, and so forth.

3. The analysis results can be validated using object-oriented design. At this
stage, you can verify whether the results from the analysis are appropriate for
building the system and make any necessary changes to the analysis model
during the next iteration of the development cycle.

To develop the design model, you must identify and investigate the consequences
that the implementation environment will have on the design. All strategic design
decisions, such as how the DBMS is to be incorporated, how process communications
and error handling are to be achieved, what component libraries are to be reused,
are made. Next, you incorporate those decisions into a first-cut design model that
adapts to the implementation environment. Finally, you formalize the design model
to describe how the objects interact with one another for each conceivable scenario.

Within each iteration, the design activities are followed by implementation
activities (i.e., implementing the design using a programming language and/or a
database management system). If the design was done well, translating it into
program code is a relatively straightforward process, given that the design model
already incorporates the nuances of the programming language and the DBMS.

Coad and Yourdon (1991) identify several motivations and benefits of object-
oriented modeling:

• The ability to tackle more challenging problem domains
• Improved communication between the users, analysts, designers, and programmers
• Increased consistency among analysis, design, and programming activities
• Explicit representation of commonality among system components
• Robustness of systems
• Reusability of analysis, design, and programming results
• Increased consistency among all the models developed during object-oriented

analysis, design, and programming

The last point needs further elaboration. In other modeling approaches, such as
structured analysis and design (described in Chapter 1), the models that are
developed lack a common underlying representation and, therefore, are very weakly
connected. For example, there is no well-defined underlying conceptual structure
linking data flow diagrams used for analysis and structure charts used for design in
traditional structured analysis and design. In contrast to the abrupt and disjoint
transitions that the earlier approaches suffer from, the object-oriented approach
provides a continuum of representation from analysis to design to implementation,
engendering a seamless transition from one model to another. For instance, the
object-oriented analysis model is typically used almost directly as a foundation for the
object-oriented design model instead of developing a whole new representation.

In this chapter, we present object-oriented data modeling as a high-level
conceptual activity. As you will learn in Chapter 14, a good conceptual model is
invaluable for designing and implementing an object-oriented application that uses
a relational database for providing persistence for the objects.

UNIFIED MODELING LANGUAGE

Unified Modeling Language (UML) is a set of graphical notations backed by a common
metamodel that is widely used both for business modeling and for specifying, designing,
and implementing software systems artifacts. It culminated from the efforts of three leading
experts, Grady Booch, Ivar Jacobson, and James Rumbaugh, who defined this object-
oriented modeling language that has become an industry standard. UML builds upon and
unifies the semantics and notations of the Booch (Booch, 1994), OOSE (Jacobson et al., 1992),

13-4 Part V • Advanced Database Topics

and OMT (Rumbaugh et al., 1991) methods, as well as those of other leading methods.
UML has recently been updated to UML 2.2, maintained by the Object Management Group.
UML notation is useful for graphically depicting an object-oriented analysis or design
model. It not only allows you to specify the requirements of a system and capture the
design decisions, it also promotes communication among key persons involved in the
development effort. A developer can use an analysis or design model expressed in the UML
notation as a means to communicate with domain experts, users, and other stakeholders.

For representing a complex system effectively, the model you develop must consist
of a set of independent views or perspectives. UML allows you to represent multiple
perspectives of a system by providing different types of graphical diagrams, such as the
use-case diagram, class diagram, state diagram, sequence diagram, component diagram,
and deployment diagram. If these diagrams are used correctly together in the context of
a well-defined modeling process, UML allows you to analyze, design, and implement a
system based on one consistent conceptual model.

Because this text is about databases, we will describe only the class diagram, which
is one of the static diagrams in UML, addressing primarily structural characteristics
of the domain of interest. The class diagram allows us also to capture the responsibili-
ties that classes can perform, without any specifics of the behaviors. We will not
describe the other diagram types because they provide perspectives that are not directly
related to a database system. Keep in mind that a database system is usually part of an
overall system, whose underlying model should encompass all the different perspec-
tives. For a discussion of other UML diagrams, see Hoffer et al. (2010) and George et al.
(2007). It is important to note that the UML class diagrams can be used for multiple
purposes at various stages of the life cycle model.

OBJECT-ORIENTED DATA MODELING

In this section, we introduce you to object-oriented data modeling. We describe the
main concepts and techniques involved in object-oriented modeling, including objects
and classes; encapsulation of attributes and operations; association, generalization, and
aggregation relationships; cardinalities and other types of constraints; polymorphism;
and inheritance. We show how you can develop class diagrams, using the UML nota-
tion, to provide a conceptual view of the system being modeled.

Representing Objects and Classes

In the object-oriented approach, we model the world in objects. Before applying the
approach to a real-world problem, therefore, we need to understand what an object
really is. A class is an entity type that has a well-defined role in the application domain
about which the organization wishes to maintain state, behavior, and identity. A class is
a concept, an abstraction, or a thing that makes sense in an application context (Blaha
and Rumbaugh, 2005). A class could represent a tangible or visible entity type (e.g., a
person, place, or thing); it could be a concept or an event (e.g., Department, Performance,
Marriage, Registration, etc.); or it could be an artifact of the design process (e.g., User
Interface, Controller, Scheduler, etc.). An object is an instance of a class (e.g., a particular
person, place, or thing) that encapsulates the data and behavior we need to maintain
about that object. A class of objects shares a common set of attributes and behaviors.

You might be wondering how classes and objects are different from entity types
and entity instances in the E-R and EER models you studied in Chapters 2 and 3.
Clearly, entity types in the E-R model can be represented as classes and entity instances
as objects in the object model. But, in addition to storing a state (information), an object
also exhibits behavior, through operations that can examine or affect its state.

The state of an object encompasses its properties (attributes and relationships) and
the values those properties have, and its behavior represents how an object acts
and reacts (Booch, 1994). Thus, an object’s state is determined by its attribute values and
links to other objects. An object’s behavior depends on its state and the operation being
performed. An operation is simply an action that one object performs in order to give a
response to a request. You can think of an operation as a service provided by an object
(supplier) to its clients. A client sends a message to a supplier, which delivers the
desired service by executing the corresponding operation.

Class
An entity type that has a well-
defined role in the application
domain about which the
organization wishes to maintain
state, behavior, and identity.

Object
An instance of a class that
encapsulates data and behavior.

State
An object’s properties (attributes
and relationships) and the values
those properties have.

Behavior
The way in which an object
acts and reacts.

name = Mary Jones
dateOfBirth = 4/15/88
year = junior

Mary Jones: Student

crseCode = MIS385
crseTitle = Database Mgmt
creditHrs = 3

:Course

. . .

Chapter 13 • Object-Oriented Data Modeling 13-5

Consider an example of the Student class and a particular object in this class, Mary
Jones. The state of this object is characterized by its attributes, say, name, date of birth, year,
address, and phone, and the values these attributes currently have. For example, name is
“Mary Jones,” year is “junior,” and so on. The object’s behavior is expressed through
operations such as calcGpa, which is used to calculate a student’s current grade point aver-
age. The Mary Jones object, therefore, packages its state and its behavior together.

Every object has a persistent identity; that is, no two objects are the same. For
example, if there are two Student instances with the same value of an identifier attribute,
they are still two different objects. Even if those two instances have identical values for
all the identifying attributes of the object, the objects maintain their separate identities.
At the same time, an object maintains its own identity over its life. For example, if Mary
Jones gets married and, thus, the values of the attributes name, address, and phone
change for her, she will still be represented by the same object.

You can depict the classes graphically in a class diagram as in Figure 13-2a. A class
diagram shows the static structure of an object-oriented model: the classes, their internal
structure, and the relationships in which they participate. In UML, a class is represented
by a rectangle with three compartments separated by horizontal lines. The class name
appears in the top compartment, the list of attributes in the middle compartment, and
the list of operations in the bottom compartment of a box. The figure shows two classes,
Student and Course, along with their attributes and operations.

The Student class is a group of Student objects that share a common structure and a
common behavior. All students have in common the properties of name, dateOfBirth, year,
address, and phone. They also exhibit common behavior by sharing the calcAge, calcGpa,
and registerFor(course) operations. A class, therefore, provides a template or schema for its
instances. Each object knows to which class it belongs; for example, the Mary Jones object
knows that it belongs to the Student class. Objects belonging to the same class may also par-
ticipate in similar relationships with other objects; for example, all students register for
courses and, therefore, the Student class can participate in a relationship called Registers For
with another class called Course (see the later section on association).

An object diagram, also known as an instance diagram, is a graph of instances that
are compatible with a given class diagram. In Figure 13-2b, we have shown an object
diagram with two instances, one for each of the two classes that appear in Figure 13-2a.

Class diagram
A diagram that shows the static
structure of an object-oriented
model: the object classes, their
internal structure, and the
relationships in which they
participate.

crseCode
crseTitle
creditHrs

enrollment()

CourseStudent

name
dateOfBirth
year
address
phone

calcAge()
calcGpa()
registerFor(course)

Class name

List of
attributes

List of
operations

FIGURE 13-2 UML class and
object diagrams
(a) Class diagram showing
two classes

(b) Object diagram with
two instances

Object diagram
A graph of objects that are
compatible with a given
class diagram.

13-6 Part V • Advanced Database Topics

A static object diagram, such as the one shown in the figure, is an instance of a class
diagram, providing a snapshot of the detailed state of a system at a point in time.

In an object diagram, an object is represented as a rectangle with two compartments.
The names of the object and its class are underlined and shown in the top compartment
using the following syntax:

objectname : classname

The object’s attributes and their values are shown in the second compartment. For
example, we have an object called Mary Jones that belongs to the Student class. The values
of the name, dateOfBirth, and year attributes are also shown. Attributes whose values are
not of interest to you may be suppressed; for example, we have not shown the address and
phone attributes for Mary Jones. If none of the attributes are of interest, the entire second
compartment may be suppressed. The name of the object may also be omitted, in which case
the colon should be kept with the class name as we have done with the instance of Course. If
the name of the object is shown, the class name, together with the colon, may be suppressed.

The object model permits multivalued, composite, derived, and other types of
attributes. The typical notation is to preface the attribute name with a stereotype symbol
that indicates its property (e.g., <<Multivalued>> for a multivalued attribute). For com-
posite attributes, the composite is defined as a separate class and then any attribute with
that composite structure is defined as a data type of the composite class. For example,
just as we define the Student class, we could define a class called Address that is com-
posed of street, city, state, and zip attributes. Then, in Figure 13-2a, if the address attrib-
ute were such a composite attribute, we would replace the address attribute line in the
Student class with, for example,

stuAddress : Address

which indicates that the stuAddress attribute is of type Address. This is a powerful
feature of the object model, in which we can reuse previously defined structures.

An operation, such as calcGpa in Student (see Figure 13-2a), is a function or a
service that is provided by all the instances of a class. Typically, other objects can access
or manipulate the information stored in an object only through such operations.
The operations, therefore, provide an external interface to a class; the interface presents the
outside view of the class without showing its internal structure or how its operations are
implemented. This technique of hiding the internal implementation details of an object
from its external view is known as encapsulation, or information hiding. So although we
provide the abstraction of the behavior common to all instances of a class in its interface,
we encapsulate within the class its structure and the secrets of the desired behavior.

Types of Operations

Operations can be classified into four types, depending on the kind of service requested
by clients: (1) constructor, (2) query, (3) update, and (4) class-scope (UML Notation
Guide, 2003). A constructor operation creates a new instance of a class. For example, you
can have an operation called Student within Student that creates a new student and ini-
tializes its state. Such constructor operations are available to all classes and are therefore
not explicitly shown in the class diagram.

A query operation is an operation without any side effects; it accesses the state of
an object but does not alter the state (Fowler, 2003). For example, the Student class can
have an operation called getYear (not shown), which simply retrieves the year (fresh-
man, sophomore, junior, or senior) of the Student object specified in the query. Note
that there is no need to explicitly show a query such as getYear in the class diagram
because it retrieves the value of an independent base attribute. Consider, however, the
calcAge operation within Student. This is also a query operation because it does not
have any side effects. Note that the only argument for this query is the target Student
object. Such a query can be represented as a derived attribute (Blaha and Rumbaugh,
2005); for example, we can represent “age” as a derived attribute of Student. Because

Operation
A function or a service that is
provided by all the instances
of a class.

Encapsulation
The technique of hiding the
internal implementation details of
an object from its external view.

Constructor operation
An operation that creates a
new instance of a class.

Query operation
An operation that accesses the
state of an object but does not
alter the state.

Chapter 13 • Object-Oriented Data Modeling 13-7

the target object is always an implicit argument of an operation, there is no need
to show it explicitly in the operation declaration. In standard object-oriented
programming terminology, the methods that are used to gain read access to a value of
an object’s internal attribute are called getter methods, and they belong to the category
of accessor methods.

An update operation alters the state of an object. For example, consider an operation
of Student called promoteStudent (not shown). The operation promotes a student to a new
year, say, from junior to senior, thereby changing the Student object’s state (value of the
attribute year). Another example of an update operation is registerFor(course), which,
when invoked, has the effect of establishing a connection from a Student object to a specific
Course object. Note that, in addition to having the target Student object as an implicit argu-
ment, the operation has an explicit argument called “course,” which specifies the course
for which the student wants to register. Explicit arguments are shown within parentheses.
Again, in standard object-oriented programming terminology, the methods that are used
to changes the value of an object’s internal attribute are called setter, or mutator, methods.

A class-scope operation is an operation that applies to a class rather than an object
instance. For example, avgGpa for the Student class (not shown with the other operations
for this class in Figure 13-2a) calculates the average grade point average across all students.
(The operation name is underlined to indicate that it is a scope operation.) In object-ori-
ented programming, class-scope operations are implemented with class methods.

Representing Associations

Parallel to the definition of a relationship for the E-R model, an association is a named rela-
tionship between or among instances of object classes. As in the E-R model, the degree of
an association relationship may be one (unary), two (binary), three (ternary), or higher
(n-ary). In Figure 13-3, we use examples from Figure 2-12 to illustrate how the object-
oriented model can be used to represent association relationships of different degrees. An
association is shown as a solid line between the participating classes. The end of an associ-
ation where it connects to a class is called an association role (Rumbaugh et al., 2004). Each
association has two or more roles. A role may be explicitly named with a label near the end
of an association (see the “manager” role in Figure 13-3a). The role name indicates the role
played by the class attached to the end near which the name appears. Use of role names is
optional. You can specify role names in place of, or in addition to, an association name.

Figure 13-3a shows two unary relationships, Is Married To and Manages. At one end
of the Manages relationship, we have named the role “manager,” implying that an
employee can play the role of a manager. We have not named the other roles, but we have
named the associations. When the role name does not appear, you may think of the role
name as being that of the class attached to that end (Fowler, 2003). For example, the role for
the right end of the Is Assigned relationship in Figure 13-3b could be called parking place.

Each role has a multiplicity, which indicates the number of objects that partici-
pate in a given relationship. In a class diagram, a multiplicity specification is shown as
a text string representing an interval (or intervals) of integers in the following format:

lower-bound..upper-bound

The interval is considered to be closed, which means that the range includes both the
lower and upper bounds. For example, a multiplicity of 2..5 denotes that a minimum
of two and a maximum of five objects can participate in a given relationship.
Multiplicities, therefore, are simply cardinality constraints (discussed in Chapter 2). In
addition to integer values, the upper bound of a multiplicity can be a star character (*),
which denotes an infinite upper bound. If a single integer value is specified, it means
that the range includes only that value.

The most common multiplicities, in practice, are 0..1, *, and 1. The 0..1 multiplicity
indicates a minimum of zero and a maximum of one (optional one), whereas *
(or equivalently, 0..*) represents the range from zero to infinity (optional many).
A single 1 stands for 1..1, implying that exactly one object participates in the relation-
ship (mandatory one).

Update operation
An operation that alters the
state of an object.

Class-scope operation
An operation that applies to a class
rather than to an object instance.

Association
A named relationship between
or among object classes.

Association role
The end of an association, where
it connects to a class.

Multiplicity
A specification that indicates
how many objects participate
in a given relationship.

13-8 Part V • Advanced Database Topics

The multiplicities for both roles in the Is Married To relationship are 0..1, indicating
that a person may be single or married to one person. The multiplicity for the manager
role in the Manages relationship is 0..1 and that for the other role is *, implying that an
employee may be managed by only one manager, but a manager may manage many
employees.

Figure 13-3b shows three binary relationships: Is Assigned (one-to-one), Contains
(one-to-many), and Registers For (many-to-many). A binary association is inherently
bidirectional, though in a class diagram, the association name can be read in only one
direction. For example, the Contains association is read from Product Line to Product.
(Note: As in this example, you may show the direction explicitly by using a solid trian-
gle next to the association name.) Implicit, however, is an inverse traversal of Contains,
say, Belongs To, which denotes that a product belongs to a particular product line. Both
directions of traversal refer to the same underlying association; the name simply
establishes a direction. The diagram for the Is Assigned relationship shows that an
employee is assigned a parking place or not assigned one at all (optional one). Reading
in the other direction, we say that a parking place has either been allocated for a single
employee or not allocated at all (optional one again). Similarly, we say that a product

Person

0..1

Is Married To

0..1

ManagesEmployee

manager

*

0..1

FIGURE 13-3 Examples of
association relationships of
different degrees
(a) Unary relationships

One-to-one

One-to-many

Employee Parking
Place

Student Course

Product
Line

Product

Many-to-many

Is Assigned

Contains

Registers For

0..1

1

*

0..1

1..*

*

Part

WarehouseSupplies

*

* *Vendor

(b) Binary relationships

(c) Ternary relationship

Chapter 13 • Object-Oriented Data Modeling 13-9

Teaches

advisor

instructor

advisees

Registers For Scheduled For

0..10

1

1,2

* * *

*

0..1
Faculty

Course
Offering

CourseStudent

FIGURE 13-4 Examples
of binary association
relationships
(a) University example

line contains many products, but at least one, whereas a given product belongs to
exactly one product line (mandatory one). The diagram for the third binary association
states that a student registers for multiple courses, but it is possible that he or she does
not register at all, and a course has zero, one, or multiple students enrolled in it
(optional many in both directions).

In Figure 13-3c, we show a ternary relationship called Supplies among Vendor,
Part, and Warehouse. As in the E-R diagram, we represent a ternary relationship using
a diamond symbol and place the name of the relationship there. The relationship is
many-to-many-to-many, and, as discussed in Chapter 2, it cannot be replaced by three
binary relationships without loss of information.

The class diagram in Figure 13-4a shows binary associations between Student and
Faculty, between Course and Course Offering, between Student and Course Offering,
and between Faculty and Course Offering. The diagram shows that a student may have
an advisor, whereas a faculty member may advise up to a maximum of 10 students.
Also, although a course may have multiple offerings, a given course offering is sched-
uled for exactly one course.

Figure 13-4a also shows that a faculty member plays the role of an instructor, as
well as the role of an advisor. Whereas the advisor role identifies the Faculty object
associated with a Student object, the advisee role identifies the set of Student objects
associated with a Faculty object. We could have named the association, say, Advises,
but, in this case, the role names are sufficiently meaningful to convey the semantics of
the relationship.

Figure 13-4b shows another class diagram for a customer order. The correspon-
ding object diagram is presented in Figure 13-5; it shows some of the instances of the
classes and the links among them. (Note: Just as an instance corresponds to a class, a
link corresponds to a relationship.) In this example, we see the orders placed by two
customers, Joe and Jane. Joe has placed two orders, Ord20 and Ord56. In Ord20, Joe has
ordered product P93 from the sports product line. In Ord56, he has ordered the same

(b) Customer order example

Places

Requests

1..*

*

*

1 1

1..*

Includes

Product

Product
Line

Customer

Order

13-10 Part V • Advanced Database Topics

sports product again, as well as product P50 from the hardware product line. Notice
that Jane has ordered the same hardware product as Joe has, in addition to two other
products (P9 and P10) from the cosmetics product line.

Representing Association Classes

When an association itself has attributes or operations of its own, or when it participates
in relationships with other classes, it is useful to model the association as an association
class (just as we used an “associative entity” in Chapter 2). For example, in Figure 13-6a,
the attributes term and grade really belong to the many-to-many association between
Student and Course. The grade of a student for a course cannot be determined unless
both the student and the course are known. Similarly, to find the term(s) in which the
student took the course, both student and course must be known. The checkEligibility

Association class
An association that has attributes
or operations of its own or that
participates in relationships with
other classes.

Requests

Includes

Places

Places

Places

Requests

Requests

Requests

Requests

Includes
Includes

Includes

Requests

Hardware:
Product Line

Cosmetics:
Product Line

P10: ProductP9: ProductP50: Product

Ord56: Order

Sports:
Product LineJoe: Customer

Ord45: Order

Jane: Customer

Ord20: Order P93: Product

FIGURE 13-5 Object diagram for the customer order example

Chapter 13 • Object-Oriented Data Modeling 13-11

tutor

Issues
0..1

* *

*

*pupil
Tutors

Student
*

Course

acctID
password
serverSpace

Computer Account

checkEligibility()

term
grade

Registration

beginDate
numberOfHrs

FIGURE 13-6 Association
class and link object
(a) Class diagram showing
association classes

operation, which determines whether a student is eligible to register for a given course,
also belongs to the association, rather than to any of the two participating classes. We
have also captured the fact that, for some course registrations, a computer account is
issued to a student. For these reasons, we model Registration as an association class,
having its own set of features and an association with another class (Computer Account).
Similarly, for the unary Tutors association, beginDate and numberOfHrs (number of
hours tutored) really belong to the association, and, therefore, appear in a separate
association class.

