Font size
A-
A
A+
Site color
R
A
A
A
Side panel
You are currently using guest access (
Log in
)
Skip to main content
DEEP LEARNING
Home
Courses
MATEMATIKA DAN ILMU PENGETAHUAN ALAM (MIPA)
MATEMATIKA
Ilmu Komputer
14624533 - DEEP LEARNING
2. Dasar Matematika Untuk Mesin Pemelajar
Diskusi Matematika Untuk Mesin Pemelajar
Search forums
Search forums
Diskusi Matematika Untuk Mesin Pemelajar
Jika ada pertanyaan dan permasalahan yang tidak kalian fahami, silakan bertanya pada forum ini.
(There are no discussion topics yet in this forum)
Previous activity
◄ Rubrik Penilaian Penugasan 2
Jump to...
Jump to...
Pengumuman
Rencana Pembelajaran Semester (RPS)
Komposisi Penilaian & Evaluasi
1.1. Deep Learning Application
1.2. Hubungan AI & Deep Learning
1.3. Why Deep Learning
Materi 1: Konsep Dasar Deep Learning
Penugasan 1: Meringkas literatur Deep Learning
Rubrik Penilaian Penugasan 1
Diskusi Konsep Dasar Deep Learning
2.1.1. Perkalian Matriks & Vektor
2.1.2. Determinan
2.1.3. Nilai Eigen dan Vektor Eigen
Materi 2.1. Math For ML - Aljabar Linier
2.2.1. Random Variable
2.2.2. Probability Mass Function (PMF)
2.2.3. Statistika Marginal
2.2.4.Probability Density Function
2.2.5. Statistika Variansi dan Kovariansi
2.2.6. Gaussian Distribution
Materi 2.2. Math for ML - Probabilitas
2.3.1. Gradient Based Optimization
2.3.2.Jacobian Matrices
2.3.3. Hessian Matrices
Materi 2.3. Math For ML - Komputasi Numerik
2.4. Dasar Mesin Pemelajar
Materi 2.4. Dasar Mesin Pemelajar
Penugasan 2: Identifikasi permasalahan matematika dan machine learning
Rubrik Penilaian Penugasan 2
3.1. Feedforward Neural Network
3.2. Backpropagation Algorithm
3.3. Minibatch
3.4. XOR Learning
Materi 3 : Deep Feedforward Networks
Penugasan 3: Deep Feedforward Networks
Rubrik Penilaian Penugasan 3
Diskusi Deep Feedforward Networks
4.1. Data Splitting
4.2. Problem of Fitting
4.3. Parameter Norm Penalties
4.4. Data Augmentation
4.5. Early Stopping
4.6. Bagging
4.7. Dropout
Materi 4: Regularization For Deep Learning
Penugasan 4 : Identifikasi Teknik Regularisasi
Rubrik Penilaian Penugasan 4
Diskusi Regularization For Deep Learning
5.1. NN as Computational Graph
5.2. Gradient Descent for NN
5.3. Optimization Algorithm
Materi 5: Optimization for Deep Learning
Penugasan 5: Identifikasi Algoritma Optimasi
Rubrik penilaian penugasan 5
Diskusi Optimization for Deep Learning
6.1. Aplikasi Visi Komputer
6.2. Apa yang komputer lihat
6.3. Mempelajari Fitur Visual melalui Jaringan Saraf
6.4.Feature Extraction Case Study
6.5.Convolutional Neural Network (CNN)
6.6. Non Linearity & Pooling
6.7. Arsitektur Berbagai Aplikasi
Materi 6: Deep Convolutional Networks
Penugasan 6 : Deep Convolutional Networks
Rubrik Penilaian Penugasan 6
Diskusi Deep Convolutional Networks
7.1. Introduction to Sequence Modelling
Materi 7: Deep Sequence Modelling
Rubrik Penugasan 7: Deep Sequence Modelling
Forum Diskusi 7 Deep Sequence Modelling
9.1. Autoregressive Models
Materi 8: Deep Generative Modeling
Penugasan 8: Deep Generative Modeling
Rubrik Penilaian Penugasan 8
Diskusi Deep Generative Modeling
10. Practical Methodology - Konsep
Materi 10: Practical Methodology
Kode Program 10-Practical Methodology
Forum Practical Methodology
Next activity
3.1. Feedforward Neural Network ►
Home
Calendar
Course sections
MK Deep Learning - 14624533 - 3 SKS
1. Konsep Dasar Deep Learning
2. Dasar Matematika Untuk Mesin Pemelajar
3. Deep Feedforward Networks
4. Regularization For Deep Learning
5. Optimization for Deep Learning
6. Deep Convolutional Networks
7. Deep Sequence Modelling
8. Evaluasi Tengah Semester
9. Deep Generative Modeling
10. Practical Methodology