You have the option of showing the name of an association class on the association
path, or the class symbol, or both. When an association has only attributes, but does not
have any operations or does not participate in other associations, the recommended
option is to show the name on the association path, but to omit it from the association
class symbol, to emphasize its “association nature” (UML Notation Guide, 2003). That is
how we have shown the Tutors association. On the other hand, we have displayed the
name of the Registration association—which has two attributes and one operation of its
own, as well as an association called Issues with Computer Account—within the class
rectangle to emphasize its “class nature.”

Figure 13-6b shows a part of the object diagram representing a student, Mary
Jones, and the courses she has registered for in the Fall 2010 term: MKT350 and MIS385.
Corresponding to an association class in a class diagram, link objects are present in an
object diagram. In this example, there are two link objects (shown as :Registration) for
the Registration association class, capturing the two course registrations. The diagram
also shows that for the MIS385 course, Mary Jones has been issued a computer account

term = Fall2010
grade = W

:Registration

acctID = jones385
password = 12345
serverSpace = 10

:Computer Account

term = Fall2010

:Registration

Mary Jones

MKT350

MIS385

(b) Object diagram showing
link objects

13-12 Part V • Advanced Database Topics

with an ID, a password, and a designated amount of space on the server. She still has
not received a grade for this course, but, for the MKT350 course, she received the grade
W because she withdrew from the course.

Figure 13-7 shows a ternary relationship among the Student, Software, and Course
classes. It captures the fact that students use various software tools for different courses.
For example, we could store the information that Mary Jones used Microsoft Access and
Oracle for the Database Management course, Microsoft Visio for the Object-Oriented
Modeling course, and Eclipse for the Application Development course. Now suppose
we want to estimate the number of hours per week Mary will spend using Oracle for the
Database Management course. This process really belongs to the ternary association, and
not to any of the individual classes. Hence, we have created an association class called
Log, within which we have declared an operation called estimateUsage. In addition
to this operation, we have specified three attributes that belong to the association:
beginDate, expiryDate, and hoursLogged.

Representing Derived Attributes, Derived
Associations, and Derived Roles

A derived attribute, association, or role is one that can be computed or derived from
other attributes, associations, and roles, respectively. (The concept of a derived attribute
was introduced in Chapter 2.) A derived element (attribute, association, or role) is
typically shown by placing either a slash (/) or a stereotype of <<Derived>> before the
name of the element. For instance, in Figure 13-8, age is a derived attribute of Student,
because it can be calculated from the date of birth and the current date. Because the calcu-
lation is a constraint on the class, the calculation is shown on this diagram within {} above
the Student class. Also, the Takes relationship between Student and Course is derived,
because it can be inferred from the Registers For and Scheduled For relationships. By the
same token, participants is a derived role because it can be derived from other roles.

Representing Generalization

You were introduced to generalization and specialization in Chapter 3. Using the enhanced
E-R model, you learned how to abstract the common attributes of two or more entities,
as well as the common relationships in which they participate, into a more general entity
supertype, while keeping the attributes and relationships that are not common in the
entities (subtypes) themselves. In the object-oriented model, we apply the same notion,

*
forum

*
user

*tool

Log

estimateUsage()

beginDate
expiryDate
hoursLogged

Software

CourseStudent

FIGURE 13-7 Ternary
relationship with an
association class

Chapter 13 • Object-Oriented Data Modeling 13-13

but with one difference. In generalizing a set of object classes into a more general class,
we abstract not only the common attributes and relationships, but the common opera-
tions as well. The attributes and operations of a class are collectively known as the
features of the class. The classes that are generalized are called subclasses, and the class
they are generalized into is called a superclass, in perfect correspondence to subtypes and
supertypes for EER diagramming.

Consider the example shown in Figure 13-9a. (See Figure 3-8 for the corresponding
EER diagram.) There are three types of employees: hourly employees, salaried employ-
ees, and consultants. The features that are shared by all employees—empName,
empNumber, address, dateHired, and printLabel—are stored in the Employee super-
class, whereas the features that are peculiar to a particular employee type are stored in
the corresponding subclass (e.g., hourlyRate and computeWages of Hourly Employee).
A generalization path is shown as a solid line from the subclass to the superclass, with a
hollow triangle at the end of, and pointing toward, the superclass. You can show a group
of generalization paths for a given superclass as a tree with multiple branches connect-
ing the individual subclasses, and a shared segment with a hollow triangle pointing
toward the superclass. In Figure 13-9b (corresponding to Figure 3-3), for instance, we
have combined the generalization paths from Outpatient to Patient, and from Resident
Patient to Patient, into a shared segment with a triangle pointing toward Patient. We also
specify that this generalization is dynamic, meaning that an object may change subtypes.

You can indicate the basis of a generalization by specifying a discriminator next to
the path. A discriminator (corresponding to the subtype discriminator defined in
Chapter 3) shows which property of an object class is being abstracted by a particular
generalization relationship. You can discriminate on only one property at a time. For
example, in Figure 13-9a, we discriminate the Employee class on the basis of employ-
ment type (hourly, salaried, consultant). To disseminate a group of generalization rela-
tionships as in Figure 13-9b, we need to specify the discriminator only once. Although
we discriminate the Patient class into two subclasses, Outpatient and Resident Patient,
based on residency, we show the discriminator label only once next to the shared line.

An instance of a subclass is also an instance of its superclass. For example in
Figure 13-9b, an Outpatient instance is also a Patient instance. For that reason, a gener-
alization is also referred to as an is-a relationship. Also, a subclass inherits all the
features from its superclass. For example, in Figure 13-9a, in addition to its own special
features—hourlyRate and computeWages—the Hourly Employee subclass inherits
empName, empNumber, address, dateHired, and printLabel from Employee. An
instance of Hourly Employee will store values for the attributes of Employee and
Hourly Employee, and, when requested, will apply the printLabel and computeWages
operations.

Generalization and inheritance are transitive across any number of levels of a
superclass/subclass hierarchy. For instance, we could have a subclass of Consultant
called Computer Consultant that would inherit the features of Employee and
Consultant. An instance of Computer Consultant would be an instance of Consultant

registrants

*
*

*** 1

/participants

{age = currentDate – dateOfBirth}

/Takes

Scheduled ForRegisters For

Student

name
ssn
dateOfBirth
/age

Course

crseCode
crseTitle
creditHrs

term
section

Course
Offering

FIGURE 13-8 Derived
attribute, association,
and role

13-14 Part V • Advanced Database Topics

and, therefore, an instance of Employee, too. Employee is an ancestor of Computer
Consultant, while Computer Consultant is a descendant of Employee; these terms are
used to refer to generalization of classes across multiple levels.

Inheritance is one of the major advantages of using the object-oriented model. It
allows code reuse: There is no need for a developer to design or write code that has
already been written for a superclass. The developer only creates code that is unique to
the new, refined subclass of an existing class. In actual practice, object-oriented develop-
ers typically have access to large collections of class libraries in their respective domains.
They identify those classes that may be reused and refined to meet the demands of new
applications. Proponents of the object-oriented approach claim that code reuse results in
productivity gains of several orders of magnitude.

Notice that in Figure 13-9b, the Patient class is in italics, implying that it is an
abstract class. An abstract class is a class that has no direct instances but whose descen-
dants may have direct instances (Booch, 1994; Rumbaugh et al., 1991). (Note: You can
additionally write the word abstract within braces just below or right next to the class
name. This is especially useful when you generate a class diagram by hand.) A class that
can have direct instances (e.g., Outpatient or Resident Patient) is called a concrete class.
In this example, therefore, Outpatient and Resident Patient can have direct instances, but
Patient cannot have any direct instances of its own.

employee
type

employee
type

employee
type

{disjoint, incomplete}

computeFees()

contractNumber
billingRate

Consultant

contributePension()

annualSalary
stockOption

Salaried
Employee

computeWages()

hourlyRate

Hourly
Employee

Employee

empName
empNumber
address
dateHired

printLabel()

Treated By* 1

{complete, disjoint}
residency
<<dynamic>>

Assigned To0..1 1

Physician

physicianID

Patient
{abstract}

patientID
patientName
admitDate

Outpatient

checkbackDate

Resident Patient

dateDischarged

Bed

bedNumber

Abstract class
A class that has no direct instances
but whose descendants may have
direct instances.

Concrete class
A class that can have direct
instances.

FIGURE 13-9 Examples of
generalization, inheritance,
and constraints
(a) Employee superclass with
three subclasses

(b) Abstract Patient class with
two concrete subclasses

Chapter 13 • Object-Oriented Data Modeling 13-15

The Patient abstract class participates in a relationship called Treated By with
Physician, implying that all patients—outpatients and resident patients alike—are
treated by physicians. In addition to this inherited relationship, the Resident Patient class
has its own special relationship called Assigned To with Bed, implying that only resident
patients may be assigned to beds. So, in addition to refining the attributes and operations
of a class, a subclass can also specialize the relationships in which it participates.

In Figures 13-9a and 13-9b, the words “complete,” “incomplete,” and “disjoint” have
been placed within braces, next to the generalization. They indicate semantic constraints
among the subclasses. (In the EER notation, complete corresponds to total specialization,
and incomplete corresponds to partial specialization.) In UML, a comma-separated list of
keywords is placed either near the shared triangle, as in Figure 13-9b, or near a dashed line
that crosses all of the generalization lines involved, as in Figure 13-9a (UML Superstructure
Specification, 2009). Any of the following UML keywords may be used: overlapping, dis-
joint, complete, and incomplete. These terms have the following meanings:

• Overlapping A descendant may be descended from more than one of the
subclasses. (This is the same as the overlapping rule in EER diagramming.)

• Disjoint A descendant may not be descended from more than one of the
subclasses. (This is the same as the disjoint rule in EER diagramming.)

• Complete All subclasses have been specified (whether or not shown). No addi-
tional subclasses are expected. (This is the same as the total specialization rule in
EER diagramming.)

• Incomplete Some subclasses have been specified, but the list is known to be
incomplete. There are additional subclasses that are not yet in the model. (This is
the same as the partial specialization rule in EER diagramming.)

Overlapping and disjoint are mutually exclusive, as are complete and incomplete.
Thus, the following combinations are possible: {complete, disjoint}, {incomplete,
disjoint}, {complete, overlapping}, {incomplete, overlapping} (UML Superstructure
Specification, 2009).

The generalizations in both Figures 13-9a and 13-9b are disjoint. An employee can
be an hourly employee, a salaried employee, or a consultant, but cannot, say, be both a
salaried employee and a consultant at the same time. Similarly, a patient can be an outpa-
tient or a resident patient, but not both. The generalization in Figure 13-9a is incomplete
(a departure from what was shown in Figure 3-8), specifying that an employee might not
belong to any of the three types. In such a case, an employee will be stored as an instance
of Employee, a concrete class. In contrast, the generalization in Figure 13-9b is complete,
implying that a patient has to be either an outpatient or a resident patient, and nothing
else. For that reason, Patient has been specified as an abstract class.

In Figure 13-10, we show an example of an overlapping constraint. The dia-
gram shows that research assistants and teaching assistants are graduate students.
The overlapping constraint indicates that it is possible for a graduate student to
serve as both a research assistant and a teaching assistant. For example, Sean
Bailey, a graduate student, has a research assistantship of 12 hours per week and a
teaching assistantship of 8 hours per week. Also notice that Graduate Student has
been specified as a concrete class so that graduate students without an assistant-
ship can be represented. The ellipsis (. . .) under the generalization line based on
the “level” discriminator does not represent an incomplete constraint. It simply
indicates that there are other subclasses in the model that have not been shown in
the diagram. For example, although Undergrad Student is in the model, we have
opted not to show it in the diagram since the focus is on assistantships. You may
also use an ellipsis when there are space limitations.

In Figure 13-11, we represent both graduate and undergraduate students in a
model developed for student billing. The calcTuition operation computes the tuition a
student has to pay; this sum depends on the tuition per credit hour (tuitionPerCred),
the courses taken, and the number of credit hours (creditHrs) for each of those courses.
The tuition per credit hour, in turn, depends on whether the student is a graduate or an
undergraduate student. In this example, that amount is $900 for all graduate students
and $750 for all undergraduate students. To denote that, we have underlined the

13-16 Part V • Advanced Database Topics

tuitionPerCred attribute in each of the two subclasses, along with its value. Such an
attribute is called a class-scope attribute because it specifies a value common to an
entire class rather than a specific value for an instance (Rumbaugh et al., 1991).

You can also specify an initial default value of an attribute by using an = sign after
the attribute name. This is the initial attribute value of a newly created object instance.
For example, in Figure 13-11, the creditHrs attribute has an initial value of 3, implying
that when a new instance of Course is created, the value of creditHrs is set to 3 by
default. You can write an explicit constructor operation to modify the initial default

Class-scope attribute
An attribute of a class that specifies
a value common to an entire class
rather than a specific value for an
instance.

Registers For Scheduled For*** 1Course
Offering

term
section

enrollment()

Course

crseCode
crseTitle
creditHrs = 3

enrollment()

Student

name
ssn
dateOfBirth
address
phone

registerFor(class)
calcTuition()

{abstract}

undergradMajor
greScore
gmatScore
tuitionPerCred = 900

calc-tuition()

Graduate
Student

satScore
actScore
tuitionPerCred = 750

calc-tuition()

Undergrad
Student

{ordered}

FIGURE 13-11 Polymorphism,
abstract operation, class-
scope attribute, and ordering

level level

…

assistantship type

{overlapping, incomplete}

assistantship type

Graduate
Student

Research
Assistant

Teaching
Assistant

Student

FIGURE 13-10 Example of an
overlapping constraint

Chapter 13 • Object-Oriented Data Modeling 13-17

value. The value may also be modified later, through other operations. The difference
between an initial value specification and a class-scope attribute is that while the former
allows the possibility of different attribute values for the instances of a class, the latter
forces all the instances to share a common value.

In addition to specifying the multiplicity of an association role, you can also specify
other properties, for example, whether the objects playing the role are ordered. In the fig-
ure, we placed the keyword constraint “{ordered}” next to the Course Offering end of the
Scheduled For association to denote the fact that the offerings for a given course are
ordered into a list—say, according to term and section. It is obvious that it makes sense to
specify an ordering only when the multiplicity of the role is greater than one. The default
constraint on a role is “{unordered}”; that is, if you do not specify the keyword
“{ordered}” next to the role, it is assumed that the related elements form an unordered
set. For example, the course offerings are not related to a student who registers for those
offerings in any specific order.

The Graduate Student subclass specializes the abstract Student class by adding
four attributes—undergradMajor, greScore, gmatScore, and tuitionPerCred—and by
refining the inherited calcTuition operation. Notice that the operation is shown in italics
within the Student class, indicating that it is an abstract operation. An abstract operation
has a defined form or protocol, but its implementation is not defined (Rumbaugh et al.,
1991). In this example, the Student class defines the protocol of the calcTuition operation,
without providing the corresponding method (the actual implementation of the opera-
tion). The protocol includes the number and types of the arguments, the result type, and
the intended semantics of the operation. The two concrete subclasses, Graduate Student
and Undergrad Student, supply their own implementations of the calcTuition operation.
Note that because these classes are concrete, they cannot store abstract operations.

It is important to note that although the Graduate Student and Undergraduate
Student classes share the same calcTuition operation, they might implement the operation
in quite different ways. For example, the method that implements the operation for a
graduate student might add a special graduate fee for each course the student takes. The
fact that an operation with the same name may respond in different ways depending on
the class context is known as polymorphism, a key concept in object-oriented systems.
The enrollment operation in Figure 13-11 illustrates another example of polymorphism.
While the enrollment operation within Course Offering computes the enrollment for a
particular course offering or section, an operation with the same name within Course
computes the combined enrollment for all sections of a given course.

Interpreting Inheritance and Overriding

We have seen how a subclass can augment the features inherited from its ancestors. In
such cases, the subclass is said to use inheritance for extension. On the other hand, if a
subclass constrains some of the ancestor attributes or operations, it is said to use
inheritance for restriction (Booch, 1994; Rumbaugh et al., 1991). For example, a subclass
called Tax Exempt Company may suppress or block the inheritance of an operation
called compute-tax from its superclass, Company.

The implementation of an operation can also be overridden. Overriding is the
process of replacing a method inherited from a superclass by a more specific implementa-
tion of that method in a subclass. The reasons for overriding include extension, restriction,
and optimization (Rumbaugh et al., 1991). The name of the new operation remains the
same as the inherited one, but it has to be explicitly shown within the subclass to indicate
that the operation is overridden.

In overriding for extension, an operation inherited by a subclass from its super-
class is extended by adding some behavior (code). For example, a subclass of
Company called Foreign Company inherits an operation called compute-tax but
extends the inherited behavior by adding a foreign surcharge to compute the total
tax amount.

In overriding for restriction, the protocol of the new operation in the subclass is
restricted. For example, an operation called placeStudent(job) in Student may be restricted
in the International Student subclass by tightening the argument job (see Figure 13-12).
While students in general may be placed in all types of jobs during the summer,

Abstract operation
An operation whose form or
protocol is defined but whose
implementation is not defined.

Method
The implementation of an
operation.

Polymorphism
The ability of an operation
with the same name to respond
in different ways depending
on the class context.

Overriding
The process of replacing a method
inherited from a superclass by a
more specific implementation of
that method in a subclass.

13-18 Part V • Advanced Database Topics

international students may be limited to only on-campus jobs because of visa restrictions.
The new operation overrides the inherited operation by tightening the job argument,
restricting its values to only a small subset of all possible jobs. This example also illus-
trates the use of multiple discriminators. While the basis for one set of generalizations is a
student’s “level” (graduate or undergraduate), that for the other set is his or her “resi-
dency” status (U.S. or international).

In overriding for optimization, the new operation is implemented with improved
code by exploiting the restrictions imposed by a subclass. Consider, for example, a
subclass of Student called Dean’s List Student, which represents all those students who
are on the dean’s list. To qualify for the dean’s list, a student must have a grade point
average greater than or equal to 3.50. Suppose Student has an operation called
mailScholApps, which mails applications for merit- and means-tested scholarships to
students who have a GPA greater than or equal to 3.00, and whose family’s total gross
income is less than $30,000. The method for the operation in Student will have to check
the conditions, whereas the method for the same operation in the Dean’s List Student
subclass can improve upon the speed of execution by removing the first condition from
its code. Consider another operation called findMinGpa, which finds the minimum GPA
among the students. Suppose the Dean’s List Student class is sorted in ascending order
of the GPA, but the Student class is not. The method for findMinGpa in Student must
perform a sequential search through all the students. In contrast, the same operation in
Dean’s List Student can be implemented with a method that simply retrieves the GPA of
the first student in the list, thereby obviating the need for a time-consuming search.

Representing Multiple Inheritance

So far you have been exposed to single inheritance, where a class inherits from only one
superclass. But sometimes, as we saw in the example with research and teaching assis-
tants, an object may be an instance of more than one class. This is known as multiple
classification (Fowler, 2003; UML Notation Guide, 2003). For instance, Sean Bailey, who
has both types of assistantships, has two classifications: one as an instance of Research
Assistant, and the other as an instance of Teaching Assistant. Experts, however, discour-
age multiple classification, and the ordinary UML semantics and many object-oriented
languages do not support it.

To get around the problem, we can use multiple inheritance, which allows a class
to inherit features from more than one superclass. For example, in Figure 13-13, we have
created Research Teaching Assistant, which is a subclass of both Research Assistant and
Teaching Assistant. All students who have both research and teaching assistantships
may be stored under the new class. We may now represent Sean Bailey as an object
belonging to only the Research Teaching Assistant class, which inherits features from

level residency

gmatScore
undergradMajor
desiredMajor

reviewAppln()

Graduate
Student

name
address

reviewAppln()
placeStudent(job)

Student

satScore

reviewAppln()

Undergrad
Student

ssn

U.S. Student

toeflScore

englishProficiency()
placeStudent(job)

International
Student

FIGURE 13-12 Overriding
inheritance

Multiple classification
A situation in which an object
is an instance of more than
one class.

Chapter 13 • Object-Oriented Data Modeling 13-19

both its parents, such as researchHrs and assignProject(proj) from Research Assistant
and teachingHrs and assignCourse(crse) from Teaching Assistant (and provides no
unique features of its own).

Representing Aggregation

An aggregation expresses a part-of relationship between a component object and an
aggregate object. It is a stronger form of association relationship (with the added
“part-of” semantics) and is represented with a hollow diamond at the aggregate end. For
example, Figure 13-14 shows a personal computer as an aggregate of CPU (up to four
for multiprocessors), hard disks, monitor, keyboard, and other objects (a typical
bill-of-materials structure). Note that aggregation involves a set of distinct object instances,
one of which contains or is composed of the others. For example, an object in the Personal
Computer class is related to (consists of) one to four CPU objects, one of its parts. As shown
in Figure 13-14, it is also possible for component objects to exist without being part of a

Graduate
Student

Research Teaching
Assistant

Research
Assistant

researchHrs

assignProject(proj)

Teaching
Assistant

teachingHrs

assignCourse(crse)

FIGURE 13-13 Multiple
inheritance

Aggregation
A part-of relationship between
a component object and an
aggregate object.

. . .CPU Hard Disk Monitor Keyboard

Personal
Computer

0..1

1..4 1 11..*

FIGURE 13-14 Example of
aggregation

13-20 Part V • Advanced Database Topics

whole (e.g., there can be a Monitor that is not part of any PC). Further, it is possible that the
Personal Computer class has operations that apply to its parts; for example, calculating the
extended warranty cost for the PC involved an analysis of its component parts. In contrast,
generalization relates object classes: an object (e.g., Mary Jones) is simultaneously an
instance of its class (e.g., Undergrad Student) and its superclass (e.g., Student). Only one
object (e.g., Mary Jones) is involved in a generalization relationship. This is why multiplic-
ities are indicated at the ends of aggregation lines, whereas there are no multiplicities for
generalization relationships.

Figure 13-15a shows an aggregation structure of a university. The object diagram in
Figure 13-15b shows how Riverside University, a University object instance, is related to
its component objects, which represent administrative units (e.g., Admissions, Human
Resources, etc.) and schools (e.g., Arts and Science, Business, etc.). A school object (e.g.,
Business), in turn, comprises several department objects (e.g., Accounting, Finance, etc.).

Notice that the diamond at one end of the relationship between Building and Room
is not hollow, but solid. A solid diamond represents a stronger form of aggregation, known
as composition (Fowler, 2003). In composition, a part object belongs to one and only one
whole object; for example, a room is part of only one building and cannot exist by itself.
Therefore, the multiplicity on the aggregate end is exactly one. Parts may be created after
the creation of the whole object; for example, rooms may be added to an existing building.
However, once a part of a composition is created, it lives and dies with the whole; deletion

University

Administrative
Unit

BuildingSchool

RoomDepartment

Housed In

Part Of
Consists Of

20..**

11

1..*1..*

1 1

1

. . .

. . .

Riverside
University

Admissions:
Administrative
Unit

Human Resources:
Administrative
Unit

Accounting:
Department

Finance:
Department

Business:
School

FIGURE 13-15 Aggregation
and composition
(a) Class diagram

Composition
A part-of relationship in which
parts belong to only one whole
object and live and die with the
whole object.

(b) Object diagram

Chapter 13 • Object-Oriented Data Modeling 13-21

of the aggregate object cascades to its components. If a building is demolished, for exam-
ple, so are all its rooms. However, it is possible to delete a part before its aggregate dies, just
as it is possible to demolish a room without bringing down a building.

Consider another example of aggregation: the bill-of-materials structure presented
earlier in Chapter 2. Many manufactured products are made up of assemblies, which in
turn are composed of subassemblies and parts, and so on. We saw how we could represent
this type of structure as a many-to-many unary relationship (called Has Components) in
an E-R diagram (see Figure 2-13a). When the relationship has an attribute of its own, such
as Quantity, the relationship can be converted to an associative entity. Note that although
the bill-of-materials structure is essentially an aggregation, we had to represent it as an
association because the E-R model does not support the semantically stronger concept of
aggregation. In the object-oriented model, we can explicitly show the aggregation.

In Figure 13-16, we have represented the bill-of-materials structure. To distinguish
between an assembly and a primitive part (one without components), we have created
two classes, Assembly and Simple Part, both of which are subclasses of a class called
Part. The diagram captures the fact that a product consists of many parts, which them-
selves can be assemblies of other parts, and so on; this is an example of recursive aggre-
gation. Because Part is represented as an abstract class, a part is either an assembly or a
primitive part. An Assembly object is an aggregate of instances of the Part superclass,
implying that it is composed of other assemblies (optional) and primitive parts. Note
that we can easily capture an attribute, such as the quantity of parts in an assembly,
inside an association class attached to the aggregation relationship.

When you are unsure whether a relationship between two objects is an association or
an aggregation, try to figure out if one object is really part of the other object. That is, is there
a whole-part relationship? Note that an aggregation does not necessarily have to imply
physical containment, such as that between Personal Computer and CPU. The whole-part
relationship may be conceptual, for example, the one between a mutual fund and a certain
stock that is part of the fund. In an aggregation, an object may or may not exist independ-
ently of an aggregate object. For example, a stock exists whether it is part of a mutual fund
or not, while a department does not exist independently of an organization. Also, an object
may be part of several aggregate objects (e.g., many mutual funds may contain IBM stocks
in their portfolios). Remember, however, that while this is possible in aggregation, compo-
sition does not allow an object to be part of more than one aggregate object.

Another characteristic of aggregation is that some of the operations on the whole
automatically apply to its parts. For example, an operation called ship() in the Personal
Computer object class applies to CPU, Hard Disk, Monitor, and so on because whenever
a computer is shipped, so are its parts. The ship operation on Personal Computer is said
to propagate to its parts (Rumbaugh et al., 1991).

1..*

1..*

*

*

Product

Part
{abstract}

Assembly Simple
Part

FIGURE 13-16 Recursive
aggregation

13-22 Part V • Advanced Database Topics

Finally, it is useful to know that some authors, such as Fowler (2003), advise
against the use of regular (non-composition) aggregation as a model structure because
it is often not clear what impact the difference between association and aggregation
would, in practice, have in the design model. This point is not without its merits, but we
would encourage you to follow your organization’s practices.

BUSINESS RULES

Business rules were discussed in detail in Chapters 2 and 3. You saw how to express dif-
ferent types of rules in an E-R diagram. In the examples provided in this chapter, we
have captured many business rules as constraints—implicitly as well as explicitly—on
classes, instances, attributes, operations, relationships, and so on. For example, you saw
how to specify cardinality constraints and ordering constraints on association roles. You
also saw how to represent semantic constraints (e.g., overlapping, disjoint, etc.) among
subclasses. Many of the constraints that have been discussed so far in this chapter were
imposed by including a set of UML keywords within braces—for example, {disjoint,
complete} and {ordered}—and placing them close to the elements to which the con-
straints apply. For example, in Figure 13-11, we expressed a business rule that offerings
for a given course are ordered. But if you cannot represent a business rule using such a
predefined UML constraint, you can define the rule in plain English or in some other
language such as formal logic.

When you have to specify a business rule involving two graphical symbols (e.g.,
those representing two classes or two associations), you can show the constraint as a
dashed arrow from one element to the other, labeled by the constraint name in braces
(UML Notation Guide, 2003). In Figure 13-17, for example, we have stated the business

* 1

* 1..*

1,2 *

* 1

1 0..1

{subset}

Chair Of

Member Of

qualified instructorsinstructors

Is Assigned Is Qualified

Is Scheduled

Each faculty member assigned
to teach a section of a course
must be qualified to teach
that course.

Section Course

Faculty Department

FIGURE 13-17 Representing
business rules

Chapter 13 • Object-Oriented Data Modeling 13-23

rule that the chair of a department must be a member of the department by specifying
the Chair Of association as a subset of the Member Of association.

When a business rule involves three or more graphical symbols, you can show
the constraint as a note and attach the note to each of the symbols by a dashed
line (UML Notation Guide, 2003). In Figure 13-16, we have captured the business rule
that “each faculty member assigned to teach a section of a course must be qualified
to teach that course” within a note symbol. Because this constraint involves all three
association relationships, we have attached the note to each of the three association
paths.

OBJECT MODELING EXAMPLE: PINE VALLEY
FURNITURE COMPANY

In Chapters 2 and 3, you saw how to develop a high-level E-R diagram for the Pine
Valley Furniture Company (see Figures 2-22 and 3-12). We identified the entity types,
as well as their keys and other important attributes, based on a study of the business
processes at the company. We will now show you how to develop a class diagram for
the same application using the object-oriented approach. The class diagram is shown
in Figure 13-18. We discuss the commonalities, as well as the differences, between this
diagram and the E-R diagrams in the prior figures. Figure 13-18 is based primarily on
Figure 3-12, but the attributes from Figure 2-22 are now also included. Figure 13-18 is
developed using the UML drawing tool in Microsoft Visio. Dozens of other tools exist
for creating and maintaining UML diagrams, ranging from simple drawing tools to
comprehensive model-driven software development packages.

As you would expect, the entity types are represented as object classes, and all the
attributes are shown within the classes. Note, however, that you do not need to show
explicit identifiers in the form of primary keys, because, by definition, each object has
its own identity. The E-R model, as well as the relational data model (see Chapter 4),
requires you to specify explicit identifiers because there is no other way of supporting
the notion of identity. In the object-oriented model, the only identifiers you should
represent are attributes that make sense in the real world, such as salespersonID,
customerID, orderID, and productID. Notice that we have not shown an identifier for
Product Line, based on the assumption that Product Line ID was merely included in the
E-R diagram as an internal identifier, not as a real-world attribute, such as orderID or
productID. If Pine Valley Furniture Company does not actually use vendorID or, for
that matter, any other attribute, to support its business processes, you should not
include that attribute in the class diagram. For that reason, we have not shown identi-
fiers for classes such as Vendor, Order Line, and Skill.

Role names are applied to some relationships. For example, Product plays
the role of output and Work Center plays the role of facility in the Produced-in
relationship.

The class diagram in Figure 13-18 includes several operations that could not
have been captured in an E-R diagram and often are not included in class diagrams
used for business domain modeling during the analysis activities in various object-
oriented life cycle models. In this case, we have included them to demonstrate how
the object-oriented approach integrates data and behavior. For example, Customer
has an operation called mailInvoice that, when executed, mails an invoice to a
customer who has placed an order, specifying the total order amount in dollars, and
increases the customer’s outstanding balance by that amount. On receipt of payment
from the customer, the receivePaymt operation adjusts the balance by the amount
received. The orderlineTotal operation of Order Line computes the total dollar
amount for a given order line of an order, whereas the orderTotal operation of Order
computes the total amount for an entire order (i.e., the sum total of the amounts on all
the order lines).

Figure 13-18 also illustrates polymorphism. The totalSales operation appears
within both the Product and Product Line classes, but is implemented as two different

13-24 Part V • Advanced Database Topics

-customerID
-customerName
-customerAddress
-postalCode
-balance
-customerType
-national
-regular

+mailInvoice(in amount)
+receivePaymt(in amount)

Customer

-accountManager

National Customer

-productLineName

+totalSales()

Product Line

-productID
-productDescription
-productFinish
-standardPrice

+totalSales()
+assignProd(in line)

Product

-territoryID
-territoryName

Sales Territory

-workCenterID
-workCenterLocation

Work Center

-orderID
-orderDate

+orderTotal()

Order

-orderedQuantity

+orderlineTotal()

Order Line

Regular Customer
Does Business In

Submits

Includes

Uses

Produced In

Supervises

-output

-facility

customerType

{complete, overlapping
<<dynamic>>}

{incomplete}

1..* 1..*

1..*

1..* 1..*

0..*

-contractNumber

Supplier

-vendorName

-vendorAddress

Vendor

-supplyUnitPrice

Supplies

-skillName

Skill

1..* 1..*

1

1

1..*

0..*

1..*

1..*

1..*

0..*

-salespersonID
-salespersonName
-salespersonTelephone
-salespersonFax

+totalCommission()

Salesperson

-materialID
-materialName
-unitOfMeasure
-standardCost

Raw Material

-employeeID
-employeeName
-employeeAddress
-employeeType

+checkSkills(in product)

Employee

Serves

1..* 1

Has

Works In

employeeType

0..* 0..*

-supervisor
-supervisee

1 1..*

Union EmployeeManagement Employee

{incomplete, disjoint
<<dynamic>>}

FIGURE 13-18 Class diagram for Pine Valley Furniture Company

Chapter 13 • Object-Oriented Data Modeling 13-25

methods. While the method in Product computes the total sales for a given product, the
one in Product Line computes the total sales of all products belonging to a given
product line.

Some of the operations represented in the diagram (totalSales, totalCommission,
orderTotal, orderlineTotal, and checkSkills) are query operations, which do not alter
the state of any object. In contrast, mailInvoice, receivePaymt, and assignProd are all
update operations because they modify the state of some object(s). For example, the
assignProd operation assigns a new product to the product line specified in the “line”
argument, thereby changing the state of both the product, which becomes assigned,
and the product line, which includes one more product.

Specifications for the generalizations are shown in constraint boxes. So, for exam-
ple, there are no other Customer types than Regular Customer and National Customer
(complete constraint), a customer can be simultaneously of both types (overlapping
constraint), and a customer can switch between subtypes (<<dynamic>> stereotype).
Customers are distinguished by the value of customerType. Customer is an abstract
class because of the complete constraint.

In this chapter, we introduced the object-oriented model-
ing approach, which is becoming increasingly popular
because it supports effective representation of a real-world
application—in terms of both its data and processes—
using a common underlying representation. We described
the activities involved in the different phases of the object-
oriented development life cycle and emphasized the seam-
less nature of the transitions that an object-oriented model
undergoes as it evolves through the different phases, from
analysis to design to implementation. This is in sharp con-
trast to other modeling approaches, such as structured
analysis and design, which lack a common underlying
representation and, therefore, suffer from abrupt and dis-
joint model transitions. We also discussed the iterative
nature of most object-oriented life cycle models.

We presented object-oriented modeling as a
high-level conceptual activity, especially as it pertains to
data analysis. We introduced the concept of objects and
classes and discussed object identity and encapsulation.
Throughout the chapter, we developed several class dia-
grams, using the UML notation, to show you how to
model various types of situations. You also learned how
to draw an object diagram that corresponds to a given
class diagram. The object diagram provides a snapshot of
the actual objects and links present in a system at some
point in time.

We showed how to model the behaviors and
responsibilities within an application using operations.
We discussed four types of operations: constructor, query,
update, and class-scope. The E-R model (as well as the
EER model) does not allow you to capture behaviors; it
allows you only to model the data needs of an organiza-
tion. In this chapter, we emphasized several similarities
between the E-R model and the object-oriented model,
but, at the same time, highlighted those features that
make the latter more powerful than the former.

We showed how to represent association relation-
ships of different degrees—unary, binary, and ternary—
in a class diagram. An association has two or more roles;
each role has a multiplicity, which indicates the number

of objects that participate in the relationship. Other types
of constraints can be specified on association roles, such
as forming an ordered set of objects. When an association
itself has attributes or operations of its own, or when it
participates in other associations, the association is mod-
eled as a class; such a class is called an association class.
Links and link objects in an object diagram correspond to
associations and association classes, respectively, in a
class diagram. Derived attributes, derived relationships,
and derived roles can also be represented in a class
diagram.

The object-oriented model expresses generalization
relationships using superclasses and subclasses, similar
to supertypes and subtypes in the EER model. The basis
of a generalization path can be denoted using a discrimi-
nator label next to the generalization path. Semantic con-
straints among subclasses can be specified using UML
keywords such as overlapping, disjoint, complete, and
incomplete. When a class does not have any direct
instances, it is modeled as an abstract class. An abstract
class may have an abstract operation, whose form, but
not method, is provided.

In a generalization relationship, a subclass inherits
features from its superclass, and by transitivity, from all its
ancestors. Inheritance is a very powerful mechanism
because it supports code reuse in object-oriented systems.
We discussed ways of applying inheritance of features, as
well as reasons for overriding inheritance of operations
in subclasses. We also introduced another key concept
in object-oriented modeling, that of polymorphism,
which means that an operation can apply in different
ways across different classes. The concepts of encapsula-
tion, inheritance, and polymorphism in object-oriented
modeling provide systems developers with powerful
mechanisms for developing complex, robust, flexible, and
maintainable business systems.

The object-oriented model supports aggregation,
whereas the E-R or the EER model does not. Aggregation
is a semantically stronger form of association, expressing
the Part-of relationship between a component object and

Summary

13-26 Part V • Advanced Database Topics

Chapter Review

Key Terms

Abstract class 13-14
Abstract operation 13-17
Aggregation 13-19
Association 13-7
Association class 13-10
Association role 13-7
Behavior 13-4

Class 13-4
Class diagram 13-5
Class-scope

attribute 13-16
Class-scope operation 13-7
Composition 13-20
Concrete class 13-14

Constructor operation 13-6
Encapsulation 13-6
Method 13-17
Multiple classification

13-18
Multiplicity 13-7
Object 13-4

Object diagram 13-5
Operation 13-6
Overriding 13-17
Polymorphism 13-17
Query operation 13-6
State 13-4
Update operation 13-7

Review Questions

1. Define each of the following terms:
a. class
b. state
c. behavior
d. encapsulation
e. operation
f. method
g. constructor operation
h. query operation
i. update operation
j. abstract class
k. concrete class
l. abstract operation
m. multiplicity
n. class-scope attribute
o. association class
p. polymorphism
q. overriding
r. multiple classification
s. composition
t. recursive aggregation

2. Match the following terms to the appropriate definitions:
concrete class
abstract
operation
aggregation
overriding
polymorphism
association
class
composition
class

3. Contrast the following terms:
a. class; object
b. attribute; operation
c. state; behavior
d. operation; method
e. query operation; update operation
f. abstract class; concrete class
g. class diagram; object diagram
h. association; aggregation
i. generalization; aggregation
j. aggregation; composition
k. overriding for extension; overriding for restriction

4. State the activities involved in each of the following phases
of the object-oriented development life cycle: object-ori-
ented analysis, object-oriented design, and object-oriented
implementation.

5. Compare the object-oriented model with the EER model.
6. State the conditions under which a designer should model

an association relationship as an association class. In what
way is the expressive power of an association class stronger
than that of an ordinary association relationship?

7. Using a class diagram, give an example for each of the
following types of relationships: unary, binary, and ternary.
Specify the multiplicities for all the relationships.

8. Explain the difference between the name of the association
relationship and the role names linked to an association.

9. Add role names to the association relationships you identi-
fied in Review Question 7.

10. Add operations to some of the classes you identified in
Review Question 7.

11. Give an example of generalization. Your example should
include at least one superclass and three subclasses and a

an aggregate object. We distinguished between aggrega-
tion and generalization and provided you with tips for
choosing between association and aggregation in repre-
senting a relationship. We discussed a stronger form of
aggregation, known as composition, in which a part
object belongs to only one whole object, living and dying
together with it.

In this chapter, you also learned how to state busi-
ness rules implicitly, as well as explicitly, in a class dia-
gram. UML provides several keywords that can be used

as constraints on classes, attributes, relationships, and so
on. In addition, user-defined constraints may be used to
express business rules. When a business rule involves
two or more elements, you saw how to express the rule
in a class diagram, such as by using a note symbol. We
concluded the chapter by developing a class diagram for
Pine Valley Furniture Company, illustrating how to
apply the object-oriented approach to model both the
data and the processes underlying real-world business
problems.

a. operation applied in different
ways

b. form, not implementation
c. direct instances
d. belongs to only one whole

object
e. method replacement
f. part-of relationship
g. a set of objects
h. equivalent to associative entity

Chapter 13 • Object-Oriented Data Modeling 13-27

minimum of one attribute and one operation for each of the
classes. Indicate the discriminator and specify the semantic
constraints among the subclasses. What is the purpose of the
discriminator?

12. If the diagram you developed for Review Question 11 does
not contain an abstract class, extend the diagram by
adding an abstract class that contains at least one abstract
operation. Also, indicate which features of a class other
classes inherit.

13. Using (and, if necessary, extending) the diagram from
your solution to Review Question 11, give an example of
polymorphism.

14. Give an example of aggregation. Your example should
include at least one aggregate object and three component
objects. Specify the multiplicities at each end of all of the
aggregation relationships.

15. What makes the object-oriented modeling approach a
powerful tool for developing complex systems?

16. Given the class diagram shown in Figure 13-19, can we have
an instance of Vehicle? Why or why not?

17. Why does UML specify several different types of
diagrams?

18. In the diagram shown in Figure 13-20, what do we call the
Assignment class?

(complete, disjoint)
vehicleType

getPayload()

payLoad
numberofDoors

Truck

getPassengers()

numberOfDoors
driveType
maxPassengers

Car

VIN
Make
Model
Year
EngineSize

lookupEngineSize()

{abstract}
Vehicle

FIGURE 13-19 Class diagram
for Review Question 16

1,3*

chkAvailability()

startDate
endDate
pctEffort

Assignment

Employee Project

FIGURE 13-20 Class diagram
for Review Question 18

13-28 Part V • Advanced Database Topics

19. When would a unary relationship need to be represented as
an association class?

20. In the class diagram shown in Figure 13-21, what do we
call/availBalance? What do we call/purchases? Why are
these used in this diagram?

21. In the class diagram shown in Figure 13-22, checkFee and
monthlyFee are examples of attributes. What type of
an operation is calcFee?

22. The class diagram shown in Figure 13-23 is an example of
.

23. The class diagram shown in Figure 13-24 is an example of
. Is the relationship between faculty and their depart-

ment represented properly in this diagram? Why or why not?

*

*

*

* * *places

/purchases

calcTotal()

orderID
orderDate
shipDate

Order

getPrice()

itemNumber
description
price

Item

Customer

customerID
name
address
city
state
zipCode
telephone
creditLine
balance
/availBalance

checkCredit()

calcCost()

quantity

OrderLine

FIGURE 13-21 Class diagram
for Review Question 20

calcFee()

address
city
state
zipCode
telphone

calcFee()

businessName
contact
checkFee = 0.05
monthlyFee = 12.00

Business

calcFee()

name
monthlyFee = 8.00

Individual

Customer
{abstract}

FIGURE 13-22 Class diagram
for Review Question 21

Chapter 13 • Object-Oriented Data Modeling 13-29

Person

Student Employee

StudentAndEmployee

FIGURE 13-23 Class diagram
for Review Question 22

Department

Faculty

1

5..*

FIGURE 13-24 Class diagram
for Review Question 23

1. Draw a class diagram for some organization that you are
familiar with—Boy Scouts/Girl Scouts, a sports team, and
so on. In your diagram, indicate names for at least four
association roles.

2. A student, whose attributes include studentName, address,
phone, and age, may engage in multiple campus-based
activities. The university keeps track of the number of years
a given student has participated in a specific activity and, at
the end of each academic year, mails an activity report to the
student showing his participation in various activities.
Draw a class diagram for this situation.

3. Refer to Figure 4-36 (originally presented in the context of
Problem and Exercise 4-19), which uses an E-R diagram to
describe the essential business constructs of a middle-sized
software vendor.
a. Present the same situation with a class diagram.
b. Based on what you have learned about class diagrams in

this chapter, are there any areas where you could use the
expressive power of the class diagram notation to tell a
clearer or more comprehensive story about the problem
domain than was possible with the E-R notation?

4. Draw a class diagram, showing the relevant classes, attributes,
operations, and relationships for each of the following situa-
tions (if you believe that you need to make additional assump-
tions, clearly state them for each situation):
a. A company has a number of employees. The attributes

of Employee include employeeID (primary key),
name, address, and birthDate. The company also
has several projects. Attributes of Project include
projectName and startDate. Each employee may
be assigned to one or more projects or may not be
assigned to a project. A project must have at least one
employee assigned and may have any number of
employees assigned. An employee’s billing rate may
vary by project, and the company wishes to record the
applicable billing rate for each employee when
assigned to a particular project. At the end of each
month, the company mails a check to each employee
who has worked on a project during that month. The
amount of the check is based on the billing rate and
the hours logged for each project assigned to the
employee.

Problems and Exercises

13-30 Part V • Advanced Database Topics

b. A university has a large number of courses in its
catalog. Attributes of Course include courseNumber
(primary key), courseName, and units. Each course
may have one or more different courses as prerequisites
or may have no prerequisites. Similarly, a particular
course may be a prerequisite for any number of courses
or may not be prerequisite for any other course. The
university adds or drops a prerequisite for a course
only when the director for the course makes a formal
request to that effect.

c. A laboratory has several chemists who work on one or
more projects. Chemists also may use certain kinds of
equipment on each project. Attributes of Chemist
include name and phoneNo. Attributes of Project
include projectName and startDate. Attributes of
Equipment include serialNo and cost. The organization
wishes to record assignDate—that is, the date when a
given equipment item was assigned to a particular
chemist working on a specified project—as well as
totalHours—that is, the total number of hours the
chemist has used the equipment for the project.
The organization also wants to track the usage of each
type of equipment by a chemist. It does so by comput-
ing the average number of hours the chemist has used
that equipment on all assigned projects. A chemist must
be assigned to at least one project and one equipment
item. A given equipment item need not be assigned, and
a given project need not be assigned either a chemist or
an equipment item.

d. A college course may have one or more scheduled sec-
tions, or may not have a scheduled section. Attributes of
Course include courseID, courseName, and units.
Attributes of Section include sectionNumber and semes-
ter. The value of sectionNumber is an integer (such as
“1” or “2”) that distinguishes one section from another
for the same course, but does not uniquely identify a sec-
tion. There is an operation called findNumSections that
finds the number of sections offered for a given course in
a given semester.

e. A hospital has a large number of registered physicians.
Attributes of Physician include physicianID (primary
key) and specialty. Patients are admitted to the hospital
by physicians. Attributes of Patient include patientID
(primary key) and patientName. Any patient who is
admitted must have exactly one admitting physician. A
physician may optionally admit any number of patients.
Once admitted, a given patient must be treated by at
least one physician. A particular physician may treat any
number of patients or may treat no patients. Whenever a
patient is treated by a physician, the hospital wishes to
record the details of the treatment, by including the date,
time, and results of the treatment.

5. Each semester, each student must be assigned an adviser
who counsels students about degree requirements and
helps students register for classes. Each student must regis-
ter for classes with the help of an adviser, but if a student’s
assigned adviser is not available, the student may register
with any adviser. We must keep track of students, the
assigned adviser for each, and the name of the adviser with
whom the student registered for the current term. Represent
this situation of students and advisers with a class diagram.
Also draw a data model for this situation using the tool you
have been told to use in your course.

6. Prepare a class diagram for a real estate firm that lists property
for sale. This organization is described as follows:
• The firm has a number of sales offices in several states;

location is an attribute of sales office.
• Each sales office is assigned one or more employees.

Attributes of employee include employeeID and
employeeName. An employee must be assigned to only
one sales office.

• For each sales office, there is always one employee
assigned to manage that office. An employee may man-
age only the sales office to which he or she is assigned.

• The firm lists property for sale. Attributes of property
include propertyName and location.

• Each unit of property must be listed with one (and only
one) of the sales offices. A sales office may have any num-
ber of properties listed or may have no properties listed.

• Each unit of property has one or more owners. Attributes of
owner are ownerName and address. An owner may own
one or more units of property. For each property that an
owner owns, an attribute called percentOwned indicates
what percentage of the property is owned by the owner.

Add a subset constraint between two of the associations
you identified in your class diagram.

7. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

Stillwater Antiques buys and sells one-of-a-kind antiques
of all kinds (e.g., furniture, jewelry, china, and clothing).
Each item is uniquely identified by an item number and
is also characterized by a description, asking price, condi-
tion, and open-ended comments. Stillwater works with
many different individuals, called clients, who sell items
to and buy items from the store. Some clients only sell
items to Stillwater, some only buy items, and some others
both sell and buy. A client is identified by a client number
and is also described by a client name and client address.
When Stillwater sells an item in stock to a client, the own-
ers want to record the commission paid, the actual selling
price, sales tax (tax of zero indicates a tax exempt sale),
and date sold. When Stillwater buys an item from a
client, the owners want to record the purchase cost, date
purchased, and condition at time of purchase.

8. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A company bottles and distributes bottled water to both
private consumers and organizations. The firm wants to
develop an application to support the delivery activities.
Water can be delivered in three types of containers:
12-ounce bottles, 1-gallon bottles, or 5-gallon bottles.
Private customers are served once a week based on orders
they place at least 24 hours before the scheduled delivery
time, whereas the organizational customers have a
weekly delivery that replenishes the amount of water at
each of the organization’s locations to a pre-specified
level. If a specific location runs out of a specific type of
water container three weeks in a row, the system should
generate an e-mail to the organizational contact person to
suggest that the replenishment level should be increased.

9. Imagine two different types of airline frequent flyer pro-
grams: one that awards points based on flown miles and
gives free trips based on accumulated mileage according to

Chapter 13 • Object-Oriented Data Modeling 13-31

a predefined awards schedule (e.g., domestic roundtrip in
economy requires 25,000 miles, a roundtrip between North
America and Europe in business requires 80,000 miles, a
first class roundtrip between North America and Africa
requires 200,000 miles, etc.) and another one that keeps
track of the number of flight segments and gives free trips
based on the number of flown segments (e.g., every 10th
domestic economy class flight is free). Assume that the sys-
tem needs to keep track of every customer’s status in the
program, based on the cumulative flight distance and
frequency either since the customer joined the program or
during the previous calendar year. Based on this limited
information, explore whether the data modeling solutions
for the two types of frequent flyer programs are different.
Justify your conclusions and draw the class diagrams for
both types of systems, making all necessary assumptions.

10. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A library has a large number of items that customers can
borrow. In addition to books, the collection includes
audio products (audio CDs, books on CD, and books on
tape) and video products (video tapes and DVDs).
There can be multiple copies of each of the products,
and it is important to know which specific copy a cus-
tomer checks out. Most items can be checked out, but
the length of time a customer can keep an item varies
depending on the item. A customer can have multiple
items checked out at the same time. When the customer
is checking out items, the system verifies whether the
customer has any overdue items. If the items are over-
due by less than the length of the original allowed
checkout time, the system produces a reminder that is
included in the receipt that is given at the time of each
checkout. If, however, the limit has been exceeded, the
system will prevent the customer from checking out any
additional items. When an overdue item is returned, the
system will calculate the fine amount based on the num-
ber of days the item is overdue and the length of the
original checkout period.

11. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A nonprofit organization depends on a number of dif-
ferent types of persons for its successful operation. The
organization is interested in the following attributes for
all of these persons: Social Security number, name,
address, and phone. There are three types of persons
who are of greatest interest: employees, volunteers, and
donors. In addition to the attributes for a person, an
employee has an attribute called dateHired, and a vol-
unteer has an attribute called skill. A donor is a person
who has donated one or more items to the organization.
An item, specified by a name, may have no donors, or
one or more donors. When an item is donated, the
organization records its price, so that at the end of the
year, it can identify the top ten donors.

There are persons other than employees, volunteers,
and donors who are of interest to the organization, so a
person need not belong to any of these three groups. On
the other hand, at a given time a person may belong to
two or more of these groups (e.g., employee and donor).

12. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A consulting firm is organized as a partnership with five
different types of employees: senior partners, junior part-
ners, senior associates, associates, and assistants. Each
employee has an annual salary; partners and associates
also have a billing rate specified for them. The firm needs
to also know the amount of money each of the partners
(both junior and senior) has invested in it. It is important
for the firm to keep track of the history of salaries and
billing rates. The firm works with a large number of
clients; at any point in time, the firm may have several
simultaneous engagements with any of the clients (or
none). For each engagement, there is a billing factor which
depends on the nature of the engagement; for final billing
purposes, each employee’s billing rate is multiplied by the
factor to determine the actual hourly rate charged for each
employee’s work. Employees are required to specify (with
an application running on their smart phones) every tran-
sition from one engagement to another so that billable
hours can be recorded with the highest level of accuracy
possible. In addition to the hours, the clients are charged
for project-related expenses, which can be categorized as
travel, lodging, supplies, information, and others. The
firm sends a biweekly invoice to each of its customers. The
system has to maintain a record of when a specific item
(labor cost or an expense item) was billed. Obviously, it is
essential to keep track of the payments that the clients
send to the firm.

13. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

SeeALeopard (SAL) is a company that organizes tours in
the Kruger National Park in South Africa. These tours
last several hours and sometimes an entire day. They do
not ever, however, include an overnight stay in the park.
The company serves both travel agents and other organ-
izers of multiday trips and individual customers who are
traveling on their own. Organizers of multiday trips can
get credit from SAL up to an approved credit limit as
long as they negotiate this with SAL in advance, and
they typically have a negotiated discount rate with SAL.
The credit limit and the discount rate are elements of a
contract; one trip organizer can have only one contract at
one point in time with SAL, but it is important that con-
tract history be maintained. Individual travelers can reg-
ister with SAL if they want to and ask SAL to store their
preferred mode of payment (typically a credit card) in
addition to typical contact information to save time with
future registrations. An individual traveler cannot be
simultaneously a trip organizer.

SAL is proud to offer a very smooth registration expe-
rience for its customers, and it has therefore decided to
develop an online registration system that allows the trip
organizers and individual customers to reserve seats on
prescheduled tours (defined based on the date, starting
time, planned duration, and the route) up to three
months in advance. Each individual reservation must be
paid in full at the time it is made, but the trip organizers
are allowed to reserve seats without making payment
(as long as they have sufficient credit remaining).

13-32 Part V • Advanced Database Topics

Cancellations are possible up to 60 days before the tour
date without a penalty and up to 30 days before the tour
date with a 50% penalty. Obviously, it is essential to
maintain all details of the reservation history.

SAL is also focused on maintaining a full record of
the sightings of the Big Five: leopards, lions, buffalo,
elephants, and rhino. The drivers of the tour vehicles have
handheld devices with which they can easily identify the
animal, the number of animals in three age groups (adult,
adolescent, and baby), the location of the sighting (from
the built-in GPS), and the time of the sighting; in addition,
the driver can easily send pictures, when appropriate. The
company can use these data for both demonstrating past
success and planning future routes and times of tours.

14. A bank has three types of accounts: checking, savings, and
loan. Following are the attributes for each type of account:

b. Each vehicle consists of a drive train, which, in turn,
consists of an engine and a transmission. (Ignore the fact
that a trailer doesn’t have an engine and a transmission.)
Suppose that, for each vehicle, the system has to main-
tain the following information: the size and number of
cylinders of its engine and the type and weight of its
transmission. Add classes, attributes, and relationships
to the class diagram to capture this new information.

c. Give a realistic example (you may create one) of an
operation that you override in a subclass or subclasses.
Add the operation at appropriate places in the class dia-
gram and discuss the reasons for overriding.

17. Draw a class diagram, showing the relevant classes, attrib-
utes, operations, and relationships for the following situation:

Emerging Electric wishes to create a database with the
following classes and attributes:

Customer with attributes customerID, name, address
(street, city, state, zipCode), telephone

Location with attributes locationID, address (street, city,
state, zipCode), type (business or residential)

Rate with attributes rateClass, ratePerKwh

CHECKING acctNo, dateOpened, balance, serviceCharge

SAVINGS acctNo, dateOpened, Balance, interestRate

LOAN acctNo, dateOpened, Balance, interestRate,
payment

Assume that each bank account must be a member of exactly
one of these subtypes. At the end of each month, the bank
computes the balance in each account and mails a statement
to the customer holding that account. The balance computa-
tion depends on the type of the account. For example, a
checking account balance may reflect a service charge,
whereas a savings account balance may include an interest
amount. Draw a class diagram to represent the situation.
Your diagram should include an abstract class, as well as an
abstract operation for computing the balance.

15. Refer to the class diagram for hospital relationships (Figure
13-9b). Add notation to express the following business rule:
A resident patient can be assigned a bed only if that patient
has been assigned a physician who will assume responsibil-
ity for the patient’s care.

16. An organization has been entrusted with developing a reg-
istration and title system that maintains information about
all vehicles registered in a particular state. For each vehicle
that is registered with the office, the system has to store
the name, address, and telephone number of the owner, the
start date and end date of the registration, plate information
(issuer, year, type, and number), sticker (year, type, and
number), and registration fee. In addition, the following
information is maintained about the vehicles themselves:
the number, year, make, model, body style, gross weight,
number of passengers, diesel-powered (yes/no), color, cost,
and mileage. If the vehicle is a trailer, the parameters diesel-
powered and number of passengers are not relevant. For
travel trailers, the body number and length must be known.
The system needs to maintain information on the luggage
capacity for a car, maximum cargo capacity and maximum
towing capacity for a truck, and horsepower for a motorcy-
cle. The system issues registration notices to owners of vehi-
cles whose registrations are due to expire after two months.
When the owner renews the registration, the system
updates the registration information on the vehicle.
a. Develop an object-oriented model by drawing a class

diagram that shows all the object classes, attributes,
operations, relationships, and multiplicities. For each
operation, show its argument list.

After interviews with the owners, you have come up
with the following business rules:
• Customers can have one or more locations.
• Each location can have one or more rates, depend-

ing upon the time of day.
18. Draw a class diagram, showing the relevant classes,

attributes, operations, and relationships for the following
situation:

Wally Los Gatos, owner of Wally’s Wonderful World of
Wallcoverings, has hired you as a consultant to design a
database management system for his chain of three stores
that sell wallpaper and accessories. He would like to track
sales, customers, and employees. After an initial meeting
with Wally, you have developed the following list of busi-
ness rules and specifications:
• Customers place orders through a branch.

• Wally would like to track the following about
customers: name, address, city, state, zip code,
telephone, date of birth, and primary language.

• A customer may place many orders.
• A customer does not always have to order

through the same branch all the time.
• Customers may have one or more accounts, and

they may also have no accounts.
• The following information needs to be recorded

about accounts: balance, last payment date, last
payment amount, and type.

• A branch may have many customers.
• The following information about each branch

needs to be recorded: branch number, location
(address, city, state, zip code), and square
footage.

• A branch may sell all items, or may only sell cer-
tain items.

• An order is composed of one or more items.
• The following information about each order

needs to be recorded: order date and credit
authorization status.

Chapter 13 • Object-Oriented Data Modeling 13-33

• Items may be sold by one or more branches.
• Wally wants to record the following about each

item: description, color, size, pattern, and type.
• An item can be composed of multiple items; for exam-

ple, a dining room wallcovering set (item 20) may
consist of wallpaper (item 22) and borders (item 23).

• Wally employs 56 employees. He would like to track
the following information about employees: name,
address (street, city, state, zip code), telephone num-
ber, date of hire, title, salary, skill, and age.
• Each employee works in one and only one branch.
• Each employee may have one or more depend-

ents. Wally wants to record the name of the
dependent as well as the age and relationship.

• Employees can have one or more skills.
Indicate any assumptions that you have made.

19. Our friend Wally Los Gatos (see Problem and Exercise 18),
realizing that his wallcoverings business had a few wrinkles
in it, decided to pursue a law degree at night. Since graduat-
ing, he has teamed up with Lyla El Pàjaro to form Peck and
Paw, Attorneys at Law. Wally and Lyla have hired you to
design a database system based on the set of business rules
defined below. It is in your best interest to perform a thor-
ough analysis, in order to avoid needless litigation. Please
create a class diagram based upon the following set of rules:
• An attorney is retained by one or more clients for

each case.
• Attributes of an attorney are attorney ID, name, address,

city, state, zip code, specialty (may be more than one),
and bar (may be more than one).

• A client may have more than one attorney for each case.
• Attributes of a client are client ID, name, address, city,

state, zip code, telephone, and date of birth.
• A client may have more than one case.
• Attributes of a case are case ID, case description, and case

type.
• An attorney may have more than one case.
• Each case is assigned to one and only one court.
• Attributes of a court are court ID, court name, city, state,

and zip code.
• Each court has one or more judges assigned to it.
• Attributes of a judge are judge ID, name, and years

in practice.
• Each judge is assigned to exactly one court.

20. Draw a class diagram, showing the relevant classes, attrib-
utes, operations, and relationships for the following situa-
tion: An international school of technology has hired you to
create a database management system in order to assist in
scheduling classes. After several interviews with the presi-
dent, you have come up with the following list of classes,
attributes, and initial business rules:

Room
Attributes: buildingID, roomNo, capacity

Room is identified by buildingID and roomNo.
A room can be either a lab or a classroom. If it is a

classroom, it has an additional attribute called board
type.

Media Type
Attributes: mTypeID (identifying attribute),
typeDescription

Please note: We are tracking the type of media (such
as a VCR, projector, etc.), not individual pieces of

equipment. Tracking of equipment is outside of the
scope of this project.

Computer Type
Attributes: cTypeID (identifying attribute),
typeDescription, diskCapacity, processorSpeed

Please note: As with Media Type, we are tracking
only the type of computer, not individual computers.
You can think of this as a class of computers (e.g., those
based on a 3.0 GHZ Intel Core i7 processor).

Instructor
Attributes: empID (identifying attribute), name, rank,
officePhone

Time Slot
Attributes: tsID (identifying attribute), dayofWeek,
startTime, endTime

Course
Attributes: courseID (identifying attribute),
courseDescription, credits

Courses can have one, none, or many prerequisites.
Courses also have one or more sections. Section has

the following attributes: sectionID, enrollmentLimit

After some further discussions, you have come up with some
additional business rules to help create the initial design:
• An instructor teaches one, none, or many sections of a

course in a given semester.
• An instructor specifies preferred time slots.
• Scheduling data is kept for each semester, uniquely

identified by semester and year.
• A room can be scheduled for one section or no section

during one time slot in a given semester of a given year.
However, one room can participate in many schedules,
one schedule, or no schedules; one time slot can partici-
pate in many schedules, one schedule, or no schedules;
one section can participate in many schedules, one sched-
ule, or no schedules. Hint: Can you associate this with
anything you have seen before?

• A room can have one type of media, several types of
media, or no media.

• Instructors are trained to use one, no, or many types
of media.

• A lab has one or more computer types. However, a class-
room does not have any computers.

• A room cannot be both a classroom and a lab. There also
are no other room types to be incorporated in the system.

21. Draw a class diagram, showing the relevant classes, attrib-
utes, operations, and relationships, for the following situation:

Wally Los Gatos and his partner Henry Chordate have
formed a new limited partnership, Fin and Finicky
Security Consultants. Fin and Finicky consults with cor-
porations to determine their security needs. You have
been hired by Wally and Henry to design a database
management system to help them manage their business.

Due to a recent increase in business, Fin and Finicky
has decided to automate their client tracking system.
You and your team have done a preliminary analysis
and come up with the following set of classes, attributes,
and business rules:

Consultant
There are two types of consultants: business consultants
and technical consultants. Business consultants are

13-34 Part V • Advanced Database Topics

contacted by a business in order to first determine
security needs and provide an estimate for the actual
services to be performed.

Technical consultants perform services according to
the specifications developed by the business consultants.

Attributes of business consultant are the following:
employee ID (identifier), name, address (street, city, state,
zip code), telephone, date of birth, age, business experi-
ence (number of years, type of business [or businesses]),
degrees received

Attributes of technical consultant are the following:
employee ID (identifier), name, address (street, city,
state, zip code), telephone, date of birth, age, technical
skills, degrees received

Customer

Services performed: date, amount, technical consultant,
services, customer
In order to construct the class diagram, you may assume
the following: A customer can have many consultants
providing many services. We wish to track both actual
services performed and services offered. Therefore,
there should be two relationships between customer—
service and consultant—one to show services per-
formed and one to show services offered as part of the
estimate.

22. In Chapter 9, we presented a case study for the Fitchwood
Insurance Agency. As you may recall, we developed the
ER diagram shown in Figure 13-25 for this agency. Convert
this E-R diagram into a class diagram. State any assump-
tions that you make.

23. Draw a class diagram for the following situation (state any
assumptions you believe you have to make in order to
develop a complete diagram):

A facilities management unit on a corporate campus is
responsible for a number of tasks associated with the
maintenance of the physical facilities of the company,
including emergency repairs, regular repairs, sched-
uled maintenance, cleaning of the offices and common
areas, and locking and unlocking of buildings and
rooms (using an automated system). Some of the tasks
are performed by the company’s own personnel and
others by outsourced resources. To manage the sched-
uling of the maintenance tasks, the company has a
small internal facilities help desk that receives
requests from the employees of the company by phone
and by e-mail. At the time when a request is received,
a help desk representative (HDR) interviews the
employee requesting first the employee’s identifica-
tion and the current location. In most cases, the
requests are related to regular repairs and cleaning. In
these cases, the HDR discusses the needs of the
requesting employee identifying the location and the
nature of the issue as accurately as possible; the sys-
tem has capabilities for helping the HDR to specify
every location on the campus. The system maintains a
comprehensive list of standard maintenance and

CUSTOMER

Sells_In

CustomerID
Customer Name
{Address
 (Street, City,
 State, Zipcode)}

AGENT
AgentID
AgentName
DateofHire

TERRITORY
TerritoryID
LastRedistrict
{Zipcode}

POLICY
PolicyNo
Type
FaceValue
InitCommission
InForce
Commission
EffectiveDate

FIGURE 13-25 Fitchwood
Insurance Company ERD

Customers are businesses that have asked for consulting
services. Attributes of customer are customer ID (identi-
fier), company name, address (street, city, state, zip
code), contact name, contact title, contact telephone,
business type, and number of employees.

Location
Customers can have multiple locations. Attributes of
location are customer ID, location ID (which is unique
only for each customer ID), address (street, city, state,
zip code), telephone, and building size.

Service
A security service is performed for a customer at one or
more locations. Before services are performed, an esti-
mate is prepared. Attributes of service are service ID
(identifier), description, cost, coverage, and clearance
required.

Additional Business Rules
In addition to the classes outlined above, the following
information will need to be stored and should be shown
in the model. These may be classes, but they also reflect
a relationship between more than one class:

Estimates: date, amount, business consultant, services,
customer

Chapter 13 • Object-Oriented Data Modeling 13-35

cleaning tasks, but it should also be possible to specify
new ones. Once the details have been recorded, the
HDR gives the requesting employee an estimate of the
time the work will be performed. In the case of an
emergency request (such as flooding caused by a
broken pipe), the HDR verifies that it is a real emer-
gency and uses the system to identify the maintenance
person who is currently on call for emergencies and to
forward the request immediately to that person.
A request to unlock a specific door immediately
is considered a special case that requires its own
process because of the complex identity verification
requirements.

24. Assume that at Pine Valley Furniture Company each prod-
uct (described by product number, description, and cost)
comprises at least three components (described by compo-
nent number, description, and unit of measure), and com-
ponents are used to make one or many products. In
addition, assume that components are used to make other

components and that raw materials are also considered to
be components. In both cases of components, we need to
keep track of how many components go into making
something else. Draw a class diagram for this situation;
indicate the multiplicities for all the relationships you
identified in the diagram.

25. Pine Valley Furniture Company has implemented electronic
payment methods for some customers. These customers
will no longer require an invoice. The sendInvoice and
receivePayment methods will still be used for those cus-
tomers who always pay by cash or check. However, a new
method is needed to receive an electronic payment from
those customers who use the new payment method. How
will this change impact the Pine Valley Furniture class dia-
gram? Redraw the diagram to include any changes that you
feel are necessary.

26. In the Pine Valley Furniture class diagram, is there a need to
add any derived associations or derived relationships? If so,
please redraw the diagram to represent this.

Field Exercises

1. Interview a friend or family member to elicit from them
common examples of superclass/subclass relationships. You
will have to explain the meaning of this term and provide a
common example, such as PROPERTY: RESIDENTIAL,
COMMERCIAL; or BONDS: CORPORATE, MUNICIPAL.
Use the information your interviewee provides to construct
a class diagram segment and present it to this person.
Revise, if necessary, until it seems appropriate to you and
your friend or family member.

2. Visit two local small businesses, one in the service sector
and one in manufacturing. Interview employees from these
organizations to obtain examples of both superclass/
subclass relationships and operational business rules (such
as “A customer can return merchandise only if the customer

has a valid sales receipt”). In which of these environments is
it easier to find examples of these constructs? Why?

3. Ask a database administrator or database or systems ana-
lyst in a local company to show you an EER (or E-R) dia-
gram for one of the organization’s primary databases.
Translate this diagram into a class diagram.

4. Interview a systems analyst in a local company who uses
object-oriented programming and systems development
tools. Ask to see any analysis and design diagrams the ana-
lyst has drawn of the database and applications. Compare
these diagrams to the ones in this chapter. What differences
do you see? What additional features and notations are
used, and what is their purpose?

References
Blaha, M., and Rumbaugh, J. 2005. Object-Oriented Modeling

and Design with UML, 2nd ed. Upper Saddle River, NJ:
Prentice Hall.

Booch, G. 1994. Object-Oriented Analysis and Design with
Applications, 2nd ed. Redwood City, CA: Benjamin/
Cummings.

Coad, P., and E. Yourdon. 1991. Object-Oriented Design. Upper
Saddle River, NJ: Prentice Hall.

Fowler, M. 2003. UML Distilled: A Brief Guide to the Standard
Object Modeling Language, 3rd ed. Reading, MA:
Addison-Wesley-Longman.

George, J., D. Batra, J. Valacich, and J. Hoffer. 2007. Object-
Oriented Systems Analysis and Design, 2nd ed. Upper
Saddle River, NJ: Prentice Hall.

Hoffer, J., J. George, and J. Valacich. 2010. Modern Systems Analysis
and Design, 6th ed. Upper Saddle River, NJ: Prentice Hall.

Jacobson, I., M. Christerson, P. Jonsson, and G. Overgaard. 1992.
Object-Oriented Software Engineering: A Use Case Driven
Approach. Reading, MA: Addison-Wesley.

Larman, C. 2004. Applying UML and Patterns: An Introduction to
Object-Oriented Analysis and Design and Iterative Development,
3rd ed. Upper Saddle River, NJ: Prentice Hall.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
1991. Object-Oriented Modeling and Design. Upper Saddle
River, NJ: Prentice Hall.

Rumbaugh, J., I. Jacobson, and G. Booch. 2004. The Unified
Modeling Language Reference Manual. Reading, MA:
Addison-Wesley.

UML Notation Guide. 2003. Needham, MA: Object Management
Group, available at www.omg.org/cgi-bin/doc?formal/
03-03-10.pdf (accessed September 12, 2009).

UML Superstructure Specification. 2009. Needham, MA: Object
Management Group, available at www.omg.org/technology/
documents/formal/uml.htm (accessed September 12, 2009).

www.omg.org/cgi-bin/doc?formal/03-03-10.pdf
www.omg.org/cgi-bin/doc?formal/03-03-10.pdf
www.omg.org/technology/documents/formal/uml.htm
www.omg.org/technology/documents/formal/uml.htm

13-36 Part V • Advanced Database Topics

Arlow, J., and I. Neustadt. 2005. UML 2 and the Unified Process:
Practical Object-Oriented Analysis and Design, 2nd ed.
Reading, MA: Addison-Wesley.

Pilone, D., and N. Pitman. 2005. UML 2.0 in a Nutshell.
Sebastopol, CA: O’Reilly.

Web Resources

www.omg.org Web site of the Object Management Group, a
leading industry association concerned with object-oriented
analysis and design.

www.omg.org/technology/documents/formal/uml.htm
OMG’s official UML Web site.

Further Reading

www.omg.org
www.omg.org/technology/documents/formal/uml.htm

14-1

Using Relational Databases
to Provide Object Persistence

Learning Objectives

After studying this chapter, you should be able to:

� Concisely define each of the following terms: persistence, serialization,
object-relational mapping (ORM), object-relational impedance mismatch, object
identity, accessor method, call-level application programming interface, transparent
persistence, separation of concerns, pooling of database connections, entity class,
fetching strategy, N+1 selects problem, declarative mapping schema, and value type.

� Understand the fundamental mismatch between the object-oriented paradigm and
the relational model and the consequences of this mismatch for the use of relational
databases with object-oriented development environments.

� Understand the similarities and differences between the approaches that are used
to address the object-relational impedance mismatch.

� Create a mapping between core object-oriented structures and relational structures
using Hibernate.

� Identify the primary contexts in which the various approaches to addressing the
object-relational impedance mismatch can be most effectively used.

� Understand possible effects of the use of the object-relational mapping approaches
on database performance, concurrency control, and security.

� Use HQL to formulate various types of queries.

INTRODUCTION

In Chapter 13, you learned about the object-oriented approach to data modeling,
leading to a conceptual domain model represented with the UML class diagram
notation. As briefly discussed in Chapter 13, the object-oriented approach is not
limited to data modeling but has been applied increasingly often to systems
analysis, design, and implementation in recent years. It is useful to understand the
broader context of object-oriented thinking before we discuss the core topic of this
chapter: the integration between object-oriented application development models
and relational databases. Object-orientation first emerged as a programming
model in the context of languages such as Simula (as early as in the 1960s) and
Smalltalk. It became mainstream and reached a dominant position in the 1990s,
particularly through the widespread use of languages such as C++ and Java.

C H A P T E R

14

14-2 Part V • Advanced Database Topics

Simultaneously with its strengthening impact in the world of programming, the
object-oriented approach started to have an increasingly strong role in analysis and
design, to the extent that in early and mid-1990s the proliferation of object-
oriented modeling techniques and tools made them very difficult for anybody to
manage. This led to efforts to control the propagation of object-oriented modeling
approaches through a concentrated, eventually successful attempt to integrate
them into one, standard set. As a result, the Unified Modeling Language (UML),
discussed in greater detail in Chapter 13, was born in 1997. UML, together with
variants of the closely related Unified Process iterative process model, is one of the
major reasons object-oriented analysis and design have become very popular. The
two most widely used application development frameworks, Java EE and Microsoft
.NET, are both based on object-oriented concepts and support object-orientation as
the foundation for development.

One of the key characteristics of the object-oriented development approach is
that the same core concepts can be applied at all stages and throughout the entire
process of development. The same domain model that is identified at the conceptual
level during requirements specification and analysis (as you learned in Chapter 13)
will be directly transformed into a model of interconnected software objects. Many
of the core object-oriented concepts (modeling the world with classes of objects,
integrating behavior and data, inheritance, encapsulation, and polymorphism)
can be applied seamlessly at different levels of abstraction. The object-oriented
principles are applied across a broad spectrum of systems development activities,
with one glaring exception: data management. For a long time, it was widely
believed that object-oriented database management systems (OODBMSs) would
gradually become very popular. These systems were intended to provide direct,
transparent persistence for objects in object-oriented applications, and they were
expected to become as widely used as object-oriented languages and systems
analysis and design methods are.

For a variety of reasons, OODBMSs never took off. One of the reasons is simply
organizational inertia: Starting in the 1980s, companies, government entities, and
other users of large-scale database management systems (DBMSs) began to invest
large amounts of money in relational database management systems. Moving to a
new DBMS technology is, in practice, much more difficult than starting to use a new
application development environment. Object-oriented databases also did not
initially have the same types of powerful query capabilities as relational databases do.
Moreover, the theoretical model underlying object-oriented databases is not quite
as sophisticated and mathematically precise as it is in the relational world. In
practice, potential user organizations clearly didn’t find the OODBMS technologies
to be highly beneficial. These technologies were typically created and represented
by smaller companies, and thus they seldom had the type of backing that would
have made it possible for them to convince user organizations that these products
are scalable and reliable for all types of uses.

It is not practical for object-oriented applications to maintain all relevant
objects in run-time memory all the time; therefore, despite the failure of the
OODBMSs to catch on, it is clear that object-oriented development environments
need a mechanism for storing object states between the application execution
sessions. Storing the state of an object between application execution sessions is
called providing persistence to the object. Object-oriented languages provide a
built-in mechanism for storing a persistent state of an object: Serialization refers to
the process of writing an object onto a storage medium or a communication
channel as a data stream. Serialization is not, however, a realistic mechanism to
be used for storing large amounts of structured data, as is needed in most
administrative applications: Its performance simply is not sufficiently scalable for
purposes that require fast and constant response times, and it does not provide
adequate support for the management of shared access to data, as database
management systems do.

Thus, the problem caused by the existence of two fundamentally different
ways to model the world remains. We have to find ways to address it; otherwise,

Persistence
An object’s capability to maintain
its state between application
execution sessions.

Serialization
The writing of an object
onto a storage medium or a
communication channel
as a data stream.

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-3

the object-oriented approach cannot be a realistic option for the development of
large-scale administrative applications. In this chapter, we will first discuss the
conceptual differences between the object-oriented and relational approaches
(the “object-relational impedance mismatch”) in more detail. We will continue by
describing the general characteristics of the different mechanisms that have been
developed to close the gap between these two approaches. The chapter continues
with a comprehensive example using Hibernate, a widely used object-relational
mapping (ORM) technology, and a systematic review of how various object-
oriented structures are mapped to the relational world.

OBJECT-RELATIONAL IMPEDANCE MISMATCH

The conceptual gap between the object-oriented approach to application design and
the relational model for database design and implementation is often labeled as a
mismatch. Chris Richardson (2006 and Scott W. Ambler (2006) call this phenomenon the
“object relational impedance mismatch,” Christian Bauer and Gavin King (2006) refer to
it as the “object/relational paradigm mismatch,” and Ted Neward (2005) simply calls it
the “object/relational mismatch.” These authors have identified a large number of
dimensions to this problem. They are summarized in Table 14-1.

The rest of this section discusses these dimensions of the object-relational impedance
mismatch and illustrates them with examples.

An illustration often used to describe the problem related to the nature and gran-
ularity of data types is the way an address is expressed in object-oriented and relational
data models. Let’s assume that we have a generic Person class (in the object-oriented
world) or entity type (in the relational world) that has typical attributes such as Last
Name, First Name, Date of Birth, etc. In addition, let’s assume that a person has two
addresses (home and business) consisting of Street, City, Zip, State, and Country. In a
typical object-oriented solution, Address would be modeled as a separate class with the
attributes listed previously. Each object in the Person class would, in turn, include one
or several address objects (see Figure 14-1a).

In a typical relational database solution, however, the components of the addresses
would in most cases be represented as individual columns of the PERSON relation
(as discussed in Chapter 4 in the context of representing composite attributes and illus-
trated in Figure 14-1b). Please note that we do not consider address here as being a
multivalued attribute but treat the two addresses as two separate attributes. The object-
oriented and relational representations of the domain capture the same information
about the real-world situation, but their internal structures are quite different.

There are several differences in representing structural relationships between the
core modeling elements in the object-oriented and relational worlds. We will discuss
briefly two of them: inheritance and associations. As you learned in Chapter 13, inheri-
tance and the related generalization-specialization hierarchy are some of the most impor-
tant concepts in the world of object-oriented modeling. These same principles are applied

Object-relational mapping
Definition of structural relationships
between object-oriented and
relational representations of data,
typically to enable the use of a
relational database to provide
persistence for objects.

Object-relational impedance
mismatch
The conceptual differences
between the object-oriented
approach to application design
and the relational model for
database design and
implementation.

TABLE 14-1 Elements of the Object-Relational Impedance Mismatch

• Nature and granularity of data types

• Structural relationships:

• Inheritance structures

• Representation of associations

• Defining the identity of objects/entity instances

• Methods of accessing persistent data

• Focus on data (relational databases) versus integrated data and behavior (the object-oriented
approach)

• Architectural styles

• Support for managing transactions

14-4 Part V • Advanced Database Topics

streetAddress
city
zip
state

Address

lastName
firstName
dateOfBirth

Person

homeAddress

workAddress

HAStreet HACity HAZip HAState WAStreet WAStateWACity WAZipPersonID

PERSON

LastName FirstName DateOfBirth

FIGURE 14-1 Examples of different ways to represent Address

to conceptual modeling in enhanced E-R modeling, too, as discussed in Chapter 3.
In Chapter 4, you learned about mapping generalization-specialization hierarchies
(supertype/subtype relationships) to relational database structures. The object-oriented
approach brings in the additional complexity of dealing with inherited operations. Later
in this chapter, we will discuss the details of mapping object-oriented inheritance struc-
tures to relational databases; at this point, it is sufficient to say that addressing this issue
is not trivial.

In the relational world, associations between instances of entities are represented
with foreign key values, as you learned in Chapter 4. These links are not directional by
nature: Using relational joins, it is as easy for us to determine all orders that a customer
has as it is to determine the customer for a specific order (see Figure 4-12). In the object-
oriented world, associations are, however, always directional in nature. This is easy to
see when you think about the way they are implemented in object-oriented program-
ming languages, such as Java or C#. Let’s assume that we have two classes, Customer
and Order, which are associated with each other as follows:

public class Customer {
private Set<Order> orders;
...

}
public class Order {

private Customer customer;
...

}

Even if you are not familiar with the syntax of the Java programming language,
this example is probably clear enough to illustrate how customers and orders are asso-
ciated with each other. Orders are represented as a collection (“Set”) of instances of class
Order in Customer; this collection is called orders. A customer is, in turn, represented as
an attribute customer of Order that has to be an object in the class Customer. Thus, both
sides of this one-to-many relationship have to be represented explicitly. Every mecha-
nism that is created to address the object-relational impedance mismatch issue has to
address this issue in one way or another.

The identity of the core elements (objects/entity instances) is specified differently
in the object-oriented and relational worlds. As you know based on Chapter 4, every
row in a relational table has to have a unique primary key value, which determines the

(b) Relational representation

(a) Object-oriented representation

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-5

Object identity
A property of an object that
separates it from other objects
based on its existence.

public class Customer { 3. Using the getDiscountPercentage method of the customer object

private float discountPercentage;

private Set<Order> orders;

. . .

public float getDiscountPercentage() {...}

}

1.
public class Order {

private Customer customer;
...

2. Accessing a customer object associated with anOrder
public getCustomer() {...}
}

4. The
getDiscountPercentage
method accesses the
actual
attribute value

Accessing anOrder object

FIGURE 14-2 Accessing a customer’s discount percentage with navigation

identity of the row. As discussed in Chapter 13, in the object-oriented world, each object
has its own identity simply based on its existence (i.e., its location in memory), and this
object identity is not dependent on the values of any of the attributes of the object.
Therefore, any system that provides a capability to map between relational and object-
oriented representations has to include a mechanism to convert between these two
approaches to separate objects/entity instances from each other.

Object-oriented environments and relational databases have a very different naviga-
tional model for accessing persistent data. In the object-oriented world, a typical way to
access a data item is to call the accessor method associated with a specific attribute. Using
the structures represented in Figure 14-2, we would first locate the correct order
(anOrder) in the set orders and then call anOrder.getCustomer().getDiscountPercentage()
to access the discount percentage for the order’s customer. The system would navigate
from the anOrder object to the customer object associated with this order, using the
getCustomer() accessor method of the order, and then call its getDiscountPercentage()
method. The actual attribute is hidden (encapsulated) within the customer object and
accessible only through the public accessor method.

In the case of a relational database, however, the same discount percentage would
be accessed by using a single query that connects ORDER and CUSTOMER tables to
each other using the CustomerID of ORDER as a foreign key that refers to CustomerID
in CUSTOMER. The difference is not necessarily very clear when we evaluate just one
order and customer, but the situation becomes much more complex if we need to access
discount percentages for a large number of customers. In an object-oriented language,
we would use some way to iterate over a collection of order objects and navigate sepa-
rately to each customer. This would not, however, be a feasible approach in the
relational database context: It would be highly inefficient to retrieve each ORDER–
CUSTOMER row pair separately. Instead, we would declare the resulting set of values
in advance in the SQL query and retrieve them all at the same time.

Relational databases and the processes that are used to design them focus prima-
rily on data (with the exceptions of stored procedures and some object-relational exten-
sions of relational databases), whereas object-oriented environments by definition
integrate data and behavior. In Chapter 1, you learned about the benefits of separating
data from applications as one of the key characteristics of the database approach. The
entire object-oriented philosophy contradicts the separation between data and behavior
that is so central for the database approach. This philosophical difference contributes to
the gap between the relational and object-oriented approaches.

The relational database approach is based on a different set of architectural assump-
tions than the object-oriented approach. The relational approach fits very well with the

Accessor method
A method that provides other
objects with access to the state
of an object.

14-6 Part V • Advanced Database Topics

client/server model, as discussed in Chapter 8: Relational database management systems
have been designed to respond to service requests that arrive in the form of an SQL query.
The requests might be coming from an application server, from a Web server, from a Web
client, or from a human user through a very simple text-based interface, but the idea is
the same: A DBMS receives a query asking for either a specific set of data or an operation
on data, executes it, and returns a response back to the client. In the object-oriented
world, the situation is quite different: Data and the behavior that manipulates the data
are intricately linked to each other and designed to be inseparable. Thus, when a rela-
tional database is used to store the persistent state of an object, the system as a whole has
to take into account the linkage between data and behavior in the object-oriented world.

Finally, as you learned in Chapter 11, all database management systems have to
offer a mechanism to manage transactions so that an abnormal interruption of a
sequence of actions that belong together does not lead to an inconsistent state of the
database. Object-oriented environments typically do not have an inherent, built-in con-
cept of boundaries between transactions.

Let’s summarize the challenge that systems architects and application developers
are facing: In application development, the object-oriented approach has gradually
reached a dominant position, and a large percentage of software projects that include
development of new applications is based on the object-oriented philosophy in some
way. The most commonly used application development frameworks, Java EE and
Microsoft .NET, are both object-oriented. At the same time, relational databases are
almost invariably used as the mechanism to provide long-term persistence for organi-
zational data. This is unlikely to change any time soon. As we demonstrated previously,
these two approaches have significant conceptual differences, which require careful
attention if we want them to coexist. We have no choice but to provide long-term object
persistence for any realistic organizational application: The key reason why we have
information systems in organizations is to maintain long-term information about the
objects that are important for the business. Object-oriented applications need object per-
sistence, and in the foreseeable future, the only technology that will provide that in a
reliable, scalable way in the enterprise context are relational database management sys-
tems. Therefore, solutions for closing the gap between these two approaches are an
essential component of any modern computing infrastructure.

PROVIDING PERSISTENCE FOR OBJECTS
USING RELATIONAL DATABASES

Many different approaches have been proposed for addressing the need to provide per-
sistence for objects using relational databases. Most modern relational database man-
agement systems offer object-oriented extensions, which are typically used for dealing
with nonstandard, complex, and user-defined data types. In this chapter, however, our
focus is on mechanisms that provide persistence support to a genuine object-oriented
design and implementation model, and we will review the most common of those here.

Common Approaches

The most typical mechanisms for providing persistence for objects include call-level appli-
cation programming interfaces, SQL query mapping frameworks, and object-relational
mapping frameworks.

CALL-LEVEL APPLICATION PROGRAMMING INTERFACES Since the early days of Java, Java
Database Connectivity (JDBC) has been an industry standard for a call-level application
programming interface (API) with which Java programs can access relational databases.
If you are developing software using Microsoft’s .NET Framework, ADO.NET provides
similar types of capabilities for providing access to relational databases. Open database
connectivity (ODBC) is another widely used API for accessing data stored in relational
databases from different types of application programs. All of these mechanisms are
based on the same idea: An SQL query hand-coded by a developer is passed as a string
parameter to the driver, which passes it on to the DBMS, which, in turn, returns the result

Call-level application
programming interface
A mechanism that provides an
application program with access
to an external service, such as a
database management system.

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-7

as a set of rows consisting of (untyped) columns. The mechanisms have their differences
(e.g., ADO.NET provides an intermediate DataSet construct), but conceptually they are
very similar.

SQL QUERY MAPPING FRAMEWORKS The next category of tools provides additional
support and a higher level of abstraction for using a relational database to provide
object persistence by linking classes in an object-oriented solution to parameters and
results of SQL queries (instead of database tables). These tools are not full-blown object-
relational mapping tools because they do not generate the needed SQL based on a
mapping between descriptions of tables and classes. They are, however, an “elegant
compromise” (in the words of Tate and Gehtland, 2005) that hide some of the complex-
ity of a pure JDBC or ADO.NET solution but still give the developers full access to SQL.
The best-known tools in this category are iBATIS and iBATIS.NET. They consist of two
components: iBATIS Data Mapper/SQL Maps, which are structures used to create a
bridge between an SQL query and a Java object, and iBATIS Data Access Objects, which
form an abstraction layer between the details of your persistence solution and the actual
application.

OBJECT-RELATIONAL MAPPING FRAMEWORKS Comprehensive object-relational map-
ping (ORM) frameworks, such as the Java Persistence API (JPA) specification and its
implementations Hibernate, OpenJPA, and EclipseLink, hide the relational data access
methods from the object-oriented applications and provide an entirely transparent
persistence layer. These frameworks, when integrated with an object-oriented applica-
tion, move the management of the concerns related to persistence outside the core
structure of the object-oriented applications. They often provide a declarative mapping
schema that links domain classes needing persistence to relational tables and mecha-
nisms for managing database transactions, security, and performance in ways that are
hidden from the applications; alternatively, they create the mapping based on specific
notes added to Java code called annotations. The classes for which an ORM framework
provides persistence do not know that they are persistent: Persistent objects in these
classes are created, loaded, and deleted by the ORM framework. Many ORM frame-
works also include a query language, improve performance by optimizing the time
when objects are loaded from the database, use caching to manage performance, and
allow applications to detach objects that can be modified and, at a suitable time, made
persistent again (Richardson 2006). The number of options in this category is quite large.
The most widely used of them is Hibernate (and its .NET counterpart NHibernate),
which is one of several implementations of the JPA. In addition to Hibernate, Apache’s
OpenJPA and Eclipse Foundation’s EclipseLink (together with Oracle’s older, closely
related TopLink) are widely used JPA implementations. The past few years have seen
the parallel development of multiple ORM frameworks. At this time, JPA has emerged
as the overall framework specification and Hibernate as the most popular implementa-
tion. In this chapter, we have chosen to use Hibernate as our vehicle for presenting the
examples because of its long-standing status as the most widely used ORM framework
and because its XML-based mapping specifications provide us with more visibility to
the internal mapping structures.

PROPRIETARY APPROACHES Finally, there are many proprietary approaches for inte-
grating data access directly into object-oriented environments and languages, such as
Microsoft’s Language Integrated Query (LINQ), which is a component of the .NET
Framework. The goal of LINQ is to very closely integrate data access queries into pro-
gramming languages, not limiting the access to relational databases or XML but offer-
ing access any type of data store. The first version of LINQ, titled LINQ to SQL, was
released as part of the first version of the .NET Framework 3.5; a more sophisticated but
also more complex version of the technology, called LINQ to Entities, was released with
.NET 3.5 SP1. LINQ to Entities is significantly closer to offering a full set of comprehen-
sive ORM framework capabilities than LINQ to SQL, and it appears to form the founda-
tion of Microsoft’s future efforts in this area.

Transparent persistence
A persistence solution that hides
the underlying storage technology.

Declarative mapping schema
A structure that defines the
relationships between domain
classes in the object-oriented model
and relations in the relational
model.

14-8 Part V • Advanced Database Topics

TABLE 14-2 Advantages and Disadvantages of the Call-Level API Approach

Advantages Disadvantages

• Low overhead

• Highest level of control over the details
of the database connection

• Proliferation of code related to database
connectivity

• Need to write a lot of detailed code

• Little reuse of code

• Developers need a detailed understanding of
DBMS capabilities and the database schema

• SQL code not generated automatically

• The approach does not provide transparent
persistence

Selecting the Right Approach

Which one of the four principal approaches to providing persistence for objects using
relational databases should be used in a specific project? To help you understand the
issues affecting this decision, we will continue by discussing the advantages and disad-
vantages of the first three approaches. We will not include the proprietary approaches
(such as LINQ) in the comparison because none of them has become widely used yet, but
we encourage you to follow developments in this area. Tables 14-2, 14-3, and 14-4 preview
the advantages and disadvantages of each of these approaches.

CALL-LEVEL APIS JDBC and other call-level APIs with which object-oriented applications
can connect directly to relational databases are still widely used, and many developers and
organizations continue to utilize them because they allow the most direct access to the
capabilities provided by the DBMS through SQL (see Table 14-2). Specifically, they do this

TABLE 14-3 Advantages and Disadvantages of the SQL Query Mapping Frameworks

Advantages Disadvantages

• Direct access to all DBMS capabilities
provided through SQL

• Mapping to legacy database schemas
easier

• Amount of code required significantly less
than with call-level APIs

• Database access code easier to manage
than with call-level APIs

• More overhead than with call-level APIs

• Developers need a detailed understanding of
DBMS capabilities and the database schema

• SQL code not generated automatically

• The approach does not provide transparent
persistence

TABLE 14-4 Advantages and Disadvantages of the Object-Relational Mapping
Frameworks

Advantages Disadvantages

• They provide the highest level of
persistence transparency

• Developers do not need to have a detailed
understanding of the DBMS or the
database schema

• The implementation of persistence is fully
separated from the rest of the code

• They enable true object-oriented design

• There is more overhead than with call-level
APIs and with query mapping frameworks

• Complex cases often need detailed
attention

• Legacy databases lead to difficulties

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-9

without requiring the processing overhead that the other approaches unavoidably have
(the others are, after all, built on top of a call-level API). The call-level APIs have, however,
significant weaknesses: They expose the database structure to the application developers
and require that the developers understand the underlying database. They also require
that application developers be able to write database access (SQL) code manually. They
distribute data access/persistence code to a potentially very large number of methods
making it difficult to maintain. Finally, they violate the idea of separation of concerns
(such as persistence) by including the persistence-related code in all objects. Using JDBC,
ADO.NET, or ODBC to embed SQL code directly to an object-oriented solution is a very
labor-intensive approach that is prone to errors, particularly in large applications. Often,
these mechanisms work well when an application is small and in the early stages of its life
cycle, but later they lead to bloated and heavily layered code. Thus, call-level APIs can be
recommended primarily for small, simple applications that are unlikely to grow.

SQL QUERY MAPPING FRAMEWORKS SQL query mapping frameworks (primarily
iBATIS and iBATIS.NET) have several strengths compared to the call-level APIs (see
Table 14-3): They significantly reduce the amount of code that is required to manage
database connectivity. They allow application developers to operate at a higher level of
abstraction and avoid the need to re-create low-level code repeatedly, thus reducing the
probability of errors. Compared to the call-level APIs, their primary disadvantage is
the extra overhead they unavoidably create, but that overhead appears to be at a rea-
sonable level. A significant strength of these frameworks is that they give the developer
full access to all the capabilities that a DBMS offers through SQL. Thus, they work well
with legacy database schemas that might not have been designed to provide a good fit
with object-relational mapping tools. They also allow developers to write sophisticated
SQL queries, access stored procedures, and use nonstandard features of a DBMS.
Whether the use of these options is considered good practice will, of course, depend on
the user organization, but the SQL query mapping frameworks give developers these
options. Particularly in the case of complex joins, SQL query mapping frameworks give
more opportunities for fine-tuning the queries (assuming that the developer has a high
level of competency in the use of SQL).

One disadvantage of these tools is that they are not genuine object-relational map-
ping tools because they do not create a conceptual connection between classes and
tables. By definition, they require an in-depth understanding of the characteristics of
the DBMS and the database schema, and an ability to write SQL queries. Unlike the
genuine object-relational mapping frameworks, they don’t generate the SQL code auto-
matically. As a student of data management topics this should, of course, not be a con-
cern for you. SQL query mapping frameworks such as iBATIS appear to be particularly
strong in situations where there is a complex, potentially nonstandard existing database
structure and the task requires the execution of sophisticated queries resulting in a large
number of rows.

ORM FRAMEWORKS The genuine object-relational mapping frameworks have clear
advantages from the perspective of the object-oriented approach (see Table 14-4).
Specifically, the conceptual mapping between the classes and associations in the object-
oriented world and the tables and relationships in the relational world has to be
specified only once. After the mapping has been completed, a developer operating in
the object-oriented world is not, at least in principle, required to write SQL queries or
have an in-depth understanding of the underlying database structure. In addition, the
frameworks have been designed to take care of caching and query optimization so that,
in most cases, performance is at least at the same level as any homegrown solution
based on direct use of call-level APIs. The ORM frameworks also have the advantage of
allowing true object-oriented application design.

The ORM frameworks are not, however, without disadvantages: It is often diffi-
cult to map legacy database schemas to genuinely object-oriented application designs.
With more complex designs, even clean-slate development is not as straightforward
and automatic as simple examples might suggest; finding an optimal mapping solution
requires detailed work. ORM frameworks create more overhead than the other two

Separation of concerns
The approach of dividing an
application or a system into feature
or behavior sets that overlap with
each other as little as possible.

14-10 Part V • Advanced Database Topics

approaches because of the higher level of abstraction they create and, therefore, they
potentially impose a performance penalty in certain situations. Reliable empirical data
regarding ORM framework performance is, however, difficult to obtain. The ORM
frameworks are particularly strong in situations where you have an opportunity to cre-
ate a new database schema to provide persistence to your objects and the required data-
base operations are not hugely complex.

It is also important to point out that particularly in the ORM framework category,
you have multiple options from which to choose. Currently, Hibernate is the de facto
industry standard and the most important implementation of the Java community stan-
dard JPA (which, in turn, is part of the Enterprise JavaBeans [EJB] 3.0 standard). Apache
OpenJPA is the latest EJB 3.0/JPA implementation, and it also appears to be gaining
users. In addition, there are probably dozens of other, non-JPA ORM frameworks; for
example, Cayenne, TJDO, Prevayler, Speedo, and XORM are just a few of the open
source frameworks. All of these implementations have strengths and weaknesses,
which are likely to change over time. A detailed comparison of the products is beyond
the scope of this text. It is, however, important that you know what the most important
implementation options are and continuously evaluate their fit with your own develop-
ment environment and projects.

OBJECT-RELATIONAL MAPPING EXAMPLE USING HIBERNATE

This section gives a practical example of object-relational mapping using Hibernate. In
this example, we will present an object-oriented domain model for a simple university
domain, a relational database representation of the same data, and the configuration
files that are needed to implement the mapping. We will not describe here all the config-
uration details that are needed to create a functional solution because our focus is on
helping you understand the conceptual ideas underlying the mapping.

Foundation

Figure 14-3 shows a UML class diagram that represents an object-oriented conceptual
domain model of our area of interest, and Figure 14-4 shows a UML class diagram that
represents a design model for the same set of classes. Despite the differences in
notation, Figure 14-3 is relatively close to an enhanced ER model: The inheritance
structure between Person and Student/Faculty can be expressed with the generaliza-
tion/specialization structure in an EER model, and the association class Registration is
very similar to an associative entity. This domain model does not yet include any
behaviors. The similarity is not surprising because an EER model and an object-
oriented domain model serve the same purpose: Each provides a conceptual represen-
tation of a real-world domain. Figure 14-4 is a design model that, instead of describing
a real-world domain, uses the same diagram language to represent the design of an
object-oriented software solution. It is important to note the difference: In Figure 14-3
the rectangle labeled Faculty refers to the real-world concept of a faculty member,
whereas in Figure 14-4 the rectangle labeled Faculty (which looks exactly the same)
refers to a software class called Faculty.

The inclusion of a particular software class in the software solution is, of course,
directly derived from the domain model, and the objects in this software class directly
correspond to the real-world faculty members. Still, the domain model and the design
model describe different spaces. The objects that are instances of the design model
classes are the ones for which our solution needs to provide persistence. (We have little
control over the persistence of the real-world objects in the domain model.) Note that
while some of the classes have identifying attributes, such as sectionNbr, there are no
primary keys. Also, several of the associations between the classes indicate directional
navigation. This means that to access objects in the Registration class, for example, the
application has to navigate to them through the appropriate Section. With this design
solution, there is no way to access a specific section through a specific registration.

Figure 14-5 presents a Java representation of the design model included in
Figure 14-4. Note that each of the classes would also need a constructor without parameters

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-11

-status : string
-semester : string

-firstName : string
-lastName : string

1

1

-sectionNbr : string
-sectionRegNbr : string

Course

-courseNbr : string
-courseTitle : string

-grade : string
-numGrade : float

Person

Section
Registration

-office : string

Faculty

-facultyID : string-yearMatriculated : int
-studentID : string

Student

0..*

0..*

FIGURE 14-3 Object-oriented
domain model

(so called no-arg constructor) and getter and setter methods; Hibernate requires these to
operate correctly. Figure 14-6 (page 14-13), in turn, includes a possible relational model for a
database serving this application. With both the object solution and the relational solution
defined, we can now analyze the characteristics of the solution that links the two, using
Hibernate as the object-relational mapping tool.

Mapping Files

The core element of Hibernate that defines the relationship between the object-oriented
classes and relational tables is XML mapping files, which are typically named <Class
name>.hbm.xml. The following example appears to be relatively simple, but it reveals
interesting mapping challenges.

In some cases, mapping files are very straightforward, as in the case of Course:

<class name = “registrations.Course” table = “Course_T”>
<id column = “CourseID”>

<generator class=”native”/>
</id>
<property name = “courseNbr” column = “CourseNbr”/>
<property name = “courseTitle” column = “CourseTitle”/>
<set name = “sections” inverse = “true” table = “Section_T”>

<key column = “CourseID”/>
<one-to-many class=“registrations.section”/>

</set>
</class>

14-12 Part V • Advanced Database Topics

-yearMatriculated : int
-studentID : string

-semester : string

1

1

1

-sectionNbr : string
-sectionRegNbr : string

+getAvgGrade() : long

-enrolledStudents

-student
-facultyMember

Student

Section

-firstName : string
-lastName : string

Person

-office : string

Faculty

-facultyID : string

-status : string
-grade : string
-numGrade : float

Registration

0..*

0..*

0..*

1

-sections

Course

-courseNbr : string
-courseTitle : string

+getNbrStudents(in semester : string)

0..*

FIGURE 14-4 Object-oriented design model

Note that the mapping is based on the classes in the programming language (in this
case, Java), not on the database structure. Therefore, the fundamental element is the
class, followed by its attributes name and table, specifying the name of the programming
language class (Course) and the corresponding table (Course_T). The <id> element spec-
ifies the primary key of the database table, which in this case is a nonintelligent key,
CourseID. The <generator> element gives the DBMS instructions regarding how to cre-
ate the primary key values. The <property> tags specify a mapping between an attribute
of the programming language class and the name of the database column. Finally, we
need to specify that a course has multiple sections (maintained in the Java attribute sec-
tions) and that those sections are persistently stored in table Section_T.

In the same way, we will specify the mapping for the class Section:

<class name = “registrations.Section”>
<id name = “id” column = “SectionID”>

<generator class = “native”/>
</id>
<property name = “sectionRegNbr” column = “SectionRegNbr”/>
<property name = “sectionNbr” column = “SectionNbr”/>
<property name = “semester” column = “Semester”/>
<many-to-one name = “course”

class = “registrations.Course”
column = “CourseID”/>

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-13

public abstract class Person {
private Long id;
private String lastName;
private String firstName;

}

public class Student extends Person {
private int yearMatriculated;
private String studentID;

}

public class Faculty extends Person {

private String office;
private String facultyID;

}

public class Course {

private Long id;

private String courseNbr;
private String courseTitle;
private Set<Section> sections;
public int getNbrStudents(String semester) {

// the body of the method is intentionally missing
}

}

public class Section {

private Long id;

private String sectionRegNbr;
private String sectionNbr;
private String semester;
private Faculty facultyMember;
private Set<Registration> enrolledStudents;

public double getAvgGrade() {
// the body of the method is intentionally missing
}

}

public class Registration {

private Long id;

private Student student;
private String status;
private String grade;
private float numGrade ;

}

FIGURE 14-5 Java implementation of the design model

<many-to-one name = “faculty”
class = “registrations.Faculty”
column = “FacultyID”
not-null = “true”/>

<set name = “enrolledStudents” table = “Registration_T”>
<key column = “SectionID”/>
<composite-element class = “registrations.Registration”>

<parent name=”Section”/>

<many-to-one name = “student” column = “StudentPersonID”
class = “registrations.Student” not-null = “true”/>

<property name = “status” column = “Status”/>
<property name = “grade” column = “Grade”/>
<property name = “numGrade” column = “NumGrade”/>

</composite-element>
</set>

</class>

PERSON (PersonID, LastName, FirstName)
FACULTY (FacultyPersonID, FacultyID, Office)
STUDENT (StudentPersonID, StudentID, YearMatriculated)
COURSE (CourseID, CourseNbr, CourseTitle)
SECTION (SectionID, SectionRegNbr, SectionNbr, Semester, CourseID, FacultyPersonID)
REGISTRATION (SectionID, StudentPersonID, Status, Grade, NumGrade)

FIGURE 14-6 Relational
representation of the
design model

14-14 Part V • Advanced Database Topics

In this mapping, we are using the <many-to-one> tags to tell Hibernate that there
is one course and there is one faculty member per course but that a course can have
multiple sections, and a faculty member can be responsible for multiple sections. In
addition, we are mapping the table Registration_T to the class Registration. They both
represent the many-to-many relationship between Student and Section. In the
Hibernate configuration file, this structure is called composite-element.

Let’s take a closer look at this mapping. The Java class Section includes as one of its
attributes a set of objects that belong to the class Registration, called enrolledStudents. As
the name suggests, this set includes one Registration object per student who is enrolled in
a particular section. The relational representation of this set is defined by the configura-
tion file segment that is inside the <set> </set> tags. The specification for the set includes
its name (enrolledStudents), the table to which it is mapped (Registration), and the attrib-
utes that will be mapped to the columns of the table. Status, Grade, and NumGrade are
attributes with a value, but student refers to an object in the class Student. This association
is implemented as a foreign key relationship in the database. Hibernate also understands
that the Registration_T table needs a composite primary key consisting of SectionID and
StudentPersonID, which are both nonintelligent, system-generated primary key columns
of the Section_T and Student_T tables, respectively.

The final configuration file that is needed for mapping the original Java represen-
tation to relational tables describes the mapping for the abstract superclass Person and
its two subclasses, Student and Faculty. It is as follows:

<class name = “registrations.Person” table = “Person_T”>
<id name = “id” column = “PersonID”>

<generator class = “native”/>
</id>
<property name = “firstName” column = “FirstName”/>
<property name = “lastName” column = “LastName”/>

<joined-subclass name=”registrations.Student” table = “Student_T”>
<key column = “StudentPersonID”/>
<property name = “studentID” column=”StudentID”/>
<property name = “yearMatriculated” column=”YearMatriculated”/>

</joined-subclass>

<joined-subclass name=”registrations.Faculty” table = “Faculty_T”>
<key column = “FacultyPersonID”/>

<property name = “facultyID” column=“FacultyID”/>
<property name = “office” column=“Office”/>

</joined-subclass>
</class>

Hibernate offers multiple ways to take care of the mapping of an inheritance hier-
archy. In this case, we have chosen to use an approach often called “table per subclass.”
This name is somewhat misleading because the approach requires a table for each class
and subclass that requires persistence. The configuration file first specifies the way the
superclass is mapped and then uses the <joined-subclass> tab to map the subclasses.
Note that you do not need a separate configuration file for the Student or Faculty sub-
classes; this is all that is needed to map them.

Hibernate includes a tool (SchemaExport) that can be used to create SQL data def-
inition language (DDL) scripts for creating a relational database schema described in a
specific set of mapping files. The specific nature of the generated SQL will depend on
the DBMS in use. For our example, using MySQL, a popular open-source DBMS,
Hibernate generated the SQL DDL included in Figure 14-7.

Note how the tables Student_T, Faculty_T, and Registration_T do not have auto-
generated primary keys because Student_T and Faculty_T get their primary keys from
Person_T, and the primary key of Registration_T is a composite of the primary keys of
Section_T and Student_T. Also, it is interesting to see how Hibernate names the

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-15

constraints so that they can be referenced later if the schema is updated. Finally, you
should pay attention to the way Hibernate generates the foreign key constraints sepa-
rately in a specific order. (Can you tell how this order is determined?)

Hibernate Configuration

You might have wondered how Hibernate knows to which DBMS and database it
should connect and what the specific characteristics of the connection are. These charac-
teristics are specified in a configuration file called hibernate.cfg.xml. This XML text file
has multiple sections, focusing on different aspects of the connection. We will review
the most important of them here. The first segment of the file specifies the characteris-
tics of the database connection:

<!— Database connection settings —>
<property name=“connection.driver_class”>

com.mysql.jdbc.Driver</property>
<property name=“connection.url”>

jdbc:mysql://localhost/universityTest</property>
<property name=“connection.username”>username</property>
<property name=“connection.password”>password</property>

These settings include the driver to be used (in this case, the JDBC driver for MySQL),
the URL for the database connection string (in this case, MySQL running on localhost),
and the username and password to connect to the DBMS.

create table Course_T (
 CourseID bigint not null auto_increment,
 CourseNbr varchar(255),
 CourseTitle varchar(255),
 primary key (CourseID)
);
 create table Faculty_T (
 FacultyPersonID bigint not null,
 FacultyID varchar(255),
 Office varchar(255),
 primary key (FacultyPersonID)
);
 create table Person_T (
 PersonID bigint not null auto_increment,
 FirstName varchar(255),
 LastName varchar(255),
 primary key (PersonID)
);
 create table Registration_T (
 SectionID bigint not null,
 StudentPersonID bigint not null,
 Status varchar(255),
 Grade varchar(255),
 NumGrade float,
 primary key (SectionID, StudentPersonID)
);
 create table Section_T (
 SectionID bigint not null auto_increment,
 SectionRegNbr varchar(255),
 SectionNbr varchar(255),
 Semester varchar(255),
 CourseID bigint,
 FacultyPersonID bigint not null,
 primary key (SectionID)
);

create table Student_T (
 StudentPersonID bigint not null,
 StudentID varchar(255),
 YearMatriculated integer,
 primary key (StudentPersonID)
);
 alter table Faculty_T
 add index FK222432444C82F733 (FacultyPersonID),
 add constraint FK222432444C82F733
 foreign key (FacultyPersonID)
 references Person_T (PersonID);
 alter table Registration_T
 add index FKB94F3CD9DBF3A848 (StudentPersonID),
 add constraint FKB94F3CD9DBF3A848
 foreign key (StudentPersonID)
 references Student_T (StudentPersonID);
 alter table Registration_T
 add index FKB94F3CD963312866 (SectionID),
 add constraint FKB94F3CD963312866
 foreign key (SectionID)
 references Section_T (SectionID);
 alter table Section_T
 add index FKD8A816C52E310406 (FacultyID),
 add constraint FKD8A816C52E310406
 foreign key (FacultyPersonID)
 references Faculty_T (FacultyPersonID);
 alter table Section_T
 add index FKD8A816C5A21C918E (CourseID),
 add constraint FKD8A816C5A21C918E
 foreign key (CourseID)
 references Course_T (CourseID);
 alter table Student_T
 add index FKF3371A1BD8733E4A (StudentPersonID),
 add constraint FKF3371A1BD8733E4A
 foreign key (StudentPersonID)
 references Person_T (PersonID);

FIGURE 14-7 DDL for creating the sample database

14-16 Part V • Advanced Database Topics

Another important segment specifies the <Class name>.hbm.xml files that
Hibernate can use as its resources. In this example, we have three of them:

<!— list of the mapping configuration files —>
<mapping resource=“registrations/Course.hbm.xml”/>
<mapping resource=“registrations/Person.hbm.xml”/>
<mapping resource=“registrations/Section.hbm.xml”/>

The most complex set of parameters is associated with the process of pooling of
database connections. The designers of Hibernate recognize that it is not feasible to
open a new connection to the DBMS every time an application wants to interact with
the database. Every new active connection has a cost associated with it and, thus, it
makes sense to use a pool of connections that are kept open and allocated to different
uses and users, depending on the need at a specific time. In this case, we chose to allo-
cate four parameters, following Bauer and King (2006):

<!— Using the C3P0 connection pool —>
<property name = “hibernate.c3p0.min_size”>10</property>
<property name = “hibernate.c3p0.max_size”>30</property>
<property name = “hibernate.c3p0.timeout”>250</property>
<property name = “hibernate.c3p0.max_statements”>100
</property>

The min_size parameter specifies the number of connections that are always open. The
max_size parameter provides the upper limit for connections; more than max_size con-
nections will lead to a runtime exception. Timeout specifies (in seconds) the amount of
time a connection can be idle before it is removed from the pool. max_statements con-
figures the maximum number of prepared statements that can be cached to improve
Hibernate’s performance.

MAPPING OBJECT-ORIENTED STRUCTURES
TO A RELATIONAL DATABASE

In this section, we will evaluate the mapping between a core set of object-oriented struc-
tures and relational database designs. This collection is intended to be illustrative and not
exhaustive. The discussion will not cover the details of the Hibernate configuration files or
the Java implementation of the structures; the intent is to review the structures conceptually.

Class

In most cases, the relationship between a class in the object-oriented world and a rela-
tional table is one-to-one: There is one table for storing objects in each class. Specifically,
this is true for entity classes or classes that represent real-world entities, such as Course,
Section, or Person in our previous example. There are, however, situations in which a
single table provides persistence to two or more classes. This is the case when a Java class
is used to specify a value type instead of representing an instance of a real-world entity.
Typical examples of value types could be, for example, PersonName, Address, or Grade.
In each of these cases, the class has been created to specify a detailed representation of a
value associated with entity instances. For example, the class PersonName exists so that
all names of people in this system are represented in the same way (e.g., with the ele-
ments prefix, firstName, middleInitial, lastName, and suffix and with the method
printFullName(), which specifies how a person’s full name should be shown). Objects in
the value type classes are typically included in the same table with the object that
“owns” them. Thus, if a Person class has among its attributes objects in PersonName and
Address classes, the attribute values of these objects will be included in the same table
with the attribute values that belong to a specific person (see Figure 14-8).

Pooling of database connections
The process of using a limited
number of database connections
that are shared by multiple
applications and users.

Entity class
A class that represents a
real-world entity.

Value type
A class specification for objects
that exist for storing the value
of a property of another
object.

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-17

Inheritance: Superclass–Subclass

There are at least four ways in which an inheritance structure can be represented in a
database (see Figure 14-9). They are all based on the same object-oriented representa-
tion (see Figure 14-9a). We discussed one of them, called table per subclass, in our exam-
ple earlier in this chapter (see Figure 14-9b). In it, the abstract superclass (Person) and
the concrete subclasses (Faculty and Student) were represented in separate tables.
Bauer and King (2006) specify three other approaches: table per concrete class with implicit
polymorphism (see Figure 14-9c), table per concrete class with unions (see Figure 14-9d), and
table per class hierarchy (see Figure 14-9e). In both table per concrete class approaches, the
attributes from the superclass are included in all the tables representing the subclasses
and thus, there is no table representing the abstract superclass. In the table per class hier-
archy approach, the model is reversed and the attributes from the subclasses are
included in one table, the instances of which represent objects in all subclasses.
Obviously, this table has to include attributes for both subclasses. Each of these
approaches has its advantages and disadvantages; a detailed discussion of these is
beyond the scope of this text.

One-to-One Association

A good example of a binary one-to-one association is an association between Employee
and Position (Ambler, 2006) (assuming that we are not maintaining position history). In
most object-oriented solutions, this would be modeled so that each object in the
Employee class contains an object in the Position class, making navigation from an
employee object to a position object possible. This association would in most cases be
modeled with a foreign key reference from a row in the EMPLOYEE table to a row in
the POSITION table (see Figure 14-10).

Many-to-One and One-to-Many Associations

Binary one-to-many types of relationships are by far the most common in both object-
oriented application design and relational database design. As you already know, rela-
tional design breaks more complicated structures (such as a many-to-many relationship
in conceptual data modeling) into multiple binary associations. A typical object-relational
mapping context differentiates between many-to-one associations and one-to-many asso-
ciations, depending on the side from which one is observing the association. Mapping
can be done separately for each direction of the association. Regardless of the direction,

streetAddress
city
state
zip
country

Address

prefix
firstName
middlelnitial
lastName
suffix

PersonNamePerson

dateOfBirth
phoneHome1 0..* 0..* 1

FIGURE 14-8 Mapping of classes

PERSON(PersonID, DateOfBirth, Prefix, FirstName,
MiddleInitial, LastName, Suffix, StreetAddress, City, State, Zip,
Country, PhoneHome)

(a) Object-oriented representation (three classes)

(b) Relational representation (one table)

14-18 Part V • Advanced Database Topics

Student

studentID
yearMatriculated

Faculty

facultyID
office

name
dateOfBirth
address
phoneHome

Person

FIGURE 14-9 Mapping of
an inheritance structure
(a) Object-oriented
representation

the mapping is typically done with two tables, one of which (the many side) includes
a foreign key reference to the one side. If, for example, there is a one-to-many associa-
tion between classes Product and ProductLine, the objects would be stored in tables
PRODUCT and PRODUCTLINE and the association would be represented using a for-
eign key column ProductLineID as part of each row of PRODUCT (see Figure 14-11).

Position

title
qualifications

Employee

employeeNbr
name
phone

1 1

FIGURE 14-10 Mapping of a
one-to-one relationship
(a) Object-oriented
representation

PERSON(PersonID, Name, DateOfBirth, Address, Phonehome)
STUDENT(PersonID, StudentID, YearMatriculated)
FACULTY(PersonID, FacultyID, Office)

STUDENT(StudentPersonID, Name, DateOfBirth, Address, Phonehome,
StudentID, YearMatriculated)

FACULTY(FacultyPersonID, Name, DateOfBirth, Address, Phonehome,
FacultyID, Office)

STUDENT(PersonID, Name, DateOfBirth, Address, Phonehome,
StudentID, YearMatriculated)

FACULTY(PersonID, Name, DateOfBirth, Address, Phonehome,
FacultyID, Office)

PERSON(PersonID, PersonType, Name, DateOfBirth, Address,
Phonehome, StudentID, YearMatriculated, FacultyID, Office)

(b) Relational representation:
Table per subclass

(c) Relational representation:
Table per concrete class with
implicit polymorphism

(d) Relational representation:
Table per concrete class with
unions

(e) Relational representation:
Table per class hierarchy

EMPLOYEE(EmployeeID, EmployeeNbr, Name, Phone, Salary, PositionID)
POSITION(PositionID, Title, Qualifications)

(b) Relational representation

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-19

productCode
productName
price

Product
productLineCode
productLineName

ProductLine

10..*

FIGURE 14-11 Mapping of a
one-to-many relationship
(a) Object-oriented
representation

Directionality in Java does not change the relational mapping; unidirectional and bidirec-
tional associations are stored with the same database structures.

Aggregation and Composition

Aggregation and composition are structures in object-oriented modeling that capture
“has-a” types of associations between objects. Composition is stronger than aggrega-
tion: If an association is specified as a composition, it means that one side of the associ-
ation has been specified as the whole, which manages the life cycle of the parts to the
extent that the parts cannot exist without the whole. For example, the objects in Invoice
and LineItem classes are associated together with composition: Objects in LineItem
should not be able to exist without a corresponding object in Invoice. In practice, this
means that the foreign key attribute in table LINEITEM that refers to the row in
INVOICE has to be defined as NOT NULL (See Figure 14-12). The database represen-
tation of standard aggregation does not have any special features compared to a regu-
lar association.

Many-to-Many Associations

There are two main types of many-to-many associations in the mainstream object-
oriented modeling approaches: a simple association with multiplicities greater than
one at both ends and an association class with additional attributes. Still, the database
representation is essentially the same in both cases: A new table is created to enable the
capture of the many-to-many association, exactly the same way a many-to-many
relationship in a conceptual data model is represented with a separate table in the
relational representation (see Figures 4-13 and 4-15).

PRODUCT (ProductID, ProductCode, ProductName, Price,
ProductLineID)

PRODUCTLINE(ProductLineID, ProductLineCode,

ProductLineName)

(b) Relational representation

invoiceNbr
date

Invoice description
quantity
price

LineItem

1..*

INVOICE(InvoiceID, InvoiceNbr, Date)

LINEITEM(LineItemID, Description, Quantity, Price, InvoiceID)

FIGURE 14-12 Mapping
of a composition structure
(a) Object-oriented
representation

(b) Relational representation

14-20 Part V • Advanced Database Topics

RESPONSIBILITIES OF OBJECT-RELATIONAL
MAPPING FRAMEWORKS

Now that we have seen an example of object-relational mapping and reviewed how the
core object-oriented structures are mapped to their relational counterparts, it is time to
summarize the services object-relational mapping frameworks offer to applications (see
also Table 14-5).

First, an ORM framework provides a layer of abstraction that separates object-
oriented applications from the details of a specific database implementation. The manipu-
lation of the persistence status of objects takes place using statements of the programming
language, not with a separate database language.

Second, although one should not use the ORM frameworks without understand-
ing the characteristics of the underlying databases and DBMSs, the frameworks have
the responsibility for generating the SQL code for database access, which means appli-
cation developers do not have to worry about that. An added benefit is that the code for
database access does not have to be written for each of the classes separately, but the
relationships between the class structures and the database schema are systematically
and centrally defined.

Third, the ORM frameworks include tools for managing database performance in
the context of object-oriented applications. As shown earlier in this chapter, a typical
ORM framework is capable of using the services of a connection pool (such as C3P0) for
the efficient management of expensive database connections. Another performance-
related issue that is central in the use of ORM frameworks is the specification of
fetching strategies, which define when and how the framework retrieves persistent
objects to the run-time memory during a navigation process. A specific issue that has to
be addressed is the N+1 selects problem, which refers to a situation in which a poorly
defined fetching strategy might lead to a separate SELECT statement for each associ-
ated object in a one-to-many relationship. For example, Hibernate uses, by default, so-
called lazy loading, in which objects are retrieved from a database only when they are
needed. The alternative is eager loading, in which all associated objects are always
retrieved together with the object to which they are linked. Careful design of fetching
strategies is very important from the perspective of achieving a high level of perform-
ance in applications based on an ORM framework.

Fourth, the ORM frameworks provide support for transactions and transaction
integrity. This topic was covered in Chapter 11, so we will not discuss it again here in
detail. The transaction support mechanisms in the ORM frameworks work together
with standard transaction management tools, such as Java Transaction API (JTA), that
are provided by many application servers (e.g., JBoss and WebSphere). The develop-
ment of enterprise-level applications would not, in general, be possible without trans-
action support. It is particularly important in the ORM world because, in many cases, a
change in a persistent object leads to cascading changes in the database, which all have
to be either accepted or rejected together.

The ORM frameworks provide services for concurrency control, which was also
covered in Chapter 11. Hibernate uses, by default, optimistic concurrency control, but
its behavior can be modified when more stringent isolation guarantees are needed. The
highest level of isolation in Hibernate is fully serializable isolation, which ensures—
with a performance penalty—that transactions are executed one after another.

TABLE 14-5 Typical Responsibilities of the Object-Relational Mapping Frameworks

• Provide a layer of abstraction between object-oriented applications and a database schema
implemented with a DBMS leading to transparent persistence

• Generate SQL code for database access
• Centralize code related to database access
• Provide support for transaction integrity and management
• Provide services for concurrency control
• Provide a query language

Fetching strategy
A model for specifying when and
how an ORM framework retrieves
persistent objects to the run-time
memory during a navigation
process.

N+1 selects problem
A performance problem caused by
too many SELECT statements
generated by an ORM framework.

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-21

Finally, the ORM frameworks often include a custom query language, such as
HQL in Hibernate, and other mechanisms to run queries, such as direct SQL and the
Criteria application programming interface (API) in Hibernate. We will provide here a
few examples of ORM queries using HQL.

HQL

HQL, the query language in Hibernate, resembles SQL in many ways. Based on what
you have learned about SQL in Chapters 6 and 7, you will be able to learn HQL easily.
Using our university example presented previously, let’s see how data can be retrieved
using HQL.

We will start with a simple example that is limited to one class and database table:
We will be listing all available information for all people whose last name is Rosen. The
simple HQL query to accomplish this is as follows:

from Person
where lastName = ‘Rosen’

It is noteworthy that the result of this query will return relevant objects from both sub-
classes (Faculty and Students) and, because the result is a list of objects, it is possible to
determine whether a specific object is a student or a faculty member. Also, note that the
select keyword is not mandatory in HQL, as it is in SQL.

If we want the result list to consist of a collection of attributes instead of whole
objects in the source class, we can specify the attributes in the query as follows:

select firstName
from Person
where lastName = ‘Rosen’

This is obviously very familiar to you: The statement is essentially the same as it would
be as an SQL statement. Hibernate allows you to express a variety of constraints in the
where clause, including those that utilize various built-in functions well-known to you
from the SQL discussion. Within a single class, aggregate functions (sum, average,
count, etc.) work essentially the same way as in single-table SQL queries. We will,
however, see interesting differences in how joins are expressed in the HQL environ-
ment. According to Bauer and King (2006), HQL provides four different ways of
expressing joins:

• An implicit association join
• An ordinary join in the FROM clause
• A fetch join in the FROM clause
• A theta-style join in the WHERE clause

In this chapter, we are primarily interested in the first two.
An implicit association join allows us to use object-oriented navigation in the

queries. For example, if we wanted to list all sections with course numbers and titles
and the names of the faculty members who teach them, we can simply express the
query as follows:

select s.course.courseNbr, s.course.courseTitle, s.faculty.lastName,
s.faculty.firstName

from Section s

The beauty of this query is that you don’t have to specify anywhere in the query
how section and course or section and faculty are linked together. This information is

14-22 Part V • Advanced Database Topics

available in the Hibernate configuration files and will be used automatically without an
explicit join (thus the name). The SQL query that is generated based on this HQL query
is as follows:

select
course1_.CourseNbr as col_0_0_,
course1_.CourseTitle as col_1_0_,
faculty3_1_.LastName as col_2_0_,
faculty3_1_.FirstName as col_3_0_
from
Section_T section0_,
Course_T course1_,
Faculty_T faculty3_
inner join
Person_T faculty3_1_
on
faculty3_.FacultyPersonID=faculty3_1_.PersonID
where
section0_.FacultyID=faculty3_.FacultyPersonID
and section0_.CourseID=course1_.CourseID

These types of joins work well in relatively simple and straightforward many-to-
one cases. In this situation, each section is associated with one course and one faculty
member; therefore, navigation to them is easy. We cannot, however, use this notation and
navigate from a course object to its section objects, because the association between
course and sections is one-to-many when looking at it from the perspective of the course.
In these cases, and in many others that require more complex structures, we need to use
explicitly expressed joins. Let’s look at an example: If we want to list the registration
numbers for all sections of a course labeled IS 360 in Spring 2010, we can use the follow-
ing HQL code:

select s.sectionRegNbr
from Section as s
join s.course c
where c.courseNbr=‘IS 360’ and s.semester=‘Spring 2010’

Note that we do not specify here how section and course are linked; the join simply
states that the basis for the join is the course attribute of class Section.

HQL converts this query to the following SQL code, which is very similar, except
that it explicitly expresses the foreign key (CourseID in Section_T)–primary key
(CourseID in Course_T) link between Section_T and Course_T:

select
section0_.SectionRegNbr as col_0_0_
from
Section_T section0_
inner join
Course_T course1_
on section0_.CourseID=course1_.CourseID
where
course1_.CourseNbr=‘IS 360’
and section0_.Semester=‘Spring 2010’

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-23

If we want to add the name of the faculty member in the answer set, we need to add
another join statement, as follows:

select s.sectionRegNbr, f.lastName, f.firstName
from Section as s
join s.course c
join s.faculty f
where c.courseNbr=‘IS 360’ and s.semester=‘Spring 2010’

The SQL representation is as follows:

select
section0_.SectionRegNbr as col_0_0_,
faculty2_1_.LastName as col_1_0_,
faculty2_1_.FirstName as col_2_0_
from
Section_T section0_
inner join
Course_T course1_
on section0_.CourseID=course1_.CourseID
inner join
Faculty_T faculty2_
on section0_.FacultyID=faculty2_.FacultyPersonID
inner join
Person_T faculty2_1_
on
faculty2_.FacultyPersonID=faculty2_1_.PersonID
where
course1_.CourseNbr=‘IS 360’
and section0_.Semester=‘Spring 2010’

Note that there is an additional join that is implicit in the query: Faculty inherits its
name attributes from Person, which is expressed in the last join of this query.

Let’s move to a more complicated case: With the following HQL query, we can
retrieve the detailed information for all students who took IS 360 in Spring 2010:

select c.courseNbr, s.sectionNbr, s.sectionRegNbr,
f.lastName, f.firstName, st.lastName, st.firstName,
e.grade

from Section as s
join s.course c
join s.faculty f
join s.enrolledStudents e
join e.student st
where c.courseNbr=‘IS 360’ and s.semester=‘Spring 2010’

As you can see, adding more joins is very straightforward. Course, faculty, and
enrolledStudents are all attributes of Section, and the class Student is associated with
Section through the enrolledStudents collection. It is not difficult to imagine that the list

14-24 Part V • Advanced Database Topics

of joins is equally long and somewhat more verbose in SQL (because SQL has to repre-
sent the foreign key–primary key pairs explicitly):

select
course1_.CourseNbr as col_0_0_,
section0_.SectionNbr as col_1_0_,
section0_.SectionRegNbr as col_2_0_,
faculty2_1_.LastName as col_3_0_,
faculty2_1_.FirstName as col_4_0_,
student4_1_.LastName as col_5_0_,
student4_1_.FirstName as col_6_0_,
enrolledst3_.Grade as col_7_0_
from
Section_T section0_
inner join
Course_T course1_
on section0_.CourseID=course1_.CourseID
inner join
Faculty_T faculty2_
on section0_.FacultyID=faculty2_.FacultyPersonID
inner join
Person_T faculty2_1_
on
faculty2_.FacultyPersonID=faculty2_1_.PersonID
inner join

Registration_T enrolledst3_
on section0_.SectionID=enrolledst3_.SectionID

inner join
Student_T student4_
on enrolledst3_.StudentPersonID=student4_.StudentPersonID

inner join
Person_T student4_1_
on student4_.StudentPersonID=student4_1_.PersonID

where
course1_.CourseNbr=‘IS 360’
and section0_.Semester=‘Spring 2010’

We will complete the HQL example with an aggregate query that requires several
joins. This query lists the average of the numeric values of the grades given by each
instructor in Spring 2010:

select f.lastName, f.firstName, avg(e.numGrade)
from Section s
join s.course c
join s.faculty f
join s.enrolledStudents e
join e.student st
where s.semester=‘Spring 2010’
group by f.facultyID, f.lastName, f.firstName

As you see, the aggregation mechanism is very similar to that of SQL. FacultyID
is added to the group by clause to make sure that possible name duplicates are
identified.

HQL provides a much broader set of capabilities, but most of them should be
quite familiar to you, based on your SQL expertise.

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-25

Chapter Review

Key Terms

Summary

The object-oriented approach has become very popular
in application development and systems analysis and
design, but object-oriented database management
systems never gained widespread acceptance. Instead,
relational database management systems continue to
maintain their dominant role as the primary data man-
agement technology. Therefore, it is essential that rela-
tional databases be used effectively with object-oriented
application development approaches.

In this chapter, we first reviewed the reasons under-
lying the object-relational impedance mismatch—that
is, the conceptual conflict between the object-oriented
and relational models. These reasons include differences in
the representation of complex data types and structural
relationships (including inheritance and associations),
representation of object/entity instance identity, impor-
tance and implementation of the transaction concept, and
methods of accessing persistent data. In addition, the
approaches have a different core focus because the rela-
tional model focuses entirely on data whereas the object-
oriented approach, by definition, integrates data and
behavior. Also, the predominant architectural styles within
each approach are different. It is essential that the gap
between the two approaches be closed because, in practice,
both will be used widely in the foreseeable future.

There are four basic categories of mechanisms
through which relational databases can be used to
provide persistence to objects. Call-level application
programming interfaces (APIs), such as Java Database
Connectivity (JDBC), require that application developers
embed SQL statements in the program code through a
low-level interface. SQL query mapping frameworks,
such as iBATIS, raise the level of abstraction by provid-
ing a mechanism for declaring links between class speci-
fications and SQL queries and by hiding the details of
the call-level APIs. such as Java Persistence API and its
implementations Hibernate, EclipseLink, and OpenJPA,
provide a transparent persistence solution by creating
declarative mapping between classes and database
tables. They hide the database structure and the rela-
tional query language from developers. Finally, there are
many proprietary persistence solutions that intend to
integrate data access directly into object-oriented envi-
ronments and languages, such as Microsoft’s LINQ.
Each of the approaches has strengths and weaknesses,
and it is essential that you carefully evaluate the specific

needs of your project before selecting a tool for linking
relational databases to an object-oriented development
environment.

An example using Hibernate, a leading ORM frame-
work, demonstrated the use of XML mapping files to
declare the mapping between the object-oriented and
relational concepts, including both classes and various
structural associations between them on the object-
oriented side and tables and their relationships on the
relational side. Mapping individual, unconnected tables is
very straightforward, but the solutions become immedi-
ately more complex when various types of associations
and other structural relationships are mapped. The map-
ping process requires an in-depth understanding of both
object-oriented application development and relational
databases. In addition to the declarative mapping of the
concepts, ORM frameworks must be configured to work
with a specific database management system.

Object-relational mapping frameworks have multiple
responsibilities: They provide a layer of abstraction between
object-oriented applications and a database schema imple-
mented with a DBMS to provide transparent persistence for
the applications. They generate the SQL code that is needed
for database access, and they centralize this code so that
it does not proliferate throughout the application. These
frameworks provide support for concurrency control and
transaction integrity and management. They also typically
include a query language (such as HQL in Hibernate) that
provides capabilities similar to those of SQL.

Understanding the mechanisms used for linking
object-oriented applications and relational databases is
very important for both those whose specialty is data man-
agement and those who focus on application development.
For data management specialists, an increasing number of
the applications that they support are developed using the
object-oriented approach. To provide high-quality service
to these applications (and their developers), it is essential
that data specialists understand how these applications
connect to relational databases. Application developers, on
the other hand, benefit greatly from understanding at least
the principles of the mechanisms that provide persistence
for the objects in their solutions. It is particularly important
that both sides be able to communicate effectively with
each other. The quality of the object-relational connection
solution directly affects application performance, reliability,
and security.

Accessor method 14-5
Call-level application

programming
interface 14-6

Declarative mapping
schema 14-7

Entity class 14-16

Fetching
strategy 14-20

N+1 selects
problem 14-20

Object identity 14-5
Object-relational imped-

ance mismatch 14-3

Object-relational
mapping 14-3

Persistence 14-2
Pooling of database

connections 14-16
Separation of concerns

14-9

Serialization 14-2
Transparent

persistence 14-7
Value type 14-16

14-26 Part V • Advanced Database Topics

Review Questions
1. Define each of the following terms:

a. object-relational impedance mismatch
b. object-relational mapping
c. persistence
d. call-level application programming interface
e. transparent persistence
f. JDBC
g. iBATIS
h. Hibernate
i. N+1 selects problem

2. Compare and contrast the following terms:
a. object identity; primary key value of a row in a database

table
b. entity class; value type
c. OODBMS; RDBMS
d. many-to-one association; one-to-many association
e. lazy loading; eager loading
f. JPA; Hibernate

3. Explain the reasons object-oriented database management
systems never became very popular.

4. Briefly describe the factors that contribute to the object-rela-
tional impedance mismatch.

5. Explain how the object-oriented and relational approaches
to accessing data differ from each other.

6. What is the key difference in how entity instance identities
are defined in the object-oriented and relational worlds?

7. Why is it essential that relational databases be effectively
used to provide persistence for objects in applications
developed using the object-oriented paradigm?

8. Why can the link between object-oriented applications and
relational databases not be built simply by using JDBC or
some other call-level application programming interface?

9. Explain the main conceptual difference between iBATIS and
Hibernate.

10. Explain the criteria that you might use to select between
iBATIS and Hibernate.

11. Why is transparent persistence so important from the per-
spective of application developers?

12. Some developers are concerned about the overhead that
SQL query mapping frameworks and ORM frameworks
add to call-level APIs. Why?

13. What is the relationship between Hibernate and JPA?
14. What is the purpose of the <Class name>.hbm.xml files in

Hibernate?
15. How is Hibernate configured for a specific database man-

agement system environment?
16. How are attributes specified in the Hibernate configuration

files?
17. What is the purpose of the <set> tag in the Hibernate con-

figuration files?
18. Explain how primary keys of the database tables are speci-

fied within the Hibernate environment.
19. What is the purpose of the SchemaExport tool in Hibernate?
20. Referring to the SQL code in Figure 14-7, explain why

Student_T, Faculty_T, and Registration_T do not have auto-
generated primary keys.

21. Explain the importance of pooling database connections.
22. Briefly describe the four different ways in which an inheri-

tance structure can be mapped to a relational schema.
23. Explain why it makes sense to differentiate between many-

to-one and one-to-many associations in the object-oriented
world.

24. What is the practical impact of specifying an association as
composition from the perspective of object-relational
mapping?

25. Explain the importance of well-designed fetching strategies.
26. When is the select keyword necessary in HQL?
27. What is an implicit association join?
28. Analyze the queries that include explicit joins in the HQL

queries and their SQL counterparts. What is the main differ-
ence between these two query types?

Problems and Exercises

1. Create a set of <Class name>.hbm.xml files that would gen-
erate a database schema presented in Figure 4-5.

2. Create a domain model (expressed in the UML class diagram
notation) corresponding to the <Class name>.hbm.xml files
you created in Problem and Exercise 1.

3. Create a domain model (using the UML class diagram nota-
tion) corresponding to the EER model in Figure 4-33.

4. Create a relational schema that is compatible with the
domain model specified in Problem and Exercise 3 and a set
of <Class name>.hbm.xml files that map between the
domain model and the relational schema.

5. Create a domain model (using the UML class diagram nota-
tion) corresponding to the EER model in Figure 4-38.

6. Create a relational schema that is compatible with the
domain model specified in Problem and Exercise 5 and a set
of <Class name>.hbm.xml files that map between the
domain model and the relational schema.

7. Create a domain model (using the UML class diagram nota-
tion) corresponding to the EER model in Figure 4-36.

8. Create a relational schema that is compatible with the
domain model specified in Problem and Exercise 7 and a set
of <Class name>.hbm.xml files that map between the
domain model and the relational schema.

Problems and Exercises 9 through 17 all pertain to the Java imple-
mentation specified in Figure 14-5. Write HQL queries for these
exercises. If you need additional details regarding HQL, see
www.hibernate.org/hib_docs/v3/reference/en/html/queryhql
.html.

9. Assume that a course number consists of a two-letter desig-
nator (such as IS) and a three-digit number. Find the titles
and numbers of all 300-level IS courses.

10. Find the titles and numbers of all 300-level IS courses that
are offered in Spring 2010.

11. Find the information that is needed in order to give each
faculty member a list of students who take at least one of
their courses during the current semester.

12. Find the names and matriculation years for those students
who are enrolled in IS 440 in Spring 2010.

www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html
www.hibernate.org/hib_docs/v3/reference/en/html/queryhql.html

Chapter 14 • Using Relational Databases to Provide Object Persistence 14-27

13. Find the average grade earned in IS 460 by students who
matriculated in 2008, regardless of when they took the course.

14. Find the total number of credit hours (together with basic
student information) for each of those students who first
matriculated in 2008.

15. Find the names and office locations of those faculty mem-
bers who taught IS 350 in Spring 2010.

16. Find the names and office locations of those faculty mem-
bers who taught more than one course in Spring 2010.

17. Find the names and e-mail addresses of the students who
took at least one IS course in 2009–2010 or 2010–2011,
including in the answer information regarding the number
of times the students took a specific course.

Field Exercises

1. Interview database administrators in a few organizations and
discuss the mechanisms they have chosen to use for linking
object-oriented applications to relational databases. Document
the current status and future plans of the organizations.

2. In this chapter, we discussed three different implementa-
tions of the Java Persistence API (JPA) standard. Using
resources on the Web, evaluate the current competitive situ-
ation between these three. Are there any others that are
emerging as potential additional competitors?

3. Review Microsoft’s plans for the future of LINQ. Compare
LINQ with JPA and its implementations. What are the fac-
tors a decision maker should take into account when choos-
ing between the two?

4. Interview database administrators in a few organizations
and discuss why the use or don’t use object-oriented data-
base management systems. Document the current status
and future plans of the organizations.

References

Ambler, S. 2006. Mapping Objects to Relational Databases: O/R
Mapping in Detail. Available at www.agiledata.org/
essays/mappingObjects.html. (accessed September 19,
2009).

Bauer, C., and G. King. 2006. Java Persistence with Hibernate.
Greenwich, CT: Manning.

Neward, T. 2005. Comparing LINQ and Its Contemporaries. Available
at http://msdn2.microsoft.com/en-us/library/aa479863.aspx
(accessed September 19, 2009).

Richardson, C. 2006. POJOs in Action. Greenwich, CT: Manning.
Tate, B., and J. Gehtland. 2005. Spring: A Developer’s Notebook.

Sebastopol, CA: O’Reilly.

Further Reading

Elliott, J., T. O’Brien, and R. Fowler. 2008. Harnessing Hibernate.
Sebastopol, CA: O’Reilly.

Keith, M., and M. Schincariol. 2006. Pro EJB 3: Java Persistence
API. Berkeley, CA: Apress.

Minter, D., and J. Linwood. 2006. Beginning Hibernate: From
Novice to Professional. Berkeley, CA: Apress.

Panda, D., R. Rahman, and D. Lane. 2007. EJB 3 in Action.
Greenwich, CT: Manning.

Web Resources

www.java-source.net/open-source/persistence A collection of
links to various open source persistence frameworks.

www.hibernate.org The Hibernate Web site.

http://java.sun.com/javaee/overview/faq/persistence.jsp An
official Sun site that provides a description of the persist-
ence standard in Java EE.

www.agiledata.org/essays/mappingObjects.html
www.agiledata.org/essays/mappingObjects.html
www.java-source.net/open-source/persistence
www.hibernate.org
http://java.sun.com/javaee/overview/faq/persistence.jsp
http://msdn2.microsoft.com/en-us/library/aa479863.aspx

	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Part I: The Context of Database Management
	An Overview of Part One
	Chapter 1 The Database Environment and Development Process
	Learning Objectives
	Data Matter!
	Introduction
	Basic Concepts and Definitions
	Traditional File Processing Systems
	The Database Approach
	Components of the Database Environment
	The Range of Database Applications
	The Database Development Process
	Developing a Database Application for Pine Valley Furniture Company
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Part II: Database Analysis
	An Overview of Part Two
	Chapter 2 Modeling Data in the Organization
	Learning Objectives
	Introduction
	The E-R Model: An Overview
	Sample E-R Diagram
	E-R Model Notation
	Modeling the Rules of the Organization
	Modeling Entities and Attributes
	Modeling Relationships
	E-R Modeling Example: Pine Valley Furniture Company
	Database Processing at Pine Valley Furniture
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Chapter 3 The Enhanced E-R Model
	Learning Objectives
	Introduction
	Representing Supertypes and Subtypes
	Specifying Constraints in Supertype/Subtype Relationships
	EER Modeling Example: Pine Valley Furniture Company
	Entity Clustering
	Packaged Data Models
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Case: Mountain View Community Hospital

	Part III: Database Design
	An Overview of Part Three
	Chapter 4 Logical Database Design and the Relational Model
	Learning Objectives
	Introduction
	The Relational Data Model
	Integrity Constraints
	Transforming EER Diagrams into Relations
	Introduction to Normalization
	Normalization Example: Pine Valley Furniture Company
	Merging Relations
	A Final Step for Defining Relational Keys
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Case: Mountain View Community Hospital

	Chapter 5 Physical Database Design and Performance
	Learning Objectives
	Introduction
	The Physical Database Design Process
	Designing Fields
	Denormalizing and Partitioning Data
	Designing Physical Database Files
	Using and Selecting Indexes
	Designing a Database for Optimal Query Performance
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Part IV: Implementation
	An Overview of Part Four
	Chapter 6 Introduction to SQL
	Learning Objectives
	Introduction
	Origins of the SQL Standard
	The SQL Environment
	Defining A Database in SQL
	Inserting, Updating, and Deleting Data
	Internal Schema Definition in RDBMSs
	Processing Single Tables
	Using and Defining Views
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Chapter 7 Advanced SQL
	Learning Objectives
	Introduction
	Processing Multiple Tables
	Tips for Developing Queries
	Ensuring Transaction Integrity
	Triggers and Routines
	Embedded SQL and Dynamic SQL
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Chapter 8 Database Application Development
	Learning Objectives
	Location, Location, Location!
	Introduction
	Client/Server Architectures
	Databases in a Two-Tier Architecture
	Three-Tier Architectures
	Web Application Components
	Databases in Three-Tier Applications
	Key Considerations in Three-Tier Applications
	Extensible Markup Language (XML)
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Chapter 9 Data Warehousing
	Learning Objectives
	Introduction
	Basic Concepts of Data Warehousing
	Data Warehouse Architectures
	Some Characteristics of Data Warehouse Data
	The Derived Data Layer
	Column Databases: A New Alternative for Data Warehouses
	The User Interface
	SQL OLAP Querying
	Data Visualization
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Part V: Advanced Database Topics
	An Overview of Part Five
	Chapter 10 Data Quality and Integration
	Learning Objectives
	Introduction
	Data Governance
	Managing Data Quality
	Master Data Management
	Data Integration: An Overview
	Data Integration for Data Warehousing: The Reconciled Data Layer
	Data Transformation
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Chapter 11 Data and Database Administration
	Learning Objectives
	Introduction
	The Roles of Data and Database Administrators
	The Open Source Movement and Database Management
	Managing Data Security
	Database Software Data Security Features
	Sarbanes-Oxley (SOX) and Databases
	Database Backup and Recovery
	Data Dictionaries and Repositories
	Overview of Tuning the Database for Performance
	Data Availability
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources
	CASE: Mountain View Community Hospital

	Chapter 12 Overview: Distributed Databases
	Learning Objectives
	Overview
	Chapter Review
	References
	Further Reading
	Web Resources

	Chapter 13 Overview: Object-Oriented Data Modeling
	Learning Objectives
	Overview
	Chapter Review
	References
	Further Reading
	Web Resources

	Chapter 14 Overview: Using Relational Databases to Provide Object Persistence
	Learning Objectives
	Overview
	Summary
	Chapter Review
	References
	Further Reading
	Web Resources

	Appendix A: Data Modeling Tools and Notation
	Comparing E-R Modeling Conventions
	Comparison of Tool Interfaces and E-R Diagrams

	Appendix B: Advanced Normal Forms
	Boyce-Codd Normal Form
	Fourth Normal Form
	Higher Normal Forms
	Key Terms
	References
	Web Resources

	Appendix C: Data Structures
	Pointers
	Data Structure Building Blocks
	Linear Data Structures
	Hazards of Chain Structures
	Reference

	Glossary of Acronyms
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

	ONLINE CHAPTERS
	Chapter 12 Distributed Databases
	Learning Objectives
	Introduction
	Objectives and Trade-offs

	Options for Distributing a Database
	Data Replication
	Horizontal Partitioning
	Vertical Partitioning
	Combinations of Operations
	Selecting the Right Data Distribution Strategy

	Distributed DBMS
	Location Transparency
	Replication Transparency
	Failure Transparency
	Commit Protocol
	Concurrency Transparency
	Query Optimization
	Evolution of Distributed DBMSs
	Remote Unit of Work
	Distributed Unit of Work
	Distributed Request

	Distributed DBMS Products
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources

	Chapter 13 Object-Oriented Data Modeling
	Learning Objectives
	Introduction
	Unified Modeling Language
	Object-Oriented Data Modeling
	Representing Objects and Classes
	Types of Operations
	Representing Associations
	Representing Association Classes
	Representing Derived Attributes, Derived Associations, and Derived Roles
	Representing Generalization
	Interpreting Inheritance and Overriding

	Representing Multiple Inheritance
	Representing Aggregation

	Business Rules
	Object Modeling Example: Pine ValleyFurniture Company
	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources

	Chapter 14 Using Relational Databases to Provide Object Persistence
	Learning Objectives
	Introduction
	Object-Relational Impedance Mismatch
	Providing Persistence for Objects Using Relational Databases
	Common Approaches
	Selecting the Right Approach

	Object-Relational Mapping Example Using Hibernate
	Foundation
	Mapping Files
	Hibernate Configuration

	Mapping Object-Oriented Structures to a Relational Database
	Class
	Inheritance: Superclass–Subclass
	One-to-One Association
	Many-to-One and One-to-Many Associations
	Aggregation and Composition
	Many-to-Many Associations

	Responsibilities of Object-Relational Mapping Frameworks
	HQL

	Summary
	Key Terms
	Review Questions
	Problems and Exercises
	Field Exercises
	References
	Further Reading
	Web Resources

